当前位置: 仪器信息网 > 行业主题 > >

吡啶环蕃

仪器信息网吡啶环蕃专题为您提供2024年最新吡啶环蕃价格报价、厂家品牌的相关信息, 包括吡啶环蕃参数、型号等,不管是国产,还是进口品牌的吡啶环蕃您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡啶环蕃相关的耗材配件、试剂标物,还有吡啶环蕃相关的最新资讯、资料,以及吡啶环蕃相关的解决方案。

吡啶环蕃相关的资讯

  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 中国化工学会关于《工业用2-氯-6-三氯甲基吡啶》等 4项团体标准征求意见的通知
    各有关单位及专家:由中国化工学会组织制定的《工业用2-氯-6-三氯甲基吡啶》等4项团体标准已完成征求意见稿,现公开征求意见。请于2023年4 月21日之前将征求意见表(见附件5)以电子邮件的形式反馈至中国化工学会。联系人:张颖 电话:010-64455951邮箱:zhangy@ciesc.cn附 件1.《工业用2-氯-6-三氯甲基吡啶》征求意见稿2.《电子级丙二醇甲醚》征求意见稿3.《电子级丙二醇甲醚醋酸酯》征求意见稿4.《啶氧菌酯原药》征求意见稿5. 征求意见表 中国化工学会2023年3月21日附件3《电子级丙二醇甲醚醋酸酯》征求意见稿.pdf附件1《工业用2-氯-6-三氯甲基吡啶》征求意见稿.pdf附件2《电子级丙二醇甲醚》征求意见稿.pdf附件5 征求意见表.doc《工业用2-氯-6-三氯甲基吡啶》等4项团体标准征求意见通知.pdf附件4《啶氧菌酯原药》征求意见稿.pdf
  • 江西省生态环境厅公开征求《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》等五项地方生态环境标准意见
    各有关单位:根据《江西省市场监管局关于下达2023年第六批江西省地方标准制修订计划的通知》(赣市监标函〔2023〕20号)要求,我厅组织编制了《生态环境监测质量管理技术规范》等五项地方生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登陆我厅网站“政务公开-公示公告”(http://sthjt.jiangxi.gov.cn)栏目检索查阅。请于2024年7月12日前将意见建议书面反馈我厅,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:邓 磊、刘燕红;电 话:0791-86866660、0791-86866791;邮 箱:Fenzc2023@163.com。附件:1.生态环境监测质量管理技术规范(征求意见稿)2.《生态环境监测质量管理技术规范(征求意见稿)》编制说明3.水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)4.《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》编制说明5.水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)6.《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)》编制说明7.水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)8.《水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)》编制说明9.土壤和沉积物 碲的测定 酸溶/原子荧光法(征求意见稿)10.《土壤和沉积物 碲的测定 酸溶/原子荧光法》(征求意见稿)》编制说明11.意见反馈表12.征求意见单位名单江西省生态环境厅2024年6月11日(此件主动公开)
  • 江西省市场监督管理局发布《水质 吡啶的测定 顶空/气相色谱-质谱法》等6项江西省地方标准征求意见稿
    各有关单位及专家:《生态环境监测质量管理技术规范》《水质 吡啶的测定 顶空/气相色谱-质谱法》《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法》《水质 高锰酸盐指数的测定 氧化还原自动滴定法》《土壤和沉淀物 碲的测定 酸溶原子荧光法》《危险废物全过程监管物联网终端技术规范》地方标准现已形成征求意见稿,欢迎各有关单位及专家对标准进行审阅,并于2024年7月13日前返回具体的修改意见。审评中心联系人:高汉、胡昭君、刘磊联系电话:0791-85773380 电子邮箱:jxbzhy@126.com起草单位联系人:罗木根联系电话:18507000681地址:江西省标准技术审评中心,南昌市南昌县金沙二路1899号。 2024年6月13日附件:附件 (1).zip1.标准文本和编制说明2.省地方标准(征求意见稿)意见汇总表
  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿
    国家标准计划《保健食品中吡啶甲酸铬含量的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中吡啶甲酸铬含量的测定》编制说明.pdf国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿.pdf
  • 光催化N-杂螺环的多组分直接组装
    你能想象有*化学也能玩成“乐高积木”吗?2022年10月5日,2022年诺贝尔化学奖授予了三位科学家:Carolyn R. Bertozzi、K. Barry Sharpless和Morten Meldal,奖励他们在发展“点击化学”和“生物正交化学”中的贡献。 问:什么是点击化学?“点击化学(Click chemistry)”是指一类能够高效生成“碳原子-杂原子链”的化学反应。点击化学有以下优势:1.区域特异性和立体特异性;2.对溶剂参数不敏感;3.反应得率高、副反应少,且原料充分反应4.实验条件简单;5.大的热力学驱动力。与点击化学的优势类似,流动化学也具有高效混合、简便*的温度控制、收率高、减少副产物等优势。 图1:发表在JOC杂志上的文章“可见光驱动光催化促进的N-异质螺环的多组分直接组装”今天为大家介绍在2022年9月,Steven V.Ley教授在JOC上一篇题为《可见光驱动光催化促进n杂螺环的多组分直接组装》的文章,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。1、螺环化合物20世纪六十年代起,生物学家和药物学家逐渐发现,从自然界分离得到的具有生物活性的化合物中拥有螺环结构的化合物占有很大的比例。随着研究的深入,螺环化合物的性质使他在药物研发中占据非常重要的地位。螺环化合物是指两个单环共用一个碳原子的多环化合物;共用的碳原子称为螺原子。杂环螺环结构在一定程度上改变药物分子的水溶性、亲脂性、优势构象等,使优化后的药物分子更容易成药。不同的螺环具有丰富的三维立体结构,从而提供了改善药效的可能性和药物*的创新性;既可以突破现有药物的*,又能设计全新结构或者骨架的小分子化合物。 图2:螺旋内酯固醇 图3:灰黄霉素已上市药物中,也有很多含有螺环结构的小分子药物,比如利尿剂螺旋内酯固醇(Spironolactone)(如图2所示)和抗真菌药物灰黄霉素(Griseofulvin)(如图3所示)。N-异螺旋环是在天然产物和药物中发现的有趣的结构单元,但其合成的可靠方法相对较少。传统合成方式 图4:获取螺旋环吡咯烷的策略 图5:从N-烯丙磺酰胺和烯烃中构建β-螺旋吡咯啶现有的方法通常需要几个步骤,并使用昂贵的催化剂,如钌或铑,以获得所需的产品。在过去,靠传统的办法合成目标分子,往往需要绕很多弯路。步骤越多,意味着产率越低,浪费越大。2、更高效的合成方式使用Vapourtec UV-150光反应器放大合成N-异象螺旋循环 图6:使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物Steven V. Ley教授是世界*的有机化学家,剑桥化学系研究主任,皇家化学会RSC的前任会长,教授在有机合成方法学和全合成领域中的成就斐然。Ley教授在“可见光驱动光催化促进n杂螺环的多组分直接组装”一文中,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。在近年来发展的叠杂杂螺环的大多数制备方法中都需要多步步骤。然而,光催化的最新应用可以使合成步骤大大减少。作者利用光催化生成N-中心自由基,可构建多种β-螺环吡咯烷,包括药物衍生物。利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。光催化能够在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构。在开发的螺环吡咯烷的制备方法中,大多数都能够制备α-螺环吡咯烷,克服了制备α-三级胺的一些困难。简化合成路线的解决方案之一是采用无试剂化学方法。从光化学上讲,以氮为中心的自由基的产生相对简单,并被证明可以激活N-H和N-X键。通过在合成螺旋环化合物时使用这种方法,可以避免四元碳中心引起的立体问题,从而改善整体过程。使用VapourtecE系列进行流动反应和放大实验,该系列由三个蠕动泵和一个光反应器组成,BPR输出为8bar。使用的光源是Vapourtec 61W(辐射功率)365 nm(峰值强度)LED灯光,辐射带范围为350&minus 400nm。利用在线监测,大大的缩短了研究时间,提高研究效率。作者使用配有365nm高功率LED灯的E-photochem演示了一系列螺环吡啶的合成。在合成双叠氮杂螺环的过程中,该方法使用光化学反应器UV-150进行了放大,产量达到了100克/天。3、实验总结1、相比传统的的反应,该反应具有操作简便、条件温和、反应时间短等优势;2、利用在线监测,大大的缩短了研究时间,提高研究效率;3、在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构;4、利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。4、关于Vapourtec Vapourtec是一家专业设计和制造流动化学设备的公司。Vapourtec公司的连续流动化学系统质量可靠、性能成熟、高效能模块系统可随您的流动化学生产能力的扩大而拓展。反应器可进行组合,实现多步合成。无需使用任何工具数秒内即可完成反应器更换。UV-150反应器UV-150反应器消除了传统批次光化学的问题,可以充分发挥光化学的潜力。在连续流动操作下,它提供了安全、精确、高效、一致和可扩展的光化学。 图7:vapourtec UV-150光化学反应器● UV-150光化学反应器与Vapourtec R系列和E系列流化学系统兼容,操作简便;● Vapourtec提供3种不同的光源,提供220纳米至650纳米之间的精确波长;● 可以在-20°C到80°C之间设置反应温度。参考文献[1] Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven PhotocatalysisOliver M. Griffiths and Steven V. LeyThe Journal of Organic Chemistry 2022 87 (19), 13204-13223 DOI:10.1021/acs.joc.2c01684[2] Total Synthesis of Phytotoxic Radulanin A Facilitated by the Photochemical Ring Expansion of a 2,2-Dimethylchromene in FlowBruce Lockett-Walters, Simon Thuillier, Emmanuel Baudouin, and Bastien NayOrganic Letters 2022 24 (22), 4029-4033 DOI: 10.1021/acs.orglett.2c01462
  • 使用超高效合相色谱系统对环金属铱(III)配合物进行同分异构分离
    使用ACQUITY UPC2 系统对环金属铱(III)配合物进行同分异构分离 Rui Chen 和John P. McCauley 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 快速分离均配铱络合物中的同分异构体,实现对物质纯化的实时监控。 ■ 在一次色谱运行操作中同时分离均配铱络合物中的同分异构体和光学异构体,实现对纯度的准确评估,而这在其他系统中需要多次色谱分离操作来完成。 ■ 可简单地从 UPC2TM 转换至半制备型超临界流体色谱(SFC),纯化目标异构体,并可以在缓和的条件下轻松地回收收集的组分,减少同分异构体的生成,从而获得有机发光二极体(OLED)设备制造所需的高纯材料。 沃特世解决方案 ACQUITY UPC2TM 系统 Investigator SFC系统 Empower&trade 3软件 ChromScope&trade 软件 ACQUITY UPC2BEH和BEH 2-EP色谱柱 关键词 铱配合物,OLED,同分异构体,面式,经式,对映体,合相色谱,UPC2 引言 有机发光二极体(OLED)应用中环金属铱(III)配合物的合成与表征引起了人们的浓厚兴趣,因为这些配合物具有很高的发光量子产率,并且能够通过简单的合成方法对配体进行系统修饰,从而对颜色进行调整。根据包围在中心铱原子的配体的类型,这些有机金属配合物可能分为均配物和杂配物。均配物和杂配物均可能存在同分异构体,这些异构体被称为经式异构体(meridional,mer)和面式(facial,fac)异构体。同分异构体具有不同的光物理和化学特性1-3,这些特性可影响OLED设备的性能和寿命以及稳定性。此外,杂配物具有光学异构性。富含对映体的配合物发出圆形的偏振光,可用于三维电子显示4。 多种异构形式为这些材料纯度评估以及理解发光设备故障机理所需的异构体的分离提出了特殊的挑战。这种挑战因为目前流行的针对这些材料的纯化方法(即升华)而变得更加复杂5-6。升华过程中,可能会发生分子内的热力学异构化。纯化过程通常生成异构混合物,而不是用于设备生产的预期单一异构体,导致性能降低。显然,开发出在温和条件下的纯化技术对减少异构化具有重大意义。 由于大部分环金属铱配合物溶解性低,目前环金属铱配合物的色谱分析方法一般采用正相液相色谱法(NPLC)。超临界流体色谱(SFC)以及更先进的超高效合相色谱(UPC2)提供了引人关注的正相色谱替代方法,从而可提高分辨率、缩短分析时间,降低有机溶剂的消耗量。在本应用纪要中,我们对三[2(2,4-二氟苯基)吡啶]铱(III)(Ir(Fppy)3)和双(4,6-二氟苯基)吡啶C2,N]甲酰合铱(III)(Flrpic)的结构采用沃特世(Waters® ) ACQUITY UPC2 进行了分离,如图1所示。将SFC用于纯化Flrpic的可行性也说明了使用Waters Investigator SFC系统的可行性。 实验 仪器:所有分析实验均在由Empower 3软件控制的ACQUITY UPC2 上进行。制备实验在由ChromScope软件控制的Investigator SFC系统上进行。 色谱柱:沃特世公司的ACQUITY UPC2 BEH和2-Ethyl Pyridine 3.0 x 100 mm,1.7&mu m色谱柱。CHIRALPAK AS-H 4.6 x 150 mm,5 &mu m,购自Chiral Tec hnologies公司(宾夕法尼亚州西切斯特)。 样品描述 样品购自Sigma Aldrich和1-Material公司。为了形成异构体,将样品置于控温箱内进行热应激,引发异构化反应。冷却至室温后,将样品溶于氯仿中,用于随后的分析操作。 结果与讨论 图2是未经处理以及经过热应激的Ir(Fppy)3 的UPC2/UV色谱图。色谱峰1与色谱峰2的质谱(未显示)相同,但紫外光谱(插图)明显不同,说明它们最有可能是面式异构体和经式异构体。标有&ldquo desfluoro&rdquo 的峰出现的原因是Ir(Fppy)3 中的一个F原子丢失。但是,两张图谱的主要差异在于峰1与峰2之间的相对比例。加热时,1/2的峰比将会增大。其可能是由热异构化过程引起的,在异构化过程中,稳定性较差的经式异构体(峰2)转化成稳定性较高的面式异构体(峰1)。图2清楚地表明,Ir(Fppy)3 的同分异构体可轻易地通过使用ACQUITY UPC2 进行分离。 图2 使用ACQUIT Y UPC2 2-EP3x100mm,1.7&mu m色谱柱得到的Ir(Fppy )3 UPC2/UV色谱图。(A)在280℃ 下处理24 小时的样品;(B)在25℃下未经处理的样品。流速为1.5mL /min;背压为2175 psi;30%异丙醇辅助溶液等度洗脱;温度为40℃。峰标记后面的数据表示以峰面积表示的每个峰的相对百分比。 图3是使用非手性固定相和手性固定相得到的Flrpic UPC2/UV色谱图。在手性柱中,Flrpic裂分为两个峰,如图3B所示。图3B中的两个峰具有相同的质荷比(未示出)和紫外光谱(插图),说明这两个峰最有可能来源于同一对对映体。与均配物Ir(Fppy)3 不同的是,杂配物Flrpic由两种不同的配体构成。这种分子对称性反过来产生了光学异构。在实际应用中,例如三维显示,具有高度的发光不对称性是很有利的。因此,UPC2 提供了一种简单的测定手性荧光化合物对映比的方法,这对于使化学结构与发光对称性相互关联是很重要的。 图3 标准级Flrpic的UPC2/U V 色谱图。(A)使用一根ACQUITY UPC2 BEH 3x100mm,1.7&mu m色谱柱;流 速为1.5mL/min,背压为1740psi,35%异丙醇等度洗脱,温度为40℃。(B)使用两根CHIRALPAKAS-H 4.6x150mm色谱柱(每根均为5&mu m)。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图4是在ACQUITY UPC2BEH色谱柱上得到的未经处理和经热应激的Flrpic UPC2/UV色谱图。对于经热应激的样品,会观察到一个多出的峰,如图4B所示。两个峰的质谱完全相同(结果未示出)。对紫外光谱更仔细地观察发现(如图5所示),图4B中的各个峰的紫外光谱并不相同。与图3B中所示的对映体不同,这些对映体的紫外光谱是相同的。图4B中的小峰的最大吸收波长&lambda max为245 nm,而主峰的最大吸收波长&lambda max为251nm。这些结果说明,经热应激的样品已经发生了异构化,生成了另一种同分异构体,这类似于升华过程中所观察到的一样5,6。因为总分析时间短于5分钟,UPC2 能够实现在升华后对材料纯度的快速测定,并可作为设备制造之前的质量控制方法。 图4 在ACQUITY UPC2 BEH3x100mm,1.7&mu m色谱柱上、等度洗脱(35%辅助溶剂)条件下得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为1.5 mL/min;背压为2175psi;35%异丙醇辅助溶液等度洗脱; 温度为40℃。 图5 一对Flrpic同分异构体的紫外光谱。 理论上讲,每个同分异构体均包含一对对映体。因此,我们尝试同时分离经热应激的Flrpic的四个异构体,如图4B所示。得到的紫外光谱图如图6所示。E1/E1' 和E2/E2' 是两对对映体,而E1/E2和E1' /E2' 是两对同分异构体。 图6 使用两根CHIRALPAK AS-H4.6x150mm色谱柱(每根均为5&mu m)得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图6中的异构体分离结果超过了简单分析的结果。作为发光设备中所用的环金属铱配合物的主要纯化方法,升华会引起不利的分子内热异构化,如图2、4、6及其他图所示5-6。因此,用在设备中的是异构体混合物而不是纯物质,通常导致性能下降,寿命缩短。图6所示分离说明了超临界色谱有望替代升华成为这些材料的纯化方法。 图7是使用半制备超临界色谱得到的经热应激的Flrpic的SFC/UV色谱图。可以得到所有四种异构体的基线分离度。在50℃下,使用异丙醇作为共溶液,纯异构体可在温和的条件下进行回收,从而降低了异构体形成的可能性。应当指出的是,虽然图6B和图7都是在相同的色谱条件下获得的,但是图6B中的分离度远高于图7中的分离度。分离度的提高很大程度是由于UPC2统体积最小化,因而引起峰分散度降低。 图7 在沃特世InvestigatorSFC系统上使用CHIRALPAK AS-H4.6x150mm色谱柱(每根均为0.5&mu m)得到的经热应激的Flrpic的SFC/UV色谱图。流速为3mL /min ,背压为2175p si ,23%异丙醇辅助溶液等度洗脱;温度为50℃。阴影区域表示收集的组分。 结论 在本应用中,我们论述了使用超高效合相色谱对铱均配物Ir(Fppy)3 和铱杂配物Flrpic异构体进行的分离。对于Ir(Fppy)3 ,面式和经式同分异构体可以轻易地在5分钟以内得以分离。对于Flrpic,四种异构体,无论是同分异构还是光学异构,均要在一次分离操作中实现同时分离。 本文提出的分离方法可提升用于纯化评估的传统分析技术的水平。而纯化评估是合成、工艺和OLED设备和相关材料生产的一个分析难题之一。此外,其中的超临界流体技术也能够把UPC2 方法转换到半制备型超临界色谱仪器的制备方法,从而对目标物质进行分离。 参考文献 1. Kappaun S, Slugovc C, List EJW. Phosphorescent organic light-emitting devices: Working principle and iridium based emitter materials. Int J Mol Sci. 2008 9: 1527-47. 2. Tamayo B, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN,Bau R, T hompson ME. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc. 2003 125(24): 7377-87. 3. McDonald AR, Lutz M, von Chrzanowski LS, van Klink GPM, Spek AL, van Koten G. Probing the mer- to fac-isomerization of triscyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.Inorg Chem. 2008 47: 6681-91. 4. Coughlin FJ, Westrol MS, Oyler KD, Byrne N, Kraml C, Zysman-Colman E, Lowry MS, Bernhard S. Synthesis, separation, and circularly polarized luminescence studies of enantiomers of iridium (III) luminop. Inorg Chem. 2008 47: 2039-48. 5. Baranoff E, Saurez S, Bugnon P, Barola C, Buscaino R, Scopeletti R,Zuperoll L, Graetzel M, Nazeeruddin MK. Sublimation not an innocent technique: A case of bis-cyclometalated iridium emitter for OLED.Inorg Chem. 2008 47: 6575-77. 6. Baranoff E, Bolink HJ, De Angelis F, Fantacci S, Di Censo D, Djellab K,Gratzel M, Nazeeruddin MK. An inconvenient influence of iridium (III)isomer on OLED efficiency. Dalton Trans. 2010 39: 8914&ndash 18. 7. Sivasubramaniam V, Brodkord F, Haning S, Loebl HP, van ElsbergenV, Boerner H, Scherf U, Kreyenschmidt M. Investigation of FIrpic in PhOLEDs via LC/MS technique. Cent Eur J Chem. 2009 7(4): 836&ndash 845.
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。   一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。   二、各兽药残留基准实验室药物检测范围   (一)国家兽药残留基准实验室(中国兽医药品监察所)   1.一般兽药品种   (1)抗微生物药   四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙   星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。   (2)抗寄生虫药   二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。   2.禁用药物清单品种   β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。   (二)国家兽药残留基准实验室(中国农业大学)   酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、   一般兽药品种抗微生物药   磺胺类:磺胺二甲嘧啶、磺胺甲   磺胺间甲氧嘧啶、甲氧苄啶。   抗寄生虫药   阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西   磺胺类:磺胺喹   钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、   癸氧喹酯、氢氢溴酸常山酮。   具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种   氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。   3.禁用药物品种   洛硝达唑   (三)国家兽药残留基准实验室(华南农业大学)   β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄   一般兽药品种抗微生物药一般兽药品种抗微生物药   西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。   咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡   啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、   氟胺氰菊酯。   性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。   杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。   群勃龙、醋酸氟孕酮。   (四)国家兽药残留基准实验室(华中农业大学)   氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。   苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。   糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。   喹噁啉类:卡巴氧   硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋   喃妥因、呋喃西林。   硝基化合物:硝基酚钠、硝呋烯腙。   杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动   物)。   砜类抑菌剂:氨苯砜。   三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。   二0一一年七月二十九日
  • 盘管还是微反?倍他司汀的连续流工艺研究
    倍他司汀(Betahistine 1)是临床上常用的药物。主要用于治疗缺血性脑血管病,血管性头疼、眩晕综合征和梅尼埃综合征。方案 1. 倍他司汀合成示意图目前常见合成方法之一是甲胺(3)和2-乙烯基吡啶(2)之间通过氮杂迈克尔(胺烯加成)反应得到。(方案1, (a)) 常规釜式工艺中,需要较长的反应时间(8小时)来提高转化率(方案1,(b)); 2-乙烯基吡啶受热易发生聚合产生杂质(化合物4、5、6),很难获得高纯度产品; 2-乙烯基吡啶为易燃危险化学品,其蒸气与空气混合,能形成爆炸性混合物,生产中存在不安全因素。为了提高生产过程的安全性以及产品质量,该过程的连续流工艺研究具有重要意义。本文将介绍华东理工大学药学院叶金星课题组于2021.5.15发表在OPR&D上,关于倍他司汀连续流工艺研究成果(方案1,(d))。 该工艺以2-乙烯基吡啶和饱和甲胺盐酸盐水溶液为起始原料,同时使用哈氏合金盘管反应器和碳化硅微反应器进行了连续流工艺研究。研究过程考虑到生产成本和安全性,作者选用盐酸甲胺作为胺化试剂。为了避免连续流合成过程产生沉淀堵塞反应通道,作者首先对溶剂进行了筛选。二甲基甲酰胺(DMF)、二甲亚砜(DMSO)、 i-PrOH、EtOH和水加热在110oC, 5 小时高压封管反应。如表1所示,在上述溶剂中均未观察到沉淀。实验表明,水作为溶剂可以得到较高的转化率和选择性(表1,entry 7)。表 1. 合成倍他司汀的溶剂筛选 二、哈氏合金盘管反应器连续流工艺研究1、研究者首先研究了在哈氏合金盘管反应器中的连续化工艺(如图1)。 图 1. 倍他司汀合成的连续流设置经过实验分析在3.0 mL哈氏合金反应器上,可连续合成倍他司汀。在反应温度170 °C ,停留时间为2.1分钟,系统压力7bar的条件下,反应转化率可达98%,选择性为94%。三、在 SiC微反应器中的连续流工艺研究由于在高温高压条件下反应体系中氯离子的强腐蚀作用,哈氏合金反应器盘管在长期工业生产中不可避免地会被腐蚀。高的流量可能会使加热操作变得更加困难和危险,需要更安全的保护。烧结碳化硅 (SiC) 的耐腐蚀性远远大于哈氏合金,可应用于更苛刻条件下的高腐蚀性试剂。故在倍他司汀的连续流放大合成中,作者使用了带有静态混合元件的市售模块化 SiC 反应器(图 2)。图 2. 在 SiC 反应器中合成倍他司汀的连续流设置使用SiC微反应器,在 45 mL min-1 的总流速下,将甲胺盐酸盐的量增加到 1.9 当量,可实现完全转化(99.94%,表 4 Entry4)。表 4. 在 SiC 反应器中连续流动合成倍他司汀的放大实验SiC 反应器中的优化条件:2-乙烯基吡啶(流速:15 mL min-1),甲胺盐酸盐 (9.0 M) 水溶液(流速:30 mL min-1),在 170 °C ,停留时间为 2.4 分钟的条件下,转化率 99.94%,选择性为 94%。在上述条件下长时间运行,过程稳定,没有发生堵塞现象。 连续流反应与釜式反应的比对研究者同时进行了纯化改进和杂质分析,得到高纯度产品(99.9%)。连续流工艺与间歇工艺的比较(表 5)。表 5. 合成 1.0 kg 倍他司汀的间歇法和连续流法的比较结果讨论本研究成功实现了倍他司汀的连续合成;在 SiC 反应器中, 170 oC, 2.4 分钟,总流速为 45 mL min-1 的条件下,实现了高转化率 (99.94%) 和高选择性 (94%) ,该结果优于盘管反应器的实验结果;长时间连续运行,过程稳定,产品质量可靠;通过优化精馏提纯工艺,得到高纯度产品(99.9%);以水作为溶剂的新工艺节能、省时且经济,与釜式工艺相比,PMI 降低了 50%。参考文献:OPR&D, 2021,5(15)
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x
  • 济南环科院完成三种PM2.5监测规范初稿
    2月7日,记者从济南市环境监测中心站(环科院)了解到,该站主持承担了国家环保公益性行业科研项目“城市环境空气中PM2.5监测技术及规范研究”,目前该项目已完成三种PM2.5监测技术规范建议初稿。   “PM2.5对监测技术和设备提出了更高的要求。”济南市环境监测中心站(环科院)相关负责人介绍,由于细颗粒物PM2.5与粗颗粒物PM10的差异,不仅限于粒径大小,其形成机理、来源、组成、理化性质也有很大区别,美国等发达国家虽然较早开展了PM2.5法规监测,但目前还面临多种挑战。我国环保部较早就开始部署PM2.5监测技术研究工作,《2010年度和2011年度国家环境保护公益性行业科研专项项目申报指南》中就明确将“细粒子污染监控和预报”列为支持方向。   该负责人介绍,根据环境监测需求和研究基础,济南市环境监测中心站(环科院)积极开展了PM2.5监测技术研究工作,主持承担了“城市环境空气中PM2.5监测技术及规范研究”国家环保公益性行业科研项目,以东部沿海城市、内陆城市、西部城市为研究载体,从PM2.5的粒度与质量分布—化学组分—形成机理研究入手,通过优化布点、多仪器多方法比对,研究适合我国城市环境空气中PM2.5监测技术,为国家制定形成适用于我国的空气中PM2.5监测技术规范提供前期基础研究支持。“目前该项目已完成包括β射线、微震荡天平、激光雷达反演三种PM2.5监测技术规范建议初稿。”   2012年1月20日,环保部科技标准司在北京召开了项目研讨会,组织来自中国环科院、清华大学、北京大学的部分专家和北京市、上海市、山东省等部分地方环境监测站技术专家对PM2.5监测技术规范问题进行了研讨,与会专家认为该项目取得的阶段性成果为国家PM2.5监测技术规范的制定与实施奠定了基础。   据了解,济南市环境监测中心站(环科院)也作为试点城市之一,积极参与了中国环境监测总站组织的“PM2.5自动监测方法适用性比对测试试验”。
  • 环保部就6项水质检测标准征求意见
    环境保护部办公厅函   环办函[2012]792号   关于征求《水质 钴的测定 5-氯-2-(吡啶偶氮)-1,3-二氨基苯分光光度法》(征求意见稿)等4项国家环境保护标准意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定《水质 钴的测定 5-氯 -2-(吡啶偶氮)-1,3-二氨基苯分光光度法》等4项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,于2012年8月10日前反馈我部科技标准司。   联系人:环境保护部科技标准司谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   联系人:环境保护部环境标准研究所戴天有   联系电话:(010)84926324   附件:1.征求意见单位名单   2.水质钴的测定5—氯—2—(吡啶偶氮)—1,3—二氨基苯分光光度法(征求意见稿)   3.《水质钴的测定5—氯—2—(吡啶偶氮)—1,3—二氨基苯分光光度法》(征求意见稿)编制说明   4.水质铊的测定石墨炉原子吸收分光光度法(征求意见稿)   5.《水质铊的测定石墨炉原子吸收分光光度法》(征求意见稿)编制说明   6.水质汞、砷、硒、铋和锑的测定原子荧光法(征求意见稿)   7.《水质汞、砷、硒、铋和锑的测定原子荧光法》(征求意见稿)编制说明   8.水质丁基黄原酸的测定紫外分光光度法(征求意见稿)   9.《水质丁基黄原酸的测定紫外分光光度法》(征求意见稿)编制说明   二○一二年七月三日   主题词:环保 标准 意见 函   附件一:   征求意见单位名单   住房城乡建设部办公厅   水利部办公厅   各省、自治区、直辖市环境保护厅(局)   各省、自治区、直辖市环境监测站(中心)   各环境保护重点城市环境监测站(中心)   新疆生产建设兵团环境监测中心站   辽河保护区管理局   中国环境科学研究院   中国环境监测总站   中日友好环境保护中心   环境保护部对外合作中心   环境保护部南京环境科学研究所   环境保护部华南环境科学研究所   国家环境分析测试中心   环境保护部标准样品研究所   中国疾病预防控制中心   农业部环境保护科研监测所   中国科学院生态环境研究中心   中国城市规划设计研究院   国家城市给水排水工程技术中心   上海市环境科学研究院   北京市理化分析测试中心   北京中兵北方环境科技发展有限责任公司   中国船舶重工集团公司第七一八研究所   泰州市环境监测中心站   上海市浦东新区环境监测站   河北先河环保科技股份有限公司   湖北天虹环保设备有限公司   聚光科技(杭州)股份有限公司   岛津国际贸易(上海)有限公司   安捷伦科技(中国)有限公司   (部内征求监测司的意见) 环境保护部办公厅函 环办函[2012]791号 关于征求《水质 物质对淡水鱼(真骨总目、鲤科)急性致死毒性的测定 半静态法》(征求意见稿)等两项国家环境保护标准意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定《水质 物质对淡水鱼(真骨总目、鲤科)急性致死毒性的测定 半静态法》等两项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2012年7月30日前反馈我部科技标准司。   联系人:环境保护部科技标准司谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   联系人:环境保护部环境标准研究所戴天有   联系电话:(010)84926324   附件:1.征求意见单位名单   2.水质物质对淡水鱼(真骨总目、鲤科)急性致死毒性的测定半静态法(征求意见稿)   3.《水质物质对淡水鱼(真骨总目、鲤科)急性致死毒性的测定半静态法》(征求意见稿)编制说明   4.用鱼和海水双壳类软体动物进行生物浓缩试验(征求意见稿)   5.《用鱼和海水双壳类软体动物进行生物浓缩试验》(征求意见稿)编制说明   二○一二年七月三日   主题词:环保 标准 意见 函   附件一:   征求意见单位名单   水利部办公厅   各省、自治区、直辖市环境保护厅(局)   各省、自治区、直辖市环境监测站(中心)   各环境保护重点城市环境监测站(中心)   新疆生产建设兵团环境监测中心站   辽河保护区管理局   中国环境科学研究院   中国环境监测总站   中日友好环境保护中心   环境保护部对外合作中心   环境保护部南京环境科学研究所   环境保护部华南环境科学研究所   国家环境分析测试中心   环境保护部标准样品研究所   中国疾病预防控制中心   中国科学院生态环境研究中心   南京大学环境学院   农业部环境保护科研监测所   广东省微生物研究所   宁波出入境检验检疫局技术中心   深圳市疾病预防控制中心   泰州市环境监测中心站   上海市浦东新区环境监测站   (部内征求监测司的意见)
  • 来中科院城环所,揭开最新样板示范点的神秘面纱!
    近期,谱育科技SUPEC 7030 大气颗粒物无机元素在线监测系统(以下简称SUPEC 7030)首个应用展示样板示范点在中国科学院城市环境研究所建成。 针对现有大气重金属在线监测技术中检出限、手工比对一致性差的不足,谱育科技通过自主研发完成了一次重大技术路线升级:将标准的实验室ICP-MS分析技术应用至大气颗粒物在线监测领域,大幅度提升与改善关键性能指标,为颗粒物重金属/无机元素的在线监测提供新兴、稳定可靠的技术支持。 目前,SUPEC 7030的核心原理设计、关键性能指标以及成熟的运维体系,得到了 中科院城环所 陈进生研究组 的肯定。 后期,谱育科技将继续与中科院城环所深化合作,针对大气颗粒物重金属/无机元素的在线监测、颗粒物重金属污染特征的研究与表征、颗粒物组分源解析等深层应用领域,为中科院城环所提供先进、稳定、成熟可靠的数据支持与技术服务,为我国大气污染防治相关工作贡献国产仪器力量!监测 势在必行 近年来,随着工业、能源及交通等需求的不断增加,成因复杂的大气颗粒物重金属污染问题形势严峻,国务院《打赢蓝天保卫战三年行动计划》和生态环境部《2019年国家大气颗粒物组分监测方案》等文件都对大气颗粒物组分监测提出要求。《打赢蓝天保卫战三年行动计划》《2019年国家大气颗粒物组分监测方案》 因此建立精准可靠的大气颗粒物(尤其是PM2.5)重金属在线监测技术势在必行,这将成为相关污染研究和防治工作的基本技术前提,其对于直接判断环境空气对人体健康的危害、评价城市大气环境质量、制定防治对策都具有重要的现实意义。 创新 突破局限 针对‘在线X射线荧光监测技术(XRF)’与‘单颗粒气溶胶质谱在线监测技术(SPAMS)’两种技术线路的不足和局限,谱育科技创新性地推出了基于ICP-MS质谱技术的SUPEC 7030 大气颗粒物无机元素在线监测系统,与现有(XRF、SPAMS)监测技术相比,在灵敏度、检出限、数据有效性、数据准确度、数据可比性等方面,具备显著的技术优势,可为颗粒物无机元素组分监测手段、污染特征研究、源解析等深层应用领域,提供更加新兴、先进、稳定可靠的在线监测技术。SUPEC 7030 大气颗粒物无机元素在线监测系统01、系统组成 谱育科技自主研发的SUPEC 7030由SIPS在线采样模块、双通道切换式在线微波消解模块、在线专用型ICP-MS分析模块组成。 SIPS在线采样模块 可高效、无损、无残留地捕获目标大气颗粒物样品,形成体积非常小的颗粒物悬浊液。基于经典的颗粒物晶核冷凝长大原理的SIPS(Steam Impact Particulate Sampler)采样技术示意图 双通道切换式在线微波消解模块 颗粒物悬浊液高效传输至微波消解模块,在特有的稀释混合酸消解体系下,可完成颗粒物中目标无机元素的彻底消解(包括Si),形成均匀、澄清的样品溶液。双通道切换式在线微波消解技术的原理示意图 在线专用型ICP-MS分析模块 样品溶液在无需进行赶酸、稀释等步骤的前提下,直接引入配备了PFA耐氢氟酸进样系统的在线专用型ICP-MS模块,进行实时分析。SUPEC 7000 在线专用型ICP-MS02、监测目标 PM10、PM2.5、PM1.003、检测因子 钒、铁、锌、镉、铬、钴、砷、铝、锡、锰、镍、硒、硅、钛、钡、铜、铅、钙、镁、钠、钾、锑等 全面覆盖《HJ657-2013空气和废气颗粒物中铅等金属元素的测定ICP-MS法》中的所有待测元素 全面覆盖《2019年国家大气颗粒物组分监测方案》中的所有重金属、类金属元素
  • 国鼎环科和天津师范大学水质实验室达成合作协议
    国鼎环科和天津师范大学水质实验室达成合作协议:由国鼎提供了全套的水质分析仪器,主要是热电旗下奥利龙Orion的实验室PH,溶氧,ORP,CO2离子测定仪,以及浊度和COD测定仪。我们将努力为客户提供卓越的仪器和完善的售后,履行&ldquo 让科研更精确,更轻松&rdquo 的理念。
  • 山东农药企业发展理念超前—浙江省农药工业协会赴山东考察纪实
    作者:姜书凯 浙江省农药工业协会 2016年10月8~11日,浙江省农药工业协会由24个会员单位的33位董事长(总经理或副总等)组成的赴山东考察团,在王伟理事长的带领下,到山东省农药行业考察学习。这是我协会距2004年第一次到山东省考察学习12年之后,再次赴山东省向同行取经。本次活动在山东省农药工业协会的大力支持、张昊秘书长和侯常青副秘书长陪同下,到山东中农联合生物科技股份有限公司(简称“中农联合”)、山东滨农科技有限公司(简称“滨农科技”)、山东绿霸化工股份有限公司(简称“山东绿霸”)、海利尔药业股份有限公司(简称“海利尔药业”)等4家一流的农药企业以及山东省农药检定所实地参观交流。 10月8日下午,考察团全体团员在山东泰安市集中,由山东省农药工业协会名誉理事长、中农联合许辉总经理宴请了浙江考察团。10月9日上午,到范镇中农联合参观学习。中农联合隶属中农集团,公司主要原药产品有啶虫脒、吡虫啉、哒螨灵、霜霉威盐酸盐、噻虫啉、联苯菊酯、唑螨酯、腈菌唑、乙霉威等原药、农化中间体及百余种农药制剂,目前已建立了全球最大的新烟碱类杀虫剂和重要的杂环类杀螨剂生产基地,在2015年中国农药百强榜上排名第35位,农药收入10.33亿元。公司占地2,000亩,其中原药生产占地300余亩,制剂加工生产占地400余亩,还有1,300亩土地还在规划建设之中。其制剂加工区有大片的绿化区和大片的水域,湖中放养鸭子,湖边建有亭子,环境十分优美,达到了花园式企业的标准。粉剂加工车间设备先进,粉碎采用日本技术,计量采用德国技术,包装设备全封闭,已经完全消除了粉尘和气味,达到了国内一流水平。在绿树丛中还建有大型温室,培养了各种作物,供药效试验用。 中农联合的研发中心建在济南,仪器设备非常先进,令我们大开眼界。尤其是安全工程实验室花费了1,000多万元配备了从英国赫尔公司进口的“快速筛选量热仪(Tsu)”、“绝热加速量热仪(Phi-TECI)”、“全自动等温反应量热仪(Simular)”;从瑞士梅特勒-特利托公司进口的“差视扫描量热仪(DSC)”;从美国康宁公司进口的“G1微通道反应器”等一批先进仪器设备。应用这批仪器可以测出放热反应的温度突变起始点;反应失控的压力突变起始点;放热的最高温度和最大压力;能够获得放热反应的放热总量;放热反应的起始点;全过程温度和压力的变化;可以提高收率、减少杂质、优化反应时间,测量反应所释放的总能量,评估反应的危险性,使反应过程优化和安全。可以致力于“连续流”化学合成反应工艺方面的研究和开发,传质效率是普通反应釜的10~100倍,单位面积的换热效率是普通釜式反应釜的1,000倍以上,可以精确控制反应的温度;可以实现-60~+230℃温度范围内,压力小于18 bar的合成反应;实现大部分液液非均相及气液相条件下的反应,也可用于气液固三相反应;可以安全合成危险性物质,平稳控制强放热反应;可以在一个反应器中实现多步合成;研究出的工艺条件,可在大规模生产设备上无缝放大,同时确保反应安全性。 由于引进了这批仪器设备,使中农联合的科技人员在研发中如虎添翼,加快了研发新农药的进程,而且大大增加了试验的安全性,对公司今后的快速发展将起到至关重要的作用。 10月9日中午,山东省农药工业协会在济南宴请了考察团。下午考察团参观了山东省农药检定所,杨理健所长还与考察团进行了座谈。 10月9日傍晚,考察团赶赴滨州,山东省农药工业协会理事长、滨农科技董事长黄延昌宴请了考察团。滨农科技是我国最大的选择性除草剂生产企业,国内除草剂制剂市场占有率第一。公司现拥有除草剂、杀虫剂、杀菌剂三大类农药产品,能够合成农药原药30余个,加工制剂产品100多个,公司的酰胺类、三嗪类、二硝基苯胺类、有机磷类、苯氧羧酸类除草剂原药均已规模化和系列化生产,年合成能力在9万吨以上。滨农科技在2015年中国农药百强榜上排名第9位,农药收入23.72亿元,出口农药产品9亿多元人民币。 10月10日上午,参观滨农科技的主厂区,进厂区前,考察团在录像室观看了安全培训录像,接受了5分钟的安全教育。该主厂区占地面积1,000亩(另有副厂区600亩),由于厂区大、时间紧,考察团在企业陪同人员的讲解下,乘坐大巴绕行了整个厂区,实地参观了智能生测温室、检测中心,并在检测中心会议室进行了座谈交流。 10月10日中午,参观团抵达潍坊,山东绿霸董事长赵焱宴请了大家。山东绿霸是全球主要的吡啶生产企业之一,已形成吡啶—吡啶类中间体—农药原药—农药制剂的全产业生产链,老厂区吡啶产能18,000吨,农业部农药检定所登记在册的农药产品140多个,在2015年中国农药百强榜上排名第32位,农药收入12.89亿元。下午,考察团在赵焱董事长的陪同下,参观了山东绿霸新厂区。新厂区占地720亩,已经建成24,000吨/年吡啶项目(实际产能达30,000吨/年),生产工艺采用国际最先进的技术,物料在不锈钢反应釜反应完毕后,进入13个精馏塔进行分离提纯,吡啶质量可达99.99%。5,000立方米厌氧生化处理罐3个,焚烧炉投资3,000万元,日处理6,000立方米废气,消除了“三废”对环境的影响。正在建43,000吨/年的氯化吡啶装置,用33个精馏塔进行分离提纯。新厂区还准备建设20,000吨/年草铵膦项目。新厂区三大项目全部采用DCS控制,整个厂区工作人员将不超过200人。新厂区总投资预计为13亿~15亿元。 10月10日傍晚,考察团抵达青岛,海利尔药业总裁葛家成宴请了考察团。海利尔药业在青岛城阳、莱西姜山、潍坊滨海拥有3个大型生产基地,主要生产嘧菌酯、苯醚甲环唑、啶虫脒、呋虫胺、噻虫胺、噻虫嗪、吡虫啉、甲氨基阿维菌素苯甲酸盐、氟虫腈、烯啶虫胺等原药,在2015年中国农药百强榜上排名第37位,农药收入10.16亿元。10月11日上午,由海利尔药业制剂研究所所长司国栋陪同考察团到海利尔药业研发中心参观,研发大楼内有检测中心、制剂研发中心、原药研发中心及生测中心。生测中心内智能养虫室(饲养22种虫)、真菌培养室、人工气候箱、生测药效喷雾塔、盆栽试验精准喷雾等设备一应俱全,对新农药产品的研发起了极大的支撑作用。 浙江省农药工业协会二赴山东省同行考察学习时间短,但安排紧凑,到山东省最好的一批农药企业去取经,团员们都感到收获很大。 首先,大家感慨山东省地方政府对农药行业的全力支持,从我们考察的企业厂区占地面积动辄上千亩,便可以看出山东省地方政府的态度,相比之下,浙江省对本省的农药企业采取了限制政策,使我省农药企业被迫外迁,到苏北、山东、安徽、江西等省建厂;温州市甚至准备把当地农药企业赶尽杀绝,全部限期搬迁,温州市将没有农药企业的立足之地! 其次,山东省农药企业发展理念超前,与12年前我协会首次到山东同行考察时,已经不可同日而语了!我们考察的4家企业,年农药收入全部在10亿元以上,滨农科技更是达到23亿以上;4家企业全部入选中国农药百强榜,并且排名均靠前。山东绿霸从农药上溯到中间体,其吡啶生产区大型的不锈钢罐、反应釜、精馏塔群,完全是石油化工企业的气势,传统小打小闹的农药企业的影子不复存在,对我们来说,有种令人震撼的感觉! 三是,山东企业在科研投入上的大手笔,值得我们学习:中农联合花1,000多万元进口国外的先进仪器和设备,建立了“安全工程实验室”,从根本上改变了农药研发和放大中的安全风险,大大降低了事故发生的可能性,保证了科研人员的人身安全;同时使用先进的仪器设备,加快了开发新农药产品的进程,为企业进一步发展赢得了主动。 四是,注重环境保护,生化处理装置和焚烧炉已经普及,中农联合的粉剂加工采用了世界上最先进的设备,完全消除了粉尘,厂区已经建成花园式工厂;滨农科技诺大一个厂区,集中了30余个农药原药的生产,却闻不到农药气味,这也是山东省农药企业能得到地方政府大力支持的道理之一。 如果说2004年我们首次赴山东考察交流时,浙江省农药行业总体上还是超过山东的,那么这次赴山东考察,大家明显觉得浙江省农药行业已经大大落后于山东同行。根据王伟理事长的建议,我协会将于11月上旬组织一次研讨会,在研讨会上详细介绍山东省农药行业的发展情况,找出浙江省农药行业的不足之处,寻求我省农药行业如何发展的办法,这也是这次赴山东省考察所得到的成果之一。 AgroPages世界农化网独家稿件,转载请注明版权!在线阅读本文: http://cn.agropages.com/News/NewsDetail---12907.htm来源:Agropages.com网站:www.agropages.com联系:info@agropages.com关于AgroPages:AgroPages 是全球农化领域领先的网络媒体,我们为行业提供专业的市场调研,报告定制,媒体宣传,以及品牌推广等服务。
  • 2022年环境监测行业评述和2023年发展展望
    中国环境保护产业协会环境监测仪器专业委员会迟颖 范蕴非 唐帅 韩香玉 王强为及时总结环保产业过往一年的发展动态,预测新一年的发展趋势,我会组织各分支机构编写了《2022年行业评述和2023年发展展望》,供环保企事业单位、专家和管理者参考。一、2022年行业评述1.主要政策标准1月,生态环境部印发《“十四五”生态环境监测规划》,明确提出“以监测先行、监测灵敏、监测准确为导向”。《规划》在保证监测数据“真、准、全”的基础上,增加了“快”和“新”的要求,强调在深化推进监测数据真实、准确、全面的同时,还要加强监测的时效性、便捷性,以及新技术的应用。3月1日,生态环境部编制并印发了《“十四五”生态保护监管规划》(环生态〔2022〕15号)。3月15日,生态环境部发布了《关于做好2022年企业温室气体排放报告管理相关重点工作的通知》,加强企业温室气体排放数据管理工作,强化数据质量监督管理,并发布《企业温室气体排放核算方法与报告指南发电设施(2022年修订版)》。同月,住房和城乡建设部等4部委联合印发《深入打好城市黑臭水体治理攻坚战实施方案》,生态环境部与住房和城乡建设部印发《“十四五”城市黑臭水体整治环境保护行动方案》,进一步细化城市黑臭水体整治工作,黑臭水体主战场从“十三五”的地级及以上城市延伸到县级城市。6月7日,生态环境部等17部委联合印发《国家适应气候变化战略2035》,《适应战略2035》明确了新形势和新阶段下我国适应气候变化工作的指导思想、基本原则、目标任务、保障措施,为下一步适应气候变化工作指明了方向,是实施积极应对气候变化国家战略、强化适应气候变化工作的重要举措。同月,生态环境部等7部委联合印发《减污降碳协同增效实施方案》,提出到2025年,减污降碳协同推进的工作格局基本形成;重点区域、重点领域结构优化调整和绿色低碳发展取得明显成效;形成一批可复制、可推广的典型经验;减污降碳协同度有效提升。6月15日,中国环境保护产业协会在北京组织发布了《加快推进生态环保产业高质量发展 深入打好污染防治攻坚战 全力支撑碳达峰碳中和工作行动纲要(2021-2030年)》。《行动纲要》明确了未来10年我国生态环保产业发展的路线图,是对“十二五”“十三五”节能环保产业规划的继承和发展。为贯彻落实《中共中央 国务院关于深入打好污染防治攻坚战的意见》有关要求,持续改善空气质量,11月14日,生态环境部、发改委、科技部、工信部等15部委联合制定《深入打好重污染天气消除、臭氧污染防治和柴油货车污染治理攻坚战行动方案》。指出到2025年,全国重度及以上污染天气基本消除;PM2.5和臭氧协同控制取得积极成效,臭氧浓度增长趋势得到有效遏制;柴油货车污染治理水平显著提高,移动源大气主要污染物排放总量明显下降。2022年,生态环境部发布《环境空气和废气 吡啶的测定 气相色谱法》(HJ 1219-2021)、《环境空气 6种挥发性羧酸类化合物的测定 气相色谱-质谱法》(HJ 1220-2021)、《环境空气 降尘的测定 重量法》(HJ 1221-2021)、《固体废物 水分和干物质含量的测定 重量法》(HJ 1222-2021)、《环境空气 挥发性有机物的应急测定 便携式气相色谱-质谱法》(HJ 1223-2021)、《环境空气 有机氯农药的测定 高分辨气相色谱-高分辨质谱法》(HJ 1224-2021)、《环境空气 臭氧的自动测定 化学发光法》(HJ 1225-2021)、《水质 硫化物的测定 亚甲基蓝分光光度法》(HJ 1226-2021)、《水质 挥发性有机物的应急测定 便携式顶空/气相色谱-质谱法》(HJ 1227-2021)、《突发环境事件应急监测技术规范》(HJ 589-2021)、《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)、《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)、《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)、《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)、《环境影响评价技术导则 声环境》(HJ 2.4-2021)、《水质 6种邻苯二甲酸酯类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1242-2022)、《土壤和沉积物 20种多溴联苯的测定 气相色谱-高分辨质谱法》(HJ 1243-2022)、《地表水环境质量监测技术规范》(HJ 91.2-2022)、《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法》(HJ 1261-2022)、 《环境空气和废气 臭气的测定 三点比较式臭袋法》(HJ 1262-2022)、 《环境空气 总悬浮颗粒物的测定 重量法》(HJ 1263-2022)、 《卫星遥感细颗粒物(PM2.5)监测技术指南》(HJ 1264-2022)等23项国家生态环境标准。其中,10项标准为首次发布。2. 行业发展(1)大气环境监测方面深入打好蓝天保卫战。深入推进重污染天气消除、臭氧污染防治、柴油货车污染治理等标志性战役,协同控制PM2.5和臭氧污染,持续改善空气质量。推动重点行业落后产能加快淘汰、推进传统产业集群绿色低碳化改造,稳妥有序推进散煤治理,基本完成重点区域钢铁超低排放改造,推进燃煤锅炉关停整合和工业炉窑综合治理。继续加强VOCs综合治理。以柴油货车和非道路移动机械为监管重点,持续深入加强移动源污染防治。聚焦煤炭、焦炭、矿石运输通道以及铁矿石疏港通道,积极推进货物运输“公转铁”“公转水”。加强区域联防联控和重污染天气应急应对。2022年,作为臭氧前体物的VOCs组分监测、颗粒物组分监测、环境空气非甲烷总烃监测等,在环境监测领域均得到了明显增长。紧密围绕双碳目标。联合气象局、高研院等单位已有的监测站点,试点开展城市站点高精度温室气体浓度监测,结合无人机、走航、遥感和传感器技术的近地面二氧化碳和甲烷立体监测,初步建立基于“固定站点+无人机监测+卫星遥感”的多源大气环境温室气体浓度监测体系,跟踪评估大气中二氧化碳长期变化趋势。同时兼顾碳中和技术支撑能力基础设计,分阶段开展碳监测网络与核算技术支撑能力建设,同步建立健全方法标准、仪器规范、质控体系、卫星反演、碳源汇数值模拟等监测评估体系建设。在相关政策指引下,2022年,城市站点高精度温室气体浓度监测项目明显增多。坚决打好扬尘、异味、噪声等群众关心的突出环境问题整治攻坚战。加强施工、道路、堆场、裸露地面等面源扬尘管控,加强氨排放控制,强化重点工业源氨排放治理和氨逃逸防控,制定实施噪声污染防治行动计划,推动源头减噪、过程降噪。2022年,环境空气恶臭监测及功能区环境噪声类监测项目呈现增多势头。(2)水环境监测方面深入打好碧水保卫战。统筹推进全域黑臭水体治理、长江保护修复、黄河生态保护治理、重点海域综合治理等标志性战役,推进美丽河湖、美丽海湾保护与建设。持续打好黑臭水体治理攻坚战。统筹水资源、水环境、水生态治理,推动重要江河湖库生态保护治理,实现黑臭水体动态清零。巩固提升饮用水水源地保护水平,加快推进城市水源地规范化建设,加强水源地保护。持续打好入海河流水质提升攻坚战。实施入海河流和近岸海域水质提升行动,强化沿海污染整治,加强海水养殖环境治理,加强船舶港口、海洋垃圾等污染防治。加强岸海河环境风险排查整治和应急能力建设。随着我国水质监测工作的不断深入和细化,对水质监测仪器型式更新的需求不断增加,新技术、新类型在2022年水质监测项目中均有出现,监测产品多样化趋势明显,如黑臭水体监测、水中VOCs监测、小型化水质多参数自动监测、高光谱水质监测、长江干流生态环境无人机遥感调查等,但尚未大规模市场应用。(3)土壤和地下水方面深入打好净土保卫战。加强土壤污染源头防控,开展新污染物治理,推进农用地土壤污染防治和安全利用,实施农用地土壤镉等重金属污染源头防治行动。动态更新土壤污染重点监管单位名录,严格建设用地土壤污染风险管控和修复名录内地块的准入管理。以化工、有色金属行业为重点,组织实施土壤污染源头管控,定期开展土壤污染重点监管单位周边土壤环境监测。强化地下水污染协同防治,研究建立地下水污染防治重点排污单位名录,推动纳入排污许可管理,加强防渗及地下水环境监测。随着《土壤污染防治行动计划》《土壤污染防治法》等一系列政策法规的相继出台,地方配套政策法规、行业标准及技术规范陆续跟进,我国对土壤和地下水检测领域重视度不断提升。作为政策驱动型产业,土壤和地下水检测行业也将迎来巨大的市场空间。(4)环境监测仪器方面在大气监测仪器方面存在的主要问题有:1)高精度环境空气温室气体监测主要依赖进口;2)颗粒物现场质控难;3)大气污染物自动监测技术和方法标准需要健全。在水质监测仪器方面存在的主要问题有:1)多采用传统的湿化学水质在线监测技术,在监测的过程中必须使用药剂,存在废液等二次污染;2)测量周期长,监测频率低,不具备水质应急实时监测能力;3)程序繁杂且监测仪器以单指标浓度监测为主,不能全面反映水质生态系统的综合情况。3. 关键核心技术(1)大气环境监测关键技术城市站点高精度温室气体监测技术:相对于常规污染物监测,温室气体监测技术难点主要在于对监测数据的准确度要求非常高。在温室气体高灵敏探测技术方面,以美国Picarro、ABB为代表的气体分析仪器公司,开发了高性能的CRDS、OA-ICOS气体检测仪器,在国内大气背景站、高原科考及其他温室气体高精度测量需求领域占据了绝对市场。国内在温室气体监测技术研究方面也开展了大量的工作,由于起步较晚,国内在温室气体高端分析仪器性能上,尤其是测量精度、环境适应性和长期稳定性等技术指标方面与国外还存在一定的差距。目前,这类仪器仍以进口为主。大气PM2.5与O3污染综合立体监测技术:突破大气PM2.5与O3及其主要前体物的精准探测、智能关联感知、天空地一体化遥感监测技术,建立全组分环境空气挥发性有机物和臭氧层消耗物质监测技术与质量控制方法,以满足新时期大气PM2.5与O3协同防控需求。区域碳汇反演数值模拟研究:加强由温室气体监测浓度到排放量的同化反演模型等研究,厘清碳源碳汇的时间变化和空间分布特征及区域贡献,科学预估碳源碳汇的未来趋势,推进监测数据的业务化应用,尽早助力碳达峰行动。(2)水环境监测关键技术免/少试剂监测技术:可以将繁冗复杂的前处理程序简化或省略掉,极大限度地减少监测所需时间,提升监测效率,提高时间分辨率,同时降低使用化学试剂造成的二次污染,免/少试剂监测技术将会是未来水质监测的一大方向。高颗粒度快速检测技术:传统水质在线监测多采用固定站点式的连续监测,需进行消解等预处理,费时费力,且分析结果远远滞后于实际水质变动情况,自动化程度低,不能有效摸查水域的全面水质数据,从而难以对水环境做出整体有效的评价与分析,很大程度上增加了对水环境治理的决策难度,急需高颗粒度快速检测技术,实现多污染源全要素实时检测。水污染物通量监测关键技术:水污染物通量监测能够获得水环境中营养盐和污染物流入或流出的量,用于厘清行政区之间的污染责任,精准支撑生态区域补偿;为水生态健康与风险评估、水生态修复与可持续利用提供数据支撑。4.面临的挑战和机遇2022年,我国经济处于疫情冲击后的恢复阶段,经济发展动力不足,不稳定不确定因素增多,国内企业缺乏活力,经济下行压力持续加大,形势较为复杂严峻。环境监测行业作为环保风向标,面临着更多挑战与机会。(1)面临挑战:生态环境监测、多污染物协同防治技术水平尚无法支撑更高效率、更加精准地深入打好污染防治攻坚战的需求。温室气体减排压力空前突出,支撑碳达峰碳中和目标如期实现和应对气候变化面临重大技术挑战。(2)发展机遇:“双碳”背景下,推动减污降碳协同控制,强化在线监管作用。“双碳”战略下的温室气体监测将成为热点。多污染物全要素监测需求推动环境监测新技术发展应用,为环境监测行业带来新的活力。水生态生物毒性监测将会是未来增长点之一。二、2023年发展展望2022年1月,生态环境部颁布了《“十四五”生态环境监测规划》,明确到2025年,政府主导、部门协同、企业履责、社会参与、公众监督的“大监测”格局更加成熟定型,强调了监测网络与现代化生态环境监测技术的重要性。“双碳”目标下碳监测成为热点。2021年9月,生态环境部印发《碳监测评估试点工作方案》,选取13个城市开展大气温室气体监测试点,并划分了任务阶段,开启碳监测新阶段。针对不同行业、城市高中低精度和背景点碳监测活动,构建覆盖固定污染源监测、企业无组织排放监测、城市环境空气监测、便携监测、移动走航监测、无人机监测和卫星遥感监测等“天地空”全覆盖的温室气体立体监测网络。通过立体监测数据整合和大数据分析,提升温室气体精细化管理水平和靶向治理能力,为政府主管部门制定中长期的碳减排目标提供科学依据。当前开展碳监测业务的企业并不多,相关政策标准也不完善,整个行业处于起步阶段。但有碳中和的压力在,至少在2060年以前,碳监测都会是环境监测的热门细分领域。组分站需求提升,大气监测设备业务增长潜力大。组分站又名大气污染物在线源解析系统,能够及时掌握污染成因及动态,通过明晰一个城市主要污染构成、来源、形成成因、空间分布等要素信息,帮助管理者精准施策,实现空气质量优良率的提升。组分站主要监测参数包括气象五参数(温度、湿度、气压、风向、风速)、常规六参数(二氧化硫SO2、二氧化氮NO2、可吸入颗粒物PM10、细颗粒物PM2.5、一氧化碳CO、臭氧O3)、颗粒物组分(颗粒物中水溶性离子13项、有机碳/元素碳、地壳元素29项)和有机物组分(甲烷/非甲烷总烃、含氧有机物12项、挥发性有机组分57项)等。噪声污染日益严重,全国环境噪声污染防治市场规模将扩大。2022年6月5日起,《中华人民共和国噪声污染防治法》(以下简称“新噪声法”)正式施行,“新噪声法”坚持以人民为中心,以问题为导向,明确噪声污染内涵,完善噪声标准体系,强化噪声源头防控,明确目标考核评价,分类防治噪声污染,保障公众健康,改善生活环境,对环境噪声污染防治提出了更高的治理要求,是维护社会安宁、推进生态文明建设的有效法律保障。环境噪声防治标准更加严格,责任主体更加明确,必将带来噪声治理市场的扩大。统筹流域与区域、水域与陆域、生物与生态,逐步实现水质监测向水生态监测转变。开展水生生物监测、水生态毒性、生态流量及污染通量监测,为稳步提升水生态环境提供技术支撑。生态环境监测是生态环境保护的基础,环保工作越是深入,对环境监测的准确性、及时性、覆盖范围等要求越高。“十四五”期间,我国环保工作重心将逐步从末端治理转向源头治理;从单一污染物防控转向多污染物协同治理;从粗放式转向精细化管理。环境监测是生态环境保护的得力助手,伴随生态文明建设进程逐步向减污降碳协同增效迈进,生态保护国家战略定位的进一步明确,环境监测企业乘着政策的东风会迎来更广阔的发展空间,业务领域可进一步拓宽,市场也将释放更多的监测项目。
  • 水质中铝含量的测定
    一、背景介绍铝是重要的金属元素,在自然界中含量丰富,在地壳中分布广泛,含量高达8.8%(重量),仅次于氧、硅位居第三。长期以来,铝一直被认为是无毒元素,但随着它在人们生活中的广泛应用,使其对环境的污染日益突出,尤其是对水环境的污染,过量铝不仅对各类水生生物,植物等有强烈的毒害作用,对人体的影响主要表现在对细胞和骨骼的毒性、对大脑的损伤、对肝脏和生殖系统的伤害。《生活饮用水卫生标准》、GB/T 14848-2017《地下水质量标准》、GB/T 23837-2009《工业循环冷却水中铝离子的测定》等水质标准对铝含量均有限值要求,故我们需要对水质中铝含量进行检测。下面我们将具体介绍铝含量检测的标准要求、测试方法、具体测试过程及结果。 二、标准及限值铝的测定方法主要有铬天青S分光光度法、水杨基荧光酮-氯代十六烷基吡啶分光光度法、原子吸收分光光度法、电感耦合等离子体质谱法和电感耦合等离子发射光谱法等。铬天青S分光光度法:在pH 6.7-7.0范围内,铝在聚乙二醇辛基苯醚和溴代十六烷基吡啶的存在下与铬天青S反应生成蓝绿色的四元胶束,在特定波长处比色定量。该方法的测试性价比高,检测仪器可设计成便携式,易于携带保管。下列是各标准中铝的限值及对应的检测方法。 表1铝的检测标准及限值标准编号标准名称限值GB 5749-2006GB5749-XXXX征求意见稿生活饮用水卫生标准0-0.2mg/LGB/T 14848-2017地下水质量标准≤0.05 mg/L(Ⅳ类)GB/T 23837-2009工业循环冷却水中铝离子的测定0-100mg/L 三、铝含量测定1、检测仪器:DGB-480型多参数水质分析仪2、检测试剂: 铝工作试剂包:铝缓冲液溶剂、铝显色剂、铝缓冲液粉剂 铝标准溶液:ρ=100.0mg/L3、检测流程及结果:参数方法号方法国家标准检出限mg/L测量范围mg/L标准偏差测量误差铝1铬天青S法GB/T 5750.60.0050.005-0.3±0.005 mg/L±0.01mg/L图 1 铝含量测定流程 图2 铝含量测定显色图(从左到右依次为0mg/L、0. 06mg/L、0.15mg/L、0.24 mg/L、0.3mg/L) 图3 铝含量测定曲线图 4、结果总结:● 对0. 06mg/L、0.15mg/L、0.24 mg/L、0.3mg/L的铝标准溶液进行检测,标准偏差≤0.002mg/L,测量误差<0.01mg/L,结果良好。
  • 普识纳米推出最新解决方案(拉曼食品快检)打击“食药环”违法犯罪
    为认真贯彻落实关于统筹推进疫情防控和经济社会发展的重要指示精神,全力以赴做好新冠肺炎疫情防控、保障疫情防控期间复工复产工作,公安部日前推出公安机关依法打击食药环等领域犯罪保障疫情防控期间复工复产十项措施,具体内容包括了依法严厉打击制售假劣农资犯罪、依法严厉打击危害食品安全犯罪、依法严厉打击药品领域犯罪等。(来自中华人民共和国公安部官网)  随着公安机关打击食品犯罪的深化开展和专业化打击体系的建立,侦查办案任务日益繁重,目前各级公安机关食药环犯罪侦查队伍缺乏专业检测设备,也为现场突发提高快速响应保障能力,亟需在公安机关食药环机构内配备适合食品、药品、环境犯罪侦查的快检设备及前处理提取、储存等相关设备,用于食药、环境样品中有毒有害物质的快速筛查,为打击食品、药品、环境犯罪提供可靠的技术手段。  为此,普识纳米重点推出PERS-D900便携式拉曼检测仪,为助力公安部门解决“食药环”违法犯罪问题,提供完整的解决方案。目前,PERS-D900已可在食药环侦实验室投入使用    产品介绍:基于表面增强拉曼光谱(SERS)技术和增强试剂制备技术所开发的快速检测仪,采用独特的便携设计,配备可视化,信息化平台,为基层监管单位量身定制,具有简单,精准,高效,便携等特点,可第一时间携至现场保障检测需求。检测项目包括违禁添加,滥用添加,保健药品,农药残留,兽药残留,投毒物质等。  产品优势:  外观简单:整机一体化设计,美观、耐用  轻松便携:轻便、小巧,方便携带,适用于实验室,现场等多种场合  快速检测:样品检测仅需10秒  现场检测:可第一时间携带至现场保障检测需求  量身定制:为基层监管单位量身定制  智能监管:配备可视化、信息化平台  非接触式(瞄准式):适用于固体(含粉末)、液体测试,采用一次性低成本玻璃样品管,基于液体样品瓶设计聚焦光路
  • 【瑞士步琦】近红外光谱法定量测定多元醇中羟基值和浊点
    近红外光谱法定量测定多元醇中羟基值和浊点近红外应用”1简介多元醇见图1是用于生产各种最终用途的聚合物和塑料的基本组成部分。例如,我们日常使用的聚氨酯产品就是用多元醇来制造的。多元醇是从多功能醇或胺开始,通常与环氧乙烷(EO)或环氧丙烷(PO)反应制成的。▲ 图1. 多元醇真正的多元醇是复杂的,具有混合和不同的链长和末端。羟基值(OH值)是有机化合物质量的快速评价指标。它是可用于反应的活性羟基数量的量度,并提供有关链长分布和范围的信息。羟值既是衡量多元醇分子量及质量的主要参数之一,又是聚氨酯制品生产厂家在配方设计时决定各原料投用量的重要参考依据。 因此羟值测定的准确性非常重要。目前,检测羟值的方法主要有化学分析法和仪器分析法。化学分析法中最常用的是滴定法,基于滴加试剂与被测溶液中物质的反应,利用滴加滴定试剂的量来推测被测物质的浓度。该方法中使用吡啶作为溶剂,吡啶易挥发且有恶臭气味,被世界卫生组织国际癌症研究机构列入2B 类致癌物清单,对实验人员的身体健康有一定的危害,且该方法反应时间较长( 需回流加热 1h),操作复杂,分析时间较长,测试效率低,测试准确性受人为因素影响较大。仪器分析法主要有核磁共振法和近红外光谱法。核磁共振法操作简单,测试快速且准确度较高。但是该方法所需要的设施昂贵,且实验室环境要求高,在企业中并未得到广泛推广。近红外光谱法是近红外光源照射下分子发生能级跃迁时产生的,记录的是分子中单个化学键的基频振动的倍频和合频信息,受含氢基团 X-H(X 为C,N,O)的倍频和合频的重叠主导,其光谱信息与样品的结构和成分组成相关。 多元醇在近红外光谱区的吸收主要包括 C-H、N-H,O-H 个含氢基团基频振动的合频和倍频振动吸收,通过这些含氢基团分子振动从基态到高能级跃迁的过程中记录的羟基的合频和倍频吸收信息,从而进行羟值的定量分析。 该方法在测试过程中无需对样品进行稀释、分散处理,因其操作简单、检测快速、绿色安全的特点而被广泛应用。浊点是当混合物从足够高的温度缓慢冷却以使混合物成为单相时,多元醇混合物中形成薄雾或云状的温度。浊点随着多元醇分子量的增加而减小,随着 EO 的加入而增大。这一分析被用来衡量多元醇的水溶性、表面活性剂性质和反应性。浊点控制反应系统中多元醇的相行为,这种行为对最终产品质量有极其重要的影响。由于多元醇在水中具有反溶解度,较高的浊点表明这些重要性能属性的增加。2应用设备及附件本文重点介绍步琦近红外光谱 N-500 用于快速测定多元醇的 OH 值和浊点。它可以应用于:最终产品或来料的检测和过程的监控支持。使用的仪器介绍如下:N-500 是市面上第一台商业化偏振干涉仪的傅里叶变换近红外光谱仪。▲步琦近红外光谱仪 N-500多至 6 通道同时检测0.5, 1, 2, 4, 5,8, 10mm 的比色皿控温,室温至 65 度3实验仪器配置:液体样品 NIRFlex Liquids,配备样品腔用于液体透射分析,可控温(室温~65℃),可自动切换背景测量通道,同时容纳 6 个比色皿。测量参数:波长:4500-10000;分辨率:8cm-1;温度设定 60°C,扫描次数:液体样品 64 次。测量要求:多元醇样品装入比色皿 8mm 后测量,每个样品测量三次光谱,每条光谱采集前都进行相同的混匀、取样。测量多元醇的样品光谱谱图:如图2▲图2. 测量多元醇的样品光谱谱图从光谱本身来看,样品的信号加强,反射率在 0.3 以上可以满足近红外分析。模型参数如下表:从表中可以看出:模型的相关系数均大于 0.99,样品羟值和浊点的准确度较高完全符合国家标准《塑料 聚氨酯生产用多元醇近红外光谱法测定羟值》的误差要求,分析方法重复性较好,可以用于实验室日常检测。4结论结果表明,近红外光谱技术可以成功地监测 OH 值和浊点,并具有良好的精度。该技术不需要样品制备用于测定 OH 值的标准湿化学方法可以被更快,更便宜和更简单的近红外分析所取代,以更快的批 QA 审核通过。近红外法具有分析效率高、制样简单、环保等优势,测试成本低,被实验室和企业广泛应用。
  • 我国每年释放五亿吨多环芳烃? 专家:好比一人一天吃一万顿饭
    近日,有媒体报道称“煤炭挥发分而产生的多环芳烃是PM2.5的原始结构,也是PM量里最广的源头”。报道引用专家说法,认为“一吨燃煤在燃烧过程中会释放300公斤的多环芳烃”。按照2015年我国消耗煤炭量为36.98亿吨计算,“多环芳烃每年的释放量高达约5.55亿吨”。  报道引发了公众的广泛关注,那么真相到底如何?带着这个问题,记者采访了相关专家。  “这个数据无法与我们研究掌握的数据对比,直观感觉就是有人说他一天吃一万顿饭。”中科院院士、北京大学教授陶澍带领的团队长期从事多环芳烃排放清单的研究。对于报道中给出的每年释放5.55亿吨多环芳烃的数据,他这样表示。  查询资料显示,多环芳烃是带有两个以上苯环的碳氢化合物的统称。目前,主要管控的有16种母体多环芳烃。其中,苯并[a]芘是致突变性最强的化合物,环境管理中多采用苯并[a]芘代表多环芳烃实施管控。  陶澍介绍,根据自下而上获得的排放清单数据,基于各类排放源活动强度和排放因子计算得到的数据显示,2014年全球16种多环芳烃排放量为51万吨,而我国的排放量为12.5万吨左右。在我国,燃煤排放的多环芳烃约为5.6万吨,主要来源于民用煤炭、工业炼焦和工业锅炉,分别占比为48%、30%和18%。  “陶澍院士得出的结论与国际经验相符。”环境保护部评估中心石化部副主任崔积山表示,美国燃煤锅炉的排放因子为0.01克/吨煤,有处理设施和无处理设施条件下炼焦炉排放因子分别为1.5和2.1克/吨焦。也就是说,每燃烧一吨煤,炼焦炉产生的多环芳烃大约在2克左右,而燃煤锅炉产生的多环芳烃则约为0.01克。  崔积山进一步解释说,多环芳烃是一种可贵的油品资源,通过加氢工艺,即可获得优质油品,重组分油品中,多环芳烃是最主要的成分。而我国目前最先进的煤制油工艺,转化率也仅为24%,按照文章中一吨燃煤可释放300多千克的多环芳烃,则煤炭燃烧产生的多环芳烃还高于煤制油产率。“按照最好24%的转化率,1吨煤只能产生240千克油品,如果通过直接燃烧就能产生300多千克多环芳烃,煤制油工艺就没有了意义,这显然是不合理的。”崔积山说。  多环芳烃的排放量近年来有哪些变化趋势?陶澍表示,从研究结果和数据分析,我国苯并[a]芘排放量自1996年出现峰值后呈逐年下降趋势,这与上世纪末全面取消土炼焦等有密切关系。  “现在的工业用煤燃烧技术几乎没有多环芳烃排放,少量的排放主要集中在煤的低温干馏过程中。相比之下,民用燃煤的多环芳烃排放相对较大。特别是家庭煤炉在极其恶劣的燃烧条件下会产生较大的排放。”神华集团研究院院长杜铭华表示。  事实上,我国在环境管理中一直重视多环芳烃的排放控制。环境保护部环境标准研究所研究员张国宁介绍,在环境质量标准中,《环境空气质量标准》和《室内空气质量标准》均对苯并[a]芘浓度限值提出了要求。  在污染物排放标准中,《大气污染物综合排放标准》和《铝工业污染物排放标准》、《炼焦化学工业污染物排放标准》、《石油炼制工业污染物排放标准》、《石油化学工业污染物排放标准》等4项多环芳烃主要产生行业的大气污染物排放标准,也将苯并[a]芘列入控制范围,除了铝工业标准外,排放限值均要求为0.0003毫克/立方米,铝工业标准仅对厂界浓度提出要求,限值为0.00001毫克/立方米。“目前看来,我国对于多环芳烃的控制要求,是严于发达国家的。”张国宁表示。
  • 在线环境监测企业8家入围! 2022环保装备制造业规范条件企业名单公布!
    近日,2022环保装备制造业规范条件企业名单于中华人民共和国工业和信息化部官方网站公布。据统计,本次名单中,污水治理相关企业入围28家,涉及装备制造、工程施工相关领域;大气治理相关企业入围11家,涉及除尘、挥发性有机物(VOCs)、脱硫、脱硝装备制造相关领域;固废处理装备入围9家,涉及预处理、焚烧类、堆肥类装备制造相关领域;涉及在线环境监测相关企业入围8家,涉及在线环境监测仪器制造与实验室分析仪器制造领域。在线环境监测企业具体名单如下:序号省市企业名称主营业务领域1天津市天津智易时代科技发展有限公司在线环境监测仪器制造2江苏省江苏德高物联技术有限公司在线环境监测仪器制造3安徽省中水三立数据技术股份有限公司在线环境监测仪器制造4安徽省安徽中科华仪科技有限公司在线环境监测仪器制造5安徽省安徽科创中光科技股份有限公司在线环境监测仪器制造6安徽省合肥中科光博量子科技有限公司在线环境监测仪器制造7山东省山东海慧环境科技有限公司在线环境监测仪器制造8山东省青岛盛瀚色谱技术有限公司实验室分析仪器制造公示原文如下:为引导环保装备制造业高质量发展,促进行业技术创新,提升绿色发展水平,根据《环保装备制造行业(大气治理)规范条件》《环保装备制造行业(污水治理)规范条件》《环保装备制造行业(环境监测仪器)规范条件》《环保装备制造业(固废处理装备)规范条件》有关要求,现将拟公告的2022年环保装备制造业规范条件企业名单予以公示,如有异议,请在公示期内与我们联系,并提交相关证明材料。公示时间:2022年11月3日至2022年11月17日联系单位:工业和信息化部节能与综合利用司联系电话:010-68205364电子邮件:jsc@miit.gov.cn附件:1.符合《环保装备制造行业(大气治理)规范条件》 企业名单(第六批).wps2. 符合《环保装备制造行业(污水治理)规范条件》 企业名单(第四批).wps3. 符合《环保装备制造行业(环境监测仪器)规范条件》企业名单(第四批).wps4. 符合《环保装备制造业(固废处理装备)规范条件》企业名单(第三批).wps
  • 多家仪器企业榜上有名:2020年环保装备制造业规范条件企业名单
    p style=" text-indent: 2em " 日前,工信部公示2020年环保装备制造业规范条件企业名单,涉及环保企业共84家,其中符合《环保装备制造行业(大气治理)规范条件》企业名单(第四批)10家、符合《环保装备制造行业(污水治理)规范条件》企业名单(第二批)36家、符合《环保装备制造行业(环境监测仪器)规范条件》企业名单(第二批)19家、符合《环保装备制造业(固废处理装备)规范条件》企业名单(第一批)19家。 /p p style=" text-indent: 2em " br/ /p p style=" text-indent: 2em " 2020年环保装备制造业规范条件企业名单公示 /p p style=" text-indent: 2em " 为引导环保装备制造业高质量发展,促进行业技术创新,提升绿色发展水平,根据《环保装备制造行业(大气治理)规范条件》《环保装备制造行业(污水治理)规范条件》《环保装备制造行业(环境监测仪器)规范条件》《环保装备制造业(固废处理装备)规范条件》有关要求,现将拟公告的2020年环保装备制造业规范条件企业名单予以公示,如有异议,请在公示期内与我们联系,并提交相关证明材料。公示时间:2020年9月25日至2020年10月10日联系单位:工业和信息化部节能与综合利用司联系电话:010-68205340电子邮件:hbc@miit.gov.cn附件: /p p style=" text-indent: 2em " 1.符合《环保装备制造行业(大气治理)规范条件》企业名单(第四批) /p p style=" text-indent: 2em " 2.符合《环保装备制造行业(污水治理)规范条件》企业名单(第二批) /p p style=" text-indent: 2em " 3.符合《环保装备制造行业(环境监测仪器)规范条件》企业名单(第二批) /p p style=" text-indent: 2em " 4.符合《环保装备制造业(固废处理装备)规范条件》企业名单(第一批) /p p style=" text-align: center " img style=" width: 374px height: 468px " src=" https://img1.17img.cn/17img/images/202010/uepic/5c4b7c9b-e5bd-4348-a966-52812362e166.jpg" title=" 6373765439803052169598474.jpg" width=" 374" height=" 468" / /p p style=" text-align: center " img style=" width: 386px height: 486px " src=" https://img1.17img.cn/17img/images/202010/uepic/64d23243-d109-41dd-813f-c6524261fad8.jpg" title=" 6373765439805143443827719.jpg" width=" 386" height=" 486" / img src=" https://img1.17img.cn/17img/images/202010/uepic/42573a6e-6aad-4200-a28b-3681578af47d.jpg" title=" 6373765439809126894111799.jpg" width=" 375" height=" 534" border=" 0" vspace=" 0" alt=" 6373765439809126894111799.jpg" style=" text-align: center width: 375px height: 534px " / /p p style=" text-align: center " img style=" width: 383px height: 429px " src=" https://img1.17img.cn/17img/images/202010/uepic/4f3d62da-5afe-41f3-9f0a-e714c1ba295f.jpg" title=" 6373765439854529895741633.jpg" width=" 383" height=" 429" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202010/uepic/3e54f9f5-c4bd-4d58-b077-6d5728a39e4b.jpg" title=" 6373765439897146195211149.jpg" width=" 391" height=" 530" style=" width: 391px height: 530px " / img src=" https://img1.17img.cn/17img/images/202010/uepic/ecabb14e-2dde-4a64-8018-09abcaed687a.jpg" title=" 6373765439868072198470112.jpg" width=" 374" height=" 263" border=" 0" vspace=" 0" alt=" 6373765439868072198470112.jpg" style=" width: 374px height: 263px " / img src=" https://img1.17img.cn/17img/images/202010/uepic/c6bd4fb3-0a95-430e-a641-cd43bdf41276.jpg" title=" 6373765439885093782482670.jpg" width=" 382" height=" 557" border=" 0" vspace=" 0" alt=" 6373765439885093782482670.jpg" style=" width: 382px height: 557px " / /p p style=" text-align: center " img style=" width: 546px height: 310px " src=" https://img1.17img.cn/17img/images/202010/uepic/89b257c5-4c1d-4ce1-bd5f-d6851801ed94.jpg" title=" 6373765439914367113925535.jpg" width=" 546" height=" 310" / /p p br/ /p
  • 6月1日起这10项环境标准将实施
    6月1日起这10项环境标准将实施我们从国家生态环境部了解到6月1日起有10项环境标准将实施,主要是水质、空气和土壤相关的环境标准,涉及到空气颗粒物检测仪器、液质联用仪器、气质联用仪器、分光光度计、不溶性微粒检测仪、气相色谱仪器、便携式傅里叶变换红外光谱仪器。HJ 653-2021 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法该标准为替代标准,替代“HJ 653-2013”。本标准规定了环境空气颗粒物 (PM 10 和 PM 2.5 )连续自动监测系统(以下简称 PM 10 和 PM 2.5 自动 监测系统”)的技术要求、性能指标和检测方法。本次修订的主要内容有:—— 术语和定义中增加了“动态加热系统”“ 挥发性颗粒物补偿系统 ”和“实际状态”,并将本标准性能检测中颗粒物的浓度值由标准状态下浓度值修改为实际状态下浓度值;—— 系统组成中增加了“动态加热系统”和“ 挥发性颗粒物补偿系统 ”的要求,删除了 方法原理”的要求;—— 技术要求中增加了系统铭牌内容和切割器应具有唯一性标识的要求,修订了对数据显示、记录和输出功能要求,增加了对参数的显示、记录和输出要求;—— 性能指标中增加了“检出限”“湿度测量示值误差”“断电影响测试” 3项指标,调整和删除了部分性能指标,适当加严“参比方法比对测试”性能指标要求,将“切割器性能”“加载测试” 2项性 能指标调整至功能要求,检测方法见 HJ 93 的相关要求;—— 检测方法对应修改后的性能指标进行了调整,对“参比方法比对测试”的测试地点、测试程序等提出了更加全面和具体的要求。HJ 1210—2021土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法本标准为首次发布。本标准规定了测定土壤和沉积物中13种苯胺类和2种联苯胺类化合物的液相色谱 - 三重四极杆质谱法 。本标准适用于土壤和沉积物中联苯胺、苯胺、4-甲基苯胺、 2-甲氧基苯胺、 3-甲基苯胺、 2-甲基苯 胺、 2,4 -二甲 基苯胺、 4-硝基苯胺、 3-硝基苯胺、 4-氯苯胺、 2-萘胺、 2,6 -二甲基苯胺、 3-氯苯胺、 3,3 ' -二氯联苯胺和 N-亚硝基二苯胺共 13 种苯胺类和 2种联苯胺类化合物的测定。HJ 1214-2021水质 可吸附有机卤素(AOX ) 的测定 微库仑法 本标准为替代标准,替代“GB/T 15959—1995”本标准规定了测定水中叠氮化物的分光光度法 。本标准规定了地表水、地下水、生活污水和工业废水中可吸附有机卤素的微库仑测定方法。本标准与《水质可吸附有机卤素( AOX)的测定 微库仑法》( GB/T 15959—1995)相比,主要 差异如下:——修改了方法适用范围 、方法原理以及样品的采集和保存条件 ;——删除了样品吹脱步骤 ;——完善了标准核查溶液和试样制备的要求 ;——细化了校准 、样品测定和结果表示等内容 ;——增加了干扰和消除 、质量保证与质量控制等条款 。自本标准实施之日起,原国家环境保护局1995年 12月 21日批准发布的《水质 可吸附有机卤素(AOX)的测定 微库仑法》( GB/T 15959—1995)在相应的国家污染物排放标准实施中停止执行。HJ 1215-2021水质 浮游植物的测定 滤膜-显微镜计数法本标准为首次发布。本标准规定了测定地表水中浮游植物的滤膜 - 显微 镜 计数法 。本标准适用于地表水中浮游植物的快速测定。HJ 1216-2021水质 浮游植物的测定 0.1 ml计数框-显微镜计数法 本标准为首次发布。本标准规定了测定地表水中浮游植物的0.1 ml计数框 - 显微镜计数法 。本标准适用于地表水中浮游植物的密度测定。HJ 1219-2021环境空气和废气 吡啶的测定 气相色谱法本标准为首次发布。本标准规定了测定环境空气和废气中吡啶的气相色谱法 。本标准适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中吡啶的测定。HJ 1220-2021环境空气 6 种 挥发性羧酸类化合物的测定 气相色谱-质谱法本标准为首次发布。本标准规定了测定环境空气中6种挥发性羧酸类化合物的气相色谱 - 质谱法。本标准适用于环境空气和无组织排放监控点空气中乙酸、丙酸、正丁酸、丙烯酸、异戊酸和正戊酸等6种挥发性羧酸类化合物的测定。HJ 1221-2021环境空气 降尘的测定 重量法本标准规定了测定环境空气中降尘的重量法。本标准与《环境空气降尘的测定重量法》( GB/T 15265 94)相比,主要差异如下——修改了集尘缸的材质要求和实验工具——细化了采样点布设的技术要求 删除了清洁对照点 增加了防鸟措施——明确了样品保存要求 补充完善了质量控制要求和实验记录信息——将降尘总量中可燃物的测定调整至附录自本标准实施之日起,原国家环境保护总局1994年10月26日批准发布的《环境空气降尘的测定重量法》(GB/T 15265—94)在相应的国家生态环境标准实施中停止执行。HJ 1222-2021固体废物 水分和干物质含量的测定 重量法本标准为首次发布。本标准规定了测定固体废物中水分和干物质含量的重量法。本标准适用于常见固体废物中水分和干物质含量的测定,不适用于挥发性有机物含量高、易燃易爆的固体废物样品中水分和干物质含量的测定。HJ 1240-2021固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅立叶变换红外光谱法本标准为首次发布。本标准规定了测定固定污染源废气中气态污染物(SO2、NO 、NO2、CO 、CO2)的便携式傅立叶变 换红外光谱法 。本标准适用于固定污染源废气中气态污染物(SO2、NO 、NO2、CO 、CO2)的测定。Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 我国首艘千吨级海洋生态环境监测船——“中国环监浙001”正式列编并扬帆起航
    浙江海洋生态环境监测添“重器”! 4月6日,在舟山双阳码头,随着一声“滴”的鸣笛声,我国首艘千吨级海洋生态环境监测船——“中国环监浙001”正式列编并扬帆起航,开启了2022年度浙江省近岸海域国控站位春季生态环境监测工作。 海洋生态环境监测船,是海洋生态环境监测的基础设施之一,在海洋生态环境保护、海洋资源开发利用、国家海防安全等方面发挥着重要技术支撑保障作用。“装备一艘吨位更大、功能更全、适航更广的海洋生态环境监测船,能更好开展海洋生态环境监测监管工作。”浙江省海洋生态环境监测中心相关负责人介绍,浙江省海洋生态环境监测中心是全国生态环境系统首家专业海洋生态环境监测一级站,承担着国家、省、市三级海洋生态环境监测和管理任务。“中国环监浙001”是艘绿白相间的“大船”。据了解,该船总投资四千多万元,总长63.91米,型宽10.6米,型深4.45米,总吨位998吨,定员40人,设计航速13.5节,续航力2800海里。 在设计工艺上,“中国环监浙001”采用的是先进的全船全专业三维建模工艺建造,还配备了总面积达150平方米的4个专业实验室,以及先进的海洋生态监测仪器设备,具备在入海河口及毗邻海域、沿海/近海海域进行定点、定时的水文、水质、沉积物和生物的采样及现场监测能力。 浙江省生态环境厅相关负责人认为,“中国环监浙 001”作为全面提升海洋生态环境监测和综合调查能力的“重器”,其列编启航,将全面提升海洋生态环境监测数字化、网络化、智能化水平,更加及时、全面、准确地反映近岸海域环境质量状况及其发展变化趋势,为推动海洋生态环境监测高质量发展、助力海洋生态环境高质量保护和沿海地市社会经济高质量发展提供有力保证。
  • 第20届中国环博会荣耀收官,各项数据再创新高促进环保产业共生繁荣
    p   我国的生态文明建设上升到前所未有的高度,政府不断推出更立体的法律法规和制度政策,全面打响污染防治攻坚战,为环境产业带来了更多发展的新机遇。于4月15-17日在上海举办的第20届中国环博会,在三天的展期中,面向来自58个国家与地区的73,097名专业观众全方位展示了水、固废、大气、土壤、噪声污染领域的趋势和技术创新,印证了环境产业发展的强劲前景。 /p p   平台功能愈加完善 & nbsp 促进产业共生繁荣 /p p   全国工商联环境商会会长赵笠钧表示:“中国环博会持续为环保事业构建创新的平台,汇聚同行的力量。二十年来,高质量环境企业凝聚在一起,激扬着产业的健康发展,推动着环境的持续改善。” /p p   在完善平台功能上,中贸慕尼黑展览(上海)有限公司总经理江刚先生也表示:“中国环博会20年来不忘初心,始终努力扮演好行业平台的角色。本届展会我们从新品发布、研发展示、技术推广、理念交流四个方面搭建了不同的展示交流平台,受到广泛赞誉。我们希望通过充分发挥中国环博会的平台作用,赋能环保产业共生繁荣。” /p p   “对于今年展会来说,最大的感受就是板块细分所带来的观众更专业对口。展会现场的首发平台也颇为盛大,为我们提供了一个很好的发布新品的机会。通过中国环博会,我们有机会接触众多同行,看到越来越多的国产品牌在快速发展,在为此感到欣喜的同时也感受到了竞争的压力,激励我们不断突破,与中国环博会一起推动行业更好地发展。”哈希水质分析仪器(上海)有限公司市场部经理孙倩如此评价到。 /p p   首个城市馆引爆热度 & nbsp 多位政府领导莅临参观 /p p   上海市生态环境局科技与国际合作处处长施敏介绍:“2019年上海迎来了第20届中国环博会。以中国环博会为平台,今年上海市生态环境局联合二十几家上海高质量环保企业参展,独立设立“上海企业馆”,整体面积超过2000平方米,集中展示上海前沿环境领域技术,推动环保产学研联合发展。我们希望借助中国环博会的平台,做大做强上海的环保产业,为打赢污染防治攻坚战,推进长三角一体化发展,促进本市社会经济高质量绿色发展作出积极贡献。” /p p   4月15-17日,全国政协常务委员,民革中央副主席、上海市主委,市人大常委会副主任高小玫,市人大常委会副主任肖贵玉及市人大城建环保委相关领导,上海市政府副秘书长黄融,上海市生态环境局党组书记、副局长郭芳,上海市生态环境局局长寿子琪、总工程师柏国强等莅临本届环博会参观。 /p p   强项更强,新者更优 /p p   固废处置、蓝天治理、环境监测增幅突出 /p p   本届中国环博会共吸引了2047家高质量展商,首次突破2000家大关,增幅达16%,标志着中国环博会进入了新的发展阶段。生态环境部对外合作与交流中心党委书记周国梅表示“打好中国污染防治攻坚战以及绿色“一带一路”建设需要更广范围的国际技术交流与合作,需要更多高质量环保企业和技术提供支撑,希望中国环博会在其中继续发挥更大作用。” /p p   作为亚洲旗舰环保展,本届展会展示规模增长了17%,达到150,000平方米。其中,固废处理、环境监测和大气污染治理板块增幅最大,分别增长58%、32%和25%。中贸慕尼黑展览(上海)有限公司总经理江刚认为:“随着七大攻坚战的持续推进,固废处理处置、大气污染治理、环境监测三个板块未来增量会更加可观。” /p p   本届展会上,来自奥地利、加拿大、丹麦、法国、德国、意大利、日本、韩国、瑞士、美国、上海、台湾地区的12个国家与地区展团带来了环境领域前沿技术与绿色理念。意大利环境、领土与海洋部中意环境保护合作项目经理Silvia Massimi介绍:“通过经验交流、公私合作和技术转让,意大利展团的约25家公司在本届展会上展示了在水和土壤处理、空气质量和垃圾处理方面的创新解决方案。我们与展会主办方的合作一贯卓有成效。” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/ba724325-50f6-415b-95af-fa8bfb151740.jpg" title=" 图1.webp.jpg" alt=" 图1.webp.jpg" / /p p   而今年全新开辟的噪声控制与治理板块,也收获了来自参展企业的赞誉。法国ACOEM集团中国渠道拓展经理季卫国如此评价:“中国环博会组织有序,整个展馆的布置主题比较明确,我们是做噪声检测行业的,旁边就有环境噪声高峰论坛,非常契合。” /p p   专业观众增长超过10% & nbsp 促进产业共生繁荣 /p p   随着国家多领域的治理手段加码,生态环境治理体系、生态环境损害赔偿机制、环境执法监督机制等日益完善,环保治理的长期需求得以真正释放。在首次实行现场购票参观制度的情况下,本届展会共接待来自58个国家的73,097名专业观众,同比仍然增长近10%。 /p p   湖州美欣达环保产业研究有限公司总经理沈燕表示:“往届我们一直都在参观中国环博会,而参展今年是第一次,我们有很多收获,这次展会现场有很多目标客户来咨询,不仅有国内的,还有包括加拿大领馆在内的很多境外客户来洽谈。” /p p   上海实业环境控股有限公司副总经理蔡慧璟表示:“这是我们第一次参加中国环博会。中国环博会比我们想象的大很多,观众人流量与专业性远超我们的预期。在中国环博会上彰显我们实力的同时也为我们提供了与国内外企业沟通交流和学习的机会,以及产业链上下游企业协同合作的探讨。我们计划未来几年都来参会,积极参与和延续上海的这场环保盛会。” /p p   充满学习机会的知识平台 & nbsp 掌握新技术知识 迎接新时代 /p p   中国环境科学学会秘书长王志华表示:“2019中国环境技术大会围绕新时代生态环保产业的机遇挑战,解读政策规划,探讨创新升级。第20届中国环博会规模、品质和影响力进一步提升,形成了展会相得益彰的综合性服务平台,推动生态环境科技创新与产业发展,助力污染防治攻坚战和生态文明建设。” /p p   展会同期举办了2019中国环境技术大会,在4月14-17日为期4天的日程中,开展了45场高品质论坛活动,邀约政策制定部门、学者专家、领先技术企业等嘉宾演讲,通过分享最新的行业技术与知识,以及市场发展和新兴趋势,为行业各级人士提供免费的学习平台,帮助行业洞悉市场前景与发展脉搏。 /p p   第21届中国环博会将于2020年4月21-23日在上海新国际博览中心举行。“但在那之前,还有两场环保产业盛会将要举办。”慕尼黑博览集团全球IFAT系列展项目总监Christian Rocke表示,以中国西部为重点的首届中国环博会成都展将于2019年6月27日至29日在成都举行,而第五届中国环博会广州展将于2019年9月18日至20日在广州举行。Christian Rocke总结道:“通过这三个解决方案平台,我们希望积极推动中国的环境保护,并与我们的参展商和合作伙伴协会一起,促进技术的使用和知识的转移。” /p p   行业大佬疯狂打CALL & nbsp 实力惊艳 荣耀加冕 /p p    span style=" color: rgb(0, 176, 240) " 王志华,中国环境科学学会秘书长 /span /p p   “2019中国环境技术大会”围绕新时代生态环保产业的机遇挑战,解读政策规划,探讨创新升级。第20届中国环博会规模、品质和影响力进一步提升,形成了展会相得益彰的综合性服务平台,推动生态环境科技创新与产业发展,助力污染防治攻坚战和生态文明建设。 /p p    span style=" color: rgb(0, 176, 240) " 赵笠钧,全国工商联环境商会会长 /span /p p   中国环博会持续为环保事业构建创新的平台,汇聚同行的力量。二十年来,高质量环境企业凝聚在一起,激扬着产业的健康发展,推动着环境的持续改善,我觉得中国环博会也成长为亚洲规模最大、品质最高的专业环保展。我相信,相聚于此的新老朋友,将共同引领绿色发展新潮流,让环境更美丽,让世界更美好! /p p    span style=" color: rgb(0, 176, 240) " 潘永刚,中国再生资源回收利用协会副会长兼秘书长 /span /p p   2019年,我们再度携手“中国环博会”,发挥双方的优势,相互联动,资源互补。共同打造资源回收循坏利用和环保领域的国际化的展示交流平台。 /p p    span style=" color: rgb(0, 176, 240) " 周国梅,生态环境部对外合作与交流中心党委书记 /span /p p   中国环博会为国内外环保企业搭建了非常好的交流合作平台。打好中国污染防治攻坚战以及绿色“一带一路”建设需要更广范围的国际技术交流与合作,需要更多高质量环保企业和技术提供支撑,希望中国环博会在其中继续发挥更大作用。祝愿中国环博会越办越好! /p p    span style=" color: rgb(0, 176, 240) " 施敏,上海市生态环境局科技与国际合作处处长 /span /p p   2019年上海迎来了第20届中国环博会。以中国环博会为平台,今年上海市生态环境局联合二十几家上海高质量环保企业参展,独立设立“上海企业馆”,整体面积超过2000平方米,集中展示上海前沿环境领域技术,推动环保产学研联合发展。我们希望借助中国环博会的平台,做大做强上海的环保产业,为打赢污染防治攻坚战,推进长三角一体化发展,促进本市社会经济高质量绿色发展作出积极贡献。 /p p    span style=" color: rgb(0, 176, 240) " 陆书玉,上海市环境科学学会常务副理事长 /span /p p   中国环博会汇聚各界环保精英智慧,在短短三天内为我们打造了一场属于环保人的科技盛宴。展会充分展示中国环保产业的发展新成果,促进先进环境技术的国际合作与交流,打造中国环保产业走向全球的新名片,为全球环保人勾勒出绿色生态未来。 /p p    span style=" color: rgb(0, 176, 240) " 李景明,中国沼气学会副会长 /span /p p   一年一度的环博会再次在上海召开,从参展和观展的情况看,这个展会已经越来越成熟,并成为环保行业各大行业和企业展示交流的大舞台。借此机会向同行学习,与专家交流,交各方朋友,寻发展方向,找合作机会,也让我收获满满。 /p p    span style=" color: rgb(0, 176, 240) " Silvia Massimi,意大利环境、领土与海洋部中意环境保护合作项目经理 /span /p p   我们再次来中国环博会进行推广并赞助了意大利展团。通过经验交流、公私合作和技术转让,该展团的约25家公司展示了在水和土壤处理、空气质量和垃圾处理方面的创新解决方案。我们与展会主办方的合作一贯卓有成效。 /p p    span style=" color: rgb(0, 176, 240) " 乔纲,中国航天建设集团有限公司绿色智慧产业部市场一处处长 /span /p p   这次是我们第二次参展中国环博会,较去年相比,今年展会规模扩大很多。央企、国企、上市公司、私企等众多大企业都有参展,展商层次比去年更高,观众数量也有较为明显的增多,其专业度也很不错。通过中国环博会,我们不仅能展示自身的新产品、新技术、新解决方案,还得以更广阔地去了解其他行业领域新技术,同时对于与合作方见面、促进合作关系等方面也有极大的帮助。 /p p    span style=" color: rgb(0, 176, 240) " 蔡慧璟,上海实业环境控股有限公司副总经理 /span /p p   这是我们第一次参加中国环博会。借助这一有影响力的环保盛会,首次和上海的20多家环保军团组成“上海馆”。上海实业集团作为上海环境保护产业协会的会长单位希望每年能组织协会的会员单位集体亮相和展示。中国环博会比我们想象的大很多,观众人流量与专业性远超我们的预期。在中国环博会上彰显我们实力的同时也为我们提供了与国内外企业沟通交流和学习的机会,以及产业链上下游企业协同合作的探讨。我们计划未来几年都来参会,积极参与和延续上海的这场环保盛会。 /p p    span style=" color: rgb(0, 176, 240) " 沈燕,湖州美欣达环保产业研究有限公司总经理 /span /p p   往届我们一直都在参观中国环博会,而参展今年是第一次,不论是参观还是参展,我们都有很多收获。不仅可以看到同行的发展,国内环保行业的发展趋势,还可以看到很多新技术。此次参展我们希望可以通过中国环博会这个平台,能更好的展示自己,与同行深入交流,吸引更多客户,促成更多的商务合作。这次展会现场有很多目标客户来咨询,不仅有国内的,还有包括加拿大领馆在内的很多境外客户来洽谈。 /p p    span style=" color: rgb(0, 176, 240) " 周文林,成都环境投资集团有限公司副董事长 /span /p p   中国环博会规模庞大,集聚展商众多,影响面广,对环保行业推动作用大。我们希望借助该平台与国内外环保企业建立广泛交流合作关系,实现优势互补、合作共赢,共同为环保产业的可持续发展作出贡献。 /p p    span style=" color: rgb(0, 176, 240) " 赵亮,北京首创股份有限公司市场发展部总经理 /span /p p   本届中国环博会整体质量很好,不论是人流量、观众专业度还是展会对外传播范围、受关注度都越来越高。通过展会可以发现综合性的环保解决方案。很多同期技术性论坛也越来越好,未来希望可以多参加一些展会同期论坛,多了解一些行业新的技术和产品。 /p p    span style=" color: rgb(0, 176, 240) " 吴佩轩,盈峰环境科技集团有限公司经营管理部总监 /span /p p   中国环博会规模大,展示的环保领域产品种类多。现场参展企业数量很多,同行都有参与,应该说是覆盖了全行业。我们的参展效果也非常好,我认为中国环博会应该说是中国最大的环保展。通过参加中国环博会,可以提高我们公司的品牌形象,向更多客户展示我们的新品。 /p p    span style=" color: rgb(0, 176, 240) " 麦穗海,上海城投水务(集团)党委副书记/上海市净水技术学会理事长 /span /p p   中国环博会是目前国内总体层次较高、专业程度较高、人气度较高的行业盛会,展会与论坛会议结合,形式多样,选题前沿,为我国的环保行业提供了良好的交流平台。 /p p    span style=" color: rgb(0, 176, 240) " 崔志慧,苏伊士水务技术(上海)有限公司企业传讯部高级经理 /span /p p   本届展会整体参展效果比往届更好,展台人流量很大、咨询量大,对口的专业观众比较多,有点忙不过来了。主办方的沟通和展位安排都很有经验。今年的展位面积也有扩大,展示了新的膜技术以及在展位上举办了法国管网水务方案新品发布会。希望中国环博会越来越好。 /p p    span style=" color: rgb(0, 176, 240) " 余湘立,东江环保股份有限公司副总裁 /span /p p   这是我们第二次参展中国环博会,感觉今年展会规模非常大,有很多知名企业参展。同时也很高兴在展会现场看到有大量新技术、新设备、新工艺出现,这些都体现出行业的变革趋势,在老的技术和设备基础上有了突飞猛进日新月异的发展。 /p p    span style=" color: rgb(0, 176, 240) " 蔡晓涌,北京安力斯环境科技股份有限公司董事长 /span /p p   我们已经连续三年参加中国环博会,展会已经成为国内最大的环保产业盛会,举办得非常好。我们对中国环博会的母展,德国IFAT展会非常了解。我认为IFAT是全球做的最好的行业展会,专业度高,每次都能充分呈现行业创新趋势。我们也因此对中国环博会格外有信心,明年会继续参加。 /p p    span style=" color: rgb(0, 176, 240) " 陈传斌,米顿罗工业设备(上海)有限公司产品市场经理 /span /p p   我们基本每年都会参加中国环博会,我们的展位面积也一直在不断扩大。中国环博会是一个很好的平台,既是推广自身产品的重要渠道,也是与众多同行面对面交流的良好机会,还能在维系老客户的同时结识更多潜在客户。今年展会整体人流量高了很多,观众专业度更高、参观目的性更强。展会同期会议让我们的产品团队有机会聆听来自客户的声音,零距离了解终端用户的看法和需求。 /p p    span style=" color: rgb(0, 176, 240) " 周挺进,福建龙马环卫装备股份有限公司龙马污泥处置董事长 /span /p p   我们一直有参与中国环博会,对展会印象非常好。通过展会,我们与海外客户进行了很好的对接,在国内市场也得到了很好的宣传,同时也在现场和同仁有很多非常融洽的交流。有很多专业观众和投资者到我们展位上进行了解,通过现场的宣传,加大了投资者对我们的信心。非常感谢中国环博会为我们搭建了一个与全世界沟通的平台。 /p p    span style=" color: rgb(0, 176, 240) " 陈刚,上海中荷环保有限公司副总裁 /span /p p   我们第二次参展中国环博会,展会近几年对固废环卫处理的展出更加完善,在这方面细分领域的客户有很大增加。在展会上我们可以与大件破碎、固废破碎方面的同行竞技交流。我们接待了垃圾中转站等传统客户,还有很多固废破碎与固废处置方面非环卫行业的工厂、企业、协会和海外客户。总体来说,在中国环博会的收获达到了预期。 /p p    span style=" color: rgb(0, 176, 240) " 陈姝蕊,贺利氏(沈阳)特种光源有限公司上海分公司市场部经理 /span /p p   我们已经连续好几年参展中国环博会,今年感觉展会规模扩大了很多,人流量也很大,而且许多都是跟我们行业相关的专业观众。现场活动、论坛的观众参与度也很高。 /p p    span style=" color: rgb(0, 176, 240) " Thorsten Feldt,Remondis贸易销售公司董事总经理 /span /p p   中国环博会是我们与中国以及亚洲客户会面的良好平台。展会期间,我们结识了很多新客户,并向他们展示了公司的服务和高品质产品。来自回收解决方案领域的观众数量和质量非常高,有很多项目合作机会。 /p p    span style=" color: rgb(0, 176, 240) " 顾海霞,上海天汉环境资源有限公司危废工程设计研究院院长助理兼前期部经理助理 /span /p p   我们已经连续好几年参加中国环博会了,每年都收获满满,今年我们的参展面积较去年相比更是扩大了近10倍。中国环博会对我们来说一直都是一个很好的宣传平台,我们很高兴能在这样一个盛会上与众多同行进行交流,为危废行业贡献一份力。今年的观众数量、专业度都很高,主办方各项服务也令人非常满意。同时,我认为同期论坛对于展会来说是个很好的资源配置,与展会相辅相成,我们很多领导包括董事长都有参加。 /p p    span style=" color: rgb(0, 176, 240) " 祁强,泽尼特泵业(中国)有限公司总经理 /span /p p   中国环博会是我们每年必定会参加的展会,对我们来说是非常重要的推广平台。今年展会不论是观众数量还是客户质量,整体反馈都非常不错,远远超过我们的预期。中国环博会把环保各个环节的从业者都聚集在一起,让大家进行充分交流,为我们带来许多合作伙伴和潜在商机。我们认为中国环博会办得一年比一年好,是非常具有代表意义的环保盛会,称得上中国乃至亚洲的顶级展会。 /p p    span style=" color: rgb(0, 176, 240) " 孙倩,哈希水质分析仪器(上海)有限公司市场部经理 /span /p p   我们每年都来参加中国环博会,今年我们的展位面积较去年增长了近一倍。对于今年展会来说,最大的感受就是板块细分所带来的观众更专业对口。展会现场的首发平台也颇为盛大,为我们提供了一个很好的发布新品的机会。通过中国环博会,我们有机会接触众多同行,看到越来越多的国产品牌在快速发展,在为此感到欣喜的同时也感受到了竞争的压力,激励我们不断突破,与中国环博会一起推动行业更好地发展。 /p p    span style=" color: rgb(0, 176, 240) " 徐菁,格兰富水泵(上海)有限公司高级市场业务合作伙伴 /span /p p   我们已经连续多届参展中国环博会,展会从规模到受众来讲都很专业,展会人流量也很大。我们非常重视通过中国环博会这样的平台来提升品牌形象,推出最新的解决方案,从而达到宣传推广的目的。 /p p    span style=" color: rgb(0, 176, 240) " 韩建松,碎得机械(北京)有限公司市场部经理 /span /p p   我认为中国环博会是国内乃至亚太地区影响力最大的环保行业展会,整体组织也是国内最高水平。今年是我们第十次参展,每年这个时候我们都会把参加中国环博会作为公司最大的活动来准备,今年现场观众人流和质量都不错,我们对展会感到非常满意。 /p p    span style=" color: rgb(0, 176, 240) " 季卫国,法国ACOEM集团中国渠道拓展经理 /span /p p   中国环博会组织有序,整个展馆的布置主题比较明确,我们是做噪声检测行业的,旁边就有环境噪声高峰论坛,非常契合。通过中国环博会,我们能找到更多国内环保行业的合作伙伴,同时可以做到和最终用户面对面接触,了解第一手市场方面的讯息。现场专业观众也非常多,有许多对我们感兴趣而且对口的潜在合作伙伴到场。 /p p    span style=" color: rgb(0, 176, 240) " 姜文涛,北京恒通国盛环境管理有限公司执行总监 /span /p p   我们是中国环博会的老客户,每届都有参加。中国环博会的规格很高,汇聚了很多中外参展商、客户、用户,这是一个非常好的专业交流平台。通过展会可以将我们的理念和实力展现给大家,我们现场的新品吸引了很多客户来咨询洽谈,展会的人流量达到了我们的预期。 /p p    span style=" color: rgb(0, 176, 240) " 李怀赞,圣戈班穆松桥中国市场及技术销售总监 /span /p p   这是我们第二次参展,之前集团总部一直都有参加德国IFAT,总部推荐我们参加中国环博会。我们认为中国环博会对我们品牌推广和产品宣传都有很好的帮助,从去年的效果来看,各方面都达到了我们的期望,所以今年继续来参展。今年观众整体质量都非常好,我们接待了许多新老客户,一些市政环保方面的客户通过和我们交流,真正了解到了我们的解决方案和服务。现场的众多同期会议也让我们和行业大咖有了更多的交流。 /p p    span style=" color: rgb(0, 176, 240) " Andrea Masi,意大利Bongioanni机械公司销售和营销经理 /span /p p   我们首次随意大利展团参加中国环博会,这也是我们第一次在中国参加回收行业的展会,效果很好。下届展会我们还会参加,将我们的产品推向中国市场。值得强调的是,这届展会为我们吸引客户,与其他意大利企业深入交流提供了很好的机会。 /p p    span style=" color: rgb(0, 176, 240) " 周学斌,格林兰中国清洁能源有限公司 营销总监 /span /p p   中国环博会是环保行业中国环保航母舰队领航者,齐聚了全球的高端技术、装备!为了留住蓝天白云,青山绿水,实施绿色循环发展,造福人类子孙后代,我们格林兰人愿与世界各国携手前行! /p p    span style=" color: rgb(0, 176, 240) " 郑方,安尼康(福建)环保设备有限公司统筹主管 /span /p p   我们每年都参加中国环博会。本届展会规模很大,观众数量很多,来到展台咨询的观众质量度也很高,都是很相关的行业,有的观众都是有很明确的采购目的来的,来就是直接谈合作,达成了很多商务合作。原来参加的一些相关展会,现在都不去了,只跟着环博会走,看重环博会品牌实力。整体参展效果很理想,达到了预期。 /p p    span style=" color: rgb(0, 176, 240) " 缪申羚,埃维恩(上海)机械有限公司董事总经理 /span /p p   本届展会整体参展效果比去年更好,达到了参展预期。展台的对口观众咨询量很不错。下一届准备增加展位面积,以便吸引更多的目标客户。 /p p    span style=" color: rgb(0, 176, 240) " 庄晓君,青岛崂应环境科技有限公司总经理助理 /span /p p   今年的环博会观众专业度很高。德国的和中国的环博会我们都有参加,我们与中国环博会一起成长壮大,今年展位面积也增加了。展示的大气、废气的采样、分析和监测技术吸引了很多第三方检测机构、政府环保监测部门等目标观众来展台交流、洽谈,达到了预期。希望环博会越做越强,提高知名度和影响力,成为环保行业展会在上海的象征。 /p p    span style=" color: rgb(0, 176, 240) " 李秀刚,北京中投润天环保科技有限公司市场部长 /span /p p   我们连续三年参展中国环博会,本届展会在面积及质量上又有了很大突破,行业内影响力大的企业均有参与。观众人流量大,专业度高,明年我们将预定更大面积的展位进行展示。同时,我们对同期的论坛也非常有兴趣,希望明年能够参与其中。 /p p    span style=" color: rgb(0, 176, 240) " 张晓明,知合环境(北京)有限责任公司市场部长 /span /p p   中国环博会基本涵盖了环保行业全产业链,是一个展商多,展品全,观众专,每一位环保人都不能错过的盛宴。展会现场非常火爆,专业观众络绎不绝,参展效果远远超出了同类型其他展会。 /p p    span style=" color: rgb(0, 176, 240) " 徐滟,中广核达胜加速器技术有限公司执行总监 /span /p p   中国环博会名气大、专业度高,是我们做品牌推广的首选平台。本届中国环博会现场带有采购目的的观众数量多,参展效果令我们非常欣喜。 /p p    span style=" color: rgb(0, 176, 240) " 程功弼,江苏盖亚环境科技股份有限公司董事长 /span /p p   我们已经连续四年以展出面积递增的方式参加中国环博会,已经是中国环博会忠实的参展商了。环博会对我们来说,是我们与客户直接面对面交流及品牌宣传推广必不可少的重要平台,非常荣幸可以与中国环博会共同成长,祝越办越精彩。 /p p    span style=" color: rgb(0, 176, 240) " 方基垒,杰瑞环保科技有限公司总裁 /span /p p   整个展期展馆内都人山人海,我们展位的人气更是居高不下,观众专业度高,与技术人员沟通非常舒畅。参展企业的迅速增加,让我们对未来环保市场充满了信心。 /p p    span style=" color: rgb(0, 176, 240) " 李遥,维尔利环保科技集团股份有限公司市场总监 /span /p p   目前国家政策对技术标准的不断提升,我们迫切的需要将我们的优秀的技术推广出去,中国环博会这个平台就是我们的不二选择。今年我们将面积扩大至近200平方米,推广效果也超出了我们的预期。同时还参加了同期论坛,与同行之间行业交流令我们受益匪浅。 /p p    span style=" color: rgb(0, 176, 240) " 王冰,天然天能环境投资有限公司董事长 /span /p p   本届展会行业参展商较往年多很多,环保领域涵盖也更全面,观众都是来自专业领域的,整体很好,我们每年参展都会收获到很多。同时我们也参加了展会期间相关会议,也了解了很多行业知识。希望2020年环博会帮我们邀约到更多的目标客户,也希望环博会一直保持行业领先。 /p p    span style=" color: rgb(0, 176, 240) " 王文标,上海泓济环保科技股份有限公司董事长兼总经理 /span /p p   中国环博会展会规模不断扩大,观众的专业度也在不断的提高,到展台咨询的对口观众也很多,超过了我们的预期。展出期间,我们也和很多潜在客户做了积极的交流,希望借助这个平台来打造推广我们的形象,环保领域的影响力,获取更好的合作伙伴以及商业机会。我们很看好中国环博会未来的发展,相信以后会做的越来越大! /p p    span style=" color: rgb(0, 176, 240) " 曹海燕,江苏康泰环保股份有限公司副总经理 /span /p p   中国环博会齐聚了行业内的龙头企业,并且将全产业链企业囊括其中,是最具规模,最具影响力的行业盛会。今年的观众质量较往年更是有了质的飞跃,两天半的时间内,我们接待了许多来自世界各地的市政单位及专业买家,收到了非常可观的参展效益。 /p p    span style=" color: rgb(0, 176, 240) " 宋金鹏,东莞英达士声学设备有限公司总经理 /span /p p   中国环博会是一个了解国内外同行的现状、技术以及市场的顶级平台。展会规模大,分类齐全,是今后我们进入国内市场推广和宣传的重要选择。希望未来能与环博会其他参展商共同打好环境保卫战。 /p p    span style=" color: rgb(0, 176, 240) " 陈懿焱,杭州贝易物联科技有限公司,章鱼回收CEO(中国) /span /p p   汇聚了各路环保精英的中国环博会,让我们收货颇丰。依托环博会搭建的高规格环保企业交流平台,巨大的人流量与精准的行业交流,让我们对未来的发展有了全新角度的创想。也让我们思考智能资源分类行业得到高关注度的同时,我们更应该如何紧跟行业发展动态,契合用户真实的需求。我们认为正是环博会促进了环保行业的蓬勃发展,不仅达成企业自身的理念传达效益,更是为环保领域树立起一帆标杆。 /p p   *以上摘录排序不分前后 /p
  • 赫施曼助力电子烟中2,3-丁二酮的检测
    电子烟是一种模仿卷烟的电子产品,通过加热雾化产生具有特定气味的气溶胶。2,3-丁二酮因具有奶油香气常作为香精原料被添加在电子烟烟液中,经加热后吸入肺部可能沉积在肺气管中而导致阻塞,加重呼吸道炎症。根据GB 41700-2022,电子烟中释放物中羰基化合物2,3-丁二酮每口释放量不超过2.5微克。其检测方法为:高效液相色谱法。 1.试剂1.1 磷酸水溶液:量取60mL磷酸(质量分数不低于85%)于1L烧杯中,搅拌下缓慢加入440mL水,混合均匀。储存于试剂瓶中有效期为3个月。1.2 衍生化试剂:取1.00gDNPH-HCl(纯度不低于98%)于2L烧杯中,加入500mL乙腈(色谱纯)和40mL磷酸水溶液,溶解后加入500mL水,混合均匀。溶液转入棕色试剂瓶中避光储存,有效期为1周。1.3 2,3-丁二酮溶液:称取0.10g(精确至0.1mg)2,3-丁二酮(纯度不低于98%)于10mL棕色容量瓶中,用乙腈溶解,定容至刻度。-18℃避光储存,有效期为3个月。1.4 DNPH衍生化合物标准储备液:称取0.1mL2,3-丁二酮溶液于25mL棕色容量瓶中,加入20mL衍生化试剂,摇匀,室温反应20min。加入1mL吡啶(纯度不低于99%),用乙腈定容至刻度,-18℃避光储存,有效期为3个月。1.5 标准工作液:用乙腈将DNPH衍生化合物标准储备液逐级稀释,至少备制5个标准工作液,浓度范围宜为0.1-4μg/mL。在使用前配置。2.样品前处理2.1 电子烟烟液:称取0.50g(精确至0.1mg)样品于10mL棕色容量瓶中,加入5mL衍生化试剂,摇匀,室温反应20min。加入0.25mL吡啶,用乙腈定容至刻度,摇匀,用PTFE滤膜过滤于棕色色谱瓶中待测。2.2 固态雾化物:称取0.50g(精确至0.1mg)样品于15mL离心管中,加入10mL衍生化试剂,避光涡轮震荡反应20min。用PTFE滤膜过滤,移取5mL容量瓶于10mL棕色容量瓶中,加入0.25mL吡啶,用乙腈定容至刻度,用PTFE滤膜过滤于棕色色谱瓶中待测。3.绘制标准工作曲线设定高效液相色谱条件后测定标准工作溶液(1.5),以目标化合物峰面积和浓度建立标准工作曲线。每进行20次样品测定后加入一个中等浓度的标准工作溶液,如测定值与原值相差15%则重新绘制标准工作曲线。4.样品测定按照谱条件测定两个样品溶液,每个样品平行测定两次,并以两次测定结果的平均值为最终测定结果。以上实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制