当前位置: 仪器信息网 > 行业主题 > >

全氟癸基

仪器信息网全氟癸基专题为您提供2024年最新全氟癸基价格报价、厂家品牌的相关信息, 包括全氟癸基参数、型号等,不管是国产,还是进口品牌的全氟癸基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全氟癸基相关的耗材配件、试剂标物,还有全氟癸基相关的最新资讯、资料,以及全氟癸基相关的解决方案。

全氟癸基相关的资讯

  • 城市环境所在单细胞拉曼追踪细菌抗性进化轨迹研究中取得进展
    抗生素抗性的频繁出现对现代医学提出挑战。探讨抗性的进化过程对遏制其全球传播至关重要。抗性进化过程涉及高度复杂的表型异质性响应。在抗生素处理下,基因完全相同的微生物菌群中会出现小部分可耐受抗生素的细胞亚群。该存活的亚群在抗生素存在时不能生长,但在去除抗生素后可恢复生长,造成长期复发性感染,也是后续发生抗性基因突变的关键储库。然而,由于耐受亚群的复杂异质性响应且生长停滞,从大量细菌群体中识别耐受亚群并追踪其生理进化轨迹仍是挑战。 近日,中国科学院城市环境研究所朱永官院士团队与崔丽研究组在《德国应用化学》上,发表了题为An Isotope-Labeled Single-Cell Raman Spectroscopy Approach for Tracking the Physiological Evolution Trajectory of Bacteria toward Antibiotic Resistance的研究论文。该研究通过发展单细胞拉曼-氘标同位素-多元统计分析等多种技术联用的方法,在单细胞的高精度水平原位解析了细菌响应的异质性,并从大量细菌群体中灵敏识别出表型亚群的分化及动态变化,实现了抗性突变前细菌表型生理轨迹的快速原位追踪,为遏制抗性进化提供重要指导。 该研究将细菌多次循环暴露于临床治疗剂量的抗生素,进化出抗生素抗性。研究利用重水标记的单细胞拉曼光谱以不依赖培养的方式,检测进化过程中细菌的原位活性。结果发现,在未发生抗性突变的情况下,细菌在抗生素压力下的活性随处理循环逐渐增加,说明其表型耐受性逐渐提高。进一步,研究利用UMAP多元统计算法对所有进化阶段的上千个细菌的单细胞拉曼指纹区间进行分析。根据拉曼指纹指示的细菌表型生理响应,从初始基因型完全相同的细菌群体中,研究识别出随抗性进化发生分化的四个表型亚群,即敏感菌群、原生耐受菌、进化耐受菌和进化抗性菌,并灵敏捕捉到四个亚群随进化过程的动态变化。至此,基于单细胞拉曼所揭示的细菌原位表型异质性响应,科研人员绘制出抗性进化的生理轨迹图。细菌全基因组测序对所揭示的表型进行交互验证,并解析了表型产生的遗传基础。表型分化对维持整个菌群的生存和进化至关重要。由于表型分化远早于抗性突变,识别表型分化对指导临床用药以及减少抗生素耐受性和抗性突变的发生具有重要意义。研究利用明显区分的四个亚群的拉曼图谱,挖掘出耐受性和抗性突变的拉曼标记峰,促进了抗性进化不同阶段尤其是表型耐受性的快速精准识别。 该单细胞分析平台可以拓展到更广泛的抗生素或非抗生素化学品诱导的抗性进化研究。未来可以将该单细胞拉曼与靶向单细胞分选和多组学技术联用,实现耐受性和抗性表型与基因型的精确关联,促进进一步阐释进化机制。研究工作得到中科院“从0到1”原始创新项目、国家自然科学基金创新研究群体项目、福建省自然科学基金等的支持。 单细胞拉曼-同位素标记-多元统计分析追踪细菌抗生素抗性进化的轨迹
  • 全国检验检测机构资质认定管理数据归集工作现场会在金华召开
    10月12—13日,全国检验检测机构资质认定管理数据归集工作现场经验交流会在金召开,加快推进检验检测机构信用监管和智慧监管建设。国家市场监督管理总局认可检测司司长顾绍平、信息中心副主任沈阳,省市场监督管理局一级巡视员纪圣麟,市委常委、常务副市长张新宇参加会议。会上,国家市场监督管理总局介绍检验检测机构资质认定和监督检查数据归集工作,金华介绍浙江省检验检测智慧治理“一件事”综合集成改革试点经验。金华现有检验检测机构182家、国家质检中心4家、省级质检中心6家,涉及食品、疾控、环境、建工、机动车等多领域,年营收近8亿元。近年来,金华积极探索开展检验检测机构数字化改革工作。2022年被确定为浙江省检验检测智慧治理“一件事”综合集成改革试点以来,金华探索建设检验检测数据“集成建”、检验检测机构“精准管”、资质认定审批“智能审”三大特色场景,目前已基本完成检验检测机构资质认定管理平台、检验检测机构管理服务应用平台、检验检测综合治理平台3个子系统构成的“浙里检”平台建设。“浙里检”平台集市场准入、高效服务、智慧治理等功能于一体,获评2022年度浙江省数字化改革“最佳应用”。金华将以此次会议为契机,聚焦检验检测机构资质认定管理数据归集工作核心重点,瞄准审批更高效、监测更智能、监管更精准、服务更优质,持续深化检验检测智慧治理集成改革,积极配合做好改革试点经验推广应用,为全国检验检测智慧治理体系建设贡献更多“金华经验”。
  • 【仪器信息网20周年特别活动】生成专属您的仪器成长轨迹~(分享有礼)
    p style=" text-align: center "    span style=" color: rgb(192, 80, 77) " 仪器之路,长途漫漫, /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   数十年辛勤耕耘,二十载春华秋实。 /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   一路相伴,感谢有你! /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   20年,我们相伴成长, /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   20年,我们一起蜕变 /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   见证彼此过往,一同前往未来 /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   愿未来,依然有你。 /span /p p   值此仪器信息网建站 strong span style=" color: rgb(255, 0, 0) " 20周年 /span /strong 之际,我们邀请广大网友一同 strong 分享您的仪器成长轨迹 /strong ,见证您与仪器信息网的仪器成长、蜕变。 /p p   为回馈广大网友的参与,凡是 strong span style=" color: rgb(255, 0, 0) " 分享成长轨迹海报至朋友圈,集满2 /span /strong span style=" color: rgb(255, 0, 0) " strong /strong strong 0个“赞” /strong /span ,即可获得 span style=" color: rgb(255, 0, 0) " strong 1000积分 /strong /span 的奖励,积分可在仪器信息网 strong 积分商城 /strong 直接 span style=" color: rgb(255, 0, 0) " strong 兑换心仪礼品 /strong /span ,快来参与吧! /p p    /p p span style=" background-color: rgb(255, 255, 0) color: rgb(0, 0, 0) " strong 参与方式: /strong /span /p p    strong 第一步: /strong 扫码登录“仪器信息网20周年”专题页,点击“我的仪器成长轨迹”,登录您的仪器信息网注册账号,即可生成属于您的仪器成长轨迹海报。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/0c101d1c-5288-4e05-a988-ce2c7ce32e7b.jpg" title=" 20周年专题-二维码.png" alt=" 20周年专题-二维码.png" / /p p    strong 第二步: /strong 长按图片保存,分享至微信朋友圈,集满20个赞,截图。 /p p    strong 第三步: /strong 将截图发至仪器信息网仪器论坛“我的仪器成长轨迹”专题帖( a href=" https://bbs.instrument.com.cn/topic/7285349_1" target=" _blank" span style=" color: rgb(84, 141, 212) text-decoration: underline " https://bbs.instrument.com.cn/topic/7285349_1 /span /a )即可。 /p p    /p p span style=" background-color: rgb(255, 255, 0) " strong 活动时间: /strong /span span style=" color: rgb(255, 0, 0) " 今日起至2019年12月31日截止 /span /p p    span style=" font-size: 14px " 注:活动最终解释权归仪器信息网所有,有疑问请加微信号accsi1进行咨询。 /span /p p style=" text-align: center " span style=" font-size: 16px " 更多精彩内容请前往20周年专题网站 /span span style=" color: rgb(0, 112, 192) font-size: 16px text-decoration: underline " : /span span style=" font-size: 16px text-decoration: underline " a href=" https://event.instrument.com.cn/event/year20" _src=" https://event.instrument.com.cn/event/year20" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline font-size: 16px color: rgb(0, 112, 192) " https://event.instrument.com.cn/event/year20 /span /a /span /p p br/ /p p style=" text-align: center "    span style=" color: rgb(192, 80, 77) " 20周年, /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   我们感谢每一位同事的辛勤付出 /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   感谢每一位用户的关注与厚爱 /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   我们唯有用心和努力 /span /p p style=" text-align: center " span style=" color: rgb(192, 80, 77) "   相伴大家在未来的每一天 /span /p p style=" text-align: center " span style=" font-size: 18px background-color: rgb(247, 150, 70) " br/ /span /p p style=" text-align: center " span style=" font-size: 18px background-color: rgb(247, 150, 70) color: rgb(255, 255, 255) " strong 同期活动 /strong /span /p ul class=" list-paddingleft-2" style=" list-style-type: circle " li p style=" text-align: center " a href=" https://event.instrument.com.cn/event/year20#祝福" target=" _blank" style=" color: rgb(84, 141, 212) text-decoration: underline " span style=" color: rgb(84, 141, 212) " strong span style=" color: rgb(0, 0, 0) " 仪器信息网20周年送祝福,赢积分 /span /strong strong span style=" color: rgb(0, 0, 0) " /span /strong strong /strong /span /a span style=" color: rgb(84, 141, 212) " strong span style=" color: rgb(192, 80, 77) " /span /strong strong span style=" color: rgb(192, 80, 77) " /span /strong /span strong span style=" color: rgb(192, 80, 77) " br/ /span /strong /p /li li p style=" text-align: center " a href=" https://event.instrument.com.cn/event/year20#互动" target=" _blank" span style=" color: rgb(84, 141, 212) text-decoration: underline " strong “仪器问答挑战赛”,答题赢大奖 /strong /span /a strong span style=" color: rgb(84, 141, 212) text-decoration: underline " (8月12日上线) /span /strong /p /li li p style=" text-align: center " span style=" color: rgb(84, 141, 212) text-decoration: underline " strong “仪器问答挑战赛”,出题赢积分(已结束) /strong /span /p /li /ul p br/ /p
  • 我国将新增8个国家大气本底站 实现气候系统关键观测区全覆盖
    近日,从中国气象局获悉,“十四五”期间,我国将在现有7个国家大气本底站和即将建成的广东新丰国家大气本底站基础上,在胶东半岛、黄淮、四川盆地等区域选址新建8个国家大气本底站,实现16个气候系统关键观测区国家大气本底站全覆盖。此举旨在贯彻落实党中央、国务院关于实现碳达峰、碳中和重大战略决策,增强大气本底观测能力和温室气体本底浓度联网观测能力,加快完善国家大气本底观测站网,提升关键大气成分长期观测能力,助力应对气候变化。大气本底站观测温室气体和大气臭氧等反应性气体、气溶胶、太阳辐射等数十个要素,其观测结果体现较大尺度大气不直接受人为污染影响且混合均匀之后的平均状况。作为较早开展该项观测业务的国家之一,目前,我国建立了“1(青海瓦里关全球大气本底站)+6(北京上甸子、黑龙江龙凤山、浙江临安、湖北金沙、云南香格里拉和新疆阿克达拉区域大气本底站)”共7个国家大气本底站,形成国家级大气本底观测网络。“十四五”是碳达峰的关键期、窗口期,结合气候系统关键观测区的观测要求,中国气象局将在环渤海陆海气、黄淮农田生态、四川盆地环境、锡林郭勒草原、敦煌沙漠陆面过程、青藏高原陆面与大气过程等8个综合观测区新增国家大气本底站。在这8个尚未开展大气本底观测的气候系统关键观测区内新建国家大气本底站,将实现每个气候系统关键观测区至少有一个国家大气本底站。这样的新增选址布局,由中国气象局依据中国气候观测系统(CCOS)实施方案布局要求,按照需求牵引、科学合理、着眼长远、统筹节约的原则展开。大气本底站站址选定工作要求严苛,一般选择在远离人类活动和污染源的地区,以最大限度“还原”大气的本来面目。中国气象局对站址气流三维轨迹计算分析、环境场遥感情况、站址周边地区经济发展和规划、土地使用及基础设施等明确了具体要求,组建了由气象探测中心和中国气象科学研究院专家构成的实施组,并将邀请部分专家指导选址工作,以确保站址筛选、可行性观测试验等工作的科学性、严谨性。
  • 从仪器研制与改造看生命科学行进轨迹
    阅读生命:从单项尖端技术走向系统集成 科学时报:从仪器研制与改造看生命科学行进轨迹   基因技术的突破使生命科学发展进入了知识爆炸时代,许多新概念和新技术让人眼花缭乱。几年前人们听到的是“基因组”、“蛋白质组”、“生物工程”等名词,现在科学家在谈论“生命模块”、“人工电路基因”、“纳米粒子智能导弹”……生命科学究竟沿着怎样的路线在前进?带着这个问题,记者最近走进了中科院生物物理所几个实验室。   “联通”产效率   2009年最后一个月的最后几天里,一个类似齿轮的灰色金属圆形物,摆放在中科院生物物理所研究员杨福全办公室的茶几上。这是他自己设计、委托企业加工完成的一件最新“作品”,工厂送来刚拆封,等着他验收。   “这是我新研制的逆流色谱仪的核心部分—— 一种新型逆流色谱柱。我准备把它用于膜蛋白质的富集和亚细胞器的分离,进而用于膜蛋白质组学研究。”巧遇《科学时报》请他谈生物技术目前的发展态势,他顺便告诉记者。   “国际上目前有这样的仪器吗?”记者问。   “还没有,不过这个现在还需要保密。我还是给你看看另外一样东西。”   说话间,杨福全从柜子里拿出一个已经组装好的“作品”。“这是毛细管液相色谱—电喷雾质谱接口平台,是我们在中科院仪器研制和改造项目支持下,通过学习、消化和吸收,在国内设计加工的,使仪器能够适合于各种复杂程度的蛋白质样品分析。这个准备安装在新进的一套二维液相色谱—高分辨质谱系统上。”   据杨福全介绍,蛋白质组学是目前生命科学研究的热点之一。蛋白质组学技术发展很快,蛋白质组学研究竞争也异常激烈。有了基本硬件设备而又能让设备高效地工作,才能做出高水平工作。其中,现代色谱分离技术和生物质谱技术构成了蛋白质组学技术的主体。色谱—质谱系统连接的好坏直接影响整个系统的灵敏度和效率。这个接口平台就是针对商用仪器的不足而设计加工的,它与自制的毛细管液相色谱柱联合使用,不仅降低了整体设备的运行成本,更重要的是大大提高仪器系统的通量、灵敏度和效率。   2004年从美国国家卫生研究院(NIH)国立心、肺和血液研究所回国的杨福全博士,目前担任中科院生物物理研究所质谱首席技术专家,主要从事蛋白质组学新技术新方法的研究与应用。对现有仪器进行改造、研制生命科学研究领域中的新仪器设备是他目前重要的任务之一。   杨福全介绍,生物质谱技术和双向电泳、高效液相色谱(HPLC)、毛细管电泳等现代分离技术的结合,实现了多肽、蛋白质和核酸等生物大分子的高通量分析和鉴定 这些技术通过与荧光标记技术、稳定同位素标记等技术的结合,又实现了生物大分子高通量的定量分析,从而推动了蛋白质组学技术的发展,促进蛋白质组学技术在生命科学中的应用。   “实验室的仪器装备改造后,技术水平是否取得较大的提高?”记者追问。   杨福全并未直接回答记者的问题,而是打开不久前新当选的中科院院士、北京大学教授尚永丰给他写的一封电子邮件,上面写道:“过去两年我实验室的学生和工作人员在你实验室做了很多的质谱分析。这些分析对我们的研究起到了很大的作用,2009年我们发表的文章,包括在Cell、PNAS和The Embo Journal杂志上的文章,都用了你实验室的质谱分析结果。所以,在此我想向你和你实验室的相关人员表示真挚的感谢。我几次在不同的场合说过:国内好多单位都有质谱仪,但真正能用到科研上的不多。很高兴北京有你这一家,为我和其他实验室的研究工作提供了很好的技术支持。我们实验室主要从事基因表达调控的表观遗传机制研究,今后肯定还需要你的支持和帮助。希望我们找个时间聊聊,探讨一下合作研究的可能性。”   杨福全介绍,蛋白质组学技术目前的发展趋势主要包括3个方面:高分辨、高质量精度和快速的质谱仪器的开发 高效、高选择性的样品富集技术的开发 由生物质谱技术、现代分离技术和稳定同位素标记技术等技术集成的高通量的定量蛋白质组学技术开发。因为随着蛋白质组学技术在生命科学和蛋白质科学研究中的不断深入应用,全面系统分析细胞、组织或生物体中蛋白质量的动态变化规律或绝对量的分析,已成为蛋白质组学研究的必然趋势。   “衔接”出速度   中科院生物物理所研究员刘志杰从另一个角度解说了生命科学发展对新设备的需求。这位曾参与美国东南结构基因组研究中心工作的研究员2006年回国,一直致力于改进中国生命科学的研究设备。   他说,10年前,研究人员解析一个蛋白质三维结构大约需要1~2年时间,随着新技术、新方法的发展,截至2009年12月底,全世界已解析了7万多个蛋白质分子的三维结构。这些高效率的自动化方法,主要包括高通量克隆、高速度表达纯化、蛋白质自动化结晶、自动化衍射数据收集和结构解析等。如果研究人员继续采用原有的老方式,美国于2000年启动的“结构基因组计划”根本不可能按时完成,甚至做不出其中的1/10。   目前,刘志杰在中科院生物物理研究所的蛋白质科学研究平台构建了一套高通量的从基因克隆到蛋白质结构解析的流水线。这一流水线由几个模块组成,每个模块都力争实现自动化。如第一个模块即是自动化克隆和小规模可溶性表达筛选,使用该模块可自动筛选出可溶性表达的蛋白质。   “如果使用传统方法,只能一个个地进行手工试验,不但费时费力还容易出错。现在可以一次筛选96个目标基因,很快了解哪些蛋白质在哪种条件下是可溶的。也就是说,过去需要几个月或几年完成的工作,如今一个人几天就能完成。”他说。   他介绍,现代分子生物学等相关学科的发展为蛋白质晶体学提供了许多先进的技术和方法,极大地提高了蛋白质晶体学的研究效率。由于蛋白质晶体学的研究对象在很大程度上是一个自然的选择过程,构象稳定和容易结晶的蛋白质成为研究人员进行结构分析的首选目标。这就意味着遗留下的蛋白质分子的结构解析难度将越来越大。同时,随着人类对生命现象认识的深入,对健康、环境和能源方面的关注,蛋白质晶体学的研究对象越来越多地定位于与人类疾病以及工农业密切相关的重要目标蛋白上。其中,很多目标蛋白来自真核生物的蛋白质复合体和膜蛋白,而真核生物的可溶蛋白质和膜蛋白的获得,是目前各国晶体学家面临的共同难题。   此外,生物大分子的结晶也是晶体学家们亟待解决的问题。虽然人们投入了大量精力研究蛋白质结晶的理论和实验方法,但由于蛋白质结晶过程的多参数、随机性过大,未知因素过多,目前蛋白质结晶在理论上没有取得任何突破性进展。人们所期待的根据蛋白质一级序列预测其结晶条件的情景还只是梦想。研究人员不得不继续采取“盲人摸象”的大规模筛选方法寻找蛋白质分子的结晶条件。因此,高纯度、高均一性和高稳定性的蛋白质样品的获得,以及蛋白质分子的结晶,成为目前限制蛋白质晶体学发展的主要瓶颈。   为筛选最佳的结晶条件,研制出自动化、高速度、高精确度制备出纳米级蛋白质和结晶溶液混合液滴的机器人,成为迫切需要解决的技术问题。因为结晶机器人用很少量的蛋白质样品就能筛选大量的结晶条件。目前,发达国家已开发出多款结晶机器人,能够一次筛选几百到上千个蛋白质的结晶条件 另一种结晶观测机器人甚至能根据时间拍摄结晶过程的照片,并自动放在网上,研究人员不论在家还是在其他地方都可以了解到实验的情况。如果没有这样的自动化设备,学生们就不得不呆在冷室里一个一个地观测了。   刘志杰告诉记者,他新构建的从基因到结构的流水线,各种零件都是现有的,但如何将它们整合在一起工作,大部分是他按照实验的需求自己设计而成的,其中一部分是他与美国的合作者共同探讨研究而成的。如果与美国同行的设备比,生物物理所这套设备的自动化程度更高。如,小规模细胞培养,美国合作者依然使用手工,而他的这套设备已实现了自动化。   全新的自动化装备给刘志杰研究小组带来了预期的喜悦。他的课题组使用这条流水线所开展的癌症研究取得突破性进展。其论文《通过N10取代的叶酸类似物抑制人源5,10-次甲基四氢叶酸合成酶的结构基础》于2009年9月被《癌症研究》以封面文章的形式给予报道,受到同行高度关注。   在此流水线基础上,刘志杰打算在2010年实施新的改进,对膜蛋白处理进行自动化改造。即在保持设备原有功能基础上,找出使膜蛋白可溶的条件。这种设备的改进,只要进入研究阶段,成果在国际上必定领先。因为,目前世界上尚未有这类设备。   据悉,中科院将建基于同步辐射线站的高通量衍射数据收集和解析模块。中科院生物物理所引进的“千人计划”研究员张荣光,将在上海光源上建造新设施。刘志杰说:“我们将是他最大的用户。”   各领域不期而遇   中科院生物物理所杨福全和刘志杰课题组开展的设备研制,使人们不难看出,生命科学研究技术目前正从发展单项尖端技术转向系统集成研究,而且这种趋势不仅体现在结构生物学领域,在脑认知研究中也有相似表现。   在生物物理所脑认知国家重点实验室,薛蓉研究员先让记者参观了实验室最新制造的“头盔”。这个特殊的“头盔”内插满了线路,接受实验的人戴在头上,推进脑成像装置便可给大脑拍照,并探测到脑部神经系统的一些活动情况。   薛蓉曾在美国纽约大学医学院放射系生物医学成像中心任工程师职位。她介绍,这个“头盔”是她正在研制的一种新的并行成像设备与技术,以改进人体超高场磁共振成像系统的性能,提高成像速度和质量。   薛蓉解释说:“核磁共振中,质子共振频率接近300MHz,在人体内其波长仅约11厘米,RF射频场将与人体产生‘介电共振效应’,导致净磁化矢量在发射和接收上产生严重的不均匀性。除此之外,共振频率的提高还会引起人体组织对电磁能量的吸收率(SAR)的增加,带来类似微波炉加热式的安全隐患。解决这些高频信号问题的最有效方法,就是研制多通道的发射/接收射频线圈,结合并行成像技术,以期获得超高场成像系统中高分辨率的灰度均匀的人脑结构和功能图像。”   薛蓉介绍,随着交叉学科的不断发展,磁共振技术在诸多领域中都得到了重要应用,无论是生物学、临床医学、分子影像学,还是脑与认知科学等国家重要学科领域的研究,对磁共振技术的发展都有着越来越高的要求。国际上在这方面的投入相当可观,目前,国际上7特拉斯(T)人体磁共振成像系统已装机30余台。国外磁共振领域著名的生产厂家Siemens、GE和Philips等公司,以及美国哈佛医学院、纽约大学医学院,德国Freiburg大学等已装备了7T磁共振超高场成像系统。在亚洲区域,韩国也早于我国购买了相关设备。为了不滞后于国际前沿的科学研究,生物物理所脑成像中心2009年底引进了国内第一台7T超高场磁共振系统。这是基于这一团队已具备了自主开展磁共振成像系统软硬件研发能力而着手的工作。该系统目前正在紧张装机。   国际上的主要研究机构正积极在7T及以上超高场系统上研制与此项目类似的高场发射与接收系统及相关线圈。由于研发进度以及技术保密等原因,各家都不披露完整的技术资料。竞争点大多在于这个“头盔”上。同时,这个“头盔”如何与脑成像进行连接,也是核心技术之一。   薛蓉说:“实验室脑成像中心2010年的一个重点研究目标,即是在西门子7T超高场全身磁共振扫描仪上研制多通道发射与接收头线圈,及其与7T成像系统的射频接口,实现多通道的并行发射与数据的并行采集,克服超高场成像系统中射频场发射的不均匀性,有效提高功能磁共振成像的速度和质量,特别是大脑特定区域,如前颞叶和海马区磁共振图像的信噪比和对比度,减小磁敏感性伪影,帮助检测认知科学实验中功能磁共振信号的变化。”   对新进口的设备进行创造性“联通”、“衔接”和“整合”,是生物物理所几个实验室都在进行的工作,一旦成功便能获得很好的研究结果。特别值得注意的是,这类工作也是国际上许多实验室都在进行的研究。虽然中国生命科学曾一度落后于发达国家,但在这里,人们可看到中国有可能迎头赶上甚至超越的希望。
  • 从世界名校收藏的显微镜,看科技发展的轨迹
    日前,“双校记:透过显微镜看哈佛与清华”线上展览正式开幕,该展览由清华大学科学史系、清华大学科学博物馆与哈佛大学科学史系、哈佛历史科学仪器收藏馆联合举办,是清华大学科学博物馆与国外著名大学博物馆合作举办的线上系列展览之一。显微镜是近代科学的标志仪器。1665年,伦敦大瘟疫暴发,胡克出版了《显微图谱》一书,他使用的显微镜可以把标本放大30多倍,此后,荷兰的列文虎克研制了独具风格的、可放大200多倍的单式显微镜。18世纪之后,显微镜逐渐流通到世界各地,满足了人们的好奇心,揭开了自然界隐藏的奥秘,极大地促进了现代科学的进步。显微镜也进入了大学的课堂、实验室和博物馆。该线上展览展示了哈佛大学与清华大学所使用、制造和收藏的众多类型的显微镜,从一个侧面折射了这两所世界著名大学在科学教育、科学研究以及历史收藏等方面的发展轨迹。两代哈佛人的显微镜本次展览展出了一套生产于1720年前后的威尔逊螺旋筒型和圆规型单式显微镜,开发这类仪器的初衷是为了满足人们对小型便携式仪器日益增长的需求。这套显微镜原属于哈佛大学第9任校长爱德华霍利奥克。他在任期间,加强了哈佛大学(当时还是哈佛学院)在数学和科学方面的学术课程,并进行了一系列的学术改革,将学术成就作为哈佛大学的录取标准。此外,他还建立了北美第一个物理学实验室。哈佛大学在他长达32年的任期内得到了蓬勃发展。1730年前后,英国科学仪器制造商、工匠埃德蒙卡尔佩珀设计和制造了一种安装在三角支架上的显微镜,此款显微镜很快成为18世纪上半叶最流行的复式显微镜,并且持续生产了大约一百年。此外,展览还展出了一台卡尔佩珀型显微镜,生产于18世纪50年代, 其所有者和使用者是爱德华奥古斯都霍利奥克。他是爱德华霍利奥克的儿子,1746年毕业于哈佛大学,后来投身医疗事业,成为美国治疗天花的先驱,为成百上千的人接种了天花疫苗。霍利奥克活了100岁,在他漫长而辉煌的职业生涯中,为人看病达25万次。他也是马萨诸塞州医学会和美国艺术与科学院的创始成员,并担任过美国艺术与科学院的主席。马克吐温与留美幼童展览还展出了美国著名作家马克吐温的一台单目复式显微镜。马克吐温1835年出生于美国密苏里州佛罗里达,他的原名是塞缪尔兰霍恩克莱门斯。马克吐温字面意思是指十二英尺水深,是当时密西西比河安全水上航行的最低深度。马克吐温因旅行叙事小说享誉国际,尤其是《傻子出国记》《苦行记》《密西西比河上的生活》,以及他关于童年的冒险故事,如《汤姆索亚历险记》和《哈克贝利费恩历险记》。1868年,马克吐温从巴法罗迁到康涅狄格州哈特福德。当时耶鲁大学毕业生、投身洋务运动的容闳也在四处奔走,倡议清廷实行留学计划,最终清政府在1872—1876年派遣4批共120名幼童赴美留学,他们主要住在哈特福德,所以马克吐温与这些幼童成为了邻居,有的幼童还与马克吐温的女儿成为同学,并一起跳过舞。马克吐温住在哈特福德时,把显微镜交给了他的秘书富兰克林惠特莫尔保管。惠特莫尔在马克吐温去世后,又将显微镜交给了他的孙子约翰富兰克林恩德斯。恩德斯于1922年获得哈佛大学博士学位,1939年,恩德斯把这台显微镜捐赠给哈佛大学。1954年,在波士顿儿童医院工作的恩德斯因“发现了脊髓灰质炎病毒在多种类型组织中培育生长的能力”,获得了当年的诺贝尔生理学或医学奖。这台显微镜在近80年的时间里,从与中国留美幼童交往过的一代文豪传至著名的科学家,最后回到哈佛大学,完成了一段传奇之旅。“新”“老”显微镜的接力20世纪50年代购自其他国家的显微镜工具,如苏联产的МИМ-7型显微镜和民主德国产的耶拿蔡司牌大型工具显微镜,也是展览展出的一部分。这些显微镜在清华大学“服役”超过50年,为机械、材料和精密仪器学科的科研教学发挥了重要作用。展览以新型冠状病毒SARS-CoV-2的三维结构高分辨率渲染图结尾,这是清华大学和浙江大学的研究人员在2020年利用高分辨冷冻电镜断层成像方法首次解析出的。遥想1665年伦敦暴发鼠疫时,列文虎克还未开始对显微镜的研究;而到2020年,新型冠状病毒感染疫情防控形势严峻,科学家则利用电子显微镜等现代科学仪器,迅速查明了病毒的真面目。从哈佛大学和清华大学所使用、制造和收藏的显微镜中,我们可以一瞥几百年来科技的迅猛发展,并且通过展览我们也能感受到,不同文明之间的交流互鉴、不同国家的沟通合作,会带来更大的希望与福祉。(作者系清华大学科学史系助理教授、“双校记:透过显微镜看哈佛与清华”展览策展人)
  • 从世界名校收藏的显微镜,看科技发展的轨迹
    日前,“双校记:透过显微镜看哈佛与清华”线上展览正式开幕,该展览由清华大学科学史系、清华大学科学博物馆与哈佛大学科学史系、哈佛历史科学仪器收藏馆联合举办,是清华大学科学博物馆与国外著名大学博物馆合作举办的线上系列展览之一。显微镜是近代科学的标志仪器。1665年,伦敦大瘟疫暴发,胡克出版了《显微图谱》一书,他使用的显微镜可以把标本放大30多倍,此后,荷兰的列文虎克研制了独具风格的、可放大200多倍的单式显微镜。18世纪之后,显微镜逐渐流通到世界各地,满足了人们的好奇心,揭开了自然界隐藏的奥秘,极大地促进了现代科学的进步。显微镜也进入了大学的课堂、实验室和博物馆。该线上展览展示了哈佛大学与清华大学所使用、制造和收藏的众多类型的显微镜,从一个侧面折射了这两所世界著名大学在科学教育、科学研究以及历史收藏等方面的发展轨迹。两代哈佛人的显微镜本次展览展出了一套生产于1720年前后的威尔逊螺旋筒型和圆规型单式显微镜,开发这类仪器的初衷是为了满足人们对小型便携式仪器日益增长的需求。这套显微镜原属于哈佛大学第9任校长爱德华霍利奥克。他在任期间,加强了哈佛大学(当时还是哈佛学院)在数学和科学方面的学术课程,并进行了一系列的学术改革,将学术成就作为哈佛大学的录取标准。此外,他还建立了北美第一个物理学实验室。哈佛大学在他长达32年的任期内得到了蓬勃发展。1730年前后,英国科学仪器制造商、工匠埃德蒙卡尔佩珀设计和制造了一种安装在三角支架上的显微镜,此款显微镜很快成为18世纪上半叶最流行的复式显微镜,并且持续生产了大约一百年。此外,展览还展出了一台卡尔佩珀型显微镜,生产于18世纪50年代, 其所有者和使用者是爱德华奥古斯都霍利奥克。他是爱德华霍利奥克的儿子,1746年毕业于哈佛大学,后来投身医疗事业,成为美国治疗天花的先驱,为成百上千的人接种了天花疫苗。霍利奥克活了100岁,在他漫长而辉煌的职业生涯中,为人看病达25万次。他也是马萨诸塞州医学会和美国艺术与科学院的创始成员,并担任过美国艺术与科学院的主席。马克吐温与留美幼童展览还展出了美国著名作家马克吐温的一台单目复式显微镜。马克吐温1835年出生于美国密苏里州佛罗里达,他的原名是塞缪尔兰霍恩克莱门斯。马克吐温字面意思是指十二英尺水深,是当时密西西比河安全水上航行的最低深度。马克吐温因旅行叙事小说享誉国际,尤其是《傻子出国记》《苦行记》《密西西比河上的生活》,以及他关于童年的冒险故事,如《汤姆索亚历险记》和《哈克贝利费恩历险记》。1868年,马克吐温从巴法罗迁到康涅狄格州哈特福德。当时耶鲁大学毕业生、投身洋务运动的容闳也在四处奔走,倡议清廷实行留学计划,最终清政府在1872—1876年派遣4批共120名幼童赴美留学,他们主要住在哈特福德,所以马克吐温与这些幼童成为了邻居,有的幼童还与马克吐温的女儿成为同学,并一起跳过舞。马克吐温住在哈特福德时,把显微镜交给了他的秘书富兰克林惠特莫尔保管。惠特莫尔在马克吐温去世后,又将显微镜交给了他的孙子约翰富兰克林恩德斯。恩德斯于1922年获得哈佛大学博士学位,1939年,恩德斯把这台显微镜捐赠给哈佛大学。1954年,在波士顿儿童医院工作的恩德斯因“发现了脊髓灰质炎病毒在多种类型组织中培育生长的能力”,获得了当年的诺贝尔生理学或医学奖。这台显微镜在近80年的时间里,从与中国留美幼童交往过的一代文豪传至著名的科学家,最后回到哈佛大学,完成了一段传奇之旅。“新”“老”显微镜的接力20世纪50年代购自其他国家的显微镜工具,如苏联产的МИМ-7型显微镜和民主德国产的耶拿蔡司牌大型工具显微镜,也是展览展出的一部分。这些显微镜在清华大学“服役”超过50年,为机械、材料和精密仪器学科的科研教学发挥了重要作用。展览以新型冠状病毒SARS-CoV-2的三维结构高分辨率渲染图结尾,这是清华大学和浙江大学的研究人员在2020年利用高分辨冷冻电镜断层成像方法首次解析出的。遥想1665年伦敦暴发鼠疫时,列文虎克还未开始对显微镜的研究;而到2020年,新型冠状病毒感染疫情防控形势严峻,科学家则利用电子显微镜等现代科学仪器,迅速查明了病毒的真面目。从哈佛大学和清华大学所使用、制造和收藏的显微镜中,我们可以一瞥几百年来科技的迅猛发展,并且通过展览我们也能感受到,不同文明之间的交流互鉴、不同国家的沟通合作,会带来更大的希望与福祉。
  • Picarro G2401——利用后向轨迹模型估计北极大气温室气体的空间分布
    Picarro G2401——利用后向轨迹模型估计北极大气温室气体的空间分布江苏海兰达尔 2023-04-03 10:58 发表于江苏收录于合集#温室气体3个#大气2个原文链接:https://onlinelibrary.wiley.com/doi/10.1002/mma.6046摘要在这项研究中,我们使用了一种被称为FLA的被动风传感(遥感)数值技术来模拟大气组分浓度的平均有效场,并展示了方法和研究结果。用数值方法求解了假设扩散波峰数无限大的温室气体空间分布的拟二维重构问题。这项研究是基于2016年7月至2017年8月在喀拉海别雷岛对大气中甲烷和二氧化碳的现场测量。我们分析了北极地区甲烷和二氧化碳空间分布的差异和共同特征,甲烷的浓度随着从大陆移动到偏远海域而趋于下降,相反,对于二氧化碳,在整个大陆上都观测到了较低的值,但随着远离海岸线而增加。对于这两种温室气体,2017年的平均大气浓度相对于2016年也有所增加。01观测介绍观测地点(别雷岛)位于俄罗斯亚马尔半岛以北5至10公里的喀拉海,于2016年至2017年夏季进行,测量站点建设在西北海岸(73.32°N, 70.05°E)。大气二氧化碳和甲烷的浓度测量使用Picarro G2401温室气体分析仪,该系统能够在连续无人值守的条件下进行高精度监测。根据工厂报告来看,Picarro G2401对二氧化碳和甲烷的测量精度分别为50ppb和1ppb(1σ,5秒测量平均)。在不使用参考气体的1个月内,最大漂移量为二氧化碳不超过500ppb,甲烷不超过3ppb。基于其低漂移和低校准频率的需求,该系统非常适应远程连续测量。02后向轨迹使用HYSPLIT4软件计算了不同月份下测量的4天后向轨迹(图1)。可以看出,气流的模式在每年和每月都有显著的变化。在2016年7月和2017年8月,都观测到了西西伯利亚中纬度地区的气团入侵。除2017年7月外,在其它月份,来自北极地区的气团都到达了别雷岛。图1 别雷岛监测站4个不同月份下的4天后向轨迹03研究结果图2为2016年和2017年二氧化碳和甲烷浓度的平均有效场的模拟结果。二氧化碳浓度(图2A、B)和甲烷浓度(图2C、D)的空间分布的一般特征有根本上的区别。对于二氧化碳,在整个大陆上都观测到较低的值,并且它们随着远离海岸线而增加。相反,在大陆及其邻近地区的甲烷浓度要高于偏远海域。这种空间分布上的差异是可以被解释的,因为甲烷的来源主要是大陆,包括各种自然和人为排放。例如,湿地和淡水系统被证明对北极地区的大气甲烷有重大贡献。主要的人为来源则是化石燃料燃烧和石油天然气工业。与此同时,在测量期间,陆地植被明显处于活跃的物候状态,这提供了强大的二氧化碳汇,因此其在陆地上的大气浓度较低。图2 不同年度月份二氧化碳和甲烷浓度的平均有效场在模拟的不同区域,有许多高甲烷浓度的“点”是意料之外的,这种镶嵌分布的形成可能与长距离的气体传输和海面可能的排放有关。因为来自海洋的甲烷的一个强大来源是海底永久冻土层和大陆架水合物,它们在该地区的分布也不均匀。此外,2016年夏季在俄罗斯北极地区观测到的温度异常可能是2016年海面以上温室气体空间分布差异更大的原因。对2016年和2017年的平均有效场的比较表明,2017年的二氧化碳和甲烷浓度相对于2016年均有所增加。结论在这项研究中,我们证明了基于监测点现场测量和空气颗粒物轨迹来评估大气组分平均浓度场的可能性。模拟的甲烷和二氧化碳浓度场的情况如下。二氧化碳在整个大陆的浓度较低,随着远离海岸线而升高,甲烷浓度分布则相反。根据计算结果,得到了模拟区域内海面上甲烷浓度空间分布较高的镶嵌模式。2017年,两种温室气体(二氧化碳和甲烷)的大气浓度相对于2016年都有所增加。编辑人:陆文涛审核人:史恒霖
  • 《自然》杂志分析中国科研轨迹 近三年中国论文发表数全球第二
    英国《自然》杂志23日推出中国特辑,用大量的数字、图表、评论和分析文章为读者描绘了中国科研的现状和近年来迅速发展的轨迹。  中国国家自然科学基金委员会主任杨卫在该特辑题为《加强中国基础研究》的评论中表示,中国必须提高基础研究质量,正确看待科研诚信问题。  杨卫称,中国科学进步巨大,但是影响力依然不高。相比法国24%,美国18%,日本12%的在基础研究上的投入,中国的投入仅占研发总预算的5%。他表示,除加大投入外,还需提升基础研究的质量标准,采用更适当的指标追踪进度,评估成果。除论文发表数量外,还要注重引用量,推动重大科学问题上的突破。  杨卫坦言,中国依然存在不少科研不端行为。对此,必须在态度上做出改变,要从掩盖转变为揭露。同时,还要推动科研机构改革,将行政权力和学术权力分离开来,避免产生腐败。  在另一篇评论文章中,日本理化研究所发育生物学研究中心干细胞政策研究员道格拉斯赛普和中国科学院广州生物医药与健康研究院院长裴端卿表示,与普遍的看法不同,中国在伦理敏感的生命科学领域的管理经验值得世界借鉴。  随着中国逐渐在全球创新中获得领先地位,许多国家开始看重中国的科研力量。《自然》杂志数据显示,2012年至2015年间,中国的科研论文发表数量增加了一倍,排名世界第二,仅次于美国。中国科学院在世界优秀科研机构排行榜中排名第一,超过了哈佛大学和法国国家科研中心。上月英国广播公司在进入多个中国顶尖实验室和科研场所,采访大批一线科研人员后,推出了一篇名为《中国的科学革命》的文章,详细介绍了中国在天文观测、生命科学、中微子探测、深海科考和航天五大领域的最新进展。文章末尾写道:“世界拭目以待,中国的科学革命下一步将走向何方 中国是否能够完成向世界科学强国的转型。”
  • 知识课堂2| 全聚焦法改善相控阵超声成像!
    引言随着可提供全聚焦方式(TFM)功能的检测设备陆续进入到市场中,无损检测(NDT)行业也在经历着一个技术进步突飞猛进的重要时期。全聚焦方式(TFM)的出现标志着相控阵超声检测(PAUT)技术又向前迈出了重要的一步。然而,一些相控阵超声检测(PAUT)的从业人员可能仍然对全聚焦方式(TFM)及其与全矩阵捕获(FMC)的关系,以及常规相控阵超声检测(PAUT)和全矩阵捕获/全聚焦方式(FMC/TFM)处理之间的差异,感到困惑。这篇文章可使那些熟悉相控阵超声检测(PAUT)成像的检测人员对全聚焦方式(TFM)成像有个基本的了解。常规相控阵超声检测(PAUT)和全聚焦方式(TFM)的基本区别在相控阵超声检测(PAUT)和全聚焦方式(TFM)检测中,都使用一个多晶片探头,在被测样件中发射脉冲超声波,并记录回波随着时间而变化的轨迹(波形)。然后,这些波形被合成处理,以生成被测样件中反射体的图像。超声波图像可被视为由众多子图像(被称为帧)堆栈在一起而生成的图像。例如:相控阵超声检测(PAUT)中的扇形扫描是由一系列以不同角度采集到的A扫描(波幅对应时间)堆栈而成。在扇形扫描的定义中,单个A扫描的作用相当于帧。相控阵超声检测(PAUT)策略就是以尽可能快的方式处理这些帧,并实时显示和刷新总体图像。常规相控阵超声检测(PAUT)和全聚焦方式(TFM)之间的基本差别在于信号采集和帧处理的策略不同。常规相控阵超声检测(PAUT)成像为了演示在相控阵超声检测(PAUT)中采集帧的过程,这里我们使用一个S扫描作为示例。S扫描由众多单个的帧组成,这些帧对应于在工件中以不同角度采集到的A扫描。在采集过程中,一组晶片(被称为孔径)同时发射脉冲,并记录下声波的轨迹。延迟被应用到每个晶片,以使超声声束以所需的角度偏转,并在工件中期望的深度处聚焦。这样,每个帧就是由折射角度和聚焦深度而定义。因此,要采集的帧的总数量就是构成总体图像的不同角度的数量。相控阵超声检测(PAUT)的优点是只需要完成有限的采集量。向被测材料中发射的声束是不同单个发射器的声学波幅“物理求和”的结果,而接收声束则是由前端电子设备通过快速求和算法而获得的合成声束。因此,可以非常迅速地显示通过相控阵超声检测(PAUT)方法获得的图像。相控阵超声检测(PAUT)的缺点是所有帧都在一个恒定的深度上聚焦。位于聚焦区域之外的反射体会显得模糊不清,而且会比位于聚焦区域内的同等大小的反射体看起来更大些。全聚焦方式(TFM)技术可以解决这种显示分辨率的问题。全聚焦方式(TFM)的基本概念是在多个不同深度的聚焦线上显示波幅,换句话说就是不只在单一的深度线上聚焦,而是具有“随处聚焦”的特点,因此可以为聚焦区域内的任何位置生成高度清晰的图像。如果使用相控阵超声检测(PAUT)采集策略(获得每帧图像需要一次采集)生成全聚焦方式(TFM)图像,则所需的时间就会显著增加。生成一个全聚焦方式(TFM)图像所需的像素数量比生成一个S扫描所需的不同角度的数量高得多。例如:通过以100个不同角度进行扫查而获得的一个S扫描需要100次采集,而由100 × 100像素构建的全聚焦方式(TFM)图像则需要10000次采集。为了避免这个采集数量过多的问题,我们可以使用另一种采集策略,这种策略是在后处理过程中计算出帧。这种采集策略需要一组对应于每个像素位置的聚焦法则,以及被称为全矩阵捕获(FMC)的一组原始基础波形。这样一来,基础波形会得到适当的延迟和求和处理,以在发射和接收过程中以合成方式生成超声声束,并在每个像素位置聚焦。因此,所生成的图像具有“随处聚焦”的特点。全矩阵捕获(FMC)可以获取探头所有成对(发射-接收)单个晶片所生成的所有波形。一般来说,要使用探头的整个孔径,因为对于某种特定的探头来说,这样可以获得最佳聚焦结果。在这种情况下,获得全矩阵捕获(FMC)数据所需的采集数量等同于探头晶片的数量。全矩阵捕获(FMC)收集到有关探头每个晶片之间声束传播的所有信息,包括被测材料表面的反射以及由缺陷引起的散射等信息。任何类型的相控阵超声检测(PAUT)图像都可以使用全矩阵捕获(FMC)数据重建,其中包括:扇形扫描、平面波成像(PWI)、动态深度聚焦(DDF)等。虽然全矩阵捕获(FMC)生成图像所需的采集数量与相控阵超声检测(PAUT)大致相同,但是要存储单个全矩阵捕获(FMC)数据集,却需要很大的存储容量、很宽的传输带宽,以及很强的处理能力。取决于所用设备的电子器件,获得全矩阵捕获/全聚焦方式(FMC/TFM)结果的速度可能会比相控阵超声检测(PAUT)更慢。以实验案例说明相控阵超声检测(PAUT)和全聚焦方式(TFM)图像的差异为了说明相控阵超声检测(PAUT)和全聚焦方式(TFM)成像之间的差别,我们在此介绍一个使用线性相控阵(PA)探头对钢块中垂直分布的几个相同的横通孔(SDH)进行扫查的设置。下面是OmniScan X3探伤仪使用相同的检测配置获得的相控阵超声检测(PAUT)S扫描(a)和全聚焦方式(TFM)图像(b)。在S扫描中,每帧图像都使用独特的20毫米聚焦深度获得(红色虚线代表聚焦深度)。处于聚焦区域内的几个横通孔(SDH)以相似的波幅和大小出现在图像中。与较短的聚焦深度相比,使用这种聚焦深度,可以获得更大的具有优质图像分辨率的区域,这也是图中几个横通孔都清晰可见的原因。位于聚焦深度以外较远的横通孔的图像会出现失真现象,且其波幅会大幅降低。因此要使所有横通孔获得更为一致的定量效果,需要使用不同的聚焦深度生成多个图像。在全聚焦方式(TFM)图像(b)中,超声声束在每个像素上聚焦。如您所见,图像中的每个横通孔(SDH)都很清晰鲜明,因此只需一个图像就可以准确地定量分布在更大深度范围内的横通孔。不过,我们可以观察到,位于电子聚焦能力所及的边限处的横通孔有横向失真的现象。这种失真情况是相控阵成像固有的问题,因此也会出现在全聚焦方式(TFM)图像中。探头正在进行全矩阵捕获(FMC)扫查比较相控阵超声检测(PAUT)扫描图与全聚焦方式(TFM)图像。全聚焦方式/全矩阵捕获(TFM/FMC)采集优势特性的总结全聚焦方式(TFM)和相控阵超声检测(PAUT)之间的主要区别在于构成图像的帧的性质和数量不同。在相控阵超声检测(PAUT)中,帧是一些1维信号或A扫描。后处理工作只包含前端电子设备对信号的实时求和操作,而且在处理的同时,会采集并呈现帧(图像)。与相控阵超声检测(PAUT)不同,全聚焦方式(TFM)的帧是来自每个像素坐标位置的聚焦声束的0维度数据点。因此,要处理的全聚焦方式(TFM)的帧的数量远多于相控阵超声检测(PAUT)的帧的数量。全聚焦方式(TFM)成像需要通过全矩阵捕获(FMC)方式采集数据,以在后处理过程中以合成方式生成聚焦声束。全聚焦方式(TFM)的主要优点是整个图像都以最佳分辨率显示,而相控阵超声检测(PAUT)图像仅在声束的聚焦区域中具有较高的分辨率。在使用全聚焦方式(TFM)进行检测时唯一值得注意的局限性是相控阵成像技术所带来的电子聚焦能力。
  • 获6亿美元融资,Ultima Genomics推出100美元全基因组测序
    2022年5月31日,基因组测序公司 Ultima Genomics 走出隐身模式,宣布完成6亿美元融资,并推出新型高通量、低成本基因测序平台,可提供100美元的全基因组测序,这直接将当前1000美元的全基因组测序价格降了一个数量级。据悉,使用该测序平台的第一批科研成果——全基因组测序、单细胞测序和癌症表观遗传学测序,在预印本平台 bioRxiv 上发表,或将在下周的基因组生物学技术进展大会(AGBT)上发布。  发表在预印本平台 bioRxiv 上论文有4篇:该论文介绍了 Ultima Genomics 公司的高通量、低成本全因组测序平台,将晶圆上的开放式流通池设计与大表面积和大部分天然核苷酸相结合,无需可逆终止子即可进行光学终点检测。该平台能够以1美元/Gb的低成本对数十亿条 Reads 进行测序,读取长度更长(~300bp),运行时间短(85%)。通过对瓶中基因组参考样品 HG001-7 和 1000 Genomes 样本进行全基因组测序,证明了该平台的准确性和可扩展性。该研究与麻省理工学院和哈佛大学 Broad 研究所的 Joshua Levin 团队和 Aviv Regev 团队合作,使用 Ultima Genomics 公司的测序平台进行了单细胞RNA测序(scRNA-seq),表明该测序平台的测序结果与现有技术相当。该研究是与 Whitehead 研究所 Jonathan Weissman 团队合作,对400万个单细胞进行了全基因组 Perturb-Seq 测序,绘制信息丰富的基因型-表型图谱。Jonathan Weissman 表示,生物医学研究的最新进展需要越来越大的测序规模,该研究已经在数百万个单细胞中看到了 Ultima Genomics 测序的质量,现在可以启动以前无法完成的更大规模的实验了。该研究与斯坦福大学的 Michael Snyder 团队合作,通过超高通量全基因组甲基化测序揭示癌前息肉到早期结直肠腺癌的轨迹。Michael Snyder 表示,Ultima Genomics 的架构将彻底改变测序,并将测序能力提升到了一个全新的水平,对数千个基因组和表观基因组进行测序的能力将改变诊断和疾病风险预测。此外,Ultima Genomics 公司与英国癌症研究中心和纽约基因组中心合作的通过对 cfDNA 进行深度全基因组测序来量化循环肿瘤的研究,以及与贝勒医学院合作的生成初始临床评估数据及 Hi-C 基因组结构数据的研究,将在下周的基因组生物学技术进展大会(AGBT)上发布。  生物学的复杂性和动态性导致对基因组信息的几乎无限需求。目前,通过常规测序进行研究和诊断受到高成本的严重限制。自2016年成立以来,Ultima Genomics 开发了一种全新的测序架构,旨在超越传统测序方法,包括使用完全不同的流动池工程、测序化学和机器学习方法。  Ultima Genomics 的创始人兼首席执行官 Gilad Almogy 表示,DNA 是大自然的存储介质,也是几乎每个生物体的指令集,但使用当前的测序技术,我们难以获取了解这些复杂生物学所有的大规模信息。Ultima Genomics 的平台旨在实现大规模扩展,100美元的全基因组测序只是平台的第一个应用,后续还将不断降低成本,直至成为常规医疗保健系统的一部分。Ultima Genomics 首席科学官 Doron Lipson 表示,很多时候,科学家和临床医生不得不在收集的基因组信息的广度、深度和频率之间进行权衡和取舍,现在,通过克服高通量测序技术的局限性,他们可以进行之前无法完成的科学实验和临床试验。  目前,Ultima Genomics 完成了6亿美元融资,投资机构包括 General Atlantic、Andreessen Horowitz、D1 Capital、Khosla Ventures、Lightspeed、Marius Nacht、aMoon、Playground Global 和 Founders Fund 等。
  • 水质49种全氟和多氟化合物,一针进样全搞定
    导读全氟和多氟烷基化合物(per-and polyfluoroalkyl substances, PFAS)是一类新型持久性有机污染物(POPs),广泛应用于日常生活和工业用品中。研究表明这些化合物易于生物累积,且可能导致肝毒性、致癌性、生殖毒性以及干扰内分泌等特性。如今,天然环境中化学抗性PFAS的排放量不断增加,同时这些人为污染物在天然和处理水域、人类和动物生物体中的存在都构成了巨大的环境挑战。 全氟辛酸小档案中文名:全氟辛酸英文名:Perfluorooctanoic AcidCAS号:335-67-1分子式:C8HF15O2分子量:414.07 PFAS法规要求及分析特点PFAS含有几乎无法被破坏的C-F键,被称为“永生的分子”,由于其没有显示出任何被生物降解的迹象,因此也被称为“永久性化学品”。 斯德哥尔摩公约于2009年通过了全氟辛烷磺酸及其盐类和全氟辛烷磺酰氟成为持久性有机污染物(POPs)的一个重要检测项目。2010年3月17日,欧盟委员会发布2010/161/EU号议案,建议对食品中全氟烷基化合物进行监控。 PFAS的检测面临诸多挑战,一是来源于玻璃器皿和实验器材的本底污染,这对前处理耗材、检测仪器纯净的要求极高,简单的前处理步骤也更有利于降低干扰;二是浓度低,美国EPA于2016年发布的水质安全建议中,要求水质中PFOA和PFOS的限量是70 ppt,因此要求仪器具备较高灵敏度。 岛津解决方案岛津超高效液相色谱-质谱联用仪LCMS-8050 参考美国ASTM D7979标准水质PFAS的分析方法,采用岛津超高速LC-MS/MS(UFMSTM)技术,建立了快速、稳定、高灵敏度的49种PFAS(30种目标物和19种内标)分析方法,为客户提供环境中PFAS痕量分析的全方位解决方案。 表 1 PFAS检测标准比较 样品前处理分析条件 表2 梯度条件干扰的消除PFAS可能存在于溶剂、玻璃器皿、移液管、导管、脱气机和LC-MS/MS仪器的其它部件中。为了避免来自系统的干扰,在溶剂和样品阀之间放置一个延迟柱,延迟来自系统的PFAS出峰时间,从而消除系统的干扰。图1 PFOA色谱图:(a)无延迟柱(b)使用延迟柱 绘制9点校准曲线对PFAS目标物进行校准,线性范围5 ppt-200 ppt,所有化合物线性回归系数R20.99。各标准品校准误差均在±30%以内。 图2 49种混标溶液(100 ppt)TIC图(黑色)和MRM图(其它颜色) 表3 保留时间、检出限、线性范围、准确度、精密度*FHEA, FOEA ,FDEA使用400 ng/L计算准确度和精密度 结语 随着PFAS的不断向全球扩散,或许我们已经找不到一片极净之境。在你所不知道的隐秘角落,这种 “永生的分子”正在威胁着人类赖以生存的水源安全。淘汰有害PFAS制品的活动正在一步一步推进,在这个过程中,岛津公司愿与所有致力于地球和人类健康的人们一道,利用科学、高效、灵敏的分析手段共同守护我们的生命之泉。 *数据来源于岛津科学仪器-美国 参考资料: 1.U.S. Environmental Protection Agency, "US EPA Method 537: Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS)," Washington D.C., 2009.2.ASTM International, "ASTM D7979-17: Standard Test Method for Determination of Perfluorinated Compounds in Water, Sludge, Influent, Effluent and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.3.ASTM International, "ASTM D7968-17a: Standard Test Method for Determination of Perfluorinated Compounds in Soil by LIquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.United States Environmental Protection Agency, "US EPA - PFAS Research and Development," 14 August 2018.
  • 食品中全氟和多氟烷基化合物测定的国标方法修订进展
    PFAS,即全氟和多氟烷基物质,是一组多样化的人造化学品。PFAS结构稳定、不易降解,具有优良的表面活性功能,因此广泛的应用到包装、表面处理、灭火器、卫生用品等各种消费品和工业产品中。传统PFAS的代表性化合物、以及研究最热门的PFAS,为全氟烷基羧酸类化合物(PFOA)及全氟烷基磺酸类化合物(PFOS)两大类。目前,全球许多国家或地区都已经对PFAS进行限制,此前小编已将PFAS相关管控要求概况成文:管控再升级!2024年全球PFAS管控法规大盘点 2019年3月11日中国生态环境部发布《关于禁止生产、流通、使用和进出口林丹等持久性有机污染物的公告》自2019年3月26日起,禁止 PFOS及其盐类和 PFOSF 除可接受用途外的生产、流通、使用和进出口。PFAS国内外风险评估及膳食暴露2022年12月8日,欧盟委员会法规(EU)2022/2388 发布,修订了关于某些食品中全氟烷基物质最高含量的法规,该条例自2023年1月1日起施行。目前国内未制定食品中PFAS的限量值。欧盟2022/2388指导限量要求在中国 66 个城市中的调查表明,近 1 亿人的饮用水中 PFAS 浓度高于安全水平。多国的暴露评估数据表明,膳食摄入是人体PFAS暴露的最主要途径。在第六次中国总膳食研究(TDS)中,水产类、蛋类、肉类中PFAS污染水平较高,乳类膳食中未检出PFAS,植物性膳食中检出率浓度水平较低。PFAS国标方法修订进展GB 5009.253-2016《食品安全国家标准 动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定》是现行的食品PFAS检测标准。但该标准食品基质适用范围窄,规定了动物源性食品中全烷基化合物的分析方法,未包含植物源性食品。并且标准中检测化合物覆盖少,仅规定了PFOS和PFOA含量的测定方法,未包含其他碳链长度的全氟磺酸和全氟烷酸、同分异构体和替代物,不再适用国际现行标准和我国国情。正在制定中的食品中全氟和多氟烷基化合物测定标准,将适用于食品中11种C4~C14的全氟烷酸7种C4~C12全氟磺酸、8种全氟辛酸和全氟辛烷磺酸同分异构体、4种全氟烷基化合物替代物,共计30种全氟/多氟烷基化合物的测定。标准方法基于碱消解提取和固相萃取柱净化的原理,采用同位素稀释-超高效液相色谱-串联质谱法,适用于动物源性和植物源性的食品基质,有助于我国准确开展PFAS和新污染物的膳食暴露评估。标准制定进展相关专家表示,标准标准中样品前处理方法、仪器分析方法已制定完成。并完成菠菜、大米、香干、猪肉、猪肝、草鱼、扇贝、酸奶、鸡蛋、婴儿配方粉、蜂蜜实验室内验证;大米、猪肉、草鱼、鸡蛋、婴儿配方粉实验室间验证。修订中的国标方法操作的关键点和注意事项仪器本底水平:液相系统中存在各种聚四氟乙烯材料的管路和密封圈,除更换相关管路外,同时需要在液相泵和进样阀之间加两根串联的预柱,以分开仪器污染峰与样品峰,对样品进行准确定量。部分仪器不存在全氟烷基化合物的污染,在确定后可以不再额外添加预柱。试剂空白:不同品牌试剂中全氟烷基化合物的本底水平均不同,特别是PFOA、PFNA和PFDA在试剂中存在一定的本底水平,因此在使用前需要将试剂浓缩50倍以上,进样测定其本底水平,选择不含有全氟烷基化合物的试剂进行前处理。近两年,试剂中PFBA的本底水平较高。SPE柱空白:不同批次的SPE柱中全氣烷基化合物的本底水平均不同,因此需要在甲醇活化步骤前采用氨水甲醇活化,去除SPE柱中全氟烷基化合物的污染。方法空白:每批样品均需做两个方法空白,控制整个前处理过程中的本底水平,方法空白要求小于LOD。上机前去除杂质方式:采用高速离心的方式去除杂质,不要使用滤膜,各种类型的滤膜中均存在全氟烷基化合物的污染,且存在吸附现象。点击进入相关话题点击图片 免费参会
  • 欧盟可能限制使用全氟辛酸及相关物质
    德国与挪威合作,计划于2014年10月17日就全氟辛酸提交一份文件,称为《附件XV限制资料文件》。该份文件根据《化学品註册、评估、授权和限制法规》(REACH法规)附件XV内的相关资料规定匯编而成。   2014年3月5日,欧洲化学品管理局(ECHA)宣布,德国与挪威政府已展开一项资料收集工作,以确定全氟辛酸及全氟辛酸相关物质的使用、数量和供应情况,以及技术上和经济上可行的替代品。   这些资料将会用于评估替代品以及匯编「限制资料文件」。该份文件最终可能会导至限制含有全氟辛酸的物品及混合物在市场贩售。如当局採用限制措施,欧洲委员会将会把有关措施纳入REACH法规附件XVII内。   附件XVII现已载有一份禁止在欧盟市场贩售的产品清单,包括含有若干类邻苯二甲酸盐的玩具和儿童护理物品,以及含偶氮染料的纺织品。   多项产品会含有全氟辛酸,包括纺织品、地毯、家具布料、纸张、皮革、碳粉、清洁剂和地毯护理剂、密封剂、地板蜡及油漆。全氟辛酸会残留在若干物件上,包括电线绝缘体、专用电路板、用于衣服的防水膜(如Gore-Tex)、外科植入物、牙线和不粘涂层。此外,瑞典化学品管理局(KEMI)在一份报告中特别指出,进口产品(如户外衣服)是全氟辛酸的主要来源。   德国及挪威正制订限制全氟辛酸及相关物质(可以分解为全氟辛酸的前体物质)的建议。建议将涉及全氟辛酸、相关物质、其混合物、製品以及其他物质成份的製造、使用及市场贩售。含有全氟辛酸及相关物质的进口货亦包括在内。   德国及挪威展开资料收集工作的目的,在于尽量鼓励更多相关人士回答问卷,就全氟辛酸及相关物质的使用、供应以及技术上和经济上可行的替代品等问题提供资料。   收集资料的对象包括全氟辛酸、全氟辛酸盐和全氟辛酸相关物质的生产商、替代品生产商、消防泡沫生产商,以及纺织品整理加工业、摄影成像业及半导体业等下游使用者。   德国及挪威邀请可能受限制措施影响或持有相关资料的人士,于2014年4月30日提出意见。相关人士可以通过以下网址填写问卷及提交资料:http://goo.gl/yqWbFq   若德国及/或挪威提出限制措施的建议,欧洲化学品管理局亦会进行公众谘询。
  • 回首中国改革开放40年发展轨迹:时势造英雄
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/cfd651dc-55d6-40a6-91cf-9ba00d42877d.jpg" title=" 微信图片_20200214142432.jpg" alt=" 微信图片_20200214142432.jpg" / /p p   作者:纳微科技江必旺博士 /p p   春节期间,一场突如其来的新型冠状病毒疫情,让我们体会到自然灾难的无情,但每次磨难之后就会让人类对自然界有进一步的了解,都会促进科学技术的进步并找到应对自然灾害的解决方案。 /p p   比如说,人类在长时间遭受由于细菌感染而引发肺结核、炭疽等各种疾患后,经过科学家们艰苦努力和深入研究,发现了抗生素,从而基本消灭了这类病菌引发的疾病及对人类产生的危害。而面对比细菌更小的病毒所引起的流感、艾滋病、麻疹、病毒性肝炎、流行性乙型脑炎以及这次新型冠状病毒引发的肺炎等,时代还在呼唤更多的科技力量和人才以消除病毒给人类带来的磨难问题。 /p p   很遗憾,我不是研究病毒专业的,对这种病毒给人类带来的磨难无能为力,但我一直在研究和合成各种纳米微球,其尺寸和形状跟冠状病毒差不多, 却没有任何生物活性。十多年前回国创办纳微科技时毅然选择微球在生物制药的应用。经过多年努力和坚持,纳微成功开发出多种生物药分离纯化介质微球,广泛用于抗生素、多肽、胰岛素、抗体等。这几年纳微又开始研发用于更具有挑战的病毒分离纯化材料,希望病毒分离纯化材料研究成功会促进科学家对病毒的研究和理解以寻找应对病毒的方案。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/7b0243a2-b653-4ee7-a658-18f6619814c2.jpg" title=" 微信图片_20200214142439.jpg" alt=" 微信图片_20200214142439.jpg" / /p p   突然发难的疫情给国人带来一场磨难,给本来繁忙而热闹的生活来了急刹车,让我们蜗居家里过个冷清的春节,也让我们有时间静下心来做深入的思考。 /p p   连日来在家静思,回首中国改革开放40年发展轨迹,不禁感慨世事变迁:什么样的时代,造就什么样的环境,适合什么样的人才脱颖而出,正所谓时势造英雄。 /p p   众所周知,改革开发以来中国发生了天翻地覆的变化,从一穷二白跃升为世界第二大经济体。纵观40年发展历程,改革的焦点从解决百姓吃饭、到搞活商品流通,再到企业改制、房地产开发,不同的发展阶段,由于需要解决的社会问题和面临的社会矛盾截然不同,改革的着力点和热点随之变化,人们所追崇的人才类型与标准也相差甚远,对人才的需求和政策引导自然呈现出鲜明的时代特点和烙印。 /p p   大致可以分为4个主要阶段: /p p   strong  改革初期:粮食短缺首当其冲,农民成为改革的主角——实行家庭联产承包(1978年—1988年) /strong /p p   改革开放之初,为有效解决粮食短缺问题,国家通过改变农村集体生产模式到个人土地生产承包责任制,实行包产到户,有效激发了农民积极性和热情,一部分有劳动力又勤快的农民先富裕起来,部分农民收入远比在当时政府单位工作的干部或高校老师每月几十元工资要多得多,农民万元户相继问世,成为中国最早富裕起来的一群人。可以说,中国经济复苏的火种,也是从农村开始燎原。 /p p    strong 第二阶段:商品短缺时期,小商小贩最风光——打破计划一统天下局面,发挥市场调节作用(1988年-1992年) /strong /p p   改革开放的第二阶段,面临着长期计划经济发展带来的物资短缺、流通不畅、价格畸形、市场发展不平衡等突出问题,国家通过开放小商品市场,对以往所有产品生产和供应都由国家统一计划和管理经济的模式进行改革。 /p p   一些思想活跃、胆子大、有经商意识、敢闯市场的弄潮儿,利用当时商品市场极为短缺和不平衡的状况,在生产厂家和消费者搭建起流转桥梁,倒买倒卖、南来北往,加速了商品的流通,丰富了商品市场。一时间,“十亿人民九亿商,还有一亿在路上”,各地迅速涌现出一批经商致富的个体户,中国商人社会地位也随之上升。 /p p    strong 第三阶段 /strong /p p strong   乡镇企业异军突起,投资建厂当老板——发挥人力、土地等成本优势(1992年—2002年) /strong /p p   随着市场经济越来越发展,更多的私营企业逐渐走上历史舞台,以解决当时商品单一、生产能力匮乏、劳动力过剩等现实问题。一部分通过经商获得第一桶资金的商人,转而投资建厂,生产更多更好的产品以满足社会短缺经济的需求。 /p p   由于当时劳动力成本低,市场需求大于生产能力,且资本是稀缺资源,因此,企业家成为当时中国叱咤风云的获利群体。私人企业的发展,极大丰富和提升了中国商品的供应和生产能力。同时中国经济快速发展带来市场需求不断扩大,以及中国加入WTO带来的全球市场快速扩张机会,使得一批私人企业快速做大,成为中国改革开放以来的第一代企业家。 /p p    strong 第四阶段 /strong /p p strong   城市化建设迅猛发展——房地产与互联网霸屏财富(2002年—2018年) /strong /p p   如马斯洛需求理论,在解决了衣食温饱等基本问题后,随着生活水平日益提高,老百姓对住房、娱乐等提出更高的要求。房地产开发作为主导中国经济晴雨表的暴利行业,迅速成为“财富挖掘机”。 /p p   一座座高楼的崛起,改善了百姓居住条件,房地产产业作为中国经济发展的支柱产业,成就了一批房地产商变身为中国巨大财富的拥有者,中国首富排行榜中频现房地产商的身影,即可见其端详。 /p p   同时,随着互联网技术的飞速发展,一批具有远见卓识的互联网和IT企业家,通过复制国外互联网应用技术并凭借中国庞大人口和市场的优势,迅速做大中国IT及互联网产业,在有效解决生产端与消费端信息不对称问题的同时,极大方便了中国老百姓生活,给中国社会带来了巨大变革,同时也成就了一批互联网企业家,给他们带来巨大的财富回报。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/676ccb21-928b-46ea-802b-f99edf417b3e.jpg" title=" 微信图片_20200214142444.jpg" alt=" 微信图片_20200214142444.jpg" / /p p   回首来时路,改革开放40年逐步打破了束缚经济发展的体制机制,释放出社会巨大能量,涌现出一批又一批改变世界、实现梦想的“时代英雄” 当我们食不果腹的时候,需要的是有劳动力且能吃苦耐劳的农民伯伯 当社会商品极其短缺又发展不均衡时,需要的是具有敏锐市场意识又敢为人先的商人 当商品消费激活起来商品供不应求的时候,需要一批有财力有能力有勇气的企业家 当人民生活水平日益提高需求层次不断攀升的时候,需要一批可以调动大量资金及政府资源的房地产商 当世界IT及互联网技术在国外兴起时,需要一批企业家能捕捉先机,让互联网技术惠及中国千家万户。 /p p   可以说,每一个时代的不同需求,造就了一批能解决这个时代问题的人才。从这一点来看,只有把个人能力与时代需求紧密结合,才能得到时代的青睐,成为时代的幸运儿。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/7dadbb9a-34f7-48b3-812c-f7c09d6c8409.jpg" title=" 微信图片_20200214142447.jpg" alt=" 微信图片_20200214142447.jpg" / /p p   然而,不可否认的是,这些年中国经济快速崛起,技术创新并没有占据社会主流,并没有成为社会进步和经济发展的主要引擎,技术价值被严重低估。从事技术创新的人才不是社会的主角,反而在社会上处于边缘状态,“做导弹不如卖茶叶蛋,拿手术刀不如拿剃头刀”,充分诠释了这种脑体倒挂的不正常现象。 /p p   时代发展到今天,放眼中国经济,一方面商品供应越来越丰富,信息越来越透明,商品流通也越来越方便,对供给侧改革的要求越来越高 另一方面,利用信息不对称、市场不平衡来套利的机会越来越小,竞争越来越激烈 另外中国劳动力成本及土地成本越来越高,生产低技术含量的产品与东南亚国家相比已不再有竞争优势。同时,关键技术的核心作用越来越凸显,以往通过复制国外技术进一步发展也变得越来越困难,“拿来主义”的繁荣难以为继。 /p p   另外,国际形势也发生了巨大变化,中美贸易摩擦让大家清醒认识到中国产业技术与国外有巨大差距,缺乏核心技术的中国产业大而不强甚至是脆弱的。而核心技术之争,不仅关系到中国产业升级及其国际竞争力问题,也关系到国家的实力及稳定性,是产业真正由大变强的关键所在,究其背后,则是掌握核心技术的人才之争。所有这些变化都指向中国社会越来越需要技术人才来唱主角。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/94d80431-b061-4c44-b19c-36d46c833258.jpg" title=" 微信图片_20200214142451.jpg" alt=" 微信图片_20200214142451.jpg" / /p p   因此,今后及未来一个相当时期,国家战略是促进科学技术进步,依靠技术创新实现产业升级,提高国家真正的实力。要实现这一目标,中国就需要通过进一步改革让中国社会发展回归本质,创造出新的环境让技术人才发挥出应有的作用,并成为社会主流和价值制高点,使得更多的人才能沉下心来突破产业底层核心技术。 /p p    strong 首先,中国改革要从教育入手,人才培养,教育为先 /strong /p p   随着经济的快速发展,教育体制改革变得越来越重要,尤其是要改变当前中国的人才培养与时代需求严重脱节造成人才极大浪费的局面。在70-80年代,大多数学生的理想是当科学家,学数理化成为当时社会推崇的热潮,“学好数理化走遍天下都不怕”,因此很多优秀人才都去学理工科。遗憾的是由于当时社会经济发展水平低,生产力落后,科研环境闭塞,与国际不接轨等,科技人才的作用难以得到充分发挥,也得不到应有的社会地位和尊重。 /p p   现如今,在社会经济已经高速发展,国际环境开放互通,国家最急需最紧缺大批科技人才,但目前社会整体浮躁,挣快钱、赚热线大行其道,最优秀的人才都跑去学金融、学商业了,基础科研反倒成为冷门学科。因此,必须深入研究社会发展趋势及实际需求,培养出满足社会需求、适应时代发展的人才,让教育和人才培养与社会需求无缝对接。 /p p   同时,要加大舆论的引导和资源聚焦,将科研和技术专业由“冷门”升温为“热门”,让顶级人才愿意选择国家和社会需要的技术创新领域,作为贡献自己一生聪明才智的职业选择。比如说面对这次冠状病毒疫情,就需要依靠生物、医学及化学的相关人才,长时期坚持不懈去研究和了解病毒及其引起的疾病,才有可能解决病毒给人类带来的疾病问题。 /p p    strong 其次,要下力气营造良好技术创新发展环境 /strong /p p   一个国家的可持续发展,必须依靠技术创新,已成为人类共识。只有将“人口红利”尽快转化为“人才红利”,真正让高端技术型人才进入国家稀缺资源和宝贵财富行列,把更多的核心技术牢牢抓在自己人手里,中国的产业才能实现由大变强。而核心技术之所以会形成垄断,绝不是短期靠砸钱就可以突破的,需要的是长时间积累,全身心的投入,及超强的耐心,和一大批潜心钻研的科技人才。 /p p   改革开放下半场的重中之重,势必是要通过进一步改革科技创新的体制机制,让社会资源高效聚焦到技术创新领域,为科技人才的成长创造出一个良好的发展环境,让技术人员可以沉下心来突破底层技术,心无旁骛钻研最新科技,同时通过艰苦努力能够获得与其付出相匹配的社会地位和尊严。 /p p    strong 第三,要下功夫引导资本走向科技创新领域 /strong /p p   以往无论是做企业还是做投资,资金往往是瓶颈,只要有资金就可以投产或扩大生产,就可以挣更多的钱。随着改革开放,中国很多产能都趋于饱和乃至过剩,资本仅仅通过投入扩大生产而获利已成为历史。 /p p   而过量的资本无法进入实体经济获利,自然选择进行各种人为哄抬物价,炒作套利,最典型的就是炒房。 /p p   而房价一路高歌,看似获利颇丰,实则饮鸩止渴: /p p   一是高房价提升了人工成本,增加了中国制造业成本,严重消弱了中国制造业的国际竞争力。实体经济也更加弱化,盈利能力也更差,而资本只是空转套利,形成恶性循环。 /p p   二是资本炒作加剧社会两极分化,加剧社会怨恨和不稳定性。 /p p   三是房价无理性上涨让部分人不劳而获,鼓励社会投机行为,打击依靠劳动致富的思想,进一步加剧企业和个人急功近利,使得社会更加浮躁不稳定。 /p p   因此,无论是从资本逐利本身,还是从有助于社会稳定,中国资本都急需找到更好、更长远的出路。尽管大家都知道,突破性技术创新是极具投资价值的“黄金宝地”,但其高风险、高投入、长周期的投资回报过程,却使那些习惯于赚快钱的资本望而却步。 /p p   “功夫在诗外”,中国必须进一步加大改革开放力度和政策引导,加快实施知识产权保护、降低增值税等深层次改革,营造出技术为王的发展环境,才有可能让更多资本树立起“风物长宜放眼量”的意识,看到投资科技创新行业的长期利好,愿意投入这种高风险的科技创新过程。尽管此非一日之功,但早一天开始,就会早一天收获。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/b9ca4ed2-bf95-45e4-a8f7-a7aba37e2efa.jpg" title=" 微信图片_20200214142455.jpg" alt=" 微信图片_20200214142455.jpg" / /p p   中国经济进入调整期,科技创新成为国家核心竞争力已越来越成为共识。现阶段,中国必须通过深化改革,让社会资源有效向科技创新聚集,让社会导向迅速向人才靠拢,让技术、科学、专注、研究等成为时代热点,相信一个人才辈出的可喜局面将很快呈现,新的时势,势必造就出新的英雄! /p p   致谢:感谢北大同学江庆红在文章整理编辑中做了大量的工作。 /p
  • 欧盟将全面禁用全氟己烷磺酸
    近日,欧盟委员会在其官方公报上发布法规(EU)2023/1608,对关于持久性有机污染物法规(EU)2019/1021进行修订,正式将全氟己烷磺酸和盐类及其相关物质列入欧盟持久性有机污染物法规禁用物质清单。新法规于官方公报发布后的第20天起生效。全氟己烷磺酸及其盐此前已经于2017年7月7日列入SVHC候选物质清单。现在此类物质被加入《斯德哥尔摩公约》,日后将在全球范围内淘汰。2023年3月,欧洲化学品管理局已经公布了针对超过1万种全氟或多氟烷基类物质的REACH法规限制提案,相关企业必须做好市场评估和化学品替代的准备。全氟和多氟烷基化合物由数千种物质组成,由于其含有极其稳定的碳氟键,使得此类物质具有很强的化学稳定性和表面活性、优良的热稳定性和疏水疏油性,被广泛应用于工业生产和生活消费领域。但此类物质具有蓄积性、生殖毒性、诱变毒性、发育毒性、神经毒性、免疫毒性等多种毒性,是一类具有全身多脏器毒性的环境污染物,目前各国已经在逐步管控此类化合物。
  • 挪威将限制消费品中的全氟辛酸
    挪威近日宣布将限制消费品中的全氟辛酸化合物(perfluorinated compound ,PFOA)。生效日期将根据产品属性从2014年6月开始生效。   2013年6月28日,挪威环保局宣布了一项消费品中PFOA及其盐类和酯类的国家禁令。限制令适用于固体和液体产品,也包括纺织品。   PFOA被用于一系列消费品。它可被用于制造含氟聚合物,转而用于防水夹克。还可被用于制造地板蜡、蜡纸以及电线中的绝缘体。   该公告修订了《挪威产品法》第2-32节。禁令的生效日期根据产品属性从2014年6月1日开始。   新法律的重点图表格一所示:   表格一 管辖范围 法规 物质 范围 要求 生效日期 挪威 产品法规第2-32节“含有全氟辛酸铵的消费品” PFOA及其盐类和酯类 纯物质 混合物 ≤10毫克/千克 2014年6月1日 2016年1月1日 (半导体的粘合剂以及胶卷、相纸或屏幕的摄影涂层) 纺织品 地毯 表面有涂层的消费品 ≤1.0微克/平方米 2014年6月1日 消费品 ≤0.1% 2014年6月1日 2016年1月1日 (半导体中的箔或磁带) 豁免 食品包装和食品接触材料 医疗设备 2014年6月1日之前销售的消费品备用零件
  • 退税减税降费!符合条件的仪表企业可享受这项政策
    一、适用对象除烟草制造业、住宿和餐饮业、批发和零售业、房地产业、租赁和商务服务业、娱乐业以外的科技型中小企业都可以享受。上述企业应为会计核算健全、实行查账征收并能够准确归集研发费用的居民企业。 二、政策内容(一)除烟草制造业、住宿和餐饮业、批发和零售业、房地产业、租赁和商务服务业、娱乐业以外的科技型中小企业,开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,自2022年1月1日起,再按照实际发生额的100%在税前加计扣除;形成无形资产的,自2022年1月1日起,按照无形资产成本的200%在税前摊销。(二)科技型中小企业是指依托一定数量的科技人员从事科学技术研究开发活动,取得自主知识产权并将其转化为高新技术产品或服务,从而实现可持续发展的中小企业。科技型中小企业需同时满足以下条件:1.在中国境内(不包括港、澳、台地区)注册的居民企业。2.职工总数不超过500人、年销售收入不超过2亿元、资产总额不超过2亿元。3.企业提供的产品和服务不属于国家规定的禁止、限制和淘汰类。4.企业在填报上一年及当年内未发生重大安全、重大质量事故和严重环境违法、科研严重失信行为,且企业未列入经营异常名录和严重违法失信企业名单。5.企业根据科技型中小企业评价指标进行综合评价所得分值不低于60分,且科技人员指标得分不得为0分。符合以上第1~4项条件的企业,若同时符合下列条件中的一项,则可直接确认符合科技型中小企业条件:1.企业拥有有效期内高新技术企业资格证书;2.企业近五年内获得过国家级科技奖励,并在获奖单位中排在前三名;3.企业拥有经认定的省部级以上研发机构;4.企业近五年内主导制定过国际标准、国家标准或行业标准。企业可按照上述条件进行自主评价,并按照自愿原则到全国科技型中小企业信息服务平台填报企业信息,经公示无异议的,纳入全国科技型中小企业信息库,取得科技型中小企业入库登记编号。各省级科技管理部门按企业成立日期和提交自评信息日期,在科技型中小企业入库登记编号上进行标识。其中,入库年度之前成立且5月31日前提交自评信息的,其登记编号第11位为0;入库年度之前成立但6月1日(含)以后提交自评信息的,其登记编号第11位为A;入库年度当年成立的,其登记编号第11位为B。入库登记编号第11位为0的企业,可在上年度汇算清缴中享受科技型中小企业研发费用加计扣除政策。(三)企业委托境内的外部机构或个人进行研发活动发生的费用,按照费用实际发生额的80%计入委托方研发费用并按规定计算加计扣除;委托境外(不包括境外个人)进行研发活动所发生的费用,按照费用实际发生额的80%计入委托方的委托境外研发费用。委托境外研发费用不超过境内符合条件的研发费用三分之二的部分,可按规定在企业所得税前加计扣除。(四)企业共同合作开发的项目,由合作各方就自身实际承担的研发费用分别计算加计扣除。(五)企业集团根据生产经营和科技开发的实际情况,对技术要求高、投资数额大,需要集中研发的项目,其实际发生的研发费用,可以按照权利和义务相一致、费用支出和收益分享相配比的原则,合理确定研发费用的分摊方法,在受益成员企业之间进行分摊,由相关成员企业分别计算加计扣除。 三、操作流程(一)享受方式企业享受研发费用加计扣除政策采取“真实发生、自行判别、申报享受、相关资料留存备查”的办理方式,留存资料如下:1.自主、委托、合作研究开发项目计划书和企业有权部门关于自主、委托、合作研究开发项目立项的决议文件;2.自主、委托、合作研究开发专门机构或项目组的编制情况和研发人员名单;3.经科技行政主管部门登记的委托、合作研究开发项目的合同;4.从事研发活动的人员(包括外聘人员)和用于研发活动的仪器、设备、无形资产的费用分配说明(包括工作使用情况记录及费用分配计算证据材料);5.集中研发项目研发费决算表、集中研发项目费用分摊明细情况表和实际分享收益比例等资料;6.“研发支出”辅助账及汇总表;7.企业如果已取得地市级(含)以上科技行政主管部门出具的鉴定意见,应作为资料留存备查;8.《研发费用加计扣除优惠明细表》(A107012,选择预缴享受的企业留存备查)。(二)办理渠道可通过办税服务厅(场所)、电子税务局办理,具体地点和网址可从省(自治区、直辖市和计划单列市)税务局网站“纳税服务”栏目查询。(三)申报要求企业可以自主选择10月份预缴申报第3季度(按季预缴)或9月份(按月预缴)企业所得税时,就当年前三季度研发费用享受加计扣除优惠政策。对10月份预缴申报期未选择享受研发费用加计扣除优惠政策的,也可以在办理当年度企业所得税汇算清缴时统一享受。企业在10月份预缴申报时,自行判断本年度符合科技型中小企业条件的,可选择暂按规定享受科技型中小企业研发费用加计扣除优惠政策,年度汇算清缴时再按照取得入库登记编号的情况确定是否可以享受科技型中小企业研发费用加计扣除优惠政策。如果企业在10月份预缴申报时,没有把握确定是否能取得入库登记编号,也可以选择在年终汇算清缴时再享受。企业选择预缴享受的,在预缴申报时,可以自行计算加计扣除金额;通过手工申报的,在《中华人民共和国企业所得税月(季)度预缴纳税申报表(A类)》(A200000)第7行“减:免税收入、减计收入、加计扣除”下的明细行次填报加计扣除等优惠事项和优惠金额;同时应根据享受加计扣除优惠的研发费用情况填写《中华人民共和国企业所得税年度纳税申报表(A类,2017版)》之《研发费用加计扣除优惠明细表》(A107012),该表在预缴时不需报送税务机关,只需与相关资料一并留存备查。通过电子税务局申报的,可直接在下拉菜单中选择相应的优惠事项。在年度申报时,填报《中华人民共和国企业所得税年度纳税申报表(A类,2017版)》之《免税、减计收入及加计扣除优惠明细表》(A107010)和《研发费用加计扣除优惠明细表》(A107012)的有关栏次。(四)研发费用税前加计扣除归集范围有关问题1.人员人工费用。指直接从事研发活动人员的工资薪金、基本养老保险费、基本医疗保险费、失业保险费、工伤保险费、生育保险费和住房公积金,以及外聘研发人员的劳务费。直接从事研发活动人员包括研究人员、技术人员、辅助人员。研究人员是指主要从事研究开发项目的专业人员;技术人员是指具有工程技术、自然科学和生命科学中一个或一个以上领域的技术知识和经验,在研究人员指导下参与研发工作的人员;辅助人员是指参与研究开发活动的技工。外聘研发人员是指与本企业或劳务派遣企业签订劳务用工协议(合同)和临时聘用的研究人员、技术人员、辅助人员。(1)接受劳务派遣的企业按照协议(合同)约定支付给劳务派遣企业,且由劳务派遣企业实际支付给外聘研发人员的工资薪金等费用,属于外聘研发人员的劳务费用。(2)工资薪金包括按规定可以在税前扣除的对研发人员股权激励的支出。(3)直接从事研发活动的人员、外聘研发人员同时从事非研发活动的,企业应对其人员活动情况做必要记录,并将其实际发生的相关费用按实际工时占比等合理方法在研发费用和生产经营费用间分配,未分配的不得加计扣除。2.直接投入费用。指研发活动直接消耗的材料、燃料和动力费用;用于中间试验和产品试制的模具、工艺装备开发及制造费,不构成固定资产的样品、样机及一般测试手段购置费,试制产品的检验费;用于研发活动的仪器、设备的运行维护、调整、检验、维修等费用,以及通过经营租赁方式租入的用于研发活动的仪器、设备租赁费。(1)以经营租赁方式租入的用于研发活动的仪器、设备,同时用于非研发活动的,企业应对其仪器设备使用情况做必要记录,并将其实际发生的租赁费按实际工时占比等合理方法在研发费用和生产经营费用间分配,未分配的不得加计扣除。(2)企业研发活动直接形成产品或作为组成部分形成的产品对外销售的,研发费用中对应的材料费用不得加计扣除。产品销售与对应的材料费用发生在不同纳税年度且材料费用已计入研发费用的,可在销售当年以对应的材料费用发生额直接冲减当年的研发费用,不足冲减的,结转以后年度继续冲减。3.折旧费用。指用于研发活动的仪器、设备的折旧费。(1)用于研发活动的仪器、设备,同时用于非研发活动的,企业应对其仪器设备使用情况做必要记录,并将其实际发生的折旧费按实际工时占比等合理方法在研发费用和生产经营费用间分配,未分配的不得加计扣除。(2)企业用于研发活动的仪器、设备,符合税法规定且选择加速折旧优惠政策的,在享受研发费用税前加计扣除政策时,就税前扣除的折旧部分计算加计扣除。4.无形资产摊销费用。指用于研发活动的软件、专利权、非专利技术(包括许可证、专有技术、设计和计算方法等)的摊销费用。(1)用于研发活动的无形资产,同时用于非研发活动的,企业应对其无形资产使用情况做必要记录,并将其实际发生的摊销费按实际工时占比等合理方法在研发费用和生产经营费用间分配,未分配的不得加计扣除。(2)用于研发活动的无形资产,符合税法规定且选择缩短摊销年限的,在享受研发费用税前加计扣除政策时,就税前扣除的摊销部分计算加计扣除。5.新产品设计费、新工艺规程制定费、新药研制的临床试验费、勘探开发技术的现场试验费。指企业在新产品设计、新工艺规程制定、新药研制的临床试验、勘探开发技术的现场试验过程中发生的与开展该项活动有关的各类费用。6.其他相关费用。指与研发活动直接相关的其他费用,如技术图书资料费、资料翻译费、专家咨询费、高新科技研发保险费,研发成果的检索、分析、评议、论证、鉴定、评审、评估、验收费用,知识产权的申请费、注册费、代理费,差旅费、会议费,职工福利费、补充养老保险费、补充医疗保险费。此类费用总额不得超过可加计扣除研发费用总额的10%。企业在一个纳税年度内同时开展多项研发活动的,统一计算全部研发项目“其他相关费用”限额。7.其他事项(1)企业取得的政府补助,会计处理时采用直接冲减研发费用方法且税务处理时未将其确认为应税收入的,应按冲减后的余额计算加计扣除金额。(2)企业取得研发过程中形成的下脚料、残次品、中间试制品等特殊收入,在计算确认收入当年的加计扣除研发费用时,应从已归集研发费用中扣减该特殊收入,不足扣减的,加计扣除研发费用按零计算。(3)企业开展研发活动中实际发生的研发费用形成无形资产的,其资本化的时点与会计处理保持一致。(4)失败的研发活动所发生的研发费用可享受税前加计扣除政策。(5)国家税务总局公告2015年第97号第三条所称“研发活动发生费用”是指委托方实际支付给受托方的费用。无论委托方是否享受研发费用税前加计扣除政策,受托方均不得加计扣除。委托方委托关联方开展研发活动的,受托方需向委托方提供研发过程中实际发生的研发项目费用支出明细情况。(五)相关规定1.企业应按照国家财务会计制度要求,对研发支出进行会计处理;同时,对享受加计扣除的研发费用按研发项目设置辅助账,准确归集核算当年可加计扣除的各项研发费用实际发生额。企业在一个纳税年度内进行多项研发活动的,应按照不同研发项目分别归集可加计扣除的研发费用。2.企业应对研发费用和生产经营费用分别核算,准确、合理归集各项费用支出,对划分不清的,不得实行加计扣除。四、相关文件(一)《国家税务总局关于企业预缴申报享受研发费用加计扣除优惠政策有关事项的公告》(2022年第10号);(二)《财政部 税务总局 科技部关于进一步提高科技型中小企业研发费用税前加计扣除比例的公告》(2022年第16号);(三)《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号);(四)《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知》(财税〔2018〕64号);(五)《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号);(六)《科技部 国家税务总局关于做好科技型中小企业评价工作有关事项的通知》(国科发火〔2018〕11号);(七)《科技部 财政部 国家税务总局关于印发〈科技型中小企业评价办法〉的通知》(国科发政〔2017〕115号);(八)《国家税务总局关于发布修订后的〈企业所得税优惠政策事项办理办法〉的公告》(2018年第23号);(九)《国家税务总局关于研发费用税前加计扣除归集范围有关问题的公告》(2017年第40号);(十)《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告》(2015年第97号);(十一)《中华人民共和国企业所得税年度纳税申报表(A类,2017年版)》;(十二)《中华人民共和国企业所得税月(季)度预缴纳税申报表(A类)》;(十三)《企业所得税申报事项目录》(国家税务总局网站“纳税服务”栏目发布)。
  • 农夫山泉频出质量问题 网友:农夫山泉有点悬
    中新网3月26日电 综合报道,最近,农夫山泉“有点烦”,在不到20天的时间里,农夫山泉先后被曝出喝出黑色不明物、棕色漂浮物以及“水源地垃圾围城”等消息。号称“大自然的搬运工”的农夫山泉接二连三地陷入“质量门”,令消费者心头上蒙上了一层阴影。   农夫山泉水中现黑色不明物   315前期,有消费者投诉农夫山泉水中现黑色不明物。媒体报道指出,2013年3月8日,消费者李女士投诉称,其公司购买的多瓶未开封农夫山泉380ml饮用天然水中出现很多黑色的不明物。发现这些水中的黑色不明物后,消费者李女士曾与农夫山泉联系,但是农夫山泉坚称产品合格的做法让其很气愤,也并未解答其黑色不明物究竟是何物的疑问。   对此,农夫山泉3月15日通过其官方微博发表声明表示,近期有消费者反应农夫山泉丹江口工厂生产的部分瓶装水中有细小沉淀物。获悉后,农夫山泉将产品送至第三方权威检测机构,检测结果显示,其符合国家标准的各项安全指标。   农夫山泉强调,含有天然矿物元素的瓶装水在运输储存过程中,有时会受到温差等影响而析出矿物盐,并不影响饮用,亦无安全问题。农夫山泉还称,若消费者仍对此有疑虑,将予免费更换。   农夫山泉中现棕红色漂浮物   一波未平一波又起,315过后,媒体又曝出农夫山泉一起“质量门”。据中国广播网3月22日报道,宁夏消费者王先生今年3月11号购买了一瓶550ml装的农夫山泉,第二天正要打开喝时,突然发现瓶中有不少棕红色的漂浮物,水看着还有些浑浊。   于是,王先生找到经销商投诉,经销商在未取走问题样品的情况下回复表示,自己是从湖北丹江口工厂进的货,经过厂家检测得出的结果是,棕红色的不明物质为矿物质析出所致,水可以正常饮用。农夫山泉总裁办主任钟晓晓在接受采访时也坚称,农夫山泉在生产工艺肯定没有问题。   对此,经济之声特约评论员、资深媒体人张立栋表示,由于近年来居民对于普通水质的担忧,农夫山泉的产量、销售确实得到了很大的提升。但张立栋称,农夫山泉的产量、人力、物力的投入应该成正比,不能因为市场需求大,“萝卜快了不洗泥”。针对消费者投诉的问题,农夫山泉没有作出一个科学合理的解释,而是比较武断的回复,这不太负责任。   丹江口水源地“垃圾围城”?   值得注意的是,先后发生的这两起“质量门”中的水均产自农夫山泉的水源地之一:湖北丹江口。那么湖北丹江口的水源地到底是怎么样呢?   据21世纪网3月25日报道,经过实地调查发现,在风景秀丽的丹江口水库背后,掩藏的是农夫山泉水源惊人的污染。在农夫山泉取水点周边水域岸上,遍是各种各样的生活垃圾,其中不乏大量疑似医用废弃药瓶,俨然“垃圾围城”之势,让人产生误入垃圾掩埋场的感觉。而农夫山泉用焚烧的方式来处理这些垃圾,其焚化后渗入水中对水质的影响不免令人担忧。然而,农夫山泉厂区人员却表示,生活垃圾对水质影响不大,犹如“米饭中的沙粒”。   对此,农夫山泉25日晚通过其官方微博发表了“关于丹江口岸边杂物的说明”,说明中表示,媒体所报道的不整洁区域距离其公司取水口下游约1.4公里,对取水质量并无影响。声明表示,农夫山泉取水口源水符合DB33/383-2005《瓶装饮用天然水》天然水源水质量要求。   网友:农夫山泉,有点悬   虽然一再澄清,但屡屡发生的质量事件,让部分网友对其失望。网友“8千与千寻8”说,“我们不生产水,我们只是大自然的搬运工。原来就是搬运点垃圾水!” 网友“左岸华叔”则评论称““农夫山泉,有点悬”。   中新网财经频道了解到,农夫山泉目前拥有四个主要水源基地,分别位于浙江千岛湖、湖北丹江口、广东万绿湖和吉林长白山。除了此次被曝光的湖北丹江口外,其余三个水源地是否被污染尚未可知。
  • 全哲洙部长莅临上海复享
    中共中央统战部副部长,全国工商联党组书记、第一副主席全哲洙带领调研组到江苏、广西、广东、浙江四省区开展调研工作。在上海经过我杨浦区创业区实习基地。在领导的陪同下,全部长了解我公司在光谱测量领域的运营情况,并对复享的光纤光谱仪、微型光谱仪赞不绝口。 复享仪器经理向部长汇报光谱测量的发展 全哲洙认为目前我国的中小企业已经超过1000多万家,占企业总数的99%,提供了近80%的城镇就业岗位,完成了75%以上的企业技术创新,创造的最终产品和附加值相当于国内生产总值的60%,纳税额为国家税收总额的接近50%,已经成为保持国民经济平稳较快发展的重要基础,在我国经济社会发展中具有重要的战略地位。 全部长给大家鼓劲,在全球经济环境不景气的情况下,说信念特别重要。 一定要挺住,一定要顽强的活着。 享有光谱领域权威的上海复享仪器在全部长的鼓励下,一定在光谱应用领域不断追求发展,将光纤光谱仪、微型光谱仪发展壮大。
  • 日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了
    日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼牛夏梦由于新污染物本身具有的生物毒性、环境持久性、生物累积性以及对人体健康存在的潜在风险引起大家的广泛关注。目前国际上广泛关注的新污染物包括全氟化合物(per-and polyfluoroalkyl substances,PFAS)、抗生素(Antibiotic)、阻燃剂(Flame Retardant,FR)、持久性有机污染物(Persistent Organic Pollutants,POPs)、内分泌干扰物(Endocrine-Disrupting Chemicals,EDCs)、微塑料(Microplastics),药物与个人护理品(Pharmaceuticals and personal care products,PPCP)等。健康风险有毒物质和疾病登记局(ATSDR)显示根据全氟化合物的动物试验研究发现PFAS 会对肝脏和免疫系统造成损害,还会导致实验动物出生体重低、出生缺陷、发育迟缓以及新生儿死亡;复旦大学医学研究院比较了全球范围内不同人群经呼吸道和胃肠道暴露于OPFRs的水平以及其在体内的负荷水平;归纳和总结了长期低水平的OPFRs暴露对儿童神经发育、成年人的生殖系统以及甲状腺功能等方面的潜在危害;抗生素的耐药性则是全球需要面对的公共卫生挑战,抗菌素耐药性增加是导致严重感染、并发症、住院时间延长和死亡率增加的原因。赛默飞新污染物解决方案新污染物覆盖种类较为广泛,目前除了主要关注的新污染物除了抗生素以外,热度比较高的新污染物还有全氟化合物PFAS以及阻燃剂,其中阻燃剂中添加型阻燃剂中的有机磷阻燃剂则是目前使用较多的一种,也是目前污染较为广泛的一类。赛默飞为了满足客户检测筛查更多种类的全氟化合物以及更广泛新型有机污染物的需求,进行了新污染物种类的扩项。本次方案更新亮点:更多的全氟化合物,赛默飞推出市面覆盖最多的全氟化合物的谱图库(Library)以及数据库(Database),100多种全氟化合物可供筛选,其中包括磺酸类、羧酸类、酰胺类及醇类;新类别的有机磷阻燃剂的筛查方案,增加了40多种有机磷阻燃剂,扩大大家对于新污染物的发现范畴,覆盖更广更全面;同一个的方法,有效数据级别up,新添加的化合物均存在出峰时间、分子式以及碎片的全部信息,方便大家实现更高级别的鉴定;当前最新方法包的新污染物类别组成如下:图1 数据库中新污染物类别分布(点击查看大图)有机磷阻燃剂存在较多的异构体,该方法包可以实现异构体的有效分离:图2 磷酸三(1-氯-2-丙基)酯和三(3-氯丙基)磷酸酯(上)、磷酸三丙酯和磷酸三异丙基酯(下)(点击查看大图)该方案基于赛默飞高分辨仪器平台Orbitrap Exploris系列静电场轨道阱质谱,Orbitrap超高的分辨率(12W以上)尽可能的实现分子量相近化合物的分离分析;精确的质量精度,在标配的Easy-IC功能下,可以做到小于1ppm的质量偏差,最大程度的解析未知物的元素组成;正负切换,得到的更多方向的二级碎片以及更多种类的化合物,更有利于目标物质的高通量筛查。赛默飞高分辨新污染物筛查数据库目前已更新400多种,之后也会进一步持续更新,助力更广度的新污染物筛查工作持续有效进行。赛默飞依托完整的产品线以及优异的质谱性能,助力新污染筛查分析,致力于世界更健康、更清洁、更安全。赛默飞推出的全新高分辨新污染物筛查方法包已上线,该方法包种包括仪器进样方法、数据处理方法、报告模板以及新污染物的具体信息,如需该方案致电联系相关销售即可免费获得。推荐阅读:● 重磅来袭|赛默飞新污染监测高通量方案再升级 ► 点击阅读 ● 磨砺以须 倍道而进|新污染物高分辨液质筛查方案就现在! ► 点击阅读 ● 简单上手 快速落地 | 新污染物液质解决方案看这里 ► 点击阅读 如需合作转载本文,请文末留言。
  • 生态环境部关于公开征求《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法》等四项国家生态环境标准意见
    各有关单位:为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《生态遥感地面观测与验证技术导则》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。请于2022年1月10日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。联系人:生态环境部监测司 曹 宇电话:(010)65646228传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.生态遥感地面观测与验证技术导则(征求意见稿)3.《生态遥感地面观测与验证技术导则(征求意见稿)》编制说明4.固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)5.《固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)》编制说明6.水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)7.《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)》编制说明8.土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)9.《土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)》编制说明生态环境部办公厅2021年12月9日(此件社会公开)附件1征求意见单位名单生态环境部各流域海域生态环境监督管理局监测与科研中心各省、自治区、直辖市生态环境监测站(中心)新疆生产建设兵团生态环境第一监测站各环境保护重点城市生态环境监测站(中心)中国科学院生态环境研究中心中国环境科学研究院中国环境监测总站生态环境部环境发展中心生态环境部南京环境科学研究所生态环境部华南环境科学研究所国家环境分析测试中心河北环境工程学院
  • 国家税务总局官方解读来了:仪器制造业企业享受研发费用加计扣除还需要符合这些条件!
    近日,财政部、税务总局发布《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)将制造业研发费用加计扣除比例由75%提高到100%,这对于国内仪器研发企业节省研发成本是重大利好。然而,部分仪器企业也十分想要知道:享受到这项政策红利是否还有其他的附加条件?今日,国家税务总局发布官方解读:《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)仅将制造业研发费用加计扣除比例由75%提高到100%,其他政策口径和管理要求没有变化,继续按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)、《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知》(财税〔2018〕64号)、《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告》(2015年第97号)、《国家税务总局关于研发费用税前加计扣除归集范围有关问题的公告》(2017年第40号)等文件规定执行。小编将以上公告进行了归纳整理,以便于仪器企业加深了解此项政策的“前世今生”。《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告财政部 税务总局公告2021年第13号    为进一步激励企业加大研发投入,支持科技创新,现就企业研发费用税前加计扣除政策有关问题公告如下:    一、制造业企业开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,自2021年1月1日起,再按照实际发生额的100%在税前加计扣除;形成无形资产的,自2021年1月1日起,按照无形资产成本的200%在税前摊销。    本条所称制造业企业,是指以制造业业务为主营业务,享受优惠当年主营业务收入占收入总额的比例达到50%以上的企业。制造业的范围按照《国民经济行业分类》(GB/T 4574-2017)确定,如国家有关部门更新《国民经济行业分类》,从其规定。收入总额按照企业所得税法第六条规定执行。    二、企业预缴申报当年第3季度(按季预缴)或9月份(按月预缴)企业所得税时,可以自行选择就当年上半年研发费用享受加计扣除优惠政策,采取“自行判别、申报享受、相关资料留存备查”办理方式。    符合条件的企业可以自行计算加计扣除金额,填报《中华人民共和国企业所得税月(季)度预缴纳税申报表(A类)》享受税收优惠,并根据享受加计扣除优惠的研发费用情况(上半年)填写《研发费用加计扣除优惠明细表》(A107012)。《研发费用加计扣除优惠明细表》(A107012)与相关政策规定的其他资料一并留存备查。    企业办理第3季度或9月份预缴申报时,未选择享受研发费用加计扣除优惠政策的,可在次年办理汇算清缴时统一享受。    三、企业享受研发费用加计扣除政策的其他政策口径和管理要求,按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知 》(财税〔2015〕119号)、《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知 》(财税〔2018〕64号)等文件相关规定执行。    四、本公告自2021年1月1日起执行。    特此公告。  财政部税务总局2021年3月31日《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知财税〔2015〕119号各省、自治区、直辖市、计划单列市财政厅(局)、国家税务局、地方税务局、科技厅(局),新疆生产建设兵团财务局、科技局:  根据《中华人民共和国企业所得税法》及其实施条例有关规定,为进一步贯彻落实《中共中央 国务院关于深化体制机制改革加快实施创新驱动发展战略的若干意见》精神,更好地鼓励企业开展研究开发活动(以下简称研发活动)和规范企业研究开发费用(以下简称研发费用)加计扣除优惠政策执行,现就企业研发费用税前加计扣除有关问题通知如下:  一、研发活动及研发费用归集范围。  本通知所称研发活动,是指企业为获得科学与技术新知识,创造性运用科学技术新知识,或实质性改进技术、产品(服务)、工艺而持续进行的具有明确目标的系统性活动。  (一)允许加计扣除的研发费用。  企业开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,按照本年度实际发生额的50%,从本年度应纳税所得额中扣除;形成无形资产的,按照无形资产成本的150%在税前摊销。研发费用的具体范围包括:  1.人员人工费用。  直接从事研发活动人员的工资薪金、基本养老保险费、基本医疗保险费、失业保险费、工伤保险费、生育保险费和住房公积金,以及外聘研发人员的劳务费用。  2.直接投入费用。  (1)研发活动直接消耗的材料、燃料和动力费用。  (2)用于中间试验和产品试制的模具、工艺装备开发及制造费,不构成固定资产的样品、样机及一般测试手段购置费,试制产品的检验费。  (3)用于研发活动的仪器、设备的运行维护、调整、检验、维修等费用,以及通过经营租赁方式租入的用于研发活动的仪器、设备租赁费。  3.折旧费用。  用于研发活动的仪器、设备的折旧费。  4.无形资产摊销。  用于研发活动的软件、专利权、非专利技术(包括许可证、专有技术、设计和计算方法等)的摊销费用。  5.新产品设计费、新工艺规程制定费、新药研制的临床试验费、勘探开发技术的现场试验费。  6.其他相关费用。  与研发活动直接相关的其他费用,如技术图书资料费、资料翻译费、专家咨询费、高新科技研发保险费,研发成果的检索、分析、评议、论证、鉴定、评审、评估、验收费用,知识产权的申请费、注册费、代理费,差旅费、会议费等。此项费用总额不得超过可加计扣除研发费用总额的10%。  7.财政部和国家税务总局规定的其他费用。  (二)下列活动不适用税前加计扣除政策。  1.企业产品(服务)的常规性升级。  2.对某项科研成果的直接应用,如直接采用公开的新工艺、材料、装置、产品、服务或知识等。  3.企业在商品化后为顾客提供的技术支持活动。  4.对现存产品、服务、技术、材料或工艺流程进行的重复或简单改变。  5.市场调查研究、效率调查或管理研究。  6.作为工业(服务)流程环节或常规的质量控制、测试分析、维修维护。  7.社会科学、艺术或人文学方面的研究。  二、特别事项的处理  1.企业委托外部机构或个人进行研发活动所发生的费用,按照费用实际发生额的80%计入委托方研发费用并计算加计扣除,受托方不得再进行加计扣除。委托外部研究开发费用实际发生额应按照独立交易原则确定。  委托方与受托方存在关联关系的,受托方应向委托方提供研发项目费用支出明细情况。  企业委托境外机构或个人进行研发活动所发生的费用,不得加计扣除。  2.企业共同合作开发的项目,由合作各方就自身实际承担的研发费用分别计算加计扣除。  3.企业集团根据生产经营和科技开发的实际情况,对技术要求高、投资数额大,需要集中研发的项目,其实际发生的研发费用,可以按照权利和义务相一致、费用支出和收益分享相配比的原则,合理确定研发费用的分摊方法,在受益成员企业间进行分摊,由相关成员企业分别计算加计扣除。  4.企业为获得创新性、创意性、突破性的产品进行创意设计活动而发生的相关费用,可按照本通知规定进行税前加计扣除。  创意设计活动是指多媒体软件、动漫游戏软件开发,数字动漫、游戏设计制作;房屋建筑工程设计(绿色建筑评价标准为三星)、风景园林工程专项设计;工业设计、多媒体设计、动漫及衍生产品设计、模型设计等。  三、会计核算与管理  1.企业应按照国家财务会计制度要求,对研发支出进行会计处理;同时,对享受加计扣除的研发费用按研发项目设置辅助账,准确归集核算当年可加计扣除的各项研发费用实际发生额。企业在一个纳税年度内进行多项研发活动的,应按照不同研发项目分别归集可加计扣除的研发费用。  2.企业应对研发费用和生产经营费用分别核算,准确、合理归集各项费用支出,对划分不清的,不得实行加计扣除。  四、不适用税前加计扣除政策的行业  1.烟草制造业。  2.住宿和餐饮业。  3.批发和零售业。  4.房地产业。  5.租赁和商务服务业。  6.娱乐业。  7.财政部和国家税务总局规定的其他行业。  上述行业以《国民经济行业分类与代码(GB/4754 -2011)》为准,并随之更新。  五、管理事项及征管要求  1.本通知适用于会计核算健全、实行查账征收并能够准确归集研发费用的居民企业。  2.企业研发费用各项目的实际发生额归集不准确、汇总额计算不准确的,税务机关有权对其税前扣除额或加计扣除额进行合理调整。  3.税务机关对企业享受加计扣除优惠的研发项目有异议的,可以转请地市级(含)以上科技行政主管部门出具鉴定意见,科技部门应及时回复意见。企业承担省部级(含)以上科研项目的,以及以前年度已鉴定的跨年度研发项目,不再需要鉴定。  4.企业符合本通知规定的研发费用加计扣除条件而在2016年1月1日以后未及时享受该项税收优惠的,可以追溯享受并履行备案手续,追溯期限最长为3年。  5.税务部门应加强研发费用加计扣除优惠政策的后续管理,定期开展核查,年度核查面不得低于20%。  六、执行时间  本通知自2016年1月1日起执行。《国家税务总局关于印发〈企业研究开发费用税前扣除管理办法(试行)〉的通知》(国税发〔2008〕116号)和《财政部 国家税务总局关于研究开发费用税前加计扣除有关政策问题的通知》(财税〔2013〕70号)同时废止。财政部 国家税务总局 科技部2015年11月2日《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知》(财税〔2018〕64号)财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知财税〔2018〕64号各省、自治区、直辖市、计划单列市财政厅(局)、科技厅(局),国家税务总局各省、自治区、直辖市、计划单列市税务局,新疆生产建设兵团财政局、科技局:    为进一步激励企业加大研发投入,加强创新能力开放合作,现就企业委托境外进行研发活动发生的研究开发费用(以下简称研发费用)企业所得税前加计扣除有关政策问题通知如下:    一、委托境外进行研发活动所发生的费用,按照费用实际发生额的80%计入委托方的委托境外研发费用。委托境外研发费用不超过境内符合条件的研发费用三分之二的部分,可以按规定在企业所得税前加计扣除。    上述费用实际发生额应按照独立交易原则确定。委托方与受托方存在关联关系的,受托方应向委托方提供研发项目费用支出明细情况。    二、委托境外进行研发活动应签订技术开发合同,并由委托方到科技行政主管部门进行登记。相关事项按技术合同认定登记管理办法及技术合同认定规则执行。    三、企业应在年度申报享受优惠时,按照《国家税务总局关于发布修订后的〈企业所得税优惠政策事项办理办法〉的公告》(国家税务总局公告2018年第23号 )的规定办理有关手续,并留存备查以下资料:    (一)企业委托研发项目计划书和企业有权部门立项的决议文件;    (二)委托研究开发专门机构或项目组的编制情况和研发人员名单;    (三)经科技行政主管部门登记的委托境外研发合同;    (四)“研发支出”辅助账及汇总表;    (五)委托境外研发银行支付凭证和受托方开具的收款凭据;    (六)当年委托研发项目的进展情况等资料。  七、后续管理与核查税务机关应加强对享受研发费用加计扣除优惠企业的后续管理和监督检查。每年汇算清缴期结束后应开展核查,核查面不得低于享受该优惠企业户数的20%。省级税务机关可根据实际情况制订具体核查办法或工作措施。八、执行时间本公告适用于2016年度及以后年度企业所得税汇算清缴。特此公告。附件:(点击此链接打包下载下列附件) 1.自主研发“研发支出”辅助账2.委托研发“研发支出”辅助账3.合作研发“研发支出”辅助账4.集中研发“研发支出”辅助账
  • 法规频出,需求攀升,食品中全氟分析方案你准备好了吗?
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼田雪飞 郭藤无处不在的全氟化合物,让你防不胜防全氟/多氟类化合物(PFAS)是一类特殊的人工合成有机化合物,其分子中氟原子全部或部分取代与碳连接的氢原子,因其毒性以及在环境和生物体中的广泛存在而成为全球关注的热点。由于C—F键极高化学键能,使得该类化合物具有强化学稳定性、高表面活性,被广泛应用于食品接触材料、纺织品、不粘锅涂层、阻燃剂等工业和消费品领域中;同时也由于不易降解,且容易通过食物链造成生物体的富集作用,使其成为目前新型的持久性环境污染物。此氟非福,正在侵害你的身体健康各国的研究表明,膳食摄入是人体PFAS暴露的主要途径。全氟化合物可通过饮食、饮水和呼吸等途径进入机体,当它们被生物体摄入后不会在脂肪组织中产生富集,而是与蛋白发生键合后存在于血液中,并在肝脏、肾脏、肌肉等组织中发生蓄积,同时呈现出明显的生物富集性。(点击查看大图)食品中全氟检测大势所趋欧盟从2023年起限制食品中四种“永久化学物质”含量,欧盟委员会的声明说,全氟烷基物质(PFAS)可能对免疫系统、胎儿及婴儿发育以及胆固醇产生负面影响,因为它们的化学成分无法分解,其中全氟辛烷磺酸(PFOS)、全氟辛烷基酸(PFOA)、全氟本甲酸(PFNA)和全氟己烷磺酸(PFHxS) 从2023年起适用新规定:2022年12月7日欧盟委员会发布的 (EU) 2022/2388条例,修订(EC) No 1881/2006 条例,即关于某些食品中全氟烷基物质最大限量。同时,在欧盟饮用水水质指令(DIRECTIVE (EU) 2020/2184)规定,从2021年1月12日起,所有PFAS物质在人类饮用水中的含量不得高于0.5 μg/L,由此也可以看出食品中全氟化合物检测的必然趋势。满足不同需求的解决方案,总有一款适合你!01三重四极杆定量方案● TSQ三重四极杆质谱系列集多种卓越性能于一身,将创新的硬件设计与软件系统融合一体,不仅提高了仪器灵敏度、耐用性和稳定性,而且简单易用,可以帮助专业和非专业级水平的用户获得更高质量的数据,为定量工作提供更高水平的分析效率和性能;● 液质应用团队在TSQ平台上开发了新污染物检测高通量方案,包含抗生素,内分泌干扰物,持久性有机污染物等300多种化合物,其中全氟化合物超过50种,适用于环境及食品中PFAS的检测。(点击查看大图)02高分辨筛查&定量方案● 全新的Thermo Scientific&trade Orbitrap Exploris 高分辨平台,Orbitrap高分辨质谱具有高分辨率、高灵敏度、出色的质量精度和宽动态范围等特点,同时兼具优异的定性和定量功能,是食品安全领域未知残留物的大范围筛查和定性定量分析的最佳平台。1全氟标准品数据库进行靶向筛查的方案TraceFinder靶向筛查全氟数据库:包含化合物中英文名称,CAS No,分子式,离子碎片,保留时间等详细信息(点击查看大图)TraceFinder靶向筛查结果判定策略:从质量误差、保留时间偏差、同位素峰形、特征碎片、二级谱图5个维度评判筛查结果,全氟化合物筛查结果展示如下(点击查看大图)2对筛查结果准确定量的方案Orbitrap高分辨质谱除了具有对未知物分析强大鉴定功能之外,凭借低至百万分率 (ppm) 的质量精度和高质量分辨率,Orbitrap的质量选择性更高,这有助于克服食品复杂组织提取物分析中的基质干扰,减少假阳性,化合物定量上更有优势,且具有多种定量模式可供选择:全氟化合物定量:以PFOA为例,展示不同采集模式的谱图及校正曲线(点击查看大图)PFOA在0.5ppt浓度下色谱图及0.5-80ppt范围校正曲线(点击查看大图)赛默飞特别推荐:全氟化合物检测必备分析包全氟化合物无处不在,存在于管路,流动相等仪器系统中,造成本底干扰,使用EPA推荐配置-PFAS free Kit+捕集柱来隔离背景干扰(点击查看大图)总结食品安全一直是人们关注的焦点话题,赛默飞对于食品安全领域尤为重视,致力于为广大用户群体提供从前处理到分离检测的专业解决方案,解决客户在检测中遇到的困难,助您不再谈氟色变,让您的实验更简单、更高效。如需合作转载本文,请文末留言。
  • 食品检验需走出内外有别监管怪圈
    3月28日,南宁农业局蔬菜质量安全监督员在例行检测中,检测出两批农药残留超标的外地蔬菜,其中,大白菜8500公斤,上海青1110公斤 经查,有4451.5公斤被防城港市等外地菜贩批发运走,有1618.5公斤流入南宁市场,目前,相关部门尚未接到有人员中毒的报告。   令人欣慰的是,此次蔬菜农药残留超标事件未造成人员中毒,而且广西方面处置及时果断,切断源头。除要求迅速查扣“问题蔬菜”,并以最快的速度查清“问题蔬菜”流向,严防流入市场外,还将情况通报给所流入的城市,要求全力查扣“问题蔬菜”,决不允许发生中毒事件,以确保广大群众的生命安全。   在近年来发生的食品安全事件中,往往有一个“定语”引起人们的关注,它就是“外地”,从陕西渭南市的问题奶粉重新入市,三聚氰胺“重出江湖”来到广东,到海南有毒豇豆现身广州、深圳、杭州、合肥等地,再到当下两批农药残留超标的外地蔬菜在南宁市场旺销,“外地”两字将“问题食品”活跃流动的轨迹清晰地呈现在公众的面前,人们不禁要问,“橘生淮南则为橘,生于淮北则为枳”,难道这些“问题食品”,当地人吃了啥事没有,到了外地就查出问题来了?难道是专门“出口”,从不“内销”?   问题恐怕不是那么简单,这其中有三种可能。第一种是本地产品,远销外地,绿灯大开,一路放行,全都享受“免检特权” 第二种是本地产品,检也检了,“问题不大”,盖章合格,卖得越远越好 还有一种情况是查出问题来了,赶紧“内部消化”,不让它毁了本地产品的声誉,将其“捂死”在萌芽之中。很显然,蔬菜农药残留超标在产地被检出并不是技术上做不到的难事。因此,无论何种情形,都折射出在地方保护的利益驱使之下,食品监管存在内外有别的“双重标准”。   已所不欲,勿施于人。“本地松、外地严”的监管怪圈主观上是利益考量,为本地产品与官员政绩护驾保航,而实质上害人害已,成为问题食品危及公众安全的一大推手。在物畅其流的市场机制之下,本地即外地,外地即本地,对本地产品的“留情”就是对公众健康的“无情”,也是对整个食品安全体系建设的极不负责任,其害莫大焉!有鉴于此,应启动立法严格规定,对食品尤其是农产品(000061,股吧)的生产环节实行强制性产地检验,辅之以市场销售环节的检验,同时强化对监管者失职渎职的问责,做到“两头紧”、“两头严”,才能以零容忍的态势严把食品安全关。
  • 提效赋能仪企数字营销全流程!仪信通SaaS工具全解析
    仪器信息网作为专业的科学仪器平台,深度满足用户选仪器、用仪器、学仪器、找工作的需求。深耕科学仪器行业25载,迄今已有 50000+厂商加盟,95%以上主流厂商长期入驻仪信通会员。每年仪器信息网可服务千万级以上的行业用户,平均每月覆盖 240+万用户,与 10+万科研院所,大专院校,工业企业,医疗疾控,检测机构广泛合作,每年为仪信通会员提供总价值 650亿+的销售线索。仪信通会员,深耕科学仪器行业23年,我们的服务宗旨是:为仪器企业数字化营销提效赋能。2024年,仪信通会员正式发布了5款SaaS工具,分别从提升获客量——即时接待——促进转化等方面,帮助仪器企业提升效率,降低成本。一、提升获客量当下经济浪潮中,企业想做好数字化营销,需要持续产出优质的内容,才能持续获取更多用户关注、访问,进而产生询单。因此,提升获客第一步,就是打造优质的店铺(仪信通会员展位)第1款工具:智能体检智能体检工具,可以全面智能检测展位、产品信息质量,及权限使用情况,洞察展位潜在问题。工具采用前沿的分析算法,确保检测结果准确可靠,让您放心使用,无后顾之忧。检测完成后,由资深专家提供高效专业的优化建议,让各企业的优化策略既专业又有效,再也不用担心走弯路。智能体检工具,更多详细内容,点击查看:仪信通智能体检工具,一键开启展位体检新时代!展位店铺优化完以后,除了吸引用户主动来访以外,还要通过一定的活动主动出击,吸引用户。第2款工具:促销试用促销试用工具,可以支持促销折扣、促销买赠、促销满减、试用四种活动类型,满足个性化的活动定制需求。同时,支持PC\APP\WAP端多场景制定专属仪器营销活动。活动过程中,可随时查看用户参与情况,并支持优惠券核销功能,活动效果看得见。然而,多数仪器企业,因人员配置有限、时间紧迫等等因素,往往难以及时在多平台同时发布高质量内容。从而导致,品宣内容无法在仪器信息网的采购用户中快速传播,从而影响整体营销效果。 第3款工具:资讯同步资讯同步工具,可以将仪器企业在微信公众号发布的精彩内容,自动智能同步到仪器信息网厂商展位,不用再次发布,不用再次排版,真正的提升效率,节约时间成本。并且,排版样式与原格式内容基本一致,不会影响整体美观性。资讯同步工具,不仅提升了内容发布效率,实现1秒跨平台发布,同时也提升了内容发布和传播的及时性。因此,这款工具,仪器厂商的市场部,人人值得拥有。资讯同步工具,更多详细内容,点击查看:一秒发布资讯?不妨试试仪信通这款SaaS工具!二、即时接待内容有了,用户来了,是否能够即时响应用户需求,非常关键。往往可能因为漏接一个电话,而损失千万采购大单。而用户的采购咨询,不止发生在工作时间内,非工作时间,在私人时光和工作电话中,如何实现两全其美?第4款工具:智能接听助手智能接听助手工具,是仪信通会员,基于仪智星GPT能力平台,正式推出应用AI模型的SaaS工具之一。工具的核心价值是,非工作时间,帮助仪器厂商为用户提供智能呼入接待服务,接听电话过程中,可以解决或详细记录用户的各种需求和问题,提升用户服务体验,提升非工作时间仪器厂商解决用户需求的能力。智能接听助手工具,更多详细内容,点击查看:下班后的采购需求如何即时响应?不妨试试这款SaaS工具!三、促进转化然而,在用户询单产生以后,一般在仪器企业内容部需要经过市场部——大区销售——销售经理——终端销售,这一流程下来,线索流转周期往往超过2天,直接导致用户跑单。此外,还有一部分厂商,在用表格管理数据,一旦人员发生变动以后,数据往往容易丢失,也很难准确统计各平台的数据效果。第5款工具:SCRM(智能客户关系管理系统)SCRM,是仪信通会员推出的,帮助仪器厂商闭环管理客户信息及销售线索,提升销售线索流转及成单效率的SaaS工具。通过SCRM,仪器厂商可以实现市场推广——获客——线索转化——客户管理等整个采购链条的效果闭环管理。SCRM工具,更多详细内容,点击查看:提效赋能—SaaS工具仪信通SCRM正式发布!以上是仪信通会员2024年新发布的全部SaaS工具,希望这些工具,可以从提升获客量——即时接待——促进转化等方面,真正帮助仪器企业提升效率,降低成本。如何获得以上SaaS工具?仪信通SaaS工具,目前为仪信通Pro会员专享服务。今年是仪器信息网成立25周年,为感谢新老客户对仪信通会员的大力支持,两款SaaS工具:资讯同步工具和智能接听助手,分别免费开放100个试用名额,诚邀各位厂商朋友前来体验。可联系仪器信息网专属营销顾问,或仪信通会员售后团队。联系人:仪信通会员售后团队;联系方式:4008-010-231更多仪信通SaaS工具的功能,可观看下方视频详细了解。
  • 瑞士万通中国提供全氟有机化合物(PFOS、PFOA)解决方案
    全氟有机化合物(PFCs)广泛应用于工业和民用的各个领域。近年来,其代表性化合物&mdash &mdash 全氟辛烷磺酸(PFOS)、全氟辛酸(PFOA)作为持久性有机环境污染物所造成的全球性生态系统污染引起了人们的关注,并逐步成为研究、分析的热点。 瑞士万通(Metrohm)为您提供简单、快捷的技术方案以测定PFOS、PFOA。该方法配置简单,采用液相色谱柱、等度分离、抑制电导检测、直接进样,无需预浓缩或基体消除,从而有效避免回收率差、线性欠佳等问题,特别适合痕量分析。 针对含高浓度二价阳离子的样品, 瑞士万通独有的英蓝(MISP)技术可实现在线去除二价阳离子,操作简便,准确度高。 欢迎致电瑞士万通垂询更多技术细节。
  • Detelogy应用分享:化工产品中全氟辛烷磺酸(PFOS)的测定的前处理方案
    全氟辛烷磺酸类物质(PFOS)作为一种重要的全氟化表面活性剂,因其具有疏油疏水的特性,被广泛用于民用和工业产品生产的多个领域,如我们日常熟悉的一次性饭盒,食品塑料包装袋、不粘锅、纺织品、皮革、地毯、油墨行业、消防泡沫、影像材料和航空液压油等产品中都含有它。在生产和使用过程中,PFOS会释放到环境中,研究发现各种环境介质都有PFOS的存在,是最难降解的污染物之一。同时PFOS还被发现能在生物体中蓄积,并可对肝脏、神经和免疫等系统造成一定的损伤。鉴于PFOS具有POPs的这些特征,2009年,PFOS被列入《关于持久性有机污染物(POPs)的斯德哥尔摩公约》,成为受控POPs之一,PFOS污染已成为全球性的环境污染问题。下面以SN/T 2392-2009《进出口化工产品中全氟辛烷磺酸的测定液相色谱-质谱/质谱法》Detelogy提供化工产品中全氟辛烷磺酸的测定的实验方案实验流程01 石蜡样品称取试样约2g(半固体样品需加入约1g硅藻土,搅拌均匀)。放入iQSE-06智能快速溶剂萃取仪萃取池中,池内样品的上下两层均用专用滤膜保护,轻轻压实至池底部,按下面条件进行提取。提取完毕后,将提取液转移至200mL浓缩管中,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩,用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。02 溶剂性涂料及胶粘剂样品称取2g试样于50mL离心管中,加入30mL甲醇,用MultiVortex多样品涡旋混合器振荡提取30min,再超声提取20min。置离心机中,以4000r/min离心10min。吸取上清液于200mL浓缩管中。重复上述提取步骤,合并提取液,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩。用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。03 润滑油样品称取2g,于50mL离心管中,加入5mL甲醇,用MultiVortex多样品涡旋混合器混匀,置离心机中,4000r/min离心10min。上清液待净化。将C18柱固定于iSPE-864全自动智能固相萃取仪。洗脱液置于FV32Plus全自动高通量智能平行浓缩仪于40℃水浴中旋转浓缩。用甲醇定容至20mL,取1mL溶液经0.2μm滤膜过滤,滤液供LC-MS/MS测定。上述智能方案中使用到的仪器
  • 超高效液相色谱串联质谱法测试20种全氟烷基类化合物测定
    全氟烷基类化合物(PFAS)是一类人造化学物质,是指有机物分子中碳链上连接的氢原子被氟原子全部或部分取代后形成的含有C-F键的化合物。PFAS因其独特的情性、疏水疏油性、及良好的滑动性、拒污性等,自1940年以来被广泛应用于化工、纺织品、纸张和包装、涂料、建筑产品和医疗保健产品等工业和消费品领域。PFAS能够经受很强的热、光照、化学、微生物作用和高等脊椎动物的代谢而不降解,可以随食物链的传递在生物机体内富集和放大至相当高的浓度, PFAS具有诱发肝中毒、发育毒性、免疫毒性、内分泌干扰以及潜在致癌性等毒理效应。HPLC-MS/MS技术具有高的灵敏度选择性和重现性,是目前分析PFAS常用的方法。✓色谱条件色谱柱:Ultimate® UHPLC XB-C18(2.1×150mm,1.8μm)。流动相:A相:5mmol/L乙酸铵水溶液;B相:5mmol/L乙酸铵甲醇溶液;柱温:40℃;流速:0.3mL/min;进样体积:1μL;梯度洗脱程序见下表:✓质谱条件电离模式:ESI-;毛细管电压:1KV;脱溶剂气温度:350℃;脱溶剂气流速:900L/H;锥孔气流速:100L/H;离子源温度:100℃。✓谱图和数据(1)20种混标中各目标物定量离子图(2)20种混标中各目标物色谱结果叠加图全氟烷基化合物主要质谱参数:
  • 我国血站今年将实现核酸检测全覆盖
    福建女童疑似因在医院输血感染艾滋病病毒引起全社会关注,在12日召开的国家卫生计生委每月例行新闻发布会上,国家卫生计生委新闻宣传司司长、新闻发言人毛群安表示对此事深感痛心并称事件正在进一步调查中。他强调,2015年我国要基本实现血站核酸检测全覆盖,使艾滋病窗口期缩短,降低因输血感染疾病的风险。   艾滋病窗口期是指从艾滋病病毒进入人体到能从血液中发现抗体之间的时期,目前为20天左右。在这段时间内,输血检查难以发现病毒。毛群安介绍,我国科研人员一直在致力于研究如何减少窗口期感染风险,研发了通过核酸检测的方法来缩短窗口期,降低包括艾滋病、肝炎等通过输血感染疾病的风险,近年来一直在进行试点推广。根据全国卫生计生工作会议的安排,今年内要基本实现全国血站核酸检测全覆盖。这意味着,按照过去传统的方法可能20天内检测不到的艾滋病病毒,在采用核酸检测办法后,可能10天之后就能够检测到,从而降低感染的风险。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制