当前位置: 仪器信息网 > 行业主题 > >

鼠尾草酚

仪器信息网鼠尾草酚专题为您提供2024年最新鼠尾草酚价格报价、厂家品牌的相关信息, 包括鼠尾草酚参数、型号等,不管是国产,还是进口品牌的鼠尾草酚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合鼠尾草酚相关的耗材配件、试剂标物,还有鼠尾草酚相关的最新资讯、资料,以及鼠尾草酚相关的解决方案。

鼠尾草酚相关的论坛

  • 鼠尾草提取物可以用在其他食品中吗?

    [font=SimSun, STSong, &]当前有一款产品配方中有鼠尾草提取物,但在数据库中未查询到,在论坛中有看到作为食品添加剂,添加在酒类中,不知道是否可以用于其他食品[/font]

  • 【分享】英国就将芡欧鼠尾草籽用于烘焙制品征求意见

    据英国食品安全局官方网站消息,澳大利亚The Chia Company公司已请求该局批准将芡欧鼠尾草籽(chia seed)用于烘焙制品、谷物早餐以及水果、坚果、种子的混合食品。按照欧盟新型食品法规,该公司的相关产品已获得批准,法规要求该公司面包制品中鼠尾草籽的含量不得超过5%。芡欧鼠尾草是一种夏播一年生草本植物,隶属于薄荷科。该植物已在几个拉美国家与澳大利亚进行商业化种植,然而由于其在欧盟并无重大消费历史,因此应被纳入新型食品。附:新型食品是指1997年5月前在欧盟市场无重大消费历史的食品或食品配料。任何一种新型食品在获准进入欧盟市场之前,都必须经过严格的食用安全性评估。在英国,负责开展该项评估工作的部门为新型食品咨询委员会(ACNFP),ACNFP是英国食品标准局所指定的一个独立的科学机构

  • 鼠尾草酸直接结合并抑制ERAP1调节抗原加工和递呈

    [size=15px][font=宋体][color=black]内质网氨基肽酶[i][/i][/color][/font][font=&][color=black]1[/color][/font][font=宋体][color=black]([/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black])的主要功能是在内质网中修剪[/color][/font][font=&][color=black]N[/color][/font][font=宋体][color=black]端延长的肽前体,这是加工和呈递内源性抗原肽的关键步骤,它们被装载到[/color][/font][font=&][color=black]MHC-I[/color][/font][font=宋体][color=black]的凹槽中,在细胞表面呈递,激活[/color][/font][font=&][color=black]CD8+T[/color][/font][font=宋体][color=black]细胞或[/color][/font][font=&][color=black]NK[/color][/font][font=宋体][color=black]细胞,触发相应的免疫反应。[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的过度活性加剧了相关的自身免疫疾病。此外,[/color][/font][font=&][color=black]ERAP1 [/color][/font][font=宋体][color=black]的过度活性会破坏肿瘤新抗原肽,导致肿瘤免疫逃逸。鉴于[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]在自身免疫疾病和肿瘤免疫逃逸中的关键作用,针对[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]功能的抑制将显著减少自身免疫疾病相关的疾病表型,同时也能抑制肿瘤免疫逃逸。因此,开发高效和选择性的[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]抑制剂已成为一个重要的药理学研究方向。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]通过高通量虚拟筛选结合物理筛选方法,从近[/color][/font][font=&][color=black]200000[/color][/font][font=宋体][color=black]种化合物中筛选到一种新的[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]选择性抑制剂[/color][/font][font=&][color=black]—[/color][/font][font=宋体][color=black]鼠尾草酸,并证明其与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]有强烈的直接相互作用,通过竞争性抑制结合[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的活性位点抑制其活性,进而抑制内质网应激,保持正常的抗原呈递功能。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]1[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]抑制剂的筛选[/color][/font][/b][/size] [size=15px][font=宋体][color=black]作者首先通过虚拟筛选从[/color][/font][font=&][color=black]20[/color][/font][font=宋体][color=black]万个小分子化合物库[i][/i]中确定了对接排名靠前的[/color][/font][font=&][color=black]3250[/color][/font][font=宋体][color=black]个化合物,并定制了包含这些化合物的实体库用于酶活抑制效率的筛选,最终确定编号为“[/color][/font][font=&][color=black]3[/color][/font][font=微软雅黑, &][color=black]?[/color][/font][font=&][color=black]23[/color][/font][font=宋体][color=black]”的天然产物鼠尾草酸(广泛存在于唇科植物如迷迭香和鼠尾草)对[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的酶活性抑制效果最佳。此外,鼠尾草酸对其他[/color][/font][font=&][color=black]6[/color][/font][font=宋体][color=black]种氨基肽酶均无明显抑制作用,通过竞争性抑制方式抑制[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]活性[/color][/font][/size][align=center] [/align] [size=15px][b][font=&][color=#0070c0]2[/color][/font][font=宋体][color=#0070c0]、鼠尾草酸能够直接与[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]结合形成稳定的配合物[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]接着,作者通过生物层干涉测量(BLI)[/color][/font][font=宋体][color=black]和细胞热移测定法(CETSA)[/color][/font][font=宋体][color=black]实验确定了鼠尾草酸与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]直接结合,表明鼠尾草酸通过直接结合靶标[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black],进而抑制[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]活性 [/color][/font][/size] [size=15px][b][font=&][color=#0070c0]3[/color][/font][font=宋体][color=#0070c0]、鼠尾草酸与[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]的相互作用模式分析[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]进一步作者研究了鼠尾草酸与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的相互作用模式,通过“[/color][/font][font=&][color=black]ERAP1[/color][/font][font=微软雅黑, &][color=black]?[/color][/font][font=宋体][color=black]鼠尾草酸”对接配合物的最佳结构、相互作用能计算和分子动力学模拟等理论方法以及点突变的实验方法,发现“[/color][/font][font=&][color=black]ERAP1 -[/color][/font][font=宋体][color=black]鼠尾草酸”[/color][/font] [font=宋体][color=black]结合方式非常稳定,鼠尾草酸占据了[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的催化中心,形成稳定的氢键网络,突变实验表明鼠尾草酸对[/color][/font][font=&][color=black]ERAP1 E183A[/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black]Q181A[/color][/font][font=宋体][color=black]突变体的抑制活性显著减少[/color][/font][font=宋体][color=black]。此外,鼠尾草酸与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black]ERAP2[/color][/font][font=宋体][color=black]结合模式存在显著不同 [/color][/font][/size] [size=15px][b][font=&][color=#0070c0]4[/color][/font][font=宋体][color=#0070c0]、鼠尾草酸逆转[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]引起的内质网应激反应[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]可通过过度剪切内源性抗原肽导致一系列免疫反应紊乱,如增加错误折叠[/color][/font][font=&][color=black]HLA[i][/i][/color][/font][font=宋体][color=black]分子组装的效率导致内质网应激。作者发现[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]过表达诱导内质网应激,体现在内质网应激标记蛋白[/color][/font][font=&][color=black]BIP[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]Chop[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]CANX[/color][/font][font=宋体][color=black]显著升高,而鼠尾草酸可抑制[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]引起的内质网应激[/color][/font][font=宋体][color=black]。[/color][/font][font=&][color=black][/color][/font][/size] [align=center][img=图片,1,]data:image/svg+xml,%3C%3Fxml version='1.0' encoding='UTF-8'%3F%3E%3Csvg width='1px' height='1px' viewBox='0 0 1 1' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Ctitle%3E%3C/title%3E%3Cg stroke='none' stroke-width='1' fill='none' fill-rule='evenodd' fill-opacity='0'%3E%3Cg transform='translate(-249.000000, -126.000000)' fill='%23FFFFFF'%3E%3Crect x='249' y='126' width='1' height='1'%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E[/img][/align][align=center] [/align] [size=15px][b][font=&][color=#0070c0]5[/color][/font][font=宋体][color=#0070c0]、鼠尾草酸显著减少[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]引起的内源性抗原[i][/i]加工和递呈途径的中断[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]接着,作者评估了鼠尾草酸在细胞水平对抗原呈递功能的影响。[/color][/font][font=&][color=black]Western blot[/color][/font][font=宋体][color=black]和免疫荧光结果显示,[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]过表达导致内质网和细胞表面[/color][/font][font=&][color=black]HLA[/color][/font][font=宋体][color=black]水平升高,而鼠尾草酸的加入显著地扭转了这一趋势,减少细胞表面显示的额外大量[/color][/font][font=&][color=black]HLA[/color][/font][font=宋体][color=black]分子,以及减少细胞表面错误组装的[/color][/font][font=&][color=black]HLA[/color][/font][font=宋体][color=black]的比例,并保持正常的抗原呈递功能[/color][/font][/size] [align=center][img=图片,1,]data:image/svg+xml,%3C%3Fxml version='1.0' encoding='UTF-8'%3F%3E%3Csvg width='1px' height='1px' viewBox='0 0 1 1' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Ctitle%3E%3C/title%3E%3Cg stroke='none' stroke-width='1' fill='none' fill-rule='evenodd' fill-opacity='0'%3E%3Cg transform='translate(-249.000000, -126.000000)' fill='%23FFFFFF'%3E%3Crect x='249' y='126' width='1' height='1'%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E[/img][/align][align=center] [/align] [size=15px][b][font=宋体][color=#0070c0]总结[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]该研究通过高通量虚拟筛选结合物理筛选方法,从近[/color][/font][font=&][color=black]200,000[/color][/font][font=宋体][color=black]种化合物中筛选出一种结构特异性化合物[/color][/font][font=&][color=black]—[/color][/font][font=宋体][color=black]鼠尾草酸。作者发现鼠尾草酸在蛋白质和细胞水平上与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]有强烈的直接相互作用,通过竞争性抑制结合[/color][/font][font=&][color=black] ERAP1 [/color][/font][font=宋体][color=black]的活性位点,并且对同源蛋白[/color][/font][font=&][color=black] ERAP2 [/color][/font][font=宋体][color=black]以及广泛的相关代表性蛋白酶没有抑制活性,从而实现了有效的蛋白酶选择性[/color][/font][/size]

  • 鼠尾草提取物及其活性成分木犀草素靶向破坏p16-CDK6互作延缓衰老

    [size=16px][size=14px] [/size] [size=14px] [/size] [size=14px]1、HK可延长小鼠的健康寿命和寿命,改善多种组织中的衰老表型[/size] [size=14px] [/size] [size=14px]作者首先探究HK对小鼠寿命的影响,发现饲喂HK显著改善小鼠的毛发、骨骼、握力以及肾脏功能等,且HK小鼠存活率的提高并不是由于对照动物存活率低、饮食或居住条件的差异造成的。为了更好地描述HK对治疗小鼠健康寿命的影响,开发了一个多参数评分,包括在体内评估实验小鼠的皮毛状态,后凸,眼白内障和可触摸肿瘤的存在,结果显示HK增加了小鼠的健康寿命和寿命,并且没有观察到毒性。此外,在老年小鼠中,HK治疗可以减轻一些与年龄相关的体内表型,如毛发脱落,肌肉骨骼脆弱和肾纤维化[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]2、HK 对衰老相关分子通路的影响[/size] [size=14px] [/size] [size=14px]为了评估HK通过影响细胞功能来延长体内寿命的机制,对治疗小鼠的腓肠肌进行RNA-seq。首先在老年和年轻动物的肌肉特异性转录组之间进行了差异表达分析,以获得衰老特征,随后用这一衰老特征研究了HK处理小鼠肌肉中发生的转录扰动,发现在HK处理的小鼠中,这些上调的基因在衰老小鼠中表达下调,反之则表达下调。此外,衰老过程中上调的基因簇在与炎症、免疫激活和衰老或SASP相关的通路标签中过度表达,且与未处理的小鼠相比,HK处理显著降低了小鼠的衰老特征。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]3、HK治疗抑制衰老[/size] [size=14px] [/size] [size=14px]作者通过对肌肉样本进行RT-qPCR,证实了研究结果,HK处理降低了Cdkn1a和Tp53的mRNA表达。鉴于HK下调了肌肉中的衰老相关基因和基因集,探索了HK处理可改善其他器官衰老的特征。通过免疫组化分析发现不同衰老标志物p16, p27,γH2AX,发现这些标记物在衰老过程中上调,而HK处理逆转了这一表型。在肾脏(另一个受衰老影响的组织)中,衰老标记物p16, p27和53BP1在衰老过程中显著上调,而被HK处理减弱。此外,由于SH在体外已显示出对肺成纤维细胞的衰老抑制作用,作者发现hk处理减弱小鼠肺中p27的表达。综上所述,这些结果表明HK处理降低了体内不同组织中由衰老驱动的几种衰老标志物的水平[/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]4、HK 可预防阿霉素引起的衰老和心脏毒性[/size] [size=14px] [/size] [size=14px]Doxo诱导的心脏组织衰老之前已被描述为doxo诱导的心功能障碍的关键病理机制。作者使用亚致死浓度的Doxo处理心肌细胞(iCM)诱导衰老。SA-β-Gal染色显示HK显著阻止iCM衰老,并降低p21 mRNA水平,与未处理细胞相当。此外,HK处理几乎完全恢复了doxo处理的衰老iCM中的QT间期(QTcB)的延长,且单独的HK并不影响对照iCM的电生理特性[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]5、HK活性成分木犀草素可防止应激诱导的衰老[/size] [size=14px] [/size] [size=14px]由于HK是一种含有多种植物成分的植物提取物,作者利用UPLC-QTOF-MS对其主成分进行了鉴定,提取物中的三个主要的分子类别是酚/木脂素,黄酮类和萜烯。作者重点评估了黄酮类化合物—在许多植物性食物中发现的天然化合物,已被证明通过调节细胞衰老和氧化应激具有抗衰老特性。[/size] [size=14px] [/size] [size=14px]首先作者检测了六种最具代表的黄酮类化合物(异槲皮素,山奈酚,川陈皮素,异鼠李素,木犀草素和木犀草素-7-o-葡萄糖醛酸)和两种酚酸(3,4-二咖啡酰奎宁酸和迷香酸),SA-β-Gal染色发现只有木犀草素(Lut)、木犀草素-7-o-葡萄糖醛酸、3,4-二咖啡酰奎宁酸显著减弱UV-B辐射诱导的IMR90成纤维细胞衰老,达到与HK处理相似的水平。因此,作者进一步探索Lut及其衍生物的影响,发现Lut处理以剂量依赖性方式阻止辐射和doxo诱导的衰老,并且在某种程度上类似于HK。综上所述,木犀草素是HK植物复合体中的一种有效成分,改善不同类型的细胞中由不同外部应激源诱导的SA-β-Gal的阳性表达。药代动力学数据证实了Lut在体内的存在。最后在体内细胞衰老的急性模型中同样发现Lut对衰老特征的改善作用[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]6、木犀草素破坏 p16–CDK6 复合物[/size] [size=14px] [/size] [size=14px]鉴于Lut 能够抑制细胞衰老,作者希望描述这种影响背后的分子机制。通过分子对接发现木犀草素可以与CDK6结合,具有很强的亲和力。CDK6调控细胞周期由G1期向S期进展。在损伤细胞条件下和衰老过程中,CDK6的活性被p16的相互作用阻止。鉴于HK提取物及其成分木犀草素延缓衰老的发生,作者推测它与CDK6的结合可能会阻碍CDK6与p16的相互作用。首先,作者生成了一个包含CDK6, p16和木犀草素的复合体的计算机三维模型,预测木犀草素与两种蛋白的界面结合,提示木犀草素与CDK6的存在可能会破坏与p16的相互作用。然后,通过SPR和PLA实验证实木犀草素的存在显著破坏了CDK6与p16的相互作用。总之,这些数据表明木犀草素可以在衰老诱导条件下改变 p16 和 CDK6 之间的相互作用,从而可能改变衰老表型的发展[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]总结[/size] [size=14px] [/size] [size=14px]该研究发现HK可显著延长寿命,改善与年龄相关的组织功能障碍,并调节衰老表型。此外, HK 富含木犀草素,木犀草素通过破坏 p16–CDK6 相互作用从而起到延缓衰老的作用。这些数据为未来研究和开发 HK 作为医疗食品或治疗与年龄相关疾病的药物提供了良好的基础。[/size] [/size]

  • 质谱技术在中草药研究中的应用

    敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Directanalysis in real time)技术;几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理;应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。1.敞开式离子化质谱技术的基本原理、特点和分类AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probeionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced dropletionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等;2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrosprayionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisteddesorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic sprayionization,EASI)、解吸大气压化学电离(Desorption atmosphericpressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrierdischarge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorptionionization,PADI)、大气压辉光放电电离(Atmospheric glow dischargeionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等;3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-电喷雾质谱(Gas chromatographyelectrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrosprayionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penningionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorptionionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorptionelectrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrosprayionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorptionelectrospray ionization,IR-LADESI)、激光电喷雾电离(Laserelectrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spraypost-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorptionelectrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressurechemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysisionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmosphericpressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressuresolids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressurephotoionization,DAPPI)等。建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论,总结的应用详情列于表1。表1.敞开式离子化质谱在中草药研究中的应用敞开式离子化质谱技术中草药分析物文献直接电离DI黄连小檗碱、黄连碱、巴马汀10何首乌2,3,5,4’-四羟基芪-2-O-葡萄糖甙-3”-O-没食子酸酯10南、北五味子五味子醇甲、五味子醇乙10Tissue spray西洋参人参皂苷、氨基酸、二糖11Leaf spray生姜姜辣素12银杏籽银杏毒素12圣罗勒乌索酸、齐墩果酸及其氧化产物13甜叶菊叶甜菊糖苷类14Direct plant spray八角茴香莽草毒素15Field-induced DI长春花长春碱、脱水长春碱16iEESI银杏叶银杏毒素、精氨酸、脯氨酸、蔗糖17Wooden-tip贝母贝母素、精氨酸、蔗糖18Field-induced wooden-tip黄连小檗碱、黄连碱、巴马汀、苹果酸、柠檬酸19甘草甘草酸、甘草素19黄芩黄芩素、黄芩苷、汉黄芩素、汉黄芩苷19苦参苦参素、苦参碱、苦参酮19Al-foil ESI西洋参人参皂苷20附子苯甲酰乌头原碱、次乌头碱、苯甲酰新乌头原碱20Pipette-tip ESI黄连小檗碱、黄连碱、巴马汀21牛蒡子牛蒡苷及其苷元、二糖21莲子心莲心碱、甲基莲心碱21人参人参皂苷21西洋参人参皂苷21三七人参皂苷21北五味子五味子甲素、乙素、五味子酯甲、酯乙21直接解吸电离DESI颠茄莨菪碱、东莨菪碱22毒参毒芹碱类22曼陀罗16种托品烷类生物碱22阿托品23甜叶菊甜菊糖苷类24鼠尾草克罗烷型二萜类25青脆枝喜树碱类26吴茱萸吴茱萸碱、吴茱萸次碱27贯叶连翘金丝桃苷类、糖类23金丝桃苷类、长链脂肪酸类28大麦羟氰苷类29白毛茛小檗碱类30枳壳橙皮甙、柚皮甙、苦橙甙等黄酮类31DAPCI南、北五味子萜品烯类32人参、红参人参皂苷33DCBI黄连黄连素、黄连碱34黄藤黄藤素34鱼腥草别隐品碱、白屈菜红碱、原阿片碱、血根碱34黄柏药根碱34粉防己轮环藤酚碱34两面针两面针碱、白屈菜赤碱34解吸后电离DART颠茄果阿托品、莨菪碱35蒌叶蒌叶酚36芫荽大麻素类37绿薄荷大麻素类37罗勒大麻素类37乌头属药材乌头碱类生物碱38曼陀罗籽托品碱、莨菪碱39萝芙木单萜吲哚类生物碱40姜黄姜黄素类41荜澄茄果荜澄茄油烯42极细当归藁苯内酯43朝鲜当归日本前胡素、日本前胡醇43,44,51白芷白当归脑43川芎川芎内酯43槟榔子槟榔碱、槟榔次碱45延胡索延胡索碱45贝母贝母素、去氢贝母碱45钩藤钩藤碱45黄芩黄芩素、黄芩苷、汉黄芩素、汉黄芩苷45人参人参皂苷类45丁公藤东莨菪内酯46制川乌单酯和双酯型二萜类乌头碱47八角茴香莽草毒素48桑叶脱氧野尻霉素49厚叶岩白菜熊果素、岩白菜素、鞣花酸、没食子酸50吴茱萸吴茱萸碱、吴茱萸次碱51北五味子五味子素、戈米辛51,52Nano-EESI人参人参皂苷53LAESI孔雀草花青素、山奈酚等黄酮类54鼠尾草萜类55DAPPI鼠尾草叶鼠尾草酸及其衍生物56LAAPPI鼠尾草萜类55枳壳川皮苷、黄酮醇类、沉香醇57PALDI黄芩黄芩素、汉黄芩素582.1直接电离离子源直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leafspray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionizationmass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析是将[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分

  • 11种奇妙的化学物质

    11种奇妙的化学物质

    虽然大自然可以生成各种各样的化学物质,可以治疗癌症,诱发奇异的幻觉,但并不能对其进行“批量生产”。制药企业和医学研究人员需要过于罕见或难以从野外获得的东西时,他们往往会求助于化学家。以下是科学家在实验室重造的11种最不同寻常的化学物质。 1.抗击禽流感的莽草酸http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374710_01_2961690_3.png科学家在八角(香料)中发现了制造达菲的物质——莽草酸http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374727_01_2961690_3.png2005年,当治疗禽流感的药物达菲(tamiflu)出现延期交货时,有人担心这种遏制禽流感扩散的药物会不够,人们由此人心惶惶。然而,研究人员后来在中国八角(香料)中发现了制造达菲的物质——莽草酸,导致这种材料供不应求。禽流感危机发生前几年,约翰·帕拉克(John Pawlak)和格伦·波奇托尔德(Glenn Berchtold)在麻省理工学院的实验室中成功制成这种宝贵的酸性物质。尽管他们的方法给人留下深刻印象,但在商业上却行不通。幸运的是,过去几年,一些实验室已经找到了不用任何莽草酸制造达菲的方法。时间将告诉我们医药公司是否会采纳这些技术。  2.白藜芦醇可能有助延年益寿http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374752_01_2961690_3.png在葡萄皮中发现的化学物质——白藜芦醇http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374775_01_2961690_3.png适度喝红葡萄酒被认为对人体有许多益处,但科学家一直不确切清楚其中的原因。有些科学家认为,在葡萄皮中发现的化学物质——白藜芦醇(resveratrol)能使人体仿佛如坚持低热量饮食一般运转。还有研究人员认为,红葡萄酒的健康益处源自抗氧化剂或原花青素。不过,任何可以延年益寿的物质定会引起人们广泛兴趣。因此,一些科学家一直在培育白藜芦醇和类似物质,因为他们认为这些物质具有延年益寿的功效。  3.四氢大麻酚http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374803_01_2961690_3.png药用大麻http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374821_01_2961690_3.png对于一些疾病来说,医生选用的治疗方法是药用大麻。但大麻的活性成分四氢大麻酚(THC)很难提取。许多研究人员成功制成了这种物质,但他们的成果常常遭受化学分子的污染,令其与真正的四氢大麻酚稍有不同,不具备与四氢大麻酚相同功效。斯坦福大学研究人员巴里·特罗斯特和卡林蒂·多格拉(Kalindi Dogra)通过采用钼催化剂制造四氢大麻酚,可以避免上述问题。他们最终成功制出这种物质。特罗斯特和多格拉的研究得到了默克公司和美国国立卫生研究院的资助,研究结果证明了钼催化剂的效力,但迄今,种植大麻仍是制造四氢大麻酚的最有效方法。  4.雪卡毒素http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374843_01_2961690_3.png雪卡毒素存在于热带掠食性鱼类体内http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374860_01_2961690_3.png如果食用了有毒的鱼,你会开始注意到,冷的东西给人炙热般的感觉,热的东西给人冰凉的感觉。这种不同寻常的病症是由雪卡毒素引起的。雪卡毒素可能是地球上最奇特的毒物。雪卡毒素是一种个头大的分子,由细菌生成,存在于热带掠食性鱼类(如红鲷鱼)的肉中。由于雪卡毒素的大小和复杂性,有机化学家将制成雪卡毒素的挑战当作一种乐趣,但同样重要的是,他们身边应该有充足的雪卡毒素可用,以便试验用于治疗疾病。幸运的是,日本大阪大学研究人员井上雅之和平间智广(Masahiro Hirama)成功发明了人造雪卡毒素。 5.天然迷幻剂鼠尾草http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374882_01_2961690_3.png“迷幻”鼠尾草http://ng1.17img.cn/bbsfiles/images/2017/10/2015122222374904_01_2961690_3.pngSalvinorin A“迷幻”鼠尾草比其他任何一类天然迷幻剂都有效力,可能还具有抗抑郁功效。鼠尾草所含的活性成分Salvinorin A可以诱发一种称为“kappa型阿片受体”的蛋白,扰乱你的思想。研究表明,kappa型阿片受体会影响情绪、食欲、疼痛和上瘾行为。“迷幻”鼠尾草的应用目前尚不清楚,但有一定毋庸置疑,那就是这种药物一定极富前景。研究人员一直在对“迷幻”鼠尾草进行人工合成。日本新泻大学研究人员在一个20步的进程中,从零开始制造这种药物。由美国俄荷华大学科学家托马斯·普利辛扎诺(Thomas Prisinzano)领导的另一个研究小组创新性地提出了生成类似化学分子的方法,这种化学分子可被用以研究神经系统。每种化学物质对大脑的影响都稍有不同,研究人员通过对动物实验,已经对Salvinorin A的未来用途有了深入了解。  6.帮助揭开癌症工作机制的鬼笔毒环肽[c

  • 坛墨质检-国家标准物质目录(275)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。 BW5407芦荟苷对照品,有报告HPLC≥98%BW58106-生物蝶呤对照品,有报告HPLC≥98%BW5813骨化三醇对照品,有报告HPLC≥98%BW5814辣椒素对照品,有报告HPLC≥98%BW5423鼠尾草酚: 鼠尾草苦内脂对照品,有报告HPLC≥98%BW5131鼠尾草酸对照品,有报告HPLC≥98%BW5815栗精胺对照品,有报告HPLC≥98%BW5816三尖杉宁碱对照品,有报告HPLC≥98%BW5395牡荆素对照品,有报告HPLC≥98%BW5827桔皮素对照品,有报告HPLC≥98%BW5420小白菊内酯对照品,有报告HPLC≥98%BW5487羽扇豆醇对照品,有报告HPLC≥98%BW5429石杉碱甲对照品,有报告HPLC≥98%BW5097高良姜素对照品,有报告HPLC≥98%BW6887辛夷脂素HPLC≥98%BW5428豆腐果苷对照品,有报告HPLC≥98%BW5709千金藤素;头花千金藤碱对照品,有报告HPLC≥98%BW5897次乌头碱对照品,有报告HPLC≥98%BW5635新乌头碱/中乌头碱,对照品,有报告HPLC≥98%BW5899瑟丹内酯对照品,有报告HPLC≥98%BW5915番茄红素对照品,有报告HPLC≥98%BW5472异槲皮苷对照品,有报告HPLC≥98%BW5437圣草酚;毛纲草酚对照品,有报告HPLC≥98%BW5917(标定)矢车菊素-3-O-半乳糖苷,花青素对照品,有报告HPLC≥98%BW5920多西他赛;多烯紫杉醇对照品,有报告HPLC≥98%BW5496异甘草素对照品,有报告HPLC≥98%BW5540豆甾醇对照品,有报告HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 天然油成分求助

    求助Beta thujone,CAS:471-15-8.含量较大的有那些天然油?比如:艾蒿油,鼠尾草油,柏木叶油。谢谢!

  • 坛墨质检-国家标准物质目录(126)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。BW5410 白术内酯III; 苍术内酯III对照品,有报告 HPLC≥98% BW5412 根皮素(三羟苯酚丙酮)对照品,有报告 HPLC≥98% BW5413 胆红素对照品,有报告 HPLC≥98% BW5419 瑞香素; 祖师麻甲素对照品,有报告 HPLC≥98% BW5420 小白菊内酯对照品,有报告 HPLC≥98% BW5421 重楼皂苷I;重楼皂甙I对照品,有报告 HPLC≥98% BW5422 重楼皂苷II;重楼皂甙II对照品,有报告 HPLC≥98% BW5423 鼠尾草酚: 鼠尾草苦内脂对照品,有报告 HPLC≥98% BW5424 重楼皂苷VI;重楼皂甙VI对照品,有报告 HPLC≥98% BW5425 重楼皂苷VII;重楼皂苷VII对照品,有报告 HPLC≥98% BW5426 乌金甙; 乌金苷对照品,有报告 HPLC≥98% BW5427 獐芽菜苷,当药苷对照品,有报告 HPLC≥98% BW5428 豆腐果苷对照品,有报告 HPLC≥98% BW5429 石杉碱甲对照品,有报告 HPLC≥98% BW5430 川陈皮素;川皮亭;蜜橘黄素对照品,有报告 HPLC≥98% BW5431 告达亭甙元; 告达亭苷元对照品,有报告 HPLC≥98% BW5432 青阳参甙元A; 青阳参苷元A对照品,有报告 HPLC≥98% BW5433 青阳参苷元B对照品,有报告 HPLC≥98% BW5434 补骨脂酚对照品,有报告 HPLC≥98% BW5436 圣草次苷对照品,有报告 HPLC≥98% BW5437 圣草酚;毛纲草酚对照品,有报告 HPLC≥98% BW5438 草乌甲素对照品,有报告 HPLC≥98% BW5440 亚麻木酚素对照品,有报告 HPLC≥98% BW5441 α-倒捻子素; 曼果斯廷对照品,有报告 HPLC≥98% BW5444 菊苣酸对照品,有报告 HPLC≥98% BW5446 地肤子皂苷Ic对照品,有报告 HPLC≥98% BW5447 大蓟苷: 柳穿鱼叶苷对照品,有报告 HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 【求助】稻草等纤维状粉末怎么做红外分析?

    各位兄弟姐妹叔伯阿姨: 最近做稻草粉末及其改性后材料的红外分析。管理仪器的老师说这种不能磨很细压片,直接用那个反射的检测器,就是只有一个钝头的探头压在粉末上就可以了。我不是很懂红外分析,做好之后发现和文献报道的图形不一样。请教一下几个问题:1. 是不是我的稻草粉末要很细的,我的粒径大概在0.2-0.9mm, 有的干脆就很黏连在一起。因此这种红外测试对粒度有什么要求?2. 通常 纤维状的 粉末是怎么做红外分析的,之前就知道压片,反正不是很懂。谢谢大家,为检测改性效果,急需红外辅证,请大家帮忙解答。

  • 【求助】急,,求助:抗氧化剂问题!!!

    葡萄籽提取物:0.1~0.5g/天 是这个使用剂量吗??下面未能查到,是不是没有限制啊?请高手帮忙下,谢谢绿茶提取物:?迷迭香提取物:(迷迭香酸,鼠尾草酸)?注:我是用在宠物食品中的,不知道宠物食品添加剂和人食品添加剂剂量还是一样啊?

  • 【求助】急,,求助:抗氧化剂问题!!!

    葡萄籽提取物:0.1~0.5g/天 是这个使用剂量吗??下面未能查到,是不是没有限制啊?请高手帮忙下,谢谢绿茶提取物:?迷迭香提取物:(迷迭香酸,鼠尾草酸)?注:我是用在宠物食品中的,不知道宠物食品添加剂和人食品添加剂剂量还是一样啊?

  • 【讨论】根治草原鼠患不能只用“鼠药”

    [b]要有效遏制鼠害,必须解决超载过牧,这就要运用生态智慧,调整人与自然的关系,杜绝对自然的过度索取[/b]  提及草原,人们常会想到那句著名的古诗:“天苍苍,野茫茫,风吹草低见牛羊。”如今,这样的风景已很难再觅。  5月的内蒙古草原,正遭受着一场严重的鼠害:草原上满地的鼠洞,让骏马难再奔驰;刚刚返青的牧草,被老鼠大肆吞噬;绿色的草地正在变成黄褐色的荒漠。据统计,内蒙古草原鼠害危害面积超过9800万亩。  当地人说鼠害猖獗是因为草原退化,可草原退化又是因为什么呢?正如生态学所揭示的,除了气候等自然因素,主因还是人类无节制的活动——既有历史上的开垦农田,也有近年来的滥捕草原动物,还有长期的超载过牧。  草原也是人类的家园,怎么能不让人活动?关键要节制,要敬畏自然,尊重草原生态系统的规律。  内蒙古草原上,千百年来流传着一段古老的对话。孩子问母亲:“妈妈,我们为什么要不停地搬迁?”母亲说:“孩子,我们要是固定在一处,大地母亲就会疼痛,我们不停地搬迁,就像血液在流动,大地母亲就会感到舒服。”这一对话让我们看到游牧和草原生态之间那种相互依存的辩证关系。  草原生态既是美好的,也是脆弱的。在草原上,牲畜对草场的作用表现在采食、踩踏和施肥三个方面。适度的采食、踩踏、施肥可以松土并促进牧草的生长,但草原经不起牲畜长时间的频繁踩踏。所谓不能竭泽而渔,我们可以利用草原,但也要给草原以休养生息的机会。  内蒙古的浑善达克沙地是京津沙尘暴的策源地之一,那里在历史上曾经水草丰美,有“塞外江南”之美誉。上世纪80年代以后,牧民的牲畜成倍增长,过度放牧导致沙化程度愈演愈烈。9年前,中科院专家试验性地在已严重沙化的4万亩草原上禁耕、禁牧,让其自然恢复,牧民养畜所需饲草在小范围的人工高效地上生长。如今,这片草原重现生机,野兔、狐狸、大雁、灰鹤、狼等野生动物也渐次回归。  我们并不敢说,4万亩草原上的做法能够复制到所有草原,可它至少说明了一个问题,解决草原退化的问题,需要一种系统的眼光,而不能头痛医头,脚痛医脚。  当前内蒙古的鼠患,令人揪心,为解燃眉之急,投入更多的资金,施用技术含量更高的药物,非常必要;把鼠情预测预报与防治体系建设纳入国家规划,对于遏制年复一年的鼠害也是意义重大。然而,仅仅这些,似乎还难以彻底消除造成鼠害的主因——超载过牧。  解决超载过牧,根治草原鼠患,既要有应急之举,更应该运用生态智慧,调整人与自然的关系,杜绝对自然的过度索取。应从生态系统的整体恢复着眼,完善现行草原承包制度,选择合适的技术路线,科学管理和利用草原。草原之外的人也要深刻认识到,自己的衣食住行在哪些环节过度消耗了资源,造成了污染,从而克制过度的欲望,从身边做起,造福生态。

  • 【求助】急,,求助:抗氧化剂问题!!!

    葡萄籽提取物:0.1~0.5g/天 是这个使用剂量吗??下面未能查到,是不是没有限制啊?请高手帮忙下,谢谢绿茶提取物:?迷迭香提取物:(迷迭香酸,鼠尾草酸)?注:我是用在宠物食品中的,不知道宠物食品添加剂和人食品添加剂剂量还是一样啊?

  • 坛墨质检-国家标准物质目录(521)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。 产品编号 产品名称 标准值 BW5797喹啉酸对照品,有报告HPLC≥98%BW5802(+)-脱落酸对照品,有报告HPLC≥98%BW580310-脱乙酰基巴卡丁III;10-脱乙酰浆果赤霉素III对照品,有报告HPLC≥98%BW5804阿克拉霉素对照品,有报告HPLC≥98%BW5805放线菌素D对照品,有报告HPLC≥98%BW5807茴香霉素对照品,有报告HPLC≥98%BW5407芦荟苷对照品,有报告HPLC≥98%BW58106-生物蝶呤对照品,有报告HPLC≥98%BW5813骨化三醇对照品,有报告HPLC≥98%BW5814辣椒素对照品,有报告HPLC≥98%BW5423鼠尾草酚: 鼠尾草苦内脂对照品,有报告HPLC≥98%BW5131鼠尾草酸对照品,有报告HPLC≥98%BW5815栗精胺对照品,有报告HPLC≥98%BW5816三尖杉宁碱对照品,有报告HPLC≥98%BW5395牡荆素对照品,有报告HPLC≥98%BW5827桔皮素对照品,有报告HPLC≥98%BW5420小白菊内酯对照品,有报告HPLC≥98%BW5487羽扇豆醇对照品,有报告HPLC≥98%BW5429石杉碱甲对照品,有报告HPLC≥98%BW5097高良姜素对照品,有报告HPLC≥98%BW6887辛夷脂素HPLC≥98%BW5428豆腐果苷对照品,有报告HPLC≥98%BW5709千金藤素;头花千金藤碱对照品,有报告HPLC≥98%BW5897次乌头碱对照品,有报告HPLC≥98%BW5635新乌头碱/中乌头碱,对照品,有报告HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 敞开式离子化质谱技术在中草药研究中的应用(二)

    ⒉敞开式离子化质谱技术在中草药研究中的应用建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论。⑴直接电离离子源直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析是将[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。⑵直接解吸电离离子源自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。⑶解吸后电离离子源DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]或[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。⑷在中草药质量评价和质量控制中的应用随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。⑸本实验室的研究工作中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。①中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 ②中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 ③对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 ④DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 ⑤开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。⒊总结与展望中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。

  • 敞开式离子化质谱技术在中草药研究中的应用(二)

    ⒉敞开式离子化质谱技术在中草药研究中的应用建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论。⑴直接电离离子源直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析是将[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。⑵直接解吸电离离子源自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。⑶解吸后电离离子源DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]或[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。⑷在中草药质量评价和质量控制中的应用随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。⑸本实验室的研究工作中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。①中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 ②中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 ③对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 ④DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 ⑤开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。⒊总结与展望中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。

  • 比利时正式发布双酚A禁令法律草案通知

    依据98/34/EC指令的要求,欧盟成员国在将新的技术法规草案和快速社会服务措施写进国家法案前,必须正式告知委员会和其他公众。   3月1日,比利时政府正式发布双酚A禁令法律草案通知,延续1月份比利时参议院投票通过的相关议案:于2013年1月1日起禁止含有双酚A的供3岁以下儿童使用的食品容器(含婴儿奶瓶)的生产制造、置于市场销售。指令向委员会和公众正式通告时间为2012.3.1~2012.6.4。  2011年3月1日,欧盟委员会从当天起禁止含双酚A的婴幼儿奶瓶,从6月1日起成员国禁止进口此类奶瓶。两相对比,比利时的双酚A禁令则将禁止产品类别扩大到3岁以下儿童使用的食品容器,监管范围更大。与之相配合的,双酚A禁令将置于下列指令之下:·(EC) No. 315/93 食品污染物条例;·2000/13/EC食品的标签、展示和宣传指令;·93/43/EEC食品卫生条例;·1935/2004/EC食品接触材料安全条例  通知发出后,即有绿色环保组织呼吁比利时应该将双酚A禁令从2014年起扩大到所有的食品接触材料。资料表明,双酚A属低毒性化合物。动物实验发现双酚A有模拟雌激素的效果,即使很低的剂量也能使动物产生雌性早熟、精子数下降、前列腺增生等作用。此外,双酚A具有一定的胚胎毒性和致畸性,可明显增加动物卵巢癌、前列腺癌、白血病等癌症的发生。双酚A的“江湖封杀令”愈来愈烈,瑞旭技术再一次提醒相关企业:1. 从源头上控制双酚A的使用,加强原料控制,提高自我监督意识;2. 积极研发新技术,寻找替代原料;3. 与国外客户保持良好的沟通,掌握出口目的地法规要求并及时关注国外相关法规动态,提前做好应对。

  • 怎么吃肉最防癌?13种食物新搭配

    导读:吃多种水果的健康益处会比单一吃一种水果的益处大,研究发现,混合水果中的抗氧化物的功效比单一水果中的抗氧化物功效强。每天多吃一些水果比购买昂贵的补充剂的效用高很多。怎么吃肉最防癌(资料图)1、红色肉类加迷迭香有助于减少引起癌症的异环胺最新研究发现,当烧烤食物被加热到190℃到204℃(375℉到400℉)时,香草迷迭香中的抗氧化物迷迭香酸和鼠尾草酸有助于减少引起癌症的异环胺的数量,因为香草中的抗氧化物可以吸收肉中的有害自由基。

  • 紫露草微核实验

    一、目的和要求(1) 学习紫露草的生物特性、栽培管理与紫露草微核实验的原理及其操作方法。(2) 掌握监测与评价多种污染理化因子对紫露草花粉母细胞遗传毒性的生物技术。二、原理紫露草(Tradescantia)是一种多年生草本植物,属鸭拓科、紫露草属,易无性繁殖,分生多,减数分裂期具有高度同步性。在减数分裂时,其花粉母细胞染色体比有丝分裂中的染色体对污染物更为敏感,且染色体在各时期的敏感性不同,在处理大量同步分裂的敏感花粉母细胞时,在四分体中能观察到染色体损伤断裂而形成的微核。其自然本底微核率较低,微核形成过程短,适宜用于监测。紫露草微核实验技术是利用花粉母细胞减数分裂中的染色体作为受击目标,以四分体内所形成的微核频率为监测指标。在花粉母细胞减数分裂早期,受到污染环境中的各种诱变理化因子的作用,染色体发生断裂,断裂的染色体片段由于丧失着丝点,不能移向细胞两极,在四分体时期形成。.5-3. 0μcm的微核,游离在四分体胞质中。该微核出现的频率可反映出环境污染物对真核生物的生殖细胞染色体损害的程度。三、仪器与试剂(1) 显微镜及其照相设备。(2)计数器。(3)卡诺氏液。无水乙醇,冰醋酸=3,1(现用现配)。(4) 70%乙醇。(5) lmol/L盐酸。(6) lmol/L氢氧化钠溶液。(7) 1%乙酸洋红。将100mL 45%冰醋酸水溶液倾入250mL锥形瓶中,文火煮沸,缓缓投入1. 00g洋红粉末,煮沸1.2h,在该溶液中悬吊一小铁钉,煮沸1. 5min取出,或当溶液冷却后加入1-2滴乙酸铁溶液,使溶液中含有适量铁离子,以便增加染色效果。溶液经过滤后分装于棕色试剂瓶中保存于暗处、备用。(8)待测物。视需要而定。(9)实验生物。紫露草(Tradescantia paludosa Clone # 3),中国海洋大学从美国引进由江苏省植物研究所提供。无性繁殖株。地栽或盆栽,最适宜温度21-26℃,夜间16℃左右,湿度60%-80%,光照强度在1800-2000lx,每日光照14h,施加粪肥或饼肥,忌用化肥,以保证紫露草持续开花,自然突变本底低。四、实验步骤1.花序采集每个处理组至少采15个花序,随机采集生长健壮的紫露草花枝,其花序顶端开的第一朵花一般有10-13个花蕾,花序下带有2片叶子,花枝长5-8cm,置于无污染自来水中,备用。2.调节代浏物pH用lmol/L盐酸或lmol/L氢氧化钠溶液调节待测物的pH至5.5-8.5。3.待浏物浓度的选择采用等间距对数浓度或百分浓度,经预试后确定5^-6个浓度组,并设一阴性对照组。4.花序处理将配制好的各浓度待测物溶液分别盛入500mL烧杯中并进行编号。烧杯上蒙以带孔的塑料膜或带孔塑料板,每个处理组和对照组各插入15个花枝,进行培养处理,处理时间视待测物的毒性和pH而定,1-6h。在人工或自然光源下培养处理一般需6h。每个处理组与对照组需设2--3个平行样。5.恢复培养更换处理花序杯内的自来水,在常温和人工光照下连续恢复培养24h。6.固定及保存将恢复培养后的花序剪下,去掉叶和花梗,浸在新配制的卡诺氏液中固定24h,再将花序移入70%乙醇中,于4℃冰箱保存,备用。若需长期保存,每月需要换1次70%的乙醇。7.压片与染色取一固定好的花序,选择从顶端向下数第7一8个花蕾,用解剖刀把花蕾从中央劈开,用解剖针和镊子打开花蕾,剥出花药,置于载玻片上,滴1滴乙酸洋红,稍加挤压,置100倍显微镜下观察,若大部分为四分体,则充分捣碎花药,去除花粉囊等杂物,小心盖上盖玻片,在酒精灯火焰上过5-6个来回,盖上多层吸水纸,用拇指轻轻挤压盖玻片,置显微镜下观察计数。如染色过深,则在一端滴1滴45%乙酸溶液,在另一端用吸水纸吸引掉,使之稍加褪色。如染色过浅,可在盖玻片的一端滴1滴乙酸洋红,在另一端用吸水纸吸引过多的染色液。8.观察与计数(1) 检片时采用双盲片法,即封死原制片的样本号后,打乱原制片的顺序,重新编码。(2) 在低倍镜下观察选择四分体细胞分布均匀,染色好的区域,再在400倍显微镜下观察,以一个四分体为一个检视单位,进行计数。为避免重复,以“Z”形路线移动观片。每张制片至少检视300个四分体作为一个样品群体。记录含有1、2、3、4、5个微核的四分体数。(3) 形态观察。早期四分体胞质中的微核,其直径为0. 5~3 μm,呈圆形或椭圆形分布在主核周围,着色与主核一致,进行显微照相。(4) 揭开加封码,记录真实编号,待结果分析。五、数据处理(1) 微核形态观察计数。(2) 按公式计数微核率。微核率=(微核总数/四分体总数)100%(3) 处理与评价。根据记录的所有样品群体的结果,计算其平均值、标准偏差和标准误差,以平均值差的标准误差公式,来鉴别处理组和对照组间差别的显著性。Sd=√(SEt)2+(SEC)2式中:Sd——平均值差的标准误差值;SEt——处理组的标准误差值;SEc——对照组的标准误差值。当平均值差等于或大于平均值差的标准误差值2倍时,表示处理组的平均值与对照组平均值差异显著((5%以下的概率),从而评价大气或水体是否受到诱变剂污染及污染水平。六、注意事项(1) 必须选用早期四分体时期的花蕾进行压片,这是实验成功的关键。(2) 乙酸洋红制备过程中要用文火煮沸,加铁离子切忌过量,掌握悬吊铁钉的煮沸时间。(3)严格控制染毒、恢复、固定的时间。(4) 平均微核率为3个样品群体的平均值。(5) 实验材料的本底微核率不得超过10%,如同一处理组的重复实验微核率相差2%以上,应重做。【关键词】紫露草 微核实验

  • 【分享】中草药粉碎机的五大特点

    中草药粉碎机是利用粉碎刀片高速旋转撞击来实现干性物料的一般性粉碎。中草药粉碎机是由粉碎室、粉碎刀片、高速电机等组成。中草药粉碎机物料直接放入粉碎室中,旋紧粉碎室盖,开机1-3分钟便可完成粉碎。  中草药粉碎机主要用于医药、食品、化工、农业等范围。  其特点:  (1)中草药粉碎机细度高,速度快,该系列机型均采用小型超高速电机,强劲的动力保证了粉碎细度和速度。  (2)中草药粉碎机体积小,重量轻,结构紧凑,无震动,无需固定,从而保证了可在任意场合随意使用。  (3)中草药粉碎机安全性能好,无粉尘,损耗小,清理简便,由于该系列机型属间歇式粉碎,所以其粉碎室均为全密闭的不锈钢罐结构,保证了以上性能的实现。  (4)中草药粉碎机适用范围广泛,植物性纤维、高硬度、高韧性物料,如中药材,无机物,矿物质等均能达到良好的粉碎效果。  (5)中草药粉碎机操控性能好,细度可任意调节,由于随时都可进行开、关机操作,所以通过控制粉碎时间的长短来达到控制细度的目的。

  • 草根能力比对之41期:PVC中双酚A成分的测定

    [align=center][img=,513,126]http://ng1.17img.cn/bbsfiles/images/2017/06/201706120922_01_3224499_3.jpg[/img][/align][align=left]序:自2010年以来,我们已经组织了40期草根比对,此活动纯属交流切磋之使用。我们希望更多的版友参与进来, 共同学习共同提高我们的仪器分析行业的水平。如果有想组织的,请与牛牛0322联系(站短或者QQ2850501193)[/align][align=center]草根能力比对之41期:[/align][align=center][b]PVC中双酚A成分的测定[/b][/align][align=center] 首先感谢[color=#ff0000]广州佳途科技股份有限公司(CATO标准品)[/color]为本次活动提供样品,本单位是[color=#ff0000]一家专门生产标准品的公司,已为全世界80多个国家和地区的实验室提供上万种标准品。[/color][/align][align=center][b]主要产品:[/b]药物杂质对照品、工业标准品、食品安全检测标准品、植物提取标准品等。[/align][align=center] [b]产品服务领域:[/b]食品分析、药物分析、环境分析等。[/align][align=center]第41期草根能力比主要是针对PVC中双酚A成分的含量分析测定[/align][align=left][b]样品信息[/b][/align][table=577][tr][td][b]样品名称[/b][/td][td][b]PVC中双酚A[/b][/td][/tr][tr][td][b]检测项[/b][/td][td][b][b]双酚A[/b][/b][/td][/tr][tr][td][b]标准范围[/b][/td][td][b]50-100ppm[/b][/td][/tr][tr][td][b]检测方法/仪器[/b][/td][td][b][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url][/b][/td][/tr][tr][td][b]提供单位[/b][/td][td][color=#ff0000]广州佳途科技股份有限公司[/color][/td][/tr][/table][align=center][url=http://ng1.17img.cn/bbsfiles/files/2017/08/201708021048_01_3224499_3.docx?n=CATO%e8%8d%89%e6%a0%b9%e6%af%94%e5%af%b9%e6%8a%a5%e5%90%8d%e8%a1%a8.docx&tocken=01be120e972faf43ff119171b94bf1a2×=1502354515][img=,230,60]http://ng1.17img.cn/bbsfiles/images/2016/10/201610241639_614890_2908983_3.jpg[/img][/url][/align]请下载报名表填写后,发送到指定邮箱 [email=caogenbidui2@163.com][color=#ff0000]caogenbidui2@163.com。[/color][/email]欢迎大家报名参加,检验自己实验室的分析水平。[b][color=red]本次活动免费邮寄样品样品。[/color][/b]参与人员费用:[b][color=red]免费[/color][/b]参与人员名额:50份 数量有限哦报名邮件主题:草根能力比对之41期+报名者论坛ID报名时间:[b][color=red]即日起 至 2017年8月15日[/color][/b]样品发放时间:2017年8月16日[color=red]结果反馈时间:2017年9月3日止[/color][align=left][color=red]注:报名参与者请添加微信:xyz4077(小叶子),[b][color=#3333ff]备注:草根比对[/color][/b][/color][/align][align=left][color=red][b][color=#3333ff][img=,160,160]http://ng1.17img.cn/bbsfiles/images/2017/06/201706121020_01_3224499_3.jpg[/img][/color][/b][/color][/align][align=left][color=red][b][color=#3333ff][b]在本期活动报名结束后[/b],会将参与者、本期活动的样品提供者及组织者加入本次活动微信群,促进大家的结果交流,同时,还会发放不定金额的[b][color=red]拼手气红包,[/color][/b]能获得多少,看各自运气啦~~热烈欢迎同行及各类有相关检测能力的实验室参加。因为样品数量有限,想参加的同学抓紧时间报名了。参加的同学都留个脚印,我们会不断更新帖子,个人论坛都会给您提醒。参加比对注意事项[color=red]特别说明:[/color]1、由于本次活动采取免费邮寄样品,免费提供样品的形式,欢迎大家积极参与,谢谢合作!报名参加比对提交报告结果的并发原创与大家共享分析过程的,有[b][color=red]100[/color][color=red]积分[/color][/b]奖励,最后汇总大家的原创分享,评选出本期活动的优秀者一名,论坛及合作单位颁发[b][color=red]优秀证书[/color][/b]及[b][color=red]精美礼品[/color][/b]。[b]注:所有奖励及惩罚将在活动结束后统一发放。[/b]2、以往有个别报名者未与实验室其他同事沟通,报名后拿到样品,未能在规定的时间内报出结果,浪费样品和大家的时间和精力,也失去了一次大家交流的机会,对于报名不报结果的实验室,不予奖励且会[b][color=red]扣除100积分[/color][/b]给予处罚,希望大家珍惜每次报名的机会。累计三次报名后,未报出结果的版友,将终身不得参与本活动。3、申请表填写:请认真填写申请表,特别是地址和联系方式,以方便快递及尽快接收到样品。4、样品邮寄:(1)本次比对纯属相互交流、学习,免费提供样品。报名表一定要填写完整正确,组织方会根据报名表进行快递单填写。(2)样品邮寄时间:2017年8月16日,报名后请大家保持手机通畅,方便接收样品。(3)[color=red]样品收到后请反馈样品已经收到:[/color]发邮件至[email=caogenbidui2@163.com][b][color=#0081D7]caogenbidui2@163.com[/color][/b][/email]5、检测结果反馈:1) 样品结果反馈时间:请于[color=red]2017[/color][color=red]年9月3日[/color]前将结果报告单以邮件的形式发送至([b]caogenbidui2@163.com[/b])2) 本次比对纯属技术交流自查自纠,请认真对待不要对结果,比对结果不会对实验室产生负面影响。3) 请在能力验证版面([url=http://bbs.instrument.com.cn/forum_529.htm][color=#0081D7][/color][/url][color=#0081D7][url]http://bbs.instrument.com.cn/forum_529.htm[/url][/color])发样品操作过程的话题,凡参与者可获得最多[b]100积分[/b]的奖励,[b][color=red]优秀者还可获得仪器信息网提供的精美礼品一份[/color][/b]。对于不报告者浪费比对样品的我们也要扣除100积分。6、检测结果汇总报告:本人会尽快将大家的结果以编号的形式进行汇总统计,并保证不会泄露大家的联系方式,请放心!如果有版友想策划草根能力比对,能提供测试样品,请与牛牛0322联系([email=594695627@qq.com][color=#0081D7][/color][/email]2850501193)[b]草根能力比对组织申请表:[/b][color=#0081D7][url=http://bbs.instrument.com.cn/topic/5669421]往期回顾请点击进入》[/url][/color][/color][/b][/color][/align][align=center][url=http://ng1.17img.cn/bbsfiles/files/2017/08/201708021048_01_3224499_3.docx?n=CATO%e8%8d%89%e6%a0%b9%e6%af%94%e5%af%b9%e6%8a%a5%e5%90%8d%e8%a1%a8.docx&tocken=01be120e972faf43ff119171b94bf1a2×=1502354515][img=,230,60]http://ng1.17img.cn/bbsfiles/images/2016/10/201610241639_614890_2908983_3.jpg[/img][/url][/align][color=red]请大家认真填写电话和手机及所在地址,主要是方便邮寄样品另外报名不要用繁体字,不要发PDF格式的及扫描的,不便于登记。谢谢大家配合我们的工作.[/color][color=red]报名邮件格式:主题 :第41期草根比对+论坛ID[/color][color=red]结果报告邮件格式: 主题: 第41期草根比对结果报告+样品编码[/color]

  • 草本三角枫和树三角枫的区别?

    草本三角枫多年生草本,高30-70cm。全株无毛。根粗短,有多数细长支根。药材基源:全草【性味】味辛;微苦;性曙【功能主治】祛风湿;通经络。主风湿痹痛;筋脉拘挛;跌打损伤树三角枫常绿乔木,高5-10m。树皮粗糙,深褐色。药材基源:根皮及枝、叶。【性味】辛;微苦;微温;有小毒【功能主治】祛风除湿;舒筋活血。主治风湿痹痛;跌打骨折;皮肤湿疹;疝气。其他还有?

  • 国家标准委关于批准发布《食用盐》等175项国家标准的公告 2016年第8号

    国家标准委关于批准发布《食用盐》等175项国家标准的公告 2016年第8号核心提示:国家质量监督检验检疫总局、国家标准化管理委员会批准《轻质石油产品酸度测定法》等175项国家标准,现予以公布。国家质量监督检验检疫总局、国家标准化管理委员会批准《轻质石油产品酸度测定法》等175项国家标准,现予以公布(见附件)。   国家质检总局 国家标准委   2016年6月14日 食品伙伴网备注:食品相关标准列表如下:序号国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 5461-2016食用盐GB 5461-20002017-1-12GB/T 7652-2016八角GB/T 7652-20062017-1-13GB/T 14456.3-2016绿茶 第3部分:中小叶种绿茶 2017-1-14GB/T 14456.4-2016绿茶 第4部分:珠茶 2017-1-15GB/T 14456.5-2016绿茶 第5部分:眉茶 2017-1-16GB/T 14456.6-2016绿茶 第6部分:蒸青茶 2017-1-17GB/T 17776-2016饲料中硫的测定 硝酸镁法GB/T 17776-19992017-1-18GB/T 32470-2016生活饮用水臭味物质 土臭素和2-甲基异莰醇检验方法 2016-11-19GB/T 32687-2016氨基酸产品分类导则 2017-1-110GB/T 32689-2016发酵法氨基酸良好生产规范 2017-1-111GB/T 32690-2016发酵法有机酸良好生产规范 2017-1-112GB/T 32712-2016条斑紫菜 种藻 2017-1-113GB/T 32713-2016刀鲚人工繁育技术规范 2017-1-114GB/T 32714-2016冬枣 2016-10-115GB/T 32717-2016番木瓜长尾实蝇检疫鉴定方法 2017-1-116GB/T 32719.1-2016黑茶 第1部分:基本要求 2017-1-117GB/T 32719.2-2016黑茶 第2部分:花卷茶 2017-1-118GB/T 32719.3-2016黑茶 第3部分:湘尖茶 2017-1-119GB/T 32719.4-2016黑茶 第4部分:六堡茶 2017-1-120GB/T 32727-2016肉豆蔻 2017-1-121GB/T 32728-2016刺柏果 2017-1-122GB/T 32729-2016干鼠尾草 2017-1-123GB/T 32730-2016芥末籽 2017-1-124GB/T 32731-2016辣椒粉 显微镜检查法 2017-1-125GB/T 32732-2016香草 试验方法 2017-1-126GB/T 32733-2016香草 2017-1-127GB/T 32734-2016葫芦巴 2017-1-128GB/T 32735-2016干百里香 2017-1-129GB/T 32736-2016干薄荷 2017-1-130GB/T 32742-2016眉茶生产加工技术规范 2017-1-131GB/T 32743-2016白茶加工技术规范 2017-1-132GB/T 32744-2016茶叶加工良好规范 2017-1-133GB/T 32750-2016茶花鸡 2017-1-134GB/T 32751-2016林甸鸡 2017-1-135GB/T 32755-2016大黄鱼 2017-1-136GB/T 32756-2016刺参 亲参和苗种 2017-1-137GB/T 32757-2016

  • 【分享】十大危险植物:捕鼠猪笼草问鼎

    【分享】十大危险植物:捕鼠猪笼草问鼎

    经过数百万年的进化,植物已经掌握一些巧妙的“防身术”以抵御饥饿的动物,其中包括致命神经毒素、能够刺穿汽车轮胎的荆棘以及强大的消化酶。美国《大众机械》杂志对有毒植物研究专家艾米斯图尔特进行了采访,以了解世界上一些最危险的植物。  斯图尔特曾撰写过《邪恶的植物:一部有关植物暴行的著作》(Wicked Plants: A Book of Botanical Atrocities),现定居美国加利福尼亚州尤里卡。在尤里卡的一个花园内,斯图尔特栽种了30多种不同类型的有毒植物。以下就是十种危险植物:(新浪科技讯 )1.巨型猪笼草巨型猪笼草学名“Nepenthes attenboroughii”,是在菲律宾维多利亚山海拔5000英尺(约合1524米)的地区发现的。这种肉食植物能够分泌一种类似花蜜的物质,引诱没有疑心的猎物主动进入一个酶和酸的“死亡之池”。一系列充满粘性的下垂主叶脉让掉入陷阱的猎物成功逃走的想法化为泡影。  巨型猪笼草的直径达到30厘米,足以捕获倒霉的啮齿类动物,但通常情况下,它们还是主要以昆虫为食。全世界共有大约600种不同类型的猪笼草,通常生活在氮缺乏的环境,为此,它们需要从腐烂的猎物尸体中获取营养物质。[img]http://ng1.17img.cn/bbsfiles/images/2009/09/200909180857_171661_1607864_3.jpg[/img]

  • 中草药有效化学成分的提取方法概述

    (一)溶剂提取法: 1.溶剂提取法的原理:溶剂提取法是根据中草药中各种成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。当溶剂加到中草药原料(需适当粉碎)中时,溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出。 中草药成分在溶剂中的溶解度直接与溶剂性质有关。溶剂可分为水、亲本性有机溶剂及亲脂性有机溶剂,被溶解物质也有亲水性及亲脂性的不同。 有机化合物分子结构中亲水性基团多,其极性大而疏于油;有的亲水性基团少,其。极性小而疏于水。这种亲水性、亲脂性及其程度的大小,是和化合物的分子结构直接相关。一般来说,两种基本母核相同的成分,其分子中功能基的极性越大,或极性功能基数量越多,则整个分子的极性大,亲水性强,而亲脂性就越弱,其分子非极性部分越大,或碳键越长,则极性小,亲脂性强,而亲水性就越弱。 各类溶剂的性质,同样也与其分子结构有关。例如甲醇、乙醇是亲水性比较强的溶剂,它们的分子比较小,有羟基存在,与水的结构很近似,所以能够和水任意混合。丁醇和戊醇分子中虽都有羟基,保持和水有相似处,但分子逐渐地加大,与水性质也就逐渐疏远。所以它们能彼此部分互溶,在它们互溶达到饱和状态之后,丁醇或戊醇都能与水分层。氯仿、苯和石油醚是烃类或氯烃衍生物,分子中没有氧,属于亲脂性强的溶剂。 这样,我们就可以通过时中草药成分结构分析,去估计它们的此类性质和选用的溶剂。例如葡萄糖、蔗糖等分子比较小的多羟基化合物,具有强亲水性,极易溶于水,就是在亲水性比较强的乙醇中也难于溶解。淀粉虽然羟基数目多,但分子大大,所以难溶解于水。蛋白质和氨基酸都是酸碱两性化合物,有一定程度的极性,所以能溶于水,不溶于或难溶子有机溶剂。甙类都比其甙元的亲水性强,特别是皂甙由于它们的分子中往往结合有多数糖分子,羟基数目多,能表现出较强的亲水性,而皂甙元则属于亲脂性强的化合物。多数游离的生物碱是亲脂性化合物,与酸结合成盐后,能够离子化,加强了极性,就变为亲水的注质,这些生物碱可称为半极性化合物。所以,生物碱的盐类易溶于水,不溶或难溶于有机溶剂;而多数游离的生物碱不溶或难溶于水,易溶于亲脂性溶剂,一般以在氯仿中溶解度最大。鞣质是多羟基的化台物,为亲水性的物质。油脂、挥发油、蜡、脂溶性色素都是强亲脂性的成分。 总的说来,只要中草药成分的亲水性和亲脂性与溶剂的此项性质相当,就会在其中有较大的溶解度,即所谓“相似相溶”的规律。这是选择适当溶剂自中草药中提取所需要成分的依据之一。 2.溶剂的选择:运用溶剂提取法的关键,是选择适当的溶剂。溶剂选择适当,就可以比较顺利地将需要的成分提取出来。选择溶剂要注意以下三点:①溶剂对有效成分溶解度大,对杂质溶解度小;②溶剂不能与中药的成分起化学变化;③溶剂要经济、易得、使用安全等。 常见的提取溶剂可分为以下三类: 1)水:水是一种强的极性溶剂。中草药中亲水性的成分,如无机盐、糖类、分子不太大的多糖类、鞣质、氨基酸、蛋白质、有机酸盐、生物碱盐及甙类等都能被水溶出。为了增加某些成分的溶解度,也常采用酸水及碱水作为提取溶剂。酸水提取,可使生物碱与酸生成盐类而溶出,碱水提取可使有机酸、黄酮、蒽醌、内酯、香豆素以及酚类成分溶出。 但用水提取易酶解甙类成分,且易霉坏变质。某些含果胶、粘液质类成分的中草药,其水提取液常常很难过滤。沸水提取时,中草药中的淀粉可被糊化,而增加过滤的困难。故含淀粉量多的中草药,不宜磨成细粉后加水煎煮。中药传统用的汤剂,多用中药饮片直火煎煮,加温可以增大中药成分的溶解度外,还可能有与其他成分产生“助溶”现象,增加了一些水中溶解度小的、亲脂性强的成分的溶解度。但多数亲脂性成分在沸水中的溶解度是不大的,既使有助溶现象存在,也不容易提取完全。如果应用大量水煎煮,就会增加蒸发浓缩时的困难,且会溶出大量杂质,给进一步分离提纯带来麻烦。中草药水提取液中含有皂甙及粘液质类成分,在减压浓缩时,还会产生大量泡沫,造成浓缩的困难。通常可在蒸馏器上装置一个汽一液分离防溅球加以克服,工业上则常用薄膜浓缩装置。 2)亲水性的有机溶剂:也就是一般所说的与水能混溶的有机溶剂,如乙醇(酒精)、甲醇(木精)、丙酮等,以乙醇最常用。乙醇的溶解性能比较好,对中草药细胞的穿透能力较强。亲水性的成分除蛋白质、粘液质、果胶、淀粉和部分多糖等外,大多能在乙醇中溶解。难溶于水的亲脂性成分,在乙醇中的溶解度也较大。还可以根据被提取物质的性质,采用不同浓度的乙醇进行提取。用乙醇提取比用水量较少,提取时间短,溶解出的水溶性杂质也少。乙醇为有机溶剂,虽易燃,但毒性小,价格便宜,来源方便,有一定设备即可回收反复使用,而且乙醇的提取液不易发霉变质。由于这些原因,用乙醇提取的方法是历来最常用的方法之一。甲醇的性质和乙醇相似,沸点较低(64℃),但有毒性,使用时应注意。 3)亲脂性的有机溶剂:也就是一般所说的与水不能混溶的有机溶剂,如石油醚、苯、氯仿、乙醚、乙酸乙酯、二氯乙烷等。这些溶剂的选择性能强,不能或不容易提出亲水性杂质。但这类溶剂挥发性大,多易燃(氯仿除外),一般有毒,价格较贵,设备要求较高,且它们透入植物组织的能力较弱,往往需要长时间反复提取才能提取完全。如果药材中含有较多的水分,用这类溶剂就很难浸出其有效成分,因此,大量提取中草药原料时,直接应用这类溶剂有一定的局限性。 3.提取方法:用溶剂提取中草药成分,、常用浸渍法、渗漉法、煎煮法、回流提取法及连续回流提取法等。同时,原料的粉碎度、提取时间、提取温度、设备条件等因素也都能影响提取效率,必须加以考虑。 1)浸渍法:浸渍法系将中草药粉末或碎块装人适当的容器中,加入适宜的溶剂(如乙醇、稀醇或水),浸渍药材以溶出其中成分的方法。本法比较简单易行,但浸出率较差,且如用水为溶剂,其提取液易于发霉变质)须注意加入适当的防腐剂。 2)渗漉法:渗漉法是将中草药粉末装在渗漉器中,不断添加新溶剂,使其渗透过药材,自上而下从渗漉器下部流出浸出液的一种浸出方法小当溶剂渗进药粉溶出成分比重加大而向下移动时,上层的溶液或稀浸液便置换其位置,造成良好的浓度差,使扩散能较好地进行,故浸出效果优于浸渍法。但应控制流速,在渗渡过程中随时自药面上补充新溶剂,使药材中有效成分充分浸出为止。或当渗滴液颜色极浅或渗涌液的体积相当于:原药材重的10倍时,便可认为基本上已提取完全。在大量生产中常将收集的稀渗淮液作为另一批新原料的溶剂之用。 3)煎煮法:煎煮法是我国最早使用的传统的浸出方法。所用容器一般为陶器、砂罐或铜制、搪瓷器皿,不宜用铁锅,以免药液变色。直火加热时最好时常搅拌,以免局部药材受热太高,容易焦糊。有蒸汽加热设备的药厂,多采用大反应锅、大铜锅、大木桶,或水泥砌的池子中通入蒸汽加热。还可将数个煎煮器通过管道互相连接,进行连续煎浸。 4)回流提取法:应用有机溶剂加热提取,需采用回流加热装置,以免溶剂挥发损失。小量操作时,可在圆底烧瓶上连接回流冷凝器。瓶内装药材约为容量的%~%,溶剂浸过药材表面约1~2cm。在水浴中加热回流,一般保持沸腾约:小时小放冷过滤,再在药渣中加溶剂,作第二、三次加热回流分别约半小时,或至基本提尽有效成分为止。此法提取效率较冷浸法高,大量生产中多采用连续提取法。 5)动连续提取法:应用挥发性有机溶剂提取中草药有效成分,不论小型实验或大型生产,均以连续提取法为好,而且需用溶剂量较少,提取成分也较完全。实验室常用脂肪提取器或称索氏提取器。连续提取法,一般需数小时才能提取完全。提取成分受热时间较长,遇热不稳定易变化的成分不宜采用此法。

  • 70.9 HPLC测定复方麝香草酚醑中2组分的含量

    70.9 HPLC测定复方麝香草酚醑中2组分的含量

    【作者】 霍保方; 徐英宏; 杨君; 段旭; 【Author】 HUO Bao-fang, XU Ying-hong , YANG Jim, DUAN Xu( Second Affiliated Hospital, China Medical University, Shenyang 110004, China) 【机构】 中国医科大学附属第二医院药剂科; 中国医科大学附属第二医院药剂科 辽宁 沈阳 110004; 辽宁 沈阳 110004; 辽宁 沈阳 110004; 【摘要】 目的建立同时测定复方麝香草酚醑中麝香草酚和水杨酸含量的方法。方法采用高效液相色谱法。分析色谱柱Dia—monsil C18(4.6 mm ×150 mm,5μm),流动相为乙腈-甲醇-磷酸二氢钾(0.02 moL·L-1用磷酸调节pH值至3.0)(45:10:45),流速为1.0 mL·min-1,检测波长231 nm。结果该方法不受处方中其他成分干扰,麝香草酚和水杨酸浓度均在0.1-0.3 mg·L-1内,峰面积与浓度呈良好的线性关系(rthymol=0.999 9,rsalicylic acid=0.999 8),平均回收率:麝香草酚为99.5%、水杨酸为100.1%。RSD 分别为1.1%,1.3%(n=5)。结论该方法可用于复方麝香草酚醑中2种主要成分的含量测定。 【关键词】 高效液相色谱法; 复方麝香草酚醑; 麝香草酚; 水杨酸;http://ng1.17img.cn/bbsfiles/images/2012/09/201209022124_388017_1838299_3.jpg

  • 【转帖】草莓不为人知的4种特殊功效

    当下正是草莓的上市季节,在尽享草莓美味的同时你是否知道它有很多养生功效。下面为你介绍草莓的一些功效,让你在吃草莓时吃出健康吃出美丽。http://henan.sinaimg.cn/2011/0412/U4980P827DT20110412080819.jpg草莓功效  草莓是蔷薇科草莓属植物的泛称  草莓又叫红莓、杨莓、地莓等,是蔷薇科草莓属植物的泛称,全世界有50多种。草莓原产于欧洲,20世纪传入我国。当今,美国、波兰和俄罗斯是世界上种植草莓最多的国家。我国种植草莓的时间不长,且多栽培在城市郊区,产量较多的有京、津、沈、杭等市。  草莓被人们誉为果中皇后  草莓系多年生草本植物,其果实由花托发育而成为肉质聚合果,这与一般水果由子房发育而来不同。  草莓的外观呈心形,鲜美红嫩,果肉多汁,酸甜可口,香味浓郁,不仅有色彩,而且还有一般水果所没有的宜人的芳香,是水果中难得的色、香、味俱佳者,因此常被人们誉为果中皇后。  草莓营养丰富,含有果糖、蔗糖、柠檬酸、苹果酸、水杨酸、氨基酸以及钙、磷、铁等矿物质。此外,它还含有多种维生素,尤其是维生素C含量非常丰富,每100克草莓中就含有维生素C60毫克。草莓中所含的胡萝卜素是合成维生素A重要物质,具有明目养肝作用。草莓还含有果胶和丰富的膳食纤维,可以帮助消化、通畅大便。草莓的营养成分容易被人体消化、吸收,多吃也不会受凉或上火,是老少皆宜的健康食品。  草莓的吃法很多。若将草莓拌以奶油或鲜奶共食,其味极佳;将洗净的草莓加糖和奶油捣烂成草莓泥,冷冻后是冷甜、香软、可口的夏令食品;草莓酱如做元宵馒头、面饼馅心,更是绝妙的食品。草莓还可加工成果汁、果酱、果酒和罐头等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制