当前位置: 仪器信息网 > 行业主题 > >

正链烷烃

仪器信息网正链烷烃专题为您提供2024年最新正链烷烃价格报价、厂家品牌的相关信息, 包括正链烷烃参数、型号等,不管是国产,还是进口品牌的正链烷烃您都可以在这里找到。 除此之外,仪器信息网还免费为您整合正链烷烃相关的耗材配件、试剂标物,还有正链烷烃相关的最新资讯、资料,以及正链烷烃相关的解决方案。

正链烷烃相关的资讯

  • 31种正构烷烃,出现沉淀是什么原因?
    问:31种正构烷烃,出现沉淀是什么原因?答:坛墨质检80142JB的31种正构烷烃类这一产品,储存条件为冷冻,运输条件为冰袋运输,所以客户收到产品发现安瓿瓶中有晶体析出是正常现象,需要加热以复溶20±) 。文章来源:国家标准物质中心
  • 国家市场监督管理总局对《表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量》等130项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《涤棉混纺色织布》等130项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月4日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001901,查询项目信息和反馈意见建议。2024年7月5日相关标准如下:#项目中文名称制修订截止日期1玻璃制品 玻璃容器内表面耐水侵蚀性能 用滴定法测定和分级修订2024-08-042表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量修订2024-08-043洗涤剂中无机硫酸盐含量的测定 重量法修订2024-08-044首饰 镍释放量的测定 光谱法修订2024-08-045玩具及儿童用品材料中总铅含量的测定修订2024-08-046纸、纸板和纸浆 水抽提液电导率的测定修订2024-08-047瓦楞芯(原)纸修订2024-08-048瓦楞芯纸 实验室起楞后平压强度的测定修订2024-08-049瓦楞纸板修订2024-08-0410瓦楞纸板 边压强度的测定(边缘补强法)修订2024-08-0411瓦楞纸板 厚度的测定修订2024-08-0412医用电气设备 剂量面积乘积仪修订2024-08-0413纸、纸板、纸浆及相关术语修订2024-08-0414纸、纸板和纸浆 包装、标志、运输和贮存修订2024-08-0415造纸原料和纸浆 多戊糖的测定修订2024-08-0416纸板 耐破度的测定修订2024-08-0417纸和纸板 不透明度(纸背衬)的测定(漫反射法)修订2024-08-0418纸和纸板 厚度的测定修订2024-08-0419纸和纸板 孔径的测定修订2024-08-0420纸和纸板 伸缩性的测定修订2024-08-0421纸和纸板 撕裂度的测定修订2024-08-0422纸和纸板 颜色的测定(C/2°漫反射法)修订2024-08-04
  • 玩具材料中短链氯化石蜡测定标准即将颁布
    导语遥控汽车、拼图积木… … 又到了欢乐“六一”,想好给孩子们送什么玩具礼物了吗?随着社会的发展和进步,玩具花样也越来越多。但另一方面,玩具的安全性,如化学添加物质(增塑剂、阻燃剂等)也愈发引起关注。2017年,欧盟RAPEX通报了27起中国出口的消费品短链氯化石蜡超标案例,其中有6起涉及儿童玩具产品,包括了玩具小马、玩具步枪、绳子、沐浴玩具、塑料娃娃等。为适应国内外市场的要求,2019年,由上海海关机电产品检测技术中心牵头,着手开展制定《玩具材料中短链氯化石蜡含量的测定 气相色谱-质谱联用法》的国家标准。期间,岛津分析中心积极协助上海海关专家,参与了标准品和玩具材料实际样品的验证工作,并就技术问题与制标单位专家进行协商和沟通,推动项目的进展,目前该标准已通过报批程序,即将颁布并实施(标准号:GB/T 41524-2022),一起来看看吧! 氯化石蜡——年产量超过百万吨的化学品短链氯化石蜡(SCCPs,碳原子数10-13个)是一类人工合成的直链正构烷烃氯代衍生物。SCCPs主要用作金属加工润滑剂、增塑剂、涂料、皮革加脂剂以及阻燃剂等。SCCPs具有持久性、生物富集性以及潜在生物毒性,被IARC归为2B类致癌物。2007年,欧盟REACH将SCCPs列入第一批高关注物质清单;EU 2015/2030规定物品中的短链氯化石蜡含量不得等于或大于0.15%,否则不能投放市场。2017年4月,SCCPs被正式列入关于持久性有机污染的《斯德哥尔摩公约》受控名单(附录A)中。 表1. 关于SCCPs的管控情况中国是世界第一大氯化石蜡生产国,2013年的年产量超过100万吨,年产能超过160万吨。同时,我国也是世界玩具生产大国和出口大国,每年全球约75%的玩具来自中国,氯化石蜡常作为增塑剂和阻燃剂添加至玩具中,玩具材料中短链氯化石蜡的过量使用不仅会成为影响我国玩具出口的重大隐患,也会影响了我国玩具制造业的国际形象。图1. 氯化石蜡全球产量与使用量[1] 短链氯化石蜡——分析化学的前沿热点之一氯化石蜡及短链氯化石蜡的检测一直是环境、消费品等分析化学的难点之一。下图是市售某氯含量的短链氯化石蜡标准品谱图,由于同族分子种类众多,在仪器谱图上呈现簇峰,且保留时间跨度范围大,易与其它污染物干扰。因此,氯化石蜡及短链氯化石蜡的分析需要综合考虑前处理分离、仪器的分离度、分辨率、灵敏度等因素。迄今,尚无关于其检测的统一/黄金方法标准。 图2. 典型氯化石蜡的工业标准品谱图 相对而言,气相色谱-负化学电离质谱联用法(NCI-GCMS)目前是分析短链氯化石蜡常用的方法之一。 表2. NCI-GCMS的分析SCCPs的特点需要特别指出一点,NCI-GCMS的响应随氯原子数增大而增大,这会导致样品与标准品若氯含量有明显差异,则得到的定量结果不准确[2]。因此若使用NCI-GCMS,目前主流的方法是使用氯含量-响应因子做校准曲线[3]。图3. NCI模式下,相同浓度下不同氯含量的响应对比,由下到上依次为50ppm,氯含量51.5%、53.5%、55.5%、56.25%、57.75%、59.25%和63%的总离子流图。 岛津应对利器使用NCI-GCMS法,岛津分析中心协助上海海关机电中心对开展标准制订工作用的标准品和玩具样品进行方法学验证。图4. GCMS-QP2020 NX及方法参数信息 l 方法学结果节选——质量色谱图图5. 氯含量55.5%的SCCPs工业标准品单体质量色谱图(以CnCl7为例) l 某玩具材料样品的实例谱图图6. 某玩具材料样品的TIC谱图(浓度约2000 mg/kg) 结语作为世界知名的仪器产商,岛津公司始终秉持“为了人类和地球健康“的经营理念,不仅提供优良性能的仪器,同时也提供丰富的理化检测解决方案,针对国内外关注的玩具中短链氯化石蜡超标问题,协助国内制标单位开展标准制定工作,让下一代玩的放心,拥有快乐的童年。 参考文献[1] Gluge J., Wang Z.J., Bogdal C et al. Global production, use, and emission volumes of short-chain chlorinated paraffins – A minimum scenario. Science of the Total Environment, 2016, 573: 1132-1146.[2] Reth M., Oehme M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins. Anal Bioanal Chem, 2004, 378: 1741-1747.[3] Reth M., Zencak Z., Oehme M et al. New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry. Journal of Chromatography A, 2005, 1081:225-231. 本文内容非商业广告,仅供专业人士参考。
  • 两秒检测霉变,浙江大学生为中药“连”上大数据
    “将中药材放置在检测平台上,通过检测中药材气体和纹理信息,系统就可以自动在两秒内判断出中药材的霉变情况。我们设计研发的这个系统,不仅检测效率高,而且能准确检测出连资深中药师都难以发现的超早期霉变情况。”日前,浙江农林大学的大二学生连俊博这样介绍团队研发的中药材超早期霉变检测系统。中药是我国的传统药物,具有上千年的应用历史。但如何检测中药是否霉变,一直是传统药企难以解决的问题。连俊博介绍:“中药材的存储对温湿度有较高的要求,受潮的中药材很容易发生霉变,目前多数企业还是靠人工甄别,但超早期的霉变难以用感官鉴别,而现有的精密检测方法速度慢、成本高,难以投入市场。我们研发的系统可以填补这一空白。”据了解,连俊博的研究团队,由浙江农林大学机械专业、农学专业、环境设计专业、计算机专业等多专业的佼佼者组合而成,并邀请了校食品安全与人工智能领域的专家惠国华进行指导。在研究中,团队发现,非线性的电子鼻技术和弛豫光谱检测技术可以使药材信息更加丰富、响应速度更快。这套超早期中药材霉变检测系统,采用了包括可视化AI识别技术、纹理特征分析技术、气体传感器技术等多种数字技术。在检测过程中,系统可以快速地捕捉中药材的微量气体(包括硫化物、烷烃在内的八类气体)变化以及内部信息,并通过深度学习算法对检测数据进行分析,以识别是否存在霉变情况。整个检测过程只需2秒钟,大大提高了检测效率和准确性,避免了人工检测中的误判和漏检的情况。为了增强系统的信息交互能力,连俊博团队还加入了无线通讯技术,使用者可以通过手机上的app远程监测中药材的检测相关信息。由于超早期中药材霉变检测系统具有快速的检测速度和超高的检测精度,这一系统受到许多中药材原厂商的青睐,并且目前有部分厂商已经将其投入使用,并且已与温州市布衣大药房连锁有限公司等数家企业建立商业合作。连俊博说,“中药材原厂商和药企可以依靠这套快速检测中药材的品质,可以有效帮助他们自检,同时系统会将获取的信息通过网络上传至云端,实现中药材霉变检测智能化。”目前研究成果,已先后发表5篇SCI、EI论文,获得包括《一种白芨品质快速无损检测系统及方法》在内共3项授权专利,申请专利包括《一种当归片的检测系统及方法》在内共5项,获得软著作包括《中药材品质检测系统》在内共2项。
  • 仪器表征,科学家通过界面工程调控助力异相催化剂最新突破!
    【科学背景】乙烷是一种代表性的非甲烷挥发性有机化合物(NMVOCs),因其对烟气排放的严格标准而成为监管审查的焦点。因此,为了减少这些有害物质的排放,迫切需要开发高效的催化剂。然而,由于低温下烷烃分子固有的强C-H键,以及天然气中含有的乙烷(1-9 mol%),使得对于催化天然气燃烧的催化剂设计提出了更高的要求。传统上,贵金属基催化剂(如Pt或Pd)在低温下对低碳链烷烃的催化活性非常高。然而,其高成本和有限的可用性限制了其广泛应用。因此,针对这一问题,非贵金属基催化剂的研究备受关注。尤其是,过渡金属尖晶石型氧化物(AB2O4)因其在氧化反应中的出色活性和耐久性而备受关注。然而,尽管尖晶石型氧化物具有潜在的优势,但其合成过程中常常会出现一定程度的不完整性,导致所得产物并不总是符合理想的结构。特别是在合成过程中,某些金属离子可能会与其母尖晶石颗粒分离,形成多相氧化物,其性质更为复杂。此外,多组分氧化物之间的界面也被认为是影响催化性能的重要因素,但其作用机制和影响尚未得到深入研究。为了解决这一问题,中石化(大连)石油化工研究院有限公司研究员侯栓弟、副研究员刘世达,大连理工大学化工学院教授郭新闻教授、副教授聂小娃携手通过化学还原的方法设计了一种独特的MnCoOx催化剂结构,用于乙烷氧化反应。通过控制Mn/Co比例,形成了MnO2-MnxCo3-xO4界面的结构,从而优化了催化剂的性能。通过表征和催化性能测试,揭示了界面构造对乙烷氧化反应的重要作用机制。同时,本研究还通过原位X射线光电子能谱(XPS)分析和密度泛函理论(DFT)计算等手段,深入探讨了界面构造对催化性能的影响机制。【科学亮点】本文通过多种表征手段,如透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS),发现了MnCoOx催化剂中MnO2-MnxCo3-xO4界面的独特结构,从而揭示了该界面在乙烷氧化中的重要作用。针对催化活性与稳定性之间的关系,通过原位红外光谱(in situ IR)技术探究了C2H6在催化剂表面吸附的微观机制,得到了吸附位点和反应路径的清晰图像,进而挖掘了界面协同效应的本质。在此基础上,结合气相色谱(GC)分析与催化性能测试,结果表明,Mn/Co比为0.5的催化剂展现出最佳的催化活性与长时间稳定性,着重研究了MnO2与MnxCo3-xO4之间的相互作用。这些表征手段揭示了反应过程中C-H键的活化机制,并证明了界面钴位点的关键作用。总之,经过透射电子显微镜、X射线衍射等多种表征,深入分析了MnCoOx催化剂的微观结构和反应机制,进而制备出高效的新型催化材料,最终推动了异相催化领域的发展,为烷烃燃烧催化剂的设计提供了新的思路。【科学图文】图1:合成的MnCoOx催化剂的结构分析。图2. MnCoOx-0.5催化剂对乙烷氧化的催化性能。图3. MnCoOx催化剂的微观结构表征。图4. MnO2-MnCO2O4界面在乙烷氧化中的作用。图5:MnO2-MnCO2O4界面对乙烷氧化的性质。图6: MnCoOx-0.5催化剂上乙烷氧化的机理研究。【科学结论】总结起来,作者成功地通过简便的化学还原合成方法开发了MnCoOx催化剂,其在乙烷燃烧中表现出超过所有报道的非贵金属催化剂的最高比表面反应速率,以及在潮湿条件下长达1000小时的优异长期稳定性。具有强氧亲和力的Mn在富氧环境中倾向于扩散到尖晶石表面形成MnO2领域。MnO2和MnxCo3-xO4之间的相互作用促使了界面位点的构建。令人惊讶的是,在建立的MnO2-MnxCo3-xO4分层界面上,Co位点表现出对乙烷的优先吸附作用;而MnO2层则显示出对其活性晶格氧的强力H抽取能力,并通过界面区域的氧化还原途径进一步进行乙烷氧化。揭示界面的重要作用提供了一种有效的策略,用于调节涉及组分的配位环境以及它们的电子转移能力。原文详情:Wang, H., Wang, S., Liu, S. et al. RedOx-induced controllable engineering of MnO2-MnxCo3-xO4 interface to boost catalytic Oxidation of ethane. Nat Commun 15, 4118 (2024). https://doi.org/10.1038/s41467-024-48120-8
  • 加拿大禁用部分有毒物质法规(2012)提案公众征询已开始
    加拿大政府日前发布了《部分有毒物质禁用法规》(2012,Prohibition of Certain Toxic Substances Regulations)提案进行公众意见征询。   最终发布后,该提案将废除和取代现行的《部分有毒物质禁用法规》(2005)版本,并增加4个禁用物质,如下:   ●二苯胺与苯乙烯和2,4,4-三甲基戊烯的反应产物(BNST,benzenamine N-phenyl, reaction products with styrene and 2,4,4-trimethylpentene)   ●短链氯化烷烃(short-chain chlorinated alkanes)   ●多氯化萘(PCNs,polychlorinated naphthalenes)   ●三正丁基氢锡(TBTs,tributyltins)   此外,提案还涉及到以增加清晰度为目的的行政管理变化、对法规法文和英文版本不一致性的说明,以及简化工业界报告要求的说明。法规也将对六氯苯(HCB)的控制做出调整,以扩大禁止范围确保继续履行国际义务。   提案公众意见征询期为75天,公众征询到2011年10月6日结束。详见加拿大政府新闻:http://www.ec.gc.ca/lcpe-cepa/eng/regulations/detailreg.cfm?intReg=207。
  • 中石油炼化青年论坛 石化院六项成果全部上榜
    11月8日,集团公司以视频形式召开炼油化工科技创新青年论坛暨青年创新创效工作推进会。集团公司董事、党组副书记段良伟出席会议并强调,要牢记习近平总书记的嘱托,敢于攻坚克难,勇于开拓创新,为集团公司奋进高质量发展、建设基业长青的世界一流企业贡献青春力量。本次论坛,共收到37家炼化企业160篇技术创新成果论文。经过三级评选,表彰了最佳创新奖8项、一等奖20项、二等奖30项、三等奖40项,其中10项优秀成果在论坛上发布展示。会议还宣布了首批10家炼化企业青年创新工作室试点建设单位。石化院在此次论坛上收获颇丰:6项成果全部获奖,其中“最佳创新奖”1项、一等奖3项、二等奖1项、三等奖1项;石化院王力搏工作室被授予集团公司“青年创新工作室”殊荣。中国石油炼油与化工分公司总工程师,石化院党委书记、院长何盛宝代表青年创新工作室试点建设单位表态发言。何盛宝向论坛的成功举办表示祝贺,对于石化院如何建好用好青年创新工作室,提出“坚持一条主线、完善一套制度、培育一批人才、形成一批成果”的工作思路及具体举措。何盛宝指出,青年创新工作室的组建及运行要坚持“把青年培养成骨干,把骨干培养成专家”的原则,以“建平台-育人才-出成果”为工作主线,配套完善的制度保障体系,激发青年科研人员主动担当作为的内生活力,实现从“要我创新”到“我要创新”的转变,努力造就一批面向未来、具有行业影响力的顶尖科技人才梯队,在关键核心领域形成一批支撑炼化转型升级和高质量发展的科技创新成果。何盛宝要求,要以青年创新工作室试点建设为契机,紧密围绕“技术立企、人才强企”要求,认真践行“生聚理用”人才发展理念,完善人才培养体系,创新人才培养模式,加块培养“科研领军人才”“国际化人才”“高端化管理人才”等一批急需短缺人才,储备人才后备力量,为集团公司高质量发展、建设基业长青的世界一流企业作出更大贡献。分析检测与标准化研究室修远代表优秀项目在会上汇报,展示了石化院青年科研人员的良好形象。获奖情况“最佳创新奖”:《多产优质化工原料的柴油加氢裂化催化剂技术开发及应用》“一等奖”:《“纯手工”到“全自动”的飞跃——重油四组分快速分析技术》《基于MOF材料的乙烯乙烷吸附分离技术开发》《超重力液化气深度脱硫PriLDS® 技术在千万吨炼厂的工业实践》“二等奖”:《聚烯烃催化剂氢调敏感性的调控与新产品开发》“三等奖”:《微反应器在液体丁二烯-苯乙烯橡胶制备中的应用研究》“青年创新工作室”: 王力搏劳模创新工作室获奖成果具体介绍01、多产优质化工原料的柴油加氢裂化催化剂技术开发及应用多产化工原料的柴油加氢裂化技术,突破了低压条件下、高芳烃劣质柴油向优质化工原料高效转化的关键技术,通过构建具有高结晶度、丰富介孔结构和适宜酸分布的DHCY分子筛,提高了裂化酸中心与加氢金属中心的协同作用,让芳烃分子的加氢裂化过程按理想反应路径进行,提高化工原料选择性。装置标定结果表明,石脑油及尾油化工原料收率70%以上。入选2019年“中国石油十大科技进展”,为中国石油炼化转型升级提供自主技术支撑。02、“纯手工”到“全自动”——重油四组分自动分析技术重油四组分是石油化工领域一项重要的分析项目。长期以来,该分析项目因耗时长、有毒有害试剂接触大、溶剂消耗多、占地面积大、需要的操作技巧高等原因,难以满足石油化工行业的生产需求。石化院技术团队瞄准此技术需求,创新性的开发了一套全自动四组分分析的设备和方法,有效的解决了传统方法的各项缺陷。目前,该技术已经成功应用于中石油大连石化公司,并即将在超过十家炼化生产企业开展应用。03、基于MOF材料的乙烯/乙烷吸附分离技术开发烯烃和烷烃的低能耗分离被Nature评为影响世界的7大分离过程之一。乙烯/乙烷吸附分离技术有望以低能耗方式获得高纯乙烯,为炼厂低碳转型提供重要助力。乙烯乙烷分子极为相近、分离难度大,当前尚无商业化吸附剂。本项目开发了一种廉价、稳定的金属有机骨架(MOF)材料,从等摩尔乙烯/乙烷混合气中获得 95%的乙烯,在150 ml吸附柱上验证材料穿透选择性,制备了公斤级MOF样品,并对材料的成型方法和吸附工艺进行了初步研究,为MOF分离技术的工业应用奠定了基础。04、超重力液化气深度脱硫PriLDS® 技术在千万吨炼厂的工业实践石化院自主研发、世界首创的PriLDS® 技术,是对传统UOP-Merox工艺技术的新突破,采用了超重力及系列创新技术,应用于液化气脱硫醇生产过程,在满足液化气深度脱硫(精制液化气硫醇硫≯2mg/kg)的同时可以实现废碱(碱渣)零排放,目前已在7套装置成功实现工业应用,累计减排废碱1.5万吨+,企业综合创效1亿元+,技术总体达到国际领先水平。05、聚烯烃催化剂氢调敏感性的调控与新产品开发随着高流动性聚烯烃和双峰聚乙烯产品需求的不断增加,氢调敏感性也越来越受到学术界和产业界的关注,提高氢调敏感性已经成为Ziegler-Natta催化剂改进的一个重要方向。该技术通过内给电子体结构设计,制备出具有不同氢调敏感性的催化剂,实现对催化剂氢调敏感性的有效调控。结合DFT模拟计算,对氢调敏感性的影响规律和作用机理提出了一些新认识,可为催化剂和新产品的开发提供指导,具有重要的工业应用价值。06、微反应器在液体丁二烯-苯乙烯橡胶制备中的应用研究液体丁苯橡胶在高性能轮胎、塑料改性、粘合剂行业,尤其在航空航天、军工等领域有广泛的应用,因此自主开发液体丁苯橡胶具有重要意义。该项目采用连续流反应方法进行阴离子溶液聚合制备液体丁苯橡胶,改变传统的釜式阴离子溶液聚合工艺,解决高浓度单体-高浓度引发体系下液体丁苯橡胶制备问题,开发液体丁苯橡胶连续流合成工业化技术。一分耕耘,一分收获。作为此次论坛的承办单位之一,石化院团委按照集团公司团委要求,牵头组织论坛策划、方案制定、项目评审等一系列重要工作,从项目征集、评审到成果发布历时7个多月,付出了辛劳与汗水,整体工作得到领导和管理部门的肯定。石化院收获满满!
  • 食药监局征求化妆品禁用组分修订意见
    各有关单位:   根据《化妆品卫生规范》(2007年版)规定,胆碱盐类及它们的酯类属于禁用组分,由于化妆品生产的需要,基于安全风险评估的原则,参照国外相关资料,经组织专家论证,拟对禁用组分“胆碱盐类及它们的酯类”作如下修订:   一、禁止使用的胆碱盐类及它们的酯类:氯化胆碱、菲诺贝特胆碱(choline fenofibrate)、胆碱水杨酸盐、胆碱葡萄糖酸盐、胆茶碱、硬脂酸等长链烷烃羧酸胆碱酯、甲基胆碱及其盐和酯等。   二、非禁止使用的胆碱盐类及它们的酯类:卵磷脂(Lecithin)、甘油磷酸胆碱(Glycerophosphocholine)、氢化溶血卵磷脂酰胆碱(Hydrogenated lysophosphatidylcholine)、氢化磷脂酰胆碱(Hydrogenated phosphatidylcholine)、磷脂酰胆碱(Phosphatidylcholine)。   三、其它胆碱盐类及它们的酯类原料需按《化妆品卫生规范》(2007年版)要求,经安全风险评估后,确定是否可以使用。申请人提交的有关安全性风险评估资料还应该包括原料规格、纯度、结构式、分子量范围、残余单体和杂质的种类及残留量。   现公开征求意见,请将修改意见于2009年12月28日前反馈国家食品药品监督管理局食品许可司。   联 系 人:曹蕊 陈少洲   联系地址:北京市西城区北礼士路甲38号,邮编:100810   联系电话:010-88330452/0405   传 真:010-88373268 电子邮件:caorui217@yahoo.com.cn;chensz@sfda.gov.cn
  • 高分子表征技术专题——荧光关联光谱在高分子单链研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20238《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304荧光关联光谱在高分子单链研究中的应用周超 1,2 ,杨京法 1,2 ,赵江 1,2 1.中国科学院化学研究所机构 北京 1001902.中国科学院大学机构 北京 100049作者简介: 赵江,男,1967年生. 分别于1989年、1992年在吉林大学物理系获得学士、硕士学位,1995年于中国科学院物理研究所获得博士学位,之后分别于北京大学化学与分子工程学院、日本产业综合研究所、美国伊利诺伊大学从事博士后研究,2004年起于中国科学院化学研究所任研究员,入选中国科学院“百人计划”,2009年获得国家杰出青年科学基金资助,2013年当选美国物理学会Fellow. 以单分子荧光显微与光谱方法开展关于高分子物理基础性研究,研究方向包括:多电荷大分子、聚合物表界面、高分子动力学、相变与玻璃化转变等 通讯作者: 赵江, E-mail: jzhao@iccas.ac.cn摘要: 荧光关联光谱(fluorescence correlation spectroscopy,FCS)是一项用于研究体系动力学性质的统计光谱技术,随着它被引入材料与化学研究领域,近年来取得了大量全新的研究成果. 该技术在高分子科学研究中也逐渐发挥出越来越大的作用,特别是在聚合物结构和动力学方面,这表明它在高分子领域的巨大潜力. 本文将从FCS的基本原理、实验技巧以及在一些具有挑战性体系中的应用等方面展开,着重介绍它在高分子溶液,如聚电解质溶液、高分子混致不溶现象,以及不同的表界面体系中取得的新成果,展示FCS区别于其他传统技术的特点和优势.关键词: 荧光关联光谱 / 高分子 / 聚电解质 / 表界面 / 混致不溶 目录1. 荧光关联光谱的基本原理2. 荧光关联光谱的实验技巧2.1 实验样品的标记和纯化2.2 激发体积的校准3. 荧光关联光谱在高分子单链研究中的应用3.1 FCS在聚电解质体系中的应用3.2 FCS在高分子混致不溶现象中的应用3.3 FCS在表界面体系中的应用3.4 FCS在有外场作用的体系中的应用4. 荧光关联光谱技术的发展和应用5. 结论参考文献高分子物理研究的目标之一是探究聚合物在不同尺度上的结构与动力学,及其对于高分子体系性质的决定性. 其中,聚合物构象是最为基础的研究内容. 高分子构象是指由于主链上单键内旋转而产生的分子链在空间的不同形态. 对于中性聚合物体系,由于分子链的结构自相似性,利用标度理论可以成功描述其在良溶剂、θ溶剂以及不良溶剂中分子链的尺寸. 散射技术是研究高分子链构象最成功的方法,如:光散射、X射线散射以及中子散射. 就动态光散射而言,它通过检测高分子溶液散射光强随时间涨落而得到其关联函数,从而获得单分子链的扩散速率信息,并获得分子链的流体力学半径信息[1,2]. 结合静态散射实验所获得的回转半径,可以确定聚合物在溶液中的形态[3,4]. 虽然光散射方法在具有短程相互作用的中性聚合物体系表征中非常成功,但是该项技术在一些条件或情形下却遇到了很大的困难,如:多电荷体系、多组分复合体系、表界面体系等. 在多电荷体系中,多重长程静电相互作用使得动态光散射信号中出现令人费解的“快慢模式”[5~7]. 用光散射法来考察高分子的混致不溶现象时,混合溶液中强烈的组分涨落导致强烈的光散射背景信号,严重影响了光散射对信息的提取[8]. 因此,采用新的技术和研究方法开展高分子表征无疑是重要的.荧光关联光谱(fluorescence correlation spectroscopy,FCS)是表征高分子的有效新方法之一. 它与动态光散射同属于光子相关光谱技术,通过分析光信号的涨落而得到分子链动力学信息. 然而,FCS具有很高的探测灵敏度,通过获取荧光涨落信号而得到单个分子的动力学信息. 荧光关联光谱技术是由Madge、Elson和Webb[9~11]在20世纪70年代发展起来的,20世纪90年代,随着Rigler等[12]将共聚焦技术引入,FCS得到快速发展. 采用共聚焦显微技术,FCS的激发-探测空间体积缩小至~10−15 L,激发-探测空间内的分子数目大大地降低,实验的信噪比也随之提高. 与此同时,具有很高灵敏度的单光子检测器的采用使得FCS实现了单分子水平的测量. 随着计算机技术的进步,数据采集卡能够实时地进行数据的采集和相关性计算,使得FCS技术得到了重要的突破,在科学研究中的应用也越来越广泛.近年来,FCS在高分子物理研究中逐渐表现出重要作用,相比于传统的散射技术,它有着独特的优势. 第一,FCS具有极高的灵敏度,可以在极稀薄条件下(~10−9 molL−1)进行测量,同时具有达到光学衍射极限空间分辨率(~200 nm)与出色的时间分辨率(10−6 s). 第二,FCS的信噪比与聚合物的分子量无关. 在实验中,聚合物链通过化学键合的方式实现一比一的荧光标记,因此,分子量不同的样品对于信号的贡献相同. 但是,对于光散射技术而言,散射光强与聚合物分子量具有依赖性,因而信噪比也随之改变,分子量偏小样品的实验难度较大. 第三,对样品的荧光标记同样带来了可选择性与识别性,实现了同一体系中不同组分的区分式研究. 例如,通过对不同组分使用不同的荧光分子进行标记,采用多色FCS对各组分间的运动及其关联进行分析;也可选择性地对多组分体系中的特定组分进行标记,实现复杂体系中特定组分的研究.伴随着FCS技术的发展以及与其他研究手段的联用,其应用越来越广泛,从最初的生物领域[13~15]到胶体[16,17]、聚合物[18,19],从溶液[20~23]到熔体[24~26]、凝胶[27~29]、表界面体系[30~32]等,都取得了许多原创性的成果. 值得指出的是,FCS在测量平动和转动扩散系数、反应速率常数、平衡结合常数、细胞内粒子浓度等方面有着突出的优势[33~35].1. 荧光关联光谱的基本原理当一个体系处于热力学平衡态时,分子的热运动会导致体系浓度、密度等发生局部涨落. 通过相关分析方法,计算这些局部涨落的关联函数,就可以从信号中提取出体系的热力学信息. 动态光散射技术正是运用了此方法,通过测量溶液的散射光强随时间涨落而获得其关联函数,从而获得样品的动力学信息. 荧光关联光谱测量共聚焦空间内样品荧光强度随时间的涨落,通过计算其关联函数而得到对涨落有贡献的热力学性质信息.在激发空间内在任一时刻荧光强度F(t),激发空间内荧光信号在t时刻的强度涨落δF(t)为:其中,⟨F(t)⟩=1/T∫0TF(t)dt,为从0到T 时间内的平均荧光强度.上述涨落的归一化自关联函数为G(τ):自关联函数包含了导致共聚焦空间内荧光信号强度涨落的所有信息,如:平动及转动扩散导致的荧光信号涨落、探针的光物理和化学变化(如:三重态)等导致的涨落等. 对于单光子激发体系,激发空间内的光强分布满足三维高斯分布,对在溶液中进行三维扩散的荧光分子而言,其浓度的涨落满足扩散方程,因而其关联函数的表达式为:其中,Veff=π1.5w02z0为激发空间的体积,特征时间τD=w02/4D为荧光分子通过激发空间所需的平均时间. G(0)=1/Veff⟨c⟩=1/N为激发空间内荧光分子平均数目的倒数,当样品的浓度越低时,G(0)值越大.从G(τ)的表达式可知,FCS的自关联函数有4个变量w0、z0、⟨c⟩、D,其中w0、z0属于仪器的参数,即共聚焦空间的横向半径与纵向半高度,而⟨c⟩、D分别是荧光分子的平均浓度和扩散系数. 因此,在准确标定仪器参数w0w0、z0z0的条件下,通过数值拟合将得到未知样品的浓度和扩散系数. 扩散分子的流体力学半径可以根据Stokes-Einstein方程得到:其中,kB为玻尔兹曼常数,T为温度,η为介质黏度.FCS仪器结构如图1所示,激光器的输出光经过准直扩束后由二向色镜反射进入物镜,并经物镜聚焦在样品中激发荧光. 产生的荧光由同一物镜收集,再次通过二向色镜以及滤镜将杂散的激光以及背景光过滤压制,最终由透镜聚焦并由针孔进行空间滤波进入到检测收集系统.图 1Figure 1. Schematic illustration of instrument structure of fluorescence correlation spectroscopy.由于单光子检测器可能出现接收一个光子产生多个电子的情况,为了消除这个过程带来的误差,可以将荧光信号分成等强度的两部分,然后对2个通道内的信号作交叉关联:2. 荧光关联光谱的实验技巧由于一般的聚合物不发光,因此FCS实验所采用的样品需要进行荧光标记. 另外,在实验操作方面,最需要注意对于激发体积的严格校准,以确保实验测量的准确性.2.1 实验样品的标记和纯化样品标记方法主要有以下2种:第一,在样品需要标记的位点预留反应的基团,如:氨基、羧基、叠氮基团等,再根据不同的基团及FCS实验的要求选择合适的活性荧光分子进行化学键合. 为了获得较高的标记效率,在标记过程中加入的荧光分子的量远大于聚合物,所以反应结束后有大量游离的自由荧光分子存在,需要通过体积排除色谱和超滤等方法进行分离提纯,直至滤液中不再检测到荧光信号.第二,在样品合成过程中加入适当比例的共聚合荧光单体进行共聚,例如,通过RAFT聚合制备聚异丙基丙烯酰胺(PNIPAM)时,可以加入适当比例的荧光单体来合成具有一定分子量范围、分子量分布较窄和荧光标记的样品[36]. 反应完成后同样也需要超滤、透析等方式进行分离提纯.2.2 激发体积的校准FCS实验之前,需要对仪器进行校正得到仪器激发体积的参数. 采用已知浓度和扩散系数的荧光分子样品来进行校正,例如Rhodamine 6G (Rh6G)分子,它在纯水中的扩散系数为414 μm2s−1 (25 °C),实验中一般将其配置成5×10−9 molL−1 (5 nmolL−1)的水溶液进行FCS测量,然后通过对测得的关联函数进行拟合即可得到激发空间的尺寸.另外,温度对于扩散系数的影响很大,不同温度下进行实验时,同样需要对扩散系数进行校正,校正的公式如下:如图2所示,以波长为488 nm的激光作为激发光,对FCS测量得到的Rhodamine 6G的自相关曲线进行拟合得到激发空间的尺寸为w0=0.224 μm,z0=1.608 μm.图 2Figure 2. A typical autocorrelation function curve and the fitting result of free Rhodamine 6G molecules in water.需要说明的是,FCS的测量会受到样品体系折射率不匹配的影响. 如图3所示,当样品溶液与物镜的折射率不匹配时,会导致表观的激发体积出现显著变化:第一,表观的w0值随折射率不匹配的增加而减小,这是折射率不匹配产生的像差导致;第二,随着物镜焦点位置从界面处愈加深入到样品溶液中时,折射率不匹配导致的表观w0值的变化愈明显[36].图 3Figure 3. (a) Representative normalized autocorrelation function curves of fluorescent nanoparticles diffusing in aqueous solution of glycerol at a small focal depth (25 μm) (b) Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the refractive index of the solution. The distance of the focal point in the sample medium away from the coverslip surface is displayed. (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).依据FCS的原理,w20=4DτDw02=4DτD,因此,即使微小w0变化也将显著影响探针分子拟合得到的扩散系数值. 因此,选择合适的溶液体系和物镜使得折射率尽可能匹配,对于FCS的测试准确性至关重要. 在折射率不匹配问题无法避免时,如图3(b)中,可以使用一个较低的焦点位置(25 μm)能有效地避免激发体积的畸变[36].此外,如图4所示,以厚度为0.16 mm的盖玻片为例,当实验使用物镜的校正环与样品池底部的盖玻片厚度不匹配时,激发体积的尺寸也会出现较大的偏差,所以在实验前还需注意物镜校正环与盖玻片厚度是否匹配[37].图 4Figure 4. Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the value of correcting collar (Reprinted with permission from Ref.[37] Copyright (2018) University of Chinese Academy of Sciences).因此,在FCS实验中,应该尽量选择合适的物镜类型以匹配样品的折射率,并调整镜头校正环数值与盖玻片厚度一致,如果折射率不匹配的情况不能避免,那就选择较低的、固定的焦点深度值以保证实验结果可靠可信.除了上述两点之外,在实验过程中还需要注意激光光强的选择,过强的入射光容易导致荧光探针发生光漂白而带来实验误差,因此应该降低进入物镜的激光光强进行实验.3. 荧光关联光谱在高分子单链研究中的应用FCS以其独特的优势在一些传统研究手段难以涉足的高分子体系中展现出独特的优势,例如:考察水溶液中聚电解质的单链动力学[38~44]、混致不溶现象中高分子链构象的变化[36]、表界面体系中高分子的扩散动力学[30~32,45~48]等等.3.1 FCS在聚电解质体系中的应用聚电解质是主链或者侧链上带有可离子化基团的聚合物,在极性溶剂中,聚电解质主链由于解离而带电,同时存在大量带有相反电荷的抗衡离子[49,50]. 正是聚电解质链间、链段间以及链与抗衡离子间多重长程静电相互作用,在赋予聚电解质丰富性质的同时,也给聚电解质的研究带来了很大的困难[51~53]. 例如,当采用动态光散射技术研究带电聚合物体系时,在低离子强度的聚电解质溶液中,存在“快与慢”的2种松弛模式. 为了探究聚电解质中的这种多级松弛模式的起源,研究人员进行了大量的实验并提出了多种可能的解释,但至今仍未有一个确切的回答[5,6,54~56].如果采用传统散射技术来研究低离子强度条件下带电聚合物体系的扩散运动,实验中遇到不少困难,而FCS实验中样品极稀浓度和极高选择性的优势就体现出来,依靠FCS技术,研究人员可以在极稀薄条件下进行实验研究,在聚电解质溶液体系获得全新的信息.Wang等[38]利用FCS在实验上第一次观察到了在无扰溶液中疏水聚电解质的一级构象转变. 如图5(a)所示,弱聚电解质聚(2-乙烯基吡啶) (P2VP)分子的构象随带电分数的变化而呈现出一级转变特征,即:随pH的升高由伸展的线团构象至坍缩的链球. 除了通过pH值改变聚电解质的带电分数,聚电解质的构象转变也可以由改变外加盐的浓度导致,即:抗衡离子吸附与静电屏蔽作用. 如图5(b)所示,P2VP的单分子链流体力学半径随着静电屏蔽长度的增加而连续增加.图 5Figure 5. (a) Diffusion coefficient of P2VP as a function of pH value of the solution. Inset: The hydrodynamic radius of P2VP as a function of pH value (b) The hydrodynamic radius of P2VP as a function of Debye length of the system (Reprinted with permission from Ref.[38] Copyright (2007) American Institute of Physics).Xu等[39]利用FCS技术在单分子水平上研究了强聚电解质的构象. 实验发现,在无外加盐的情况下,强聚电解质聚苯乙烯磺酸钠(NaPSS)和季胺化聚(4-乙烯基吡啶)(QP4VP)的流体力学半径和聚合度之间分别存在着0.7和0.9的标度关系,说明在低离子强度时,聚电解质链的构象比中性聚合物在良溶剂中溶胀的无规线团构象更加伸展. 如图6所示,采用棒状构象的分子模型得到了理想的拟合结果(其中QP4VP在高分子量部分出现偏离是高分子量聚电解质吸附更多的抗衡离子所导致的). 拟合结果显示分子链的直径分别为2.2和2.3 nm,这比理论假设的裸露水合聚电解链的直径0.8 nm要大很多,这也说明了聚电解质链的周围有抗衡离子云的存在.图 6Figure 6. Values of hydrodynamic radius of NaPSS and QP4VP plotted as a function of degree of polymerization. The solid lines denote the numerical fitting based on the theoretical model of diffusion of a rod-like molecule, and the dashed line denotes the fitting results using the diameter of a hydrated chain, i.e., d=0.8 nm. (Reprinted with permission from Ref.[39] Copyright (2016) American Institute of Physics).Xu等[40]进一步研究了在不同外加盐浓度情况下聚电解质链的构象. 如图7所示,聚电解质分子链构象具有分子量依赖性:在低盐浓度时,短链分子的聚电解质采取棒状构象,而长链分子采取无规线团构象;随着外加盐浓度的增加,所有的NaPSS和QP4VP均采取无规线团构象.图 7Figure 7. Diffusion coefficient of NaPSS (a) and QP4VP (b) as a function of degree of polymerization under salt concentrations of 10−4, 0.1, and 1.0 molL−1, respectively The solid lines represent the results of fitting using the relation of Rh∼N−v. (Reprinted with permission from Ref.[40] Copyright (2018) American Institute of Physics).Ren等[41]通过FCS技术研究了i-motif DNA的解折叠过程. 如图8所示,在不同盐浓度的条件下,随着pH值的升高,i-motif DNA均发生了从有序的四联体结构到无规线团的构象转变,并且这一转变对盐浓度有着依赖性:盐浓度越高,解折叠的起始pH值就越低. 这种盐浓度依赖性的主要原因是外加盐的引入导致更多的抗衡离子吸附在DNA链上而降低了链的电荷密度,降低了链周围的局部质子浓度,而后者是控制折叠形成的关键因素.图 8Figure 8. The values of hydrodynamic radius of a single i-motif DNA strand as a function of pH value in the solution Three conditions were chosen: solution without any salt addition (salt-free), and 50 mmolL−1 and 100 mmolL−1 NaCl solutions (physiological environment) The start and end points of the conformation transition are denoted by the arrows. (Reprinted with permission from Ref.[41] Copyright (2018) The Royal Society of Chemistry).如果将光子计数直方图(PCH)技术与FCS相结合,可以对聚电解质主链的电势、有效带电量、抗衡离子分布等方面进行深入研究. 例如,Luo等[42]将pH敏感的荧光探针标记于NaPSS链的不同位点,采用PCH技术测量分子链局部的pH值,发现聚电解质链附近的局部氢离子浓度比本体溶液中高2~3个数量级,而末端效应使得分子链中间的静电势高于末端的静电势. 同时,他们还发现氢离子浓度在径向呈现出e指数衰减的趋势,这证明了聚电解质链周围存在抗衡离子云的说法[43].Jia等[44]研究了抗衡离子分布与聚合物浓度的依赖关系,通过FCS测量NaPSS溶液中作为抗衡离子探针的带负电荧光分子的扩散系数,确定自由探针和吸附于主链的探针2个组分,发现与主链结合的抗衡离子组分随着聚合物浓度的增加而增加. Xu等[40]采用PCH测量NaPSS单分子链电位,发现其随着聚合度的增大而单调上升,且在聚合度大的区间达到饱和. 这说明主链的静电势与分子量不是线性关系,其有效带电分数以及有效电荷密度随着分子量的增加而减小. 上述实验结果说明聚电解质抗衡离子与主链的相互作用是吸附与脱附的动态平衡,而不是经典的Manning抗衡离子凝聚[57~60].3.2 FCS在高分子混致不溶现象中的应用高分子的混致不溶现象(cononsolvency)是一类回归型过程:2种高分子的良溶剂按一定比例混合后反而成为了不良溶剂[61,62]. 一个典型的例子是:常温下聚异丙基丙烯酰胺(PNIPAM)在水与一定比例的甲醇、乙醇、异丙醇、丙酮、四氢呋喃、DMSO等良溶剂的混合液中不再溶解,溶液的相分离温度显著改变,溶液黏度下降,PNIPAM凝胶溶胀率下降. 研究人员对这一现象的起源进行了大量的实验探究,至今未能达成共识[8,63~66].了解高分子链的构象对于理解混致不溶现象至关重要. 前人采用光散射方法研究了水和甲醇混合溶剂中PNIPAM链从线团到塌缩球再到线团的构象转变[64]. 需要特别说明的是,为了在极稀溶液中获得足够高的散射强度与信噪比,研究中采用了分子量高达107 gmol−1的样品. 当采用FCS技术研究该过程时,由于其超高的灵敏度以及与样品分子量无关的信噪比,可在混合溶剂环境下高分子单链的研究中提供独特的信息[67]. Wang等[36]利用FCS研究了PNIPAM在水-乙醇混合溶剂中的混致不溶过程. 如图9所示,PNIPAM具有非对称的回归型构象变化特征:随着乙醇浓度的增大,在一个很窄的乙醇浓度范围内PNIPAM链剧烈塌缩,然后在很宽的乙醇浓度范围内逐渐地再度伸展,说明这一构象转变不是先前文献中所认为的一级构象转变过程. 这表明乙醇分子比水分子更强烈地与PNIPAM链发生作用,这是由乙醇较强的疏水水合效应所致,暗示了Tanaka提出的模型中水合/失水的协同能力强于醇分子吸附/脱附的协同能力[65,66].图 9Figure 9. Normalized autocorrelation function curves of diffusing single chains of PNIPAM with five degrees of polymerizations in pure ethanol (a) and at xEtOHxEtOH of 0.25 (b) The solid line with each data set denotes the results of the numerical fitting using three-dimensional diffusion model Rh6G in (a) denotes the results of free fluorescent Rhodamine 6G, and its drastic difference from those of polymers indicates the successful labeling and sample purification (c) The values of hydrodynamic radius of PNIPAM single chains as a function of xEtOHxEtOH (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).如图10所示,不同乙醇浓度下得到PNIPAM单链的尺寸的标度率(Rh∼NυRh∼Nυ)表明,标度指数νν随着xEtOHxEtOH变化:随着乙醇的浓度的增加,ν从~0.57到0.5再到~1/3变化,说明在上述3个区域,PNIPAM高分子链分别采取了溶胀、无规线团、坍缩链球的构象,即:由纯水中的溶胀线团经无规线团构象而急剧转变为塌缩链球构象,进而又再度逐渐伸展,经过无规线团构象变化至溶胀线团构象. 从标度指数的变化也可以发现回归型链构象变化的高度非对称性,进一步印证了Tanaka提出的协同吸附-优先吸附模型[65,66].图 10Figure 10. Typical double-logarithmic plot of hydrodynamic radius of single PNIPAM chains as a function of degree of polymerization under different solvent compositions: (a)xEtOH=xEtOH=1.0, (b)xEtOH=xEtOH=0.28, (c)xEtOH=xEtOH=0.25 Solid lines are the least-squares linear fitting (d) The vv values as a function of xEtOHxEtOH The three dotted lines denote the theoretical values of the static scaling index for a random coil (0.588), an undisturbed coil (0.5), and a compact globule (1/3). (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).3.3 FCS在表界面体系中的应用受限高分子链,尤其是处于界面的高分子链结构及动力学性质,直接关系到表界面的机械性能、摩擦性能、流变性能等,这些性质与高分子材料在表界面上的应用息息相关,如涂料、润滑剂、胶黏剂等[68~71]. 但是对于高分子链在表界面处的动力学研究存在着不少技术难题,主要原因是表界面动力学带来的浓度涨落被局限于二维或准二维空间,探测难度极大,使得传统的散射方法难以应用. 近年来,得益于单分子技术的迅猛发展,空间和时间分辨能力分别有了显著的优化,极大提高了人们直接“观察”分子或粒子行为的能力,这为我们从分子水平认识聚合物在界面上的动力学性质打下了基础.荧光关联光谱因其极高的灵敏度与显微测量能力被成功地应用于表界面体系的研究中. 对于处于二维自由扩散的分子而言,其自关联函数为:其中,w0是二维FCS观察区域(即激发空间在界面等二维平面投影)的半径,⟨ρ⟩=⟨N⟩/A,即单位面积内荧光探针的平均数量,A是激发空间在界面等二维平面上投影的面积.Sukhishvili等[30]利用FCS研究了荧光染料标记的不同分子量的聚乙二醇(PEO)在固-液界面上的扩散. 从分子链界面扩散运动行为出发,分析出在极稀浓度的条件下聚合物分子在固-液界面上呈现出了紧密吸附的pancake构象,发现了界面扩散系数与分子量的-3/2的独特标度率. Zhao等[31,32]则利用FCS研究了PEO在固-液界面上扩散速率与界面吸附浓度的非线性关联性,即:随着聚合物浓度的增加,其扩散系数先增加并在某一浓度值达到极值,进而骤然大幅下降. 这是由于极低浓度分子链紧密吸附的pancake构象会随着吸附浓度的增加变成loop-tail-train构象,即:吸附使得分子链构象变得相对松散,其扩散速率由与基底接触的train部分占主导. 随着吸附浓度的增加,较为自由的loop-tail部分则增加了其运动能力,因此扩散系数增加;更高浓度时扩散系数出现骤降是因为体系中出现了jamming效应,即分子链间的作用增强,阻碍了分子链的扩散运动.Ye等[45]利用FCS研究了不同拓扑结构的聚合物链在石英-二氯甲烷界面上的扩散,如图11所示,线形聚苯乙烯(PS)扩散的标度率为D∼M−1.5,重现了reptation模型;而环形PS的标度率则为D∼M−1,展现为Rouse模型. 两者的差异是由于环形分子没有末端,无法像线形分子一样完成蛇行运动,而是由一系列链段受到热激发进行跳跃,跨过局部能垒的运动组成.图 11Figure 11. Double-logarithmic plots of center-of-mass diffusion coefficient against molecular weight for surface diffusion of cyclic (c-PS) and linear (l-PS) polystyrene chains on fused silica-DCM interface The solid lines with slopes of 1 and 3/2 are drawn as guides to the eye The dashed lines through the points representing the best fit of the data give power law slopes of 1.46 for linear chains and 1.00 for cyclic chains. (Reprinted with permission from Ref.[45] Copyright (2016) The Royal Society of Chemistry)Yang等[46]利用FCS研究了不同盐溶液作为液相时,NaPSS在疏水单层分子膜界面上的扩散行为. 如图12所示,吸附在疏水表面的聚电解质分子链的扩散受到液相中不同阴离子的影响,主要原因在于不同的阴离子效应改变了界面疏水相互作用强度,从而改变了界面与分子链之间摩擦力,造成扩散系数的显著改变.图 12Figure 12. Typical data of the lateral diffusion coefficient of a NaPSS single chain at the interface of a hydrophobic surface and an aqueous solution as a function of the salt concentration in the aqueous solution (Reprinted with permission from Ref.[46] Copyright (2011) American Chemical Society)Yang等[47]利用FCS技术研究了聚苯乙烯与聚异戊二烯(PI)的嵌段共聚物在二甲基甲酰胺(DMF)与PI聚合物构成的液体界面上的扩散运动. 如图13所示,在本体聚合物分子量跨越了2个数量级的变化,界面上PS-b-PI的扩散系数仅有轻微的下降. 这表明,在PI/DMF的体系中,存在很低黏度的界面层,该界面层的黏度与构成界面的本体聚合物的分子量不存在明显依赖性.图 13Figure 13. Interfacial diffusion coefficient of single PS-b-PI chain as a function of the molecular weight of bulk PI The dashed line is for the guide of eye Inset: illustration of the sample geometry (Reprinted with permission from Ref.[47] Copyright (2008) American Chemical Society).Li等[48]利用FCS探究了PEO分子在烷烃-水界面上的扩散行为. 研究发现,PEO在该界面上聚合物的横向扩散为正常扩散,与二维布朗运动模型相吻合. 如图14所示,液-液界面上的PEO的界面扩散系数与其聚合度之间存在D∼N−0.5的标度关系,这一新的标度关系表明其界面扩散运动遵循着新的运动机理.图 14Figure 14. The logarithm of interfacial diffusion coefficient of PEO as a function of the logarithm of molecular weight (Reprinted with permission from Ref.[48] Copyright (2020) The Royal Society of Chemistry).从单分子层面上研究界面扩散,有助于发现分子最真实和原始的扩散行为规律,这在传统的系综平均实验中往往会被忽略或者被多种因素耦合而产生的运动行为掩盖,这是上述FCS实验结果最大的优势之处. 此外,值得注意的是,在研究固-液界面上聚合物扩散机理时,不同研究团队利用FCS和单粒子追踪(single particle tracking, SPT)技术,得到了不同的结果及界面扩散机理,也因此导致了FCS和SPT 2种技术在界面分子动力学研究上存在多年的学术争论[30,31,72,73]. 我们基于这个问题也展开了实验对比,发现FCS和SPT都能够提供准确且可靠的实验结果,在条件满足时两者能够得到相互吻合相互匹配的实验结果,相关数据结果将在未来进行发表.3.4 FCS在有外场作用的体系中的应用对于聚合物而言,在其合成、分离、加工等过程中有可能会经历电场、流动场、剪切场等作用,尤其在生命体中更是常见. 因此,对于外场作用下的聚合物性质的研究也是极为重要的.当我们将荧光关联光谱应用于外场作用下的体系中时,除了分子热运动导致平动扩散引起的荧光信号涨落,还不得不考虑外场导致荧光分子定向运动通过激发体积带来的信号涨落. 带有定向运动的FCS,如果其运动的方向垂直于激光光束的方向,经过修正的模型拟合关联函数可以获得扩散系数与定向运动速率:其中,vf=w0/τf即为定向运动速率.Dong等[74]将FCS和毛细管电泳结合起来测定了量子点在极稀溶液中的表面电势. 利用FCS的自关联函数拟合得到荧光粒子的定向运动速度和扩散系数,在电泳实验中定向运动的特征时间τf和自扩散系特征时间τD之间满足:其中,Q为带电量,E为外加电场强度. 通过测定不同电场强度下定向运动和扩散的特征时间,通过线性拟合得到荧光粒子的表面电势. Wang等[75]利用FCS研究了P2VP在交变电场下的单链构象转变. 结果表明电场强度对于分子链构象的影响存在滞后转变. 这种滞后现象可以归因于单个疏水性聚电解质链的不对称双稳态能态,由于抗衡离子的解离、迁移和凝聚,其coil和globule构象之间的势垒可以通过交变电场诱导的偶极子降低到kBT以下.4. 荧光关联光谱技术的发展和应用随着FCS技术的发展,出现了双色荧光关联光谱(DC-FCCS)[76,77]、双焦点荧光关联光谱[78,79]、FCS与荧光共振能量转移(FRET)联用[80,81]、可连续改变共焦体积荧光关联光谱[82]等新技术. 这些新技术相较于传统的FCS,可以获取样品更多的热力学信息. 图15是DC-FCCS的简单示意图,采用2种波长的激光分别激发2种对应的荧光分子,然后选择性光学器件对不同波长的荧光进行分离,最后由2个APD检测器分别检测2种荧光信号,再对信号进行关联性分析. DC-FCCS的基本原理就不在此赘述,除了对2种荧光分子的荧光强度涨落进行各自的自关联分析之外,我们还可以对这2种荧光信号做交叉关联分析得到两者相互运动乃至相互作用的信息. 需要说明的是,选择的这2种荧光分子在光谱上必须分离得很好,否则会出现很大的串扰影响实验结果.图 15Figure 15. Schematic illustration of dual color fluorescence cross-correlation spectroscopyChen等[83]利用DC-FCCS和光散射相结合的方法深入研究了聚电解质溶液中单链运动之间的关联性,发现了聚电解质分子链间的运动耦合. 将DC-FCCS实验得到自关联函数的自由扩散部分转化为均方位移数据(MSD),发现其在长短2个时间尺度上分别存在具有不同扩散系数的正常扩散运动,表明链间的静电排斥相互作用带来的“笼子效应”导致了单个分子链的自扩散运动中同样存在一快一慢2种时间尺度上的扩散模式:短时间尺度上为“笼子”内的快扩散行为,长时间尺度上为跨越不同“笼子”的慢扩散行为(如图16所示). 这2种松弛模式均存在强烈的离子强度依赖性,随着外加盐浓度的增加,削弱了链间的排斥作用而弱化了“笼子效应”,导致了长短时间尺度上的动力学非均匀性减弱,甚至消失. 实验结果还表明,聚合物浓度的增加限制了聚电解质链的运动,从而削弱了链间运动的关联性(如图16(b)所示). 将其与光散射中“慢模式”对应的扩散系数对比发现,“慢模式”对应的扩散系数数值处于分子链自扩散长短时间尺度的扩散系数之间,这说明光散射观察到的“快慢模式”与长程静电相互作用引起“笼子效应”有着密切的联系,同时也说明聚电解质的多级松弛过程比我们预想的更加复杂.图 16Figure 16. (a) Values of the diffusion coefficient of the short-time diffusion (Dshort-timeDshort-time) and the long-time diffusion (Dlong-timeDlong-time) of NaPSS with three different molecular weights under different salt concentrations (b) Diffusion coefficient of single NaPSS chain with three different molecular weights at short- and long-time lag as a function of concentration Diffusion coefficients measured by DLS (the slow mode, DDLS,slowDDLS,slow) are displayed for comparison. (Reprinted with permission from Ref.[83] Copyright (2019) American Chemical Society).5. 结论荧光关联光谱技术作为一种高灵敏度的显微统计光谱方法,能够有效地在多种复杂条件下开展高分子动力学的研究,包括:极稀薄溶液、表界面等等. 这项技术出色的空间分辨能力以及由于荧光标记带来的分子识别性,赋予了更加丰富的应用能力与前景. 随着这项技术的不断发展和应用范围的进一步拓展,相信未来它会和传统的散射技术一样被越来越多的人了解和使用,在多个领域都能取得丰富且具创造性的成果.致 谢 感谢研究生及合作者的辛勤劳动与贡献.参考文献[1]Wu C, Zhou S. Phys Rev Lett, 1996, 77(14): 3053−3055 doi: 10.1103/PhysRevLett.77.3053[2]Gao J, Wu C. Macromolecules, 1997, 30(22): 6873−6876 doi: 10.1021/ma9703517[3]Liu X B, Luo S K, Ye J, Wu C. Macromolecules, 2012, 45(11): 4830−4838 doi: 10.1021/ma300629d[4]Morishima K, Ishiwari F, Matsumura S, Fukushima T, Shibayama M. Macromolecules, 2017, 50(15): 5940−5945 doi: 10.1021/acs.macromol.7b00883[5]Sedlak M, Amis E J. J Chem Phys, 1992, 96(1): 826−834 doi: 10.1063/1.462468[6]Muthukumar M. Macromolecules, 2017, 50(24): 9528−9560 doi: 10.1021/acs.macromol.7b01929[7]Zhou K, Li J, Lu Y, Zhang G, Xie Z, Wu C. Macromolecules, 2009, 42(18): 7146−7154 doi: 10.1021/ma900541x[8]Hao J, Cheng H, Butler P, Zhang L, Han C C. J Chem Phys, 2010, 132(15): 154902 doi: 10.1063/1.3381177[9]Magde D, Webb W W, Elson E. Phys Rev Lett, 1972, 29(11): 705−708 doi: 10.1103/PhysRevLett.29.705[10]Elson E L, Magde D. Biopolymers, 1974, 13(1): 1−27 doi: 10.1002/bip.1974.360130102[11]Magde D, Elson E L, Webb W W. Biopolymers, 1974, 13(1): 29−61 doi: 10.1002/bip.1974.360130103[12]Rigler R, Mets U, Widengren J, Kask P. Eur Biophys J Biophy, 1993, 22(3): 169−175[13]Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J. PLoS One, 2009, 4(4): e5041 doi: 10.1371/journal.pone.0005041[14]Mtze J, Ohrt T, Schwille P. Laser Photonics Rev, 2011, 5(1): 52−67 doi: 10.1002/lpor.200910041[15]Schwille P, Haupts U, Maiti S, Webb W W. Biophys J, 1999, 77(4): 2251−2265 doi: 10.1016/S0006-3495(99)77065-7[16]Xie J, Nakai K, Ohno S, Butt H J, Koynov K, Yusa S. Macromolecules, 2015, 48(19): 7237−7244 doi: 10.1021/acs.macromol.5b01435[17]Caruso F, Donath E, Mohwald H. J Phys Chem B, 1998, 102(11): 2011−2016 doi: 10.1021/jp980198y[18]Vagias A, Raccis R, Koynov K, Jonas U, Butt H J, Fytas G, Kosovan P, Lenz O, Holm C. Phys Rev Lett, 2013, 111(8): 088301 doi: 10.1103/PhysRevLett.111.088301[19]Lumma D, Keller S, Vilgis T, Radler J O. Phys Rev Lett, 2003, 90(21): 218301 doi: 10.1103/PhysRevLett.90.218301[20]Cherdhirankorn T, Best A, Koynov K, Peneva K, Muellen K, Fytas G. J Phys Chem B, 2009, 113(11): 3355−3359 doi: 10.1021/jp809707y[21]Schaeffel D, Yordanov S, Staff R H, Kreyes A, Zhao Y, Schmidt M, Landfester K, Hofkens J, Butt H J, Crespy D, Koynov K. ACS Macro Lett, 2015, 4(2): 171−176 doi: 10.1021/mz500638e[22]Jee A Y, Cho Y K, Granick S, Tlusty T. P Natl Acad Sci USA, 2018, 115(46): E10812 doi: 10.1073/pnas.1814180115[23]Jee A Y, Dutta S, Cho Y K, Tlusty T, Granick S. P Natl Acad Sci USA, 2018, 115(1): 14−18 doi: 10.1073/pnas.1717844115[24]Cherdhirankorn T, Floudas G, Butt H J, Koynov K. Macromolecules, 2009, 42(22): 9183−9189 doi: 10.1021/ma901439u[25]Cherdhirankorn T, Harmandaris V, Juhari A, Voudouris P, Fytas G, Kremer K, Koynov K. Macromolecules, 2009, 42(13): 4858−4866 doi: 10.1021/ma900605z[26]Doroshenko M, Gonzales M, Best A, Butt H J, Koynov K, Floudas G. Macromol Rapid Commun, 2012, 33(18): 1568−1573 doi: 10.1002/marc.201200322[27]Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F. Macromolecules, 2004, 37(26): 10212−10214 doi: 10.1021/ma048043d[28]Zustiak S P, Boukari H, Leach J B. Soft Matter, 2010, 6(15): 3609−3618 doi: 10.1039/c0sm00111b[29]Modesti G, Zimmermann B, Borsch M, Herrmann A, Saalwachter K. Macromolecules, 2009, 42(13): 4681−4689 doi: 10.1021/ma900614j[30]Sukhishvili S A, Chen Y, Muller J D, Gratton E, Schweizer K S, Granick S. Nature, 2000, 406(6792): 146 doi: 10.1038/35018166[31]Zhao J, Granick S. Macromolecules, 2007, 40(4): 1243−1247 doi: 10.1021/ma062104l[32]Zhao J, Granick S. J Am Chem Soc, 2004, 126(20): 6242−6243 doi: 10.1021/ja0493749[33]Ries J, Schwille P. Bioessays, 2012, 34(5): 361−368 doi: 10.1002/bies.201100111[34]Elson E L. Methods Enzymol, 2013, 518: 1−10 doi: 10.1016/B978-0-12-388422-0.00001-7[35]Papadakis C M, Kosovan P, Richtering W, Woll D. Colloid Polym Sci, 2014, 292(10): 2399−2411 doi: 10.1007/s00396-014-3374-x[36]Wang F, Shi Y, Luo S J, Chen Y M, Zhao J. Macromolecules, 2012, 45(22): 9196−9204 doi: 10.1021/ma301780f[37]Zheng Kaikai(郑锴锴). Dynamics of a Single Polymer Chain under Shear(剪切场下聚合物分子单链动力学行为研究). Doctoral Dissertation of University of Chinese Acdemy of Sciences((中国科学院大学博士学位论文), 2018.[38]Wang S, Zhao J. J Chem Phys, 2007, 126(9): 091104 doi: 10.1063/1.2711804[39]Xu G, Luo S, Yang Q, Yang J, Zhao J. J Chem Phys, 2016, 145(14): 144903 doi: 10.1063/1.4964649[40]Xu G, Yang J, Zhao J. J Chem Phys, 2018, 149(16): 163329 doi: 10.1063/1.5035458[41]Ren W, Zheng K, Liao C, Yang J, Zhao J. Phys Chem Chem Phys, 2018, 20(2): 916−924 doi: 10.1039/C7CP06235D[42]Luo S J, Jiang X B, Zou L, Wang F, Yang J F, Chen Y M, Zhao J. Macromolecules, 2013, 46(8): 3132−3136 doi: 10.1021/ma302276b[43]Luo Shuangjiang(罗双江), Gao Peiyuan(高培源), Guo Hongxia(郭洪霞), Yang Jingfa(杨京法), Zhao Jiang(赵江). Acta Polymerica Sinica(高分子学报), 2017, (9): 1479−1487 doi: 10.11777/j.issn1000-3304.2017.17065[44]Jia P, Yang Q, Gong Y, Zhao J. J Chem Phys, 2012, 136(8): 084904 doi: 10.1063/1.3688082[45]Ye S, Tang Q, Yang J, Zhang K, Zhao J. Soft Matter, 2016, 12(47): 9520−9526 doi: 10.1039/C6SM02103D[46]Yang Q, Zhao J. Langmuir, 2011, 27(19): 11757−11760 doi: 10.1021/la202510d[47]Yang J F, Zhao J, Han C C. Macromolecules, 2008, 41(20): 7284−7286 doi: 10.1021/ma8015135[48]Li Z, Yang J F, Hollingsworth J V, Zhao J. RSC Adv, 2020, 10(28): 16565−16569 doi: 10.1039/D0RA02630A[49]Oosawa F. Polyelectrolytes. New York: Marcel Dekker, 1971[50]Dobrynin A V, Rubinstein M. Prog Polym Sci, 2005, 30(11): 1049−1118 doi: 10.1016/j.progpolymsci.2005.07.006[51]Forster S, Schmidt M, Antonietti M. Polymer, 1990, 31(5): 781−792 doi: 10.1016/0032-3861(90)90036-X[52]Fuoss R M. J Polym Sci, 1948, 3(4): 603−604 doi: 10.1002/pol.1948.120030414[53]Muthukumar M. J Chem Phys, 2004, 120(19): 9343−9350 doi: 10.1063/1.1701839[54]Mattoussi H, Karasz F E, Langley K H. J Chem Phys, 1990, 93(5): 3593−3603 doi: 10.1063/1.458791[55]Reed W F, Ghosh S, Medjahdi G, Francois J. Macromolecules, 1991, 24(23): 6189−6198 doi: 10.1021/ma00023a021[56]Li J, Li W, Huo H, Luo S, Wu C. Macromolecules, 2008, 41(3): 901−911 doi: 10.1021/ma071284b[57]Manning G S. J Chem Phys, 1969, 51(3): 924−933 doi: 10.1063/1.1672157[58]Manning G S. J Chem Phys, 1969, 51(3): 934−938 doi: 10.1063/1.1672158[59]Manning G S. J Chem Phys, 1969, 51(8): 3249−3252 doi: 10.1063/1.1672502[60]Manning G S. Biophys Chem, 1977, 7(2): 95−102 doi: 10.1016/0301-4622(77)80002-1[61]Schild H G, Muthukumar M, Tirrell D A. Macromolecules, 1991, 24(4): 948−952 doi: 10.1021/ma00004a022[62]Winnik F M, Ringsdorf H, Venzmer J. Macromolecules, 1990, 23(8): 2415−2416 doi: 10.1021/ma00210a048[63]Chee C K, Hunt B J, Rimmer S, Soutar I, Swanson L. Soft Matter, 2011, 7(3): 1176−1184 doi: 10.1039/C0SM00836B[64]Zhang G Z, Wu C. J Am Chem Soc, 2001, 123(7): 1376−1380 doi: 10.1021/ja003889s[65]Tanaka F, Koga T, Kojima H, Xue N, Winnik F M. Macromolecules, 2011, 44(8): 2978−2989 doi: 10.1021/ma102695n[66]Kojima H, Tanaka F. Soft Matter, 2012, 8(10): 3010−3020 doi: 10.1039/c2sm06883d[67]Grabowski C A, Mukhopadhyay A. Phys Rev Lett, 2007, 98(20): 207801 doi: 10.1103/PhysRevLett.98.207801[68]Fleer G J. Adv Colloid Interface Sci, 2010, 159(2): 99−116 doi: 10.1016/j.cis.2010.04.004[69]Granick S, Bae S C. J Polym Sci, Part B: Polym Phys, 2006, 44(24): 3434−3435 doi: 10.1002/polb.21004[70]Granick S, Kumar S K, Amis E J, Antonietti M, Balazs A C, Chakraborty A K, Grest G S, Hwaker C J, Janmey P, Kramer E J, Nuzzo R, Russell T P, Safinya C R. J Polym Sci, Part B: Polym Phys, 2003, 41(22): 2755−2793 doi: 10.1002/polb.10669[71]Guo Z Y, Cao X L, Guo L L, Zhao Z Y, Ma B D, Zhang L, Zhang L, Zhao S. J Dispersion Sci Technol, 2020, Doi:10.1080/01932691.2020.1725543 doi: 10.1080/01932691.2020.1725543[72]Skaug M J, Mabry J N, Schwartz D K. J Am Chem Soc, 2014, 136(4): 1327−1332 doi: 10.1021/ja407396v[73]Walder R, Nelson N, Schwartz D K. Phys Rev Lett, 2011, 107(15): 156102 doi: 10.1103/PhysRevLett.107.156102[74]Dong C, Ren J. Electrophoresis, 2014, 35(16): 2267−2278 doi: 10.1002/elps.201300648[75]Wang S Q, Chang H C, Zhu Y X. Macromolecules, 2010, 43(18): 7402−7405 doi: 10.1021/ma101571s[76]Schwille P, Meyer-Almes F J, Rigler R. Biophys J, 1997, 72(4): 1878−1886 doi: 10.1016/S0006-3495(97)78833-7[77]Schaeffel D, Staff R H, Butt H J, Landfester K, Crespy D, Koynov K. Nano Lett, 2012, 12(11): 6012−6017 doi: 10.1021/nl303581q[78]Goossens K, Prior M, Pacheco V, Willbold D, Mullen K, Enderlein J, Hofkens J, Gregor I. ACS Nano, 2015, 9(7): 7360−7373 doi: 10.1021/acsnano.5b02371[79]Muller C B, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J. Epl, 2008, 83(4): 46001[80]Price E S, Aleksiejew M, Johnson C K. J Phys Chem B, 2011, 115(29): 9320−9326 doi: 10.1021/jp203743m[81]Torres T, Levitus M. J Phys Chem B, 2007, 111(25): 7392−7400 doi: 10.1021/jp070659s[82]Masuda A, Ushida K, Okamoto T. J Photoch Photobio A, 2006, 183(3): 304−308 doi: 10.1016/j.jphotochem.2006.06.040[83]Chen K, Zheng K K, Xu G F, Yang J F, Zhao J. Macromolecules, 2019, 52(10): 3925−3934 doi: 10.1021/acs.macromol.9b00025
  • 品类先锋仪器心得|SCIEX QTRAP 4000串联四极杆线性离子阱复合系统
    在科学仪器行业竞争日益激烈的现状下,为帮助仪器用户快速找出单品类仪器中的千里马or领头羊企业及产品,仪器信息网从2017年开始推出【品类先锋】服务,以“为用户推荐值得信赖的品牌及仪器”为核心宗旨,持续地挖掘、推荐细分领域的优质企业及仪器。为了帮助各位用户学习使用仪器的技巧,少走弯路多避坑,仪器社区特别发起“仪器心得”有奖征文活动。在本次活动中,用户积极分享了自身用过的仪器设备的心得,其中不乏对品类先锋仪器的分享。我们将摘取部分用户分享关于品类先锋仪器的心得体会,与读者共享。今日分享SCIEX中国-液质联用仪品类先锋的用户心得,部分内容摘自仪器社区-Haibarason的分享。SCIEX QTRAP 4000串联四极杆线性离子阱复合系统一、品牌简介以前经常听我的导师提四大仪器公司(安捷伦,赛默飞,沃特世,SCIEX),当然大牌子还有很多,诸如岛津、珀金埃尔默等等。 SCIEX以质谱技术闻名,质谱产品质量稳定,深受行业信赖。SCIEX在质谱技术领域拥有50年的创新经验,从1981年成功推出SCIEX 的第一台商业化三重四极质谱系统开始,SCIEX一直致力于开发突破性的技术和解决方案,从而影响和推进可以改变生活的科学研究和临床研究诊断。SCIEX拥有质谱系统前端要求的各类液相系统,从毛细管电泳系统、纳升流速液相、微升流速液相到超高压系液相系统,SCIEX独有的差分离子淌度技术(SelexION);同时还有品种齐备的三重四极杆质谱系统(Triple Quad、三重四极杆线性离子阱复合型质谱系统(QTRAP)、四极杆飞行时间串联高分辨质谱系统等质谱产品。相关应用领域广泛,包括临床诊断和临床研究、食品和饮料安全检测、环境安全检测、法医毒物检测、生命科学研究、药物与生物技术药物解决方案等。二、设备性能QTRAP 4000 LC-MS/MS系统,在同一台质谱上能提供超高灵敏度的定量分析和定性分析功能。串联四极杆的扫描方式和线性离子阱的扫描方式相结合,使其成为药物发现、ADME/毒理研究、代谢组学、法医学、临床研究、环境和食品安全的超微量分析等诸多领域的利器。它是超低含量组分的快速、自动化定量、定性分析的最理想工具。 此系统功能强大,包括: 1、可进行高灵敏度的全扫描MS、MS/MS和三级质谱扫描(MS3),以及高选择性的、真正三重四极杆式的母离子(PI)扫描和中性丢失(NL)扫描; 2、使用高灵敏度的三重四极杆进行多反应监测(MRM)定量; 3、兼顾定性和定量,在三重四极杆进行多反应监测(MRM)定量基础上,trap提高了全扫描二级质谱的灵敏度,使鉴定、表征和定量代谢物更方便快捷。图1. QTRAP 4000设备外观图2. 安捷伦1290 Infinity图3. 设备所连接的真空泵今天的分享就到这里结束啦。欢迎大家投稿,分享更多品类先锋仪器心得。可以投稿邮箱:wuqs@instrument.com.cn,一经采用,投稿人将获得仪器信息网提供的50—200元京东卡作为奖励,投稿人需备注姓名、所在单位。投稿要求:1、 所投文章必须完整且条理清晰,文中至少包含1张仪器图片(人与仪器合照更佳),且字数不少于500字。分享的心得需是仪器信息网品类先锋的仪器心得。(详情见附表)2、 内容至少包含以下文稿提纲中的任意三点,每个网友投稿数量不限。 • 仪器发展简介 •仪器产品介绍、实际应用中解决什么问题 • 仪器推荐附:2022-2023年度品类先锋名录(排名不分先后)品类名 客户名称紫外分光光度计上海元析仪器有限公司上海美谱达仪器有限公司北京普析通用仪器有限责任公司原子荧光光谱仪(AFS)北京海光仪器有限公司原子吸收光谱(AAS)北京普析通用仪器有限责任公司液质联用(LC-MS)赛默飞色谱与质谱SCIEX中国液相色谱(LC)上海伍丰科学仪器有限公司华谱科仪(北京)科技有限公司热解析仪、热解吸仪、热脱附仪奥普乐科技集团(成都)有限公司北京中仪宇盛科技有限公司过程质谱/在线质谱上海舜宇恒平科学仪器有限公司气相色谱仪(GC)浙江福立分析仪器股份有限公司流动分析仪/流动注射分析仪(FIA SFA CFA)北京宝德仪器有限公司离子色谱(IC)青岛盛瀚色谱技术有限公司安徽皖仪科技股份有限公司激光拉曼光谱(RAMAN)HORIBA 科学仪器事业部红外光谱(IR、傅立叶)赛默飞世尔科技分子光谱北京北分瑞利分析仪器(集团)有限责任公司核磁共振(NMR)布鲁克(北京)科技有限公司苏州纽迈分析仪器股份有限公司分子荧光光谱HORIBA 科学仪器事业部定氮仪、凯氏定氮仪、Dumas定氮仪艾力蒙塔贸易(上海)有限公司顶空进样器奥普乐科技集团(成都)有限公司吹扫捕集仪北京聚芯追风科技有限公司北京莱伯泰科仪器股份有限公司奥普乐科技集团(成都)有限公司PH计、酸度计上海仪电科学仪器股份有限公司(原上海精科雷磁)ICP-MS电感耦合等离子体质谱安捷伦科技(中国)有限公司ICP-AES/ICP-OES安捷伦科技(中国)有限公司自动电位滴定仪上海禾工科学仪器有限公司卡氏水分测定仪上海禾工科学仪器有限公司真空泵凯恩孚科技(上海)有限公司移液器、移液枪大龙兴创实验仪器(北京)股份公司研磨机、研磨仪、粉碎机、球磨机北京飞驰科学仪器有限公司北京格瑞德曼仪器设备有限公司蚂蚁源科学仪器(北京)有限公司旋转蒸发仪艾卡(广州)仪器设备有限公司(IKA 中国)东京理化器械株式会社冻干机东京理化器械株式会社洗瓶机/清洗机天津语瓶仪器技术有限公司美诺中国 Miele China微波消解仪培安有限公司上海屹尧仪器科技发展有限公司安东帕(上海)商贸有限公司北京莱伯泰科仪器股份有限公司天平德国赛多利斯集团平行真空蒸发仪天津市恒奥科技发展有限公司生物质谱广州禾信仪器股份有限公司离心机、实验室离心机湖南湘仪实验室仪器开发有限公司搅拌器、磁力搅拌器、电动搅拌器大龙兴创实验仪器(北京)股份公司废气/废水处理机四川优浦达科技有限公司电热消解仪、消化炉北京莱伯泰科仪器股份有限公司氮气发生器毕克气体仪器贸易(上海)有限公司氢气发生器毕克气体仪器贸易(上海)有限公司纯水器、超纯水器、纯水机、超纯水机上海乐枫生物科技有限公司高锰酸盐指数测定仪(CODMn)上海北裕分析仪器股份有限公司TOC分析仪/总有机碳分析仪艾力蒙塔贸易(上海)有限公司上海元析仪器有限公司COD测定仪/COD快速测定仪连华科技BOD测定仪/BOD快速测定仪连华科技总磷测定仪/总氮测定仪/总磷总氮测定仪连华科技水质分析仪/多参数水质分析仪连华科技氨氮测定仪/氨氮分析仪连华科技甲烷/非甲烷烃检测仪青岛明华电子仪器有限公司激光粒度仪HORIBA 科学仪器事业部丹东百特仪器有限公司珠海欧美克仪器有限公司纳米粒度仪丹东百特仪器有限公司比表面及孔径分析仪理化联科(北京)仪器科技有限公司贝士德仪器科技(北京)有限公司扫描探针显微镜SPM(原子力显微镜AFM、扫描隧道显微镜STM)Park帕克原子力显微镜高内涵细胞成像分析系统美谷分子仪器(上海)有限公司酶标仪/微孔板读板机美谷分子仪器(上海)有限公司生物安全柜力康集团X荧光光谱、XRF(能量色散型X荧光光谱仪)苏州浪声科学仪器有限公司
  • 分子筛限域传质机制研究获进展
    近日,中国科学院精密测量科学与技术创新研究院郑安民研究团队在沸石分子筛限域扩散领域取得新进展。该研究利用分子筛限域环境实现长链烷烃分子自由度的精准调控,通过分子“悬浮”效应实现其超快扩散。相关研究成果发表在《自然-通讯》(Nature Communications)上。  亚纳米级别的多孔材料是典型的限域反应器,其中,吸附质的物理化学性质与常规体相下有显著差异。前期研究表明,分子筛限域孔道中的扩散系数与常规体相下呈现出跨越数量级的区别。常规情况下限域孔道会抑制分子的扩散,进而影响催化剂的反应和分离效率。如何在这种限域空间中实现快速的扩散是催化和分离工艺中亟待解决的难题, 也是近年来科学家的目标。  该团队基于多尺度理论模拟发现,在一定孔径范围内,分子筛限域孔道中存在孔径越大长链烷烃扩散越慢的反常扩散现象。受到超级高铁运行原理的启发,科研人员建立了一系列亚纳米直孔道模型,确定了长链烷烃实现快速扩散的条件——客体分子“悬浮”在孔道正中心运行并保持线性构型(图1)。研究人员根据该模型筛选出一系列真实存在的孔径适中的分子筛(TON、MTW、AFI和VFI),验证了这一理论模型的正确性。进一步,研究基于主客体相互作用、弯曲角度、扩散轨迹和扩散自由能分析(图2),揭示了调控长链分子自由度达到分子“悬浮”的条件从而实现超快扩散的微观机理。该团队进一步与中科院大连化学物理研究所叶茂团队合作,基于吸附速率法扩散实验验证了分子筛中长链烷烃的超快扩散行为。在TON、MTW和AFI分子筛中短链(C4)和长链烷烃(C12)的扩散趋势与孔径呈现出完全相反的状态:短链烷烃的扩散系数随着孔径的增大而增加,而长链烷烃的扩散系数随着孔径的增大而减小。该工作利用红外实验验证了不同孔径中长链分子的形变差异(小孔径中分子形变较小,大孔径与之相反),这与分子动力学模拟的结论一致,揭示了线性长链烷烃在限域孔道中的超快扩散机制。  本工作根据超级高铁的运行原理结合限域分子的扩散“悬浮”效应,设计出长链烷烃的超快扩散模型,将其推广到分子筛筛选体系中,并结合理论和实验证实了该模型的可行性和准确性。这为限域孔道中长链分子的扩散调控提供了新视角,也为分子筛的设计和筛选提供了理论指导。研究工作得到科技部和国家自然科学基金的支持。
  • Pilodist同心管精馏柱技术助力液蜡分离
    关于2024年液体石蜡行业中国报告大厅的《2024-2029年中国液体石蜡行业市场供需及重点企业投资评估研究分析报告》中指出,近年来,随着高端液体石蜡需求释放,为顺应行业消费潮流,越来越多的企业开始布局食品级液体石蜡、医用级液体石蜡市场。这也意味着为了迎合市场趋势,企业需要引进自动化设备和智能制造系统,以提升生产效率和产品质量。先为大家简单介绍一下液体石蜡的性质概念及应用~关于液体石蜡正构烷烃的性质正构烷烃[1]是指没有碳支链的饱和烃,又称液体石蜡、液蜡。主要来源于生物体的脂肪酸、 蜡质及烃类物质;碳数小于20的短链正构烷烃大都来源于水生藻类和微生物,而碳数在20-32的高碳数正构烷烃来源于陆源高等植物。高碳数(21-33)奇碳优势正构烷烃来源于富含陆源高等植物有机质的生油岩中,在C21-C33范围具有明显的奇偶优势。 根据其馏分,可以分为轻质液体石蜡(简称轻蜡)和重质液体石蜡(简称重蜡),烷烃中碳原子数C9-C13者为轻蜡,C14-C16者为重蜡。正构烷烃的应用● 轻蜡(C9-C13)主要是制造直链烷基苯[2]的中间体单烯烃,也是增塑剂、氯化石蜡、石油蛋白的生产原料。还可用于生产月桂二酸、巴西二酸、长链二元酸或高级香料、尼龙塑料等。● 正构十三碳烷烃(C13)为无色液体,不溶于水,可混溶于乙醇、乙醚有机溶剂。多用于油漆、 橡胶、乳胶生产等行业的溶剂类原料油,也是润滑油表面活性剂的主要添加剂。● 正构十四碳烷烃(C14)为无色液体,不溶于水,可混溶于乙醇、乙醚有机溶剂。多用于兽药制剂、液体蚊香、大型冲压机的液压油、氯化石蜡、防腐涂料、粉末涂料,也可用作高档热熔胶。● 正构烷烃(C14-C16)主要用于脱蜡溶剂、放电器械加工油、特殊防锈油用基础油、金属加工基础油、金属清洗剂、灯用液蜡等。● C16以上正构烷烃国内研究较少,大多为特殊应用,多用于军工、航空航天、建筑等领域。正构烷烃单体分离提纯的难点1相同碳数的烷烃,正异构数量较多,沸点接近,分离难度大,特别是高碳数的烷烃;2碳链越长,沸点越高,但都是热敏性物质,加热温度过高容易裂解;3碳数越高,烷烃的凝固点越高,容易堵塞装置的馏分管路,也容易污染其他馏分;4正构烷烃的比热容与碳数并不是正相关的关系,例如,C16的比热容要高于C17;5相邻碳数的烷烃之间可能会存在共沸物,特别是高碳数的烷烃,分离难度更大。以上难点相信业内小伙伴们或多或少都有感触,今天德祥为您提供解决方案!德国PILODIST® 精密分馏装置PD105以上问题,德国PILODIST® 精密分馏装置PD105统统可以解决!得益于PILODIST® 独家的同心管精密分馏技术,该装置能满足以上应用,也受到客户广泛认可。装置优势1同心管精密分馏柱,60~90块理论塔板数,柱效高,分离效果好;2真空操作系统,模块化设计,操作压力低至1mbar;3从塔顶冷凝器到馏分接收管之间的管路均采用套管连接,可以使用循环恒温浴进行保温(乙二醇介质),而且与馏分接收管连接处配备红外加热装置,避免馏分凝固堵塞管路;4塔顶和蒸馏釜集成Pt-100温度传感器,控温准确,模块化设计,DCD 4001系统实时监控,可随时探测到馏头和釜内样品温度的波动;59位全自动馏分收集系统,模块化设计,实验效率高。关于同心管精密分馏柱同心管精密分馏柱由两根经精巧设计和精密校准的同心管玻璃柱融合而成,垂直上升的蒸气与同心环形间隙中的液体薄膜之间高效传质,使得精密分馏柱具有很高的分离效率,从而保证PD105最高可达90块理论塔板。同心管的外圆内壁和内圆外壁均设计成为精密设计的螺旋刮痕形式,使得在冷凝器冷凝的液体通过刮痕可以顺流而下,并形成液膜加大热交换接触面积,直至蒸馏釜。同心管技术还具有如下的技术优势:● 压力降小● 滞留量小● 适用于热敏性物质● 高分离效率● 极少量蒸馏体积(低至1mL)● 极少工作流量对于工业的小试放大,一般选用传统填料塔式模拟实际的生产条件,而针对生产或研发中的原料、产物的高效高质量的提纯则可考虑同心管式。案例和方案案例分享PILODIST® 团队基于客户需求,可给出不同的配置方案。例如,某中石化客户的需求如下:表1:C16、C17、C18混合正构烷烃分离实验要求实验方案使用精密分馏装置PD105对样品进行分离提纯,实验压力维持在20mbar,加热后依次按照沸点进行分离提纯。表2:C16、C17、C18正构烷烃沸点实验结果图2:实验记录实时曲线C16、C17、C18原料的纯度(质量分数)均为98%左右,实验后,C16纯度97%以上,C17纯度95%以上,C18纯度93%以上,实验结果符合90%的要求,满足客户要求。但还有优化的余地,建议继续延长实验时长,特别是C17和C18馏分;而且切换相邻组分时,延长平衡时间,以避免收集时将下一个重组分带出,影响质量分数。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技咨询,可拨打热线400-006-9696参考文献:[1] 温国贤.C13-C16混合正构烷烃分离的研究[D].南京师范大学化学工程与技术系.2019[2] 刘玉泉,徐国英.我国液蜡生产与市场[J].精细石油化工进展,2002,3(5):35-38
  • 安徽时联公司董事长周沛:打造试剂行业内第一家上市企业
    科技发展,无限追求   ——访安徽时联特种溶剂股份有限公司董事长周沛   近年来,国内外化学试剂行业继续呈蓬勃发展的趋势,各试剂公司开始竞相开发新品种、改进服务、扩大市场。高纯溶剂作为化学试剂的重要组成部分,也在生物技术、药物研发的需求下迅猛发展。作为中国高纯溶剂的专业制造商,安徽时联特种溶剂股份有限公司自创建伊始,一直致力于高纯溶剂的研发与生产。   2009年11月,首届国际试剂与应用技术报告会及展览会(IRAEC2009)在北京展览馆举办,报告会期间,《化学试剂》编辑部对安徽时联特种溶剂股份有限公司(以下简称安徽时联)董事长周沛进行了专访。   安徽时联特种溶剂股份有限公司董事长周沛   周沛:毕业于于华工理工大学,曾任安庆石化安菱化工有限公司总经理、安庆石化腈纶化工一部部长、安庆石化腈纶厂副经理,2000年至今任香港时联集团公司总裁、安徽时联特种溶剂股份有限公司董事长兼总经理。   1 把握机遇 乘势而上   当今的化学工业,正处于机遇和挑战并存的时代。机遇往往突然出现,转瞬即逝。抓住机遇,对于一个企业的生存与发展至关重要。2008年,金融危机席卷全球,国际经济形势发生了重大变化,世界经济衰退与风险一步步放大。与此同时,科技的发展与检测水平提高,促进了分析用仪器的发展,由此带动了分析用高纯溶剂需求的增长。周董告诉我们,安徽时联正是在去年抓住机遇,实现了企业的快速发展。虽然高纯溶剂的需求不断增长,但真正在高纯溶剂上形成产业化、规模化生产的企业并不多,在经济危机的背景下,高纯溶剂乙腈在全球甚至出现了缺货和断货。这样的情况,恰恰给安徽时联带来了机遇。拥有自主知识产权的高科技产品使得安徽时联增强了抵御市场风浪冲击能力。经济危机爆发后,安徽时联逆势上扬,对原有生产线进行扩能改造,生产加工能力大幅提高,生产规模不断扩大,在国内市场占据了竞争优势,高纯特种溶剂产品率先得到国外客户的认可,成为国外知名公司及知名药厂的供应商,国内外市场占有率大幅增长,经济效益扶摇直上,知名度大大提高。今年上半年销售收入、利润都比去年同期有很大增长。周董介绍说,在把握住机遇的同时,安徽时联没有停下前进的脚步,2009年初,公司开始筹备创业板,如果一切顺利,计划在2010年上半年上市,募得的资金将全部投向高纯特种溶剂的研发与生产,安徽时联将会迎来一个大发展。   安徽时联特种溶剂股份有限公司   2 励精图治 开拓前进   从2005年公司创建以来,安徽时联已经走过4年多的历程,在公司规模、产品优势等方面取得了巨大的成就。安徽时联应用先进的净化和控制技术,采用多步净化结合化学和非化学处理,加之高效精馏及非精馏过程,生产出高品质的高纯溶剂。谈到安徽时联生产的高纯溶剂,周董如数家珍:“我们利用自主研发的‘多级反应-精馏’技术生产了乙腈、甲醇、乙醇、异丙醇、丙酮、正己烷、正庚烷、四氢呋喃、二氯甲烷、氯仿等10个系列的产品,已经具备分析纯、制备纯、色谱纯、光谱纯、农残级、无水级、生物级、LC-MS级等8个应用门类的产品,细分品种达到了100多个。现在已经形成1000 T/年HPLC乙腈生产装置、500 T/年HPLC甲醇生产装置、160 T/年高纯系列产品生产装置。”   在采访中,我们还了解到,安徽时联申报了“十一五”国家科技支撑计划重点项目——“重要科研用核心试剂中间体研发与产业化应用示范”的课题,承担了该课题中“十一五”规划后两年高纯试剂产业化工作。   一个有梦想的企业自然不会躺在功劳簿上停止前进的脚步。2009年8月,原来的“安庆市时菱化工有限公司”正式更名为“安徽时联特种溶剂股份有限公司”,公司计划通过资本市场募集1.5~2亿资金,投入高端溶剂的研发与生产,力求品规种类达到2000个,并定下上市第一期销售额达到4亿的目标。在2010年公司计划新建年产7000 T高纯特种系列溶剂项目,以期创建一个国内高纯特种系列溶剂共性关键技术与产品研发扩散的平台和产业化生产研发基地。      安徽时联特种溶剂股份有限公司厂区   3 科技先导 环保优先   安徽时联的产品广泛应用于医药、化工、农药、科研及高尖端科技等领域,与同行业其他公司相比,安徽时联在产品品种、研发创新上有哪些竞争优势?对于这个问题,周董也向我们作了详细的介绍。   安徽时联依托安庆石化,利用其资源优势和公用工程条件,采用自行研制开发的专有技术,从事产品的研究、开发与生产 公司有完整的反应、精馏、干燥等化工单元生产装置,具有规模化生产能力 公司有等离子质谱仪、气相色谱、液相色谱、荧光光度计、紫外可见分光光度计等国内先进的检测仪器和设施一流的的实验设备,以及切实有效的环保治理等优势,为安徽时联提供了良好的可持续发展潜力。   安徽时联成立以来,通过大量深入的市场调研,了解到我国特种溶剂市场长期为国外公司垄断,决心自主研发核心技术,与国外企业一争高下。公司决策层组建了精干、高效的研发队伍,并投入大量资金建造实验室,为打造集产、科、研于一体的精细化工企业奠定了坚实基础,并申请了5项专利。同时,公司坚持走产学研合作之路,与浙江大学、北京工业大学、广东工业大学等高等院校紧密合作,获得了强大的技术支撑,使企业研发能力显著增强。安徽时联在管理上制订了完善的管理制度,在生产上,狠抓质量控制和流程优化,下一步,还要加大产学研联盟,继续壮大自己的研发团队,这也为安徽时联提供了更广阔的发展空间。当今世界,由于人类的生产和生活,引起很多次生环境问题,自然环境和自然资源难以承受工业化的巨大压力。保护环境是我国的基本国策,化工生产建设必须与环境保护协调发展。高度重视环境安全问题,加强化工企业环保设施建设是化工生产中的重要环节。多年来,安徽时联以超前的环保理念,利用资源优势,发展循环经济,全力延伸产业链,在节能减排、环保治理上投入大量资金,取得很大进展,并致力于高纯溶剂回收的循环工艺,实现 “减量化、再利用、资源化”理念,赢得经济、社会效益双丰收。   安徽时联特种溶剂股份有限公司产品展示   4 由外及内 品牌营销   每个企业都有自己的市场营销策略和远景规划,以提高产品的市场占有率,扩大市场份额。周董说:“对于市场的开发,最重要的一点是走适合自己的路”。安徽时联特种溶剂股份有限公司坚持科技创新,凭借自主研发的先进技术,产品达到了国际产品的品质要求,并以OEM的方式大量定制加工,迅速实现高纯系列溶剂的规模化和工业化。同时,公司以“FULLTIME”的品牌率先打入国际市场,产品畅销欧美和东南亚。安徽时联以出口为主,并不断开拓国内市场,力争稳步在国内建立全国性销售网络,为国内客户和直接用户提供更好的服务。安徽时联以完善的质量管理体系,为客户提供持续稳定的高品质产品和客户满意的优质服务。 仓储及运输   5 进军创业板 无限追求   很多高科技企业都选择用创业板上市的方法为自己提供融资渠道、鼓励员工参与企业价值创造、建立现代企业制度。在谈到安徽时联在创业板上市时,周董笑谈:“其实不上市,对于个人和公司来说,都更轻松。但是如果实现创业板成功上市,对企业,对个人,都有重要的意义。作为一家科技企业,在上市过程中可以让企业得到提升,而提升的意义不单是为了在资本市场融资,更为重要的是,想通过创业板提升企业的品牌及知名度,使企业的管理水平和形象能够上一个台阶。第二,上市后,企业的透明度更大,承担的社会责任更大,信息披露和政府监管更加严格,这必将促使企业规范健康地发展。第三,在创业板上市,也是为了实现我个人的理想。公司上市后,安徽时联将成为试剂行业内第一家上市企业。我的理想,就是做好这一行。”   在2000年周沛以10万元的研发经费起步,通过不懈的进取和磨砺,打造了目前的安徽时联,同时也成就了一个成功的企业家。今天的周沛董事长,并未褪去知识分子谦逊、儒雅、执著的气质。 “我的理想,就是做好这一行”。他在采访末简单的一句话,让人不由想起庄子的“素朴而天下莫能与之争美”。一句简单至极的话,道出了一个企业家非凡的梦想。我们深信,随着安徽时联在创业板的上市,这个企业必将迎来更为广阔的发展前景。时间不断,太阳不落,安徽时联的红色标识( ),让我们看见理想与奋斗两只手,托起了安徽时联明天的太阳。   公司荣誉   安徽时联特种溶剂股份有限公司简介   安徽时联特种溶剂股份有限公司(以下简称“安徽时联”或“项目单位”),成立于2002年6月24日,位于安庆市皖河大道7号。是安徽省高科技股份制企业。安徽时联本着“减量化、再利用、资源化”原则及“科技发展、无限追求”的理念,采用自行研制开发的专有技术从事精细化工产品及高纯特种溶剂的研究、开发与生产。   安徽时联现拥有两个系列8套完整的化工生产装置:   系列一:循环经济、资源综合利用   ① 10000吨/年安庆石化汽油碱渣废水处理及石油酚精制装置   ② 2000吨/年环烷酸精制装置   ③ 以安庆石化炼油污水汽提废气氨为原料生产10000吨/年氨精制装置   ④以安庆石化炼油污水汽提废气氨和放空CO2为原料生产10000吨/年碳酸氢铵化肥装置   系列二:高纯特种溶剂   ⑤ 1000吨/年HPLC乙腈装置   ⑥ 500吨/年HPLC甲醇装置   ⑦ 160吨/年高纯试剂中试装置   ⑧ 10万瓶/年千级实验室洁净环境的HPLC溶剂装瓶车间   安徽时联实行董事会领导下的总经理负责的现代化管理体制,组织机构健全,已通过ISO9001质量体系认证。项目单位现有员工127人,其中拥有大专以上文凭的科技人员55人,占职工总数的43.3%,研发人员20人,占职工总数的15.7%,可见项目单位拥有很好的科技人才队伍,为不断提高其科技水平和自主创新能力打下了坚实的基础。   安徽时联特种溶剂股份有限公司申报的5项专利   一、已申报5项专利:   1、名称:一种多级反应—精馏法生产HPLC乙腈的方法,专利号:200910116883.1   公开(公告)号: CN101570498   2、名称:一种回收石化炼油汽油碱渣中高浓度石油酚的方法,专利号:200910116884.6 公开(公告)号:CN101575265   3、名称:一种制备高纯度液相色谱级正构烷烃的方法,专利号:200910185627.8   4、名称:一种生产HPLC甲醇的方法,专利号:200910185628.2   5、名称:一种HPLC级异丙醇的制备方法,专利号:200910185629.7
  • 傅里叶变换离子回旋共振质谱仪揭示高硫原油的生物降解机理
    p & nbsp & nbsp 全球已探明的油藏中很大一部分是含硫原油,有不少高硫原油经历了生物降解。此外,全球供给的原油含硫量呈逐年上升趋势,高硫原油泄露引发的环境问题也相当突出,微生物修复技术已被成功地应用于漏油事件的处理中。已有研究表明,无论是在有氧还是在厌氧条件下,微生物都可以将一些结构简单的模型有机硫化物(二苯并噻吩等)作为碳源和/或硫源,但对原油中结构复杂的有机硫化物的降解机理的研究仍不够深入。这是因为原油中的大多数有机硫化物不仅分子结构和组成都非常复杂,极性弱且不稳定难以离子化,其降解产物的浓度也非常低,因此很难对有机硫化物的降解机理进行深入的研究。近期,中国科学院广州地球化学研究所研究员廖玉宏课题组通过原油好氧生物降解模拟实验的方法,结合中国石油大学(北京)教授史权课题组研发的加入HCOONH4的方法来增强弱极性的硫化物的电离效率,采用广州地化所最新引进的傅里叶变换离子回旋共振质谱仪(FT-ICR MS,型号为SolariX XR 9.4T),研究了高硫原油的有氧生物降解过程。型号为SolariX XR 9.4T的傅里叶变换离子回旋共振质谱仪能够提供极高的分辨率和灵敏度,比常规的GC-MS都要高几个数量级,因而能很好地分辨出原油中各种浓度悬殊的有机硫化物及其降解产物。 /p p & nbsp & nbsp 模拟实验中使用的含硫原油来自江汉盆地潜江组,所用的降解菌富集培养自内蒙古扎赉特旗露头油砂矿的油浸土壤,培养的时间最长达到了17周,从0周(Z-0)到17周(Z-17)每隔1到数周取出一个油样进行分析。随着降解时间增加,原油中的正构烷烃逐渐减少(图2),最终正构烷烃几乎消耗殆尽,异构烷烃也部分损失,因此这些降解油处于轻微-中度生物降解阶段。与烷烃的减少相对应的是,原油中羧酸的含量随着生物降解的加剧而呈上升趋势。这与研究人员之前对一高蜡原油的好氧生物降解模拟实验结果一致(Pan & amp Liao*等, 2017,& nbsp Energy & amp Fuels)。这是因为烷烃发生末端氧化生成了羧酸。有趣的是,原油中的长链有机硫化物的降解似乎有着与烷烃降解类似的降解机理:随着降解时间增加,正构烷烃迅速减少直至基本被消耗完毕,随后发生降解的主要对象变成了只含有一个五元或六元硫环、与正构烷烃结构具有较高相似性的长链有机硫化物,说明长链有机硫化物在降解过程中也发生末端氧化形成了相应的有机酸类,这可以从原油中的含硫羧酸类化合物的快速增加得到印证。 /p p & nbsp & nbsp 此外,研究人员并没有发现原油中的亚砜和砜类化合物与对照组相比有明显增加,这也从另一侧面证实了长链有机硫化物的降解产物主要为含硫羧酸而不是亚砜和砜类,即降解优先从烷基侧链开始。此外,研究还发现有机硫化物的环数增加可以提高其抗生物降解性能(图3)。这与Oldenburg等(2017)在储层中观察到的含硫原油的降解规律类似。这样的相似性可能表明储层中含硫原油的生物降解是好氧和厌氧微生物共同作用的结果。 /p p & nbsp & nbsp 该项成果得到中科院先导科技专项B和A、国家自然科学基金面上项目以及有机地球化学国家重点实验室自主课题资助。论文近期发表在国际期刊Organic Geochemistry上,论文的第一作者为博士生刘卫民,通讯作者为廖玉宏,共同作者还包括广州地化所助理研究员潘银华、工程师蒋彬、实验员曾清,以及中国石油大学(北京)教授史权和佛罗里达州立大学教授许强。 br/ /p p 论文信息:Liu, W., Liao, Y.*, Pan, Y., Jiang, B., Zeng, Q., Shi, Q. and Hsu, C.S., 2018.& nbsp Use of ESI FT–ICR MS to investigate molecular transformation in simulated aerobic biodegradation of a sulfur-rich crude oil. Organic Geochemistry, Vol.123, pp.17-26. /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c1f069a2-8da7-4870-adef-700bb0ae57ba.jpg" title=" 1.jpg" / /p p br/ /p p style=" text-align: center " 图1 广州地化所2016年引入的傅里叶变换离子回旋共振质谱仪(FT-ICR MS,型号为SolariX XR 9.4T) /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/cbee4a85-50c8-4a5b-b2cd-c36bebd20f5f.jpg" title=" 2.jpg" / /p p style=" text-align: center " 图2 降解油饱和烃的总离子流图 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/10c5643b-0356-4533-901b-38e1db1209b5.jpg" title=" 3.jpg" / /p p style=" text-align: center " 图3 含有1、2、3个硫原子的有机硫化物的相对丰度 /p p br/ /p
  • 中国页岩油连续3个历史性重大突破,岛津助力页岩油产业再迎黄金时代
    新华社报道,“大庆底下找到新大庆”,大庆油田页岩油勘探取得重大突破!自2021年6月以来,中国页岩油气勘探开发宣告了一连串创历史性的最新重大成果。 6月18日,中石油宣布在塔里木盆地发现中国首个10亿吨超深大油气区;6月20日,中石油长庆油田宣布在鄂尔多斯盆地探明国内首个地质储量超10亿吨的页岩油整装大油田;8月25日,中石油宣布大庆油田古龙页岩油勘探取得战略性突破,新增石油预测地质储量12.68亿吨。 加强页岩油气勘探开发已列入国家“十四五”能源、油气发展规划的顶层设计,各地纷纷行动。中国页岩油迎来了连续3个历史性重大突破,页岩油气开发正奔向新时代,在不远的未来,页岩油将走进我们的社会经济生活,您做好准备了吗? 图1 页岩油开采平台 页岩油如何走进你我的生活? 页岩油用途很广泛,包含了大量的烷烃、环烷烃和芳香烃等,经过分馏和炼制,可转化为燃料、润滑油、沥青、石蜡等产品;页岩油中含有丰富的烷烃和烯烃,可生产出更多的高附加值化学品,是很好的化工原料,经过加工可转化为塑料、合成橡胶、衣服、医疗用品、清洁用品、食品、化妆品、农药、化肥等;这些都可以通过页岩油直接或间接生产出来,为人们的生活增添色彩。 什么是页岩油 页岩油是储存在富含有机质的泥页岩层系或泥页岩层系中的致密碳酸岩或碎屑岩夹层中的石油,是一种非常规石油,被称为是从石头中挤出石油,需要采用压裂、蒸汽驱动等特殊的开采工艺技术,才能获得工业石油产量。按照存储地层划分,可分为海相页岩油和陆相页岩油。美国主要以海相页岩油为主,我国以陆相页岩油为主,我国的陆相页岩油广泛分布在准噶尔、鄂尔多斯、柴达木、四川、渤海湾和松辽等盆地。 海相页岩油具有分布面积大,分布稳定,有机质含量高,成熟度高,油气丰度高等特点。而陆相页岩油热演化程度整体偏低、原油密度大、含蜡量高,造成其可流动性变差,并且分布面积通常较小,对技术和成本具有较强要求。据预测,我国的陆相页岩油技术可采资源量43.93亿吨,约占全球的6%。 图2 页岩 助力页岩油产业开发和应用,我们的神器页岩油相关检测项目及部分解决方案展示原油全烃分布与模拟蒸馏分析图3 原油全烃分析 图4 原油高温模拟蒸馏沸点校正样品分析 可满足SY/T 5779-2008石油和沉积有机质烃类气相色谱分析方法,ASTM D6352、D7169、D7500标准方法要求。 关于原油正构烷烃与生物标志物的分析图5 原油中生物标记物分析 完全满足国家标准GB/T 30739-2014 海洋沉积物中正构烷烃的测定 气相色谱-质谱法,GB/T 18606-2017 气相色谱-质谱法测定沉积物和原油中生物标志物。 关于页岩油伴生气、页岩气和天然气分析图6 超快速气体全烃组成分 结束语岛津拥有完整的分析测试仪器产品,能够助力我国页岩油从勘探开发到炼制加工过程的分析检测与质量控制,并为保证国家能源安全提供全方位的应用解决方案和技术支持服务,让我们一起努力,共同迎接中国的“页岩油革命”。
  • 我国学者在聚乙烯废塑料降解研究方面取得重大进展
    p   近日,中国科学院上海有机化学研究所的黄正课题组和加州大学尔湾分校管治斌课题组合作,在聚乙烯废塑料降解研究方面取得重大进展,相关成果于6月17日以“Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions”(温和条件下高效选择性降解聚乙烯制备液体燃料和石蜡)为题在Science Advances杂志上在线发表(Sci. Adv., 2016, 2, e1501591)。该研究工作得到优秀青年科学基金(21422209)和重点项目(21432011)等的支持。 /p p   烃类物质(烷烃、烯烃、芳烃等)是化石能源的重要组成体,也是重要的基础化工原料。为应对绿色、可持续发展的挑战,一方面需要从自然界丰富的烃类物质出发,发展高效、原子经济性的合成技术,直接制备高价值化学品,实现“分子价值的增量” 另一方面也需要发展温和、实用的催化降解技术,将废弃的高分子量、稳定的烃类化学化工产品转化成可再次利用的小分子物质,避免对环境造成污染,实现“污染物质的减量”。黄正课题组发展了高效的金属有机催化方法和技术,在这两方面取得了重要突破。 /p p   烷烃由高键能、非极性C-C单键和Csp sup 3 /sup -H键组成,是最惰性的有机分子之一,其在合成化学中的应用价值较低。黄正课题组一直致力于烷烃催化转化方面的研究。该课题组先前发展了一类新型的PSCOP螯钳型铱金属有机配合物,其在烷烃脱氢反应中表现出非常高的催化活性,但是在直链烷烃脱氢过程中,由于催化剂具有烯烃异构活性,在反应后期阶段不可避免地生成内烯烃混合物作为主要产物。为解决该问题,他们巧妙地利用双金属催化一锅两步法进行烷烃末端高区域选择性硅基化,实现烷烃至直链烷基硅的高效催化转化(图1a)。催化体系包括由该课题组发展的PSCOP螯钳型铱金属有机络合物作为烷烃脱氢催化剂,将烷烃脱氢生成内烯烃混合物,吡啶二亚胺铁络合物作为串联烯烃异构和端烯烃硅氢化催化剂。该转化的关键在于:烷烃脱氢所生成的烯烃中间体快速异构,并通过铁催化剂对端烯烃选择性硅氢化促使内烯烃向端烯烃转化。该工作为烷烃选择性官能团化提供了新思路,相关成果发表在Nature Chemistry上(Nat. Chem.,2016, 8, 157 Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation 利用铑-铁催化的脱氢-异构化-硅氢化串联反应实现烷烃到直链烷基硅的转化)。 /p p   聚乙烯和烷烃结构单元相似,均由C-C单键和Csp sup 3 /sup -H键组成。聚乙烯是年产量 大的塑料产品(年产超过上亿吨),由于其化学惰性,被弃置后难以降解构成“白色垃圾”主要成分。研究人员利用双金属催化交叉烷烃复分解策略,使用价廉量大的低碳烷烃作为反应试剂和溶剂,与聚乙烯发生重组反应,可有效降低聚乙烯的分子量。由于在反应体系中低碳烷烃过量存在,可多次参与和聚乙烯的重组反应,直至把分子量高至上百万的聚乙烯降解为适用于运输系统燃油的烷烃产品。该反应适用于 HDPE、 LDPE和 LLDPE的降解,且催化剂可以兼容商业级聚乙烯中包含的各类添加剂,并进一步被证明可应用于实际生活中所产生的聚乙烯废塑料瓶、废塑料膜和废塑料袋的降解(图1b)。相比较传统高温裂解方法,该方法具有反应条件相对温和,产物选择性高的优点。高温裂解方法往往需要超过400度反应温度,产生包括气、油、蜡、焦等非常复杂的混合物 产物包括直链烷烃、支链烷烃、烯烃、芳烃等,产品利用价值低。而且黄正等发展的降解方法温度较低(150-200度),生成的产物以直链烷烃为主,且可以通过催化剂结构调控或反应时间控制,选择性生成可作为柴油的C9-C22烷烃或者聚乙烯蜡。这项研究成果得到了Nature、Science、Chemical & amp Engineering News等学术杂志的正面评论,并被《洛杉矶时报》、《华盛顿邮报》和新华网等国内外新闻媒体报道。 /p p style=" TEXT-ALIGN: center" img title=" tpxw2016-06-27-01.jpg" src=" http://img1.17img.cn/17img/images/201606/insimg/0b7ccaeb-e75f-4906-95ec-5a09ef3bc04a.jpg" / /p p style=" TEXT-ALIGN: center" strong 图1. a) 烷烃选择性硅基化 b) 聚乙烯降解。 /strong /p p /p
  • 大连化物所利用固体核磁共振精确表征分子筛中半交联骨架铝物种的辨识、演化和酸性
    近日,大连化物所催化基础国家重点实验室固体核磁共振及前沿应用研究组(510组)侯广进研究员、陈魁智研究员团队与低碳催化与工程研究部催化基础与催化新反应探索研究组(DNL1201组)徐舒涛研究员合作,利用固体核磁共振(ssNMR)及红外技术,精确表征了分子筛中部分骨架配位铝物种的辨识、演化和酸性。分子筛催化剂由于具有良好的微观孔拓扑结构和固有的酸位点,在现代工业过程中发挥着至关重要的作用,但其活性位点结构及其实际的催化性能仍存在不确定性。陈魁智等在前期工作中,利用超高场核磁共振发现了一种新型骨架部分键联的活性位点,即(SiO)4-n-Al(OH)n(简称Al(IV)-2)。该位点在C-H键活化及烷烃裂解等经典反应中发挥着独特而重要的作用,这使其结构的详细阐明变得十分重要。 本工作中,合作团队进一步以三甲基膦(TMP)作为探针分子,通过对MFI分子筛的全面NMR表征,提出31P化学位移约-58 ppm处的TMP吸附物种,实际上是TMP结合到重要的催化位点上的信号,但此前通常归属为TMP物理吸附在非活性物种上。NMR辅助的31P-27Al核间距测量和全面的二维异核相关(1H-31P, 31P-27Al和27Al-1H)核磁共振实验表明,该TMP结合位点(δ31P = -58 ppm)源于部分骨架配位的Al(IV)-2物种中的Al-OH基团,即Al-OHP(CH3)3。31P-31P同核相关实验证明,BAS与Al(IV)-2的空间距离比BAS与 LAS更近,这有助于揭示催化反应的构效关系。此外,不同合成后处理样品的FT-IR和1H NMR结果对Al(IV)-2和骨架配位Lewis位点提供了新的见解。该工作实现了对TMP-Al(IV)-2物种的全面表征,为阐明分子筛中复杂的BAS-LAS-硅羟基—铝羟基网络结构提供了依据。相关研究成果以“Identity, Evolution and Acidity of Partially Framework Coordinated Al Species in Zeolites Probed by TMP 31P-NMR and FTIR”为题,于近日发表在ACS Catalysis上。该工作的第一作者是大连化物所510组博士研究生王志利。上述工作得到国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划、大连化物所创新基金等项目的资助。
  • 德国元素Elementar-石化领域解决方案
    石油及其石化产品,如柴油、汽油、润滑油等,是经济发展的重要能源。无论是在工业、交通还是农业,石油及其石化产品都发挥着至关重要的作用。由中国石油学会石油炼制分会主办的第三届全国石油化工分析测试技术暨第十三届全国石油化工色谱学术报告会将于2023年8月8日至8月12日在山东省烟台市召开。德国元素Elementar将携最新的有机元素分析仪,硫氮分析仪,总有机碳TOC分析仪,红外碳硫仪,稳定同位素比质谱仪以及移动式火花直读光谱仪等解决方案参加此次会议(展台号:27)。有机元素分析解决方案碳氢比可以用来评估石油及其馏分的燃烧性能,较高的碳氢比意味着更多的氢原子,会导致更完全的燃烧和更高的燃烧热值,在炼制过程中,通过调整不同馏分的碳氢比,可以获得更高效的燃料。氮、硫元素分析解决方案在石油化工生产过程中,硫是造成金属设备腐蚀、催化剂中毒、发动机磨损的主要危害源之一。另一方面,石油中控制一定的硫含量或加入一定的硫化物,还可以改善油品的性质,起到提高油品质量的作用。而氮化物是造成油品颜色变暗、产生大量沉渣、储存稳定性变差的主要原因。对油品中的硫、氮元素进行精准测定至关重要。氧元素分析解决方案在油品中氧含量是一个很重要的控制指标,氧含量测定值的高低将直接影响油品的质量。德国元素专有的氧元素分析仪专为油品及溶剂中的氧含量测定而设计。总有机碳TOC分析解决方案石油化工行业的废水主要是石油开采、炼制的过程当中,产生的各种有机物或无机盐等组成的水,这些废水中含有非常多的油、盐以及酚等有害物质,不仅成分复杂,而且排放量大。对废水中总有机碳(TOC)进行精准分析是废水排放的一项重要指标。德国元素作为世界上第一批将高温燃烧技术引入TOC分析的厂家,在TOC 分析方面具有非常丰富的经验积累。红外碳硫分析解决方案催化重整原料主要含有链烷烃和环烷烃等饱和烃,也含有少量芳香烃。一般重整催化剂是双功能型催化剂,即具有金属催化的加氢、脱氢的功能,又具有异构化、裂解等酸性功能。在催化重整反应条件下,所涉及的催化反应主要是链烷烃和环烷烃的转化反应。重整催化剂的再生过程中,再生前后的碳含量是再生效果好坏以及再生手段选择的一个重要判据。移动式火花直读光谱分析解决方案合金钢在石油化工厂的管道和储罐建设当中大量使用。比如,有两类316合金钢在市场中流通和生产。除了316合金钢(W-No.14401),还有一类316L合金钢(W-No.14404)。两种合金钢的区别就在于碳的含量,在牌号上就反应为-对于低碳含量的合金钢增加字母“L。对于管道中各种轻元素和金属元素的测定,移动式火花直读光谱仪是最好选择。稳定同位素比质谱分析解决方案PetrovisION-完整的石油工业稳定同位素分析解决方案稳定同位素分析是油气藏资源储量勘探的关键技术,了解油气藏中石油和天然气的来源是决定勘探可行性和适应性的基本要求。PetrovisION可极大提高投资回报率,具备最短的仪器接触时间和强大的批量数据处理能力。德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 院士团队|同时蒸馏萃取结合GC-MS分析酿酒五粮原料蒸煮香气成分分析
    中国白酒风味独特、历史悠久,是我国居民日常生活的重要组成部分。根据生产原料和工艺的不同,中国白酒按香型可分为浓香型、酱香型、清香型和米香型等12 种代表香型。浓香型白酒以绵甜柔和、谐调爽净、余味悠长的特点,深受广大消费者喜爱,且在白酒市场占有率最高。蒸馏萃取(SDE)是一种将水蒸气蒸馏与溶剂萃取相结合,将挥发性成分的提取与溶剂萃取相结合,通过少量溶剂提取大量样品的浓缩方法,具有操作简便且重复性好的优点,是一种分析粮食蒸煮香气有效的前处理方法。北京工商大学,酿酒分子工程中国轻工业重点实验室,北京市食品风味化学重点实验室的廖鹏飞、孙金沅*等采取SDE对蒸酒所用的5 种单粮和混粮中的香气成分进行提取,并结合气相色谱-质谱(GC-MS)对其进行分析;另外,结合香气提取稀释分析(AEDA)和香气活性值(OAV)对混合粮食蒸煮香气中关键香气化合物进行分析,从而确定影响粮香的关键化合物。01 5 种单粮挥发性化合物定性结果如图1所示,高粱蒸煮香气中检测到的挥发性化合物种类数量最多,有108 种;除了酯类和萜烯类外,鉴定到的其余类别的化合物数量均是5 种单粮中最多的。由于高粱是古井贡白酒酿酒原料中比例最高的粮食,可能将更多的粮食香气带入白酒中,丰富白酒粮香。GC-MS结果表明,高粱蒸煮香气中,己酸乙酯、正己醇、己醛等化合物的相对峰面积较大,证明这些化合物相对含量较大。玉米中共检测出93 种挥发性化合物;其中,萜烯类化合物种类显著高于其他单粮,有9 种,芳樟醇是其中相对含量最高的化合物。糯米和大米中检测出的挥发性化合物最少,均为66 种,二者种类相似,重合率为83.3%,且鉴定出的挥发性化合物在其他单粮中均可检出。高粱中检测到其他粮食中没有的挥发性化合物种类最多,有27 种,而玉米和小麦中分别有18 种和12 种。02 混合粮食原料挥发性化合物定性结果由图2可知,在不同极性色谱柱下均检出较多的烷烃类、醛类、酮类和酯类化合物;醇类化合物和芳香类化合物在极性柱条件下检出效果优于非极性柱,分别检出11 种和15 种;酸类化合物在极性柱条件下检出效果更好,检出7 种。烷烃类化合物和醛类化合物在检出数量和相对峰面积两个方面均明显高于其他类别化合物,是组成混合粮食蒸煮香气中最重要的两类化合物。03混合粮食原料中香气活性成分的筛选由表1可知,成功定性的29 种香气化合物中,通过极性柱鉴定出26 种,FD因子≥9的香气化合物有16 种,分别是乳酸乙酯(81,奶油香)、苄硫醇(81,大蒜味)、(E,E)-2,4-癸二烯醛(81,青草香、脂肪味)、4-乙基愈创木酚(81,烟熏、坚果香)、己酸乙酯(27,水果香)、辛酸乙酯(27,果香)、(E)-2-壬烯醛(27,青草、脂肪味)、(E,Z)-2,6-壬二烯醛(27,黄瓜香、脂肪味)、香叶基丙酮(27,叶子、花香)、十八醛(27,奶油香)、(E)-2-辛烯醛(9,青草香、脂肪味)、正庚醇(9,青草香)、(E)-2-癸烯醛(9,腊味、脂肪味)、(E,E)-2,4-壬二烯醛(9,脂肪味、青草香)、正己酸(9,脂肪味)、棕榈酸甲酯(9,油脂味、蜡味),同时除己酸乙酯、十八醛和(E)-2-癸烯醛外均有较高的嗅闻强度。通过非极性柱鉴定出11 种香气化合物,FD因子≥9的香气化合物有7 种,分别为苄硫醇(81,大蒜味)、(E)-2-壬烯醛(81,青草香、脂肪味)、正己醇(27,树脂、植物味)、苯乙醛(27,花香)、4-乙基愈创木酚(9,烟熏、坚果香)、辛醛(9,青椒味)、香草醛(9,蜡质味),除4-乙基愈创木酚外均具有较高的嗅闻强度。未能定性的3 个香气区间的感官描述词分别为绿茶、山楂和土豆。04 混合粮食原料中香气化合物的确定 如表2所示,本实验所得到的标准曲线R2均不低于0.99,表明该曲线具有良好的线性关系;LOD均低于0.909 mg/L,表示仪器灵敏度满足实验的需要;回收率均在80%~120%之间,表明所用定量方法可行。采用上述标准曲线对混合粮食以及5 种单粮中重要的香气化合物进行定量,并根据文献中化合物香气阈值,计算不同原料蒸煮样品中化合物的OAV,如表3所示。不同香气化合物的OAV在不同粮食样品中存在一定差异。混合粮食蒸煮香气中,苄硫醇、(E,E)-2,4-壬二烯醛和(E)-2-壬烯醛等17 种化合物的OAV≥1,被认为是混合粮食蒸煮香气中的关键香气化合物,如图3所示。 05 结论结果表明,5 种单粮中共鉴定出153 种化合物;高粱、小麦、玉米、糯米、大米中分别鉴定出108、93、93、66、66 种化合物,其中鉴定出较多数量的醛类、醇类、酮类、芳香类、酯类等化合物。采用双柱定性,在混合粮食样品中共鉴定出140 种化合物。采用气相色谱-嗅闻-质谱联用法在混合粮食样品中共鉴定出29 种香气活性化合物,结合香气提取稀释分析和香气活性值评价不同化合物对粮食蒸煮整体风味的影响。经计算,苄硫醇、(E,E)-2,4-癸二烯醛、(E)-2-壬烯醛、壬醛、己醛、辛醛、(E)-2-辛烯醛、(E,Z)-2,6-壬二烯醛、正庚醇、(E)-2-癸烯醛、(E,E)-2,4-壬二烯醛、苯乙醛、4-乙基愈创木酚、己酸乙酯、香叶基丙酮、辛酸乙酯、香草醛17 种化合物的香气活性值不低于1,被认为是对粮香有贡献的重要风味化合物,其中苄硫醇和(E,Z)-2,6-壬二烯醛首次在蒸煮粮食香气中被鉴定。原文链接:https://www.spkx.net.cn/CN/10.7506/spkx1002-6630-20220609-091
  • 科学家提出绿色制冷新思路
    中科院合肥物质科学研究院固体物理研究所团队突破“固态—固态”相变制冷材料研究的传统思维,提出“通过静水压驱动液—固相变实现制冷效应”(液态—固态)创新思想,在正构烷烃体系中获得室温庞压卡效应,为发展绿色环保的新型制冷技术开辟了新思路。相关成果日前发表于《自然-通讯》。  态相变制冷材料在磁场、电场等外场驱动下迅速发生热响应,即固态相变热效应。该效应从周边环境中吸热和放热,利用吸热过程产生制冷效果。这类材料对环境影响极小,但制冷性能难以与传统气体制冷剂相匹敌,阻碍了其实际应用。  固态、液态是两种常见的物质形态,两态之间的分子、原子有序度存在巨大差异,液—固相变时伴随着巨大的熵变,远高于固态相变时发生的熵变。同时,由于液态、固态的密度差异较大,相变时体积也会发生显著变化,使得相变温度对压力敏感,因此可以通过施加压力进行驱动,从而发生巨大热响应即压卡效应。  受液态—固态相变特征的启发,研究团队首次提出利用压力驱动液—固相变实现庞压卡效应思路,在正构烷烃中发现低压力驱动的庞压卡效应。  研究还发现,不管是固态还是液态,施加压力时正构烷烃内部均可形成静水压,避免使用时传压介质的添加,因此可提高冷量密度,便于制冷设备的小型化;正构烷烃成本低廉,物理化学性能稳定,工作温窗可调,相变过程可逆且不产生有害排放。因此,正构烷烃类材料在相变制冷领域具有广阔应用前景。  此次研究为研发基于压卡效应的新型绿色制冷技术提供了新思路并奠定了材料基础,也为研发性能更加优异的新型庞压卡材料指明了方向。  相关论文信息:https://doi.org/10.1038/s41467-022-28229-4
  • 土壤有机物检测盘点· 番外篇 | Intuvo 9000 助力 TPH 分析唯“快”不破
    在石油生产、贮运、炼制加工及使用过程中,由于事故、不正常操作及检修等原因,都会有石油烃类化合物的溢出和排放。在中国,每年因石油开采而造成污染的土壤达 10^8 kg [1]。石油是复杂的有机混合物,其污染物含有大量致畸、致癌、致突变的物质 [2],进入环境会对人体、水体及水生生物和土壤造成危害和影响。因此,对总石油烃类化合物(total petroleum hydrocarbons,tph)的污染监测具有重要的现实意义。石油污染物在环境中不断受到各种物理、化学和微生物作用,在迁移、降解及转化等过程中化合物存在很大差异 [3],尤其是烷烃最易发生降解 [4],因此各种有机物的种类、浓度都会受到来源和环境条件等因素影响。国际上,美国石油协会的石油烃标准化工作组(total petroleum hydrocarbon criteria working group,tphcwg)是由行业企业、政府部门和专家学者共同组成,该组织针对于工程和公共安全提出指导标准。该组织早在 1997 年就提出了 tph 风险管理办法的技术概述,研究了石油烃的分类/分段方法,和美国环保署 epa 共同建立了一些实用的环境风险评估模型,例如 epa method 418.1 和 epa method 801.5。检测 tph 的方法有很多种,有的已经被使用了很多年,有的是近几年开发的新方法。常规土壤中的柴油类总石油烃类化合物使用二氯甲烷和丙酮混合液萃取,水中的化合物使用二氯甲烷萃取,但分析时间约 20 min,不能满足商业实验室大通量分析的要求。安捷伦成功开发出快速测定环境样品中的总石油烃的方法,使用创新性 intuvo 9000 gc 对水和土壤中可萃取的总石油烃类化合物 tph 进行快速分段检测,分析时间小于 3.2 min,具有检出限低、稳定性好、抗污染干扰能力强等优点;同时 intuvo 9000 gc 的独特保护柱芯片 guard chip 设计能够有效提升仪器的抗污染能力,可以有效减少分析时间,大大提高分析效率。优异的标准曲线对正构烷烃标准品进行逐级稀释,得到含每种正构烷烃浓度分别为 10、20、30、50 和 100 mg/l 的标准溶液。对标准溶液进样后色谱图如下(见图 1),标准曲线的线性良好,r^2 均大于 0.999。图1. 单标 10mg/l 正构烷烃标准溶液色谱图快速分析条件下(图 2. 单标 10mg/l 正构烷烃标准溶液叠加色谱图(n=7)可靠的实际样品测定结果检测结果表 1 可知,所有样品的化合物重复性 rsd 均小于 8.61%。同时,采用 7890b gc 常规方法对样品进行分析,结果见表 1 中 *斜体标注数值,二者均可以满足实验室的分析需求。表 1. 实际样品 intuvo 9000 和 7890b gc(斜体数值)分析结果(n=5)无与伦比的系统抗污染能力agilent intuvo 9000 gc 独特的保护柱芯片 guard chip 和全新的超惰流路芯片设计可以最大程度地保护色谱柱,有效降低系统维护频率,保证数据的稳定可靠。采用快速分段检测技术分析 120 个样品后,通过每分析 40 个样品更换衬管的频率进行维护系统后,对标准溶液进样,色谱峰面积差值小于 7%。分析 250 个样品并更换保护柱芯片后,标准溶液色谱峰面积基本与初始值无显著变化。这说明保护柱芯片确实能够有效保护色谱柱,同时更换保护柱芯片后保留时间不发生偏移,避免了切割色谱柱后方法重新设定的步骤,大大提高了分析效率。参考资料:薛强,梁冰.土壤水环境中有机污染物运移环境预测模型的研究 [j]. 水利学报, 2003,(6):48-55.杨明星,杨锐锁,杜新强等. 石油污染地下水有机污染组成特征及其环境指示效应.中国环境科学 2013,33(6):1025~1032meniconi g m f,gabardo it, carneio m e r. brazilian oil spills chemical characterization-casestudy [j]. environmental forensics, 2002,3: 303-321.易绍金,余跃惠.石油与环境微生物技术 [m]. 北京:中国地质大学出版社,2002.关注安捷伦公众号“安捷伦视界”(agilentchem),获取更多资讯。
  • “蜡”有压力就“凉”了?中国科学家提出环保制冷新思路
    从家用冰箱、空调到工业用大型冷藏库,制冷技术应用于生产生活的方方面面,如何让它更为绿色环保?记者5日从中科院合肥物质科学研究院固体物理研究所了解到,该所童鹏、林建超、鲁文建、王贤龙等科研工作者发现正构烷烃(石蜡的主要化学成分)在一定压力驱动下通过液态固态相变能够实现制冷效果,为发展绿色环保的新型制冷技术开辟新思路。   现有制冷设备主要采用气体压缩循环技术,通过制冷剂达到制冷效果,能耗较高。固态、液态作为两种常见的物质形态,二者在相互转变的过程中伴随着热响应,如滴水成冰、冰化成水从周边环境中放热和吸热。专家认为,如果能够找到一种材料,施加压力就能诱导其固态、液态相互变化,从而产生热响应,那么除传统制冷剂外,就有了一种新的制冷技术。科研工作者将这种超过众多固态相变制冷材料一个数量级的压力诱导的相变制冷效应称为庞压卡效应。  此次,固体物理研究所研究团队在正构烷烃中发现了低压力驱动的庞压卡效应。据介绍,正构烷烃的成本低廉,物理化学性能稳定,相变过程不产生有害排放,同时便于制冷设备的小型化,在制冷领域具有广阔应用前景。  目前,相关研究成果已发表在国际权威期刊《自然通讯》上。
  • GC×GC油品检测应用:煤基费托合成润滑油基础油中芳烃含量的测定
    煤基费托合成润滑油基础油中芳烃含量的测定盖青青,朱加清,艾军,赵帅,申巧玲,刘聪云(北京低碳清洁能源研究所,北京,102209)费托合成是煤间接液化过程中的关键技术,是以合成气(CO+H2)为原料,在催化剂上转化生成液体烃类燃料和其他化学品的工艺过程[1]。与传统石油基产品相比,费托合成油(蜡)产品具有硫、氮和芳烃含量低,链烷烃含量高的特性,满足清洁油品的环保要求,是生产优质高端润滑油基础油的原料[2]。费托合成蜡生产的润滑油基础油产品黏度指数高,蒸发损失低,可作为超高黏度指数的润滑油基础油应用于各类发动机油、齿轮油、液压油、压缩机油、润滑脂等。与目前市场上主要润滑油基础油产品 I、II 类油相比,该类产品具有更好的黏温特性,在节能减排、延长机械使用寿命等方面可发挥更大作用。费托合成润滑油基础油以链烷烃为主,芳烃含量低,现有的方法标准NB/SH/T 0966和GB/T 11081均是以紫外分光度法测定芳烃含量,由于液体样品分子间的相互作用,以及多普勒变宽和压力变宽等效应,使液体样品的光谱精细结构变得模糊甚至消失,该方法测定芳烃含量的方法误差大。全二维气相色谱技术(comprehensive two-dimensional gas chromatography,GC×GC)是近年兴起的一种多维色谱分离技术,它将两种极性不同的毛细管色谱柱通过调制器串联形成二维气相色谱系统对样品组分进行分析。与常规一维气相色谱相比,全二维气相色谱以其分辨率高、峰容量大、灵敏度好、谱图分布规律性强等优点,广泛应用于石油馏分的分析中[3],是实现复杂样品中挥发性组分分离鉴定的有力工具,尤其适合极性不同化合物的族分离。由于润滑油基础油的粘度和馏程范围较高,目前鲜有全二维气相色谱对费托合成基础油润滑油组成分析的研究报道。本文采用全二维气相色谱与质谱(GC×GC-MS)联用技术,建立了费托合成润滑油基础油中芳烃含量测定的分析方法。首先通过顶空固相微萃取将芳烃萃取吸附到萃取头上,然后在气相色谱进样口进行热解析进样,再用全二维色谱进行分离,质谱仪检测,内标法定量。采用最佳的固相微萃取条件和色谱分离条件,GC×GC MS对不同加氢异构条件下得到的费托合成润滑油基础油A样品和B样品进行分析。根据质谱解析结果得到族分离条带,由于是反相二维系统,化合物的极性从上到下越来越强,色谱条带分别是烷烃和芳烃,其中烷烃含量居多,有少量芳烃,见图1。图1 费托合成润滑油基础油的全二维色谱三维图Fig. 1 3D surface plot of GC × GC for Fischer-Tropsch synthetic lube base oil由图1可知,由于两个样品的加氢异构条件不同,其组成也有明显的差别,主要是芳烃含量的差异。在定性分析中,自动识别信噪比大于10的色谱峰,通过自动解卷积和NIST 2014质谱库比对检索,筛选相似度大于750的组分,确认样品中芳烃组分。A样品中检测到极少量的芳烃,分别是二甲苯和三甲苯,内标法定量芳烃的总量为0.126 mg/L;B样品中检测到二十多种芳烃组分,均为单环芳烃,内标法定量芳烃的总量为10.651 mg/L。A、B样品中芳烃含量的差别反映到样品的外观上,A样品无色透明,B样品呈现黄色。这些结果也表明在生成B样品的加氢异构反应过程中发生了明显的芳构化副反应,生成了较多的芳烃。由此可知, GC×GC MS相结合的方法不仅可以快速准确地分析费托合成润滑油基础油中芳烃的组成和含量,而且也为润滑油生产优化操作和先进控制提供了可靠的质量检测手段,在分子水平上准确地获得润滑油基础油组成信息提供了参考。参考文献[1] Xiong H F,Motchelaho M A,Moyo M, et al. Effect of Group I alkali metal promoters on Fe/CNT catalysts in Fischer–Tropsch synthesis[J]. Fuel, 2015,150: 687-696.[2] 张雅琳,张占全,王燕,等. 费托合成油和石油基加工产品对比分析[J],化工进展,2018,37(10)3781-3786[3]刘明星,刘泽龙,李颖,等. 固相萃取法/全二维气相色谱-飞行时间质谱测定柴油及其加氢产品中的含硫化合物[J]. 石油炼制与化工, 2020, 51(4): 96-103.本文作者:北京低碳清洁能源研究所 盖青青聚焦气相色谱及相关技术在能源化工领域的技术及应用进展,本网特别策划了“助力双碳 气相色谱在能源领域的应用”主题约稿活动,欢迎业内相关专家学者、一线用户、厂商积极投稿。联系人:赵编辑word图文投稿邮箱:zhaoy@instrument.com.cn微信/电话:15650766910
  • 正相色谱,出峰漂移,月旭带你一探究竟!
    正相色谱是我们色谱分离中一种常用的分离模式。其分离原理是基于固定相的极性大于流动相,通过吸附作用,实现不同极性物质之间的分离。正相色谱的优势是可用于分离反相色谱不保留或极性较强的化合物,且适用于绝不溶于水的物质分离。但是正相色谱也有困扰我们的难题。经常会有老师在使用正相色谱柱时出现出峰保留时间漂移的情况,有些是使用的正相柱子,样品出峰不断地有前移的趋势,有些是新买的正相柱子分离样品保留时间和原有的旧柱子不一致等。这到底是怎么回事呢,出现这类保留时间漂移的问题又该如何解决呢?今天小旭就带大家一探究竟。首先我们简单介绍下正相色谱+➱ 定义:固定相的极性大于流动相,基于固液吸附的原理,分离不同极性的样品。➱ 洗脱顺序:极性低的物质先被洗脱出来。流动相的极性越强,洗脱能力也越强。➱ 常见的正相色谱柱有:硅胶柱,二醇基柱,氨基柱,氰基柱。➱ 常用的流动相:主要试剂:烷烃(戊烷,己烷,庚烷,辛烷),芳香烃(苯,甲苯,二甲苯),二氯甲烷,四氯化碳。辅助试剂:甲基-t-丁基醚(MTBE),乙醚,四氢呋喃(THF),乙酸乙酯,乙腈,丙酮等。正相色谱的优势是可用于分离反相色谱中不保留或极性较强的化合物,且适用于绝不溶于水的物质分离,还可用于拆分异构体。但正相色谱中,却易出现保留时间漂移的情况。这究竟是什么原因呢?原来正相色谱柱的固定相,特别是硅胶柱中未改性的裸硅胶,其中的硅醇基的极性特别强,其对流动相中甚至是实验环境中的水分含量非常敏感。而由于正相色谱中固定相的水分含量常常是个影响选择性的关键参数,流动相中的水分含量通常影响保留时间和分离度。我们知道大部分溶剂都含有小部分的溶解水,比如正己烷在20℃下,其水分含量是0.0111%w/w。因此正相色谱中出现保留时间波动较大的问题,大多可归因于固定相或流动相中水分含量的变化,而填料可能还是完好的。那么正相色谱中,出现这种固定相或者流动相中的水分含量影响物质保留时间的问题,该如何解决呢?小旭给大家分享两个解决方法:1、去除固定相上的水分用含2.5%二甲氧基丙烷(dimethoxypropane)和2.5%冰醋酸的正己烷冲洗色谱柱30个柱体积;2、使用水分含量可控的流动相(比如:用水半饱和)半饱和流动相配置方式:将无水的非极性流动相分成两半;其中一半中加入一定量水,并混匀搅拌约一小时,静置分层后,将多余的水相全部除去;将两部分非极性流动相重新混合在一起就配成了“半饱和”流动相。快来看一个案例吧~ ● ● ● ● ● ● ● ➱ 售后案例背景客户新买的Topsil® (拓谱)Silica硅胶柱,在做一个老项目时,目标化合物的保留时间出现了漂移。同时对比旧柱子上目标化合物的保留时间是在10min左右,而新柱子的目标化合物的保留时间却出现在了20min左右。色谱条件:色谱柱:月旭Topsil® Silica(4.6×250mm,5μm)。流动相:乙酸乙酯/正己烷/甲醇/正丙醇=60/40/2/1;检测波长:256nm;柱温:30℃;流速:1.0mL/min;进样量:100μL。➱ 售后排查月旭实验室对该项目进行了验证,发现的确在新柱子上目标化合物的保留时间与客户实验室的做样结果一致,在20min左右。继而月旭实验室对该方法流动相中的主要试剂乙酸乙酯和正己烷进行了水半饱和的操作,使用水半饱和的流动相重复了实验,样品中目标物的保留时间稳定在了14min左右,与客户实验室用旧柱子做样的保留时间基本一致。如下图。通过月旭实验室的排查验证,流动相用水半饱和的方法,完美解决了客户在应用正相色谱柱时出现目标峰保留时间漂移的问题。我们回访客户后,还有彩蛋哦~产品详情
  • 江苏:“政产学研用”联动促进科学仪器产业链与创新链深度融合
    打好科学仪器设备国产化攻坚战,推动高水平科技自立自强走在前列。近日,江苏省科技资源统筹服务中心、中国药科大学联合举办江苏省科技资源统筹服务平台国产科学仪器试验验证中心(生物医药)暨中国药科大学联合实验室成立大会。会上,江苏首家国产科学仪器试验验证中心和江苏省国产科学仪器产业联盟同时揭牌,进一步充实区域科技创新基础力量。科学仪器是创新实力的体现,在很大程度上决定着基础研究和新技术、新产品开发的广度与深度。江苏作为国家重大科学仪器设备开发专项的首批试点省份之一,长期承担为全国发展探路的使命。以项目实施为牵引,江苏现已推动江苏天瑞、昆山禾信质谱、苏大维格等多家企业获得国家重大专项项目18项,项目总经费8.3亿元,其中国家专项资金3.6亿元,在科学仪器自主研发方面取得一定成效。  与此同时,江苏也面临着科学仪器行业整体起步较晚、基础薄弱,国产科学仪器主要集中在中低端市场,高端仪器研发难度高,大型科学仪器国产化率低等问题。当前,国产仪器在工艺、材料、系统、稳定性、可靠性上与进口仪器相比差距大。本次揭牌成立的国产科学仪器试验验证中心和国产科学仪器产业联盟,将通过激发“政产学研用”整体效能,全面促进科学仪器产业链与创新链深度融合,激发国产仪器创新驱动力。  江苏省科技厅二级巡视员景茂在大会致辞中说,科学仪器研发难度大、周期长,需要各方协同推进。国产科学仪器产业联盟和试验验证中心成立是实现用国产科学仪器设备解决重大基础研究问题的重要举措,将搭建和利用好供需双方对接桥梁,发挥市场机制作用,通过高校院所为国产科学仪器提供“机会”和“市场”,企业主动进入“实验室”等,构建良好的国产科学仪器发展生态。同时,紧抓人才工作,建立集科学仪器研制、应用、维修三位一体的人才队伍体系,引导和鼓励更多高层次人才投身科学仪器的研发。  据了解,江苏成立国产科学仪器试验验证中心(生物医药),旨在打造集应用、验证、研发、改进及培训于一体的综合性试验平台,以验促研、以用促改,通过综合性能检验,推动关键技术攻关,提升国产科学仪器市场竞争力。国产科学仪器产业联盟由江苏省科技资源统筹服务中心联合中国药科大学、中科院苏州医工所等近20家单位共同发起,将聚焦国产科学仪器关键核心技术、关键零部件及测试技术与方法等,推进国产科学仪器展示引领和应用示范,构建国产科学仪器产业“生态圈”“朋友圈”。  会上,中国药科大学就国产科学仪器试验验证合作事项与杭州谱育科技、常州磐诺仪器有限公司正式签约。来自中科院生物物理研究所、南京理工大学、南京航空航天大学等高校院所的专家学者分别围绕科学仪器发展现状、管理模式、开放共享等主题进行分享,为江苏率先打好科学仪器设备攻坚战建言献策。  据悉,以国产科学仪器试验验证中心和产业联盟成立为契机,江苏省科技资源服务中心将深化省科技资源统筹服务共同体建设,引导高校院所、专业机构及企业“抱团使劲”,拓展边际,全面提升国产科学仪器产业的整体研发能力和市场竞争力。
  • 微型光纤光谱仪可以应用于哪些领域?
    从1992年Mike Morris发明世界上第一个微型光纤光谱仪至今已经24年了,各个行业已经开发了数以千计的应用。广阔的市场前景吸引了越来越多的公司,包括仪器仪表行业的大公司都开始参与到这个领域的竞争。  微型光纤光谱仪可以应用于哪些领域?  第一, 光谱仪可以分析各种光源发出的光,这些光源包括太阳,LED, 激光,平板显示器件,等离子体,气体放电,火焰燃烧,受激发光,化学发光等等基于各种原理的发光体。  第二, 光谱仪可以分析光与各种物质相互作用后的光,相互作用后的光一般都含有与物质微观结构有关的丰富信息。在这里光可以看成是探索物质微观结构的“探针”,因此,微型光谱仪通常被列为光学传感类(optical sensing)。  第三, 由于微型光谱仪的体积小,所以适合于便携,手持,现场,在线,原位,活体,非破坏性应用场合。由于光纤的使用,所以适合在有害环境下(包括化学,生物,放射性)进行远程测量。由于微型光谱仪内无移动部件,可靠性高,因此,适合于工作在环境恶劣的工业现场。由于采用探测器陈列,可一次获得全光谱,测试速度快,因此适合需要高速测量的应用,例如工业在线检测,化学反应动力学监测。  由于微型光谱仪应用领域非常广,在如此短的篇幅内无法详细列举所有的应用。以下,我们就当今社会最关注的领域中比较成功的应用案列进行分析:  环保行业:  -燃煤电厂烟气排放监测系统用于监测电厂在脱硫和脱硝之后对于大气的排放废气中SO2,NOx的含量。  这基于气体紫外吸光度测量的原理,看似简单,但是在解决实际问题时,必须要克服一些具体困难。由于实际应用中的待测气体样品中有颗粒物存在,如何将颗粒物对光的散射引起光的能量损耗扣除掉,以获得准确的浓度值?1970年代德国科学家Ulrich Platt在研究大气紫外吸收时,发现颗粒物散射谱随波长变化慢,气体分子紫外吸收谱随波长变化陡峭,因此对光谱进行微分,再进行数字滤波,将低频分量滤去,就可以将散射的影响扣除,这就是著名的DOAS技术(Differential Optical Absorption Spectroscopy)。由此可见,应用研究的重要性。  -对于地表水的有机物综合指标的监测  有机物综合指标是指化学需氧量(COD),生化需氧量(BOD),总有机碳(TOC),高锰酸盐指数(CODMn),总磷(TP),总氮(TN),多环芳烃(PAHs)。分析地表水的有机物综合指标的困难在于,第一,这不是由单一化学组分决定的,而是由水中大量化学组分的综合效果 第二,水体中除了有机物之外,还有许多其它的干扰因素,譬如泥沙,会影响测量结果的准确度。  不少地方仍然采用化学滴定方法检测,这种方法虽然准确度高,由于需要采用化学试剂会对水体造成二次污染,而且设备复杂,测试所需时间长,运行费用高。  采用紫外吸收光谱技术,通过对大量水样建模和多变量化学计量学分析,可以获得有机物综合指标。但是实际的水样中总会含有泥沙,泥沙含量较高时,这些无机物也会使透光量减少,探测器无法区分透射光强度减少,究竟是被有机物吸收了,还是泥沙的散射引起透光量的减少,从而带来误差。而且,在有机物含量较少时,测量误差较大。浙江大学的吴铁军教授发现如果加用荧光光谱测试,由于无机物是不会产生荧光的,因此,融合荧光光谱和紫外吸收光谱的数据,就可以扣除无机物的影响。这种创新的方法可以用一台仪器同时测量出上述七个水的有机物污染的综合指标。  这个案例告诉我们,在分析复杂体系时,基于多变量化学计量学的算法和建模是极端重要的。  食品安全  -水,土壤和鱼的汞超标  由于环境污染体现在地表水和土壤的汞超标,汞又特别容易在生物组织中积累,譬如鱼类。摄入过量的汞会影响人的神经系统,儿童的发育生长。全球140个国家都对食品中汞的含量有规定。现有的分析方法非常耗时并只能在实验室使用。  美国Jackson州立大学发明了一种基于纳米材料表面能量转移技术NSET(Nanomaterial Surface Energy Transfer)的检测微量汞的便携式仪器。NSET技术原理如下,当罗丹明B(RhB)分子吸附在胶体金纳米颗粒时,胶体金纳米颗粒会使RhB荧光焠灭,当有Hg2+离子存在时,RhB会从纳米金颗粒表面释放,与汞离子结合,并在532nm激光激发下开始发荧光,荧光的强度与Hg2+离子浓度成正比。(见图2)这种方法检测灵敏度很高,汞的检测线0.8ppb,美国环境署水中汞含量的标准为2ppb.并能检测鱼组织中的汞,达到美国环保署0.55ppm的要求。图1 吸附在纳米金颗粒表面的罗丹明RhB,它的荧光强度与待测样品中汞的浓度成正比  这个案例中检测汞的原理就不那么直截了当,待测物汞本身并不能受激发荧光,而当汞离子与罗丹明RhB结合时,RhB充当标记物(marker)的角色,另一方面,利用了纳米金颗粒能使RhB荧光焠灭的特性。  -检测奶粉中的微量三聚氰胺  采用表面增强拉曼光谱技术SERS(Surface Enhanced Raman Spectroscopy),在785nm激光的激发下,待测的三聚氰胺的分子在基于纳米金颗粒的SERS芯片上,在激光强电磁场的作用下,与纳米颗粒表面的等离子激元发生谐振,拉曼光谱的强度被大大增强。(见图2)采用便携式拉曼光谱仪和SERS芯片三聚氰胺的检测限可达到12ppm。图2在打印的SERS芯片表面增强拉曼光谱与三聚氰胺浓度的线性关系  拉曼光谱技术,由于拉曼信号特别微弱,所以只适合应用于分析浓度较高的物质主成分。由于纳米材料科学,表面物理科学,激光技术的发展,才使SERS技术逐步进入应用阶段,用于分析痕量物质。不断提高测量的重复性,稳定性,降低SERS芯片的价格,使更多的应用领域用得起SERS技术。  -鉴别假冒的初榨橄榄油  常用的方法是观察油的颜色,但是在不同光线下显示的颜色是不同的,而且造假者会用叶绿素或b胡萝卜素去调节油的颜色去靠近真品的颜色。用低档橄榄油或者葵瓜子油,菜油稀释初榨橄榄油都可以用便携仪器进行吸光度测量方法鉴别。  正是由于光纤光谱仪的便携性和快速,使其得以应用在仓库,海关现场快速验货。图3 不同比例的低档橄榄油稀释初榨橄榄油对于吸光度的影响  -对食品内黄曲霉素的快速检测  发霉和变质的粮食,花生,坚果含有致癌的黄曲霉素。现用的主流技术有液相色谱仪HPLC,  液相-质谱联用仪LC-MS。这些技术只能在实验室用,并且设备昂贵,分析时间长,还要用大量化学溶剂,污染环境,操作和维护保养麻烦,需专业人员操作。也有用酶联免疫分析技术(ELISA),这种方法测量精度不如HPLC,并经常会报告假阳性。  因此,急需一种可以在现场快速筛检的设备。英国的Ray Coker博士发明了一种基于紫外荧光光谱的技术,先将样品进行预处理,使待测毒素分离,富集,然后用紫外荧光光谱分析,在365nm LED光源激发下,测量其荧光,并采用专利的算法,一次同时测得4种黄曲霉素(B1,B2,G1,G2,M1)和赭曲霉素A,其检测限1ppb,即零点几ppb,满足最严格的欧盟标准,可与HPLC比拟。这种方法其实还可以成为快速检测的平台,包括病原体检测,贝类毒素检测,兽药残留检测,动物饲料中真菌毒素检测,假药甄别检测,农药残留检测,MRSA(Methicillin-resistant Staphylococcus aureus)耐甲氧西林金黄色葡萄球菌检测。  该案例的技术难点在于样品预处理,如何从成分复杂的待测食品样品中将微量待测物萃取,分离,富集,第二,如何挑选出具有高度特异性的抗体,使自身不会发荧光的毒素与标记物(marker)可以用荧光技术来检测 第三,如何从光谱数据提取出有用信息的算法。  -食源性致病菌的快速检测  检测食品中的致病微生物,现行的方法,譬如检测细菌的金标准方法“平板计数法”(Culture Plating),虽然准确,但是分析所需时间太长,需要2-3天。其它的方法,例如酶联免疫吸附测定法ELISA,虽然速度快了,但是灵敏度不高。聚合酶链式反应法PCR方法,虽然速度快了,灵敏度也高一些,但需要复杂的核酸提取过程。总之,需要一种快速,灵敏,准确,特异性强的检测方法。  食品是一个成分复杂的物质,我们需要分析其中微量的细菌,首先要解决的问题是如何从复杂的背景中提取并富集这些待测的细菌 第二,按照国家标准,允许存在的细菌浓度必须很低,因此要求检测方法的灵敏度很高 第三,实际上,食物中很可能同时存在多种细菌,因此检测方法一定能够同时,分别检测出多种目标物。  美国阿肯色大学生物与农业工程系Yanbin Li教授团队近年来利用免疫纳米磁珠与免疫量子点对食源性致病菌进行快速检测。同时检测李斯特菌,沙门氏菌,大肠杆菌,检测下限可达到101 CFU/ml。(见图4) 图4(a)纯细菌样本的荧光光谱 (b)含致病菌的牛肉样本的荧光光谱  其基本原理是利用免疫检测方法,即先用第一抗体去修饰纳米磁珠,形成细菌-免疫磁珠复合体,在与样品均匀混合时,抗体就会与样品中的目标细菌进行免疫反应,在强磁场作用下,这些被免疫磁珠抓住的细菌就会被吸附到磁极,从而实现了细菌从复杂的背景物中分离。但是抓住细菌的磁珠不会受激发射荧光。我们知道量子点是可以受激发光的,如果用被第二抗体修饰的量子点作细菌的标记物,就可以通过测量量子点发出的荧光强度来间接测量细菌的浓度。利用抗体的特异性,即不同的抗体专门去抓不同的细菌。再利用量子点发光的波长取决于量子点的大小的特点。就可以通过对于荧光光谱相应的波峰强度测量,同时测量不同细菌的浓度。  生命科学和医疗诊断  -核酸,蛋白质分析  对核酸和蛋白质进行定量分析是现代生命科学实验中最基本的工具。  紫外吸光度方法是测量核酸浓度最常用的方法之一。核酸包括:DNA(脱氧核糖核酸)和RNA(核糖核酸)。它的基本组成是核苷酸。核苷酸又是以含氮的碱基,戊糖和磷酸组成。五种碱基包括嘌呤和嘧啶。碱基上苯环的共轭双键在紫外波段有强吸收,最强的吸收峰在260nm。核酸浓度与波长260nm的吸光度成线性关系,这就是用紫外吸光度方法测量核酸浓度的基本原理。核酸样品中如果含有蛋白质,蛋白质的紫外吸收峰在波长280nm,但是蛋白质在280nm的吸光度只有核酸在260nm的吸光度的1/10,利用样品在这两个波长的吸光度比值,可以得到核酸的纯度。  核酸,蛋白质这类生物样品的量常常很小,甚至在mL量级,微量样品的采样在技术上是一个难点。美国热电公司的NanoDrop2000型紫外/可见分光光度计巧妙地利用表面张力的原理,将待测样品液滴置于连接光源的光纤端头和连接微型光谱仪的光纤端头之间,形成待测样品液柱。利用这种采样技术,可以不用稀释样品就可以测量高浓度的DNA样品,对于双链DNA样品,可测的浓度可高达15000ng/ml。  该仪器还可以利用蛋白质在280nm的吸收来测量蛋白质的浓度。这是由于蛋白质分子结构中含有芳香族氨基酸,而芳香族氨基酸(主要是酪氨酸和色氨酸)的紫外吸收的峰值位于280nm。  蛋白质实际测量中遇到的问题是待测样品中常常含有其它化学试剂的残余,而这些杂质对紫外吸光度测量有干扰,影响测量的准确性。因此就在对蛋白质的各种性质研究的基础上,发展了各种其它的测量方法,以摆脱杂质对测量的干扰。例如蛋白质和染料的结合,蛋白质和铜离子的络合反应?  同样这一台工作在紫外/可见波段的分光光度计NanoDrop,基于不同的原理,还可以在不同的波长用于蛋白质定量分析。譬如,Bradford法测蛋白质,这是基于让染料分子(考马斯亮蓝G250)与蛋白质结合成复合体,该复合体在595nm有最大吸收峰,这种方法的好处是待测蛋白质样品中可能含有的K+,Na+,Mg2+,(NH4)2SO4,乙醇等杂质不会干扰蛋白质测定。BCA法则是利用蛋白质的化学性质,即在碱性条件下蛋白质可以与Cu2+发生络合反应,并将Cu2+还原为Cu+,而BCA (bicinchoninic acid)则会与Cu+反应形成稳定的复合物,它的吸收峰在562nm。这就是BCA法测量蛋白质的原理。  -紫外荧光光谱是研究蛋白质组分,构象的强大工具。  实验发现大部分蛋白质中有三种氨基酸残基具有内源性荧光的特性,它们分别是:色氨酸tryptophan (Trp), 酪氨酸tyrosine (Tyr) and 苯丙氨酸phenylalanine (Phe)。但是,实验中常用的是Trp和Tyr的内源性荧光,主要是因为这两种氨基酸的残基的荧光的量子效率比较高,所发出的荧光信号较强。Phe受激荧光的量子效率较低,激发波长在257nm。如果采用波长为280nm的激发光,由于Trp和Tyr的激发波长比较接近(分别为280nm,274nm),因此Trp和Tyr会同时有荧光信号。如果想选择性地只激发Trp,则可以采用295nm激发光源。  实验进一步发现,氨基酸残基的內源荧光的强度,峰位对于氨基酸的组分和构象状态十分敏感。这是因为在蛋白质分子处于自然折叠状态时,Trp和Tyr被包裹在蛋白质的中心位置。而当采用升高温度,采用尿素,盐酸胍,或者调解pH值等方法,使得蛋白质展开(图6A)。原先在折叠状态下埋在里面的疏水核心就暴露在溶剂中。Trp和Tyr就暴露在周围的环境中,它的荧光发光特性发生变化(图5B)  图5 用Trp的荧光来监测蛋白质的构象状态。图6A中Trp是用红点和红色字母w表示,在蛋白质处于自然折叠的状态下Trp被埋藏在疏水的环境中,展开后则暴露在溶剂的环境中。图5B,在自然折叠状态下Trp处于疏水状态下,荧光强 反之,在展开状态下,Trp暴露在溶剂中,荧光强度下降。  实验还发现Trp残基的荧光峰值的波长与周围的溶剂有关,发生Stoke位移。  研究蛋白质的分子折叠和展开有什么应用价值?有些疾病与人体内蛋白质分子的构象状态有关. 譬如, 有些退行性神经病变,就与蛋白质分子的展开有关,因此蛋白质的荧光光谱有时可用于退行性神经病变的诊断。  -医学诊断  一般而论, 采用光纤光谱仪作为医学诊断的手段有两个优点. 一个优点是非侵入性, 第二个优点是体积小, 仪器方便携带, 因此, 可以部署在病床边上, 县以下的基层诊所, 战地,出诊.  以下举一些例子.  基于吸光度和荧光技术的血样,尿样在生化分析仪器在医院的分析实验室几乎处处可见,现在可以做得更小,更便宜.  对于皮肤癌,乳腺癌可以对人体组织活体(in vivo)用拉曼光谱或反射光谱技术进行诊断.  黄疸病对于新生儿是常见的,而且无害,但是,对于早产婴儿则有造成大脑损伤的危险。因此,需要密切监测血液中胆红素的浓度。现行的方法是针刺婴儿的脚跟取血样,然后送实验室进行生化分析,大约需要一个小时,每日三次。如果对新生儿脚底皮肤用光学方法,通过反射谱测量,立即可以分析得到血液中胆红素的浓度,可以比现行的方法更快地诊断黄疸病,并使婴儿免受脚跟针刺之苦,这就是非侵入性带来的好处。  脉搏血氧仪是用红光和近红外透射测量技术连续监测血氧饱和度。慢性阻塞性肺病,哮喘等呼吸性疾病,病人的血氧饱和度是表征病的严重程度的非常重要的指标。  在线检测:  -为了得到辛烷值(RON)合乎标准的92号,95号汽油,石油炼化厂需要将重整催化工艺所得到的高辛烷值油与低辛烷值的催化裂化汽油按适当比例进行调和,以最终获得辛烷值符合国家标准,而且产率足够高的汽油。生产工艺需要在线测量汽油的辛烷值,并根据测量值去控制重整反应器的温度。  浙江大学戴连奎教授采用在线拉曼光谱系统测量重整汽油的辛烷值。其辛烷值主要取决于待测油品中直链烷烃、侧链烷烃、环烷烃与芳烃含量。拉曼光谱可以很好地显示直链烷烃、侧链烷烃、环烷烃与芳烃等物质的特征峰,因此可以很好的计算各种芳烃和其它烷烃等物质的含量。由于不同的烃类物质对辛烷值的影响不同,需要综合考虑每类物质对辛烷值的影响。通过含量高低建立相应的预测模型可以很好地测量汽油样品的辛烷值。相比于红外光谱,拉曼光谱特征峰明显,建立模型所需的样品数量也大为减少。相比色谱,拉曼光谱测量速度较快,使用和维护成本较低。图6 重整汽油的拉曼光谱(经过数据的预处理)  在此应用案例中,待测的汽油辛烷值并不是由单一物质的分子的光谱所决定的,而是由多种烃类的分子的综合作用所决定。因此,有了光谱之后,如何得到辛烷值,建模就是关键。
  • 《化妆品新原料安全性评价指南》征求意见
    关于征求《化妆品新原料安全性评价指南》(征求意见稿)意见的函   食药监许函[2010]474号   2010年11月29日 发布   有关单位:   为加强化妆品新原料管理,做好化妆品新原料安全性评价工作,我司组织起草了《化妆品新原料安全性评价指南》(征求意见稿)。现公开征求意见,请将修改意见于2010年12月10日前反馈国家局食品许可司。   联 系 人:陈张好,陈少洲   联系电话:010-88330422,88330405   传  真:010-88373268   电子邮件:chenzh@sfda.gov.cn   附件: 1.化妆品新原料安全性评价指南(征求意见稿)   2.反馈意见表   国家食品药品监督管理局食品许可司   二〇一〇年十一月二十九日 附录:化妆品新原料安全性评价指南(征求意见稿)   化妆品新原料安全性评价指南(征求意见稿)   本指南适用于指导化妆品新原料的安全性评价。   一、化妆品新原料的定义   化妆品新原料是指在国内首次使用于化妆品生产的天然或人工原料。   二、化妆品新原料安全性要求   化妆品新原料在化妆品中的使用量,在正常以及合理的、可预见的使用条件下,不得对人体健康产生危害。   化妆品新原料毒理学评价资料应当包括毒理学安全性评价综述、必要的毒理学试验资料和可能存在安全性风险物质的有关安全性评估资料。   化妆品新原料,一般需进行下列毒理学试验:   (一) 急性经口和急性经皮毒性试验   (二) 皮肤和急性眼刺激性/腐蚀性试验   (三) 皮肤变态反应试验   (四) 皮肤光毒性和光敏感性试验(原料具有紫外线吸收特性需做该项试验)   (五) 致突变试验(至少应包括一项基因突变试验和一项染色体畸变试验)   (六) 亚慢性经口和经皮毒性试验   (七) 致畸试验   (八) 慢性毒性/致癌性结合试验   (九) 毒物代谢及动力学试验   (十) 根据原料的特性和用途,还可考虑其他必要的试验。   如果该新原料与已用于化妆品的原料化学结构及特性相似,则可考虑减少某些试验。   本指南规定毒理学试验资料为原则性要求,可以根据该原料理化特性、毒理学试验数据、临床研究、人群流行病学调查、定量构效关系、类似化学物的毒性等资料情况,增加或减免试验项目。   根据产品的暴露途径,提供相应的急性或重复毒性毒理学资料。若以100%皮肤吸收来计算全身暴露量(SED), 可采用亚慢性经口毒性试验中的NOAEL来进行风险评估,可不再进行亚慢性经皮毒性试验。对于亚慢性经口和经皮毒性试验,如试验周期低于90天的,应适当增加安全系数。   三、申请化妆品新原料行政许可资料的具体要求   申请化妆品新原料行政许可应按《化妆品行政许可申报受理规定》提交资料。具体要求如下:   (一)研制报告   1. 原料研发的背景、过程及相关的技术资料。天然原料还应包括该原料化学成分、功能、毒理等研究的文献资料或试验资料。   2. 原料的来源、分子量、分子式、化学结构式、理化性质。   (1)原料来源:应说明原料名称,包括化学名、INCI名称(国际化妆品原料名称)(如有)及中文译名、CAS名和CAS号(如有)、商品名,应明确原料为天然或人工的,原料应为单一物质(由于技术等原因必须复配的除外) 天然原料应为单一来源,应提供拉丁学名和使用部位等 聚合物还应提供平均分子量以及分子量分布。   (2)理化性质:如感官性状、溶解度、稳定性、熔点、沸点、比重、蒸汽压、pH、pKa、折光率、旋光度等。   3. 原料在化妆品中的使用目的、范围,基于安全的使用限量及依据。   (二)生产工艺简述及简图   应说明化妆品新原料生产过程中涉及的主要工艺参数,如使用原料、反应条件(温度、压力等)、催化剂、稳定剂、中间产物及副产物、精制过程等 若为天然提取物的,应说明其加工、提取方法,包括加工、提取条件,使用溶剂、可能残留的杂质或溶剂等。   (三)原料质量安全控制要求,包括规格、检测方法、可能存在安全性风险物质及其控制措施等   1. 规格:包括纯度、杂质及其含量及其他理化参数,保质期及贮存条件等 若为天然提取物的,应明确其质量控制指标 若为聚合物,应说明单体及其含量   2. 检测方法:原料的定性和定量检测方法、杂质的检测方法等   3. 可能存在安全性风险物质及其控制措施。   (四)毒理学安全性评价资料,包括原料中可能存在安全性风险物质的有关安全性评估资料   毒理学试验资料可以是申请人的试验资料或科学文献资料,其中包括国内外官方网站、国际组织网站发布的内容。   1. 申请化妆品新原料,一般应按化妆品新原料安全性要求提交毒理学试验资料。   2. 具有下列情形之一者,可按以下规定提交毒理学试验资料:   (1) 凡不需列入《化妆品卫生规范》中的防腐剂、防晒剂、着色剂和染发剂以及从安全角度考虑不需要列入限用物质中的化妆品新原料,应提交以下资料:   ① 急性经口和急性经皮毒性试验   ② 皮肤和急性眼刺激性/腐蚀性试验   ③ 皮肤变态反应试验   ④ 皮肤光毒性和光敏感试验(原料具有紫外线吸收特性时需做该两项试验)   ⑤ 致突变试验(至少应包括一项基因突变试验和一项染色体畸变试验)   ⑥ 亚慢性经口和经皮毒性试验   ⑦ 致畸试验(采用交叉参照获知化妆品新原料毒性的除外)。   根据原料的特性和用途,必要时,可要求补充相关试验资料。   (2) 当植物某些部位提取物已经被允许用作化妆品原料,其他部位申请化妆品新原料时,应提交以下资料:   ① 急性经口和急性经皮毒性试验   ② 皮肤和急性眼刺激性/腐蚀性试验   ③ 皮肤变态反应试验   ④ 皮肤光毒性和光敏感试验(原料具有紫外线吸收特性时需做该两项试验)   ⑤ 致突变试验(至少应包括一项基因突变试验和一项染色体畸变试验)。   当全植物已经被允许用作化妆品原料时,则该植物各部位不需再按新原料申请。   根据原料的特性和用途,必要时,可要求补充相关试验资料。   (3) 凡有安全食用历史的,如食品原料、国务院有关行政部门公布的药食两用物品等,或已有国外权威机构评价结论认为在化妆品或食品中使用是安全的,或在国外或地区批准的化妆品中允许使用的化妆品新原料。应提交以下资料:   ① 皮肤和急性眼刺激性/腐蚀性试验   ② 皮肤变态反应试验   ③ 皮肤光毒性和光敏感试验(原料具有紫外线吸收特性需做该项试验)。   根据原料的特性和用途,必要时,可要求补充相关试验资料。   (4)含有至少3个单体单元的序列分子,其至少与1个额外单体单元或其它反应物通过共价键连接,平均分子量大于1000道尔顿的聚合物的化妆品新原料,应提交以下资料:   ① 皮肤和急性眼刺激性/腐蚀性试验   ② 皮肤光毒性试验(原料具有紫外线吸收特性需做该项试验)。   根据原料的特性和用途,必要时,可要求补充相关试验资料。   (5) 无任何致癌、致突变的结构预警且全身暴露量(SED) 低于1.5ug/kg/day的化妆品新原料,应提交以下资料:   ① 急性皮肤和眼刺激性/腐蚀性试验   ② 皮肤变态反应试验   ③ 皮肤光毒性试验(原料具有紫外线吸收特性需做该项试验)。   根据原料的特性和用途,必要时,可要求补充相关试验资料。   (6)化学惰性(如无活性反应基团化合物,无机物, 烷烃类等)或易挥发(沸点低于100℃,或沸点在50至260℃之间且室温下饱和蒸气压超过133.322Pa)的化妆品新原料,应提交以下资料:   ① 皮肤和急性眼刺激性/腐蚀性试验   ② 皮肤光毒性和光敏感性试验(原料具有紫外线吸收特性需做该项试验)。   根据原料的特性和用途,必要时,可要求补充相关试验资料。   四、化妆品新原料的审评原则   (一)对于申请人提交的化妆品新原料安全性评价资料的完整性、合理性和科学性进行审评:   1. 安全性评价资料内容是否完整并符合上述有关资料要求   2. 化妆品新原料的来源是否清楚,新原料的理化特性、生物学特性是否明确,是否提供新原料在化妆品中的使用目的、依据、范围、使用限量、检测方法以及必要的毒理学评价资料等   3.依据是否科学,资料是否充分,关键数据是否合理,分析是否科学、符合逻辑,结论是否正确。   (二)经审评认为化妆品新原料安全性评价资料存在问题的,审评专家应根据化妆品监管相关规定和科学依据,提出具体意见。申请人应当在规定的时限内提供相应的安全性评价资料。   (三)随着科学研究的发展,国家食品药品监督管理局可对已经批准的化妆品新原料进行再审评,对其他新类型的化妆品原料安全评价要求另行规定。
  • 岛津提供气相色谱化工解决方案
    自1952年世界上第一次创建实用气液色谱法以来,在短短几十年间,气相色谱仪已成为现代分析检测仪器的代表,形成了具有相当丰富的检测技术知识的学料。岛津公司自1957年推出最早批量生产的GC-1A型气相色谱仪以来,始终引导气相色谱技术的潮流,为各行各业持续提供着基于气相色谱技术的解决方案。在此,为您介绍岛津提供气相色谱化工解决方案。 天然气分析解决方案 天然气是以甲烷为主要成分的天然气体,另外还含有氮气、二氧化碳、C5以下饱和烷烃及少量或微量硫化氢、氢气,有时可能含有少量氦气。 根据天然气蕴藏状态,分为构造性天然气、水合天然气、煤矿天然气等三种。而构造性天然气又可分为伴随原油出产的湿性天然气和不含液体成份的干性天然气。 1.天然气分析系统-1:三阀四柱天然气分析系 2.天然气分析系统-2:两阀四柱天然气分析系统 炼厂气分析解决方案 石油炼制、催化过程中会产生大量的气态烃,主要成分为C4以下的烷烃、烯烃以及氢气和少量氮气、二氧化碳等气体,统称炼厂气。而炼厂气中的烷烃、烯烃经气体分馏装置后,成为具有很高经济价值的聚乙烯、聚丙烯等化工品的原料或LPG等清洁能源。所以,炼厂气分析是石化项目中很重要的色谱分析。 1.炼厂气分析系统-1:四阀五柱炼厂气分析系统 2.炼厂气分析系统-2:快速炼厂气分析系统 3.炼厂气分析系统-3:全毛细柱快速炼厂气分析系统 煤气分析解决方案 煤气一般是指以煤为原料加工制得的含有可燃组分的气体。根据加工方法,煤气性质可分为:水煤气、半水煤气、空气煤气(或称发生炉煤气)、焦炉煤气、高炉煤气等。这些煤气具有不同的发热值,用处也不同。煤气中的一氧化碳和氢气是重要的化工原料,可用于合成氨、甲醇等。用作化工原料的煤气称为合成气,煤气也可用天然气、轻质油和重质油制得。 1.煤气分析系统-1:单TCD煤气分析系统 2.煤气分析系统-2:双TCD煤气分析系统 汽油分析解决方案 生产无铅汽油是为了改善汽车排放物中含铅物对环境的污染。在汽油中加入醚类、醇类和其它含氧化合物可以提高辛烷值、降低挥发性。但是加入含氧化合物的类型和浓度都有严格规定,并应加以调整,以便达到商品汽油的质量要求。ASTM D 4815(SH/T 0663-2009)标准方法用于汽油生产质量控制,也可用于测定汽油中有意或额外加入的含氧化合物或污染物的含量。 为了减少机动车有毒物的排放及其对大气臭氧层的破坏,对汽油中苯及总芳烃的浓度都有限制和规定。在汽油的生产中应调整苯及总芳烃的含量,以便达到商品汽油的质量要求。ASTM D 5580(SH/T 0693-2009)用于测定成品汽油中的苯、甲苯、乙苯、二甲苯、C9以上芳烃及总芳烃的含量。 也可采用ASTM D 3606(SH/T 0713-2009)用于测定成品汽油中的苯、甲苯含量。 1.汽油分析系统-1:汽油中含氧化合物,苯、甲苯及总芳烃分析系统 2.汽油分析系统-2:汽油中含氧化合物分析系统 3.汽油分析系统-3:汽油中苯、甲苯及总芳烃分析系统 4.汽油分析系统-4:汽油中苯、甲苯分析系统A 5.汽油分析系统-5:汽油中苯、甲苯分析系统 B 6.汽油分析系统-6:PONA分析系统 微量硫化物分析解决方案 原油和天然气中存在硫化物,随着开采地点不同,硫化物含量也不尽相同。 硫化物的存在对于石化炼制及产品加工过程造成一定影响,也会给生产和工艺带来诸多问题。基于以上原因,众多工艺明令限制硫化物在烃类产品中的浓度。 1.微量硫化物分析系统-1:有机气体中微量硫化物分析系统 2.微量硫化物分析系统-2:丙烯中微量COS分析系统 3.微量硫化物分析系统-3:PFPD硫化物分析系统 4.微量硫化物分析系统-4:SCD硫化物分析系统 微量CO、CO2分析解决方案 微量CO、CO2分析在生产控制中应用广泛,为了得到精确的分析结果,对于不同基体中的微量CO、CO2要采用不同的分析方案。近年来在乙烯、丙烯生产工艺中,工艺对CO、CO2的控制指标要求也越来越高,经常会涉及ppb级检测。 1.微量CO、CO2分析系统-1:液氧、净化空气中微量CO、CO2、CH4分析系统 2.微量CO、CO2分析系统-2:乙烯、丙烯等有机气体中微量CO、CO2分析系统 3.微量CO、CO2分析系统-3:天然气、高甲烷气体中微量CO、CO2分析系统 其他分析解决方案 1.变压器油中溶解气体分析系统 2.温室气体分析系统 3.室内空气中甲烷及非甲烷烃分析系统 4.空气中甲烷及非甲烷烃、氧气含量分析系统 5.液氧中乙炔和总烃分析系统 6.循环气中氢气分析系统 7.置换气中氧气、氮气分析系统 8.PDD微量气体分析系统 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 美国研发出“海水变燃油”的新技术
    据媒体报道,美国科研人员对一种新型动力进行了测试,基本目标是利用海水来制造燃油。利用海水的原理较为简单,第一步是氧化还原反应,这样就可以获得两个有用的气体,即氢气和二氧化碳 第二步是利用氢气和二氧化碳通过铁基催化剂形成液态烃,这个时间可能比较长,催化作用反应可以形成长链的烃类物质。   通过这个步骤产生的烷烃显然是一种清洁能源,我们最终获得的产品是一种液态烃,碳链中有9至16个碳原子,这意味着这个方案经过改进可以替代世界上大多数的喷气发动机燃料,因此美国海军研究实验室为我们展示了未来能源的新模式,这项研究至少证明了我们可以利用海水来获得与烃类物质燃料有关的反应物。这项研究中的一个关键在于催化剂,通过类似FT合成的技术来产生碳链较短的不饱和烃,二氧化碳与氢气进入反应后大约可以产生30%的甲烷物质,其他的就是碳链较短的链烃,可被用于替代传统的石油燃料。   美国海军研究实验室已经将这个反应产生的&ldquo 燃料&rdquo 用于一架飞行器上测试,值得一提的是现在的发动机不需要改进就能使用这样的燃料,对于飞行器也是一样,可以容易在石油燃料和新型燃料之间建立通用通道,这也意味着海水将变成一种丰富的战略资源。
  • RESTEK推出全新Pinnacle液相色谱柱
    pinnacle db c18高纯碱去活硅球由restek生产 单层c18键和相。疏水c18键合相适合宽范围化合物,从酸性至偏碱性。粒径(μm):1.9、3、5,球型孔径(?):140碳载量(%):11封尾:是ph范围:2.5 - 8温度上限(°c):80可以替换hypersil bds c18 和 pinnacle ods amine 货号粒径长度内径包装94142521.9 μm50 mm2.1 mmea.94142121.9 μm100 mm2.1 mmea.94143153 μm100 mm4.6 mmea.94145655 μm150 mm4.6 mmea.94145255 μm200 mm4.6 mmea.94145755 μm250 mm4.6 mmea. pinnacle db c8 高纯碱去活硅球由restek生产。单层c8键合相。与pinnacle db c18相似,但是烷烃链更短,对疏水性化合物保留更弱一些。保留弱,在分离度能接受的情况下,可以相应的缩短分析时间。粒径(μm):1.9、3、5,球型孔径(?):140碳载量(%):6封尾:是ph范围:2.5 - 8温度上限(°c):80货号粒径长度内径包装94132521.9 μm50 mm2.1 mmea.94132121.9 μm100 mm2.1 mmea.94133153 μm100 mm4.6 mmea.94135655 μm150 mm4.6 mmea.94135255 μm200 mm4.6 mmea.94135755 μm250 mm4.6 mmea. pinnacle db 氰基 高纯碱去活硅球由restek生产。氰基键合相,适用于宽范围的化合物从酸性化合物至弱碱性化合物。也可以作为c18色谱和c8色谱柱的确认柱。可以用在正相和反相环境下。粒径(μm):1.9、3、5,球型孔径(?):140 碳载量(%):4封尾:是ph范围:2.5 - 8 温度上限(°c):80氰基键合相,适用于宽范围的化合物分析。可以作为c18色谱和c8色谱柱的确认柱可以用在正相和反相环境下可以替换hypersil bds cyano 和pinnacle cyano货号粒径长度内径包装94162521.9 μm50 mm2.1 mmea.94162121.9 μm100 mm2.1 mmea.94165655 μm150 mm4.6 mmea.94165255 μm200 mm4.6 mmea.94165755 μm250 mm4.6 mmea. pinnacle db biphenyl 高纯碱去活硅球由restek生产。pinnacle db苯基柱提供和长链烷烃柱不同的选择性,尤其是对芳香烃化合物。可以替换hypersil bds phenyl 和 pinnacle phenyl amin。粒径(μm):5,球形孔径(?):140碳载量(%):8封尾:是ph范围:2.5 - 8温度上限(°c):80 货号粒径长度内径包装94092521.9 μm50 mm2.1 mmea.94092121.9 μm100 mm2.1 mmea.94093153 μm100 mm4.6 mmea.94095655 μm150 mm4.6 mmea.94095255 μm200 mm4.6 mmea.94095755 μm250 mm4.6 mmea. pinnacle db pfp propyl 五氟苯基团键和与高纯碱去活球型硅胶基体上。对宽范围的化合物有很好的峰形,包括核苷、核苷酸类和卤代化合物。粒径(μm):1.9、3、5,球型孔径(?):140碳载量(%):6封尾:是ph范围:2.5 - 8温度上限(°c):80对宽范围的化合物有很好的峰形,包括核苷、核苷酸类和卤代化合物货号粒径长度内径包装94192521.9 μm50 mm2.1 mmea.94192121.9 μm100 mm2.1 mmea.94193153 μm100 mm4.6 mmea.94193653 μm150 mm4.6 mmea.94195655 μm150 mm4.6 mmea.94195255 μm200 mm4.6 mmea.94195755 μm250 mm4.6 mmea. pinnacle db aqueous c18严格的碱去活填料,在疏水长链上键和极性基团。高度碱去活、独特的选择性可以减少流动相添加剂的使用。粒径(μm):1.9、3、5,球型孔径(?):140 碳载量(%):6封尾:否ph范围:2.5 - 8温度上限(°c):80货号粒径长度内径包装94182521.9 μm50 mm2.1 mmea.94182121.9 μm100 mm2.1 mmea.94183153 μm100 mm4.6 mmea.94183653 μm150 mm4.6 mmea.94185655 μm150 mm4.6 mmea.94185255 μm200 mm4.6 mmea.94185755 μm250 mm4.6 mmea. pinnacle ii pah专为多环芳烃分析设计。pinnacle ii pah键合相对epa 610列表的16种pahs化合物有很好的空间选择性。每一批pinnacle ii pah填料,都按照epa610方法,使用简单的水/乙腈流动相严格测试。此款填料基于restek自己生产的硅球键和的,所以能够完全的控制质量和重现性。可以替换pinnacle pah色谱柱。pinnacle ii pah是分析pah的可靠、节约的选择。粒径(μm):4,球型孔径(?):110封尾:是ph范围:2.5 - 8温度上限(°c):80专为多环芳烃分析设计 货号粒径长度内径包装92194654 μm150 mm4.6 mmea.92194254 μm200 mm4.6 mmea.92194754 μm250 mm4.6 mmea.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制