当前位置: 仪器信息网 > 行业主题 > >

环己乙炔

仪器信息网环己乙炔专题为您提供2024年最新环己乙炔价格报价、厂家品牌的相关信息, 包括环己乙炔参数、型号等,不管是国产,还是进口品牌的环己乙炔您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环己乙炔相关的耗材配件、试剂标物,还有环己乙炔相关的最新资讯、资料,以及环己乙炔相关的解决方案。

环己乙炔相关的资讯

  • 乙炔泄漏引爆研究所气瓶室
    12月5日下午,中国科学院植物研究所生态楼北侧的气瓶室发生爆炸,一名女研究生被飞溅的玻璃片划伤。生态楼的多个实验室玻璃和仪器损坏。消防部门调查,爆炸是气瓶室内乙炔瓶气体泄漏所致。   爆炸炸塌小房   昨日下午,研究所大院外的黄先生听到爆炸声。“只一声,特别响。”黄先生说,他在研究所生态楼旁看见,生态楼一层北侧起火,此时大约是15时30分许。   目击者称,消防员用水枪将大火扑灭。   生态楼北侧一间高约1.5米的小房已被炸塌,里面有两个钢罐。北侧一至三层的实验室玻璃碎裂,部分实验室仪器损坏。   一名女学生称,当时生态楼一楼的实验室内正在做实验,突然室内报警器响了。没过多久,紧邻实验室的气瓶室发生爆炸。随即,工作人员切断电源,所有人均被疏散至室外。   女研究生被划伤   事后,海淀区消防和安监部门介入调查。   植物研究所一负责人称,消防部门初步调查,发现气瓶室内的乙炔气瓶漏气。报警器报警后,一位女研究生去查看,随即将气瓶室的窗户打开,来降低室内气体浓度。   “可能是因实验室内有仪器带电,所以还是发生了爆炸。”该负责人说。   该负责人称,爆炸导致一名女研究生右手被飞溅的玻璃片划伤,伤势并无大碍。   目前,研究所正进一步调查事发原因。
  • 这些安全隐患会让实验室爆炸之【危险化学品】
    p   实验室发生爆炸事故,导致我们经常看到很多血的教训,因此小编借本文对实验室常发生爆炸事故原因进行了梳理,并整理出与化学用品相关的实验室危险操作相关内容。 /p p    strong 1.实验室发生爆炸事故原因 /strong /p p   实验室发生爆炸事故的原因大致如下: /p p   (1) span style=" color: rgb(0, 112, 192) " strong 随便混合化学药品 /strong /span /p p   氧化剂和还原剂的混合物在受热。摩擦或撞击时会发生爆炸: /p p style=" text-align: center " img title=" 不能混合的常用药品.jpg" alt=" 不能混合的常用药品.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/43324574-c347-46ec-b4d2-3fcf1d681e8b.jpg" / /p p style=" text-align: center "   表1:为不能混合的常用药品 /p p style=" text-align: center " img title=" 加热时发生爆炸的或何物实例.jpg" alt=" 加热时发生爆炸的或何物实例.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/59409edc-4e98-45b0-b10e-1e5450370546.jpg" / /p p style=" text-align: center "   表2:加热时发生爆炸的混合物示例 /p p   (2) span style=" color: rgb(0, 112, 192) " strong 密闭体系中进行蒸馏、回流等加热操作 /strong /span /p p   (3) span style=" color: rgb(0, 112, 192) " strong 在加压或减压实验中使用不耐压的玻璃仪器 /strong /span 。 /p p   (4) span style=" color: rgb(0, 112, 192) " strong 反应过于激烈而失去控制 /strong /span 。 /p p   (5) span style=" color: rgb(0, 112, 192) " strong 易燃易爆气体如氢气、乙炔等烃类气体、煤气和有机蒸气等大量逸入空气, 引起爆燃 /strong /span 。 常见易燃易爆物质蒸气在空气中爆炸极限见表3。 /p p style=" text-align: center " img title=" 易燃物蒸气在空气中爆炸极限.jpg" alt=" 易燃物蒸气在空气中爆炸极限.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/1467dfee-d8f7-4fda-bf4f-b8d3553f996e.jpg" / /p p style=" text-align: center "   表3:易燃物质蒸气在空气中爆炸极限 /p p   (6)一些 span style=" color: rgb(0, 112, 192) " strong 本身容易爆炸的化合物 /strong /span ,如,硝酸盐类、硝酸酯类、三碘化氮、芳香族多硝基化合物、乙炔及其重金属盐、重氮盐、叠氮化物、有机过氧化物(如,过氧乙mi和过氧酸)等, span style=" color: rgb(0, 112, 192) " strong 受热或被敲击时会爆炸 /strong /span 。强氧化剂与一些有机化合物接触,如,乙醇和浓硝酸混合时会发生猛烈的爆炸反应。 /p p   (7) span style=" color: rgb(0, 112, 192) " strong 搬运钢瓶时不使用钢瓶车 /strong /span ,而让气体钢瓶在地上滚动,或撞击钢瓶表头,随意调换表头,或气体钢瓶减压阀失灵等。 /p p   (8)在使用和制备易燃、易爆气体时,如氢气、乙炔等, span style=" color: rgb(0, 112, 192) " strong 不在通风橱内进行 /strong /span ,或在其附近点火。 /p p   (9)煤气灯用完后或中途煤气供应中断时,未立即关闭煤气龙头。或煤气泄漏,未停止实验,即时检修。 /p p   (10) span style=" color: rgb(0, 112, 192) " strong 氧气钢瓶和氢气钢瓶放在一起 /strong /span 。 /p p    strong 2.实验室常见的化学品爆炸事故 /strong /p p   由于实验操作不规范,粗心大意或违反操作规程都能酿成爆炸事故。例如: /p p   (1)配制溶液时,错将水往浓硫酸里倒,或者配制浓的氢氧化钠时未等冷却就将瓶塞塞住摇动都会发生爆炸。 /p p   (2)减压蒸馏时,若使用平底烧瓶或锥型瓶做蒸馏瓶或接收瓶,因其平底处不能承受较大的负压而发生爆炸。 /p p   (3)对使用四氢呋喃,乙醚等蒸馏时,由于这类试剂放久后会产生一定的过氧化物,在对这些物质进行蒸馏前,未检验有无过氧化物并除掉过氧化物,过氧化物被浓缩达到一定程度或蒸干易发生爆炸。 /p p   (4)制备易燃气体时,一定要注意附近不要有明火,在制备和检验氧气时,一定要注意不要混有其它易燃气体。例如氧气制备、氢气制备,实验中若操作不慎易发生爆炸。 /p p   (5)金属钾、钠、白磷遇火都易发生爆炸。 /p p    /p p /p
  • 中国氟硅有机材料工业协会发布团体标准《有机硅污水中甲基环硅氧烷的测定》团体标准
    经项目征集、审核、发布审议等程序,氟硅协会拟于2024年1月发布《有机硅污水中甲基环硅氧烷的测定》团体标准,为保障项目立项的公正性,现对本项氟硅团体标准进行公示,公示时间2024年1月19日至1月28日,共计10日。如任何单位、个人对拟发布标准持有异议,请以正式发函方式向协会提出意见和建议。氟硅协会标委会邮箱:fsibwh@163.com。附件:1、《有机硅污水中甲基环硅氧烷的测定》报批稿.pdf 中国氟硅有机材料工业协会 2024年1月19日
  • 中国氟硅有机材料工业协会批准发布《有机硅污水中甲基环硅氧烷含量的测定》团体标准
    中国氟硅有机材料工业协会批准发布《有机硅污水中甲基环硅氧烷含量的测定》团体标准,详见附件(发布公告),现予以公布。 关于批准发布《有机硅污水中甲基环硅氧烷含量的测定》团体标准的公告(2024年第1号).pdf
  • CO2环保制冷剂在欧盟F-gas新规中的应用
    CO2环保制冷剂在欧盟F-gas新规中的应用 ——Memmert新环保制冷系列产品发布 Memmert在ACHEMA2018上推出了采用CO2(R744)作为制冷剂的系列产品:ICHeco 与ICPeco,这是两个新系列不但是环境友好型,而且,跟温室气体制冷箱体更加高效。 CO2制冷剂气候中性 伴随着合成制冷剂的淘汰进程推进,Memmert正在扩充其环境友好型温控箱体的范围,在此之前数十年间Memmert已经依托Peltier技术推出了无需制冷剂的HPP环境测试箱及IPP/IPS低温培养箱,并逐渐形成完整的产品系列。 GWP值(全球变暖潜能)被用来衡量废气对地面附近大气层变暖(温室效应)的影响程度大小,Memmert ICHeco/ICPeco系列立即使用的制冷剂CO2(R744)的GWP值仅为1,因此实际上是气候中性的。 相比之下,制冷剂R134a的GWP高达1430,以100年为跨度考察,在其排放到空气中引起的温室效应是CO2的1430倍。此外,R744不含氯,既不可燃,也无毒,不会造成臭氧层变薄,也不需要处理或回收。这是工业过程的副产品,这就是生产所消耗能源要远比合成含氟制冷剂要少的多的原因所在。欧盟含F气体F-gas法规促使转变 欧盟关于含氟气体F-gas气体新法规旨在到2050年将含氟温室气体的排放量比1990年削减90%。措施包括逐步减少交易量和颁布销售禁令。例如,从2022年1月1日起禁售GWP大于150的商用冰箱制冷剂。“Memmert第一时间做出了反应,以下几个原因,”Memmert研发部门负责人Stefan Kaufmann解释说。“一方面,我们的新款环保箱体有利于改善客户的环境资产负债表,另一方面,它们实际上是免维护的,并且在改善制冷效能方面表现突出。“ICH750eco对比的测量实验结果,显示其平均温升速率快出20%(22℃环境温度)。 ICHeco与ICPeco这两个系列产品还装配有业已验证有效的空气夹套系统。封闭的夹套系统拥有许多优点,适应范围广,可供温湿度环境模拟用。 关于美墨尔特(Memmert)全球领先的温控箱体领导品牌德国美墨尔特(Memmert)成立于1933年。近九十年来,美墨尔特一直致力于精确温控箱体的研发和生产,并引领箱体的发展方向与潮流。公司同时拥有悠久的半导体控温技术(Peltier)经验,为仅有的全系列半导体技术温控箱体制造商。产品包括二氧化碳培养箱、恒温恒湿箱、光照培养箱、低温培养箱、环境测试箱、真空烘箱、通用烘箱、灭菌箱、生化培养箱、超低温冰箱、至尊水浴油浴等。2010年9月11日,德国美墨尔特(Memmert)大中华区全资子公司——美墨尔特(上海)贸易有限公司在上海成立,现在北京、南京及广州设有代表处。“至尊品质,追求卓越,永不妥协”!
  • 谱育科技携便携应急设备 亮相“全国火灾调查北部片区比武现场”
    秋风飒爽,艳阳高照。全国火灾调查岗位练兵北部片区比武于10月17日在辽宁省沈阳市正式拉开帷幕,八省(自治区、直辖市)火调技术精英等,七个单项科目,八个火场,同台竞技。 北部赛区比武现场工欲善其事,必先利其器,对火灾调查来说,新型调查设备与技术的应用至关重要。谱育科技携EXPEC 3500便携GC-MS和EXPEC1680 便携式傅里叶红外分析仪亮相比武现场,用创新科学仪器为本次火调比武中各参赛队员 灭火救援实战经验及能力提升提供助力。谱育科技工作人员向辽宁省及应急管理部各领导及参观人员详细介绍了EXPEC 3500便携GC-MS在消防火灾调查前后的应用和仪器的技术特点,展示了仪器优越的分离性能和软件操作的简便性;以及EXPEC 1680 便携式傅里叶红外分析仪在救援现场及时测定无机/有机有毒有害气体等应用案例。参观结束后,消防专家表示对谱育科技仪器表示认可。产品介绍 EXPEC 3500 便携GC-MS“谱育科技针对有机污染物现场分析需求,攻克了快速色谱-质谱联用、复合进样接口、定量环与吸附管自动切换、整机小型化、抗震、高环境适应性等核心技术,研发了便携GC-MS,实现单人携带的现场有机分析,可广泛应用于公共安全、职业卫生、环境监测、应急监测等领域。EXPEC 1680 便携式傅里叶红外分析仪“EXPEC 1680 便携式傅里叶红外分析仪基于不同气体在红外光谱范围内有不同特征吸收的特性,采用傅里叶红外分光原理和多元分辨校正方法,实现气体的定性、定量测量。监测因子:可监测50多种有机无机气体,包括NH3、HF、HCl、甲醛、丙烷、 乙烯、丙烯、乙炔、苯、甲苯、乙苯、苯乙烯等。
  • 冷热冲击试验箱维护保养有哪些注意事项以及禁测产品?
    冷热冲击试验箱维护保养有哪些注意事项以及禁测产品?首先我们先了解冷热冲击试验箱是做什么的,他是用于测试零部件承受温度迅速变化之耐力,三箱式冷热冲击试验箱即适用于质量控制的实验室又可满足生产过程中筛选商用和军用产品。蓄热式冷热冲击箱不需要使用液态气体(LN2 或 LCO2)辅助降温,待测物完全静止测试方式是当前电子部品测试、研究、以及半导体生产线大量选用,可大量节省耗材测试费用,操作快捷。下面有爱佩科技为您详细说明:1.冷热冲击箱 应固定每3个月清洗一次冷凝器:对于冷冻系统采用风冷冷却的,应定期检修冷凝风机,并对冷凝器进行去污除尘,以保证其良好的通风换热性能;对于冷冻系统采用水冷冷却的,除了要保证其进水压力、进水温度在规定范围内,还必须保证相应流量,并定期对冷凝器内部进行清洗除垢,以获取其持续的换热性能。2冷热冲击箱 如是长时间做低温时,当做完一个周期后,应设定温度为110度,小幅度开箱门做两个小时除霜处理。同时应坚持每次试验完毕后,将温度设定在环境温度附近,工作30分钟左右,再切断电源,并擦干净工作室内壁。3.冷热冲击箱 应定期清洗蒸发器:因试品的洁净等级各异,在强制风循环作用下,蒸发器上会凝聚很多尘埃等小颗粒物体,应定期进行清洗。低温试验箱循环风叶、冷凝器风机清洁和校平衡:与清洗蒸发器相似,因试验箱的工作环境各异,循环风叶、冷凝器风机上会凝聚很多尘埃等小颗粒物体,应定期进行清洗。4.冷热冲击冷热冲击箱箱 水路、加湿器清洗:若水路不畅、加湿器结垢易导致加湿器干烧,可能损坏加湿器,所以必须定期对水路、加湿器进行清洗。5.冷热冲击箱 设备若需搬迁尽量在华凯公司技术人员指导下进行,以免造成设备损坏,如客户自行搬迁,一定要有专业的电工,确认电路正确后再开机运行,不然会烧坏设备相关元器件。6.冷热冲击箱 长期停机不使用,应定期每半月通电,通电时间不小于1小时,并检测设备相关零部件运行是否正常。冷热冲击试验箱维护保养有哪些注意事项以及禁测产品?冷热冲击箱禁此测试的试样一、爆炸物:  1.硝化甘醇(乙二醇二硝酸酯)、硝化甘油(丙三醇三硝酸酯)、硝化纤维素及其它爆炸性的硝酸酯类。  2.三硝基苯、三硝基甲苯、三硝基苯酚(苦味酸)及其它爆炸性的硝基化合物。  3.过乙酸、甲基乙基甲酮过氧化物、过氧化苯甲酰以及其它有机过氧化物。  二、可燃物:  1. 自燃物: 金属:"锂"、”钾”、"钠"、黄磷、硫化磷、红磷。 赛璐璐类:碳化钙(电石)、磷化石灰、镁粉、铝粉、亚硫酸氢钠。  2. 氧化物性质类:  (1) 氯酸钾、氯酸钠、氯酸铵以及其它的氯酸盐类。  (2) 过氧酸钾、过氧酸钠、过氧酸铵以及其它的过氧酸盐类。  (3) 过氧化钾、过氧化钠、过氧酸钡以及其它的无机过氧化物。  (4) 硝酸钾、硝酸钠以及其它的硝酸盐类。  (5) 次氯酸钾以及其它的次氯酸盐类。  (6) 亚氯酸钠以及其它的亚氯酸盐类。  三、易燃物:  (1) 乙醚、汽油、乙醛、氧化丙烯、二硫化碳及其它燃点不到-30℃的物质。  (2) 普通乙烷、氧化乙烯、丙酮、苯、甲基乙基甲酮及其它燃点在-30℃以上而小于0℃的物质。  (3) 甲醇、乙醇、二甲笨、酸醋戊酯及其它燃点在0℃以上低于30℃的物质。  (4) 煤油、汽油、松节油、异戊醇、酸醋及其它燃点在30℃以上低于65℃的物质。  四、可燃性气体:氢、乙炔、乙烯、甲烷、乙烷、丙烷、丁烷及其它在温度为15℃时1大气压情况下可能会燃烧的气体。五、生物试样的试验或储存  六、强电磁发射源试样的试验及储存  七、放射性物质试样的试验及储存  八、剧毒物质试样的试验及储存
  • 如何保障空分过程的安全,知道这些很重要!
    近年来,随着空分设备大型化,空分设备的爆炸能量也越来越大。影响空分装置安全运行的危险杂质主要是总烃、乙炔、二氧化碳、氧化亚氮,而影响总烃、乙炔、二氧化碳、氧化亚氮含量的因素是环境空气的变化与吸附器的再生。(来源于网络,版权归原作者所有)爆炸原因在上述危险杂质中,乙炔 (C2H2)是不饱和碳氢化合物,具有很高的化学活性,性质极不稳定,是空分冷箱爆炸的主要原因。由于乙炔在空气中分压很低,即使冷却到-170℃也不会象水分及二氧化碳以固态析出,而是随空气进入分馏塔中。乙炔在液空中溶解度 为 20ppm,一般不会在液空中析出,而随液空进入上塔。液氧气化时带走的乙炔约为液氧中乙炔含量的1/24。所以随着空分冷箱运行周期的延长, 液氧中乙炔浓度不断增高。当液氧含量超过溶解度时,就以固态析出。固态乙炔和液氧接触后爆炸的敏感性高,是空分精馏塔爆炸的危险物质。 其它碳氢化合物 (CH4、C2H4、C2H6)在液氧中溶解度比乙炔高,但乙烯、丙稀等碳氢化合物与乙炔一样,也会发生爆炸反应。 氧化亚氮(N2O)是一种无色无味气体,氧化亚氮(N2O)在主冷凝器液氧中积聚,容易固化,阻塞换热通道,造成碳氢化合物在局部区域的富集,引起空分主冷的爆炸;而N2O在精馏塔中积累起来会使产品受到污染 。二氧化碳(CO2)在冷箱中析出晶体除吸附乙 炔及其它碳氢化合物外, 还会使液氧产生静电。如果二氧化碳长期积聚,还会阻塞精馏塔板。同时二氧化碳晶体下还会出现可燃物超临界积聚的情况, 在与液氧共存的条件下, 将引起空分冷箱爆炸 。因此,为保证空分装置安全稳定运行 ,必须加 强对空分设备中总烃、乙炔、二氧化碳、氧化亚氮的检测分析,及时将结果提供给生产工艺部门,采取措施控制指标。磐诺方案对液氧中的乙炔含量的测定,经典的化学比色法为手工操作,步骤繁琐,分析时间长,误差大,仅适合小型空分装置。而采用氢火焰型气相色谱仪只能对液氧中碳氢化合物进行分析,不能同时完成对空分有害的无机化合物如二氧化碳、氧化亚氮的测定, 且氢焰型气相色谱仪的下限检测浓度约为0.15×10-? C2H2, 不能达到大中型空分装置监测液氧中乙炔含量正常值≤10 ×10-? C2H2的要求。磐诺采用脉冲氦离子化检测器(PDHID)气相色谱仪,性能稳定,优势更显著。——检测灵敏度高,专为超低微量≤10x10-?设计制造,与氢焰型色谱仪相比对C2H2、CO2、N2O的检测下限可达5×10-?。 ——检测气体成分种类多,适用面广, 对有机及无机化合物均 有高灵敏度响应 , 在空分安全监测中可以做到一机多能。 阀图空分装置危险组分液氧分析典型谱图预防措施除了对气体成分进行科学检测,做好充分的防空措施也是避免空分装置爆炸的有效途径。1、减少可爆物进入空分塔空分装置应选择在环境清洁地区,并布置在有害气体及固体尘埃散发源的全年小频率风向的下风侧。空分装置与周围设施的防火间距应符合相关规定。采用无油润滑的压缩机和膨胀机或汽轮压缩机和膨胀机,可以基本上杜绝润滑油及其轻馏分的来源。2、清除可爆物a)对小型中压制氧,采用常温分子筛纯化器,吸附乙炔。b)在下塔底部导入上塔的液空管路上设置液空吸附器,清除溶解在液空中的乙炔和其它碳氢化合物。c)不断抽取含乙炔浓度较高的液氧到塔外蒸发,或当液空、液氧中的乙炔和其它碳氢化合物的浓度接近允许极限时,排放掉部分或全部液体。d)使液氧循环通过液氧吸附器,清除残留于液氧中的乙炔和其它碳氢化合物。e)及时对设备进行局部或全部加热清洗。按设备制造商提出的要求,空分设备每运行满1个周期后,应停车进行全面加温1次,彻底清除设备内的碳氢化合物和油脂。f)氧气管道(管件)内壁应平滑,无锐边、毛刺及焊瘤,管道内部无油脂、杂质。开工前,氧气设备、管线必须清扫、吹洗、脱脂合格。3、防止可爆物局部浓缩有的精馏塔爆炸是在液氧中乙炔含量不高的情况下发生,可能是由于乙炔、碳氢化合物在设备某些死角局部浓缩而析出造成的,因此要采取措施防止可爆物局部浓缩。a)停车时间较长时,应将设备内的液氧、液空排放掉,以免在自然蒸发时造成乙炔、碳氢化合物浓缩析出。b)保持液氧液面的稳定,且不要低于规定的高度。c)在结构方面避免死角,或由于通道局部堵塞而造成流动不畅。4、其它防控措施a)为了防止静电产生,空分塔必须在安全距离的两个部位接地,冷凝蒸发器、乙炔吸附器及液空、液氧的分析取样的排放管路等,若在法兰连接处没有跨接线时,应单独接地,接地电阻不应大于10Ω。室外空分装置防雷接地和冷箱内主要设备防静电接地应分别设置。b)强化液体的过滤措施,以防固体二氧化碳、硅胶、珠光砂粉末带入液氧中。c)防止超压爆炸。d)低温液体(液氧、液氮、液氩)储槽应设有液位计、温度计、压力表及高液位报警设施,还应设有超压及真空泄放设施。低温液体储存容积不得超过容积的90%.液氧、液氮储存系统设置的中、高压液氧(液氮)泵与气化器间应设安全保护联锁装置。e)气瓶(氧气、氮气、氩气)应定期检验,充装气瓶应防止超压、超温、混装,气瓶的充装、储存、运输都应符合《气瓶安全监察规程》等规范的要求。安全生产事关国家和人民利益,事关社会安定和谐,是社会主义市场经济持续、稳定、快速、健康发展的根本保证,是发展大局的重要前提。对于空分装置,只有减少、清除原料空气中存在的可爆物等杂质;避免可爆物在设备、管道、工艺物料(特别是液氧)中的积聚;严格空分装置的设计、制造、施工及生产安全管理,才能确保空分装置实现安全、长周期运行。
  • 卡博莱特· 盖罗回访中石化催化剂(北京)有限公司
    前言乙烯工业是石油化工业的龙头,国内现有的乙烯装置全部采用催化加氢除乙炔工艺来制备聚合级乙烯。碳二加氢催化剂技术是整个乙烯技术中的关键技术之一。卡博莱特盖罗来到中石化催化剂(北京)有限公司对高温箱式炉RHF1400进行安装并回访生产运行一部,探访卡博莱特盖罗马弗炉在石化催化剂行业的应用。 中国石化催化剂有限公司作为中国石油化工股份有限公司的全资子公司,是全球知名的炼油化工催化剂生产商、供应商、服务商。中国石化催化剂(北京)有限公司是中国石化催化剂有限公司的分公司,坐落在美丽的燕山石化,始建于1993年6月,企业已通过GB/T 19001、GB/T 24001、GB/T 28001和Q/SHS0001.1管理体系的认证。公司于2015年5月获得中关村高新技术企业认定。中石化催化剂(北京)有限公司现有4套主要生产装置。主要产品为:银催化剂、碳二碳三选择性加氢催化剂、聚烯烃助剂、芳烃溶剂。 中国石化催化剂(北京)有限公司生产运行一部于2008年和2012年分别购买了两台卡博莱特的高温箱式炉RHF1400,十年间使用状况良好,设备稳定,并于2018年底再次采购了一台卡博莱特盖罗的高温箱式炉RHF1400,6月17日销售经理叶上游先生与高级维修工程师袁石峰先生来到中石化催化剂(北京)有限公司生产运行一部,对新购买的RHF1400进行安装和培训使用。据了解,生产运行一部主要是生产碳二选择性加氢催化剂的部门,马弗炉是用于催化剂的产品检验。碳二选择加氢催化剂的载体性质非常广,马弗炉烧完之后主要检测四项指标,吸水率,强度,密度和比表面积。崔工对卡博莱特盖罗的产品质量及售后服务安装都给予了高度评价。卡博莱特盖罗的马弗炉控温精度比较高,比其他一些品牌精度高一些,样品烧结的差别比较明显。 2008年及2012年采购的卡博莱特盖罗高温箱式炉RHF1400 生产运行一部的崔工(右)与卡博莱特盖罗销售经理叶上游先生(左)合影 合成各种聚合物的乙烯单体,通常是由烃类蒸汽裂解制得。在裂解气中除了乙烯单体以外常常含有少量的乙炔等杂质,为了提高聚合物的性能,通常需要对裂解气进行精制,以使乙炔含量降至10ppm以下,最好小于5ppm。工业上一般采用催化选择性加氢的方法将乙烯原料中的乙炔除去。近年来,由于乙烯需求量的增加,大多数厂家通过改扩建装置来提高乙烯产量,导致碳二加氢单元的负荷增加,因此对乙炔加氢催化剂性能也提出了更高的要求。拥有自主知识产权的碳二选择加氢催化剂的开发并在工业装置上的成功应用,可大大减轻国内乙烯装置对国外技术的依赖,对保证我国能源与经济安全、提高乙烯工业的竞争地位有重要意义。CarboliteGero(卡博莱特盖罗)是弗尔德集团建立的专业马弗炉品牌,拥有了全系列炉类产品,加热温度从室温至3000°C,容积从3L至14000L,应用领域覆盖实验室至工业,包括各类气氛炉类产品。CarboliteGero有着灵活的方案,能为用户提供个性化的解决方案,如:航空航天领域、工程领域、材料科学、热处理、医药、生物及实验室检测等领域。卡博莱特盖罗以满足用户需求为中心,提供设备选型指导,有专业领域的工程师为全球的用户提供现场安装和调试服务。RHF系列高温箱式炉采用硅碳棒加热,有4种炉腔尺寸,每种都有3种不同最高工作温度可选(1400°C, 1500°C和1600°C)。坚固的结构和高品质加热元件保证加热速率(通常40分钟内升到1400°C)和长久的使用寿命。RHF系列高温箱式炉特点:◆ 最高工作温度1400°C,1500°C或1600°C◆ Carbolite Gero301控制器,单段程序控温,计时器功能◆ 炉腔体积3,8,15或35L◆ 阻尼式上开门(仅3L,8L型号)◆ 硅碳棒加热元件使用寿命长,能够承受间歇操作产生的应力◆ RHF系列3L和8L采用一体成型的炉底板,15L和35L采用碳化◆ 硅炉底板◆ 低蓄热量的保温材料,升温和降温迅速
  • 东西分析10年老用户优秀征文之四 值得信赖的“老同事”——GBC Avanta P型原子吸收分光光度计
    编者按:东西分析10年老用户优秀征文活动火热进行中,自活动开始以来,我们收到多篇用户文章,其中也不少GBC品牌仪器用户,在此我们对用户的热情表示衷心的感谢,你们的回应是对我们工作最大的肯定,文章我们会陆续刊登出来,敬请期待!另外,欢迎大家踊跃投稿。本期让我们来欣赏下蚌埠玻璃工业设计研究院徐炜老师写的关于GBC Avanta P型原子吸收的文章。自序初次见到它,是在我入职的第二天,师傅带着我参观实验室的时候。在当时我们实验室有限的几台分析仪器中,我一下子就被它精致的外观吸引了,后来我知道了它不光有颜值,还很有实力。如今,它已经在工作岗位上奉献12年之久了,兢兢业业,始终如一,是我最值得信赖的“老同事”。这台GBC Avanta P型原子吸收分光光度计采用火焰原子化器,配备了双光束光学系统,保证了仪器的长期稳定;配备有4灯架,满足我们的检测需求;带背景校正和火焰程序控制功能,保证了仪器分析具有高灵敏度和高精度。 我中心是一家从事玻璃及其原材料成分分析、煤质分析、玻璃产品质检的第三方检验检测机构。作为资质认定的检验检测机构,我们对所出具的检测报告严格要求,确保检测结果的准确、可靠。这台Avanta P型原子吸收分光光度计我们主要用于玻璃及其原材料中钾钠钙镁锂铜等元素的分析检测,由于其稳定、高效、精确的表现,帮助我们出色的完成了一个又一个的检测任务。助力荣获2012年建材行业满意值证书2012年,我中心参加了中国建筑材料联合会计量检测分会组织的建材行业石灰石和粘土矿化学成分实验室能力验证活动。拿到样品后,我们即按照相关的标准安排实验,两种样品19个元素指标,其中9个元素我们是采用这台Avanta P型原子吸收分光光度计完成。由于粘土矿有多种族类,不同族中部分元素含量差异较大。为了能测得合适的吸光度,我们适当的增大了称样量。这样,我们一次制样便可进行多种元素的分析。有些元素含量较高,浓度超出标准曲线,进行几十倍的稀释后测试,这台仪器仍然保持着良好的精度和灵敏度。氘灯扣背景技术,减小了这类复杂样品中低含量元素测试的基体效应,使检测结果更加准确。通过使用这台仪器完成的9个元素,配合其他分析方法完成的10个元素,两类样品测试的总质量分数都近100%。凭借我们准确的检测结果,最终我们荣获中国建筑材料联合会颁发的满意值证书。优于国标的分析方法,节约工时,提高效率在玻璃工业中,铁含量是玻璃成品及原料中作为有害杂质加以控制的,因此在我们的日常检测中,铁含量测试一直是我们测试最频繁的项目。在国家标准中,采用邻菲罗啉分光光度法作为一级方法测试。工作中,我们进行过比色法和原子吸收法的比对试验。用邻菲罗啉分光光度法和原子吸收光谱法进行比对,分别使用722型可见分光光度计和这台Avanta P型原子吸收分光光度计,使用相同的铁标准溶液,使用不同方法得到的分析结果误差远远小于国家标准规定的0.01%的允许误差范围,但原子吸收法在对某些金属氧化物原料中铁的测定有独到的优点,抗元素干扰性强,在玻璃及原料全分析时,可以一次制样同时测定铁和其他元素,简化了手续,节约了工时。用数据说话,结果好才是真的好1. 测试项目某玻璃样品中K2O含量的测定。2. 实验方法2.1 依据标准GB/T1347-2008《钠钙硅玻璃化学分析方法》2.2试剂与仪器氢氟酸(HF优级纯,ρ约1.15g/mL)。硝酸(HNO3优级纯,ρ约1.42g/mL)。高氯酸(HClO4高纯,ρ约1.67g/mL)。盐酸(HCl优级纯 1+1)。氯化锶溶液(200g/L)氧化钾标准溶液(20 μg/mL)标准系列溶液:1.00μg/mL,2.00μg/mL,3.00μg/mL,4.00μg/mL,5.00μg/mL,6.00μg/mL,7.00μg/mL,8.00μg/mL。GBC Avanta P型原子吸收分光光度计,采用空气-乙炔火焰,钾灯在766.5 nm处。2.3 测定步骤称取适量试样(精确至0.0001 g)置于铂皿中,用少量水润湿,加高氯酸和氢氟酸,消解。冷却后,用水和盐酸(1+1),加热使其全部溶解,冷却至室温移入容量瓶中配置样品,准备测试。将GBC Avanta P型原子吸收分光光度计通电,打开空压机和高纯乙炔气,设置仪器参数,灯电流6.00 mA,波长766.50 nm,狭缝宽度0.50 nm,将仪器调整至最佳工作状态,以试剂空白作参比,按仪器提示对标准系列溶液和试液进行测定。3. 实验数据对该试样进行平行试验,并带标准物质钠钙硅玻璃GBW03117对标准曲线进行验证。实验原始记录如下:4. 结果与分析由图可知,标准曲线线性好,RSD较低,标准物质GBW03117的测定值1.09%与标准值1.10%极其接近,证明建立的标准曲线正确,试样平行测定的结果基本一致,检测结果准确、可靠。在这12年过去了,这台Avanta P型原子吸收分光光度计已经成为我中心“元老级”的仪器了,但它依然在我们的分析工作中占据着重要的地位。在最近的一次仪器检定时,市计量测试研究所的领导赞叹这台原子吸收在历经十多年后还有这么优秀的性能。这离不开我们对仪器的精心维护,但更不可否认的是这台仪器本身性能的强大和稳定。随着我中心业务量的增大,我们又购置一台最新款SavantAA型原子吸收光谱仪,它的性能更加优异,功能更加强大,我们期待着它的辉煌。关于我们北京东西分析仪器有限公司,拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 好消息:我公司产品电石发气量测定仪热销中
    电石发气量测定装置/电石发气量测定仪 型号:H8979 、 用途 H8979型电石发气量测定装置是在密封条件下,测定单位质量电石产生乙炔气量的计量器具。可应用于电石生产厂、电石深加厂及有关电石的科研和质量监督。 二、 H8979型电石发气量测定装置主要术标   1、 计量器容积:19L   2、 装置度等:0.5   3、 作压力:OPa   4、 波动&le 50Pa 三、 H8979型电石发气量测定装置产品结构   主要由乙炔发生器、气液分离器和计量器三分组成。 四、 H8979型电石发气量测定装置作原理   装置中的计量器是个恒压的、容积可变的、密封性计量器具。计量器的计量腔是由钟罩、水槽借助于密封液组成的容积可变的空腔,腔内的作压力是通过配重锤来调正的在出厂时作压力已调整为OPa,恒定的压力是通过平衡轮中曲线轮和补偿锤实现的,其密封液采用NaCL饱和溶液。   定质量的电石试样投入到盛有定容积水的乙炔发生器中后,产生的乙炔气经气液分离器除去水份后,由管路入计量腔,使钟罩上升,待反应结束后从计量器的标尺上读出容积示值。此容积量值就是定质量的电石试样所产生的乙炔量 为了配合电石质量的检测,我厂和化、化研究院共同研制了电石发气量测定装置。在制定标准过程中,起草人参照相关的外标准,将装置的容积定为19升,故而配制4.75升标准器,标准器零点定在水伐下方,4.75升的液面值由出厂检定证书给出定值。(玻璃管0-100mm中的点)。 标准器型号:HAGBJ-4.75L 度:0.1% 五、配置:1套电石装置+1台标准器 重量:65千克 尺寸:长1.3米,1.5米 北京恒奥德仪器仪表有限公司 凡顺利:010-51658042/15010245973
  • 赫施曼助力石油化工废催化剂钴的测定
    石油化工废催化剂中往往含有一些有毒成分,主要是重金属和挥发性有机物,具有很大的环境风险。此外,废催化剂中有较高含量的贵金属或其他有价金属,可作为二次资源回收利用。因此,对于石油化工废催化剂的检测尤为重要。以石油化工废催化剂钴的测定为例,根据HG 5588-2019,用原子吸收分光光度法,其测定原理为:用原子吸收分光光度计,使用空气-乙炔火焰,于波长240.7nm处测定试料溶液中的氧化钴,用工作曲线法定量。主要步骤为:1、标准曲线的绘制。取5只50mL容量瓶,采用10ml规格的opus电子瓶口分配器,stepper模式设置4个体积分别为1、2、3、4mL,然后按分液键,将储备液(500μg/mL)分别加入4个容量瓶中(剩一个不加),然后定容,对应标准溶液中氧化钴的浓度分别为0、1、2、3、4μg/mL。按仪器工作条件,用空气-乙炔火焰,以不加氧化钴标准溶液的空白溶液调零,于波长240.7nm处测定溶液的吸光度。以氧化钴的浓度(单位为微克每毫升)为横坐标,氧化钴的吸光度值为纵坐标,绘制工作曲线或计算出线性回归方程。2、测定。量取一定量的试料溶液(5-10mL),置于50mL容量瓶中,再用瓶口分配器加入1mL盐酸溶液,用水稀释至刻度,摇匀。从工作曲线上查得或通过线性回归方程计算出被测溶液中氧化钴的浓度。 3、数据处理。计算氧化钴(Co0)质量分数:取平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值应不大于0.20%。赫施曼的瓶口分配器是采用阶梯式量程原理,操作简单舒适、无人为误差。可代替量筒、刻度移液管,可便捷、安全地进行0.2-60ml的液体移取,带安全阀的ceramus型可应对盐酸、硝酸等易挥发、腐蚀性较强的特殊试剂。 赫施曼的10ml的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加;大体积的型号可代替烧杯、玻璃棒,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 原子光谱大有可为——记原子光谱及相关技术研究进展暨第十五期原子光谱沙龙
    p    strong 仪 /strong strong 器信息网讯 /strong 2016年10月28-30日,由中国光学学会和中国化学会主办,中国科学院福建物质结构研究所、福州大学和闽江学院联合承办的第十九届全国分子光谱学学术会议暨2016年光谱年会在福州召开。500多名来自120多个家国内外科研院校单位的光谱研究领域的专家学者参加了此次会议。 /p p   本次会议第一次将原子光谱纳入了交流范围,并且于会议第二天举办了“原子光谱及相关技术研究进展暨第十五期原子光谱沙龙”的分会场会议。多位国内知名的原子光谱专家学者参会,或是主持会议讨论,如厦门大学的杭纬教授、四川大学侯贤灯教授 或是分享报告,如核工业北京地质研究院分析测试研究所郭冬发研究员、北京大学王京宇教授、清华大学邢志教授、中科院上海硅酸盐研究所汪正研究员、北京疾病预防控制中心刘丽萍研究员、中国计量科学研究院韦超研究员等 再或是认真聆听报告,如东北大学王建华教授等。 /p p style=" text-align: center " img title=" IMG_7494.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/23d4aaeb-68e9-4cdd-813e-ec75bc26630f.jpg" / /p p style=" text-align: center " “原子光谱及相关技术研究进展暨第十五期原子光谱沙龙”会场 /p p    span style=" color: rgb(0, 0, 0) " strong 原子光谱技术及其应用趋于成熟,创新不容易、发文章不容易,那么,原子光谱技术还能从哪些方面进行创新?原子光谱还能在哪些新应用领域发挥作用?这是全体原子光谱研究者们时刻在思考的问题,他们的工作成果在此次会上纷纷进行了展示与分享。其结果让人振奋,让人觉得我们的原子光谱仍大有可为。 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " img title=" IMG_7485.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/8ff64896-aaea-418f-a5bb-377b7618e5d4.jpg" / /span /p p style=" text-align: center " 核工业北京地质研究院分析测试研究所 郭冬发研究员 /p p   核燃料循环中样品检测是最复杂的检测工作之一,涉及检测仪器种类之多不可计数。而且,由于工作内容的与众不同,许多分析或研究工作没有商品化的仪器设备可用,或者是国外对中国限售的,那么,就需要相关工作者自己搭建仪器设备、自己开发分析方法。 /p p   如,郭冬发研究员报告中介绍的紫外脉冲激光时间分辨荧光仪器及测定铀含量的方法,是核工业北京地质研究院30年研究发展积累的科研成果,现在还在发挥着重要的作用。该方法可测定溶液中0.02-20ng/ml的铀含量,经过化学前处理、特效试剂和计算机化的精密微量操作,测定范围扩展至常量铀测定。 /p p   郭冬发研究员还指出,用于核燃料循环的激光光谱分析技术的发展方向是:高性能激光器+高分辨光谱仪+先进算法的多方面共同发展,让仪器更加智能化、便携化。 /p p   仪器小型化是原子光谱发展方向之一。环境污染、食品安全、突发应急事件等的频繁发生,以及日常监测等领域,对现场、实时、在线等分析仪器的需求大幅上涨。其中可用于现场快速检测的小型化仪器,还具有功耗低、易于操作、可野外分析等优点,是市场必然的需求。 /p p strong    /strong strong 面对这方面的需求,众多原子光谱专家都在研制新型的便携式、小型化分析仪器。这方面的研究工作也是此次会议分享的一个主要方面。而且, /strong strong 此次会议中,不止一个报告涉及到微等离子体方面的研究。 /strong 微等离子体是被限制在一个有限的空间范围内 (尺度为毫米量级甚至更低 )的等离子体,兼具了常规等离子体的一些特性,但由于放电尺寸缩小到毫米量级甚至更低,可以在大气压下、低功耗、低气体消耗下运行,在发展便携式、小型化仪器方面有得天独厚的优势,当然也存在着一定的不足之处。 /p p style=" text-align: center " img title=" IMG_7509.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/2eead8bd-5e00-474d-86e0-672133d1f145.jpg" / /p p style=" text-align: center " 四川大学分析测试中心 蒋小明教授 /p p   四川大学分析测试中心侯贤灯课题组一直把小型化仪器研制作为课题组的研究方向。此次蒋小明教授介绍了在介质阻挡放电微等离子体和尖端放电微等离子体两种激发源方面所做工作的进展。 /p p   将钨丝电热蒸发分别与介质阻挡放电、尖端放电结合,降低了样品中水分与基体对微等离子体的影响,提高了进样效率、提供额外能量,增强了激发能力。再配合CCD光谱仪检测器,实现了小型化原子发射光谱分析。 /p p style=" text-align: center " img title=" IMG_7544.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/5ba2ef40-e4af-40f6-acea-6787e842e67f.jpg" / /p p style=" text-align: center " 中科院上海硅酸盐研究所 汪正研究员 /p p   液体阴极辉光放电光谱具有对大部分金属离子具有良好的检测能力,体积小、低功耗(& lt 100w)、大气压下操作、操作成本低、利于小型化和便携式发展等优点。汪正研究员多年来一直在研制液体阴极辉光放电光谱仪器。此次主要介绍对液体池所进行的改进,改进后使得液体阴极辉光放电光谱仪器的稳定性和便携性获得了极大提高。并且,通过化学试剂增敏、分离富集等方法,使得液体阴极辉光放电光谱能够用于痕量元素的分析。 p   汪正研究员指出,液体阴极辉光放电光谱作为一种新兴的原子光谱分析仪器备受关注,为原子光谱的小型化提供了可能。今后的工作可以从改善等离子体的性能、研制专用分析仪、完善实际应用、机理研究等方面继续展开,进而实现商品化、小型化仪器的开发。 /p p style=" text-align: center " img title=" IMG_7594.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/573ae2de-fad1-4b94-8cc6-f5d3e8705f46.jpg" / /p p style=" text-align: center " 中国地质大学(武汉)生物地质与环境地质国家重点实验室 朱振利教授 /p p   朱振利教授介绍了利用微等离子体技术研制的辉光放电源便携式重金属监测仪器,将其应用于生活饮用水中As、Sb、Hg、Cd等元素的检测,获得的检出限优于标准的要求。在研究工作中,朱振利教授发现了辉光发射光谱中气控增敏现象,即:信号最佳氩气流速为200ml/min,增敏随放电电流增大而减小,低的还原剂浓度可以获得更好的增敏信号。研究表明:通过气体脉动控制可以显著改善等离子体的性能如灵敏度等。 /p p   朱振利教授也指出,该项工作还需继续研究,如提高抗干扰能力、开发省气的小型仪器、通过脉冲放电是否可以提高等离子体性能、等离子体的气氛对性能的影响等。 /p p style=" text-align: center " img title=" IMG_7633.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/254fc348-7b57-4003-9227-e9352048feaf.jpg" / /p p style=" text-align: center " 四川大学化学学院 郑成斌教授 /p p   气动雾化是应用最广泛、普适性最强的样品引入技术,但是也具有一些不足之处,如进样效率低(2-5%)、基质同时引入、质谱峰干扰严重、离子化效率有待提高等。而相对于气动雾化,化学蒸气发生具有进样效率可高大100%、有效分离样品基体使得干扰元素形成的质谱峰得到避免等优点,但也存在适用元素不多等不足,因此有待开发新型化学蒸气发生法。 /p p   对此,郑成斌教授对于化学蒸气发生新方法——光化学蒸气发生进行了进一步研究。发现铁的化学蒸汽发生,并将其用于ICP-AES和ICP-MS,检出限改善100倍,为海洋地化测定痕量铁提供方法。发展了MOFs催化的硒光化学蒸气发生,大幅提高了蒸气发生效率。除此之外,郑成斌教授还拓展了铜、钴、镍、碘元素的化学蒸汽发生。 /p p   对于下一步工作,郑成斌教授介绍到,将实现更多元素(Cu、Pb)的光化学蒸气发生,新化学蒸气发生方法的推广,光化学蒸汽发生与联用技术结合发现更多元素形态化合物,基于氧化化学蒸气发生与微等离子体的TOC分析仪的应用。 /p p    strong 除了仪器系统的研究,现有的仪器将如何拓展新的应用领域?此次会议部分专家也分享了这方面的研究或尝试。 /strong /p p style=" text-align: center " img title=" IMG_7492.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/a888b817-206f-401b-8774-f3886de06caa.jpg" / /p p style=" text-align: center " 北京大学 王京宇教授 /p p   王京宇教授将ICP-MS用于致病菌的检验。人体中检出的元素已经多达80多种,而人是一个整体,那么在研究过程中应该开展多元素分析,探讨元素之间的互作关系。王京宇教授选择大肠杆菌、沙门杆菌、金色葡萄球菌三种菌进行研究,结果发现:全同培养、预处理、测定条件下,尽管同一细菌无机元素浓度在批次间差异明显,但无机元素浓度在三种细菌之间的差异更加明显,具有统计学意义。该发现也意味着:每种细菌无机元素含量分别拥有差异明显的特征比例关系,或传递着一定的生物无机遗传信息。 /p p   王京宇教授还将三种致病菌进行了固态培养基划线培养,过夜(18h)后分别测定三种致病菌中的10种元素,可以获得若干个“特征元素对”,其比值能够形成组合判据鉴别三种细菌。该方法具有简便、快速、高灵敏度、高自动化等优点,在常见致病菌的快速鉴别应用中有着重要的价值和意义。 /p p style=" text-align: center " img title=" IMG_7577.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/eb0cc683-f867-46a8-ba3b-b31ef7dd5fe4.jpg" / /p p style=" text-align: center " 清华大学 邢志教授 /p p   近年来,清华大学张新荣、邢志团队利用ICP-MS测定经过稳定同位素标记的多种抗体和DNA,已经取得很好的成果,今年ACCOUNTS以封面发表了他们团队的研究历程及研究成果。那么,下一步,ICP-MS还能做哪些工作呢? /p p   邢志教授他们尝试了利用ICP-MS(/MS)研究金属相关的反应、探索金属催化有机反应的机理、发现针对某一化学反应新的金属催化剂等几个方面的工作,其对仪器装置进行了一些改进,并且将ICP-MS(/MS)的碰撞反应池作为反应器。 /p p   气相无机汞(Hg+)与VOCs在碰撞反应池中发生甲基化反应,进而检测加合产物CH sub 3 /sub Hg sup + /sup 。对于铜催化叠氮炔环加成反应的机理研究,ICP-MS/MS在反应碰撞池中加入反应物,观察乙炔与苄基叠氮在 sup 63 /sup Cu sup + /sup / sup 65 /sup Cu sup + /sup 、 sup 63 /sup CuLn sup + /sup / sup 65 /sup CuLn sup + /sup ,以及苯乙炔或苯乙炔-D与苄基叠氮在 sup 63 /sup CuLn sup + /sup / sup 65 /sup CuLn sup + /sup 离子催化下发生的反应。另外,受这一反应研究启发,邢志教授发现可以将ICP-MS/MS 用于快速筛选例如叠氮炔环加成反应和甲烷的非氧化催化反应的新的催化剂。 /p p style=" text-align: center " img title=" IMG_7613.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/c687fdfd-adda-4f3d-855e-fd80444bfee6.jpg" / /p p style=" text-align: center " img title=" IMG_7645.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/7c05c5f4-6a8d-4a9d-804e-71ec0579d77c.jpg" / /p p style=" text-align: center " img title=" IMG_7564.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/f01f950f-756f-47ed-8b12-922dab7e8f3b.jpg" / /p p style=" text-align: center " img title=" IMG_7655.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/9ecafcb8-77d4-4262-b788-54301b1c47d0.jpg" / /p p style=" text-align: center " img title=" IMG_7693.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/43a8adb3-17f7-4b8d-a00c-df31bb150f55.jpg" / /p p style=" text-align: center " img title=" IMG_7697.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/a8bf5ce3-6954-4dc1-abc5-d7f3050f2ccb.jpg" / /p p   除了以上的报告分享,北京疾病预防控制中心刘丽萍研究员、中国计量科学研究院韦超研究员、厦门大学程肖玲、福建医科大学高瑶、核工业北京地质研究院分析测试研究所胡勇、厦门大学王小华也分别做题为《卫生检验中砷与砷化合物分析测定》、《同位素稀释质谱法在元素形态分析方面的应用》、《薄膜分析的三种方法:LI-O-TOFMS,脉冲GD-AES,脉冲MD-ICP-MS》、《基于质谱技术的泌尿系结石症血清标志物研究》、《激光诱导击穿光谱结合模式识别的矿物分析研究》、《两种门控增强型CCD探测器在LIBS分析的对比研究》的报告。 /p p style=" text-align: center " img title=" IMG_7525.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/de9ca30d-d950-4ab1-958b-18ac0dc559ae.jpg" / /p p style=" text-align: center " img title=" IMG_7670.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/3b7e0de2-3e5a-4af5-ac18-d0246eb8fb17.jpg" / /p p   北京恒天科力公司迟震寰、赛默飞王其枫做题为《激光剥蚀和激光诱导击穿光谱在化学元素分析中的应用》、《赛默飞原子光谱最新应用进展》的报告。 /p p style=" text-align: center " img title=" IMG_7621.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/1c724154-e27b-4389-9e2b-5025d0623853.jpg" / /p p style=" text-align: center " 合影 /p p style=" text-align: right " 编辑:刘丰秋 /p p & nbsp /p p & nbsp /p p & nbsp /p /p
  • 突发!北京某公司实验室发生火灾致4人受伤,其中两人伤势较重
    据北京顺义官微消息,5月3日上午11点10分左右,仁和镇二三产业基地北京六合宁远医药科技股份有限公司三层实验室发生火灾,过火面积9平方米,现场明火已扑灭。共有4名实验人员受伤,其中两人轻伤,另外两人伤情较重,已送至顺义区医院全力救治。火灾原因正在进一步调查中。不久前多家媒体报道的中南大学一实验室发生事故,也引起了网友关注。该校材料科学与工程学院一博士生在事故中身体被大面积烧伤,紧急送往ICU进行抢救,医院还下达了病危通知书。与实验室安全相关的话题永远不过时,安全管理是实验室管理的首要任务,实验室化学物品多,部分材料易燃易爆,属于高危区域,一旦发生安全事故, 实验室的损失是无法估计的。化学实验室事故主要分为以下几种1、腐蚀及灼烧事故与实验室安全相关的话题永远不过时,安全管理是实验室管理的首要任务,实验室化学物品多,部分材料易燃易爆,属于高危区域,一旦发生安全事故, 实验室的损失是无法估计的。2、火灾及爆炸事故化学实验室事故大部分都是火灾性事故,主要跟化学实验室的特点有极大的关系。化学实验室存放及实验过程中产生的化学物质多具易燃性,这些物质遇到火源很可能起火燃烧,由于大量使用可挥发性的可燃物质,特别是有机溶剂,也是容易引起火险或火灾的常见事故之一,有机溶剂通常具有较强的挥发性,挥发出来的蒸气可以飘移到较远的地方,如果接触到火种,顺着蒸气燃烧,会导致液体着火。爆炸性事故多与火灾性事故相联系,特别是有机化学实验常用的多是一些易爆、易燃的物质或它们的混合物,当这些物质在一定压力和热的作用下突然爆发,造成爆炸。另外也有一些用电设备及线路老化陈旧存在事故隐患,使不慎泄露的易爆易燃物品,遇火引起爆炸。3、中毒事故化学实验室使用的化学药品几乎都有一定的毒性,稍有不慎,就有可能引起中毒事故。中毒事故一般又可分为两类:慢性中毒和急性中毒。慢性中毒一般不容易引起重视,很多症状都是要在中毒积累到一定程度之后才出现,通常为几天或者几个月,有的甚至若干年以后。中毒的症状很难察觉,多数为易怒、失眠、记忆力减退、情绪失常等,通常会未老先衰、早逝。急性中毒通常是误食、吸入或是体表吸收到了有毒物质。误食一般是实验者在实验室饮食、利用实验室的冰箱存放食物或离开实验室未及时做好个人卫生。吸入毒害是最常见的吸毒方式,化学实验室的有毒物质可以以气体、蒸气、粉尘、烟雾等形式被吸入,另外还有体表吸入。有毒物质还可以以气体、液体的形式被皮肤吸收,造成皮肤受伤。实验室里的易燃易爆物品需警惕爆炸性药品:迭氮钠、四硝化戊四醇(泰安)、硝化甘油混合炸药(胶质炸药)、三硝基苯酚(苦味酸)、环三次甲基三硝胺(黑索金)。液氮:温度升高或者压强降低可引起爆炸。二氧化碳、氮等,都必须储存在耐压钢瓶中,一旦钢瓶受热,瓶内压力增大,就有引起燃烧爆炸的危险。易燃易爆气体如氢气、乙炔等烃类气体、煤气和有机蒸气等大量逸入空气, 可引起爆燃。金属钾、钠、白磷遇火都易发生爆炸。遇水易燃:钾、钠、锂、氢化锂、氢化钠、四氢化锂铝、氢化铝钠、磷化钙碳化钙(电石)、碳化铝、钾汞齐、钠汞齐、钾钠合金、镁铝粉等。一些本身容易爆炸的化合物,如硝酸盐类、硝酸酯类、三碘化氮、芳香族多硝基化合物、乙炔及其重金属盐、重氮盐、叠氮化物、有机过氧化物(如过氧乙醚和过氧酸)等,受热或被敲击时会爆炸。强氧化剂与一些有机化合物接触,如乙醇和浓硝酸混合时会发生猛烈的爆炸反应。任何一起安全事故的发生都令人痛心,对于事故原因的调查,对责任方的追责,虽然无法挽回已经发生的悲剧,但对于预防下一次事故的发生无疑有着积极的作用。作为检验检测行业专业媒体,我要测网一直致力于助力检测机构的高效发展。历年来我要测网也开展了多个实验室安全管理系列的网络会议,邀请行业资深专家,讲解和传播实验室安全管理。根据相关专家意见,我要测展示出一些专家关于实验室安全的专业讲解视频,提供给实验人,进行免费学习观看,提高警惕意识,杜绝各类安全事故的再次发生。
  • 新提法!对出具问题报告的检验机构进行延伸现场检查
    新提法!对出具问题报告的检验机构进行延伸现场检查质量云 今天为贯彻落实中共中央办公厅、国务院办公厅印发的《关于全面加强危险化学品安全生产工作的意见》(厅字〔2020〕3号)和《国务院安全生产委员会关于印发〈全国安全生产专项整治三年行动计划〉的通知》(安委〔2020〕3号)工作部署,进一步加强重点工业产品质量安全监管,落实企业质量安全主体责任,市场监管总局决定在全国范围内以危险化学品、危险化学品包装物及危险化学品车载罐体等3类产品为重点,开展质量安全隐患排查工作。质量云注意到,此次危险化学品车载罐体产品质量安全隐患排查工作实施方案,提出:在对企业进行现场检查时,发现出厂检验报告存在不真实或造假情况的,对出具问题报告的检验机构进行延伸现场检查。一起来关注:2020年危险化学品产品质量安全隐患排查工作实施方案依据《国务院关于调整工业产品生产许可证管理目录加强事中事后监管的决定》(国发〔2019〕19号)和《危险化学品产品生产许可证实施细则》(市场监管总局公告2018年第26号),制定本方案。一、排查范围(一)重点产品。易燃有毒易腐蚀产品,包括粗苯、焦化苯、焦化甲苯、工业二硫化碳等有机产品;溶解乙炔等工业气体产品;液化石油气(商品丙丁烷混合物)、车用汽油等石油产品;工业氢氧化钠、工业用液氯、次氯酸钠等氯碱产品。(二)重点企业。对全部危险化学品获证企业开展产品质量安全隐患排查,重点排查近五年国家和地方监督抽查不合格的获证企业,有过质量违法行为、消费者投诉举报、安全生产事故及媒体曝光过的获证企业。(三)重点区域。河北、山东、山西、江苏、河南等地区重点关注有机产品;江苏、河北、内蒙古、山东、广东等地区重点关注工业气体产品;重庆、江苏、辽宁、河北、山东、河南等地区重点关注石油产品;江苏、河北、河南、山东、浙江等地区重点关注氯碱产品。(四)重点指标。粗苯的馏程、密度;焦化苯的苯含量和颜色(铂钴);焦化甲苯的苯含量、馏程;工业二硫化碳的馏出率;溶解乙炔的丙酮含量;液化石油气(商品丙丁烷混合物)的组分和总硫含量;车用汽油的硫含量、苯含量、研究法辛烷值;工业氢氧化钠的氢氧化钠和氯化钠;工业用液氯的氯的体积分数、水分和三氯化氮;次氯酸钠的有效氯和游离碱等关键指标。二、排查方式和内容(一)组织获证企业开展全面自查。组织获证企业按照《危险化学品产品生产许可证实施细则》,对原材料采购控制、过程控制、生产与检验设施和设备的使用维护等方面开展产品质量安全隐患自查。重点自查生产人员是否熟悉关键工序和质量控制点的要求并按照规定操作,生产过程中的关键技术指标、成品出厂检验等是否按规定进行,并保留完整的检验记录。(二)组织对获证企业现场检查。一是证照信息。检查企业营业执照和生产许可证有关信息是否一致,企业是否存在超生产许可范围生产行为。二是生产设施和设备。主要检查是否具备满足实施细则规定的生产设施,是否具备实施细则中规定的必备生产设备和检测设备,设备性能和精度是否满足生产、检测要求;设备是否维护完好,运行正常,是否存在安全隐患,是否带病运行等。三是过程控制。粗苯、焦化苯、焦化甲苯和工业二硫化碳重点检查精馏装置工艺规定、工艺文件指标设置是否合理;溶解乙炔重点检查生产过程是否有丙酮添加记录、丙酮含量检验项目,同时查阅丙酮采购合同、发票、入库记录;液化石油气(商品丙丁烷混合物)重点检查组分及杂质控制要求;车用汽油重点检查硫含量、苯含量、研究法辛烷值相关记录;工业氢氧化钠、工业用液氯、次氯酸钠重点检查电解工艺文件指标设置是否合理、工艺控制是否符合规定、原辅料及成品的贮存设施是否维护良好。四是标识标注。重点检查获证企业对生产许可证标志使用的合规性,是否存在不标注或超范围标注的情况。(三)加强质量安全风险监测。各省级市场监管部门要组织开展危险化学品产品质量安全风险监测,结合生产许可、监督抽查情况,多渠道搜集质量安全风险信息,重点针对辖区内的易燃易爆有毒易腐蚀的危险化学品开展风险监测。可以在有条件的生产聚集区,探索建立危险化学品产品质量安全风险监测站。逐步建立以网络舆情、委托检验、投诉举报、司法案例等多元化信息为支撑,覆盖全域的危险化学品综合质量安全风险监测体系,及时发现系统性、区域性质量安全问题,有效采取风险处置措施,实现危险化学品质量安全风险信息早发现、早研判、早预警、早处置,切实保障人民财产安全。三、开展产品质量监督抽查结合各省年度抽查计划,按照“双随机、一公开”原则,开展危险化学品产品的监督抽查。监督抽查项目粗苯的馏程、密度;焦化苯的苯含量和颜色(铂钴);焦化甲苯的苯含量、馏程;工业二硫化碳的馏出率;溶解乙炔的丙酮含量;液化石油气(商品丙丁烷混合物)组分和总硫含量;车用汽油产品的硫含量、苯含量、研究法辛烷值;工业氢氧化钠的氢氧化钠和氯化钠;工业用液氯的氯的体积分数、水分和三氯化氮;次氯酸钠的有效氯和游离碱等指标要及时公开监督抽查结果,做好结果后处理工作。对拒绝接受监督抽查的企业,要依法严肃处理;对抽查不合格的,要责令企业立即停止生产或销售,限期整改;发现不合格产品为本行政区域以外生产者生产的,要及时通报生产者所在地市场监督管理部门。?2020年危险化学品包装物及容器产品质量安全隐患排查工作实施方案依据《国务院关于调整工业产品生产许可证管理目录加强事中事后监管的决定》(国发〔2019〕19号)和《危险化学品包装物、容器产品生产许可证实施细则(一)(危险化学品包装物、容器产品部分)》(市场监管总局公告2018年第26号),制定本方案。一、排查范围(一)重点产品。钢桶、金属桶罐、气雾剂包装(气雾罐)、塑料容器。(二)重点企业。对全部危险化学品包装物及容器获证企业开展产品质量安全隐患排查,重点检查近五年国家监督抽查和地方监督抽查不合格的获证企业,有过质量违法行为、消费者投诉举报及媒体曝光过的获证企业。(三)重点区域。江苏、浙江、上海、广东、四川、山东、河北和天津等地区。(四)重点指标。气雾罐罐口接触高度、气密性、变形和爆破压力,钢桶、金属桶罐和塑料容器跌落试验(耐跌落性)、气密和耐液压性,塑料容器高温堆码性能等指标。二、排查方式和内容(一)组织获证企业开展全面自查。组织获证企业按照《危险化学品包装物、容器产品生产许可证实施细则(一)(危险化学品包装物、容器产品部分)》,对原材料采购控制、过程控制、生产与检验设施和设备的使用维护等方面开展质量安全隐患自查。重点自查本次排查重点产品原材料采购,生产过程中的冲压设备的模具精度,钢桶、铁质气雾罐和金属桶罐焊接工序中焊接电流强度和频率及焊轮压力的控制,卷封工序中卷边结构、卷封轮槽形、卷封压头压力、压头与卷封轮间隙的控制等关键工序工艺参数,成品出厂检验和重要性能指标检验是否按规定进行,并保留完整的检验记录。(二)组织对获证企业现场检查。一是证照信息。重点检查企业营业执照和生产许可证有关信息是否一致,企业是否存在超生产许可证范围生产行为。二是关键设备。生产设备重点检查气雾罐罐口、塑料容器成型设备的模具精度,钢桶、铁质气雾罐和金属桶罐焊接和卷封等关键工序工艺参数的设置和控制;检测设备重点检查重要性能的检测仪器仪表,如本次排查重点产品气密、液压试验设备,钢桶、金属桶罐和塑料容器跌落试验装置、塑料容器高温堆码试验设备是否在校验期内正常使用,检验人员能否正确操作。三是过程控制。重点查验进货检验如钢桶、铁质气雾罐和金属桶罐的原材料钢板质量记录;生产过程监控如冲压膜具安装精度、注胶、缝焊、卷封等关键工艺参数记录;过程检验如气雾罐罐口接触高度、内涂层完整性记录;出厂检验和重要性能如本次排查重点产品的密封性、耐跌落性、耐液压性等记录。四是标识标注。重点检查企业对生产许可证标志使用的合规性,是否存在不标注或超范围标注的情况。?
  • 第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛召开!
    2024年8月14日,由北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛在北京中建雁栖湖景酒店成功开幕。本次盛会汇聚了来自全国各大知名高校、研究院以及“产、学、政、研、用、金”不同领域的近百位专家学者,共同探讨光电技术的最新进展和产业发展趋势。开幕第一天,线上直播观众人数突破3.5万人。▲正式开幕本次研讨会聚焦荧光、拉曼、条纹、分幅、icmos、成像光谱仪、2μm激光器、光机、自动化,磁光,压电,仪器联用等10余类产品以及钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理等八大应用方向,旨在推动光电技术的创新发展,加强产学研用的深度融合,促进光电产业的转型升级。会议包括主题报告、技术展示等多种形式,为参会者提供了一个交流思想、分享经验、探讨合作的平台。▲北京卓立汉光仪器有限公司总经理张志涛在开幕式上,北京卓立汉光仪器有限公司总经理张志涛发表致辞,对远道而来的嘉宾表示热烈欢迎,并对光电产业的未来发展寄予厚望。随后,15位来自激光诱导击穿光谱、拉曼光谱领域的专家学者分别就各自的研究领域作了深入的阐述,分享了最新的研究成果和经验。▲北京怀柔仪器和传感器有限公司总工程师刘海锋北京怀柔仪器和传感器有限公司总工程师刘海锋做激光技术与光学仪器在大科学装置的应用机遇技术报告,对怀柔科学城做重点介绍,怀柔科学城作为北京“三城一区”国际科技创新中心的关键平台,定位于世界级原始创新承载区,聚焦物质、信息智能、空间、生命、地球系统五大科学领域,部署了众多顶尖科技设施,聚集了国际上首个集极低温、超高压、强磁场和超快光场等综合极端条件实验装置;中国首台第四代高能量同步辐射光源及北京激光加速创新中心等,这些设施将汇聚成全球大科学装置最密集区域,为前沿激光技术、光学仪器研发应用带来前所未有的机遇与挑战。▲多场低温科技(北京)有限公司超精密运动部门负责人刘立民多场低温科技(北京)有限公司超精密运动部门负责人刘立民做基于压电的超精密运动解决方案报告,全面剖析压电技术在超精密运动控制领域的基础原理与最新进展,同时聚焦于多场科技推出的系列压电超精密运动产品,并详细描述这些产品的技术规格、操作原理以及在不同行业中的具体应用案例,展示它们如何在复杂环境中保持卓越的性能以满足用户对高精度和高稳定性的严格要求。并对其在半导体加工、生物医疗、精密光学等领域的应用情况做简单介绍。▲北京卓立汉光分析仪器有限公司应用专家赵牧原北京卓立汉光分析仪器有限公司应用专家赵牧原做太阳能领域产品综合解决方案报告,介绍了太阳能电池领域的前沿情况,并介绍卓立汉光公司面向太阳能电池领域推出的DSR光电检测系统,包括各个系统的测量原理、特点、适用范围和应用案例。▲合肥工业大学副教授杨蕾合肥工业大学杨蕾副教授做激光诱导击穿等离子体光谱报告,深入剖析了激光诱导击穿光谱(LIBS)技术的核心理念、根本机制及其固有的优势与局限性。针对LIBS技术在原位检测应用中的两大核心挑战——固体样本表面形貌的未知变异性与液体样品检测的复杂性,她展开了详尽探讨。研究固体样本表面形貌变化对等离子体、光谱的影响,提出减小其影响的方法;液体样品的Libs原位检测中,直接检测易产生飞溅,且激光脉冲存在一定的吸收损耗,导致光谱信号弱,研究并提出液体样品的检测方案,为提高液体样品在线定量检测精度提供参考。▲西安交通大学副教授袁欢西安交通大学袁欢副教授做激光诱导等离子体技术及其在电力系统中的典型应用报告,分析近些年来电力系统内基于激光诱导等离子体技术的检测方法,主要包括真空灭弧室真空度、绝缘油内金属颗粒、电缆表面绝缘强度、媒质灰飞等方面的研究,从技术原理、产业情况、仪器研制等方面进行论述,希望进一步推进激光诱导等离子体技术在电力系统内的产业化应用。▲北京卓立汉光仪器有限公司光学工程师何运北京卓立汉光仪器有限公司光学工程师何运做从实验室到在线及小型化LIBS系统应用介绍报告,介绍LIBS仪器应用,从实验室到现场及小型化。具体包括:1)激光诱导击穿光谱技术简介;2)实验室、现场和小型化LIBS仪器的应用。▲西安交通大学博士时铭鑫西安交通大学时铭鑫博士做激光诱导击穿光谱在油气资源勘探中的应用研究报告,报告指出,准确获取岩石与岩心样本的矿物元素与有机质组分信息,是理解其矿物学及有机地化特征、评估潜在储层及甜点区域的关键。时博士通过深入研究激光与岩石样本的相互作用及等离子体演化过程,优化了LIBS检测参数,成功构建了针对岩石及岩心样本的矿物元素与有机元素定量分析模型。该模型有效解决了模型过拟合与欠拟合问题,显著提升了元素预测的准确性。此外,研究还进一步探索了多光谱融合技术在页岩岩心总有机碳等有机质热解参数预测中的应用,为实现井场近原位、快速检测矿物元素与有机质特征参数提供了新方法。这一技术突破有望为油气田现场生产开发方案的即时优化提供强有力的数据支撑,推动油气资源勘探与开发效率的提升。▲西安交通大学教授吴坚西安交通大学吴坚教授做激光诱导击穿光谱技术及其在核工业领域应用进展报告,鉴于核工业材料的特殊性,实现其元素组分的原位在线测量一直是技术难题。LIBS技术凭借其独特的优势,如不受辐照环境影响、非接触式测量、远距离操作等,为这一领域带来了革命性的解决方案。报告回顾了LIBS技术在核工业多个关键环节中的国内外研究与应用进展,包括铀资源勘探、核燃料生产、核电站运行监测以及乏燃料处理等方面,展示了LIBS技术在提升核工业材料分析效率与准确性方面的巨大潜力。并着重团队在核电站异物识别、结构材料分类以及安全壳氯离子侵蚀检测等方面的研究成果。团队不仅成功研制了光纤式和望远镜式LIBS检测装置,还成功将这些装置应用于实际现场,实现了对核工业环境中复杂材料元素组分的快速、准确分析。最后,展望了激光诱导击穿光谱技术在核工业领域的应用前景。▲国家农业智能装备技术研究中心助理研究员马世祥国家农业智能装备技术研究中心马世祥助理研究员做激光诱导击穿光谱技术在农业中的应用研究报告,激光诱导击穿光谱技术(LIBS)作为一种新型元素检测技术,被广泛地应用于农业、工业以及矿产勘探等各个领域。针对农业中土壤、水体检测需求,团队基于LIBS技术开展研究,实现了土壤及水体中重金属、营养元素等快速测量,并研制了农田土壤健康管理专家“知土SmartSoil”系列产品,得到了广泛的应用和好评。它不仅帮助农民解决了土壤健康管理中的难题,还促进了农业生产的可持续发展,为实现乡村振兴和农业现代化贡献了重要力量。马世祥助理研究员及其团队的研究成果,为LIBS技术在农业领域的应用开辟了新的道路,也为未来农业环境监测和资源管理提供了更加广阔的前景。▲研究员张开锋张开锋研究员做基于等离激元波导针尖的高分辨率拉曼光谱技术报告,重点介绍了TERS(针尖增强拉曼光谱)技术的优化方案,针尖增强拉曼光谱(TERS)是一种能以纳米级空间分辨率获取化学信息的方法。现有的TERS技术,激发光会直接照射到探针针尖,其光照射的面积(几百 nm)远大于针尖直径(几十 nm),因此针尖以外的样品信号,即背景信号会被叠加检测。提高 TERS 信号的对比度,测量具有荧光活性或强拉曼活性的样品是一项重大挑战。张老师发展了基于等离激元薄膜波导针尖的TERS技术,实现了高稳定性、低背景噪声的TERS测量。该技术可以应对要求高对比度、低热损伤和多环境等TERS测量需求,有望促进TERS技术的推广和发展。▲北京化工大学副教授杨志宇北京化工大学杨志宇副教授做自旋电化学储能的发展前景及挑战报告,储能技术可以将波动电能转化为稳定电力,进而推动能源革命。水系离子电池因安全性高、成本低廉、环境友好,被认为是一种极具发展前景的新型大规模储能技术。然而,常见的过渡金属氧化物阴极材料具有导电性差、容量低、循环稳定性差等问题。基于此,杨老师通过调控过渡金属氧化物活性中心的自旋态来改善电极材料内部电荷的储存和转移机制,以及晶体的结构变形,从而提高电极的能量储存能力和稳定循环能力。发展高效的自旋调控策略以及搭建可视化的自旋检测技术有望推动这一领域的快速发展。▲西安交通大学教授任丹西安交通大学任丹教授做电化学原位拉曼光谱的搭建与应用报告,深入探讨了电化学原位拉曼光谱技术的构建与应用,特别是在清洁电力驱动下的电化学二氧化碳还原(CO2RR)这一绿色碳利用技术中的关键作用。面对当前电催化二氧化碳还原领域催化剂与反应体系尚不成熟、催化机理不明以及界面微环境调控困难的挑战,任老师强调了拉曼光谱技术作为研究电催化界面的关键技术的重要性。报告详细阐述了电化学原位拉曼光谱技术的设计思路、系统搭建过程及其在实际研究中的应用。该技术能够高效捕捉催化反应界面上的微环境信号,为深入理解电催化反应机理、优化催化剂设计提供了有力的分析工具。▲苏州惟光探真科技有限公司总经理刘争晖苏州惟光探真科技有限公司正高级工程师刘争晖做晶圆级半导体光电测试与解决方案报告,团队依托自主知识产权的激光辅助离焦量传感器,小型化科勒照明系统,高稳定性的系统集成设计、数据处理和软件算法等核心技术,针对Si和第三代半导体先进制程,提供显微和荧光成像的核心光学模组,供AOI系统、缺陷检查系统、探针台等集成;针对SiC、GaN等第三代半导体材料和MicroLED新型器件先进制程中面临的发光性质、应力和载流子浓度不均匀的新问题,提供荧光和拉曼光谱相关的系统解决方案,与晶圆厂商合作,开拓良率控制的新途径。供应链国产稳定可控,以更高的性能、更好的应用服务和较低的价格对半导体显微和光谱市场领域进行国产替代。▲北京卓立汉光仪器有限公司应用工程师张丽文北京卓立汉光仪器有限公司应用工程师张丽文做科研与分析型拉曼产品介绍与应用分享报告,介绍卓立汉光科研型与分析型拉曼产品及其应用,包括各个系统的性能、特点、和应用案例,重点介绍了Finder930全自动显微共聚焦拉曼光谱系统,RTS多功能拓展型拉曼光谱系统及联用技术,Finder Insight小型科研级拉曼光谱仪及Finder Edge手持式拉曼光谱仪,并重点分析了其在材料科学、生物医学、考古、食药环侦、管制品、禁毒、违禁塑料等领域的应用情况。▲中国科学院工程热物理研究所金楷茹中国科学院工程热物理研究所田振玉研究员的博士生金楷茹同学做基于原位拉曼光谱的高温结焦积炭动态表征报告,完成了基于原位拉曼光谱的高温结焦积炭动态表征研究,该研究针对航空发动机燃烧室积炭及高超声速飞行器热管理再生冷却管路中的热结焦问题,提出了创新的解决方案。在高温、高压及复杂反应条件下,燃烧积炭和热解结焦是航空及航天领域面临的重大挑战,它们不仅会导致设备堵塞、燃油效率降低、功率输出下降,还可能对飞行安全构成严重威胁。传统方法难以实时、准确地监测这些过程中积炭和结焦结构的动态变化。金楷茹同学的研究利用原位拉曼光谱技术,直接在火焰或高温反应环境中对积炭和结焦进行动态表征,这一技术突破使得研究者能够实时捕捉到积炭和结焦结构在极端条件下的细微变化。通过对乙炔燃烧喷嘴尖端积炭结构以及乙炔热解过程中惰性石英表面焦炭结构的动态监测,该研究不仅揭示了积炭、结焦结构随时间和温度变化的规律,还深化了对积炭、结焦生成机制的理解。除上述大会报告以外,会议期间,结合用户各种需求,卓立汉光公司适时展示多种产品系统,部分产品系统提供免费测样,欢迎详询!
  • 渤天化工聚氯乙烯厂内发生爆炸
    10月28日凌晨1点半左右,位于汉沽的天津渤天化工有限公司聚氯乙烯厂内发生爆炸。   消防队员立即出动赶赴现场,通过侦查发现是厂内合成机后冷却器出口管路发生爆燃。消防队员中队立即展开扑救,出动水枪,采取堵截冷却措施,防止火势向其他部位蔓延。同时要求企业技术人员采取关阀断料等措施防止火势蔓延。 经过一个小时的扑救,火势得到控制, 3点半左右管道内残留气体燃尽,着火点明火熄灭。   经初步分析,起火原因为乙炔孔板流量计失灵,造成乙炔过量,反应压力升高,造成管路泄漏引起爆炸。   所幸事故并没有造成人员伤亡,详细原因正在调查之中。
  • 关注生产安全,江苏省应急管理厅印发《化工(危险品)企业常见安全隐患警示清单》
    p style=" text-indent: 2em " 近年来,实验室火灾、化工厂爆炸等事故频发,造成的人员伤亡、财产损失等后果严重,引起人们对实验室安全问题的高度关注。为进一步指导化工(危险化学品)企业扎实开展隐患排查治理工作,增强企业隐患排查治理的可操作性,推动企业主动落实安全生产主体责任,有效防范和化解安全风险,近日,江苏省应急管理厅办公室印发了《化工(危险品)企业常见安全隐患警示清单》的通知。该警示清单中一共有244条,其中人的不安全行为86条,物的不安全状态102条和管理缺陷56条。通知中提到,这些清单主要是化工企业工作人员在日常工作中经常性、重复性发生的不符合安全生产要求的问题,也是日常安全生产工作中必须或避免发生的事情。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/99eee99c-0e89-43af-9e68-749b47ba8cd0.jpg" title=" 1_副本.png" alt=" 1_副本.png" / /p p style=" text-indent: 2em " strong 附件 /strong : /p p style=" text-align: center text-indent: 2em " strong 化工(危险化学品)企业常见安全隐患警示清单 /strong /p p style=" text-indent: 2em " strong span style=" color: rgb(84, 141, 212) " 一、人的不安全行为(86条) /span /strong /p p style=" text-indent: 2em " (一)劳动纪律(7条) /p p style=" text-indent: 2em " 1.酒后上岗、班中饮酒。 /p p style=" text-indent: 2em " 2 .串岗、脱岗、睡岗,在岗期间从事与岗位工作无关的事。 /p p style=" text-indent: 2em " 3.未经批准私自顶岗、换岗。 /p p style=" text-indent: 2em " 4 .上班迟到、早退,未按规定履行请假手续。 /p p style=" text-indent: 2em " 5 .未按规定着装和佩戴安全帽进入生产、施工现场。穿易产生静电的服装或穿戴铁钉的鞋进入易燃、易爆装置或罐区。 /p p style=" text-indent: 2em " 6 .在禁烟区域内吸烟。 /p p style=" text-indent: 2em " 7 .主要负责人长期脱岗不履职。 /p p style=" text-indent: 2em " span style=" text-indent: 2em " (二)工艺纪律(17条) /span /p p style=" text-indent: 2em " 8.未按规定要求进行巡回检查,发现的隐患和问题未及时报告和处理。 /p p style=" text-indent: 2em " 9 .未按规定要求填写操作记录和交接班记录,交接班人员未签名。 /p p style=" text-indent: 2em " 10.对出现的工艺报警未及时处置和记录。 /p p style=" text-indent: 2em " 11.未按操作规程进行操作;不清楚或不熟悉工艺控制指标和操作规程。 /p p style=" text-indent: 2em " 12.改进工艺或操作程序,未进行安全评估。 /p p style=" text-indent: 2em " 13.使用压缩空气进行易燃易爆物料的加料、压料操作。 /p p style=" text-indent: 2em " 14.常压贮槽带压使用;带压开启反应釜、容器盖子。 /p p style=" text-indent: 2em " 15.在可燃气体爆炸极限内进行工艺操作。 /p p style=" text-indent: 2em " 16.采用氮封或输送物料时,氮气管道未设置止回阀,存在高压串低压的风险。 /p p style=" text-indent: 2em " 17.离心机分离可燃有机溶剂时,未采取氮气保护措施。 /p p style=" text-indent: 2em " 18.操作中遇到突发异常情况时不及时报告,擅自变更操作。 /p p style=" text-indent: 2em " 19.外来人员代替本岗位人员操作。 /p p style=" text-indent: 2em " 20.现场盲板未编号和挂牌。 /p p style=" text-indent: 2em " 21.取样完毕未及时关闭取样阀。 /p p style=" text-indent: 2em " 22.危险化学品装卸、罐区脱水(切水、切碱等)时操作人员离开现场。 /p p style=" text-indent: 2em " 23.未经许可擅自修改DCS系统、安全仪表系统中相关工艺指标、报警和联锁参数。 /p p style=" text-indent: 2em " 24.启动皮带输送机前,没有检查确认、没有启动警告铃。 /p p style=" text-indent: 2em " (三)其他纪律(26条) /p p style=" text-indent: 2em " 25.在易燃易爆区域用汽油、易挥发溶剂擦洗设备、衣物、工具及地面等。 /p p style=" text-indent: 2em " 26.在易燃易爆区域用黑色金属等易产生火花的工具敲打、撞击和作业。 /p p style=" text-indent: 2em " 27.在易燃易爆区域使用非防爆通讯、照明器材、非防爆工具等。? /p p style=" text-indent: 2em " 28.擅自停用可燃、有毒、火灾声光报警系统和安全联锁系统。 /p p style=" text-indent: 2em " 29.擅自关闭或调整视频监控设施或关闭各类报警声音。 /p p style=" text-indent: 2em " 30.堵塞消防通道及随意挪用或损坏消防设施。 /p p style=" text-indent: 2em " 31.未按规定检查维护应急防护设施、器材。 /p p style=" text-indent: 2em " 32.不能正确熟练使用应急防护装备、器材。 /p p style=" text-indent: 2em " 33.不佩戴专用防护用品(具)从事有毒、有害、腐蚀等介质和窒息环境下的危险作业。 /p p style=" text-indent: 2em " 34.不按规定静电接地进行危险化学品车(船)装卸作业。 /p p style=" text-indent: 2em " 35.转动设备未停机、带电设备未停电进行检维修。 /p p style=" text-indent: 2em " 36.车辆进入生产区域未安装阻火器或车辆进入生产区域超速行驶。 /p p style=" text-indent: 2em " 37.管理人员违章指挥、强令冒险作业。 /p p style=" text-indent: 2em " 38.未为从业人员配备适用有效的个体防护用品。 /p p style=" text-indent: 2em " 39.现场未设置或者缺少禁止、警告、指令、提示等安全标志。 /p p style=" text-indent: 2em " 40.无故不参加安全培训、班组安全活动。 /p p style=" text-indent: 2em " 41.未按规定要求参加或组织开展安全检查。 /p p style=" text-indent: 2em " 42.设备、工艺变更后,没有及时修订制度、规程。 /p p style=" text-indent: 2em " 43.未按国家标准分区分类储存危险化学品,超量、超品种储存危险化学品,相互禁配物质混放混存。 /p p style=" text-indent: 2em " 44.危险化学品灌装时超过核定装载量。 /p p style=" text-indent: 2em " 45.危险化学品装卸作业前,车轮未固定,车钥匙未交岗位人员保管。 /p p style=" text-indent: 2em " 46.液化石油气、液氨或液氯等的实瓶露天堆放。 /p p style=" text-indent: 2em " 47.危险化学品仓库物品存放时,顶距、灯距、墙距、柱距、垛距“五距”不符合要求。 /p p style=" text-indent: 2em " 48.员工“三级”安全教育低于72学时。 /p p style=" text-indent: 2em " 49.员工“三级“安全教育、承包商员工入厂安全教育考试卷未批改或批改不认真,随意给分。 /p p style=" text-indent: 2em " 50.未按规定参加“三级”安全教育培训或未经岗位技能培训考核合格。 /p p style=" text-indent: 2em " (四)特殊作业(36条) /p p style=" text-indent: 2em " 51.未按规定办理动火、进入受限空间等特殊作业许可证。 /p p style=" text-indent: 2em " 52.动火、进入受限空间作业等特殊作业前未开展风险识别。 /p p style=" text-indent: 2em " 53.特殊作业安全作业证有缺漏项,超过规定有效期,签批人不符合要求,签批时间未填写到分钟,提前审批作业许可证。 /p p style=" text-indent: 2em " 54.动火、进入受限空间作业部位与生产系统采用关闭阀门实施隔离、隔绝,未采取加装盲板或断开一段管道的隔离措施。 /p p style=" text-indent: 2em " 55.未进行动火安全分析或分析结果不合格进行作业。 /p p style=" text-indent: 2em " 56.进入受限空间作业前,未分析可燃气体浓度、氧含量、有毒气体浓度。 /p p style=" text-indent: 2em " 57.动火和进入受限空间中断作业超过1小时后未重新进行安全分析。 /p p style=" text-indent: 2em " 58.采样分析部位与动火作业部位不一致,采样检测点没有代表性。 /p p style=" text-indent: 2em " 59.受限空间未设置安全警示或采取硬隔离措施。 /p p style=" text-indent: 2em " 60.同一作业涉及动火、进入受限空间、盲板抽堵、高处作业、吊装、临时用电、动土、断路中的两种或两种以上时,未按规定同时办理相应的作业审批手续。 /p p style=" text-indent: 2em " 61.动火、进入受限空间作业安全措施未确认落实或安全措施由同一人确认签字。 /p p style=" text-indent: 2em " 62.动火、进入受限空间作业现场未设专人监护。 /p p style=" text-indent: 2em " 63.一级、特级动火作业未做到“一票一录像”。 /p p style=" text-indent: 2em " 64.动火人未持有效特种作业资格证。 /p p style=" text-indent: 2em " 65.降级办理或签批动火安全作业证。 /p p style=" text-indent: 2em " 66.动火作业未做到“一点(处)一证一人”,未经许可,擅自变更作业范围。 /p p style=" text-indent: 2em " 67.动火、进入受限空间等特殊作业未进行完工验收签字。 /p p style=" text-indent: 2em " 68.动火、进入受限空间等特殊作业安全作业证上填写的作业人员与现场实际作业人员不一致。 /p p style=" text-indent: 2em " 69.氧气、乙炔气瓶无防震圈、瓶帽等安全附件,乙炔气瓶未安装回火器。氧气、乙炔气管道老化、皲裂。 /p p style=" text-indent: 2em " 70.受限空间照明电压大于?36V,在潮湿容器、狭小容器内作业电压大于12V。 /p p style=" text-indent: 2em " 71.在受限空间内进行清扫和检修时,没有紧急逃生设施或措施。 /p p style=" text-indent: 2em " 72.釜内检修时,没有切断电源并拴挂“有人检修、禁止合闸”的警示牌。 /p p style=" text-indent: 2em " 73.高处作业未系安全带,安全带未做到“高挂低用”。 /p p style=" text-indent: 2em " 74.使用未经验收合格的脚手架,脚手板未绑扎牢固。 /p p style=" text-indent: 2em " 75.高处作业抛掷材料、工具及其他杂物。 /p p style=" text-indent: 2em " 76.擅自拆改脚手架、钢格板、护栏、盖板、防护网等防护设施。 /p p style=" text-indent: 2em " 77.使用未安装漏电保护器装置的电气设备、电动工具。 /p p style=" text-indent: 2em " 78.火灾爆炸危险场所未使用相应防爆等级的电源及电气元件。 /p p style=" text-indent: 2em " 79.使用不合格的绝缘工具和专用防护器具进行电气操作和作业。 /p p style=" text-indent: 2em " 80.现场临时用电配电盘、箱没有电压标识和危险标识,没有防雨措施,盘、箱、门不能牢靠关闭或未上锁。 /p p style=" text-indent: 2em " 81.超过安全电压的手持式、移动式电动工器具未逐个配置漏电保护器和电源开关,做到“一机一闸一保护”。 /p p style=" text-indent: 2em " 82.起重机械吊钩缺少防钢丝绳脱落装置。 /p p style=" text-indent: 2em " 83.起重吊装作业存在违反“十不吊”的行为。 /p p style=" text-indent: 2em " 84.利用管道、管架、电杆、机电设备等作吊装锚点。 /p p style=" text-indent: 2em " 85.吊装现场未设置安全警戒标志或拉设警戒绳,没有专人监护。 /p p style=" text-indent: 2em " 86.施工、检修工机具存在缺陷或隐患,未粘贴检查合格证。 /p p style=" text-indent: 2em " span style=" color: rgb(84, 141, 212) " strong 二、物的不安全状态(108条) /strong /span /p p style=" text-indent: 2em " (一)工艺专业(27条) /p p style=" text-indent: 2em " 87.温度、压力、液位等超控制指标运行。 /p p style=" text-indent: 2em " 88.设定的工艺指标、报警值、联锁值等不符合工艺控制要求。 /p p style=" text-indent: 2em " 89.内浮顶罐低液位报警或联锁设定值低于浮盘支撑的高度,存在浮盘落底的风险。 /p p style=" text-indent: 2em " 90.重大危险源未配备温度、压力、液位、流量、组份等信息的不间断采集和监测系统,不具备信息远传、连续记录、事故预警、信息存储等功能。信息储存时间少于1个月。 /p p style=" text-indent: 2em " 91.反应设备、储罐等未按规定要求设置温度、压力、液位现场指示。 /p p style=" text-indent: 2em " 92.紧急切断设施的旁路没有采取管控措施,紧急切断设施未投用或使用旁路。 /p p style=" text-indent: 2em " 93.同一可燃液体储罐未配备两种不同类别的液位检测仪表。 /p p style=" text-indent: 2em " 94.涉及重点监管危险化工工艺的装置未实现自动化控制,系统未实现紧急停车功能,装备的自动化控制系统、紧急停车系统未投入正常使用。 /p p style=" text-indent: 2em " 95.不同的工艺尾气或物料排入同一尾气收集或处理系统,未进行风险分析。 /p p style=" text-indent: 2em " 96.使用多个化学品储罐尾气联通回收系统的,未经安全论证合格。 /p p style=" text-indent: 2em " 97.使用淘汰落后安全技术工艺、设备目录列出的工艺、设备。 /p p style=" text-indent: 2em " 98.装置可能引起火灾、爆炸等严重事故的部位未设置超温、超压等检测仪表、声光报警、泄压设施和安全联锁装置等设施。 /p p style=" text-indent: 2em " 99.在非正常条件下,可能超压的设备或管道未设置可靠的安全泄压措施或安全泄压设施不完好。 /p p style=" text-indent: 2em " 100.较高浓度环氧乙烷设备的安全阀前未设爆破片。爆破片入口管道未设氮封,且安全阀的出口管道未充氮。 /p p style=" text-indent: 2em " 101.氨的安全阀排放气未经安全处理直接放空。 /p p style=" text-indent: 2em " 102.火炬系统的能力不能满足装置事故状态下的安全泄放,未设置长明灯,没有可靠的点火系统及燃料气源,未设置可靠的防回火设施,火炬气的分液、排凝不符合要求。 /p p style=" text-indent: 2em " 103.操作室没有工艺卡片或工艺卡片未定期修订。 /p p style=" text-indent: 2em " 104.安全联锁不完好或未正常投用。 /p p style=" text-indent: 2em " 105.摘除联锁没有审批手续,摘除期间未采取安全措施。 /p p style=" text-indent: 2em " 106.因物料爆聚、分解造成超温、超压,可能引起火灾、爆炸的反应设备未设报警信号和泄压排放设施,以及自动或手动遥控的紧急切断进料设施。 /p p style=" text-indent: 2em " 107.有氮气保护设施的储罐,氮封系统不完好或未投用,没有事故泄压设备。 /p p style=" text-indent: 2em " 108.丙烯、丙烷、混合C4、抽余C4及液化石油气的球形储罐、全压力式液化烃储罐未设置防泄漏注水措施,注水压力、注水方式不符合要求。 /p p style=" text-indent: 2em " 109.液体、低热值可燃气体、含氧气或卤元素及其化合物的可燃气体、毒性为极度和高度危害的可燃气体、惰性气体、酸性气体及其他腐蚀性气体未设独立的排放系统或处理排放系统。 /p p style=" text-indent: 2em " 110.液化烃、液氨等储罐的储存系数超过0.9。 /p p style=" text-indent: 2em " 111.生产或储存不稳定的烯烃、二烯烃等物质时未采取防止生产过氧化物、自聚物的措施。 /p p style=" text-indent: 2em " 112.用易产生静电的塑料管道输送易燃易爆有机溶剂及物料。 /p p style=" text-indent: 2em " 113.操作规程、应急预案等未发放到岗位。 /p p style=" text-indent: 2em " (二)设备专业(37条) /p p style=" text-indent: 2em " 114.安全阀、爆破片等安全附件未正常投用,安全阀、爆破片等手阀未常开并铅封。 /p p style=" text-indent: 2em " 115.压力容器和压力管道的安全附件(含压力表、温度计、液面计、安全阀、爆破片)不齐全、完好、未按期校验、未在有效期内。 /p p style=" text-indent: 2em " 116.压力容器、压力管道的本体、基础、紧固件、外观、静电接地等不完好。 /p p style=" text-indent: 2em " 117.泄爆泄压装置、设施的出口朝向人员易到达的位置。涉及可燃或有毒介质的安全阀、爆破片出口设在室内。 /p p style=" text-indent: 2em " 118.可燃气体直接向大气排放的排气筒、放空管的高度不符合规范要求。 /p p style=" text-indent: 2em " 119.可燃气体、可燃液体设备的安全阀出口未连接至适宜的设施或系统。 /p p style=" text-indent: 2em " 120.可燃气体压缩机、液化烃、可燃液体泵使用皮带传动。 /p p style=" text-indent: 2em " 121.转动设备的转动部位没有可靠的安全防护装置。 /p p style=" text-indent: 2em " 122.在设备和管线的排放口、采样口等排放部位,未采取加装盲板、丝堵、管帽、双阀等措施。 /p p style=" text-indent: 2em " 123.机泵润滑不符合“五定”、“三级过滤”要求,油视镜有渗油现象,油位线不清楚、油杯缺油。 /p p style=" text-indent: 2em " 124.生产装置、储存设施存在跑冒滴漏现象。 /p p style=" text-indent: 2em " 125.未按国家标准规定设置泄漏物料收集装置和对泄漏物料进行妥善处置。 /p p style=" text-indent: 2em " 126.重点防火、防爆作业区的入口处,未设置人体导除静电装置。 /p p style=" text-indent: 2em " 127.罐区、生产装置、建筑物等防雷、防静电接地不符合要求,防雷、防静电接地未进行定期检测。 /p p style=" text-indent: 2em " 128.用电设备和电气线路的周围没有留有足够的安全通道和工作空间,或堆放易燃、易爆和腐蚀性物品。 /p p style=" text-indent: 2em " 129.火灾爆炸危险区域内电缆未采取阻燃措施,电缆沟防窜油汽、防腐蚀、防水措施不落实。 /p p style=" text-indent: 2em " 130.液化烃、液氨、液氯等易燃易爆、有毒有害液化气体的充装未使用万向节管道充装系统。 /p p style=" text-indent: 2em " 131.可燃材料仓库配电箱及开关设置在仓库内。 /p p style=" text-indent: 2em " 132.两端阀门关闭且因外界影响可能造成介质压力升高的液化烃、甲B、乙A类液体管道未采取泄压安全措施。 /p p style=" text-indent: 2em " 133.储罐的进出管道未采用柔性连接。罐区防火堤有孔洞。 /p p style=" text-indent: 2em " 134.防爆电气设备设施固定螺栓未全部上齐。 /p p style=" text-indent: 2em " 135.有可燃液体设备的多层建筑物或构筑物的楼板未采取防止可燃液体泄漏至下层的措施。 /p p style=" text-indent: 2em " 136.散发比空气重的甲类气体、有爆炸危险性粉尘或可燃纤维的封闭厂房未采用不发生火花的地面。 /p p style=" text-indent: 2em " 137.散发有爆炸危险性粉尘或可燃纤维的场所未采取防止粉尘、纤维扩散、飞扬和积聚的措施。 /p p style=" text-indent: 2em " 138.甲、乙、丙类液体仓库未设置防止液体流散的设施,遇湿会发生燃烧爆炸的物品仓库未采取防止水浸渍的措施。 /p p style=" text-indent: 2em " 139.操作室、控制室、厂房、仓库等建筑物安全疏散门未朝外开启。 /p p style=" text-indent: 2em " 140.设备、管道高温表面没有采取防护措施。 /p p style=" text-indent: 2em " 141.管道物料及流向、标识不清。 /p p style=" text-indent: 2em " 142.设备、容器等未有效固定,直接浮放在地面上。 /p p style=" text-indent: 2em " 143.带式输送机未设置紧急拉绳停机设施。 /p p style=" text-indent: 2em " 144.电气线路的电缆或钢管在穿过墙或楼板处的孔洞,未采用非燃烧性材料封堵。 /p p style=" text-indent: 2em " 145.盛装甲、乙类液体的容器放在室外时未设防晒降温设施。 /p p style=" text-indent: 2em " 146.操作、巡检等平台、护栏、楼梯等有缺损或腐蚀严重。 /p p style=" text-indent: 2em " 147.化工生产装置未按国家标准要求设置双重电源供电。 /p p style=" text-indent: 2em " 148.爆炸危险场所未按国家标准安装使用防爆电气设备。 /p p style=" text-indent: 2em " 149.电气设备未落实防漏电触电的安全措施,接地线敷设不规范。 /p p style=" text-indent: 2em " 150.配电室未落实防小动物进入的措施。 /p p style=" text-indent: 2em " (三)仪表专业(23条) /p p style=" text-indent: 2em " 151.涉及可燃和有毒气体泄漏场所未按国家标准安装泄漏检测报警仪。 /p p style=" text-indent: 2em " 152.未编制可燃、有毒气体检测器检测点分布图。 /p p style=" text-indent: 2em " 153.可燃、有毒气体报警仪未按规定周期进行校准和检定。 /p p style=" text-indent: 2em " 154.可燃、有毒气体检测报警仪一级、二级报警值设定错误。 /p p style=" text-indent: 2em " 155.可燃和有毒气体检测报警仪不具有就地声光报警功能。 /p p style=" text-indent: 2em " 156.固定式可燃和有毒气体检测报警仪检测报警信号没有发送至有操作人员常驻的控制室、现场操作室。 /p p style=" text-indent: 2em " 157.可燃气体和有毒气体报警系统未设置UPS电源。 /p p style=" text-indent: 2em " 158.爆炸危险场所的仪表、仪表线路的防爆等级不满足区域防爆要求。 /p p style=" text-indent: 2em " 159.机柜间防小动物、防静电、防尘及电缆进出口防水措施不落实。 /p p style=" text-indent: 2em " 160.联锁系统设备、开关、端子排的标识不齐全、准确、清晰。 /p p style=" text-indent: 2em " 161.紧急停车按钮没有防误碰防护措施。 /p p style=" text-indent: 2em " 162.可燃气体检测报警器、有毒气体报警器传感器探头不完好;声光报警不正常,故障报警不完好。 /p p style=" text-indent: 2em " 163.安全仪表系统的现场检测元件、执行元件没有联锁标志警示牌。 /p p style=" text-indent: 2em " 164.仪表系统维护、防冻、防凝、防水措施不落实,仪表不完好。 /p p style=" text-indent: 2em " 165.放射性仪表现场未设置明显的警示标志。 /p p style=" text-indent: 2em " 166.涉及毒性气体、液化气体、剧毒液体的一级、二级重大危险源的危险化学品罐区未配备独立的安全仪表系统,未投入正常使用。 /p p style=" text-indent: 2em " 167.紧急切断阀为非故障-安全型。 /p p style=" text-indent: 2em " 168.构成一级、二级重大危险源的危险化学品罐区未实现紧急切断功能或紧急切断设施未处于投用状态。 /p p style=" text-indent: 2em " 169.自动化控制、安全仪表系统未设置不间断电源。 /p p style=" text-indent: 2em " 170.气柜未设置上、下限位报警装置及进出管道自动联锁切断装置。 /p p style=" text-indent: 2em " 171.全压力式液氨储罐未设置液位计、压力表和安全阀;低温液氨储罐未设置温度指示仪。 /p p style=" text-indent: 2em " 172.站内无缓冲罐时,在距汽车装卸车鹤位10m以外的装卸管道上未设置便于操作的紧急切断阀。 /p p style=" text-indent: 2em " 173.现场压力表、温度表、液位计等未标注上下限。玻璃管液位计没有防护措施。 /p p style=" text-indent: 2em " (四)设计专业(15条) /p p style=" text-indent: 2em " 174.地区架空电力线路与生产区距离不符合国家标准要求。 /p p style=" text-indent: 2em " 175.涉及光气、氯气、硫化氢气体管道穿越除厂区(包括化工园区、工业园区)外的公共区域。 /p p style=" text-indent: 2em " 176.甲、乙类火灾危险性装置内设有办公室、操作室、固定操作岗位或休息室。 /p p style=" text-indent: 2em " 177.甲、乙类仓库与办公室、休息室贴邻,或库内设有办公室、休息室等。 /p p style=" text-indent: 2em " 178.火灾危险性类别不同的储罐设在同一罐组,常压储罐与压力储罐布置在同一罐组。 /p p style=" text-indent: 2em " 179.控制室或机柜间面向具有火灾、爆炸危险性装置一侧不满足国家标准关于防火防爆的要求。 /p p style=" text-indent: 2em " 180.涉及“两重点一重大”的生产装置、储存设施外部安全防护距离不符合国家标准要求。 /p p style=" text-indent: 2em " 181.企业生产及储存设施总平面布置防火间距不满足规范要求。 /p p style=" text-indent: 2em " 182.企业设施与相邻工厂或设施的防火间距不满足规范要求。 /p p style=" text-indent: 2em " 183.气柜没有布置在人员集中场所、明火或散发火花地点的全年最小频率风向的上风侧。 /p p style=" text-indent: 2em " 184.生产、经营、储存、使用危险物品的车间、仓库等与员工宿舍在同一座建筑物内,与员工宿舍的安全距离不符合要求。 /p p style=" text-indent: 2em " 185.未经正规设计或履行变更程序随意增加设备、设施、建构筑物。 /p p style=" text-indent: 2em " 186.未按规范要求对承重钢结构采取耐火保护措施。 /p p style=" text-indent: 2em " 187.布置在爆炸危险区的在线分析仪表间设备为非防爆型时,在线分析仪表间未采取正压通风。 /p p style=" text-indent: 2em " 188.罐组的专用泵区未布置在防火堤外。 /p p style=" text-indent: 2em " strong span style=" color: rgb(84, 141, 212) " 三、管理缺陷(58条) /span /strong /p p style=" text-indent: 2em " (一)合法合规性(19条) /p p style=" text-indent: 2em " 189.危险化学品生产企业未取得安全生产许可证。安全生产许可证超过有效期内,许可范围与企业现状不一致。 /p p style=" text-indent: 2em " 190.未取得危险化学品登记证,登记内容与企业现状不一致。 /p p style=" text-indent: 2em " 191.未按规定组织危险化学品建设项目安全设施竣工验收。 /p p style=" text-indent: 2em " 192. 未按规定每3年由符合国家规定资质的评价单位进行安全评价。 /p p style=" text-indent: 2em " 193.危险化学品重大危险源未按规定评估、建档、备案。 /p p style=" text-indent: 2em " 194.未按照国家规定提取和使用安全生产费用。 /p p style=" text-indent: 2em " 195.应急救援预案未报应急管理部门备案。 /p p style=" text-indent: 2em " 196.易制毒化学品未取得合法资质或备案证明。 /p p style=" text-indent: 2em " 197.主要负责人、安全管理人员未经依法培训合格。 /p p style=" text-indent: 2em " 198.未按规定设置安全生产管理机构,专职安全生产管理人员数量不符合要求。 /p p style=" text-indent: 2em " 199.未配备注册安全工程师、安全总监从事安全生产管理工作。 /p p style=" text-indent: 2em " 200.新建、改建、扩建生产、储存危险化学品的建设项目(含长输管道)未通过安全审查进行建设。 /p p style=" text-indent: 2em " 201.在用或新增压力容器未在规定的期限内取得使用证。 /p p style=" text-indent: 2em " 202.危险化学品安全作业等特种作业人员未持证上岗。 /p p style=" text-indent: 2em " 203.锅炉、压力容器操作人员、厂(场)内机动车辆驾驶人员、电工、电气焊等作业人员未取得特种作业操作资格证。 /p p style=" text-indent: 2em " 204.装运危险化学品车辆的驾驶证、危险品准运证、危险品押运证失效。 /p p style=" text-indent: 2em " 205.未按规定编制危险化学品安全技术说明书,未在包装上粘贴、悬挂与化学品相符的安全标签。 /p p style=" text-indent: 2em " 206.未按导则要求编制生产安全事故应急预案。 /p p style=" text-indent: 2em " 208.工艺、设备等变更未进行风险评估和履行变更程序。 /p p style=" text-indent: 2em " 208.化工企业主要负责人不具有3年以上化工行业从业经历并不具备大学专科以上学历。 /p p style=" text-indent: 2em " (二)制度、规程(16条) /p p style=" text-indent: 2em " 209.未制定操作规程和工艺指标。 /p p style=" text-indent: 2em " 210.操作规程的编制及内容不符合《化工企业工艺安全管理实施导则》的要求。 /p p style=" text-indent: 2em " 211.装置开停工未编制开停工方案。 /p p style=" text-indent: 2em " 212.试生产方案未组织专家审查,试生产前未组织安全生产条件检查确认。 /p p style=" text-indent: 2em " 213.未建立设备检维修、巡回检查、防腐保温、设备润滑等设备管理制度。 /p p style=" text-indent: 2em " 214.未制定仪表自动化控制系统、安全仪表系统安全管理制度。 /p p style=" text-indent: 2em " 215.未建立与岗位匹配的全员安全生产责任制,主要负责人的安全生产责任制不符合法定职责要求。 /p p style=" text-indent: 2em " 216.未制定实施隐患排查治理制度。 /p p style=" text-indent: 2em " 217.未制定实施动火、进入受限空间等特殊作业管理制度。 /p p style=" text-indent: 2em " 218.未制定实施危险化学品重大危险源安全管理制度。 /p p style=" text-indent: 2em " 219.未制定实施变更管理制度。 /p p style=" text-indent: 2em " 220.未制定实施事故(未遂事故)管理制度。 /p p style=" text-indent: 2em " 221.未制定实施承包商安全管理制度。 /p p style=" text-indent: 2em " 222.剧毒化学品、易制爆化学品未建立“双人验收、双人保管、双人发货、双把锁、双本账”等“五双”制度。 /p p style=" text-indent: 2em " 223.未建立实施领导干部带班值班制度。 /p p style=" text-indent: 2em " 224.制度、规程不切实际,没有可操作性。 /p p style=" text-indent: 2em " (三)风险评估与隐患治理(8条) /p p style=" text-indent: 2em " 225.未定期对作业活动和设备设施进行危险、有害因素识别和风险评估,未建立风险清单和实行风险分级管理。 /p p style=" text-indent: 2em " 226.主要负责人未每天实行风险研判和承诺公告。 /p p style=" text-indent: 2em " 227.未按规定要求开展危险与可操作性分析(HAZOP),HAZOP分析提出的对策建议未落实整改。 /p p style=" text-indent: 2em " 228.安全仪表系统未进行安全完整性等级评估,评估提出的建议措施未落实整改。 /p p style=" text-indent: 2em " 229.精细化工企业未按规范性文件要求开展反应安全风险评估。 /p p style=" text-indent: 2em " 230.新开发的危险化学品生产工艺未经小试、中试、工业化试验直接进行工业化生产;国内首次使用的化工工艺未按规定进行安全可靠性论证。 /p p style=" text-indent: 2em " 231.工艺技术来源不可靠,没有合规的技术转让合同或安全可靠性论证。 /p p style=" text-indent: 2em " 232.隐患整改未落实“五定”要求,未做到闭环管理。 /p p style=" text-indent: 2em " (四)计划与台账(12条) /p p style=" text-indent: 2em " 233.未制定实施年度安全生产教育培训计划。 /p p style=" text-indent: 2em " 234.未制定实施年度应急预案演练计划。 /p p style=" text-indent: 2em " 235.未制定实施年度设备检维修计划。 /p p style=" text-indent: 2em " 236.未制定实施年度压力容器、压力管道检验计划。 /p p style=" text-indent: 2em " 237.未建立安全生产教育和培训档案。 /p p style=" text-indent: 2em " 238.未建立班组安全活动记录。 /p p style=" text-indent: 2em " 239.未建立压力容器、压力管道台账和技术档案。 /p p style=" text-indent: 2em " 240.未建立安全附件台账、爆破片更换记录。 /p p style=" text-indent: 2em " 241.未建立仪表自动化控制系统、安全仪表系统有关安全联锁管理台账。 /p p style=" text-indent: 2em " 242.危险化学品仓库未建立出入库登记台账,账物不符。 /p p style=" text-indent: 2em " 243.未与承包商签订安全生产管理协议。 /p p style=" text-indent: 2em " 244.未建立承包商安全管理档案和年度评价记录。 /p
  • 南京科捷4520B原子吸收分光光度计升级版上市
    南京科捷4520B原子吸收分光光度计升级版上市,销售热线:尹先生13951792301 4520B原子吸收分光光度计升级版主要特点: 1. 采用最新多核嵌入技术对仪器进行全自动控制和数据处理,确保可靠性。 2. 高性能触摸屏,内置打印机,显示参数及测量数据。 3. 自动调整负高压,灯电流。 4. 自动转换光谱带宽,0.1、0.2、1.0、2.0nm(四档可选)。 5. 自动控制波长扫描,自动寻峰,国际水平的全波段快速扫描定位,30秒内完成。 6. 自动调零,可以扣除零点漂移对数据的影响。 7. 自动能量调节。 8. 全方位燃气泄漏保护预警装置。 9. 可选最佳火焰高度及原子化器位置,选择最佳分析条件。 10. 可调燃气流量,选择元素分析最佳燃助比。 11. 可选配氢化物发生器,石英富集器。 12. 品质卓越的光学系统,光学系统悬浮设计,震动,环境温度变化不影响仪器性能。光能量强,稳定性好。 4520B原子吸收分光光度计升级版详细说明: ●仪器基本参数符合GB/T 21187-2007行业标准规定的原子吸收分光光度计的基本参数。 性能指标 一、光学系统 ● 波长范围 190nm&mdash &mdash 900nm ● 单色器 消象差C-T型单色器 ● 光谱带宽 0.2、0.4、1.0、2.0nm,四档自动可选 ● 波长精确度 优于± 0.25nm ● 波长重复性 0.15nm ● 基线漂移 0.004A/30min ● 检测器 光电倍增管 二、原子化系统 ● 灵敏度 质量浓度3.0ug/ml 吸光度大于0.300Abs ● 检出限 ( Cu ) 0.006&mu g/ml ● 燃烧器 100mm金属钛燃烧器,空冷预混合型 ● 重复性 RSD&le 1% ● 喷雾器 高效玻璃、全塑、不锈钢雾化器 ● 雾化室 耐腐蚀材料雾化室 ● 位置调节 火焰燃烧器最佳高度及前后位置可调,一分钟完成火焰/氢化物换装 ● 安全保护 具有多种自动安全保护功能,乙炔漏气报警、关闭系统 三、分析方法 ● 测量方法 空气-乙炔火焰法,氢化物发生器原子吸收法 ● 浓度计算方式 标准曲线法(1-3次曲线),自动拟合,标准加入法 ● 重复测量次数 1-20次,计算平均值,给出标准偏差和相对标准偏差 ● 结果打印 参数打印,数据结果打印 四、仪器参数 ● 电源 AC 220V/50HZ ● 功率 150W ● 重量 70kg ● 体积 1000mm(长)× 350mm(宽)× 390mm(高) ● 工作环境温度 15-30℃ ● 工作环境湿度 &le 75% 五、标准配置 ● 主机 低噪音无油空气压缩机 木箱包装及运输 ● 安装调试 随机附件 ● 到用户现场培训机器使用方法 欢迎来电咨询详情,南京科捷竭诚为您服务!服务热线:025-83738955
  • 2014年化学领域重要成果回顾
    2014已经翻过,来自世界各地的化学工作者们在过去的一年中做出了哪些精彩的发现?美国化学会主办的化学化工领域著名新闻媒体《化学化工新闻》从年内诸多报道中精选出十项重要的科研成果,与我们一同分享化学学科各个领域的重要进展。   No.1 元素周期表:氧化态的新纪录在铱的化合物中实现   氧化态表示化合物中某种原子被氧化的程度。在2014年之前,已知的化合物中氧化态最高为+8,仅存在与钌、铱、氙等少数元素的化合物中,而其中的铱尤为特别,因为理论上它还可以被继续氧化,达到+9的氧化态。今年,来自德国、加拿大和我国复旦大学、清华大学的研究人员通过紧密合作,成功地将理论预测变成了现实。他们从铱的单质出发,通过气相反应,成功制备出了四氧化铱正离子(IrO4+)。在这种离子中,铱元素的氧化态达到了+9,这是迄今氧化态的最高纪录。   No.2 显微镜技术:第一张氢键的显微镜照片受到质疑   左:低温下铜表面的8-羟基喹啉的原子力显微镜照片,黑色区域显示存在氢键 右:二(4-吡啶基)乙炔的四聚体的原子力显微镜照片。尽管这种分子相互之间不存在氢键作用,图片上仍然显示出类似的&ldquo 氢键&rdquo 结构。   氢键是分子间的一种特殊的相互作用,它的强度介于共价键和范德华力之间。氢键广泛参与到许多重要的现象&mdash &mdash 特别是生命现象中,因此对于氢键的研究具有重要的意义。在2013年,来自我国的一个研究组曾利用原子力显微镜观察到8-羟基喹啉这种分子之间的氢键,这是首次直接观察到氢键,因此引起了广泛关注。然而在今年,来自芬兰和荷兰的研究人员在《物理评论快报》上发表论文,对于这项研究提出质疑。他们利用原子力显微镜观察了二(4-吡啶基)乙炔这种分子的四聚体。在四聚体中,相邻两个分子的氮原子之间没有任何氢键作用,但是他们也观察到了类似的&ldquo 氢键&rdquo 结构。因此,他们认为此前报道的氢键图像可能仅仅是原子力显微镜扫描样品过程中产生的假象。这项研究提醒相关人员,在利用显微技术观察纳米尺度的物体时必须加倍小心。   No.3 材料科学:石墨烯出乎意料的新性质   石墨烯是由碳原子组成的只有一个原子厚度的薄膜,通常被称为二维材料。自从2010年诺贝尔物理奖得主、英国曼彻斯特大学的安德烈· 海姆和康斯坦丁· 诺沃肖洛夫在2004年首次成功分离石墨烯以来,石墨烯的研究成为了一个相当热门的领域,人们希望这种新型材料能够在许多应用中取代传统材料。   在2014年,关于石墨烯的一些新的研究让人们对这种新型材料有了更加深入的认识。其中一项研究表明,石墨烯的化学性质可能并不像人们此前认为的那样稳定。目前制备石墨烯常用的一种方法是先将石墨氧化得到氧化石墨,再将其还原。来自美国的研究人员发现,用这种方法制备的石墨烯在紫外线照射和二氧化钛纳米颗粒催化的条件下能够迅速分解成二氧化碳和水。另一项研究则表明,尽管此前研究人员认为各种原子或者分子很难通过石墨烯,质子却可以很好地穿过它。因此石墨烯有可能被用于燃料电池中传导质子的薄膜。   No.4 计算化学:通过模型促进实验   &ldquo 从头计算的纳米反应器&rdquo 预测的乙炔聚合的过程   在2014年,研究人员朝着计算化学的终极目标&mdash &mdash 利用理论来发现新的化学反应&mdash &mdash 又迈出了坚实的一步。来自美国斯坦福大学的研究人员开发出一种被称为&ldquo 从头计算的纳米反应器&rdquo (ab initio nanoreactor)的计算化学新体系。在虚拟的环境中,这种&ldquo 纳米反应器&rdquo 将反应物的分子混合并压缩到一起,之后运用量子力学方法计算反应过程和反应产物。利用这种方法,研究人员预测出了一些化学反应的产物,这些化学反应由于需要高温高压,目前尚不能在实验室中验证。虽然这种新的计算化学体系还需要进一步的改进,它仍然是计算化学领域的一项重要进展。   No.5 有机合成:盐能够影响根岸偶联反应的进行   无机盐对于根岸偶联反应的影响:左上:当有机锌试剂与两个脂肪烷基相连时,无论有无无机盐存在,反应均无法进行 右上:当有机锌试剂与两个芳香基相连时,反应不需要添加无机盐即可进行:下:当有机锌试剂与一个脂肪烷基或芳香基和一个卤素原子相连时,反应必须在有无机盐存在的情况下才能发生。   根岸偶联反应( Negishicross-coupling)由日本化学家、2010年诺贝尔化学奖获奖者之一根岸英一发现,指卤代烷与有机锌试剂在过渡金属催化下形成新的有机化合物的反应。根岸偶联反应自从1977年被发现以来,已被用于合成许多重要的有机物。来自加拿大的研究人员经过十余年的研究发现,诸如氯化锂这样的无机盐能够显著影响根岸偶联反应的进行。根据有机锌试剂结构的不同,反应在一些情况下必须在有无机盐存在的情况下才能进行,另外一些情况下不需要无机盐参与就可以顺利完成,还有一些情况下,无论是否存在无机盐,反应都不能发生。研究人员解释说,根岸偶联反应要想正常进行,有机锌试剂与溶剂的极性必须匹配,而添加无机盐可以帮助实现这一目标。这项研究可以帮助研究人员更好地控制反应的进行,减少不必要的副产物的产生。   No.6 纳米技术:制备高纯度的碳纳米管   处在铂表面的多环芳香烃被加热时会发生折叠形成碳纳米管。通过这种方法,研究人员可以很好地控制碳纳米管的尺寸。   单壁碳纳米管被认为在许多领域都有着潜在应用,但长久以来,制备高纯度的碳纳米管是一项亟需解决的难题。目前常用的方法通常只能得到许多尺寸与手性各不相同的碳纳米管的混合物,从而影响到碳纳米管的导电性能。今年,两个研究小组分别在高纯度碳纳米管的制备方法上取得重大突破。北京大学李彦教授及合作者用钨-钴合金的纳米晶体作为&ldquo 种子&rdquo ,在高温下引导碳纳米管的生长。利用这种方法,他们将碳纳米管的纯度从55%提高到了92%。来自德国和瑞士的研究人员则利用多环芳香烃作为合成碳纳米管的原料。在高温下,这些芳香烃分子发生折叠和延伸,形成碳纳米管。通过这种手段,他们能够每次得到单一的一种碳纳米管。   No.7 合成生物学:细菌接受了扩展的遗传密码   上:人工合成的d5SICS-dNaM碱基对的化学结构 下:如果DNA的碱基从2对4种扩充到3对6种,密码子可能的组合将从64增加到216,因此有可能将一些新的氨基酸分子引入到蛋白质中。   腺嘌呤(A)和胸腺嘧啶(T)以及鸟嘌呤(G)和胞嘧啶(C)是我们熟知的DNA中的两对四种碱基。地球上的所有生物都利用这四种碱基来编组遗传密码从而控制蛋白质的合成。在2014年,来自美国斯克里普斯研究所的科学家们将含有d5SICS和dNaM这一对并非天然存在的碱基的DNA引入了活的细菌体内,并发现含有新碱基的DNA能够在细菌体内正常复制。这一对新的碱基不像A-T和G-C碱基对通过氢键相互作用,而是通过疏水作用相结合。虽然含有新的碱基对的DNA已被证实能够在体外指导蛋白质合成,在生物体内的复制还是首次报道。如果含有新碱基对的DNA能够在生物体内被转录为信使RNA,未来我们将有可能利用它来合成新的蛋白质结构。   No.8 结构生物学:首次仅凭电子显微镜确定蛋白质结构   酵母菌的线粒体核糖体大亚基的超高分辨率电子显微镜照片。蓝色、红色和黄色标出的结构分别表示与细菌的核糖体相同的结构、与哺乳动物线粒体核糖体相同的结构和酵母菌独有的结构。   精确测定蛋白质等生物大分子的结构向来是X射线衍射的专利,但是在今年,来自英国剑桥分子生物学实验室的几位研究人员首次仅仅凭借电子显微镜就确定了蛋白质的结构。通过改进电子显微镜技术,他们成功获得了酵母菌的线粒体核糖体大亚基的图像,分辨率为3.2埃(1埃是1纳米的十分之一,1米的百亿分之一,原子半径一般在1埃左右)。由于不需要像X射线衍射那样需要复杂繁琐的纯化和结晶过程,新的电子显微镜技术有望帮助研究人员更好地了解生物大分子的结构。   No.9 高分子科学:具有手性的新型塑料   来自美国康奈尔大学的研究人员开发出一种新型的含有金属钴的化合物,它能够催化丁二酸酐和环氧丙烷这两种分子相互反应得到聚合物。环氧丙烷分子具有手性,也就是说它实际上具有两种不同的结构,它们像人的左右手一样互为镜像却不能重叠。当环氧丙烷与丁二酸酐在这种新型催化剂作用下生成高分子时,手性得到了保持,也就是说我们可以得到两种互为镜像的高分子。有趣的是,这两种高分子材料各自的熔点都是79 oC,但按照1:1的比例互相混合后,由于特殊的相互作用,熔点却升高至120 oC,而且结晶速度也大大加快,这些都非常有利于塑料制品的生产加工。另外这种新型的塑料能够被生物降解,而且丁二酸酐和环氧丙烷都是常见的化工原料,因此很有希望在不久的将来获得大规模的应用。   No.10 太阳能电池:钙钛矿型太阳能电池继续取得进展   左:钙钛矿型太阳能电池的结构示意图,从下至上分别为透明电极、二氧化钛层、具有钙钛矿型结构的导体层和另一电极 右:钙钛矿型太阳能电池纵截面的电子显微镜照片。   太阳能电池一直被视为重要的可再生能源形式。目前已经商业化的硅太阳能电池能够将25%左右的太阳能转化为电能,但是造价昂贵。基于高分子等材料的太阳能电池较为廉价,但是转化效率只有10%左右。近年来,一种新型太阳能电池&mdash &mdash 钙钛矿型太阳能电池(perovskitesolar cells)受到了研究人员的广泛关注。钙钛矿型太阳能电池并非使用钙钛矿(CaTiO3),而是指用来转化太阳能的物质具有通式为ABX3的化学组成,并且晶体结构与钙钛矿类似,它兼具了成本低廉和能量转化效率高的优点。目前钙钛矿型太阳能电池最常用的材料为(CH3NH3)PbI3。今年早些时候,有报道表明钙钛矿型太阳能电池的转化效率已经达到16%,而在今年年底,已经有研究人员实现20%的转化率。由于含铅化合物具有一定的毒性,美国西北大学的研究人员提出用锡代替铅得到的类似化合物同样可以用于生产钙钛矿型太阳能电池。同样在今年,来自英国牛津大学的研究人员发表论文称,碳纳米管和高分子形成的复合材料能够有效提高钙钛矿型太阳能电池的稳定性。   (部分配图引自原报道:http://2014.cenmag.org/top-chemistry-research-of-2014/)
  • 气瓶突然爆炸,俩人瞬间没了!关于气瓶安全,越早知道越安全......
    气瓶突然爆炸,俩人瞬间没了!关于气瓶安全,越早知道越安全......安全科 前天导语:乙炔属易燃气体,处置不当容易发生爆炸。所以为了确保安全,气瓶需要保持直立,防倾倒,留余压等,那么究竟是为什么,今天我们来聊聊… … 1乙炔属易燃气体,处置不当容易发生爆炸,不管在生产、运输、还是使用时都应遵守相关规定,注意安全!2017年,江苏一气瓶公司曾发生乙炔钢瓶爆炸,引燃近百个钢瓶,现场十分吓人。据网友爆料该起事故为乙炔钢瓶未直立放置导致的意外爆炸事故。↓↓↓2那么气瓶的正确放置是什么呢?大家肯定都知道要直立,防倾倒,留余压… … 那么为什么这么做,你知道吗?首先乙炔瓶储存、使用时为什么必须直立,而不能卧放呢?其原因有四点:原因1:乙炔瓶装有填料和溶剂(丙酮),卧放使用时,丙酮易随乙炔气流出,不仅增加丙酮的消耗量,还会降低燃烧温度而影响使用,同时会产生回火而引发乙炔瓶爆炸事故。 钢瓶中的乙炔在压力下溶解在丙酮溶剂中。开启阀门,压力减小,溶解的乙炔变成气体放出。乙炔气瓶横放有可能导致丙酮流出,溶解于丙酮中的乙炔会快速挥发与空气混合形成爆炸性混合物,爆炸极限:2.3%-72.3%(vol),最小引燃能量:0.019mj,遇明火、热能引起燃烧爆炸。不仅增加丙酮的消耗量,还会降低燃烧温度而影响使用,同时会产生回火而引发乙炔瓶爆炸事故;另压力会将溶剂和溶解的乙炔都吹出来,会导致乙炔压力升高爆炸。原因2:乙炔瓶卧放时,易滚动,瓶与瓶、瓶与其它物体易受到撞击,形成激发能源,导致乙炔瓶事故的发生。 原因3:乙炔瓶配有防震胶圈,其目的是防止在装卸、运输、使用中相互碰撞。胶圈是绝缘材料,卧放即等于乙炔瓶放在电绝缘体上,致使气瓶上产生的静电不能向大地扩散,聚集在瓶体上,易产生静电火花,当有乙炔气泄漏时,极易造成燃烧和爆炸事故。 原因4:使用时乙炔瓶瓶阀上装有减压器、阻火器、连接有胶管,因卧放易滚动,滚动时易损坏减压器、阻火器或拉脱胶管,造成乙炔气向外泄放,导致燃烧爆炸。2018年7月5日下午17时40分左右,位于青河县阿热勒托别镇克孜勒萨依村废弃工地,发生一起氧气钢瓶爆炸事故,造成1人死亡,2人受伤,直接经济损失88万元。以下是气瓶安全使用十五问,让小编来为你一一解答:1、气瓶为什么要有防倾倒措施?答:倾倒会使气瓶阀门掉落跑气,气瓶由于跑气的巨大反作用力,将向前冲或在地面打转,若附近有人,将会伤及人员。如果是可燃气体会引起爆炸,更严重!2、氧气、乙炔瓶为什么要分开存放 ?答:乙炔是易燃物,氧气是助燃物。如果乙炔出现泄漏,乙炔与空气混合,遇见火星或者明火则发生剧烈的爆炸,爆炸又使氧气瓶破坏泄漏出氧气,这样的话,氧气的助燃性使得爆炸更加猛烈。无法控制。所以他们两个不能放在一起。3、为什么瓶体温度不得暴晒?答:乙炔气瓶温度不得超过40度,丙酮沸点58度,温度越高丙酮挥发越快,析出乙炔,使瓶内压力急剧增加。4、为何乙炔瓶、氧气瓶中一定要留有余压?答:瓶内留几公斤的压力,使瓶内的压力大于瓶外的压力,可以避免其他气体的流入,保证使用的安全。因为乙炔的爆炸极限很低,稍为混有一点空气,达到一定温度就会爆炸。所以乙炔瓶的排气口一定要有减压阀,防止空气混入瓶中,要不然下次使用就有爆炸的危险。加上减压阀,就是要防止瓶里的气压小于外界空气的气压,避免空气倒流到乙炔瓶中,氧气钢瓶应保留不小于 0.098~0.196mpa 表压的剩余压力。乙炔钢瓶应保留冬季 49kpa~98kpa,夏季 196kpa 表压的剩余压力。5、为什么氧气瓶特别是瓶口不能沾染或接触油脂类物质?答:因油脂,特别是含有不饱和脂及酸脂,很容易气化放热。油纱头、油布所以能自燃就是由于在空气中发生氧化作用,聚热不散,当达到自燃点而引起自燃。而油脂在空气中气化速度较慢,产生的热量很快散发,一般不易聚热自燃。由于纯氧有极强的氧化性,它能促使可燃物的猛烈燃烧。油脂类物质遇到了纯氧,其气化速度大大加快。同时放出大量热量。温度迅速上升,很快就会引起燃烧。如果氧气瓶口沾上油脂,当氧气急速喷出时,使油脂迅速发生氧化反应,而且高压气流与瓶口摩擦产生的热量又进一步加速氧化反应的进行,所以沾染在氧气瓶或减压阀上的油脂就会引起燃烧,甚至爆炸,这就是氧气瓶特别是瓶嘴及与氧气接触的附件严禁接触沾染油脂的原因。6、气瓶为什么要戴瓶帽?答:因为钢瓶的瓶阀大都是用铜合金制成的,比较脆弱,尽管有的是用钢材来制造,但由于它的结构比瓶体细小,旋在瓶体上面使瓶颈与瓶阀接头间形成一个直角,它既是瓶体的脆弱点,又是瓶体的突出点,最易受到机械损伤或外来的冲击。如果在搬运、贮存、使用过程中,由于损伤不慎,气瓶的跌倒、坠落、滚动或受到其他硬物的撞击,易出现瓶阀接头与瓶颈连接处齐根断裂的情况。瓶颈或瓶阀断裂的后果:当氧气瓶阀折断时,瓶内150公斤/平方厘米的高压气体,造成瓶内的高压气体失去控制,使高压的气体喷出,其反作用力使气瓶向反方向猛冲,能使机器设备、建筑物受到损坏,甚至造成人员伤亡;当乙炔气瓶阀折断时,易燃气体冲出,与空气形成爆炸性气体混合气,遇到明火发生爆炸。瓶内高速喷出的气体将由气瓶内气体的性质决定而带来更加严重的二次事故(如火灾、爆炸、中毒等)。如瓶内充装是可燃气体,由于高速喷射的激烈摩擦而产生的静电或遇其他火源便可引起燃烧爆炸。另一方面:瓶阀暴露在外面,在搬运、贮存过程中,很易侵入灰尘或油脂类物质,从而带来危险。而戴上安全帽就可防止灰尘或油脂类物质的沾染和侵入。为了消除上述的危险性,所以要求制瓶单位在钢瓶出厂时都要配有安全帽。用气时把安全帽旋下放到固定地点,用毕后及时把瓶帽戴上旋紧,切勿乱扔。在搬运装卸时切忌忘戴安全帽。 7、乙炔瓶为什么不得碰撞?9、氧气瓶为什么不能吊运?
  • 210万仪器项目狂遭吐槽 基层采购为何总“躺枪”?
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 11月下旬,安徽省定远县第二水厂发布招标公告,拟210万元采购42项水质分析仪器、操作台及相关设施。招标文件一经公布,立即引来潜在投标人的集体“吐槽”,涉参数排他、指标不公等问题。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   2017年,仪器信息网跟踪报道了多则因参数设置不合理遭质疑的采购项目,多发生在以县级为单位的基层政府机构。让人不禁发问:基层采购为何总“躺枪”?仪器项目的参数设置究竟如何把关? /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 176, 240) "    a href=" http://www.instrument.com.cn/news/20170419/217565.shtml" target=" _blank" title=" 采购路上一波三折 这项仪器招标暗藏什么“猫腻”?" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 176, 240) " 采购路上一波三折 这项仪器招标暗藏什么“猫腻”? /span /a /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 176, 240) "    a href=" http://www.instrument.com.cn/news/20170515/219650.shtml" target=" _blank" title=" 遭质疑 宣城市环保局7台原子吸收暂停采购" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 176, 240) " 遭质疑 宣城市环保局7台原子吸收暂停采购 /span /a /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 176, 240) "    a href=" http://www.instrument.com.cn/news/20170913/229028.shtml" target=" _blank" title=" 248万采购项目又被质疑独家参数,这家机构的回复是....." style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 176, 240) " 248万采购项目又被质疑独家参数,这家机构的回复是..... /span /a /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   回到定远县第二水厂的采购风波事件,针对潜在投标人提出的有关疑问,采购方针对该项目答疑及澄清解答如下: /span /p p style=" text-align: center " strong 安徽定远县第二水厂42项水质分析仪器、操作台及相关设施采购项目变更公告 /strong /p p    span style=" color: rgb(0, 0, 0) " 1、问: /span span style=" color: rgb(255, 0, 0) " 招标文件第三章5.6.1 符合性评审细则第2条投标人应符合的资格条件中,要求提供以下材料:“6、软件企业资质认定证书 7、项目负责人需具有计算机技术与软件专业技术资格(水平)考试认证的软件设计师证书 8、投标人须同时具有 ISO20000 信息技术服务管理体系认证证书与 ISO27001 信息安全管理体系认证证书。”其一,以上证书属于软件技术类型,均与本次所投水质分析仪器等设备无关 其二,上述资格条件与第二章投标人须知表里要求的投标人资格不符。因此,希望贵中心进行调整,确保前后要求一致。 /span /p p   strong  解答:同意将?5.6.1 中第 2 项投标人应符合的资格条件中的第 6、7、8 条删除 5.6.1符合性评审细则按第三章,投标文件第12.1投标书一(资格证明文件)为准。 /strong /p p   2、问: span style=" color: rgb(255, 0, 0) " 招标文件:第三章评标办法 5.8.1评分细则中资信部分中,首先“所投产品需具有自 2013 年以来县级水质检测行业 200 万 以上的业绩”这个要求不合理,如果要证明供货能力,只要可以提供 200 万的业绩就行,无需指明县级水质检测行业。其次“合同内容还须包括原子吸收分光 光度计、原子荧光光度计、气相色谱仪、离子色谱仪、酶底物检测仪和低本底α β 测量仪等主要产品”这个要求也不合理,每个单位购买设备的情况都不同,同时一次性装备这所有设备的用户更是少之又少,以此作为加分项有明显倾向性。 另外第四章采购需求设备清单中根本就没有酶底物检测仪这个设备,何从提供业绩一说 /span /p p   3、问: span style=" color: rgb(255, 0, 0) " 招标文件第三章评标办法 5.8.1 /span /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:原子吸收分光光度计、原子荧光光度计、气相色谱仪、离子色谱 仪和低本底α β 测量仪均为国家型式器具强制计量产品,所有厂家均具备型式 批准证书,拿此作为加分项毫无意义。而酶底物法检测仪,首先设备清单中无此 产品,另外酶底物法检测仪也非国家计量器具型式目录中产品,无型式批准证书这种说法。另外欧盟 CE 证书只是针对产品出口时所做的一项认证,并不具备任 何说服力,拿此作为加分项毫无意义。 /span /p p    strong 解答:将此项中酶底物法检测仪删除。 /strong /p p   4、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中一、气相色谱仪 span style=" color: rgb(0, 0, 0) " *2.1.1.4 程序升温:32阶/33平台,(须提供实验截图和官网链接以供佐证) /span /span /p p   strong  解答:将“程序升温:32阶/33平台”修改为“20阶/21平台” /strong /p p   5、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中一、气相色谱仪 /span 2.1.3.1 电子捕获检测器(ECD)?* span style=" color: rgb(255, 0, 0) " 数据采集速率:300Hz /span /p p   span style=" color: rgb(255, 0, 0) "  质疑理由:数据采集速率 300Hz 是美国赛默飞世尔的独家参数,进口品牌只有一家满足,不符合政府采购法要求,将气相色谱仪主流品牌安捷伦、珀金埃尔 默和岛津等品牌排除在外,影响了公平竞争。 /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中一、气相色谱仪 2.1.3.1 电子捕获检测器(ECD)中 *数据采集速率修改为:“50Hz” /strong /p p   6、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中二、原子吸收分光光度计 分光系统 /span :*1、波长范围:185nm-910nm /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:波长范围是北京普析通用的独家参数,只有一家满足,不符合政 府采购法要求,将原子吸收分光光度计主流品牌北京瑞利、上海光谱和北京东西等品牌排除在外,影响了公平竞争。 /span /p p   strong  解答:招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中二、原子吸收分光光度计分光系统:*1、波长范围修改为:190nm-900nm /strong /p p   7、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中二、原子吸收分光光度计第18、石墨管加热方式:先进的石墨炉横向加热方式 /span /p p span style=" color: rgb(255, 0, 0) "   质疑理由:横向加热是北京普析通用的独家参数,只有一家满足,不符合政 府采购法要求,将原子吸收分光光度计主流品牌北京瑞利、上海光谱和北京东西等品牌排除在外,影响了公平竞争。 /span /p p    strong 解答:按原招标文件执行 /strong /p p   8、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中二、原子吸收分光光度计 /span 第8、特征浓度:Cu& lt 0.02μg/ml/1%(空气-乙炔法、空气-液化石油气法) 第9、检出限:Cu & lt 0.004μg/ml (空气-乙炔法、空气-液化石油气法) 第24、内置三种自动原子化方式:仪器内部集成了石墨炉和乙炔-空气、空气-液化气火焰叁种原子化模式,无需额外增加气体切换附件 /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:空气-液化气火焰原子化模式是北京普析通用的独家参数,只有一家满足,不符合政府采购法要求,将原子吸收分光光度计主流品牌北京瑞利、 上海光谱和北京东西等品牌排除在外,影响了公平竞争 /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中二、原子吸收分光光度计第8、特征浓度:Cu& lt 0.02μg/ml/1%(空气-乙炔法、空气-液化石油气法) 第9、检出限:Cu & lt 0.004μg/ml (空气-乙炔法、空气-液化石油气法) 第24、内置三种自动原子化方式:仪器内部集成了石墨炉和乙炔-空气、空气-液化气火焰叁种原子化模式,无需额外增加气体切换附件 此三项前“*”删除。 /strong /p p   9、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中二、原子吸收分光光度计 /span *32、为确保产品品质及专业性质,要求提供产品的厂家注册资金不少于2000万,要求提供ISO9001质量管理体系认证与ISO14001环境管理体系认证证书复印件,保证参数真实可靠,要求该产品提供第三方技术单位提供的型式评价报告 /p p   strong   /strong span style=" color: rgb(255, 0, 0) " 质疑理由:生产厂家注册资金作为*号参数限制性和指向性明显,另外政府采购法中对投标人的注册资金已不作为限制条件,所以厂家的注册资金作为*号 参数的要求更不合理。同时 ISO14001 和第三方技术单位的型式评价报告均属于 企业自由认证范围,不属于国家强制性要求,作为*号参数限制更多品牌参与, 有悖于政府采购法中公平公正的要求。 /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中二、原子吸收分光光度计第32条删除。 /strong /p p   10、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中二、原子吸收分光光度计 /span *33、要求供应原子吸收的厂家具有实验室NTC培训资质,并提供相应的证明材料 /p p   span style=" color: rgb(255, 0, 0) "  质疑理由:NTC 培训资质是北京普析通用独有的证书,只有一家满足,不符合政府采购法要求,将 原子吸收分光光度计主流品牌北京瑞利、上海光谱和北京 东西等品牌排除在外,影响了公平竞争 /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中二、原子吸收分光光度计第33条删除。 /strong /p p   11、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中二、原子吸收分光光度计 /span *34、符合欧盟产品安全标准,通过欧盟CE认证,并提供证明材料 /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:欧盟 CE 证书只是针对产品出口时所做的一项认证,并不具备任何说服力,作为*号参数限制更多品牌参与,有悖于政府采购法中公平公正的要求。 /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中二、原子吸收分光光度计 *34、符合欧盟产品安全标准,通过欧盟CE认证,并提供证明材料 此项前“*”删除。 /strong /p p   12、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中三、原子荧光光度计 /span 22、为保证产品质量,要求提供ISO9001质量管理体系认证、ISO14001环境管理体系认证证书、计量器具型式批准证书、产品制造计量器具许可证复印件 /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:ISO14001 属于企业自由认证范围,不属于国家强制性要求,作为*号参数限制更多品牌参与,有悖于政府采购法中公平公正的要求。 /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中三、原子荧光光度计第22条删除。 /strong /p p   13、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中三、原子荧光光度计 /span *23、要求仪器设备生产厂家具有实验室NTC培训资质,保障后期仪器使用人员的能力提升及完善的培训质量,并提供NTC培训资质证明材料的复印件加盖生产厂家公章 /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:NTC 培训资质是北京普析通用独有的证书,只有一家满足,不符合政府采购法要求,将 原子荧光光度计主流品牌北京吉天、北京东西和北京海光 等品牌排除在外,影响了公平竞争。 /span /p p   strong  解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中三、原子荧光光度计第23条删除。 /strong /p p   14、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中四、紫外分光光度计 /span *3、光谱带宽:0.1nm-5nm连续可调,可调步径为0.1nm /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:此条为北京普析通用独家参数,有一家满足,不符合政府采购法要求。 /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中四、紫外分光光度计第 *3条“*”删除。 /strong /p p   15、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中四、紫外分光光度计 /span *6、杂散光:≤0.01%T(220nm,NaI) ≤0.05%T (360nm,NaNO2) /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:此条为北京普析通用独家参数,只有一家满足,不符合政府采购法要求。 /span /p p   strong  解答:将“招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中四、紫外分光光度计第 *6、杂散光:≤0.01%T(220nm,NaI) ≤0.05%T (360nm,NaNO2) ”修改为“杂散光:≤0.05%T(220nm,NaI) ≤0.05%T (360nm,NaNO2) ” /strong /p p   16、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中四、紫外分光光度计 /span *12、基线漂移:≤0.0004Abs /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:此条为北京普析通用独家参数,有一家满足,不符合政府采购法要求。 /span /p p    strong 解答:按原招标文件执行 /strong /p p   17、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中四、紫外分光光度计 /span 4.1为确保产品质,须提供仪器设备制造厂家的ISO9001质量管理体系认证证书、ISO14001环境管理体系认证证书(投标文件中提供证书复印件) ? /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:ISO14001 属于企业自由认证范围,不属于国家强制性要求,作为*号参数限制更多品牌参与,有悖于政府采购法中公平公正的要求。 br/ /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中四、紫外分光光度计第4.1条删除。 /strong /p p   18、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中四、紫外分光光度计 /span 4.2提供该产品计量器具型式批准证书、产品制造计量器具许可证和计量器具型式评价报告(投标文件中须提供复印件)。为保证参数真实可靠,要求提供第三方技术单位提供的型式评价报告(投标文件中须提供复印件) /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:第三方技术单位的型式评价报告均属于企业自由认证范围,不属于国家强制性要求,作为*号参数限制更多品牌参与,有悖于政府采购法中公平公正的要求。 /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中四、紫外分光光度计第4.2条删除。 /strong /p p   19、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中四、紫外分光光度计 /span *5、生产厂家须具有实验室NTC培训资质(投标文件中提供证明文件复印件)并协助实验人员获得NTC证书。 /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:NTC 培训资质是北京普析通用独有的证书,只有一家满足,不符合政府采购法要求,将紫外分光光度计主流品牌北京瑞利、上海元析和上海精密 等品牌排除在外,影响了公平竞争。 /span /p p    strong 解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要 求中四、紫外分光光度计第5项删除。 /strong /p p   20、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中六、低本底α β 测量仪 /span *3.20该仪器制造商须提供《辐射安全许可证》、《中华人民共和国制造计量器具许可证》《民用核安全设备设计许可证》和《民用核安全设备制造许可证》,并且通过《质量管理体系认证》、《环境管理体系认证》及《职业健康安全管理体系认证》,提供相关证书加盖制造商投标章。 /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:《民用核安全设备设计许可证》和《民用核安全设备制造许可证》属于北京核仪器厂独有的证书,只有一家满足,不符合政府采购法要求。 /span /p p   strong  解答:将招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中六、低本底α β 测量仪第 *3.20项删除。 /strong /p p   21、问: span style=" color: rgb(255, 0, 0) " 招标文件第四章采购项目及技术要求中二、仪器设备性能参数和技术要求中十五、分析天平 /span *5.菜单保护,避免天平设置被更改。 /p p   *6.服务提醒,自动提醒进行定期的准确性测试。 /p p   *7.时间与日期功能,内置的时间和日期功能 符合GXP规范。 /p p   *8.丰富的应用程序:配方称量、求和称量、动态称量、计件称量、密度测定、百分比称量、检重称量、统计称量、自由因子称量。 /p p   *9.快速调用所有内置应用程序。 /p p   *10.称量过程监测可用量程,确保始终如一的正确操作。 /p p   *11.称量值检索功能,自动存储最近一次的称量结果,方便查看。 /p p   12.1/10d可读性缩位功能,快速获得稳定称量结果。 /p p   13.PCDirect,称量数据结果可直接转移至Excel表格,传输过程自动开始无需其他辅助软件。 /p p    span style=" color: rgb(255, 0, 0) " 质疑理由:以上分析天平 5-13 条参数属于瑞士品牌梅特勒天平的特征参数,倾向性和指向性明显,只有一家满足,不符合政府采购法要求,将分析天平主流 品牌赛多利斯、日本岛津和美国奥豪斯等品牌排除在外,影响了公平竞争。 /span /p p    strong 解答:按原招标文件执行。 /strong /p p style=" text-align: left "   其他不变 /p p style=" text-align: right "   招 标 人:定远县自来水厂 /p p style=" text-align: right "   代理机构:安徽恒信造价咨询有限公司 /p
  • 北京市药品包装材料检验所215.30万元采购ICP-AES,切割机,红外光谱仪,紫外分光光度,不溶性...
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: ICP-AES,切割机,红外光谱仪,紫外分光光度,不溶性微粒 开标时间: 2022-02-10 09:30 采购金额: 215.30万元 采购单位: 北京市药品包装材料检验所 采购联系人: 袁春梅 采购联系方式: 立即查看 招标代理机构: 中金招标有限责任公司 代理联系人: 杜雅威 代理联系方式: 立即查看 详细信息 [公开]检验设备设施更新改造项目公开招标公告 北京市-海淀区 状态:公告 更新时间:2022-01-20 招标文件: 附件1 附件2 [公开]检验设备设施更新改造项目公开招标公告 2022-01-20 项目概况 检验设备设施更新改造 招标项目的潜在投标人应在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取招标文件,并于2022-02-10 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:PXM2021_034305_000003_00447607_XMCG-JH001-XM001 项目名称:检验设备设施更新改造 预算金额:215.3 万元(人民币) 最高限价:215.3 万元(人民币) 采购需求: 包号 品目号 品目名称 数量(台/套) 简要规格描述 是否接受进口产品 预算金额(人民币/万元) 备注 1 1-1 傅立叶变换红外光谱仪 1 分辨率:不低于0.25cm-1 是 40 1 1-2 不溶性微粒检测仪 1 进样体积精度:±0.5% 否 14.5 1 1-3 可见异物检测仪 1 检测工位:44双模工位 否 341 1-4 紫外可见分光光度计 1 内置三种光源 否 18 1 1-5 切割机 1 锯条线速度:660/min 否 1.8 1 1-6 无管道净气型储药柜(附带配套耗材) 4 空气处理量: 200-230 m3/h 否 18 1 1-7电感耦合等离子发射光谱仪 1 像素分辨率:≤0.002nm 是 82 核心产品 1 1-8 实验专用气体气路改造 1 易燃气体,如乙炔单独从其它气体分别引入 否 7 合同履行期限:2022年 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)鼓励节能政策:在技术、服务等指标同等条件下,优先采购属于国家公布的节能清单中产品。 (2)鼓励环保政策:在性能、技术、服务等指标同等条件下,优先采购国家公布的环保产品清单中的产品。 (3)扶持中小企业政策:评审时小型和微型企业产品享受6%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (4)本项目采购标的是否接受进口产品详见第1条“招标内容”要求。 3.本项目的特定资格要求: 若所投产品为进口产品时,需提供产品制造商授权书(产品制造商投标则不需要提供)。 三、获取招标文件 时间:2022-01-20 至 2022-01-28 ,每天上午09:00至11:30,下午14:00至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home) 方式: 本项目采用电子化与线下流程结合招标方式 (1)办理CA认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南”一“操作指南”一“市场主体CA办理操作流程指引”,按照程序要求办理。 (2)北京市政府采购电子交易平台“用户指南”一“操作指南”一“市场主体注册入库操作流程指引”进行自助注册绑定。 (3)招标文件获取方式:供应商按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持供应商自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。 (4)未按上述获取方式和期限下载招标文件的投标无效。 (5)证书驱动下载: 北京市政府采购电子交易平台“用户指南”一“工具下载”一 “招标采购系统文件驱动安装包”下载相关驱动。 CA认证证书服务热线010-58511086 技术支持服务热线010-86483801、13669922829 注意:请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-02-10 09:30(北京时间) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层1516室 五、公告期限自本公告发布之日起5个工作日。 六、其他补充事宜 投标保证金和中标服务费专用账户 (1)开户名称:中金招标有限责任公司 (2)开户行名称:招商银行北京海淀支行 (3)账号:86 7080 1128 10001 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市药品包装材料检验所 地址:北京市西城区水车胡同13号 联系方式:袁春梅,010-50950474 2.采购代理机构信息 名 称:中金招标有限责任公司 地 址:北京市海淀区西三环北路21号久凌大厦南楼15层 联系方式:杜雅威,010-68405035 3.项目联系方式 项目联系人:杜雅威 电 话: 010-68405035 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:ICP-AES,切割机,红外光谱仪,紫外分光光度,不溶性微粒 开标时间:2022-02-10 09:30 预算金额:215.30万元 采购单位:北京市药品包装材料检验所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中金招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开]检验设备设施更新改造项目公开招标公告 北京市-海淀区 状态:公告 更新时间: 2022-01-20 招标文件: 附件1 附件2 [公开]检验设备设施更新改造项目公开招标公告 2022-01-20 项目概况 检验设备设施更新改造 招标项目的潜在投标人应在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取招标文件,并于2022-02-10 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:PXM2021_034305_000003_00447607_XMCG-JH001-XM001 项目名称:检验设备设施更新改造 预算金额:215.3 万元(人民币) 最高限价:215.3 万元(人民币) 采购需求: 包号 品目号 品目名称 数量(台/套) 简要规格描述 是否接受进口产品 预算金额(人民币/万元) 备注 1 1-1 傅立叶变换红外光谱仪 1 分辨率:不低于0.25cm-1 是 40 1 1-2 不溶性微粒检测仪 1 进样体积精度:±0.5% 否 14.5 1 1-3 可见异物检测仪 1 检测工位:44双模工位 否 34 1 1-4紫外可见分光光度计 1 内置三种光源 否 18 1 1-5 切割机 1 锯条线速度:660/min 否 1.8 1 1-6 无管道净气型储药柜(附带配套耗材) 4 空气处理量: 200-230 m3/h 否 18 1 1-7 电感耦合等离子发射光谱仪 1 像素分辨率:≤0.002nm 是 82 核心产品 1 1-8 实验专用气体气路改造 1 易燃气体,如乙炔单独从其它气体分别引入 否 7 合同履行期限:2022年 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)鼓励节能政策:在技术、服务等指标同等条件下,优先采购属于国家公布的节能清单中产品。 (2)鼓励环保政策:在性能、技术、服务等指标同等条件下,优先采购国家公布的环保产品清单中的产品。 (3)扶持中小企业政策:评审时小型和微型企业产品享受6%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (4)本项目采购标的是否接受进口产品详见第1条“招标内容”要求。 3.本项目的特定资格要求: 若所投产品为进口产品时,需提供产品制造商授权书(产品制造商投标则不需要提供)。 三、获取招标文件 时间:2022-01-20 至 2022-01-28 ,每天上午09:00至11:30,下午14:00至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home) 方式: 本项目采用电子化与线下流程结合招标方式 (1)办理CA认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南”一“操作指南”一“市场主体CA办理操作流程指引”,按照程序要求办理。 (2)北京市政府采购电子交易平台“用户指南”一“操作指南”一“市场主体注册入库操作流程指引”进行自助注册绑定。 (3)招标文件获取方式:供应商按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持供应商自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。 (4)未按上述获取方式和期限下载招标文件的投标无效。 (5)证书驱动下载: 北京市政府采购电子交易平台“用户指南”一“工具下载”一 “招标采购系统文件驱动安装包”下载相关驱动。 CA认证证书服务热线010-58511086 技术支持服务热线010-86483801、13669922829 注意:请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-02-10 09:30(北京时间) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层1516室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 投标保证金和中标服务费专用账户 (1)开户名称:中金招标有限责任公司 (2)开户行名称:招商银行北京海淀支行 (3)账号:86 7080 1128 10001 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市药品包装材料检验所 地址:北京市西城区水车胡同13号 联系方式:袁春梅,010-50950474 2.采购代理机构信息 名 称:中金招标有限责任公司 地 址:北京市海淀区西三环北路21号久凌大厦南楼15层 联系方式:杜雅威,010-68405035 3.项目联系方式 项目联系人:杜雅威 电 话: 010-68405035
  • 聚光科技凭借激光气体分析仪,获国家级制造业单项冠军企业认定,积极助力大规模仪器设备更新
    近日,工信部公示第八批制造业单项冠军企业遴选认定名单。聚光科技凭借激光气体分析仪(LGA)入选,成为本批浙江省仅有的23家入选企业之一。2024年,浙江省《政府工作报告》将制造业单项冠军列入重点工作,将其视为推动新质生产力增长的关键引擎。制造业单项冠军企业是指长期专注于制造业某些特定细分产品市场,生产技术或工艺国际领先,单项产品市场占有率位居全球前列的企业。激光气体分析仪(LGA)是聚光科技的核心产品之一,自2004年上市以来不断迭代升级。该产品以其高精度、高稳定性和快速响应等特性获得了广泛认可,荣获多项殊荣,包括国家科技进步二等奖、中国专利金奖。此外,聚光科技牵头制定了“可调谐激光气体分析仪”的IEC国际标准和国家标准,为行业发展做出了积极贡献。聚光科技,赞3LGA系列激光气体分析仪以激光测量技术为核心,采用可调谐激光光谱技术,能够实时、准确地获取气体浓度数据,通过非接触式测量方式,大幅降低了设备故障率和人工维护成本,为工业过程提供了稳定、可靠的在线监测方案。该系列分析仪还具备高灵敏度和高选择性特点,能够精确区分不同气体成分,有效避免气体干扰导致的测量误差。同时,其快速响应能力使其能够迅速捕捉气体浓度的变化、及时反馈分析数据,为工艺调整和质量控制提供了有力支持。在钢铁冶金、有色冶金、水泥、电力、各类工业窑炉领域,LGA系列激光气体分析仪,能够很好满足各类过程气体分析的测量需求,可以抗背景气体交叉干扰、粉尘和视窗污染对测量的干扰,可以做到在线原位毫秒级响应,实现了在高温、高粉尘、高流速、强腐蚀等恶劣环境下现场在线分析气体浓度的测量。根据不同工况可供多种方案的选择,助力企业实现优化工艺、环保节能、智能寻优等。在石化炼化领域,LGA系列激光气体分析仪以其卓越的性能和精准度,为企业生产提供了强大的支持。无论是过程气体的组分分析,还是废气排放的严格监测,它都能准确可靠地完成任务,确保生产过程的稳定与安全。在煤化工行业,其耐高温、抗粉尘的特性使其在高温和恶劣环境下仍能稳定运行,为煤化工企业提供了精确的数据支持,助力工艺优化和产品质量提升。此外,LGA系列激光气体分析仪在氯碱、天然气、精细化工等多个领域也展现出广泛的应用价值。在氯碱行业中,它实时监测生产过程中的乙炔、氯化氢等可燃和有害气体含量,为生产安全提供坚实保障;在天然气领域,它精确监测天然气中的杂质含量,确保天然气产品质量;在精细化工行业,它确保生产过程的安全稳定,帮助企业环保达标。近日,国务院印发的《推动大规模设备更新和消费品以旧换新行动方案》(以下简称:《行动方案》,点击此处阅读原文)指出:推进重点行业设备更新改造。聚焦钢铁、有色、石化、化工、建材、电力、机械、航空、船舶、轻纺、电子等重点行业,大力推动生产设备、用能设备、发输配电设备等更新和技术改造。针对传统工业过程监测环境复杂、产能低、提效慢、控制难等问题,聚光科技以LGA系列激光气体分析仪、OMA系列在线紫外/可见/近红外光纤光谱分析仪、工业在线色谱/质谱分析仪等创新产品组合及解决方案,积极助力重点行业大规模仪器设备的更新。二十余年来,聚光科技始终坚守初心,以LGA系列激光气体分析仪为引领,不断推动工业领域实现更高效、更环保、更安全的生产目标。未来,聚光科技将继续致力于技术创新与产品研发,引领工业在线分析领域向国产化、智能化迈进,以科技创新为新质生产力发展持续注入新动能。
  • 奕枫仪器从2014中国环博会IE expo凯旋归来
    奕枫仪器作为中国环博会的老兵,这次在中国环博会展示最新的产品,受到的了观众的热烈欢迎。在这次环博会上,我们碰到一些老朋友,结识了新朋友。公司展位位于大气展区,公司ProtIR 204M傅里叶红外烟气分析仪作为一个完整的烟气监测方案,受到了与会的专家学者和观众的关注。同时公司推出水质一揽子解决方案,为集成商提供新方案和新思路,受到了热烈欢迎。由中国环境科学学会、德国慕尼黑国际博览集团、中贸慕尼黑展览(上海)有限公司等单位联袂举办的IE expo 2014中国环博会将于2014年5月20-22日在上海新国际博览中心举行。 秉承全球环保第一展德国IFAT母展48年的品质,作为亚洲最具影响力的环境技术交流盛会,IE expo2014,中国环博会将荟集全球顶级膜、水处理、泵阀管件、固体废弃物处理、资源回收利用、大气污染治理,室内空气污染治理、场地修复、环境监测、环境服务业等行业精英与解决方案,展会同期还将举办中国环博会环境产业高峰论坛,来自政策制定部门、科研院所、领先技术企业的百余名业内顶级专家全程参与200多场专业会议论坛,致力于打造一个政、产、学、研一站式环境技术交流平台。
  • 油品实验室危险因素及防护措施
    油品实验室危险因素及防护措施 油品实验室与一般的化学实验室不同,操作人员长期接触大量的油液样品和化学试剂,且绝大多数具有有毒、易燃易爆的特点,操作稍有不当都有发生火灾、爆炸及中毒等事故的可能。规范管理油品实验室安全工作必须结合油品实验室的特点,避免事故发生。 油品实验室的特点 1 油品检验专业性强    油品实验室和化学专业实验室不同,它涵盖了理化性能检验和油液状态监控两大部分,因此使用的各类易燃易爆气体和试剂也比较多,存在的安全隐患也相对较复杂。 2 分析项目多    目前油品实验室包括水分、粘度、密度、水分离性、闪点、酸值、倾点、凝点、污染度、元素分析等多项检测,所使用的仪器品种多样,其中水分就包括蒸馏法和微量水分测定两类。 3 有害气体多    油品的闪点、水分(蒸馏法)在检测过程中易产生较多有毒有害气体,污染度等检测项目要接触石油醚等试剂,容易对人体造成伤害。 油品实验室常用的危险化学品及防护措施    油品实验室经常遇到的有三类:压缩气体和液化气体、易燃气体和腐蚀品。    油品实验室在进行各种分析时要用到一些气体,如氢气、氮气、氧气、乙炔等。绝大多数实验室使用气体钢瓶来满足分析的需要,气体钢瓶在使用过程中存在大量的不安全因素,只有安全规范的使用气体钢瓶才能防止事故的发生。 1 压缩气体和液化气体   山东盛泰仪器有限公司  压缩气体和液化气体是潜在的不安全因素,易燃、易爆。目前油品实验室常用的是开口闪点测定仪的液化气瓶和污染度测试仪的压缩空气。    防护措施:    液化气瓶必须直立固定,必须远离热源和火源,不得处于烈日暴晒下;搬运时应盖上钢瓶帽轻拿轻放,防止因为意外摔掷、敲击、滚滑或剧烈震动,避免撞击引起爆炸。使用时必须严格遵守操作规程,否则可能引起爆炸事故。    气瓶内气体不能全部用尽,可燃气体应保留0.2MPa—0.3MPa,气瓶应定期检验,防止漏气。 2 易燃液体    易燃液体极易挥发成气体,遇到明火即可燃烧。油品实验室常用的易燃液体有乙醇、石油醚、溶剂汽油等。    防护措施:   山东盛泰仪器有限公司  所有易燃气体应贮存于低温通风处,储存温度不能高于25℃,远离火种、热源、避光保存;不能与氧化剂共同储存;禁止使用易产生静电火花的工具开启瓶盖。    当空气中浓度超标时,需要佩戴自吸过滤式防毒面罩,操作时需佩戴专用防护眼镜;用手接触时,需佩戴乳胶手套。 3 腐蚀品    腐蚀品包括液态和固体,油品实验室常用的腐蚀品有盐酸和氢氧化钠。    防护措施:    盐酸气体对眼和皮肤黏膜都有刺激,因此需在通风橱内完成操作。如吸入盐酸气体可吸入少量的酒精和的混合蒸汽以解毒。    酸值测定仪的中和液中含有氢氧化钠,易造成灼伤。如不慎接触,应先用大量水冲洗,再用稀释的醋酸冲洗再用水冲洗。如眼睛受到化学烧伤,立即以洗瓶水流冲洗(不要让水流直射眼球,也不要揉眼)。水洗后,如为碱灼伤,再用2%硼酸淋洗。 气体钢瓶的使用注意事项   (1)易起聚合反应的气体钢瓶,如乙炔等,应在储存期限内使用。    (2)气瓶着火时,应向钢瓶浇洒大量冷水,或将气瓶投入水中使之冷却。    (3)气瓶必须定期检验。贮存一般气体的气瓶三年检验一次。贮存惰性气体的    钢瓶每五年检验一次;贮存腐蚀性气体的钢瓶每两年检验一次。
  • 美国化学会C&EN:2016年,化学分子谁最酷?
    又到了年底,又到了“年终总结季”。美国化学会(ACS)旗下的C&EN也照例开始准备他们的一系列“年终总结”,首先登场的是一批今年打破各种记录的炫酷化学分子。  ▌1. 首个无机双螺旋分子SnIP的分子结构示意图。图片来源:Tom Nilges/TUM  说起双螺旋结构,第一个想到的肯定是DNA分子,但纯无机的双螺旋结构分子却从未见诸报道。慕尼黑工业大学(TUM)Tom Nilges领导的化学家团队今年实现了突破,报道了第一种完全无机的双螺旋化合物SnIP。这是一种半导体材料,分子结构呈互相绞合的双链状,包括一条碘化锡(SnI+)链和一条磷(P-)链(见上图)。这两条链通过锡与磷的孤对电子之间的弱相互作用而保持结合,并且每个双螺旋通过比DNA中的氢键更强的相互作用与相邻的双螺旋配位。这种材料可以形成针状晶体(见下图),柔性极好,甚至可以对折而不会发生任何损坏。它们还可以很容易地被制备成直径小于20 nm的纳米棒。这些独特的性质再加上其光学性能,Nilges说“我们乐观地认为SnIP可用于半导体领域,如柔性太阳能电池等。”SnIP的针状晶体。图片来源:Tom Nilges/TUM  Inorganic Double Helices in Semiconducting SnIP  Adv. Mater., 2016, 28, 9783-9791, DOI: 10.1002/adma.201603135  ▌2. 二茂铁“摩天轮”二茂铁“摩天轮”的分子结构。图片来源:Nature Chem.  坐落在英国伦敦泰晤士河畔的伦敦眼(The London Eye),是世界上首座观景摩天轮,也是伦敦的地标建筑之一。可能由于经常看到它的缘故,伦敦帝国学院的Michael S. Inkpen,Nicholas J. Long、Tim Albrecht等人受到启发,只用二茂铁,制造了一个分子级别的“摩天轮”。科学家们之前制出过二茂铁大环或者线性链结构,但这个“摩天轮”似的二茂铁纳米环却与众不同,它只包含五至九个1,1’-二取代的二茂铁单元。除了结构特殊,这种具有氧化还原活性的纳米结构还有众多潜在的用途,比如用于捕获离子或分子以检测或控制它们,以及电子学和磁学领域。  Oligomeric ferrocene rings  Nature Chem., 2016, 8, 825-830, DOI: 10.1038/nchem.2553  ▌3. 配位数之王Cs[H2NB2(C6F5)6]结构示意图。图片来源:JACS  金属阳离子中心最多能有多少个配位键?德国马克斯普朗克煤炭研究所的Klaus-Richard P?rschke和同事们给出的答案是16个,这也创造了新的记录。他们报道了一个新的分子——Cs[H2NB2(C6F5)6],其中弱配位阴离子呈负一价,一个中心铯原子可以和五个阴离子单元中的16个氟原子形成配位键。在不使用氢作为配位配体的情况下,这是科学家们首次在一个络合物中实现超过12个配位键。  Cs[H2NB2(C6F5)6] Featuring an Unequivocal 16-Coordinate Cation  J. Am. Chem. Soc., 2016, 138, 9444-9451, DOI: 10.1021/jacs.6b02590  ▌4. “三全”分子  同时包括单键、双键和三键的铬络合物(a)和钨络合物(b)。图片来源:Chem. Sci. / Inorg. Chem.  注意,这里的“三全”不是速冻水饺或者汤圆,指的是一个分子内同时包括单键、双键和三键,三种键都齐全。美国密歇根州立大学的Evan P. Beaumier和Aaron L. Odom等人报道了一种氮-铬络合物(上图a),在一个铬原子上同时连有氮单键、双键和三键。不过,他们并不是第一个玩类似花样的化学家,约40年前的1978年,Schrock和Clark合成了一个钨络合物——W(CBut)(CHBut)(CH2But)(dmpe),在一个钨原子上同时连有碳单键、双键和三键(Inorg. Chem., 1979, 18, 2454-2458)。  A complex with nitrogen single, double, and triple bonds to the same chromium atom: synthesis, structure, and reactivity  Chem. Sci., 2016,7, 2532-2536, DOI: 10.1039/C5SC04608D  ▌5. 磷属“糖葫芦”包含磷属四种元素链的分子。图片来源:C&EN  据说,无机化学的乐趣之一,就是盯着元素周期表看看能做些什么新奇而有趣的事情。英国牛津大学的Alexander Hinz及德国罗斯托克大学的Axel Schulz和Alexander Villinger显然也是这么想的。他们盯上了磷属元素(第15族元素,氮至铋),并制备了一种磷属元素的“糖葫芦”分子,其中包括前无古人的Sb-N-As=P链。有意思的还在后面,作者们接受采访时才表示,他们最开始的脑洞其实更大,目标是合成一个包含同一族四种元素的杂环!后来因为实在没有办法把线性前体分子成环,这才作罢。细心的(或者有强迫症的)读者可能注意到了,这个分子并不“完美”,确少铋(Bi),不过这已经在作者们的下一步计划中,他们表示铋应该也可以加入到该分子中。一旦他们成功,不管是成环,还是做个更大的“糖葫芦”,都将再一次创造历史。  Synthesis of a Molecule with Four Different Adjacent Pnictogens  Chem. Eur. J., 2016, 22, 12266-12269, DOI: 10.1002/chem.201601916  ▌6. 最强的碱......理论上的邻二乙炔基苯二价阴离子。图片来源:C&EN  通过在气相实验中制备邻二乙炔基苯二价阴离子,澳大利亚昆士兰科技大学的Berwyck Poad和同事们创造了目前世界上最强的化学碱。不过,该分子的碱性却是通过一个基于Marcus-Hush理论的模型计算所得,利用高级量子化学计算,该分子的质子亲和力达到了1,843 kJ mol?1,远超其他超级碱。研究人员说,这个二价阴离子强到足以将气相中的苯去质子化,其质子亲和力的记录不太可能被打破了(小编:真的么?记录不就是用来被打破的?)。  Preparation of an ion with the highest calculated proton affinity: ortho-diethynylbenzene dianion  Chem. Sci., 2016, 7, 6245-6250, DOI: 10.1039/C6SC01726F  ▌7. 偶极矩最大的中性分子偶极矩最大的中性六取代苯。图片来源:C&EN  德国马克斯普朗克聚合物研究所的Klaus Müllen领导的研究小组制备了一种六取代的苯,其中吸电子的氰基和给电子的氨基结合起来,在同一个方向“拉”和“推”分子的电子密度。经测定,其拥有中性分子中已知最大的偶极矩——14.1 Debye,已经超过了离子化合物如溴化钾(偶极矩为10.5 Debye)。  Hexasubstituted Benzenes with Ultrastrong Dipole Moments  Angew. Chem. Int. Ed., 2016, 55, 3220-3223, DOI: 10.1002/anie.201508249  这些分子到底谁最酷?C&EN目前正在投票,有兴趣的读者可以去凑凑热闹。
  • 金索坤产品助力国产仪器健康发展
    我国高端检测仪器面临着一个尴尬的现状:一方面依赖进口;另一方面也面临着国产科研仪器在实际推广和应用难得到用户信任的局面。正如杜祥琬对《中国科学报》记者说的,我们“应该提倡使用国产仪器设备,只有在使用过程中才能改进缺点,才能赶上世界最好的、质量最高的仪器。” 要打破国产仪器面临的尴尬局面,就必须提高我国的自主创新能力,发展专、精科技,这与北京金索坤公司长期以来所坚持的理念不谋而合。北京金索坤公司是市面上唯一一家只专注原子荧光光谱仪的研发以及生产的高新技术企业。金索坤公司研究原子荧光技术三十余载先后获得多功能混合反应模块、双层预混合型雾化室、中国有色金属工业科学技术奖等20多个专利和奖项。就在去年,金索坤公司生产的SK-880火焰原子荧光光谱仪通过了由中国仪器仪表学会分析仪器分会组织召开的金索坤新品鉴定会。产品鉴定组专家一致认为:该产品达到了国内领先水平国内未见技术特征相同的国内公开文献报道,具有首创性。同时SK-880火焰原子荧光光谱仪以其优良的性能赢得了海外用户的认可。(图)实际上早在90年代,郭小伟教授在完成氢化物发生原子荧光光谱仪的研发之后,为了扩展原子荧光光谱仪可检测元素的范围,郭小伟教授又带着他的课题组开始了火焰法原子荧光光谱仪的研究。他们在火焰法原子吸收的启发下,将液态样品经高效雾化器雾化后形成气溶胶,气溶胶在预混合雾化室中与燃气充分混合均匀,再通过燃烧的热量使进入火焰的试样蒸发、熔融、分解成基态原子,基态原子被高性能空心阴极灯激发至高能态,处于高能态的原子不稳定,在去激发的过程中以光辐射的形式发射出原子荧光。根据这一原理研发出火焰法原子荧光光谱仪。之后金索坤的研发团队在此基础上进行改进和升级,研发出了SK-880火焰法原子荧光光谱仪。SK-880火焰原子荧光光谱仪突破了氢化法原子荧光光谱仪可检测元素范围,到目前为止,SK-880可以检测金、银、铜、镉、锌、锰、铟、镍、铬、钴、铁、汞、铅等13种元素,开创原子荧光法应用新领域,可为广大矿山及地质冶金行业用户服务,并且产品远销海外。金索坤研发的新品SK-880火焰原子荧光光谱仪有以下特点:(以应用SK-880测金为例)1.灵敏度高应用原子荧光法测金的检出限最低可达到小于0.05ng/mL,优于火焰原子吸收及石墨炉原子吸收测金的检出限。2.重复性好使用模块化设计大大提高了仪器的稳定性,将仪器的重复性提高到0.6%. 3.测试速度快采用连续流动进样技术,提高了仪器的检测速度,检测一个样品仅需5秒4.线性范围宽(三个数量级)对于高含量的金精矿以及低含量的尾矿,均可限定在其测试范围内.火焰原子吸收的线性范围为通常小于两个数量级,对于高含量的金精矿,必须稀释后再进行测试。5.测试费用低原子荧光使用丙烷气,火焰原子吸收使用乙炔气,乙炔气的成本较丙烷气略高,但通常原子荧光使用丙烷气的流量为60mL/min ~80mL/min,而火焰原子吸收使用乙炔气的流量约为900mL/min。石墨炉的石墨管也是价格较高的耗材之一。金索坤公司积极响应国家对国产仪器的号召,努力研究专、精的高质量仪器,为原子荧光技术的发展探索乾坤。SK-880火焰原子荧光光谱仪的成功研发,是金索坤研发团队智慧和汗水的结晶,同时我们相信金索坤还会研发出质量更好地重金属检测仪器来助力国产仪器的发展。 金索坤SK-博析原子荧光光谱仪(原子荧光光度计)
  • 理化所在氮掺杂非交替纳米带非线性光学材料方面获进展
    随着激光技术的发展,非线性光学材料在光限幅、全光开关、光通信等领域展现出广阔的应用前景。其中,有机π-共轭材料因具有高的非线性光学系数、低的非线性响应阈值、易于结构调控的非线性光学性能等优势而备受关注。线性并苯类稠环是一类经典的有机π-共轭材料,被广泛应用于有机光电器件中。而该类材料随着共轭长度的增加,化学稳定性变差,极易被氧化或发生Diels-Alder反应。同时,随着共轭体系的增大,分子间聚集程度增强,溶解性及其合成难度提高,因而限制了这类材料的开发及应用。   近日,中国科学院理化技术研究所特种影像材料与技术研究中心副研究员孙继斌、湘潭大学教授陈华杰课题组、英国剑桥大学博士曾维轩等合作,采用酮胺缩合策略,构建了一类化学性能稳定、溶解性好的氮掺杂非交替纳米带分子(图1),并将该类材料应用于非线性光学领域,揭示了氮掺杂非交替纳米带分子优异的反饱和吸收性能(图2)。其中,研究引入末端三蝶烯和侧基三异丙基硅乙炔,有效抑制了分子间的聚集,显著提升了材料的溶解性,是目前已报道的分子长度最长的可溶解氮杂非交替纳米带——含13元稠环分子。此外,多重五元环的植入有效阻断了线性并苯类稠环的全局芳香性,实现了基态与激发态兼具的局域芳香性,因而提高了π-共轭系统的稳定性,使得材料(NNNR-2)的三阶非线性吸收系数达到374cmGW–1,且在同等测试条件下,显著高于经典非线性光学材料C60(153cmGW–1)。   相关研究成果以N-Doped Nonalternant Nanoribbons with Excellent Nonlinear Optical Performance为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家自然科学基金委员会、湖南省教育基金会和玛丽居里研究计划的支持。图1. 氮杂非交替纳米带分子NNNR-1和NNNR-2的(a)化学结构和(b)理论结构模拟图2. 氮杂非交替纳米带分子NNNR-1和NNNR-2的非线性光学性能
  • 谱育科技 | 助力半导体工厂特种气体安全运行
    半导体产业是支撑经济发展和保障国家安全的战略性、基础性和先导性产业,它包含了集成电路、平板显示、发光二极管以及光伏、光纤等多个细分领域。在目前半导体工厂的制造过程中,要用到约50种不同种类的特殊气体,其中不乏易燃易爆和有毒有害气体,如何确保生产过程中的气体使用安全,一直是企业厂务系统关注的焦点。特种气体分类半导体制造业所使用的特种气体主要可分为四个大类。易燃气体易燃气体,是指在标准压力下,在与空气的混合物中按体积占13%或更少时可点燃的气体或与空气混合,不论燃烧下限值如何,可燃范围至少为12个百分点的气体。如甲烷在空气中的爆炸极限约为5%至15%。属于易燃气体有氢气、甲烷、乙烯、乙炔等。毒性气体半导体制造行业中使用的很多气体是对人体有害有毒的。其中以砷化氢、乙硼烷、三氢化磷等气体的毒性最大。这些气体在工作环境中的允许浓度极微,因此在储存、输送以及使用的过程中都要求特别的小心。一般都应该采取特定的技术措施来控制使用这些气体。全氟丁二烯、八氟环戊烯、三氟化氮、氟甲烷、氯化氢、氟化氢、六氟化钨等都属于毒性气体。惰性气体惰性气体本身一般不会直接对人体产生伤害,在气体传输过程中,相对于安全上的要求不如以上气体严格。但惰性气体具有窒息特性,在密闭空间若发生泄漏会使人窒息而造成工伤事故,属于这类的气体有四氟化碳、六氟化硫等。氧化性气体这类气体有较强的氧化性,一般同时具有其他特性,如毒性或腐蚀性等。属于这类的气体有三氟化氯、氯气等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制