当前位置: 仪器信息网 > 行业主题 > >

面包酵母

仪器信息网面包酵母专题为您提供2024年最新面包酵母价格报价、厂家品牌的相关信息, 包括面包酵母参数、型号等,不管是国产,还是进口品牌的面包酵母您都可以在这里找到。 除此之外,仪器信息网还免费为您整合面包酵母相关的耗材配件、试剂标物,还有面包酵母相关的最新资讯、资料,以及面包酵母相关的解决方案。

面包酵母相关的论坛

  • 面包酵母问题

    面包制作中添加了酵母,出厂检验还是以7099的微生物标准执行或不执行,酵母属不属于7099中的未熟制的发酵配料,要是按7099执行,出厂检验菌落总数不合格,大概率就是酵母在熟制过程中未杀死了是不是

  • 面包里的酵母

    最近遇到一个问题,我们面包产品(冷加工)做霉菌检测时平板上会培养出很多酵母菌,正常吗,看到贴的朋友,可以交流一下

  • 【分享】加拿大完成一项强化酵母发酵面包产品提案的安全评估

    加拿大近日发出通报,加拿大卫生部收到一份申请,要求准许按(2.25g)/100g的90I.U.标准,选择添加维生素D2制作酵母发酵烘焙产品。加拿大卫生部完成了一项强化酵母发酵面包和非标准化酵母发酵烘焙产品提案的安全评估,如:比萨、面包混合材料、甜甜圈、牛角面包及百吉饼。现有数据评估证明,上述食品按产品(2.25g)/100g的90I.U.标准添加维生素D是安全的。评估还确定维生素D不限于一种酵母源。因此,加拿大卫生部建议修改法规,准许面包、强化(维生素)面包、葡萄干面包、全麦面包、黑面包及非标准化酵母发酵烘焙产品,按烘焙产品(2.25g)/100g的90I.U.标准有选择的添加维生素D。作为提高监管系统应答能力的一种手段,在履行法规协调程序的同时,特发布临时营销许可(IMA),批准烘焙产品直接添加维生素D。

  • 美国FDA修订食品添加剂法规允许直接添加维生素D2酵母

    美国食品药物管理局(FDA)近日修订了美国食品添加剂法规,允许安全使用维生素D2面包酵母(vitamin D2 bakersyeast),并将其作为维生素D2的来源和膨松剂,但必须满足以下条件:(1)维生素D2面包酵母是由面包酵母(酿酒酵母Saccharomycescerevisiae)暴露于紫外线下产生的物质,是面包酵母中内源性麦角脂醇(ergosterol)经过光化学反应转化成维生素D2(也被称为麦角钙化甾醇(ergocalciferol)或(9,10-seco(5Z,7E,22E)-5,7,10(19),22-ergostatetraen-3-ol));(2)维生素D2面包酵母可单独作为一种活性干酵母浓缩物,或与传统的面包酵母进行组合;(3)这种添加剂可用于酵母发酵的烘焙食品和烘焙混合以及酵母发酵的烘焙小吃食品,但在每100克成品食品中维生素D2的含量不得超过400国际单位(InternationalUnits);(4)为了确保添加剂的安全使用,除了《联邦食品药品和化妆品法规》所要求的其他信息外,食品添加剂容器标签必须要有适当的使用说明,以确保所生产的最终产品符合上述第(3)点描述的限制要求;(5)含有该添加剂的加工食品标签必须按照成品食品中含量递减的合适顺序,在成分声明中标注添加剂名称:“维生素D2面包酵母”。 为了合理确立在预期使用条件下某种食品添加剂的无危害性,FDA考虑了该添加剂的人类饮食预期的摄入量、添加剂的毒理学数据和其他提供给该局的相关信息。FDA还将个人来自所有食品源的添加剂的预计每日摄入量(estimated dailyintake,EDI)与根据毒性数据建立的可接受摄入量水平进行了对比。EDI由基于拟议用于特定食品中的添加剂数量预测和来自所有食品源的添加剂数量决定。该机构通常将百分之九十消费者使用的食品添加剂的EDI来衡量高慢性饮食的摄入量。

  • 关于酵母抽提物

    [b][color=#646464][color=#1a1a1a]酵母抽提物,英文Yeast Extract,简称YE。[/color][/color][/b][color=#1a1a1a]酵母抽提物可以说是食物风味诱惑的原动力,让吃货们欲罢不能的味道,很多时候其实是YE在起作用。[/color][color=#1a1a1a][color=#1a1a1a]对于食品工业生产和餐饮门店,是非常熟悉的。家庭厨房中一般不会见到,其实他是隐藏的。[color=#1a1a1a]回家看看家里酱油瓶子的配料表上,不管是老抽、生抽、味极鲜,都能看到他的名字。[/color][/color][/color][color=#1a1a1a]它的神奇之处,在于包含了人体可直接吸收利用的可溶性营养及风味物质的浓缩物,[color=#1a1a1a]如20种氨基酸和多肽、核苷酸、维生素、有机酸和矿物质等等。[color=#1a1a1a]复杂成分带来多种丰富而饱满的味道。[/color][/color][/color][color=#1a1a1a]家用时,假如手抖放多了,除了味道太重,也没别的危害。[color=#1a1a1a]而且素食者也可以用,是难得的同时营养、调味和保健三大功能的食品调味料。[/color][/color][color=#1a1a1a]酵母抽提物的原料是啤酒酵母、葡萄酒酵母和面包酵母为原料。[color=#1a1a1a]主流产品是啤酒酵母,很大一部分产量是啤酒酿造的副产品。[color=#1a1a1a]这个以前是当做废弃物的,后来发现这个宝贝的味道太浓郁,再稍作加工大有可为。[/color][/color][/color]

  • 【资料】酵母菌:发酵之旅

    我们平常所吃的馒头、面包,都是面经过发酵而制成的,它们蓬松有弹性,口感很好,还带有特殊的香味。而用来发酵的无论是从前的酵头,还是现在的发酵粉,其实都是添加剂酵母菌。现在酵母菌的作用已经不仅仅只停留在发酵作用上了,由于其独特的品性,酵母菌的用途也越来越广,成为一种多功能的食品添加剂。 酵母菌功用之一发酵 发酵是酵母菌最主要的功用。人类很早就开始将酵母菌应用于食品生产中,例如酒精饮料、酱油、食醋、馒头和面包的发酵等等。在面包和馒头的生产中,酵母发酵产生大量二氧化碳.使面团膨胀,形成松软的组织。 在食品工业上常见的酵母菌有啤酒酵母,用于生产啤酒、白酒和酒精,以及制做面包;葡萄酒酵母,也称酿酒酵母,用于酿造葡萄酒和果酒,也用于啤酒和白酒的酿造。其中啤酒酵母是食品工业上应用最为广泛的微生物之一,啤酒酵母菌体内维生素、蛋白质含量很高,其药用价值也很高,还可以用于做饲料,提取核酸、麦角醇、谷胱甘肽、凝血质和三磷酸腺苷等。

  • 酵母馒头 老面馒头 自发粉馒头选哪个好?

    最近身边有朋友在学做馒头,关注了些有关馒头的问题。网上有人说,其实老面发的馒头不如酵母发的好,因为老面里面是一些乱七八糟的杂菌,可能对肠胃不好,而酵母就是酵母菌。第二个问题是,用老面做馒头,肯定要放碱,会不会不如不放碱的酵母馒头好呢?还有很多朋友问:自发粉到底是什么东西?它做的馒头和传统的馒头一样吗?和酵母发酵做成的馒头有什么区别?吃馒头和面包哪个更有营养?有这样类似疑问的朋友实在不少,咱们还是从头一个问题一个问题地弄清楚。

  • 市售面包中有多少安全陷阱?

    专家说传统面包中只用高筋面粉、鸡蛋、糖、黄油、酵母,所以是健康食品。商家为了追求口味与利润就添加了许多东东,于是留下了很多安全陷阱。究竟有多少安全隐患呢?

  • 【资料】面包时代会来临吗?

    中国人的面包时代会来临吗:随着大米能直接变成面包,这将成为一种可能。  “用家里的大米做面包”―这看上去是条疯狂的广告语?不,更加疯狂的消费欲望让三洋电机的面包机GOPAN在日本上市不到三周便决定暂停买家的预订。  有人会质疑:这不就是一款面包机吗?三洋给出的惊喜不仅仅是可以借助机器做出可口的面包。这款全球发售的面包机的独特性在于可以直接用大米等原料烤制成面包,或者小麦包,又或者是营养丰富的糙米和全麦面包,甚至可以利用GOPAN做出生面团和富含天然酵母的面包,一共是22种口味。  GOPAN来源于日语中的两个词:“御饭(GOHAN)”和“面包(PAN)”,意为可以像蒸米饭那样轻松简单地烤面包。只需把洗净的大米、水、一定比例的盐和糖放入面包机箱,再往机身顶部的配料盒中放入酵母,按下开始键,大约4小时后,香喷喷的大米面包就出炉了―显然,这比把大米做成寿司更富有想象力。  事实上,用大米发酵做面包并非什么新鲜事,但能用机器完成大米的浸泡、发酵、调制乃至烘烤这全过程却绝非易事。从最开始研发大米面包机到GOPAN真正问世,三洋电机的研发团队耗费了整整七年时间。  这还要从日本人的生活习惯说起。日本的代表农作物是水稻,大米一直是人们的主食,但除了把大米做成寿司,可供选择的品种似乎并不多。虽然也有“蒸馒”、“烧馒”这类面食小点心,但它们不足以作为每天给人们提供能量的主食。“如何把大米和人们的生活习惯联系起来”,三洋电机看到了把大米做成面包的商机。  2003年5月,三洋电机以商业化开发大米面包为目标做出了研发大米面包机的提案。5个月后,第一款米粉面包机上市。虽然反响不错,但由于这款面包机生产的大米面包是用含小麦粉的混合粉做成的,因此小麦过敏体质的人会对其产生不良反应。为了进一步扩大消费受众,三洋电机开始着手研发如何用大米做面包。  虽然机器研发的过程很顺利,但不含任何小麦粉的混合粉却很难在普通超市买到。三洋机电研发部的人开始想象用一般家庭都能在超市里买到的大米作原材料。这样的想法产生后,GOPAN的最大卖点开始形成。  用大米做面包听上去似乎并不比用米粉做面包复杂,但这一目标却给研发小组带来了前所未有的挑战。从粉状米到固态米,如何成功地完成这一转换,研发团队完全处于摸索状态。最初他们在琢磨如何对大米进行干式粉碎上兜圈子,甚至还试图与石臼会社合作,但失败多次后仍然无法将其打成像面粉一样约0.075毫米大小的粉状颗粒。  2005年,研发小组无意间得到了“做饭大叔下泽先生”的启发,他是鸟取三洋电机公司担当电饭锅研发的职员,他建议说,要不试试在先加水的状态下磨碎大米?这一主意打破了碾碎大米的固定思维,结果却出乎意料的成功。  但研发并没有结束。为了使研磨机和家用面包机一体化,三洋面包机采用一台马达和马达轴实现研磨和揉面功能。这一设计中,马达采用的是可高速旋转的机型,逆时针旋转时以约每分钟6300转的转速驱动研磨叶片,顺时针旋转时以约每分钟400转的转速驱动和面叶片,由于揉面叶片经由夹具与轴相连,因此在逆时针旋转时不会旋转―这也保证了使用研磨功能时,机箱里的材料不会四处飞散。  不过,这种在加水状态下进行的“米浆法”又带来了新的问题。新技术中,由于大米遇水后常凝固成团,如果想只经过一次研磨就得到适合做面包的粗细粒度,几乎不太可能。但如果多次使用马达,将会让还来不及散热的零件粘上研磨好的大米,不但影响大米粗细粒度,还会让马达增加负担。  除了不断试验似乎也没有其他的好办法。从2003年三洋电机提出大米面包的提案,三洋的研发小组终于在2010年成功推出全球首款直接使用大米做面包的家庭面包机。三洋家电事业制造总部副部长滝口隆久表示,每个家庭为1斤面包而购买米粉需花费336日元,而使用家中现成的大米只需148日元。除大米外,小麦和其他粗粮也都可以当做烤面包的原料,而且可以根据个人的喜好任意添加调味品,制作各式各样的面包。  根据一份产业报告显示,“家庭面包房”的概念近年来走俏日本,类似GOPAN面包机的产品销量在2008年至2009年间猛增30.7% 。食品行业研究人员永山久夫则认为,现在日本人更倾向于西方饮食方式,随着生活节奏的加快,可用来煮饭的时间越来越少。  三洋电机代表董事社长佐野精一郎说,“日本国内家用面包机市场在2010年将达到65万台,2012年将超过100万。”他希望2010年度GOPAN的销量能达到6万台,2011年度开始向中国及其他亚洲国家出口,届时包括日本国内销量在内,总销量能够达到20万台左右。  为了推广这款面包机,三洋在大阪府丰中市家电卖场内设了GOPAN专柜,还开展了使用各地大米制成不同口味面包的活动,但这些推广手段都不及与政府合作来得直接有效。农林水产大臣政务官佐佐木隆博表示,“三洋提供了新型的大米消费方式,我们很期待能提高本国粮食自给率。”  但是,这款热销中的大米面包机却将成为即将消失的“三洋”品牌最后的超人气作品。  始于2008年的金融危机让同位于日本大阪的三洋和松下两家亏损企业“抱团取暖”,当时松下以约64亿美元的价格收购三洋电机70%的股权。今年7月,松下再度出手收购三洋的剩余股份。三洋在明年4月即将成为松下的附属会社,SANYO这个品牌也即将在2012年4月消失。三洋官方的说法显得很悲壮:“大米面包机集三洋技术之大成,一定会成为一段传说”。

  • 面包的质构测试方法汇总

    面包的质构测试方法汇总

    [align=left] 面包最早起源于古埃及,传说公元前2600年,有一个古埃及厨师将面团放在太阳下,后来忘记了,当发现时又舍不得扔掉珍贵的食材。就将发馊的面团烤熟了。面团变得又松又软。面团里的野生酵母菌或细菌,在适宜的温度下经过了神奇的生命历程为人们带来了美味的面包。一般认为,19世纪末面包才传入中国。相比与西方,中国人与面包错过了两千多年。但是近几年的面包行业新动向您不能错过!目前,国内面包糕点行业在营业收入和企业数量上迅速发展。截止到2016年12月,取得食品生产许可(QS)的企业有11895家,产值约1205.86亿元。面对激烈的竞争和可观的利润空间,企业如何针对性地回应消费者关注和喜好,显得尤为重要。面包的质构品质最直接的接触消费者的味蕾。研究消费者钟爱哪种软硬程度的面包与市场的拓展同样关键。[/align][img=,690,323]http://ng1.17img.cn/bbsfiles/images/2017/10/201710051445_01_3315622_3.jpg[/img]上海保圣科技提供面包专用测定仪,可进行多项面包、面团测试。例如:□ AACC 标准面包硬度测定□面包新鲜度测试□面包质地特性分析,包括:硬度、酥脆性、弹性、咀嚼度、坚实度、韧性、粘着性、胶着性、粘聚性、回复性等。□面包夹心酱汁和馅料的流动和延展特性测试□牙齿咀嚼面包的模拟测试。□面包剪切韧性测试□面包切断运动模拟□依照ISO16305要求,测定黄油和面包油脂的横截面的硬度,以优化配方。□面团硬度测试□面团发酵型测试□面团延展性测试□面团粘性测试□面团拉伸测试上海保圣专注于物性研究十余年,致力打造以应用为主的质构仪。为满足客户不同层次的需要,我们提供了多种型号的物性测试仪或质构仪,如TA.TOUCH触摸屏型质构仪、TA.XTC通用实验型质构仪、TA.XTC-16研究型质构仪等多款TA系列质构仪。更多面包测试方法,更多质构资讯,欢迎您关注保圣公众号,为您提供最新的食品质构、药品、化妆品、材料学最新动态。【关于保圣】上海保圣实业发展有限公司网址:[url]http://www.shbosin.com/[/url]售后服务:021-37656257销售咨询:18117403825 13564769697在线QQ咨询:3152715460 3011823639E-mail:bsen001@vip.163.com shbosin@163.com地址:上海市松江工业区茸梅路1108号传真:021-61769285微信公众号:保圣科技仪器

  • 酵母菌细胞壁

    下列哪类物质是酵母菌细胞壁主要的成分()。 A、甘露聚糖 B、脂质 C、无机盐 D、蛋白质

  • 【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    维权声明:本文为gl19860312原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。 本实验室主要工作就是:微生物发酵与代谢调控 、蛋白的分离纯化 、生物材料的研发与生产( 化妆品 、面膜、人工血管 、人工骨................)http://ng1.17img.cn/bbsfiles/images/2010/12/201012061858_264950_2019107_3.jpg啤酒酵母细胞自溶技术破壁研究摘要:研究了PH、温度、食盐浓度三个因素对啤酒酵母细胞破壁的影响,确定出最佳的自溶法破壁条件 。进而为分离啤酒废酵母中的有效活性成分奠定了基础。关键词:啤酒酵母;破壁;自溶The Research of Autolysis on the Beer Yeast Cells wallAbstract:This paper researched the condition of autolysis on the waste yeast cells wall with three factors (pH 、Temperature 、Salt density) and determined the best condition based on autolysis. And build basis for separating the activity forms from beer waste yeasts.Key words: The beer yeast; Breaking Cells wall; Autolysis引言啤酒酵母(S.csrsviside)属于真菌门酵母属,多数为单细胞微生物,细胞呈圆形或卵圆形,革兰氏染色呈阳性G+。啤酒酵母细胞是由细胞壁、细胞膜、液泡、颗粒和线粒体等部分组成,细胞年幼的时候细胞壁很薄,所以不明显;细胞年老时,细胞壁较厚。啤酒酵母细胞内不但含有丰富的蛋白质、维生素、葡聚糖及甘露聚糖等营养及保健成分,可作为食用单细胞蛋白,此外还含有辅酶I、细胞色素,卵磷脂、RNA,,这些物质或其降解产物及衍生物如氨基酸制剂和核苷酸及核酸制剂等在生物化学、医药及保健食品中最有重要的作用。由于啤酒废酵母价格便宜,因此可利用啤酒废酵母来提取、制备这些物质。啤酒废酵母(waste brewer's yeast)是啤酒生产的副产物,是指啤酒酿造后沉降的酵母泥,主要是由大量的弱细胞和死细胞组成。在啤酒生产过程中,每生产 100吨啤酒大约有1-1.5吨废酵母 (以干重计)产生。传统的处理方法,是弃置不用或作为饲料处理,直接排放到河流湖泊中,将造成环境污染,同时也是对财富的浪费;因其具有坚韧的细胞壁和特有的酵母臭,适口性差,不易消化和吸收,故烘干作为饲料用的经济效益不高。充分利用啤酒废酵母可以有效地减轻污染,实现资源的二次转化,也可产生巨大的经济效益,如开发酵母抽提物。 为了增加酵母抽提物产量国内外同行做出不同努力,开展了有些研究。目前关于啤酒酵母破壁的研究很多,大体可归纳为:化学破壁(酸解、碱解)、物理破壁(液体剪 切、固体剪切等)、生物破壁(酶解、自溶)。其中,化学破壁不仅会造成一些营养成分的破坏,而且为有效成分的提取增加困难;物理破壁虽然方法简单、成本低,能完好保存营养成分,但其破壁效果较差;生物破壁中的酶解法会增加提取成本,故均不能大规模广泛的应用。而采用自溶法进行细胞破壁是一种简便易行的操作过程,通过确定啤酒酵母细胞最适合的自溶条件,可以建立一套利用酵母细胞生产酵母抽提物的工艺和方法,旨在为啤酒酵母的综合利用寻求一种新的方法,为工业化生产提供理论基础和实践指导。1.4实验方法 工艺流程 啤酒废酵母(保藏)—— 活化、两次斜面培养—— 接种、平板划线——摇瓶培养——取对数期的酵母细胞——做稀释梯度——做影响因素(温度、食盐浓度、pH并固定时间60分钟)的实验-——做正交试验——镜检(血球计数法)——计算啤酒酵母细胞的破碎率——得到自溶的最佳工艺参数1.5啤酒废酵母自溶条件的确定酵母自溶的实质是酵母细胞内的蛋白质在自身蛋白酶的作用下,降解为游离的氨基酸,那么,一切影响酶促反应的因素均影响酵母细胞的自溶,如自溶温度、食盐浓度、pH值、自溶时间等。自溶法是以存在酶活性的新鲜活酵母为原料,利用酵母细胞本身的酶系,在一定条件下,将酵母体内的糖类物质、蛋白质和核酸分解为还原糖、氨基酸、肤类、核昔酸等小分子物质并从酵母细胞内抽提出来的一种方法。利用自溶法生产的酵母抽提物,蛋白质分解率高,游离氨基酸含量高,风味好,成本较低,但呈味核昔酸含量低.目前,欧美及我国所生产的酵母抽提物绝大部分都是采用这种方法。[font=仿宋_GB2

  • 【原创】酵母葡聚糖

    β-葡聚糖的活性结构是由葡萄糖单位组成的多聚糖,它们大多数通过β-1,3结合,这是葡萄糖链连接的方式。它能够活化巨噬细胞、嗜中性白血球等,因此能提高白细胞素、细胞分裂素和特殊抗体的含量,全面刺激机体的免疫系统。那么,机体就有更多的准备去抵抗微生物引起的疾病。β-葡聚糖能使受伤机体的淋巴细胞产生细胞因子(IL-1)的能力迅速恢复正常,有效调节机体免疫机能。大量实验表明,β-葡聚糖可促进体内IgM抗体的产生,以提高体液的免疫能力。这种葡聚糖活化的细胞会激发宿主非专一性防御机制,故应用在肿瘤、感染病和治疗创伤方面深受瞩目。经特殊步骤萃取且不含内毒素的β-1,3-葡聚糖在美国FDA已认定是一种安全的物质,可添加在一般食品,许多报导显示老鼠口服酵母β-1,3-葡聚糖,可增加强腹膜细胞抗菌之吞噬作用。酵母葡聚糖是存在于酵母细胞壁中的一种具有增强免疫力活性的多糖——β-葡聚糖。β-葡聚糖广泛存在于各种真菌和植物,如香菇、灵芝、燕麦中,是它们发挥保健作用的主要功效物质。而酵母葡聚糖的免疫增强活性更强,并具有改善血脂、抗辐射、改善肠道功能的作用。

  • 酵母抽提物的应用领域

    目前酵母抽提物应用最多的是食品加工业和生物培养基,在方便面料包、鸡精粉、酱油、肉制品、食用香精等产品中,酵母抽提物已经得到了较好的应用推广;在膨化食品、饼干糕点等产品中的应用也有出现。 我想知道它可以在营养功能食品,如针对特殊人群的低脂,降血糖食品中使用吗?

  • 【分享】回忆一下大学时烤面包记

    【分享】回忆一下大学时烤面包记

    实验材料就不一一说明了 主要材料酵母粉(安琪酵母)小苏打 水 鸡蛋 面粉(面包主要用高筋面粉 蛋糕主要用低筋) 食用盐 食用油 可以备点葡萄干 核桃仁 瓜子仁之类的 不说了 直接上图 http://ng1.17img.cn/bbsfiles/images/2012/06/201206051122_370471_2252022_3.jpg这个是打浆混匀 鸡蛋尽量用蛋黄·http://ng1.17img.cn/bbsfiles/images/2012/06/201206051124_370472_2252022_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/06/201206051124_370473_2252022_3.jpg材料没买好 颜色不怎么好 理解理解哈 当时是初学者 啥都不会 自己看实验步骤边学边做http://ng1.17img.cn/bbsfiles/images/2012/06/201206051126_370474_2252022_3.jpg这个是放进烤盘(烤盘使用前要用食用油刷一下底部 不然烤起来会粘煮 厚度不要太厚 发酵时间少些 主要是少等时间 中间的黑点是葡萄干··当时女同学些硬要放这个 说好吃···这样就可以放进烤箱 调温发酵(温度要适宜)主要是冬天 室温发酵温度不适宜 http://ng1.17img.cn/bbsfiles/images/2012/06/201206051131_370475_2252022_3.jpg买了一些小模具···上面放点葡萄干 拷出来就一个一个http://ng1.17img.cn/bbsfiles/images/2012/06/201206051132_370477_2252022_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/06/201206051132_370478_2252022_3.jpg成品 感觉还是诱人···http://ng1.17img.cn/bbsfiles/images/2012/06/201206051133_370479_2252022_3.jpg新鲜出炉···可以抢了 顺便说下 匀浆机不好使 时间也没弄够 铺的也不够均匀 表面看起来不是很平整···值得一提的是 糖还是放够了的 太甜了做的不好 大家多多指教

  • 啤酒酵母产生异味的原因是什么

    啤酒酵母产生异味的原因主要有以下几个方面: [color=initial]一、酵母代谢产物[/color] [list=1][*] 高级醇 [list][*]形成原因:高级醇是酵母在发酵过程中代谢产生的副产物。当酵母在发酵过程中,尤其是在主发酵阶段,会进行糖代谢和氨基酸代谢,其中一些氨基酸会通过转氨作用和脱羧作用生成高级醇。此外,发酵温度过高、酵母接种量过大、发酵时间过长等因素也会增加高级醇的生成量。[*]异味表现:高级醇具有较高的沸点和较低的挥发性,在啤酒中含量过高时会给啤酒带来刺鼻的酒精味和杂醇油味,使啤酒口感粗糙,饮用后容易上头。[/list][*] 酯类 [list][*]形成原因:酯类是酵母在发酵过程中通过脂肪酸代谢和醇类代谢产生的。酵母在发酵过程中会合成脂肪酸,这些脂肪酸可以与醇类反应生成酯类。发酵温度、酵母菌株、麦汁成分等因素都会影响酯类的生成量。[*]异味表现:酯类具有较低的沸点和较高的挥发性,在啤酒中含量过高时会给啤酒带来水果味、花香或溶剂味。虽然适量的酯类可以为啤酒增添香气,但过多的酯类会使啤酒的风味失衡,产生异味。[/list][*] 双乙酰 [list][*]形成原因:双乙酰是酵母在发酵过程中由 α- 乙酰乳酸氧化脱羧生成的。在啤酒发酵的前期,酵母会产生 α- 乙酰乳酸,然后在酵母细胞内或发酵液中被氧化脱羧生成双乙酰。当发酵后期酵母的活性降低时,双乙酰的还原速度会变慢,导致双乙酰在啤酒中的含量升高。[*]异味表现:双乙酰具有强烈的馊饭味,在啤酒中含量过高时会使啤酒产生不愉快的异味,严重影响啤酒的口感和品质。[/list][/list] [color=initial]二、酵母自溶[/color] [list=1][*] 原因 [list][*]当酵母在发酵后期或储存过程中受到不良环境因素的影响时,如温度过高、压力过大、营养缺乏、pH 值变化等,酵母细胞会失去完整性,发生自溶现象。酵母自溶后,细胞内的物质会释放到啤酒中,包括蛋白质、核酸、多糖等。[*]例如,在发酵后期,如果温度控制不当,酵母的代谢活动会加快,导致酵母细胞衰老和自溶。此外,如果啤酒在储存过程中受到震动或温度变化的影响,也会加速酵母的自溶。[/list][*] 异味表现 [list][*]酵母自溶后释放的蛋白质和核酸会在啤酒中分解成氨基酸和核苷酸等物质,这些物质会使啤酒的口感变得粗糙,产生浑浊和异味。同时,自溶的酵母还会释放出一些脂肪酸和醛类物质,进一步加重啤酒的异味。[/list][/list] [color=initial]三、酵母污染[/color] [list=1][*] 原因 [list][*]在啤酒酿造过程中,如果卫生条件不佳、设备消毒不彻底、酵母储存不当等,就会导致酵母受到杂菌的污染。常见的污染酵母的杂菌有乳酸菌、醋酸菌、野生酵母等。[*]例如,在发酵罐或管道中残留的麦汁或啤酒如果没有及时清洗干净,就会滋生杂菌,然后在下次发酵时污染酵母。此外,如果酵母在储存过程中没有密封好,或者与空气接触时间过长,也会容易受到野生酵母的污染。[/list][*] 异味表现 [list][*]被污染的酵母会产生不同于正常酵母的代谢产物,从而给啤酒带来异味。例如,乳酸菌污染会使啤酒产生酸味;醋酸菌污染会使啤酒产生醋酸味;野生酵母污染会使啤酒产生不良的风味和香气,甚至可能导致啤酒变质。[/list][/list] [color=initial]四、麦汁成分[/color] [list=1][*] 不良成分 [list][*]如果麦汁中含有过多的不良成分,如脂肪酸、醛类、酮类等,这些成分会影响酵母的代谢,导致酵母产生异味。此外,麦汁中的重金属离子、农药残留、抗生素等物质也会对酵母的生长和代谢产生不良影响,从而影响啤酒的风味。[*]例如,如果麦汁中的脂肪酸含量过高,酵母在发酵过程中会将这些脂肪酸转化为不良的风味物质,使啤酒产生异味。此外,如果麦汁中含有抗生素,会抑制酵母的生长和代谢,导致发酵不完全,产生异味。[/list][*] 营养不平衡 [list][*]如果麦汁中的营养成分不平衡,如缺乏必要的维生素、矿物质、氨基酸等,也会影响酵母的代谢,导致酵母产生异味。例如,如果麦汁中缺乏锌离子,会影响酵母的生长和代谢,导致酵母产生不良的风味物质。[/list][/list] 综上所述,啤酒酵母产生异味的原因是多方面的,需要在啤酒酿造过程中严格控制各个环节,以确保酵母的正常生长和代谢,从而生产出品质优良的啤酒

  • 【原创大赛】微流控芯片中的酵母细胞

    【原创大赛】微流控芯片中的酵母细胞

    http://ng1.17img.cn/bbsfiles/images/2011/12/201112312345_343455_1705310_3.jpg拍摄时间:2011年8月样品名称:微流控芯片中的酵母细胞所使用的显微镜:倒置显微镜以及数码相机的生产厂家和型号:北京奥特伟业光学仪器有限公司 奥特三目倒置生物显微镜 BDS200物镜及目镜放大倍数:10×10照明方式:明场

  • 【信息】转基因酵母能进行多种糖分混合发酵

    据美国物理学家组织网12月27日报道,美国伊利诺伊大学香槟分校食品科学与人类营养系、加州大学劳伦斯伯克利国家实验室和英国石油公司(BP)的科学家表示,他们对酿酒酵母进行了基因改造,新得到的酵母菌株可以发酵葡萄糖、纤维二糖(葡萄糖的前体物,由两个结合在一起的葡萄糖组成)和木糖,能更好更多地把植物发酵成替代燃料乙醇。相关研究发表在最新一期的美国《国家科学院院刊》上。酵母以糖为生,并在这个过程中能产生很多对人来说是“宝物”的废物——乙醇和二氧化碳,因此生物燃料工业也使用酵母将植物糖转变为生物乙醇。然而,大多数酵母无法将植物中的葡萄糖、纤维二糖和木糖这三种糖全部转化成有用的燃料,比如,酿酒酵母能很好地发酵葡萄糖,但对木糖却有心无力,这使得利用酵母制造生物燃料的成本居高不下。之前,科学家对酵母菌种进行基因改造,让其代谢木糖,但速度很慢,效率过低。研究小组成员之一、伊利诺伊大学食品科学和人类营养学教授金泳恕(音译)表示,经过基因改造的酵母无法发酵木糖的主要问题是,它接触木糖之前会吸收所有葡萄糖,酵母表面的葡萄糖转运蛋白更愿意同葡萄糖依附在一起。在此项新研究中,基因改造后的酿酒酵母可以同时将纤维二糖和木糖转化为乙醇。转化效率和转化得到的乙醇数量都提高了一倍,这主要归结于混合发酵的协同作用。金泳恕表示,新酵母菌种将木糖转化为乙醇的效率至少比目前已知酵母菌高20%,使其成为最好的发酵木糖的细菌。研究团队通过对酿酒酵母做出几个关键的改进而获得了这样的结果。首先,他们给予这种酵母一个纤维二糖转运蛋白,这意味着其能将纤维二糖直接带入细胞中,而只有当纤维二糖进入到细胞内部时,它才会被转化为葡萄糖。这种方法可以战胜酿酒酵母本身对葡萄糖的偏好,从而专注于将木糖吸收进酵母细胞中。接着,研究人员将从一个消耗木糖的酵母中提取的3种蛋白质插入酿酒酵母中,由此提高了新酵母菌种代谢木糖的速度和效率。他们也对一种人造的同功酶进行了基因修改,让木糖代谢的正常中间产物木糖醇积聚的数量最少。最后,该研究团队使用“进化工程”让新菌种利用木糖的能力达到最大。研究人员表示,混合发酵的成本优势也很明显,其乙醇产量也高于工业标准,这种研究很快将被商业化。

  • 【资料】德国科学家成功获取酵母菌细胞高清三维图片

    德国科学家日前成功获取了显示单细胞酵母菌内部构成的高分辨率三维图片,为研究更高级别的生物提供了新的依据。 据此间媒体30日报道,位于海德堡的欧洲分子生物实验室的科学家们使用电子束从不同角度照射酵母菌细胞,再通过电脑组合完成了这张细胞内部结构高清图片。图片除了显示细胞核 及其他组成部分外,还可以显示细胞内细微的丝状物。通过类似的方式,科学家也获取了人脑细胞内部结构的图片。 科学家认为,如同人体由骨骼支撑一样,一个细胞内部的组成部分也决定了细胞的结构和形状。单细胞的酵母菌被认为能够为研究包括人类在内的高级生物提供依据。来源:新华网

  • 全麦面包口感比较粗糙 越嚼越香

    全麦面包口感比较粗糙,有浓厚麦香,越嚼越香。购买全麦面包,要注意保存期限。由于它的营养价值比白面包高,B族维生素丰富,更利于微生物存活,所以更易发生霉变。

  • 【讨论】酵母检测仪器

    生产过程中,酵母浓度的控制是产品质量的一个关键因素,为了控制酵母浓度,最好的方式就是在线快速测定。目前国内外有哪些公司生产或代理酵母在线活性检测仪,就是那种生产发酵过程中能在线快速准确测定酵母活细胞数的仪器。在网上查了一下美国Aber公司有酵母监测仪,法国FOGALE公司有活细胞浓度在线检测议,请问各位有用过吗?哪家好用一些呢?

  • 怎样才能提高啤酒酵母的质量

    [color=initial]一、菌种选育[/color] [list=1][*] 传统选育方法 [list][*]从自然界中筛选优良菌株:可以从不同的啤酒生产环境、土壤、水果等来源中采集酵母样本,通过分离、纯化和筛选,找到具有优良发酵性能和风味特征的酵母菌株。例如,从传统的啤酒酿造地区采集土壤样本,从中分离出可能适合啤酒发酵的酵母菌株。[*]诱变育种:利用物理(如紫外线、X 射线等)或化学(如亚硝基胍、硫酸二乙酯等)诱变剂对现有酵母菌株进行处理,使其发生基因突变,然后筛选出具有优良性状的突变株。例如,用紫外线照射酵母菌株,使其发生基因突变,然后通过发酵实验筛选出发酵速度快、产酒精能力强的突变株。[/list][*] 现代生物技术选育方法 [list][*]基因工程技术:通过基因克隆、表达和调控等手段,对酵母菌株进行改良。例如,可以将具有优良发酵性能的基因导入到酵母菌株中,使其获得更好的发酵能力和风味特征。或者通过基因编辑技术,对酵母菌株的特定基因进行修饰,以改善其性能。[*]高通量筛选技术:利用自动化设备和先进的检测技术,对大量的酵母菌株进行快速筛选。例如,使用微流控芯片技术,可以同时对数千个酵母菌株进行发酵实验和分析,大大提高了筛选效率。[/list][/list] [color=initial]二、优化发酵工艺[/color] [list=1][*] 控制发酵条件 [list][*]温度控制:根据不同的酵母菌株和啤酒类型,确定最佳的发酵温度。一般来说,低温发酵可以产生更多的风味物质,而高温发酵则可以加快发酵速度。例如,对于淡色啤酒,可以采用较低的发酵温度(8-12℃),以获得清爽的口感和丰富的风味;而对于深色啤酒,可以采用较高的发酵温度(15-20℃),以促进麦芽的焦香和酵母的代谢。[*]压力控制:适当的压力可以促进酵母的发酵活动,提高啤酒的质量。例如,在发酵过程中,可以通过控制发酵罐的压力,使酵母在一定的压力下进行发酵,从而提高发酵效率和啤酒的风味。[*]pH 值控制:保持适宜的 pH 值对于酵母的生长和发酵至关重要。一般来说,啤酒发酵的 pH 值在 4.0-5.5 之间。可以通过调整麦汁的 pH 值、添加缓冲剂等方法,控制发酵过程中的 pH 值。[/list][*] 优化麦汁成分 [list][*]调整麦汁浓度:根据不同的啤酒类型和酵母菌株,确定最佳的麦汁浓度。一般来说,高浓度的麦汁可以产生更多的酒精和风味物质,但也会增加酵母的代谢负担。例如,对于高浓度啤酒,可以采用较高的麦汁浓度(12-16°P),以获得浓郁的口感和香气;而对于低浓度啤酒,可以采用较低的麦汁浓度(8-10°P),以获得清爽的口感。[*]优化麦汁营养成分:确保麦汁中含有足够的碳源、氮源、维生素和矿物质等营养物质,以满足酵母的生长和发酵需求。例如,可以添加适量的麦芽提取物、酵母营养盐等,提高麦汁的营养价值。同时,要避免麦汁中含有过多的不良成分,如脂肪酸、醛类、酮类等,这些成分会影响酵母的代谢,导致酵母产生异味。[/list][*] 合理的酵母接种量和接种时间 [list][*]确定最佳的酵母接种量:酵母接种量过大或过小都会影响发酵效果和啤酒质量。一般来说,酵母接种量在 0.5-1.5×10?个细胞 / 毫升麦汁之间。可以根据酵母菌株的特性、麦汁浓度、发酵温度等因素,确定最佳的酵母接种量。例如,对于发酵速度快的酵母菌株,可以适当减少接种量;而对于发酵速度慢的酵母菌株,则可以适当增加接种量。[*]选择合适的接种时间:在麦汁冷却至适宜的接种温度后,及时接种酵母。过早或过晚接种酵母都会影响发酵效果。一般来说,在麦汁冷却至 8-12℃后,尽快接种酵母,以保证酵母的生长和发酵活动顺利进行。[/list][/list] [color=initial]三、酵母管理[/color] [list=1][*] 酵母的扩培和储存 [list][*]酵母扩培:采用科学的酵母扩培方法,确保酵母的数量和质量。一般来说,酵母扩培需要经过多个阶段,从原始菌种开始,逐步扩大培养,直到达到所需的酵母数量。在扩培过程中,要严格控制温度、pH 值、营养物质等条件,保证酵母的生长和繁殖。[*]酵母储存:正确储存酵母可以延长其使用寿命和保持其质量。酵母储存的条件包括低温、干燥、无氧等。一般来说,酵母可以储存在冰箱或冷库中,温度控制在 0-4℃之间。同时,要避免酵母与空气接触,以免酵母氧化和变质。在储存过程中,要定期检查酵母的质量,如有必要,可以进行活化和再培养。[/list][*] 酵母的回收和再利用 [list][*]酵母回收:在啤酒发酵结束后,及时回收酵母。可以采用离心、过滤等方法,将酵母从啤酒中分离出来。回收的酵母要经过清洗、消毒等处理,去除杂质和残留的啤酒成分。[*]酵母再利用:经过处理后的酵母可以再次用于啤酒发酵。但要注意控制酵母的使用次数,一般来说,酵母的使用次数不宜超过 5-7 次。随着使用次数的增加,酵母的活性和发酵性能会逐渐下降,需要及时更换新的酵母菌株。[/list][*] 酵母的检测和监控 [list][*]定期检测酵母的质量:包括酵母的活性、数量、纯度、发酵性能等指标。可以采用显微镜观察、平板计数、发酵实验等方法,对酵母进行检测。例如,通过显微镜观察酵母细胞的形态和大小,判断酵母的活性和健康状况;通过平板计数法,确定酵母的数量和纯度;通过发酵实验,检测酵母的发酵性能和产酒精能力。[*]监控发酵过程中的酵母状态:在啤酒发酵过程中,要密切关注酵母的生长和代谢情况。可以通过检测发酵液的温度、pH 值、糖度、酒精含量等指标,了解酵母的发酵活动。同时,要注意观察发酵液的外观、气味等变化,如有异常情况,要及时采取措施进行处理。[/list][/list] 通过以上方法,可以有效地提高啤酒酵母的质量,从而生产出品质优良的啤酒

  • 【转帖】阿凡达的触须?酵母细胞“生物电路”研制成功

    《科技日报》报道据美国物理学家组织网12月15日(北京时间)报道,瑞典和西班牙科学家使用转基因酵母细胞制造出了能够互相交流的“生物电路”,未来,科学家有望使用人体细胞构建出更复杂的系统,来检测人体健康状况。相关研究发表在12月9日出版的《自然》杂志上。  作为欧盟“分子计算机”项目的一部分,瑞典哥德堡大学和西班牙巴塞罗那庞培法布拉大学的科学家在哥德堡大学施特芬·霍曼教授的领导下进行了该项研究。  哥德堡大学细胞和分子生物学系肯塔罗·弗瑞卡瓦表示,尽管经过重新编程的细胞不能像真正的计算机做同样的工作,但该研究为使用这样的细胞建立复杂的系统铺平了道路。未来人体健康状况有望通过这种“分子对分子”的交流系统来探测,将疾病消灭在萌芽阶段;或者将其作为生物传感器来探测污染物,分解环境中的有毒物质等。  合成生物学是一个方兴未艾的研究领域,其中的一个应用是设计出自然界中不存在的生物系统。例如,研究人员已经成功地使用转基因细胞构建出许多不同的人工连接装置,诸如电路断路器、振荡器和传感器等。尽管这些人工连接器具有很大的潜力,但迄今为止还存在很多技术限制,主要原因是,分处不同细胞中的人工系统很少能按科学家的期望来工作,因此影响了最终结果。  该研究团队使用酵母细胞制造出了合成电路,细胞之间可通过基因调控进行连接。他们对这些酵母细胞进行了基因修改,使它们能够基于设定的标准来感应周遭环境,并通过分泌出分子向其它酵母细胞发送信号。因此,这些不同的细胞能像乐高玩具的积木块一样连接在一起,产生更复杂的电路。与使用一种转基因酵母细胞制成的结构相比,这种由不同转基因酵母细胞组成的结构能完成更复杂的“电子功能”。   尽管迄今世界上还没有一台真正意义上的生物计算机,但许多实验室都在以极大热情追逐这个梦想。在如何实现生物计算这个根本问题上众口异词,以有机分子元件代替目前的半导体逻辑、存储元件便是其中之一。用酵母细胞制成“生物电路”当然是一种有益尝试,不过今天来判断其前景还为时太早。也许现有方案将来都派不上用场,最终脱颖而出的却是基于某种新材料的全新设计。完成这一伟大工程即使跨越到下个世纪,也不能算长。

  • 【转帖】Nature:转基因酵母细胞制造出能互相交流的“生物电路”

    Nature:转基因酵母细胞制造出能互相交流的“生物电路”生物电路, 转基因, Nature, 酵母, 细胞典和西班牙科学家使用转基因酵母细胞制造出了能够互相交流的“生物电路”,未来,科学家有望使用人体细胞构建出更复杂的系统,来检测人体健康状况。相关研究发表在12月9日出版的Nature杂志上。作为欧盟“分子计算机”项目的一部分,瑞典哥德堡大学和西班牙巴塞罗那庞培法布拉大学的科学家在哥德堡大学施特芬·霍曼教授的领导下进行了该项研究。哥德堡大学细胞和分子生物学系肯塔罗·弗瑞卡瓦表示,尽管经过重新编程的细胞不能像真正的计算机做同样的工作,但该研究为使用这样的细胞建立复杂的系统铺平了道路。未来人体健康状况有望通过这种“分子对分子”的交流系统来探测,将疾病消灭在萌芽阶段;或者将其作为生物传感器来探测污染物,分解环境中的有毒物质等。合成生物学是一个方兴未艾的研究领域,其中的一个应用是设计出自然界中不存在的生物系统。例如,研究人员已经成功地使用转基因细胞构建出许多不同的人工连接装置,诸如电路断路器、振荡器和传感器等。尽管这些人工连接器具有很大的潜力,但迄今为止还存在很多技术限制,主要原因是,分处不同细胞中的人工系统很少能按科学家的期望来工作,因此影响了最终结果。

  • 【转帖】酵母双杂交系统的发展和应用

    随着对多种重要生物的大规模基因组测序工作的完成,基因工程领域又迎来了一个新的时代---功能基因组时代。它的任务就是对基因组中包含的全部基因的功能加以认识。生物体系的运作与蛋白质之间的互相作用密不可分,例如:DNA合成、基因转录激活、蛋白质翻译、修饰和定位以及信息传导等重要的生物过程均涉及到蛋白质复合体的作用。能够发现和验证在生物体中相互作用的蛋白质与核酸、蛋白质与蛋白质是认识它们生物学功能的第一步。   酵母双杂交技术作为发现和研究在活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,在近几年来得到了广泛运用。酵母双杂交系统是在真核模式生物酵母中进行的,研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、瞬间的作用也能够通过报告基因的表达产物敏感地检测得到,它是一种具有很高灵敏度的研究蛋白质之间关系的技术。大量的研究文献表明,酵母双杂交技术既可以用来研究哺乳动物基因组编码的蛋白质之间的互作,也可以用来研究高等植物基因组编码的蛋白质之间的互作。因此,它在许多的研究领域中有着广泛的应用。本文就酵母双杂交的技术平台和应用加以介绍。  酵母双杂交系统的建立是基于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。反式转录激活因子,例如酵母转录因子GAL4在结构上是组件式的(modular),往往由两个或两个以上结构上可以分开,功能上相互独立的结构域(domain)构成,其中有DNA结合功能域(DNA binding domain,DNA-BD)和转录激活结构域(activation domain,DNA-AD)。这两个结合域将它们分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录因子活性,并可激活上游激活序列(upstream activating sequence, UAS)的下游启动子,使启动子下游基因得到转录。  根据这个特性,将编码DNA-BD的基因与已知蛋白质Bait protein的基因构建在同一个表达载体上,在酵母中表达两者的融合蛋白BD-Bait protein。将编码AD的基因和cDNA文库的基因构建在AD-LIBRARY表达载体上。同时将上述两种载体转化改造后的酵母,这种改造后的酵母细胞的基因组中既不能产生GAL4,又不能合成LEU、TRP、HIS、ADE,因此,酵母在缺乏这些营养的培养基上无法正常生长。当上述两种载体所表达的融合蛋白能够相互作用时,功能重建的反式作用因子能够激活酵母基因组中的报告基因HIS、ADE、LACZ、MEL1,从而通过功能互补和显色反应筛选到阳性菌落。将阳性反应的酵母菌株中的AD-LIBRARY载体提取分离出来,从而对载体中插入的文库基因进行测序和分析工作。在酵母双杂交的基础上,又发展出了  酵母单杂交、酵母三杂交和酵母的反向杂交技术。它们被分别用于核酸和文库蛋白之间的研究、三种不同蛋白之间的互作研究和两种蛋白相互作用的结构和位点。  基于酵母双杂交技术平台的特点,它已经被应用在许多研究工作当中。 1、利用酵母双杂交发现新的蛋白质和蛋白质的新功能  酵母双杂交技术已经成为发现新基因的主要途径。当我们将已知基因作为诱饵,在选定的cDNA文库中筛选与诱饵蛋白相互作用的蛋白,从筛选到的阳性酵母菌株中可以分离得到AD-LIBRARY载体,并从载体中进一步克隆得到随机插入的cDNA片段,并对该片段的编码序列在GENEBANK中进行比较,研究与已知基因在生物学功能上的联系。另外,也可作为研究已知基因的新功能或多个筛选到的已知基因之间功能相关的主要方法。例如:Engelender等人以神经末端蛋白alpha-synuclein 蛋白为诱饵蛋白,利用酵母双杂交CLONTECH MATCHMARKER SYSTEM 3为操作平台,从成人脑cDNA文库中发现了与alpha-synuclein相互作用的新蛋白Synphilin-1,并证明了Synphilin-1与alpha-synuclein 之间的相互作用与帕金森病的发病有密切相关。为了研究两个蛋白之间的相互作用的结合位点,找到影响或抑制两个蛋白相互作用的因素,Michael等人又利用酵母双杂交技术和基因修饰证明了alpha-synuclein的1-65个氨基酸残基和Synphilin-1的349-555个氨基酸残基之间是相互作用的位点。研究它们之间的相互作用位点有利于基因治疗药物的开发。  2、利用酵母双杂交在细胞体内研究抗原和抗体的相互作用  利用酶联免疫(ELISA)、免疫共沉淀(CO-IP)技术都是利用抗原和抗体间的免疫反应,可以研究抗原和抗体之间的相互作用,但是,它们都是基于体外非细胞的环境中研究蛋白质与蛋白质的相互作用。而在细胞体内的抗原和抗体的聚积反应则可以通过酵母双杂交进行检测。例如:来源于矮牵牛的黄烷酮醇还原酶DFR与其抗体scFv的反应中,抗体的单链的三个可变区A4、G4、H3与抗原之间作用有强弱的差异。Geert等利用酵母双杂交技术,将DFR作为诱饵蛋白,编码抗体的三个可变区的基因分别被克隆在AD-LIBRARY载体上,将BD-BAIT载体和每种AD-LIBRARY载体分别转化改造后的酵母菌株中,并检测报告基因在克隆的菌落中的表达活性,从而在活细胞的水平上检测抗原和抗体的免疫反应。  3、利用酵母双杂交筛选药物的作用位点以及药 物对蛋白质之间相互作用的影响  酵母双杂交的报告基因能否表达在于诱饵蛋白与靶蛋白之间的相互作用。对于能够引发疾病反应的蛋白互作可以采取药物干扰的方法,阻止它们的相互作用以达到治疗疾病的目的。例如:Dengue病毒能引起黄热病、肝炎等疾病,研究发现它的病毒RNA复制与依赖于RNA的RNA聚合酶(NS5)与拓扑异构酶NS3,以及细胞核转运受体BETA-importin的相互作用有关。研究人员通过酵母双杂交技术找到了这些蛋白之间相互作用的氨基酸序列。如果能找到相应的基因药物阻断这些蛋白之间的相互作用,就可以阻止RNA病毒的复制,从而达到治疗这种疾病的目的。  4、利用酵母双杂交建立基因组蛋白连锁图(Genome Protein Linkage Map)众多的蛋白质之间在许多重要的生命活动中都是彼此协调和控制的。基因组中的编码蛋白质的基因之间存在着功能上的联系。通过基因组的测序和序列分析发现了很多新的基因和EST序列,HUA等人利用酵母双杂交技术,将所有已知基因和EST序列为诱饵,在表达文库中筛选与诱饵相互作用的蛋白,从而找到基因之间的联系,建立基因组蛋白连锁图。对于认识一些重要的生命活动:如信号传导、代谢途径等有重要意义。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制