当前位置: 仪器信息网 > 行业主题 > >

羟甲基脲

仪器信息网羟甲基脲专题为您提供2024年最新羟甲基脲价格报价、厂家品牌的相关信息, 包括羟甲基脲参数、型号等,不管是国产,还是进口品牌的羟甲基脲您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟甲基脲相关的耗材配件、试剂标物,还有羟甲基脲相关的最新资讯、资料,以及羟甲基脲相关的解决方案。

羟甲基脲相关的资讯

  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 葡萄酒也是越陈越好吗?——葡萄酒中5-羟甲基糠醛含量测定
    葡萄酒,味香色美,很多人的最爱!那葡萄酒是不是越陈越好呢?理论上,葡萄酒是一种有生命的东西,装瓶后仍然会继续成熟和变化。在良好的储藏条件下,葡萄酒会在岁月的历练中使得单宁酸逐渐柔顺圆润,酒香更加富有深度,口感也更为均衡协调。 事实上,大部分(99%)葡萄酒不具有陈年能力,最佳饮用期一般在2—10年之间。只有少部分特别好的葡萄酒才具有陈年能力。不具陈年能力的葡萄酒在不适宜的环境中长期存储不仅口感不会变好,而且还有可能产生5-羟甲基糠醛(5-HMF)。 5-羟甲基糠醛是一种黑色的具有难闻气温的有毒物质,对人体横纹肌及内脏有损害,且具有神经毒性,能与人体蛋白质结合产生蓄积中毒。葡萄酒在生产及不合适的储存条件下不可避免会发生热降解反应,从而导致5-羟甲基糠醛的产生或含量增加。2017年7月1日SN/T 4675.8-2016《出口葡萄酒中5-羟甲基糠醛的测定 液相色谱法》开始实施,葡萄酒中5-羟甲基糠醛的含量成为国际贸易中判断葡萄酒优劣的重要指标。 大连依利特分析仪器有限公司,参考SN/T 4675.8-2016《出口葡萄酒中5-羟甲基糠醛的测定 液相色谱法》,对5-羟甲基糠醛进行了检测。仪器配置色谱条件流动相:甲醇:水=10:90色谱柱:依利特C18色谱柱流量:1.0mL/min检测波长:285nm进样体积:10μL柱温:30℃实验结果
  • 水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化
    1.文章信息标题:Sunlight-drivenphotocatalyticoxidationof5-hydroxymethylfurfuraloveracuprousoxide-anataseheterostructureinaqueousphase中文标题:水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化页码:AppliedCatalysisB:Environmental320(2023)122006DOI:https://doi.org/10.1016/j.apcatb.2022.1220062.文章链接https://doi.org/10.1016/j.apcatb.2022.1220063.期刊信息期刊名:AppliedCatalysisB:EnvironmentalISSN:0926-33732021年影响因子:24.319分区信息:中科院一区Top涉及研究方向:化学4.作者信息第一作者是:云南大学张奇钊;通讯作者:云南大学方文浩。5.光源型号:CEL-HXF300-T3文章简介将5-羟甲基糠醛(HMF)选择氧化为2,5-二甲酰基呋喃(DFF)是糠醛类生物质平台分子转化利用的重要途径之一。DFF是合成糠基生物聚合物、药物中间体、杀菌剂以及荧光剂等的重要单体。传统的热催化氧化技术通常依赖于苛刻的温度和氧压,容易诱发安全和环境隐患。因此,迫切需要开发在温和条件下高效转化HMF为DFF的环境友好型催化体系。于是,光催化氧化技术,因为具有光生空穴和氧气存在下产生的活性氧物种可以在温和条件下驱动该反应的进行而成为科学家们研究的热点。然而现有的金属氧化物光催化剂的制备大部分较为复杂或者以有机试剂(即乙腈、三氟化苯等)作为反应溶剂导致较高的制备成本和环境污染。因此,非常需要低成本、易于制备和易于调节的氧化物催化剂。此外,使用水代替有机溶剂作为反应介质更环保,但对于金属氧化物催化剂来说可能具有很大的挑战性。因为作为副产物的水往往会阻碍正向反应,并且水也可能加剧金属浸出。基于上述研究背景,云南大学化学科学与工程学院方文浩教授课题组通过化学还原沉淀法制备了具有p-n异质结的(Cu2O)x‖TiO2光催化剂,实现了以H2O为反应溶剂,O2作为氧化剂,在无任何添加剂条件下高效利用太阳光催化氧化HMF制DFF。通过调变两种金属的比例和二氧化钛的晶相,深入研究了催化剂能带结构对反应机理的影响。研究发现Cu2O的含量决定HMF的转化率,而TiO2的晶相(即锐钛矿和金红石)影响DFF的选择性。通过清除剂实验研究揭示了空穴(h+)会将HMF深度氧化为CO2,而单线态氧(1O2)能够将HMF选择氧化为DFF。结合莫特肖特基曲线和价带谱数据可以推出半导体的能带结构,由此可得Cu2O的价带位置显然比HMF氧化为DFF的氧化电位更正,但比DFF的氧化电位更负。这表明Cu2O的价带上的光生空穴可以将HMF氧化成DFF,但不能进一步氧化DFF。相反,TiO2的价带位置比DFF的氧化电位更负,因此TiO2价带上的光生空穴能够进一步氧化DFF。p-n异质结的形成不仅抑制了TiO2上羟基自由基(•OH)的产生,而且还促进了O2在Cu2O上活化产生1O2。因此p-n异质结的形成增强了Cu2O的氧化还原能力同时增强了TiO2光利用效率。此外,通过光致发光谱,光电流响应以及电化学阻抗谱表征发现(Cu2O)0.16‖TiO2(A)具有最佳的光生电子和空穴的分离效率以及最佳的电荷迁移效率。与此相对应的,(Cu2O)0.16‖TiO2(A)催化剂在水相、35℃、10mLmin-1O2和模拟太阳光下的温和条件下(如图1所示),产生64.5mggcatal.-1h-1的DFF生成速率。这是目前文献报道的以水为反应介质金属氧化物光催化剂上取得的最佳结果。此外,该催化剂可直接在太阳光和空气下工作,且多次循环使用未见失活。该工作通过一系列的光电性质与形貌表征,深入揭示了异质结催化剂中两种半导体间的强相互作用。研究了在光催化反应过程中光生空穴与各个活性氧物种的作用。并通过能带结构解释了晶相与催化活性的构效关联问题。期望本研究建立的反应选择性和能带结构之间的关系可以应用于其他异质结光催化体系。
  • naica®微滴芯片数字PCR系统精准量化胰岛素编码基因DNA甲基化水平
    导读在过去的几十年中,糖尿病的发病率在全球范围内显著增长。除了不健康的生活方式外,环境污染物被认为是糖尿病发生的危险因素。多环芳烃 (PAH)是一类含有2-7个芳环的有机化合物,由自然和人类活动产生并广泛存在的污染物。流行病学研究表明,PAHs水平与成人和儿童的肥胖和二型糖尿病相关。厦门大学生命科学学院细胞应激生物学国家重点实验室的研究人员在Ecotoxicology and Environmental Safety上发表了题为《Prenatal exposure to a mixture of PAHs causes the dysfunction of islet cells in adult male mice: Association with type 1 diabetes mellitus》的文章。文中应用naica® 微滴芯片数字PCR系统对胰岛素编码基因DNA甲基化水平进行量化,揭示了产前暴露于多环芳烃混合物对成年雄性小鼠胰岛细胞功能的不良影响。应用亮点:▶ 使用naica® 微滴芯片数字PCR系统对胰岛素编码基因启动子甲基化水平进行量化。▶ 在产前暴露于500µg/kg PAHs的小鼠中,胰岛素编码基因启动子的甲基化水平显著升高。▶ 产前暴露于PAHs可能促进I型糖尿病的发病。作者使用8种PAHs的混合物进行了实验,以研究产前PAHs对成年期胰岛细胞功能和质量的影响,同时试图阐明 I型糖尿病发病的环境原因。他们分离了成年雄性小鼠的胰岛,对胰岛素编码基因的启动子DNA甲基化水平进行分析。研究成果:▲图1. 产前暴露于多环芳烃对成年雄性小鼠胰岛素编码基因甲基化水平的影响。(A) 数字PCR结果代表性一维图。(B)胰岛素编码基因启动子甲基化水平。(每个处理三只母鼠, 每只母鼠取一个雄性后代) 。在本研究中,子宫内暴露于500µg/kg PAHs的小鼠胰岛中胰岛素编码基因启动子中的DNA甲基化水平显著增加,同时胰岛素编码基因转录显著下调。▲图2. 不同PAHs浓度对胰岛素编码基因转录水平的影响原文链接如下:https://www.sciencedirect.com/science/article/pii/S0147651322005358期刊介绍:Ecotoxicology and Environmental Safety 1977创刊,隶属于爱思唯尔出版集团。是一份多学科交叉期刊,主要研究环境污染对包括人类健康在内的生物体的暴露和影响。最新影响因子为7.129。naica® 六通道数字PCR系统法国Stilla Technologies公司naica® 六通道数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 饶毅:“枪打出头鸟”是创新的死敌
    &emsp &emsp 对科学家不能求全   &emsp &emsp 要改善我国的科学,不仅需要改革体制,而且需要改进文化。科学史显示:对科学家不能求全,而要求尖 在合法和合规的情况下,提供自由创造的环境,任其飞翔。&ldquo 枪打出头鸟&rdquo 的社会习俗是科学创新的死敌   &emsp &emsp 为何探讨科学文化   &emsp &emsp 我们探讨中国的科学文化,目的是希望中国的科学早日达到梁启超先生对中国学术的期许&mdash &mdash &ldquo 研究高深之学理,发挥本国之文明,贡献于世界之文明&rdquo 也是希望科学精神进入中国文化的内核   &emsp &emsp 科学基础薄弱   &emsp &emsp 美国副总统批评中国连一个创新都没有。就算术而言,他显然错了。但就现代生活而言,我们的原创性贡献确实与泱泱大国的地位不相称。主要原因恐怕不在于科学研究成果的转化和应用有问题,而是科学基础的薄弱和创新动力的缺乏。   &emsp &emsp 我们还要看到社会环境变化引起的新问题:我国离全面小康尚有距离,而青少年对科学的兴趣已呈下降趋势,可能成为中国科学后继乏人的征兆,因此亟待未雨绸缪。   &emsp &emsp 文化和科学史显示,中国古代从军事谋略到诗词歌赋等都有创造性、也有包括四大发明在内的原创技术,但我国传统文化对自然现象及其规律的关注在广度和深度上均长期远远落后于西方。   &emsp &emsp 所谓&ldquo 中国古代科学先进、明清才衰弱&rdquo 的说法并不符合历史实情。那是有些人出于良好愿望,通过英国学者李约瑟&ldquo 出口转内销&rdquo 而起到一定作用,包括良性作用。这是我国近代意识到落后情况下的自我激励,如果现在还用就可能自我陶醉。   &emsp &emsp 两千年前,我国没有欧几里得几何学式的系统性、严密性、合谐性与完备性 今天,世界上绝大多数教科书中基本没有中国的贡献,我国教科书含中国首创的内容也极少,皆因我国的科学不强。   &emsp &emsp 创新需要冒尖   &emsp &emsp 2000年后,国家经济稳定发展态势明显,对科学和教育的支持有广泛的共识。   &emsp &emsp 2003年&ldquo 985计划&rdquo 和&ldquo 知识创新工程&rdquo 获第二期资助,科学研究走出谷底,一些高校和科研机构开始不再忧虑如何救急,而认真思考自身和中国的科学发展。   &emsp &emsp 也就是说,科学进入中国的几百年来,其实不过近十几年才告别&ldquo 口号强、行动弱&rdquo 的时期,有实力思考中国科学的发展。   &emsp &emsp 近十几年来,国家对科学的投入稳步增长(包括有些年代、有些领域大幅度增加),人才逐渐回流,科学成果数量增加、质量改善。但是,在科技体制、成果转化和科学文化等诸多方面尚不尽人意。   &emsp &emsp 体制上,科技体制改革有限。许多资源掌握者没有管理好国家的经费,相当一批官员顽固地视国家科学经费为其权力来源,不仅不积极借鉴国际经验,也不推广国内成功的实践。   &emsp &emsp 社会上,有些人对科学实质了解不够,急切要求将研究转化为应用,甚至讥笑和抨击基础研究,不知道先进国家在相当大量和高质量的科学研究后才产出少量有应用价值的成果。   &emsp &emsp 文化上,科学精神很难说已经深入人心。在科学界,迄今未能解决创新需要冒尖的文化与我国传统中庸文化的冲突,种种落后的习俗与不良的人际关继续制约着科学人才发挥作用。在科学界以外,不科学的东西在社会上很容易流行,反科学的东西也不时冒出来,有时甚嚣尘上。   &emsp &emsp 避免&ldquo 下降的曲线&rdquo   &emsp &emsp 要让科学为我国自主知识产权的新技术、新产业提供支柱和动力,还需要付出很大的努力。   &emsp &emsp 要改善我国的科学,不仅需要改革体制,而且需要改进文化。科学史显示:对科学家不能求全,而要求尖 在合法和合规的情况下,提供自由创造的环境,任其飞翔。&ldquo 枪打出头鸟&rdquo 的社会习俗是科学创新的死敌。   &emsp &emsp 在中国科学似乎进入快速发展期的今天,也需看到:近十几年来,中国社会和青少年越来越热衷于付出少而收获大的职业,对科学的热情越来越小。这不限于国内的学子,也含海外华人。也就是说,我们旧问题还没有解决,又出现了新问题。可能导致的后果是:我国科学的最高峰就在今后三十年内,原来有热情的人继续努力形成中国科学上升的曲线,而后继人才短缺形成科学的平台期或下降的曲线,它们的交汇或许将决定我国科学未来走向。   &emsp &emsp 如何避免下降的曲线不仅是科学界的问题,而是中国社会的问题。未来的中国固然毋需如1956年或1978年般全社会对科学的热情,但如果我们很快就变成低于美国2010年代对科学的热情,在2049年赶不上2014年的日本,中华民族在科学上是否会&ldquo 未老先衰&rdquo ?我们希望中国科学上升的曲线不止三十年,但不能仅仅依赖盲目的信念,而要改变当前对潜在危机熟视无睹的局面。   &emsp &emsp 呼唤科学精神   &emsp &emsp 科学与技术发明、经济基础密切相关,也是文化的要素。   &emsp &emsp 在我国,科学能否成为文化的核心之一,可能问题还很大。我们对真理的追求,对自然的好奇,对逻辑的严密,对事物的客观等等都&ldquo 仍需努力&rdquo 。科学所要求的诚实、怀疑、开放、宽容、求真、合作等等也是我国社会文化建设的重要内容。   &emsp &emsp 我们探讨中国的科学文化,目的是希望中国的科学早日达到梁启超先生对中国学术的期许&mdash &mdash &ldquo 研究高深之学理,发挥本国之文明,贡献于世界之文明&rdquo 也是希望科学精神进入中国文化的内核。
  • ACCSI2023第一波早鸟票开抢!仅剩79张!
    第十六届中国科学仪器发展年会(ACCSI2023)以“创新发展 产业互联”为主题,由仪器信息网(instrument.com.cn)主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网(woyaoce.cn)、北京怀柔仪器和传感器有限公司等单位协办,中国仪器仪表行业协会、中国仪器仪表学会等单位支持。ACCSI2023拟定于2023年5月17-19日在北京怀柔雁栖湖国际会展中心召开。大会分设16个分论坛,聚焦质谱、电镜、光谱等热门仪器探讨产业发展,深度剖析仪器产业在生命科学、制药、环境等热门领域发展机遇;与此同时,设有怀柔区高端仪器装备和传感器产业推介会、韧性城市发展论坛暨应用场景发布会等分论坛,旨在促进中国科学仪器行业“政、产、学、研、用、资、媒”等各方的有效交流。2023年5月17-19日北京怀柔,一场专属科学仪器人的峰会,等你来~早鸟票抢购:原价2500元,现早鸟价2000元(优惠截止日期:2023年4月17日)扫码抢票会议日程,请点击:ACCSI2023年会官网报告及参会报名:010-51654077-8229 13671073756 杜女士 赞助及媒体合作:010-51654077-8015 13552834693 魏先生 微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。
  • 聚焦国产仪器 科研何时不再“用别人的枪打打过的鸟”
    “用别人的枪、走别人走过的路、打别人打过的鸟。”今年两会,全国政协委员、中科院生物物理所所长徐涛用这句简单易懂的话,概括了中国科研领域依赖外国科研仪器装备的现实情况。  徐涛通过对诺贝尔奖的统计,指出了科研仪器装备与科研成果之间的紧密联系。“科研仪器装备是支撑科技创新的原动力,诺贝尔奖有1/3与科研仪器装备的发展直接相关,还有1/3与科研仪器装备的发展间接相关。”他说。  然而,在关乎科研原始创新的仪器装备之战中,国产装备却在和进口装备的较量中败下阵来。“2014年,国产仪器与进口仪器之间的贸易逆差高达177亿美元。”徐涛公布的这组数字令许多人感到震惊。  长期从事生物化工领域科学研究的全国政协委员、清华大学教授邢新会和徐涛一样关注到了国产仪器装备发展的困境。  “生物行业没有仪器就没法做研究。”邢新会告诉《中国科学报》记者,“生物产业的发展对国家经济发展非常重要,我国生物行业发展体量很大,但现在生物仪器中99.9%的设备来自国外。”  事实上,进口仪器装备独占鳌头的还有医学领域。全国政协委员、中华医学会副会长吴明江的提案中就指出,我国高端医疗设备,“80%以上依赖进口,此类产品的核心技术、材料或核心部件多数被国外公司垄断,即使国内生产组装,也要进口核心部件或材料,缺少核心技术”。  “多(数量多)、小(规模小)、弱(技术水平弱)”,吴明江如是总结我国医疗仪器生产的特点,对当前形势的上述判断,隐藏着他对国产仪器装备发展深深的担忧。不过,相较于吴明江,邢新会却将国产仪器装备的良好发展势头看在了眼里。  邢新会表示,目前我国在装备研制平台方面已经有很好的支撑机制,但是,国家自然科学基金委主要支持对科研仪器原理的基础研究,而科技部支持的“十三五”重大仪器专项,则主要针对大科学装置。不过,他认为,“那些对衣食住行、生活、产业发展有普遍意义的装备还发展不足”。  “装备研究属于多学科交叉领域,我国学科交叉做得比较弱,有些人想做但是做不了。现在科技发展这么快,如果有机会推动国产仪器研制,我们就可以在设备领域根据自身需求去创新去发展,这是未来高科技设备产业发展的一个重要方向。”邢新会说。  他建议,国家应该有相应政策,支持与民生相关的国产装备研制,在同等质量、同等水平的情况下,鼓励使用国产仪器。  邢新会的建议说到了徐涛的心坎里。  徐涛发现,在科研仪器装备研制环节,发达国家会通过国家投入资助仪器装备的原始创新,同时还会在采购环节通过政府采购等形式保护本国产品。“例如美国规定,政府采购要优先购买‘在美国生产或者制造的零部件的成本超过所有零部件成本50%’的‘美国产品’。”他说。  而进口仪器装备之所以占据我国半壁江山,在徐涛看来,与我国在采购环节的相关规定不够完善密切相关。因而,“细化落实国产科研仪器装备同等条件下优先采购机制”便成为了他的首要建议。  徐涛希望,基于我国科技创新市场容量巨大的现实情况,可将国产高科技产品采购规模大幅提升。同时,通过建立对自主创新仪器装备的科学定价机制,鼓励和支持企业加大对科研创新的投入。  “我国有很多力量在做仪器的自主创新,转化之所以没做起来,还是一些政策没有用好用活,特别是供给侧改革,国内科研仪器产业应该通过供给侧改革提供巨大市场需求,帮助国产科研仪器装备发展起来。”徐涛说。
  • 赛默飞发布测定清漆中六亚甲基二异氰酸酯单体(HDI)的解决方案
    2015年7月28日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布了使用GC-FID法测定清漆中六亚甲基二异氰酸酯单体(HDI)的解决方案。六亚甲基二异氰酸酯是全球应用发展十分迅速的一种新型聚氨酯原料。HDI 及 HDI 缩二脲、三聚体是生产聚氨酯涂料及聚氨酯弹性体的重要原料,广泛用于航空、汽车、建筑、木器、塑料皮革等行业和领域。HDI吸入有毒,会强烈腐蚀皮肤,引起红肿、胀痛、感染和皮疹。本品蒸气会刺激眼睛粘膜和呼吸道,引起流泪和咳嗽,可能会引起永久性眼部疾病。接触皮肤或吸入其蒸气可能会引起过敏。目前六亚甲基二异氰酸酯单体检测的检测方法有《GB/T 18446-2009 色漆和清漆用漆基 异氰酸酯树脂中二异氰酸酯单体的测定》,但是方法老旧,单点校正不准确,恒温分析会导致峰型较差,油漆残留在色谱柱内等缺点,因此需要改进。此次赛默飞发布的解决方案基于《GBT18446-2009 色漆和清漆用漆基 异氰酸酯树脂中二异氰酸酯单体的测定》,采用Thermo ScientificTM TRACE 1310气相色谱仪,搭配FID检测器,通过优化子内标物和HDI的浓度比,并将原来的130℃恒温模式分析改为程序升温模式分析(在高温度下运行几分钟,降低色谱柱污染,延迟使用寿命),对相应的气相色谱条件进行了优化;色谱柱由15m毛细管柱改为通用型的 30m 毛细管柱;同时采用多点校正的方式,使得内标物和待测组分的分离度更高、峰型更好,定量更加准确。产品链接:TRACE 1310 气相色谱仪www.thermoscientific.cn/product/trace-1310-gas-chromatograph.html解决方案下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/petrochemical/documents/Measurement-of-HDI-in-varnish.pdf-------------------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 数字PCR准确量化定量结直肠癌患者血浆中ctDNA甲基化水平
    导读 :基因调控区的DNA甲基化状态的改变可导致多种癌症的发生。这种表观遗传学改变在生物学上是稳定的,并存在于循环肿瘤DNA(ctDNA)中,使其适合于早期检测和无创动态监测肿瘤负荷。数字PCR技术凭借其较高的灵敏度、精度、准确度以及对抑制剂的耐受度,针对低浓度样本检测时优势显著。文献解读: 法国贝桑松大学医院肿瘤生物学系的研究者在BMC Cancer(IF:3.8)发表了题为The detection of specific hypermethylated WIF1 and NPY genes in circulating DNA by crystal digital PCR&trade is a powerful new tool for colorectal cancer diagnosis and screening的文章。在转移性和II/III期结直肠癌(CRC)患者中,WNT inhibitor因子1(WIF1)和神经肽T(NPY)的甲基化程度较高,作者评估是否可以使用WIF1和NPY的甲基化程度作为一种结直肠癌标志物,该研究建立了一种将亚硫酸氢盐法(bisulfite-将未甲基胞嘧啶转化为尿嘧啶)与数字PCR相结合的方法。 文章相关结果: ▲Bisulfite方法检测甲基化的原理 A、Naica Crystal Miner分析软件给出的 3D点图,用于检测超甲基化WIF1和NPY和参考基因ALB。 B、通过测量在未甲基化DNA的背景下甲基化DNA的系列稀释液获得的标准曲线。为了确定观察到的突变体数量是否显著高于LOB,使用了基于假阳性概率的贝叶斯方法。对于每个结果,通过减去最终的假阳性分区(通过其概率分布加权)来校正阳性分区的数量。当校正后的95%置信区间的下限包括零时,该样本被视为阴性。 3色Naica Crystal Digital PCR检测WIF1和NPY 分别检测了10个来自III期或IV期CRC患者和5个健康个体的血浆样品。来自CRC患者的所有血浆DNA样本的高甲基化WIF1和NPY得分均为阳性,而在健康个体中未检测到高甲基化的WIF1和NPY。通过将WIF1和NPY浓度与ALB参考浓度对比评估,血浆DNA中的高甲基化WIF1比例范围为8%至93%,而高甲基化NPY的比例范围为0.1%至78%。血浆样品中检测到的检测限甲基化WIF1和NPY量分别为5.1和1.2cp/μL。 ※ Concentration of ALB (white bars), hypermethylated WIF1 (black bars) and hypermethylated NPY (hashed bars) in plasma of CRC patients and healthy individuals. 通过上述方法,即经亚硫酸氢盐转化后再进行3色数字PCR方法,能够在每25μL体系中可靠的检测低至25和5个拷贝的高甲基化WIF1和NPY,并且该检测结果可以用作通用的结直肠癌标志物和肿瘤特异性突变的替代物。使用3色Naica Crystal Digital PCR检测WIF1和NPY,结果和理论值一致,未出假阴性和假阳性结果。 该研究的结论是使用naica系统检测结直肠癌(CRC)中特定超甲基化的WIF1和NPY基因可以作为CRC诊断和筛查的强大新工具。研究发现,与邻近非肿瘤组织相比,肿瘤组织中的NPY和WIF1基因显著超甲基化(WIF1的p值0.001 NPY的p值0.001)。此外,研究发现NPY或WIF1在液体活检中的超甲基化具有95.5%的敏感性[95%CI 77–100%]和100%的特异性[95%CI 69–100%]。研究结果表明,NPY和WIF1的超甲基化是CRC的恒定特异性生物标志物,与它们在致癌过程中的潜在作用无关。 |欢迎来电垂询| naica️ ® 全自动微滴芯片数字PCR系统申请试用,大家可以拨打电话010-57256059或者官微申请,诚挚邀请您到Stilla数字PCR中国技术示范与服务中心参观,期待与您相见。 艾普拜生物提供多种靶点的数字PCR检测试剂盒和检测assay,欢迎订购和咨询。 个性化定制服务 艾普拜生物数字PCR个性化定制服务覆盖多种检测试剂需求 ( 如鉴定、易位、突变检测、多重突变、高阶多重等 ),更多信息请联系您身边艾普拜生物工作人员或电话联系我们。
  • ATAGO(爱拓)UG-α尿比重测量仪通过计量局认证评审鉴定
    近日,由华南国家计量测试中心广东省计量科学研究院专家评审组对ATAGO(爱拓)尿液比重测量仪进行了计量认证现场评审。广东省计量科学研究院是华南国家计量测试中心(简称SCM)作为国内获得国家认可委员会认可项目最齐全的校准实验室,是华南地区计量标准装置最全,覆盖领域 最广,检测质量最好的法定计量技术机构。   经现场SCM委员会审核,评审专家组对ATAGO(简称:爱拓)尿液比重测量仪给予了肯定,评审组专家认为ATAGO 尿液比重测量仪 检测环境、仪器设备和标准方法应用均能满足检测标准要求,顺利通过计量认证评审。 UG-α尿液比重测量仪 UG-α尿液比重测量仪 校准鉴定证书 UG-α尿液比重测量仪,PAL-10S 数字式手持数显尿比重折射计两款产品在临床医学、体育检测过程中所展示的功能及便携性。通过折光率与尿比重曲线,可以直接读取尿比重值,针对温度变化的自动温度补偿功能。快速,方便,高效。选型提示:人类、犬类、猫科等其折射率与尿比重的对应曲线是不同的,可以因检测对象不同对应选择相应的型号。成功被应用单位举例:北京国家反兴奋剂中心、2008北京奥组委、2010广州亚组委等 ATAGO(爱拓)UG-α尿液比重测量仪计量结果 鉴定计量局SCM委员会一致认为:ATAGO(简称:爱拓)仪器研制开发的“UG-α尿液比重测量仪”技术均达到国内领先水平,同意通过计量局认证鉴定资格。ATAGO(爱拓)为您提供100种以上物质浓度检测方案,欢迎您的咨询。官方网站:http://www.atago-china.com企业QQ:800064900广州分公司电话:86-20-38108256/38106065/38106057上海办事处电话:86-21-61131991/61131992/61131993
  • 继血碘尿碘之后,食品中碘元素再次启动ICPMS方法
    继血碘尿碘之后,食品中碘元素再次启动ICPMS方法关注我们,更多干货和惊喜好礼● 碘的检测 ●iCAP RQ ICPMS碘元素是人体必需的微量元素,90%以上来源于食物,由消化系统进入血液循环到达在人体各个组织器官,碘的代谢主要通过肾脏由尿液排出。碘元素在人体处于动态平衡状态,缺乏或过量均会导致相关疾病,可通过检测血液尿液中的碘元素判断个体对碘元素的需求,从而精确选择含碘食物的摄入。ICPMS作为元素分析利器之一,很早就被广大分析工作者应用于血液尿液中碘的测定。此前WS/T 107.2-2016《尿中碘的测定》第2部分便将电感耦合等离子体质谱法作为尿液中碘元素分析方法之一,近日发布的最xin食品标准GB5009.267-2020《食品中碘的测定》再一次新增ICPMS方法,将ICPMS测定碘的方法推广至食品安全领域。ICPMS测定碘元素 关于ICPMS测定碘元素方法,赛默飞具有丰富的经验,很早之前便采用iCAP Q和RQ ICPMS实现血液尿液中碘元素的精确分析。WS/T 107.2-2016《尿中碘的测定》第2部分采用的稀释剂为0.25%四甲基氢氧化铵(TMAH)和0.02%曲拉通X-100混合溶液,方法检出限为0.4μg/L(换算至上机溶液检出限为0.04μg/L),可以直接测定碘含量为0 μg/L~1000 μg/L的尿样。本次GB5009.267-2020《食品中碘的测定》中ICPMS方法采用的稀释剂为0.5%TMAH,方法检出限为0.01mg/kg(换算至上机溶液为0.1μg/L),两个方法难度相当。为了消除同学们对新标准实施忧虑,我们采用赛默飞iCAP RQ ICPMS对GB5009.267-2020中ICPMS方法进行验证,实验证明iCAP RQ ICPMS具有极高的灵敏度,对于碘元素的检出限可达0.014 μg/L(实验中所用TMAH为分析纯试剂,碘的背景较高,若使用纯度更高的TMAH可获得更低检出限),按照0.5g取样量,定容至50mL计算,可获得0.0014mg/kg方法检出限,远低于标准要求。0.5% TMAH为碱性试剂,属于高基体样品,对仪器的基体耐受性提出挑战,下图为对0.5% TMAH连续分析4h以上内标(Re、In和Rh)回收情况,内标回收率均稳定在90%~110%之间。 iCAP RQ ICPMS之所以长期测试0.5% TMAH仍能保持出色的稳定性,有赖于其稳健的等离子性能和专利嵌片耐盐技术,对于0.5% TMAH无需气体稀释,采用标配进样系统即可获得稳定的测试效果。针对碘元素,赛默飞不仅具有成熟的元素总量分析方案,还有丰富的碘形态分析案例,更多精彩敬请关注!飞飞祝大家圣诞快乐!MERRY CHRISTMAS“码”上下载填写表单即刻获取【ICPMS应用文集】 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 合作研究|岛津HPLC-ICPMS助力砷中毒患者尿液中砷形态研究
    导读 临床金属组学是金属组学的一个分支,主要研究尿液、血液和组织中的金属组。砷中毒的临床诊断主要依据尿中总砷的浓度,由于不同形态砷的毒性差异很大,分析尿中总砷超标的砷形态,可为精确治疗提供依据,也可用于了解砷中毒患者经二巯基丙烷钠治疗后体内砷的去向。首都医科大学附属北京朝阳医院职业病与中毒医学科是国家临床重点专科,多年来承担着中毒事件的处置工作。近期,岛津企业管理(中国)有限公司与该单位合作,利用LC20-Ai+ICPMS-2030测定了砷中毒患者经过治疗后不同时间段内尿液中不同形态和价态砷的含量分析。合作文章发表在Atomic Spectroscopy期刊上,岛津应用工程师宋晓红老师为第一作者,首都医科大学附属北京朝阳医院职业病与中毒医学科李惠玲老师为通讯作者。 砷中毒主要由砷化物引起,其中以毒性较大三氧化砷(俗称砒霜)多见,还包括二硫化砷(雄黄)、三硫化二砷(雌黄)及砷化氢等。一般经口、皮肤或伤口吸收,当体内的砷蓄积到中毒量,机体会产生一系列病理生理变化及其临床表现,临床表现为急性胃肠炎、神经系统、肝和砷功能损害等,严重者可危及生命。 (期刊截图) 砷形态分析强有力手段图1. 岛津LC-20Ai+ICPMS-2030元素形态分析联用系统• 全PEEK的泵头和管路,更好的惰性• TRM软件同时控制LC和ICPMS方法参数设置• 节约气体,提高工作效率 方法建立:文章中尝试了不同的梯度洗脱条件,优化了砷化合物的分离度和检测灵敏度。表1.和表2.分别为优化的色谱参数和梯度洗脱参数。图2.为在表1.和表2.设定的参数条件下,各砷化合物的色谱图。 表1. 色谱参数表2. 梯度洗脱参数图2. 色谱图1. 砷胆碱(AsC)+ 砷甜菜碱(AsB) 2. 二甲基砷(DMA) 3. 亚砷酸(As(Ⅲ)) 4. 一甲基砷(MMA) 5. 砷酸(As(Ⅴ)) 临床应用取服用雄黄粉后引起砷中毒患者的尿样进行尿砷形态分析,该患者随机尿检结果显示尿砷浓度6.7 µg/mL。采用二巯基丙磺酸钠治疗后,收集该患者的尿样进行尿砷浓度测定评估疗效。检测结果显示(见表3.),尿中AsC+AsB均未检出,其余形态砷在治疗过程中浓度逐渐下降,其中As(III)降低明显,至第16天未检出。第15天总砷结果显示<0.1 µg/mL,低于中毒限值。雄黄中溶于水的As(III)及As(V),进入体内后,一般认为砷在体内的简要代谢过程为:iAs(Ⅲ)→iAs(Ⅴ)→MMA(Ⅴ)→MMA(Ⅲ)→DMA(Ⅲ)→DMA(Ⅴ)→尿排出。本研究发现雄黄摄入后砷在体内代谢导致患者尿中DMA和MMA增高,明显高于健康人群。在用二巯基丙磺酸钠治疗后,As(III)被络合排出体外,其余各种形态的砷也逐渐减少。 表3. 砷中毒患者治疗后尿液测定结果(ng/mL)结论建立高效液相色谱-电感耦合等离子体质谱(LC-ICP-MS)测定尿液中形态砷含量的检测方法,用于评估总砷超标患者体内形态砷的浓度。该方法可应用于健康人尿液、接受砷剂治疗的患者尿液和其他砷中毒患者尿液中砷形态的分析 专家观点 文章通讯作者李惠玲老师表示:砷的毒性与其存在的形态密切相关,生物样品中砷形态分析需要精准可靠的联用技术和仪器设备。岛津LC-20Ai和ICPMS-2030联用完成了砷中毒患者的中毒筛查及治疗过程中尿砷形态的检测。该方法实现了尿中砷形态良好的分离,准确度、灵敏度及稳定性均满足检测的需求。
  • 关注 | 13项国家计量技术规范批准发布
    市场监管总局关于发布《标准铂铑10-铂热电偶检定规程》等13项国家计量技术规范的公告 根据《中华人民共和国计量法》有关规定,现批准《标准铂铑10-铂热电偶检定规程》等13项国家计量技术规范发布实施,现予以公告。市场监管总局2022年12月29日《标准铂铑10-铂热电偶检定规程》等13项国家计量技术规范名录 序号编号名称批准日期实施日期备注1JJG 75—2022标准铂铑10-铂热电偶检定规程2022-12-272023-06-27代替JJG 75—19952JJG1190—2022超声波燃气表检定规程2022-12-272023-06-273JJG1191—2022车用尿素加注机检定规程2022-12-272023-06-274JJF 2012—2022超声波燃气表型式评价大纲2022-12-272023-06-275JJF 2013—2022车用尿素加注机型式评价大纲2022-12-272023-06-276JJF 2014—2022金属振子式速率陀螺仪校准规范2022-12-272023-06-277JJF 2015—2022单轴倾角传感器校准规范2022-12-272023-06-278JJF 2016—2022阻尼振荡波模拟器校准规范2022-12-272023-06-279JJF 2017—2022(20~150)kVX射线束半值层仪校准规范2022-12-272023-06-2710JJF 2018—2022电荷量测量仪校准规范2022-12-272023-06-2711JJF 2019—2022液体恒温试验设备温度性能测试规范2022-12-272023-06-2712JJF 2020—2022加油站油气回收系统检测技术规范2022-12-272023-06-2713JJF 1261.5—2022电饭锅能源效率计检测规则2022-12-272023-06-27代替JJF 1261.5—2017
  • 科技禁毒丨固相萃取-衍生化-气相色谱-质谱联用法同时测定尿液中4种阿片类物质
    公安机关用胶体金尿检法对海洛因滥用者的检测常常受到阿片类镇咳药的干扰,使用传统液-液提取法进行实验室检验,操作效率低,灵敏度不高,无法满足公安机关打击涉毒案件的需要。为此,湖北省黄石市公安局、黄石市公安司法鉴定中心、黄石市毒品检验鉴定中心有关研究人员建立了尿液中吗啡、O6-单乙酰吗啡、可待因和乙酰可待因4种阿片类物质的固相萃取和衍生化技术结合气相色谱-质谱联用(GC-MS)同时检测方法,该研究成果发表于Chinese Journal of Chromatography。尿样用磷酸盐缓冲液调节至pH=6后,经MCX固相萃取柱净化,用N-甲基-N-(三甲基硅烷基)三氟乙酰胺(MSTFA)对吗啡、O6-单乙酰吗啡、可待因进行衍生化,供GC-MS检测。考察了上样和洗脱流速、淋洗液中甲酸体积分数、洗脱液中氨水体积分数、3%(v/v)甲酸甲醇淋洗液体积和固相萃取柱吹干时间对萃取效果的影响。确定上样和洗脱流速1.0mL/min,淋洗液中甲酸体积分数3%,洗脱液中氨水体积分数5%, 3%(v/v)甲酸甲醇淋洗液体积1mL,吹干时间1min为最佳条件。在此条件下,4种阿片类物质在0.02~0.8μg/mL范围内线性关系良好(r2≥0.998),检出限(LOD)为0.0016~0.0039μg/mL,定量限(LOQ)为0.0054~0.0128μg/mL,当标准添加水平为0.02、0.1、0.2μg/mL时,回收率为93.0%~110.3%。该方法结合自动化技术,对固相萃取条件精确控制,操作简便、快速、灵敏、准确,适合尿液中吗啡等4种阿片类物质快速测定,可用于海洛因吸食者的大规模监控,并能准确排除因服用含阿片类镇咳药导致的吗啡胶体金尿检假阳性。此次实验样品前处理过程采用睿科全自动固相萃取仪、睿科氮吹浓缩仪。Fotector Plus 高通量全自动固相萃取仪流速精准,12通阀快速切换溶剂Auto EVA 80 高通量全自动平行浓缩仪大批量样品浓缩,独创变径氮吹针,平行性高
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 中科院生物物理所在蛋白调节DNA去甲基化的新发现
    11月10日,《分子细胞》(Molecular Cell)杂志在线发表了题为Cooperative Action between SALL4A and TET Proteins in Stepwise Oxidation of 5-Methylcytosine 的研究文章,报道了在小鼠胚胎干细胞中,SALL4A蛋白与TET家族双加氧酶共同调节增强子上5-甲基胞嘧啶(5mC)的氧化过程。  哺乳动物DNA的胞嘧啶甲基化修饰被认为是最稳定的表观遗传修饰,在维持性DNA甲基转移酶的作用下,亲代细胞基因组的DNA甲基化信息经过有丝分裂以半保留复制的方式传递给子代细胞。近年来的研究发现,TET家族蛋白能够将5mC逐步氧化成5-羟甲基胞嘧啶(5hmC)、5-醛基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC),并走向最终的去甲基化。这种动态变化拓展了DNA甲基化所承载的表观遗传信息的可塑性。在基因组上,5mC的氧化受到严格地控制,在某些基因组区域,5hmC会稳定存在,而在别的基因组区域5hmC只是进一步氧化和去甲基化的中间体。这一选择性事件的分子基础尚不明朗。  该研究利用稳定同位素标记的细胞培养(SILAC)联合亲和纯化与蛋白质定量质谱技术,发现锌指结构域蛋白SALL4A倾向于结合含有5hmC修饰的DNA。SALL4是早期胚胎发育过程中的一个重要基因,它的突变会导致常染色体显性遗传的Duane-radial ray综合症。Sall4基因敲除的小鼠胚胎在围着床期即停止发育,并很快死亡。该研究发现,在小鼠胚胎干细胞中,SALL4A蛋白主要定位于增强子,其与染色质的结合在很大程度上依赖于TET1蛋白。进一步分析基因组上SALL4A结合位点的胞嘧啶修饰状态发现,这些位点上缺乏稳定的5hmC,却富集了进一步氧化的产物5fC和5caC,提示SALL4A可能促进5hmC的进一步氧化。果然,敲除Sall4导致在原先的SALL4A结合位点上积累较高水平的5hmC,因为敲除Sall4降低了TET2的稳定结合,不利于5hmC的进一步氧化。  这一工作丰富了对TET家族蛋白调控的DNA氧化和去甲基化过程的理解,并提出了5mC的协同性递进氧化概念。促进了对DNA甲基化的动态性及其在胚胎干细胞功能及重编程中作用的理解。  中国科学院生物物理研究所研究员朱冰和副研究员张珠强为本文的共同通讯作者。朱冰课题组熊俊和张珠强为本文的并列第一作者。同济大学教授高绍荣和博士陈嘉瑜,北京生命科学研究所研究员陈涉、丁小军和许雅丽,中科院生态环境研究中心研究员汪海林和博士黄华,中科院上海生命科学研究院生物化学与细胞生物学研究所研究员徐国良,日本熊本大学教授Ryuichi Nishinakamura也参与了该项研究。该研究得到国家自然科学基金委、科技部、中科院战略性先导专项和美国霍华德?休斯医学研究所国际青年科学家项目的资助。图示:SALL4A促进由TET1和TET2介导的5mC氧化过程
  • 千呼万唤始出来,测定N-二甲基亚硝胺的新标准终于上线啦!
    测定N-二甲基亚硝胺的新标准!本次标准更新,新增了QuEChERS法测定,Detelogy带你一起解读!亚硝酸盐广泛存在于食品之中,很容易与胺化合,生成亚硝胺。亚硝胺与苯并(α)芘、黄曲霉素是世界公认的三大强致癌物质。N-二甲基亚硝胺是N-亚硝胺类化合物的一种,食品中天然存在的N-亚硝胺类化合物含量极微,但其前体物质亚硝酸盐和胺类广泛存在于自然界中,在适宜的条件下可以形成N-亚硝胺类化合物。N-二甲基亚硝胺是国际公认的毒性较大的污染物,具有肝毒性和致癌性。N-二甲基亚硝胺在啤酒、肉制品及鱼类腌制品等食品和环境中广泛存在。肉制品加工过程中会使用亚硝酸盐添加剂,使其产生理想的粉红色,增加风味,且还具有抗氧化的效果。但是,亚硝酸盐在腌肉中可以转化为亚硝酸,极易反应生成致癌性物质:N-亚硝胺类化合物;水产品腌制过程中使用的粗盐通常含有硝酸盐、亚硝酸盐,加上微生物能将硝酸盐还原成亚硝酸盐,从而蓄积亚硝酸盐。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次更新,大家的目光都聚焦在新增的第二法:QuEChERS-气相色谱-质谱/质谱法上,相比起其他实验方法,不仅精简了实验设备,在一定程度上也加快了实验的效率。下面一起来看看!实 验 步 骤 提 取 干制品称取5g于50mL离心管,加入5mL水,振荡混匀(鲜样品称取10g置于50 mL离心管中),加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈,MultiVortex多样品涡旋混合器调节3000rpm,涡旋振荡2min后置于-20℃冰箱冷冻20min,取出后加入陶瓷研磨珠1粒以及4g硫酸镁和1g氯化钠,放入MGS-24高通量智能动植物研磨均质仪振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min,上清液待净化。 净 化 称取150mgPLS-A粉末(或1g增强型脂质去除EMR-Lipid萃取粉剂或同级品)于15mL离心管中,加入5mL水于MultiVortex多样品涡旋混合器涡旋振荡,立即加入5mL待净化上清液涡旋振荡1min,置于冷冻离心机,9000r/min,10℃离心5min,待除水。 除 水 称取1.6g硫酸镁和0.4g氯化钠于另一15mL离心管,加入上述待除水净化液于MultiVortex多样品涡旋混合器涡旋振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min。取上层有机相经0.22μm微孔滤膜过滤后。上机测定。“PreferenceDetelogy优选仪器
  • NAR | 许伟团队揭示BAF155蛋白的精氨酸甲基化修饰水平影响恶性肿瘤转移的新机制
    蛋白质精氨酸甲基化修饰是一类由精氨酸甲基转移酶(Arginine methyltransferases, PRMTs)介导的翻译后修饰作用。PRMTs不仅能够通过甲基化修饰组蛋白上特定位点的精氨酸来调控下游靶基因的转录活性,还参与修饰了多种非组蛋白类作用底物,以此来影响RNA剪接、蛋白质翻译、细胞周期等一系列细胞生物学行为。近年来,越来越多的证据表明蛋白质精氨酸甲基化水平的失调与恶性肿瘤的发生、发展密切相关。因此,PRMTs作为潜在的肿瘤治疗靶点,逐渐引起了全球科学家的关注。2021年11月19日,威斯康星大学麦迪逊分校医学院许伟教授团队在Nucleic Acid Research上发表题为BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity的研究成果。该研究发现,精氨酸甲基化修饰的BAF155蛋白可以通过操纵增强子、破坏机体的抗肿瘤免疫能力,从而促进恶性肿瘤的转移 。BAF155是染色质重组复合物SWI/SNF的重要亚单位之一。2014年,许伟课题组在Cancer Cell发文,首次证实了PRMT4(又称CARM1)能够通过甲基化修饰BAF155蛋白第1064位精氨酸,起到促进三阴性乳腺癌转移的作用【1】。近日,该课题组以基因编辑的乳腺癌细胞系与小鼠模型为基础,结合多组学技术揭示了me-BAF155促进乳腺癌转移的内在分子机制。超级增强子(Super-enhancers, SEs)是基因组中大量增强子富集的转录调控区域。在转录过程中,通过富集多种转录因子和辅因子(BRD4等)来大幅度激活下游靶基因的转录活性。本研究中,作者采用ChIP-seq技术对me-BAF155的基因组结合位点进行全局定位分析,发现me-BAF155和BRD4在SEs处共定位,以此调节关键癌基因的表达水平。CARM1抑制剂(CARM1i)的处理,能够使得me-BAF155和BRD4从SE上解离,减少SE数量,激活干扰素α/γ通路,增强宿主免疫反应,起到抑制肿瘤生长和转移的治疗效果。最后,作者采用VERSA技术分离循环肿瘤细胞,证实me-BAF155在高转移特性的三阴性乳腺癌患者的循环肿瘤细胞中呈稳定、持续的强阳性表达(图1)。该研究首次揭示了me-BAF155在促进恶性肿瘤转移中具有双重作用:通过招募BRD4激活增强子依赖的癌基因转录活性;通过抑制干扰素α/γ通路以削弱宿主免疫反应。尽管CARM1抑制剂具有较低的细胞毒性,但是在体外依然能够显著抑制三阴性乳腺癌细胞的迁移,在体内显著抑制肿瘤生长和转移。因此,作者提出CARM1抑制剂有望被开发成为单独使用的抗癌药物,或与其他治疗药物(如免疫治疗)联合使用,用于治疗转移性恶性肿瘤。另外,相较于现有的CARM1抑制剂,开发me-BAF155(R1064)靶点特异性的小分子抑制剂,有望产生抑癌效果更好、副作用更少的新型抗肿瘤药物。
  • 沃特世为分析饮料中的2-甲基咪唑和4-甲基咪唑含量提供解决方案
    沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量 赵嘉胤.蔡麒.孙庆龙 引言 焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。 焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 沃特世(Waters® )公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC® H-CLASS PDA以及UPLC/Xevo® TQ MS的分析,完成出色的定性定量工作。 实验条件 样品前处理方案 固相萃取SPE解决方案&mdash &mdash Oasis® MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。 ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件: 色谱柱: ACQUITY UPLC® BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM甲酸铵 柱温: 35˚ C 检测波长: 215nm 进样量: 5&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件: 色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM 甲酸铵 柱温: 35˚ C 进样量: 2&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 实验结果及讨论 1、ACQUITY UPLC H-CLASS PDA分析 混合标准品色谱图 饮料空白样品图 基质添加回收色谱图 2、ACQUITY UPLC/Xevo TQ MS分析 混合标准品TIC 3.2.3 茶饮料样品加标与空白对比分析 3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。 同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。 结论 1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1&mu g/kg。 2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。 3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 泳池水质普遍余氯低尿素高
    7月6日,北京市卫生监督所检查人员来到朝阳区朝阳公园检查露天游泳池水质通过手机扫描二维码可获得水质实时监测数据。  随着夏季来临,气温不断攀升,北京市各大游泳场馆人气爆棚。然而,眼前的一池碧水是否真像看到的这么干净?近日,记者跟随市卫生监督所工作人员,对多家室外游泳馆水质进行检测,发现所检测的游泳场馆泳池水质均存在余氯偏低、尿素较高等问题。  据市卫生监督所公共场所卫生监督科副科长刘颖介绍,按照国家标准,游泳场馆水质检测主要针对五项卫生指标(水温、余氯、PH值、浊度、ORP)。其中,余氯浓度过低对池水起不到消毒效果,池水里的细菌及致病微生物就可能会过多地繁殖,从而引起疾病传播 而过高则可能对人体的眼黏膜、皮肤黏膜及口腔黏膜等产生刺激作用,特别是对儿童、妇女和老年人等敏感人群会更明显。另外,泳池还普遍存在尿素较高的问题,同样对人体有害。  经过记者的探访和了解,游泳馆水质不达标多为经营者为省钱偷工减料所致。  □现场  刚加消毒药剂余氯仍低于国标  7月6日下午2时许,记者跟随市卫生监督所工作人员来到北京团结湖公园海滨乐园。记者在现场看到,不少人正在泳池里游泳嬉戏。  随后,市卫生监督所的工作人员走到一处游泳池旁边,从游泳池里取出水,用检测余氯的试纸进行检测。大约1分钟后,检测数据显示余氯值为0.1mg/L。随后,工作人员又走到另外一个泳池,让游客在泳池中央取出一小瓶水进行检测,检测结果显示余氯为0.2mg/L。  记者了解到,为了保持游泳池水的卫生,杀灭池水中的致病微生物,各游泳场馆在循环过滤池水的同时会加入一定剂量的含氯消毒药剂,从而产生游离性余氯。游泳池水余氯浓度的国家标准为0.3-0.5mg/L,然而,在本次检查中,该泳池余氯比国家标准低。而该游泳馆一名负责人向市卫生监督所工作人员承认,游泳馆刚对泳池加入含氯消毒药剂不到1个小时。  刘颖介绍,余氯浓度过低对池水起不到消毒效果,池水里的细菌及致病微生物就可能会过多地繁殖从而引起疾病传播 而过高则可能对人体的眼黏膜、皮肤黏膜及口腔黏膜等产生刺激作用,特别是对儿童、妇女和老年人等敏感人群会更明显。另外,夏季气温高阳光照射强烈,会对余氯进行分解,因此,夏季余氯消耗会特别大。余氯补得不够或者没有的话会非常危险。  除滨海乐园外,市卫生监督所还对朝阳公园沙滩主题乐园进行了检测,现场检测了几个点的余氯,其中一个点的余氯数据也略低。  泳池尿素超标来源排汗和小便  根据国家相关标准规定,游泳池水质的尿素应小于等于3.5mg/L。但是根据往年的数据来看,游泳池尿素超标问题普遍存在。  刘颖表示,尿素含量过高时,尿素中的氨会与含氯消毒剂形成氯胺类物质,使游泳者产生厌恶感,刺激皮肤、眼角膜、腐蚀头皮等。  刘颖说,现在不少游泳池采取溢流式循环过滤,其原理是将泳池溢出来的水收集到水箱中,再用循环泵把水抽到沙缸里进行过滤之后重新放回游泳池。虽然毛发等杂质会被过滤掉,但细菌含量等无法降低,而尿素必须换新水才能降低含量。尿素通过过滤循环设备是去除不掉的,每天有人在里面不停地游、排汗或者排尿,尿素会越来越高,所以泳池管理方需要即时补充新水。  “目前我们也在通过其他的方法不换水把尿素去掉。就是通过尿素分离技术,把有机物分解掉。但是这种技术需要费用也较高,只有个别游泳场馆在用。”刘颖说。  据了解,游泳池中之所以有尿素,一方面是人在游泳中会不停地排汗,另一方面就是有人在游泳池中小便。  □原因  为省钱消毒环节“偷工减料”  记者了解到,北京有不少游泳池采取溢流式循环过滤,为了省钱,有些游泳池甚至不开或者只在夜间开启循环系统。但长期不换水、循环系统不开,而为保持水体清澈,一些游泳馆就大量、反复使用聚合氯化铝沉淀剂,吸附水中悬浮物。肉眼看上去清澈透明,实际上水体富含大量铝离子,会对人体尤其是眼睛带来损害。  此外,一些游泳场馆在消毒上也存在“偷工减料”。有业内人士表示,一般来说,一个1000立方米的游泳池用的消毒剂、沉淀剂等各种消毒物料,一个月的费用要1万元左右。市场上各类消毒剂质量和价格参差不齐,为省钱,一些经营者就选用廉价消毒剂,消毒效果难以保证。  □对策  实时监测系统可随时看水质  为应对即将到来的游泳高峰期,目前,全市百家泳池已于上月启动“扫一扫泳池水质我知晓”活动。市民在游泳馆明显处可通过手机扫描此二维码,在游泳前第一时间了解该泳池的余氯、浊度、pH值等数值。如果发现不达标的情况,公众可以通过公共卫生服务热线12320对发现的问题进行投诉。  记者获悉,市卫生监督所在100家游泳场馆安装了实时监测系统,所选择的多是室外的、人多的、学校的、社区的以及承担一些国际国内重大赛事,这占到游泳总人数的百分之八十左右。  目前,北京市游泳场馆电子监管指挥中心建设完毕,实时监测游泳场馆水质的五项主要卫生指标(水温、余氯、PH值、浊度、ORP),并在5分钟到7分半钟更新一组数据。一旦触及预警线,会立刻报警,监督员会立即赶赴现场进行处理。遇到高温天气,卫生监督部门将加强对室外泳池的监督检查。  “为了保证水质,市卫生监督部门今后会对游泳场馆,特别是问题游泳馆加大检查频率”,刘颖说,市卫生监督所将专项监督检查重点解决市民所关注的池水浑浊和尿素含量超标的问题,各级卫生监督机构将通过培训和指导等方式督促游泳场馆经营者加强自身管理,同时对违法行为依法给予行政处罚。  □小贴士  游泳者如何判断和维护水质?  1.到现场一般需要先看下水质的现状,浑浊度现行的国标标准是5,真到5的话已经很浑浊了,没法看了。所以用肉眼看基本上很清澈可以见底,那肯定是在国家标准范围内。  2.站在泳池边闻闻有没有氯气的味道,最好是有淡淡的氯气的味道,不能太浓,也不能闻不到。太浓的话说明余氯超标,会对人体有伤害,闻不到说明余氯太少,达不到消毒效果。  3.像PH值或者浑浊度可能会在实时监测系统上看看数据,然后再结合现场感官现状做一个初步判定。  4.因为男士皮屑多,女士化妆品多,到水里后有机物溶解进去通过一般方法不容易去掉,必须通过强氧化剂分解掉。所以建议广大游泳爱好者养成泳前淋浴等习惯。  国家标准:  水温:22-26  余氯:0.3mg/l-0.5mg/l  PH值6.5-8.5  浊度:0-5  ORP:650  尿素3.5mg/l
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 日本开发出感光仪器检测糖尿病
    日本一个研究小组最新报告说,他们开发出一种数分钟内检测血液中与糖尿病发病有关的多种糖化蛋白质的新方法,这有助于轻松评估糖尿病患病风险。   羟甲赖氨酸等糖化蛋白质随年龄增加而积累,被称为晚期糖基化终末产物(AGEs),AGEs在体内积累可引发糖尿病的各种并发症,因此可以作为糖尿病的指标。利用现有技术虽然能够检测出某一种糖化蛋白质在血液中的浓度,但是却无法同时检测多种糖化蛋白质。人体内AGEs的浓度在短时间内难以变动,更适宜作为健康诊断的指标使用。   日本东洋大学副教授宫西伸光等发明一种新型检测方法,利用半乳糖凝集素易与AGEs结合的特性,设计一种感光仪器,观测AGEs与半乳糖凝集素结合前后的光学变化,从而计算出AGEs的浓度。
  • 你说的白,是什么白:小麦粉中硫脲的测定
    2019年,国家粮食和物资储备局办公室在第330号通知[1]中公开了国家标准《小麦粉》征求意见稿,其中小麦粉的定义为:小麦粉wheat flour是指由普通小麦(六倍体小麦,Triticum aestivum L.)经过碾磨制粉,去除部分麸皮和胚并达到一定加工精度要求的、未添加任何物质的、能够满足制作面制食品要求的产品。与《关于进一步加强小麦粉质量安全监管的公告》(2017 年第132号)[2]中关于小麦粉(通用)中添加物的要求,即“取得‘小麦粉(通用)’生产许可的企业,不得在小麦粉中添加任何食品辅料”,保持一致。 早前被允许添加之后又被禁止的过氧化苯甲酰(Dibenzoyl peroxide, BPO),在近几年的食品安全抽检中时有被检出,其非法添加的目的主要是给新生产的小麦粉脱色[3]。然而在小麦粉的加工和储藏过程中,经常会出现颜色加深的现象,即褐变。发生褐变的主要原因是,小麦籽粒中的多酚氧化酶(Polyphenol oxidase, PPO)催化酚类物质氧化生成褐色或黑色的醌类物质[4],从而影响了小麦粉的色泽,降低了小麦粉的品质。 根据GB 2760-2014 附录B[5]中,对食品漂白剂的定义:能够破坏、抑制食品的发色因素,使其褪色或使食品免于褐变的物质。针对小麦粉的酶促褐变,一些不法的的商贩会通过添加具有还原性的硫脲(Thiourea)进行漂白,硫脲能够抑制多酚氧化酶的活性,阻止褐变的发生,在一定程度上将醌类还原成酚类,掩盖不好的品质,达到提亮增白的效果。而硫脲的非法添加会刺激呼吸道和肠道,抑制甲状腺和造血器官的机能,引起咳嗽、胸闷、头痛、嗜睡、无力、面色苍白、面部虚肿、基础代谢降低、血压下降、脉搏变慢、白细胞减少等症状[6]。早在2001年,世界卫生组织国际癌症研究机构就将硫脲列在了3类致癌物清单中。 原食品药品监督管理总局于2016年发布第196号公告[7],公布了食品补充检验方法《小麦粉中硫脲的测定 BJS 201602》,填补了国内硫脲检测标准的空白。为了进一步规范企业的生产行为,加强小麦粉质量安全监管,总局于2017年发布第132号公告[2],其中明确规定“严禁生产企业在小麦粉中添加过氧化苯甲酰、次磷酸钠、硫脲、间苯二酚、过硫酸盐、噻二唑、曲酸等非食品原料”。 在此背景下,赛默飞实验室对高效液相色谱法测定小麦粉中硫脲的实验条件,开展了相关研究工作。 01样品前处理准确称取均质小麦粉1.0 g(精确至0.01 g)于15 mL旋盖螺口圆底离心管中,加入10.00 mL 80:20乙腈水,旋紧盖子,涡旋分散30 s,水浴超声提取20 min(由于超声时间较长,水浴温度会升高,建议加入冰袋控温),10000 rpm 4℃ 冷冻离心10 min,取上清液过0.2 μm亲水PTFE微孔滤膜,滤液上机测试。02色谱条件● 液相色谱仪:UltiMate™ 3000 HPLC 液相色谱系统● 色谱柱:Syncronis™ HILIC, 250×4.6 mm, 5μm (P/N: 97505-254630)● 柱温:20 ℃● 进样量:5 µL● 流动相:A为乙腈,B为水● 洗脱程序:A:B=90:10,等度洗脱● 流速:1 mL/min● 检测波长:246 nm● 采样频率:5 Hz● 采集时间:12 min03实验结果与讨论3.1色谱条件优化 3.1.1 色谱柱选择硫脲标准品溶液在Syncronis HILIC色谱柱上获得了出色的峰型和优异的灵敏度。图1. 硫脲标准品溶液色谱图(1.00 μg/mL) (点击查看大图) 3.1.2 样品溶剂的选择在HILIC模式下,采用80:20乙腈水作为标准品稀释液时,10.0 μg/mL硫脲标准品得到了尖锐且对称的峰型。图2. 硫脲标准品溶液色谱图(10.0 μg/mL)(A:稀释溶剂为纯水,B:稀释溶剂为80:20乙腈水)3.1.3 柱温的选择当色谱柱柱温选择20 ℃ 时,硫脲峰与杂质峰可达到基线分离。同时,采集时间由10 min延长至12 min,可避免11 min左右的杂质峰延迟至下一针进样时出峰。图3. 30℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)图4. 20℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)3.2样品前处理优化本次试验中前处理流程为:称取1.00 g小麦粉,加入10.00 mL 80:20乙腈水(提取溶剂与标准品稀释溶剂保持一致),涡旋混匀,高速冷冻离心,取上清液过膜,上机测试。处理一批次8个样品,耗时约1小时。而标准推荐的前处理流程,在提取、过滤(离心)后,加入了旋蒸浓缩10 mL 80:20乙醇水提取液的操作,耗时较长,且样品通量小。因此优化后的前处理流程,提高了样品通量,减少了溶剂用量,效率得到提升。 3.3线性范围、方法检出限及方法定量限在优化的色谱条件下,硫脲标准工作液线性范围为0.20-5.00 μg/mL,线性方程y=0.9109x-0.0300,线性相关系数r2=0.99992,线性关系良好。硫脲线性方程图及标准曲线点叠加色谱图。在优化前处理条件下,硫脲方法检出限为2.0 mg/kg,定量限为5.0 mg/kg。 图5. 硫脲线性方程图及标准曲线点叠加色谱图(点击查看大图)3.4回收率和精密度小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围在 91.2%~95.0% 之间,相对标准偏差在 0.57%~2.36% 之间(n=6)表1 小麦粉基质 2.0、5.0、20.0 mg/kg三水平加标回收率范围和精密度(点击查看大图)图6小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围和精密度(点击查看大图)图7小麦粉基质中硫脲方法检出限 MDL 浓度 (2.0 mg/kg) 加标 (点击查看大图)图8小麦粉基质中硫脲方法定量限 LOQ 浓度 (5.0 mg/kg)加标(点击查看大图)图9小麦粉基质中硫脲10倍方法检出限浓度 (20.0 mg/kg)加标(点击查看大图)04结论本方法针对食品补充检验方法《小麦粉中硫脲的测定 BJS201602》进行了优化,简化了前处理流程,优化了色谱条件,线性范围、方法检出限及定量限、加标回收率及精密度均能满足方法确认的要求。该方法简单、便捷,适用于小麦粉中非法添加物硫脲的快速测定。 参考文献:[1] 国家粮食和物资储备局办公室. 关于《小麦》《小麦粉》国家标准公开征求意见的通知 国粮办发[2019]330号[EB/OL]. http://www.lswz.gov.cn/html/zmhd/yjzj/2019-11/11/content_247627.shtml[2] 总局关于进一步加强小麦粉质量安全监管的公告(2017年第132号)[J]. 现代面粉工业,2017,31(06):28.[3] 于鸿飞. 国内外小麦粉标准的差异及我国现行小麦粉标准的修订研究[D]. 西北农林科技大学,2011.[4] 黄海霞,张真,吴金芝. 小麦多酚氧化酶特性及褐变控制研究[J]. 安徽农业科学,2008,36(31):13574-13575,13638.[5] GB 2760-2014. 食品安全国家标准 食品添加剂使用标准[S]. 2014[6] 焦安浩. 硫脲的危险性及安全管理措施研究[J]. 化工管理,2021(07):95-96[7] 总局关于发布食品中那非类物质的测定和小麦粉中硫脲的测定2项检验方法的公告[J]. 中国食品卫生杂志,2017,29(01):25.[8] Thermo Fisher Scientific Technical Guide 21003:HILIC Separations Technical Guide-A Practical Guide to HILIC Mechanisms, Method Development and Troubleshooting[A/OL]. https://assets.thermofisher.cn/TFS-Assets/CMD/brochures/TG-21003-HILIC-Separations-TG21003-EN.pdf . 2014
  • 岛津应用:酸浸提-HPLC-ICP-MS 法测定农田土壤中的甲基汞和乙基汞
    汞及其化合物是一种具有慢性剧毒的环境污染物,其存在的形态不同毒性有所区别,有机汞的毒性比无机汞强,尤其甲基汞毒性更是无机汞的几百倍。环境中,特别是土壤中的无机汞容易在微生物和化学作用下甲基化转化成有机汞。转化成的有机汞难以降解分离,容易迁移至土壤种植的农作物中,并通过食物链富集进入到人体而对人类健康构成威胁。因此,土壤污染状况详查除了需要测定总汞的含量之外,不同形态汞的准确定量分析也有极其重要的意义,更能正确评估土壤的重金属污染程度和潜在风险。 HPLC-ICP-MS 联用技术具有较高的分离能力和灵敏度,是形态汞分析的主要技术,本文建立了使用岛津高效液相色谱 LC-20Ai 和电感耦合等离子体质谱 ICPMS-2030 联用测定农田土壤中甲基汞和乙基汞含量的方法。方法以0.5 mol/L的硝酸溶液为浸提剂,前处理简单快速,检出限低,甲基汞和乙基汞的检出限分别为0.16 μg/L和0.21 μg/L,定量准确,可满足农田土壤中甲基汞和乙基汞含量的同时分析。 岛津电感耦合等离子体质谱 ICPMS-2030 了解详情,敬请点击《酸浸提-HPLC-ICP-MS 法测定农田土壤中的甲基汞和乙基汞》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 欧盟食品安全局审查霜脲氰的最大残留限量
    p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp & nbsp & nbsp 近日,欧盟食品安全局审查了霜脲氰(cymoxanil)的最大残留限量,提议修订其在部分商品中的残留限量。 /p p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp & nbsp & nbsp 根据欧盟法规396/2005号第12条的规定,欧盟食品安全局对霜脲氰的残留限量进行了审查。为评估霜脲氰在植物、加工产品、轮作作物、牲畜中最大残留限量,欧盟食品安全局参考了91/414/EEC指令框架下的结论以及成员国报告的欧盟许可进口限量,在现行数据的基础之上,得出残留限量建议。最终提议修订霜脲氰在土豆、大蒜、洋葱等商品中的最大残留限量。 /p p style=" TEXT-ALIGN: center LINE-HEIGHT: 1.75em" img style=" WIDTH: 600px HEIGHT: 408px" title=" QQ图片20151215141546.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201512/insimg/bc2cf991-899a-4f5e-aa04-c8dab9bfa08f.jpg" width=" 600" height=" 408" / /p p br/ /p
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 本土企业贴牌生产尿液分析仪等 产值上亿
    从2010年开始,世界500强企业西门子公司的健康诊断仪器——尿液分析仪,将全部实现“重庆造”。重庆天海医疗设备公司已经与西门子美国健康诊断公司签订全球合作协议,从2010年开始为西门子贴牌制造尿沉渣仪器、尿液分析仪、尿分析试剂等产品,预计年产值达到上亿美元,这也将是重庆制造的第一台符合美国FDA(美国食品药物管理局,是全球医疗审核权威机构)认证的产品。   重庆天海医疗设备公司董事长鲁广洲介绍说,根据双方签订的全球合作协议,今后将由西门子提供经费,双方在同一个开发平台、使用一个开发工具开发产品,全过程严格按美国FDA的标准来进行。   据悉,目前重庆天海在南岸长江工业园投资1.2亿元建设占地142亩的天海医疗工业园,其中3万多平方米的新厂房,预计将在2010年正式投产。
  • 质检总局发布10项新国家计量基准
    p   2月29日上午,质检总局在京召开专题新闻发布会,质检总局计量司司长谢军发布了新批准的10项国家计量基准,并宣布正式启用。 /p p   10项基准可归纳为四类:一是振动(中、高、低频)国家计量基准(副基准)4项和冲击加速度国家计量基准2项,二是容量计量基准1项,三是硬度计量副基准2项,四是声学计量基准1项 /p p   具体包括: /p p   1、(0.001~5000)mL容量国家计量基准 /p p   2、中频振动国家计量基准 /p p   3、高频振动国家计量基准 /p p   4、(2× 104~2× 106)m/s2 (米每二次方秒)冲击加速度国家计量基准 /p p   5、(50~2× 104)m/s2(米每二次方秒)冲击加速度国家计量基准 /p p   6、耦合腔互易法声压国家计量基准 /p p   7、金属洛氏硬度国家计量副基准 /p p   8、金属表面洛氏硬度国家计量副基准 /p p   9、低频垂直向振动国家计量副基准 /p p   10、低频水平向振动国家计量副基准。 /p p   据介绍,此次发布的这10项国家计量基准,全部由中国计量科学研究院建立、保存和维护,向各行各业依法传递相应量值。它们全部为自主知识产权,是我国在科学计量研究方面取得的又一批重要科研成果的最高体现,标志着我国在容量、硬度、声学、振动冲击等领域的计量基准水平达到国际先进水平,部分指标达到国际领先水平。这10项国家计量基准的启用,将更加有力地为新材料研发、装备制造、航空航天、灾害预防、医疗卫生等领域提供更加精准的量传溯源服务,保证相关领域测量结果准确可靠。 /p p   质检总局计量司司长谢军介绍,计量基准是我国一切量值的溯源源头,代表着我国量值的最高水准,反映我国的最高计量能力和水平,是统一我国量值的最高依据,具有权威性、唯一性和不可替代性。截至目前,我国共研究建立了183项国家计量基准。目前,基于国家计量基准的1266项国家最高测量能力得到国际认可,位居亚洲第一,世界第四,为我国科技创新、战略性新兴产业、国防和民生发展作出了重要贡献。 br/ /p
  • 南开大学李功玉:我的质谱前十年,从“菜鸟球员”到“菜鸟教练”的奇妙之旅
    从收到中科大黄光明老师转发的贺老师邀请邮件至今,已过去数月有余。很遗憾没能赶上盛大的CNCP-2020《十年回顾》。思考了很久,也拜读了多篇优秀的CNCPer回顾文章,今天总算在南开园,敲下了《我的质谱前十年》这样一个平淡而真实的题目。一直在想是否用《我的质谱前半生》为题会更有吸引力。2012-2022,从中科大起步,踏入质谱分析的科研殿堂,我用了将近十年的时间,勉强完成了从一个质谱“菜鸟球员”(质谱分析方向的一年级研究生)到“菜鸟教练”(质谱分析方向的特聘研究员)的艰难转身。然而,时至今日,在CNCP中我仍然是一名初学者,每天都在继续学习蛋白质组学及相关技术,争取成为一名合格的CNCPer。很荣幸能成为第三代CNCPer一员,也特别感谢贺老师和黄老师给予这样宝贵的平台与机会,我也得以从繁杂的课题组事务中偷得片刻闲暇,在2022年11月的某个傍晚晚饭过后,关上办公室透着微光的玻璃门,放下《视频会议中///请勿扰》的警示牌,随手开了一瓶“82年”的可乐,开始回顾这十年的点点滴滴与细细碎碎。这篇波澜不惊的流水账,期待能给大家茶余饭后带来些许谈资笑料,足矣。如能给年轻的CNCPer学生朋友们带来些许借鉴或者经验教训,也是我内心深处最大的满足啦。  梦起中科大:初识基础质谱  中科大是一个令人魂牵梦萦的地方。出国率高、理科强校、数不清的第一名,对于一个“菜鸟”研究生来说,这些就是中科大耀眼的标签。由于怀揣一个出国梦,因此选择了考研中科大并最终以专业第一的成绩被录取(后来才知道很多同学是保研进来的,根本就不用跟我们pk)。2012年3月底第一次来到科大见到年轻的黄老师。当时在教学楼与黄老师第一次见面聊了一个多小时,初步印象是,黄老师皮肤很好,人也很好。我感觉自我回答很完美的一个问题是:为什么选择分析化学而不是有机化学等其它方向(是因为分析轻松吗)?我说,分析方向相对绿色环保、无毒无害,但是要想出重要成果,肯定要付出加倍努力才行(多么朴实无华的表态)。在我自己当过好多次面试官以后,我才发现自己当时的回答有多么强烈地抓住一位年轻老板的心(此处手动偷笑中)。自此被黄老师选中,追随着黄老师的脚步,在黄老师入职科大大约半年后,我也顺利成为了Huang Lab的第一届硕士研究生。(其实我第一位联系的是邓兆祥老师,当时官网上还没有出现黄老师的太多信息。现在回想起来也要感谢邓老师的推荐,才得以有机会进入质谱分析行业。)  图1. 在Huang Lab搭建的第一个CE-ESI-MS接口装置图。  在中科大这五年,在黄老师的指导下,在科研课题方面,很惭愧仅干了三件小事:1)第一个课题是关于毛细管电泳-质谱接口开发,近乎失败告终(图1,后来课题转给师妹,共同作者发表1篇RCM) 2)基于非接触式电喷雾离子化技术,提出了In-cell MS的概念(原位细胞蛋白质谱,借鉴了当时很火的in-cell NMR),实现了细胞内高表达蛋白的直接进样质谱分析(图2和图3,发表2篇Anal Chem,其中图3是博士毕业前3个月,拿到了博后offer之后等签证过程中的一个quick publication) 3)发展出毫秒级微电泳理论(可能与第一个失败的电泳课题有关)与毫秒级电磁感应加热理论,并整合离子淌度质谱(访问密西根大学),实现了溶液蛋白高级结构动态变化的在线质谱实时监测(发表1篇Anal Chem)。  图2.在Huang Lab搭建的脉冲高压电源电路图、In-cell MS及高通量非接触式电喷雾装置图图3. 博士毕业前3个月发表的一篇Anal Chem  中科大读博期间,有太多的难忘时刻。正如我的博士毕业论文上青涩的文笔所描绘的那般场景,我们致力于发展一种新型的蛋白质质谱监测方式,力争实现细胞内蛋白质的原位、快速监测与结构分析,核心的解决思路是利用超强抗基质干扰能力的离子化方法,并在活细胞内金属蛋白与配体相互作用等方面做了初步的尝试。至今仍会为尝试了6个月差点放弃的全细胞电喷雾实验而突然看到蛋白信号的那一瞬间所触动,起初黄老师和我自己其实都并不太确定最后能拿到信号。6个月的时间里,我们尝试了除了稀释样品外的几乎所有可能想到的方案,直到有一天,我不小心把细胞稀释液给配稀了3个数量级(“失误”),隐隐约约在杂乱的氯化钠团簇离子背景峰中,看到了几个与众不同的多电荷态峰。虽然那时候的信噪比奇差无比,我顿时就预感了成功就在眼前了。剩下的只是参数优化而已。这个课题当时是和中科大化学系刘扬中老师课题组合作的,翻到当时给刘老师的邮件(图4),当时还起了一个特别诗意的名字,One Spray One Separation。这个课题后来我总结起来,还是自己受限于思维定势了,当时一直想着寄希望提高样品量以此获得信号,不曾想过稀释、降低浓度可以减少干扰、提高离子化效率,毕竟惯性思维(思维定势)告诉我,细胞内的蛋白太少了。可是质谱是一个超高灵敏的检测仪器,甚至可以实现单个分子水平上的离子信号监测。虽然后来我们开复盘会的时候,有朝这个方向思考,不过最终并没有进一步实施,后来Albert Heck等相关课题组在charge detection-mass spectrometry(CDMS)仪器上就实现了类似的设想(发表了一系列高影响力文章)。(欲了解相关可点击:电荷检测质谱技术进展)  总结而言,中科大的这段时光是质谱梦的开端,在黄光明老师的指导下,我学会了基础质谱的相关知识,尤其是离子源方面。在黄老师自由宽松的学术氛围下,一切似乎都是那么从容,我可以做自己想做的课题,可以尝试自己不靠谱的想法,这种和谐的科研环境让我很多时候都觉得博士生活并不是人们宣扬的那样枯燥与无趣。这份心态陪伴我渡过了一个又一个关键的时间节点:2014年4月第一篇文章的发表,2015年6月第一次看到细胞内冷应激蛋白的信号,2015年12月与斯坦福大学Richard Zare教授在南京第一次面谈,2016年3月校青年基金获批,2016年4月成功抵达密歇根大学安娜堡分校Brandon T. Ruotolo教授实验室,2016年10月Anal. Chem.接收,2017年4月提交博士毕业论文。  图4. 2015年6月17日首次看到全细胞喷雾钙调蛋白的信号之后,给合作导师刘扬中老师的邮件  寻梦安娜堡:启蒙结构质谱  安娜堡给人的感觉就像是初恋,砰然心动、短暂相伴却也刻骨铭心。在个人职业发展方面,也特别感谢黄老师的大力支持,成功前往密西根大学进行短期交流。这次作为访问学生的身份前往安娜堡的经历,对我的人生走向起着至关重要的作用,彷佛打开了新世界的大门。我可以把所有的事情写成回忆录、拍成照片视频等共享,然而这种认识新事物的过程与体验,若非本人经历是无法体会的。  作为访问学生,第一次去美国,一切都充满未知,语言、饮食习惯、生活和社会环境,每天都给我带来冲击。当时Brandon刚好过了tenure考核,正在学术休假。因此与他直接面对面的交流机会并不多。大多数时间都是跟着实验室师兄师姐们学习离子淌度质谱。很庆幸在此期间接受了离子淌度理论、非变性质谱样品制备以及质谱数据采集及数据处理等方面的系统训练。短短的四个月时间,太多令人回忆起来觉得温暖的瞬间,报到那天是4月11日,负责帮我办手续的HR上来就是一句happy birthday,随后就拿到了后来失而复得的两张UM校园卡(图5)。2016年参加了人生第一次ASMS会议,一个人感受经济舱(第一次坐那种只有二三十个座位的小型客机)、乘坐灰狗长途汽车、换乘短途Uber穿梭在美国中西部大玉米地之间,安娜堡、普渡、俄亥俄州立以及UIUC香槟多个校区,朝发夕至。  图5. 两张UM校园卡(其中一张属于遗失又找回)  图6. ASMS-2016 Ruotolo课题组圣安东尼奥聚餐  翻看着旧照片,思绪万千。2016年和2019年,两次到访Ruotolo Lab,体验截然不同。图6是第一次访问时随课题组参加当年的ASMS年会,在圣安东尼奥(德州)当地一家牛排店,课题组聚餐前的大合影。那一次会议对我来说突如其来,规模之大、交流之深,完全超出我对学术会议的预期,由于我没有做好充分准备,一切都猝不及防,走马观花、热闹过场,却也收获了一批一面之交的、之后时不时线上交流的学术网友。学术上,我的结构质谱是从这里开始的,Ruotolo Lab教会了我离子淌度质谱的基础知识。在做文献阅读时我被Brandon发表在JACS和Angew上的三篇Hofmeister盐调控蛋白结构的文章所深深吸引。作为一个初学者,最快入门的方式就是模仿与重复别人的代表性实验。当时我对此执念很深,因此就开始动手重复那些让我痴迷的实验。Brandon那三篇文章主要是聚焦在盐本身对蛋白的一级质谱的信号挖掘,包括寡聚体组成以及碰撞横截面积CCS的变化等信息。我当时就很想知道,这些盐如果真的调控了高级结构,是否这些盐也能调控复合物拓扑学组装结构?我当时有一个猜想:有没有可能在特定盐的喷雾条件下,复合物的拓扑学结构能够得到更好的保护?因为在结构质谱领域,一直被人诟病的一个地方,就是我们直接测量的是脱溶剂条件下的结构,与溶液相真实结构之间必然存在差异。而这种差异具体有多少,尚缺乏有效的定量评估方法以及通用的差异缓和措施。  图7. 附带普渡大学Graham Cooks院士真迹的实验记录本  一次实验中我意外地发现,当我在经典的非变性质谱溶液中,加入低浓度的碳酸氢铵时,神奇的现象出现了:血红蛋白四聚体复合物的气相解离路径发生了显著变化。传统条件下,几乎所有文献和实验都会相信,四聚体会解离成单体和三聚体,这种解离路径与其溶液中“二聚的二聚”的结构特点是相矛盾的。而在我调整Hofmeister盐条件之后,这种传统认知被打破,四聚体优先解离为二聚体,而这恰恰是溶液相拓扑学结构的真实情况。在我去Purdue访问Aston Lab以及去Ohio State University访问Wysocki Lab时,分别与Graham和Vicki谈论了我当时引以为傲的新发现,试图从两位SID发明人那里得到机制解析方面的帮助。两位都对这个现象表示感兴趣,Graham还用一张便签纸写下了他从电荷态分布的角度给我的一些猜想建议(图7)。第一次观测到这个新现象是大约在抵达安娜堡一个月内。Brandon对此非常谨慎,为了说服他,我接下来的访问时间里,做了至少十种不同复合物体系,并从各种不同的侧面去试图解释这里到底发生了什么。正如博士导师黄光明老师经常在组会上说的那样,咱们做科研的,没有人会相信魔术。后来经过接近2年的断断续续补充实验(图8),我们发现这可能和pH改变之后邻近的双硫键易发生交联有相关性,最终Brandon选择将文章发表在IJMS的一期结构质谱约稿专刊上(尽管我当时有一万个不愿意,从一个初学者的执拗与不成熟的角度看,这种新奇的发现怎么都可以发到一个影响力更高的杂志上)。  图8. 论“喷针质量对于非变性结构质谱实验成功重要性” ——UM实验记录本  2019年夏天,在美国质谱学会博士后职业发展奖的支持下,我再次来到Ruotolo Lab,再次感受安娜堡夏天的尾巴。只是这次是短暂的两周交流,来之前我就一个一个联系之前一起住在Arbor Village、周末一起打球的好朋友们,包括现在已经回到浙大任教授的优秀结构生物学专家张岩老师(青千、长江、青年973首席科学家),只是大家大都已经搬走离开或已回国。我自己选择住在一个更远的、公交车可以直达的地方,想着进一步感受安娜堡downtown远端的生活。这一次,UM给我重新启用之前的学号,课题组安全培训表上我的两次签名之间竟然还没有翻页(亲切感油然而生!),实验室也仍然沿用之前大家商量安排质谱机时的传统(图9)。这一次我来的主要任务是学习结构质谱指引下的分子模拟方法(图10),然而很遗憾,两周的时间还是太过短暂,我并没有完全掌握分子模拟本身,在课题组成员的帮助下,我只基本掌握了在拿到分子结构后,如何用我们的结构质谱数据去匹配、筛选、构建气相条件下的蛋白结构。而图10是当时我在离开安娜堡之前,为了防止我离开课题组以后就忘了怎么做,带我做模拟的Chae要求我在黑板上写下来的工作流程。这一张照片已经成为了我实验室(LimsLab)分子模拟初学者的第一手教材。看着图5的校园卡,猛然发现,还在有效期内,期待疫情过后,重返安娜堡的画面。  图9. Ruotolo课题组安全培训记录(2016+2019)与质谱实验安排表。  图10. 结构质谱指引下的分子模拟过程(2019年8月,写于安娜堡Ruotolo Lab)。  驻扎麦迪逊:感受定量质谱  麦迪逊的经历印象深刻,酸甜苦辣,受益终生。从2017年8月至2021年1月,我在麦屯过了四个中国年。期间没有回国,后来疫情来了,也就直接放弃了回国休假的打算,直到回南开的那一天。麦屯是全美宜居幸福指数排名第一的城市,也是我人生中待过时间第四长的一个城市,同时也是我在美国待过时间最长的一个城市。难忘的生活细节太多,也认识了超级多好朋友兄弟姐妹。竟然一时间不知从何处下笔。今天回想起来,还是觉得时间过得太快,过去四年的时光历历在目,仿佛一切就在昨天。  图11. 博士后导师Lingjun赠送歌手赵雷亲笔签名CD,2019年3月23日,药学院办公室。  非常荣幸加入李灵军老师课题组Li Lab进行博士后训练。印象中Lingjun一直都非常忙,Li Lab课题组大小事务都要操心,几乎每天都工作到凌晨两三点,在凌晨收到李老师的邮件或者信息也不足为奇,当然如果你的邮件被淹没在茫茫list中也偶有发生。记得当时联系李老师申请博后位置,李老师就是在我发送第二封邮件时才回复。Li Lab课题组的研究兴趣广泛,但是以定量质谱方法开发为核心,Lingjun在这个方向上还获得了美国质谱学会ASMS专门给中青年科学家设立的、一年仅颁发一位的重量级奖项Biemann Medal(李老师获得的荣誉如果全部列出来,将占据我这篇文章一半以上的篇幅,建议感兴趣的读者请自行查阅)。Lingjun最让我佩服的一点是,可以常年不花时间锻炼身体,却似乎从来不感冒不生病,一年365天铁人般坚守在工作岗位上。平时的爱好,主要是追追星(图11,赵雷)以及朋友圈发发美食美景和美图。  犹记得当时,刚好前期主要负责离子淌度相关方向的贾辰熙师兄回国(现任北京蛋白质中心独立PI),而我在Brandon那边有一些离子淌度的训练背景,加上有NIH的基金需要这个方向继续发展,最后顺利进入了Li Lab,成为麦屯定量质谱大团队的一员。李老师备受领域内同行的尊敬与认可,作为李老师的学生与课题组成员,我们也深得其益,每次出去开会提到Madison Li Lab就能得到wow的大声回应,而我自己也得益于Lingjun的reputation,成功申请到ASMS的博士后职业发展奖(Postdoc Career DevelopmentAward)。这对于我的职业生涯确实起着很大的鼓舞作用,并以此为契机,推动着后面的每一步探索。  图12. “快速入门”的一篇文章(手性修饰质谱方法学开发)。  博后期间,协助指导了几名研究生,负责维护管理离子淌度质谱Synapt G2,参与撰写了几份NIH基金并发表了五六篇论文,代表Li Lab在ASMS年会上做了两次口头报告。科研方面,总结起来,很惭愧在Li Lab仅干了以下两件小事:  (1)定量质谱方向,一事无成,只是在最后一年时间里(拿到南开的offer之后回国之前),跟着实验室的小伙伴们,学会了4-plex DiLeu的简单合成与组学定量应用,没有在这个方向上帮助Li Lab做出任何贡献(而我自己到今天还在后悔,如果给我更长的时间,我一定会把蛋白组学样品制备、数据处理、定量测量等方面加强,组学质谱技术太强大了!)。当然,在我现在自己课题组LimsLab,我正在弥补这个遗憾,我的学生们目前也正在DiLeu定量质谱的道路上摸索着前行,争取能将DiLeu探针推广到完整蛋白标记领域中。  图13. “厚积薄发”的一篇文章(纳秒光化学点击反应助力原位蛋白质谱分析)。  (2)结构质谱方向,三年多的时间里,主要在以下三个方面取得一点小的进展:发展了面向蛋白结构微小差异的高通量构象操控新策略AIU(发表1篇AC+1篇JASMS) 借鉴印第安纳大学Clemmer Group多维分离单糖小分子的思路,发展了多维差异放大结构质谱新策略,并成功应用于手性多肽的快速结构拆分(图12,如果没记错,这是Li Lab近年来的第一篇Nat. Commun.) 受荧光热电泳实验启发,开发了质谱兼容的纳秒光化学点击反应,实现了蛋白原位检测与结构标记分析(图13,如果没记错,应该是Li Lab近年来的第二篇Nat. Commun.)。前两个工作我现在的学生也在follow,似乎他们现在很喜欢使用相关的技术方法,而第三个工作,我当时在Li Lab协助指导的博士生也跟着拓展,应用到小分子代谢物的检测分析中,今年发表了一篇AC。第二个工作我把它标注为“快速入门”,第三个工作则为“厚积薄发”,主要原因在于课题的完成过程截然不同,前者的关键数据是在我抵达麦屯一个多月就拿到了(美国入境签证为证,哈哈哈),而后者则是我构思了很长时间的一个idea(2017年开始构思),经过漫长的摸索调整,才以最终发表的样子呈现在大家面前。  2020年2月,一场突如其来的新冠疫情席卷全球。所有人的生活方式均因此而改变。犹记得最后一次驱车前往UIUC校园,Jonathan Sweedler实验室使用TIMS仪器就是2月底,当时还特别幸运,在大玉米地香槟这座城市遇到了受Jonathan邀请来化学系做特邀报告的Dick Zare(图14,右下倒数第二张)。这也是除了我去斯坦福Zare Lab访问期间与Dick在美国的唯一一次会面。从此之后,大家经历了居家办公、线上组会、带薪休假的艰难岁月,后来给南开投了第一封求职信便很快收到学院回复,再后来就是和Li Lab的各位小伙伴线上告别(图14,Lingjun很贴心地拼贴了我们故事的点点滴滴,包括第一次线下和李老师在海口国际分析化学年会见面的青涩照片,右下,太感动啦)。  图14. 2021年1月,与Li Lab的各位小伙伴们线上告别。  南开再起航:创办LimsLab  南开是一个既熟悉又陌生的全新环境,无限可能、机遇大于挑战,因此充满期待。南开化学在我投递求职信的第二天就给了我面试通知,并在面试后一周内毫不犹豫地通知我通过了学院的面试。我也在随后毫不犹豫地接受了这份来自南开的爽快offer。于是开始筹建实验室,回国前就在构思自己实验室名字,博后实验室叫Li Lab,最后把自己的实验室叫做LimsLab(图15),寓意为Li-MS-Lab或者Li-IMS-Lab。如其名,LimsLab将打造以离子淌度质谱为核心技术的大分子结构质谱分析实验室。  图15. 南开大学大分子结构质谱分析实验室Logo。  2021年2月25日,我第一次来到天津,第一次来到南开,高效完成了各项报到工作。至此,可以算得上是完成了从“菜鸟球员”到“菜鸟教练”的角色转换。虽然之前也曾帮助实验室做过一些相关的服务工作,而只有此次真正完成角色转变之后,我才深刻意识到一位导师所面临的事物有多繁杂,尤其是对一个从毛坯房白手起家的“菜鸟教练”(图16)。每次被要求填写业余爱好时,我都会毫不犹豫地写下“篮球”这两个字。如果把科研事业当成篮球爱好,首先要建好球场,然后要招募球员。而在这些工作之前,最为重要的是,作为这样一个身兼数职的“菜鸟教练”,虽然有学校给提供的start-up启动经费,还需要时时刻刻思考着如何“融资”,而不断构思着说服“资本家们”给你投资的理由。  庆幸的是,在各位同行专家的大力支持与鼓励下,经过快两年的摸爬滚打,LimsLab目前运转逐渐步入正轨,课题组目前拥有操作室(图17)、质谱室(图18)、制样室(图19)、细胞间和学生办公室等多个活动空间,仪器设备有适用于蛋白组学高通量定量分析的Orbitrap Eclipse(依托生科院)、Fusion Lumos(依托药化生国重),有高分辨结构质谱离子淌度仪Cyclic IMS(依托海河实验室)和经典结构质谱仪Synapt G2(依托国重),近期也着手采购非变性大分子结构质谱QE UHMR仪器。同时,实验室的小伙伴们还一起盲盒般开箱了一台适用于离子源等方法开发的Orbitrap二手质谱仪器(图20)。除配套设备外,LimsLab课题组目前经费充足,拥有研究生和科研助理十余名科研人员,现亟需在定量蛋白组学、合成化学和计算模拟化学等方向的博士后研究员加入,以充实、完善LimsLab队伍,尽快提升团队的整体科研素养与综合水平。待遇由你定,要求仅一条,那就是对高水平科研工作有足够的热情与向往。  随附LimsLab课题组网站:https://www.x-mol.com/groups/gongyu_li  同附PI联系方式:李功玉(ligongyu@nankai.edu.cn)  再附PI简介:李功玉,南开大学化学学院,研究员、博士生导师。入选国家高层次青年人才计划(2021)、主持科技部重点研发青年项目(2022)。2017年毕业于中国科学技术大学,获理学博士学位。 2017年至2021年在美国威斯康星大学麦迪逊分校开展博士后研究。2016年和2019年两次前往美国密西根大学安娜堡分校交流访问。2021年2月加入南开大学化学学院,成立LimsLab课题组,研究方向为大分子结构质谱分析。图16. “菜鸟教练”的必修课之毛坯实验室装修(拍摄于2021年3月)。图17. 南开大学LimsLab实验室操作室(拍摄于2022年11月)。图18. 南开大学LimsLab实验室质谱室(拍摄于2022年11月)。 图19. 南开大学LimsLab实验室制样室(拍摄于2022年11月)。  图20. 南开大学LimsLab实验室成功自主拆机(拍摄于2022年11月)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制