当前位置: 仪器信息网 > 行业主题 > >

汉黄芩苷

仪器信息网汉黄芩苷专题为您提供2024年最新汉黄芩苷价格报价、厂家品牌的相关信息, 包括汉黄芩苷参数、型号等,不管是国产,还是进口品牌的汉黄芩苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合汉黄芩苷相关的耗材配件、试剂标物,还有汉黄芩苷相关的最新资讯、资料,以及汉黄芩苷相关的解决方案。

汉黄芩苷相关的资讯

  • 标准| 药典委发布“关于勘误黄芩苷标准有关内容的函”
    p style=" text-indent: 2em " 日前,国家药典委员会官网发布了关于勘误黄芩苷标准的有关内容。更正原文中“鉴别”项目中的“ strong 二氯化锆 /strong ”为“ strong 二氯 /strong span style=" color: rgb(255, 0, 0) " strong 氧 /strong /span strong 化锆 /strong ”。全文如下: /p p & nbsp & nbsp br/ /p p & nbsp & nbsp & nbsp & nbsp span style=" font-family: 楷体, 楷体_GB2312, SimKai " 各省、自治区、直辖市药品监督管理局: /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 经我委核查,黄芩苷标准[标准编号为WS-10001-(HD-0989)-2002]【鉴别】(2)项中的“然后再滴加5%二氯化镐溶液1滴”应更正为“然后再滴加5%二氯氧化锆溶液1滴”。 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 特此勘误,请及时通知辖区内相关企业遵照执行。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 国家药典委员会 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 2020年5月7日 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-indent: 2em " strong 黄芩苷 /strong (Baicalin)是从黄芩根中提取分离出来的一种黄酮类化合物。具有抑菌、利尿、抗炎、抗过敏及解痉等显著的生物活性。黄芩苷还能吸收紫外线、清除氧自由基、抑制黑色素的生成。既可用于医药,也可用于化妆品,是一种很好的功能性美容化妆品原料。黄芩苷也是药典中规定的很多中药饮片和中成药的标准品。 /p p style=" text-align: center" & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 140px " src=" https://img1.17img.cn/17img/images/202005/uepic/2a16348f-988c-4af8-9b96-2f7dccf9ae63.jpg" title=" 二氧化锆.png" alt=" 二氧化锆.png" width=" 450" vspace=" 0" height=" 140" border=" 0" / /p p style=" text-indent: 2em " strong 二氯氧化锆 /strong ZrOCl2· 8H2O的作用是用于制造 strong 二氧化锆 /strong ,及其他涂料干燥剂、橡胶添加剂等。亦可以做耐火材料、陶瓷釉料和润滑剂。 strong 二氯化锆 /strong 的常见形态是结合两个环戊二烯基。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 附:黄芩苷标准品说明书 /strong /span br/ /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 624px height: 418px " src=" https://img1.17img.cn/17img/images/202005/uepic/bbd85870-0707-482a-b141-6c8215d6ff9b.jpg" title=" 说明书-1.png" alt=" 说明书-1.png" width=" 624" vspace=" 0" height=" 418" border=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 592px height: 547px " src=" https://img1.17img.cn/17img/images/202005/uepic/e53ebde2-a2c0-4ee2-8644-c434cccd785c.jpg" title=" 说明书-2.png" alt=" 说明书-2.png" width=" 592" vspace=" 0" height=" 547" border=" 0" / /p p style=" text-indent: 2em " br/ /p
  • 小柴胡颗粒中黄芩提取物检查项补充检验方法
    5月23日,根据《中华人民共和国药品管理法》及其实施条例的有关规定,《小柴胡颗粒中黄芩提取物检查项补充检验方法》经国家药品监督管理局批准,现予发布。小柴胡颗粒,中成药名。为和解剂,具有解表散热,疏肝和胃之功效。主要组成为柴胡、姜半夏、黄芩、党参、甘草、生姜、大枣。小柴胡颗粒中黄芩提取物采用HPLC进行测定,补充方法中将色谱条件、参照物/供试品溶液的制备、测定方法等都有详细的介绍。补充检验方法的起草单位:广东省药品检验所 复核单位:湖南省药品检验检测研究院。小柴胡颗粒中黄芩提取物检查项补充检验方法(BJY 202304)【检查】黄芩提取物 照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂(建议色谱柱的内径为4.6mm,粒径为2.7μm);以甲醇为流动相A,0.5%甲酸为流动相B,按下表中的规定进行梯度洗脱;流速为每分钟0.6ml;检测波长为270nm。理论板数按黄芩苷峰计算应不低于5000。时间(分钟)流动相A(%)流动相B(%)0~105→2595→7510~4025→5575→4540~5555→8045→20参照物溶液的制备 取黄芩对照药材0.1g,加水煎煮1.5小时,滤过,滤液浓缩至近干,加入50%乙醇溶液25ml,密塞,超声处理(功率350W,频率37kHz)45分钟,取出,放冷,摇匀,滤过,滤液用0.22μm微孔滤膜滤过,作为对照药材参照物溶液。另取黄芩苷对照品和汉黄芩苷对照品适量,加甲醇制成每1ml各含60µg的混合对照品溶液,摇匀,用0.22μm微孔滤膜滤过,作为对照品参照物溶液。供试品溶液的制备 取本品,混匀,研细,取约1g﹝规格(1)﹞、0.4g﹝规格(3)﹞、0.3g﹝规格(2)、规格(4)﹞或0.25g﹝规格(5)﹞(均相当于含黄芩生药量0.056g),精密称定,置具塞锥形瓶中,精密加入50%乙醇溶液25ml,密塞,称定重量,超声处理(功率350W,频率37kHz)45分钟,取出,放冷,再称定重量,用50%乙醇溶液补足减失的重量,摇匀,滤过,滤液用0.22μm微孔滤膜滤过,即得。测定法 分别吸取参照物溶液与供试品溶液各5μl,注入超高效液相色谱仪,测定,即得。结果判定 供试品色谱中应呈现与对照药材参照物中5个主要特征峰保留时间相对应的色谱峰,其中峰1与峰4应与对照品参照物峰保留时间一致,且峰4与峰1的峰面积比值应不低于0.10。对照特征图谱5个特征峰中 峰1:黄芩苷;峰4:汉黄芩苷;峰5:黄芩素注:规格(1)每袋装10g;(2)每袋装5g(无蔗糖);(3)每袋装4g(无蔗糖);(4)每袋装3g(无蔗糖);(5)每袋装2.5g(无蔗糖)。起草单位:广东省药品检验所 复核单位:湖南省药品检验检测研究院
  • 感冒常用药——小柴胡颗粒中黄芩提取物检查项补充检验方法应对方案
    导语5月23日,国家药品监督管理局发布“小柴胡颗粒中黄芩提取物检查项补充检验方法”。小柴胡颗粒是由柴胡、黄芩、姜半夏、党参、生姜、甘草和大枣7味药材组成,具解表散热、疏肝和胃的功效,临床用于外感病,症见寒热往来、胸胁苦满、食欲不振、口苦咽干等。其质量标准收载于《中华人民共和国药典》2020年版一部,法定制法为姜半夏、生姜以70%乙醇为溶剂进行渗漉提取,其余黄芩等5味水煎提取;对于臣药黄芩的质控项目包括薄层色谱鉴别和含量测定两项,但均使用黄芩苷对照品作为参照,存在指标化合物较为单一的问题。现行质量标准的不完善,让一些不法生产企业有机可乘,为降低成本,可能存在添加黄芩提取物进行投料的现象。【1】据相关研究表明:黄芩提取物的主要成分为黄芩苷(含量占85%以上);而黄芩中的黄酮苷为主要的有效成分,包括黄芩苷、黄芩素、汉黄芩苷、汉黄芩素等120种以上,其中前四者含量约占9.0%~20%、0.15%~5.4%、1.7%~4.5%、 0.01%~1.3%,说明两者的物质基础存在明显差异。黄芩药材中掺入黄芩提取物投料或是以黄芩提取物代替黄芩药材投料均为未按法定制法生产,擅自改变小柴胡颗粒的制法,导致其物质基础发生改变,无相应临床数据证实其有效性,存在安全风险。【1】为打击掺入黄芩提取物或将黄芩药材按提取物制法制备后投料生产小柴胡颗粒的违规行为,建标单位建立了黄芩提取物检查项补充检验方法。岛津分析方案分析仪器及色谱柱分析色谱条件柱温:20℃流速:0.6 mL/min检测波长:270 nm进样量:5 µ L流动相:A:0.5%甲酸 B:甲醇岛津复现案例色谱图补充检验方法对照特征图谱峰1:黄芩苷;峰4:汉黄芩苷;峰5:黄芩素使用LC-20AD高效液相色谱仪可以重现标准,对照药材呈现的色谱图峰形良好,主要特征峰均有检出,出峰顺序与标准对照参照图谱一致,各峰实现良好分离,黄芩苷峰理论板数达到190000,满足标准系统适用性要求(应大于5000)。供试品溶液色谱图呈现与对照药材参照物中5个主要特征峰保留时间相对应的色谱峰,其中峰1与峰4应与对照品参照物峰保留时间一致。综上所述,岛津仪器+色谱柱方案可以满足标准检测要求,供相关检测单位参考。参考文献:[1]乔莉,简淑仪,赖竹仪,李华,黄俊忠.超高效液相色谱法检测小柴胡颗粒中掺入的黄芩提取物[J].中国药事, 2023,37(04):450-460. DOI:10.16153/j.1002-7777.2023.04.012.本文内容非商业广告,仅供专业人士参考。
  • 助力新冠诊疗|防风通圣丸的测定
    在新型冠状病毒肺炎诊疗方案(试行第五版 修正版),中医治疗项下,防风通圣丸被推荐用于治疗处于医学观察期的患者。防风通圣丸具有解表通理,清热解毒之功效。主治外寒内热,表里俱实,恶寒壮热,头痛咽干等。在此参照《中国药典》中防风通圣丸的含量测定,使用日立高效液相色谱仪Primaide进行测定。图1.分析测定条件 图2. 标准品测定结果 图3. 重现性实验结果 取50mg/L黄芩苷标准溶液,重复测定6次,保留时间和峰面积的RSD分别是0.04%和0.19%,均获得了良好的重现性。 图4. 标准曲线 黄芩苷标准溶液在1.00mg/L~200mg/L浓度范围内获得了R2 = 1.0000的良好线性关系。 图5. 系统适用性结果 取50mg/L黄芩苷标准溶液进行系统适用性测试,结果远优于药典规定值。图6. 样品前处理过程样品 图7. 防风通圣丸的测定结果前图8. 含量测定结果 对市售防风通圣丸中黄芩的含量进行了测定,以黄芩苷计算,每1g样品含黄芩苷9.6mg,符合药典的规定值。并在样品中添加了黄芩苷标准品,进行加标回收率的测定,回收率为102.8%~103.6%,证明该测定方法准确可靠。关于日立高效液相色谱仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。 处理方法
  • 甘肃开展药品检查:停产5家药企 没收4家GMP证书
    今年9月,省食药监局对省内16家、省外2家药品制剂、中药饮片、医用氧生产企业开展了集中飞行检查及延伸检查,发现缺陷问题和风险隐患113项,现场抽样28批次,限期整改16家,责令停产整顿5家,收回药品GMP(药品生产质量管理规范)证书4家。为强化问题整改,日前省食药监局对风险隐患较为突出的12家药品制剂生产企业法定代表人、企业负责人、生产负责人、质量负责人、质量受权人进行集体约谈告诫。其中,武威天利医药有限公司中药饮片厂生产的假药(批号为20160801的柴胡)被移交公安部门。 据悉,被收回GMP的4家药企为靖远爱新气体有限公司、陇西县百宝药业有限责任公司、陇西县志奇中药材加工厂、武威天利医药有限公司中药饮片厂。 其中,靖远爱新气体有限公司原料管理混乱,工业氧和医用氧混存,用于分装医用氧的液态氧购进渠道混乱;质量受权人不能有效履职,非质量受权人代签放行产品;部分产品无批生产记录,液态氧购进量、生产量和销售量失衡;气瓶未按规定定期检验,存在安全隐患;供货商审计档案不健全;化验室使用的容量仪器未校准;气瓶的储存条件不符合规定;对重复使用的部分气瓶充装前未对瓶体进行清洁消毒。 陇西县百宝药业有限责任公司物料管理混乱;生产过程混乱,批生产记录不完整,无法反映生产过程,购进量、生产量和销售量失衡;检验制度不有效落实。 陇西县志奇中药材加工厂仓储区内的原料无质量状态标示;原版空白的批生产记录生产管理负责人和质量管理负责人未严格审核;质量管理部门未与物料供应商签订质量协议,无法明确双方所承担的质量责任;擅自出租厂区场地、库房,用于他人加工中药材,存在混淆等质量安全、消防安全风险隐患,扰乱生产市场秩序;此外,该厂2016年生产的黄芪、黄芩、党参、当归、防风等5个品种34批(次)生产检验记录,部分数据、图谱等缺乏真实性和可追溯性。 武威天利医药有限公司中药饮片厂现场抽验批号为20160801的柴胡,检验结果性状不符合规定,为假药;甘草、黄芪等原料及成品检验未按药典规定全检,黄芪检验存在套用色谱图的问题;2015年7月之前对原药材均未留样;成品库中50kg包装的批号为20160201、20160301的黄芪,50kg包装批号为20130101的甘草包装袋上无品名、批号、规格、产地等标识,不能有效证明产品的真实来源;企业供应部电脑账目显示独活库存为312kg,但在库房内未发现实物。
  • 中药抗病毒文献解读丨岛津LCMS-8060助力新冠肺炎治疗研究
    随着国内新型冠状病毒(COVID-19)感染的肺炎疫情逐渐得到控制,重症及危重症患者数量也开始相应减少,新型冠状病毒肺炎诊疗方案的成效日益凸显。在与疫情的斗争中,传统中医药的普遍使用,为病人症状的改善和病情的控制发挥了巨大作用。 新冠病毒COVID-19感染者的常见症状为发热、咳嗽、肌痛或疲劳,重症患者会产生大量的细胞因子,而细胞因子风暴的出现会严重威胁病人生命。 科学家们在之前的研究中发现,黄芩苷、黄芩素、橙皮苷、烟碱胺、甘草酸等中草药化合物具有与冠状病毒受体血管紧张素转换酶2(ACE2)结合的能力,因而具有潜在的抗COVID-19病毒的作用。 在对于生物体中的这些天然化合物进行研究的过程中,定量分析研究是必不可少的重要部分。三重四极杆型液相色谱质谱联用仪在复杂生物样品体系的痕量化合物定量分析中有着无可比拟的优势,尤其是岛津旗舰级的LCMS-8060所具备的超高灵敏度和超快速分析性能,更是为广大分析科研工作者所青睐。 岛津旗舰级LCMS-8060 最近,华中农业大学的研究团队在预印本平台Preprints上发表题为“Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2”的文章(Cheng, L. Zheng, W. Li, M. Huang, J. Bao, S. Xu, Q. Ma, Z. Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2. Preprints 2020, 2020020313)。 研究人员尝试从柑橘属植物中的黄酮类化合物中发现有效的抗病毒和抗炎化合物,并提出预防和治疗COVID-19的建议。 为了评估柚苷、柚皮素、橙皮苷、橙皮素、新橙皮苷、川皮苷等6种黄酮类化合物与ACE2结合的能力,研究人员对柑橘、柚子和甜橙进行了有针对性的代谢谱分析,利用LCMS-8060对16个栽培品种的柑橘中的459种已知代谢产物进行了定量检测,并确认了不同黄酮类化合物在不同种类柑橘中的含量差异。 通过LC-MS / MS(Shimadzu LCMS-8060)分析了不同柑橘属种和栽培品种中六种化合物的含量。通过LabSolutions Insight LCMS软件进行数据分析。离子信号峰值面积代表相对含量。(A)柚皮素,柚苷,橙皮素,橙皮苷,新橙皮苷和川皮苷在不同柑橘种类中的分布。(B)不同栽培品种中六种类黄酮化合物的含量。 随后的体外和体内实验表明,柚苷可以抑制脂多糖(LPS)诱导的巨噬细胞中促炎细胞因子的表达,并进一步发现可能通过抑制高迁移率族蛋白B1(HMGB1)来抑制细胞因子的表达。因此,柚苷可能具有预防细胞因子风暴的潜在应用。 通过模拟分子对接,以柚苷为代表的6种黄酮类化合物均与ACE 2表现出不同的结合亲和力。柑橘类中的黄酮类化合物由此表现出抗COVID-19的潜力,该研究也为柑橘类或其衍生的植物化学物质在COVID-19感染的预防和治疗中指明了广阔的应用前景。 文献题目《Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2》 使用仪器岛津LCMS-8060 第一作者程丽萍、郑伟康、李明 原文链接:https://www.preprints.org/manuscript/202002.0313/v1
  • 第六届普析通用杯药物分析优秀论文获奖名单公布
    p    strong 仪器信息网讯 /strong 2015年《药物分析杂志》优秀论文评选学术研讨会暨第六届普析通用杯药物分析优秀论文颁奖会于2015年10月20-21日在北京前门建国饭店隆重召开,100余名来自于药物分析领域的专家、学者参加了此次会议。出席本次会议的嘉宾有:中国食品药品检定研究院副院长王佑春、北京普析通用仪器有限责任公司总经理田禾、副总经理王峰、中国药学会药物分析专业委员会原主任委员田颂九、中国食品药品检定研究院中药民族药检定所所长马双成、澳门大学药学院副院长李绍平、上海市药品检验所副所长陈桂良、药物分析杂志主编金少鸿、浙江大学药学院曾苏、中国药学会副理事长兼秘书长丁丽霞,药物分析杂志编委会主任粟晓黎等。金少鸿研究员主持了此次会议的开幕式和闭幕式。本次优秀论文评选颁奖活动是在中国科协和中国药学会的支持下,以精品科技期刊工程项目为指导目标,以表彰近两年药物分析优秀论文为主题形式。 /p p style=" TEXT-ALIGN: center" img title=" IMG_7669金少鸿_meitu_1.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/fe802379-e1cb-4bd6-a35a-89b7ff8e9970.jpg" / /p p style=" TEXT-ALIGN: center" 金少鸿研究员致词 /p p style=" TEXT-ALIGN: center" img title=" IMG_9790_meitu_8.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/2770d3fb-9cd5-487c-af39-bc9d464927de.jpg" / /p p style=" TEXT-ALIGN: center" 中国食品药品检定研究院副院长 王佑春 /p p   王佑春谈到,全国药物分析优秀论文评选活动是《药物分析杂志》组织的学术活动之一。2004年中国药品生物制品检定所(中检院前身)与北京普析通用仪器有限公司签署了合作协议,共同组织优秀论文评选活动,表彰在药物分析专业科研工作中敢于创新、成绩优秀的作者。从2004年起,每两年举办一次。全国药物分析杂志优秀论文评选交流会是药物分析学科领域重要的学术活动之一,是药物分析研究工作者显示成果的舞台。历届优秀论文评选会议无论是投稿、文章评审、还是现场评奖均得到了药物分析专业领域作者、专家的积极参与。这个活动也推动了我国药物分析学科的成熟与发展。 /p p style=" TEXT-ALIGN: center" img title=" IMG_7662丁丽霞_meitu_3.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/5321410c-7731-440a-92f6-f42c787aceda.jpg" / /p p style=" TEXT-ALIGN: center" 中国药学会副理事长兼秘书长 丁丽霞 /p p style=" TEXT-ALIGN: center" img title=" 田禾_meitu_10.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/2d50c596-3f73-4298-a141-59ef35c917a1.jpg" / /p p style=" TEXT-ALIGN: center" 北京普析通用仪器有限责任公司总经理 田禾 /p p   田禾讲到,十分高兴能够作为仪器厂家,为药物分析工作者在实际工作中提供一些保障和支持。中国的分析仪器产业相比于国外还存在一定的差距,普析通用作为一家国内领先的民营企业,深深地感受到国外品牌带来的冲击和压力。但是,中国一定要发展自己的分析仪器产业,这样才能更好地服务于国内的分析行业工作者。药物分析杂志与普析通用合作举办的“全国药物分析优秀论文评选”活动,一方面可以很好地了解国内分析仪器在药物工作者中的使用情况 另一方面也可以帮助企业提高其仪器的整体研发技术水平,继而促进中国分析仪器产业的提升。 /p p style=" TEXT-ALIGN: center" img title=" IMG_7689王峰_meitu_2.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/a92662b4-9fc1-438b-b805-9d3b62152193.jpg" / /p p style=" TEXT-ALIGN: center" 北京普析通用仪器有限责任公司总经理 王峰 img title=" ceng.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/bffee579-7a47-467a-826d-4bda7b26037e.jpg" / /p p style=" TEXT-ALIGN: center" 药物分析杂志副主编 曾苏 /p p style=" TEXT-ALIGN: center" (浙江大学药学院、中国药学会药物分析委员会副主任) /p p   曾苏谈到,为了奖励近年来药学工作者在药物分析领域所做的贡献,进一步推动我国药物分析学科发展,中国食品药品检定研究院专门在2015年工作计划中,列入了2015年《药物分析杂志》优秀论文评选学术研讨会暨第六届普析通用杯药物分析优秀论文颁奖会。评选范围确定为征集会议投稿和2013~2014年在《药物分析杂志》上已发表的文章。截止到2015年9月,接收会议投稿近60篇。近两年在《药物分析杂志》上已发表的论文960篇。 /p p   此次论文评选的主体范围从以下方面进行筛选,体现导向性: /p p   1、 药物分析新理论、新技术、新方法研究; /p p   2、 现代分析技术在药物分析中的应用研究; /p p   3、 新药质量标准的建立及药物质量再评价研究; /p p   4、 药物原料、制剂及新剂型的研究; /p p   5、 药用辅料、药包材和医药材料质量分析; /p p   6、 药物活性、药物毒性分析研究; /p p   7、 药物分析检测质量控制方法技术研究; /p p   8、 药物代谢动力学、生物利用度等研究; /p p style=" TEXT-ALIGN: center" img title=" IMG_9784_meitu_15.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/267a0377-476a-443e-8309-151eee36765e.jpg" / /p p style=" TEXT-ALIGN: center" 大会现场 /p p strong 部分参会报告: /strong /p p style=" TEXT-ALIGN: center" strong img title=" IMG_9825_meitu_3.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/c6f4aafc-f2f7-42df-9a05-5e4225ae5442.jpg" / /strong /p p style=" TEXT-ALIGN: center" 范昌发报告题目 《C57-ras转基因小鼠模型的建立》 /p p   中国食品药品检验研究院范昌发通过PCR方法克隆人的原癌基因c-Ha-ras,全长6.5 kb,含有4个外显子,以及该基因本身的启动子、调控序列和poly A信号序列 并将其通过原核注射注入C57BL/6J小鼠受精卵雄原核。同时,通过PCR,real-time RT PCR和反转录cDNA测序比对等手段鉴定c-Ha-ras基因的插入和表达,并结合病理切片分析自发肿瘤的发生。 /p p   范昌发表示,通过该实验,成功建立了C57/B6J背景的人类c-Ha-ras转基因小鼠模型。该C57-ras转基因小鼠的制作和用途已申请专利,这是我国首个以临床前药物致癌性实验为目的的c-Ha-ras转基因小鼠,也是在我国建立符合ICH规范的、拥有自主知识产权的临床前药物安全性致癌评价替代方法体系的基础。 /p p    img title=" IMG_9730_meitu_4.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/4bc5f0e1-6c73-4460-aa0f-0ebca8160cc6.jpg" / /p p style=" TEXT-ALIGN: center" 孙煌报告题目 《核磁共振和液相色谱—质谱法对多索茶碱未知杂质的结构分析》 /p p   黑龙江省药品检验所孙煌应用HPLC-MS/MS、核磁共振(1H-NMR、13C-NMR、HMBC)技术,对多索茶碱及其未知杂质进行结构分析,并首次发现并确定多索茶碱未知杂质的结构。该方法可为多索茶碱的质量控制提供依据。 /p p style=" TEXT-ALIGN: center" img title=" IMG_9646_meitu_5.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/c2a99326-3788-4611-b027-eb33e2e8f1c7.jpg" / /p p style=" TEXT-ALIGN: center" 赵琰报告题目 《基于黄芩苷单克隆抗体的ELISA快速检测方法的建立》 /p p   北京中医药大学赵琰以制备出的黄芩苷特异性单克隆抗体为基础,选择单抗最佳工作浓度,建立了黄芩苷间接竞争酶联免疫分析方法,并应用此方法检测精制清开灵注射液中的黄芩苷含量。采用该方法检测精制清开灵注射液中黄芩苷的含量,所得结果与HPLC一致。从而为含黄芩苷的中药材及复方的质量控制分析提供了更加快速灵敏的检测方法。 /p p style=" TEXT-ALIGN: center" img title=" IMG_9812_meitu_6.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/2c5004d0-0ca4-4c54-87d8-609b66f729cd.jpg" / /p p style=" TEXT-ALIGN: center" 颁奖现场 /p p style=" TEXT-ALIGN: center" img title=" IMG_7721_meitu_16.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/fb264ce6-e8c9-4816-b9fa-331cdd8d4d9b.jpg" / /p p style=" TEXT-ALIGN: center" 参会代表合影 /p p strong 附获奖名单: /strong /p p style=" TEXT-ALIGN: center" img title=" 截图00_meitu_9.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/e500d708-53e7-4f31-8c01-dd5995a04d4c.jpg" / /p
  • 第十二届全国生物医药色谱及相关技术学术交流会圆满闭幕
    p    strong 仪器信息网讯 /strong 2018年4月18日,历经两天的学术交流,“第十二届全国生物医药色谱及相关技术学术交流会”在贵阳圆满闭幕。香港浸会大学蔡宗苇教授、中国农业科学院质量标准与检测技术研究所王静研究员、西北大学郑晓晖教授、广西师范大学赵书林教授、贵州医科大学高秀丽教授,以及岛津、赛默飞两家企业的代表作大会特邀报告。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/52a28e7e-5083-4031-97a6-9a17375b3eb9.jpg" title=" 蔡宗苇_副本.jpg" / /p p style=" text-align: center " strong 报告人:香港浸会大学蔡宗苇教授 /strong /p p style=" text-align: center " strong 报告题目:PM2.5致大鼠肺损伤作用 /strong /p p   报告介绍课题组对太原地区PM2.5中多环芳烃(PAHs)和硝基多环芳烃(NPAHs)的浓度水平、源解析、健康风险进行分析,发现太原市冬季PM2.5污染较严重,PM2.5引起的炎症反应、线粒体损伤和脂质过氧化是PM2.5致大鼠肺损伤的重要调控机制。此外,课题组通过开展PM2.5对肺氧化应激的研究,揭示DNA损伤修复基因和DNA损伤应激基因在PM2.5和NPAHs诱导肺DNA损伤中的调节机制显示PM2.5载有的NPAHs对PM2.5致肺DNA损伤效应有毒性贡献。而活性氧(ROS)/ 活性氮 (RNS)引起的氧化应激与线粒体损伤之间的关系还有待于进一步研究。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/d1db3974-ed7f-402b-b51f-19fdfe19f9aa.jpg" title=" IMG_6430_副本.jpg" / /p p style=" text-align: center " strong 报告人:中国农业科学院质量标准与检测技术研究所王静研究员 /strong /p p style=" text-align: center " strong 报告题目:高风险农药助剂的分析方法与消解行为 /strong /p p   农药助剂作为农药制剂的必要组成成分,其安全性日益受到关注。APxEOs和PPxEOs这两类助剂的大量使用,对生态环境、食品安全和人体健康构成高风险,因此,有必要开展农产品和产地环境中这两类助剂的分析方法、污染水平和环境行为研究。课题组建立了基于超临界流体色谱-串联质谱法(SFC-MS/MS)的农产品和产地环境中这两类助剂残留的检测方法,并采用模拟试验研究它们在种植过程的消解、转化等环境行为,从而为这两类助剂的安全合理使用、有效控制和科学管理提供技术支撑。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/2844a97b-501b-4988-9cc0-e8aa6c98cd6a.jpg" title=" 郑晓晖_副本.jpg" / /p p style=" text-align: center " strong 报告人:西北大学郑晓晖教授 /strong /p p style=" text-align: center " strong 报告题目:药物-机体复杂巨系统中生命效应分析科学体系的构建与应用 /strong /p p   药物-机体相互作用形成的复杂巨系统之复杂性造成效应物质难以辨识问题不仅严重阻碍了新药研发的进程,也给现代分析技术带来了巨大的挑战。针对上述难题,团队提出并建立了药物-机体开放复杂巨系统的因果相关数理模型,以及分析药物-机体复杂巨系统中数据所蕴涵的元素间的双向因果关系。进而发展靶-药识别组合受体色谱功能辨识技术,对复杂巨系统中的复杂活性信息进行准确分析及特异性活性筛选,结合化学分子结构辨识及生物活性功效辨识,完成核心效应物质的精筛,从而构建了中药有效成分群辨识技术体系。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/aaedf802-b737-4e25-8ebb-4b26f97da82d.jpg" title=" 赵书林_副本.jpg" / /p p style=" text-align: center " strong 报告人:广西师范大学赵书林教授 /strong /p p style=" text-align: center " strong 报告题目:微芯片电泳免疫和手性分析用于药物和疾病标志物检测 /strong /p p   微芯片电泳免疫和手性分析技术,以其快速、高效、灵敏度高、选择性好、成本低、样品消耗量少等优点, 越来越受人们的关注。要满足临床人体液中微量药物和疾病标志物的检测,必需将微芯片电泳免疫分析技术与高灵敏的检测技术相结合。为此,课题组研制了一套微流控芯片电泳-激光诱导荧光、化学发光检测多功能分析仪,发展了一系列微流控芯片电泳激光诱导荧光、化学发光检测-免疫和手性分析新方法,并应用于药物和疾病标志物检测。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/bf420132-d8e6-4789-8596-f1d9106c8e39.jpg" title=" 高秀丽_副本.jpg" / /p p style=" text-align: center " strong 报告人:贵州医科大学高秀丽教授 /strong /p p style=" text-align: center " strong 报告题目:药用辅料PEG对黄芩苷体内吸收的影响 /strong /p p   黄芩苷是从唇形科植物黄芩的干燥根中提取的一种黄酮类化合物,具有广泛的药理活性和临床治疗作用,也是大多数中药复方制剂中的有效成分,但却由于其溶解性不好,导致其口服生物利用度降低,口服吸收差。课题组曾采用HPLC、UPLC-MS/MS等分析方法展开研究,揭示药用辅料PEG可能促进了黄芩苷在大鼠体内的吸收。基于此,课题组利用UPLC-MS/MS分析方法和原位灌注模型进一步探究PEG400对黄芩苷在大鼠胃肠吸收的影响,系统研究药用辅料PEG对黄芩苷体内吸收的影响,并揭示该影响作用的规律和机理,为解决中药黄芩苷口服吸收差的难题、辅助设计更好的黄芩苷新制剂提供药代动力学支撑。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/685c1a31-c56d-444f-b774-3e63687295ef.jpg" title=" 金燕_副本.jpg" / /p p style=" text-align: center " strong 报告人:赛默飞世尔科技(中国)有限公司金燕 /strong /p p style=" text-align: center " strong 报告题目:单抗及疫苗制剂HPLC分离纯化表征 /strong /p p   报告介绍了赛默飞U3000he Vanquish UHPLC单抗及疫苗制剂分离纯化与表征,如肽谱、聚集体分析、电荷变异体、完整蛋白水平的反相分离和糖谱等,还包括辅料方面的分析应用。突出介绍了U3000双梯度液相、Vanquish DUO双系统和CAD检测器在生物制药领域的最新应用进展。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/48fedf99-ae3b-410c-a34c-d324e4de9c83.jpg" title=" 张歆媛_副本.jpg" / /p p style=" text-align: center " strong 报告人:岛津企业管理(中国)有限公司张歆媛 /strong /p p style=" text-align: center " strong 报告题目:岛津独有的nSMOL技术在抗体药物生物分析中的新应用 /strong /p p   传统使用ELISA的分析方法常常会受到诸如ADA(anti-drug antibodies)的内源性配体的严重影响。岛津独有的nSMOL(nano-surface and molecular-orientation limited proteolysis.),可以为抗体类药物的生物分析提供具有极佳的准确性和重现性的定量分析方法。而nSMOL方法不仅可以应用于抗体药物药代动力学的研究,还能应用于治疗相关的ADA。 /p p style=" text-align: left "   大会召开闭幕式,首先宣布“青年论坛优秀奖”、“青年论坛鼓励奖”及“优秀墙报奖”获奖名单,奖项均由东曹(上海)生科技有限公司赞助。大会主席、北京大学刘虎威教授致闭幕词,“第十二届全国生物医药色谱及相关技术学术交流会”圆满闭幕。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/e665535f-6657-4594-b2f2-6f764375f1eb.jpg" title=" IMG_6529_副本.jpg" style=" text-align: center " / /p p style=" text-align: center " strong 中国科学院生态环境研究中心汪海林研究员宣布“青年论坛优秀奖”获奖名单 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/c75648c8-4b62-40e4-b78a-2d866ad94785.jpg" style=" " title=" IMG_6535_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/6759f267-db9e-41ef-9011-1462adfcd159.jpg" style=" " title=" IMG_6543_副本.jpg" / /p p style=" text-align: center " strong 颁发“青年论坛优秀奖” /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/3b020c5d-be73-43b5-8266-63e16dd8c594.jpg" style=" " title=" IMG_6545_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/1c99b320-bc6b-4b91-84d4-8d68528eea06.jpg" style=" " title=" IMG_6549_副本.jpg" / /p p style=" text-align: center " strong 颁发“青年论坛鼓励奖” /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/72ed8d1f-f67e-466d-a238-d47597fdefd1.jpg" style=" " title=" IMG_6553_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/db4c267b-2baf-4721-9250-179203cbc02a.jpg" style=" " title=" IMG_6562_副本.jpg" / /p p style=" text-align: center " strong 颁发“优秀墙报奖” /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/03227b56-68fc-4625-8936-27d22d5baf9e.jpg" title=" IMG_6566_副本.jpg" / /p p style=" text-align: center " strong 东曹(上海)生物科技有限公司二木研辅(右)致辞 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/f3ab796f-1d54-46cf-907e-f53b5cafef8a.jpg" title=" IMG_6523_副本.jpg" / /p p style=" text-align: center " strong 大会主席刘虎威教授致闭幕词 /strong /p
  • 检测以及第三方检测促进赤峰市中药产业升级
    在传统的中药行业中,大多数企业仅停留在出售原材料的初级阶段,这使得它们易受市场波动的影响,导致利润并不可观。同时,药材市场普遍偏好某些特定地区的原料,使得其他地区的生产者想要稳固自己在中药市场中的地位变得颇具挑战。2023年,笔者有幸对内蒙古赤峰市的中草药产业进行了实地考察。调研结果显示,赤峰的中草药行业已经发展成为一个包括种植、制药和销售在内的一体化产业体系,不仅稳定且健康发展,更成为了当地经济的重要支柱之一。值得一提的是,中药检测以及第三方检测在整个产业链中扮演了至关重要的角色。笔者考察中一、赤峰中药产业的蓬勃发展赤峰市拥有悠久的中药材种植历史,超过300年。得益于昼夜温差大、阳光充足以及较低的降水量,该地区非常适宜培育多种名贵中药材,因此所产药材不仅外观上乘,而且有效成分含量高。赤峰人工种植的中药材资源十分丰富,包括桔梗、北沙参、怀牛膝、党参、黄芪、黄芩、板蓝根、紫草、甘草、荆芥等众多品种,其种植面积和使用量均较大。北沙参桔梗截至2023年底,全市中药材的种植面积达到40.7万亩,产量为37万吨,总产值逾50亿元。其中,大宗药材品种如桔梗、北沙参、防风、黄芪、黄芩和板蓝根的种植规模均相当庞大。特别是桔梗,以其色泽洁白、条形修长、根部分叉少、口感佳而著称。除了少量用于药用,新鲜桔梗全部出口至韩国和日本。赤峰市喀喇沁旗牛家营子镇更是被誉为“中国北沙参、桔梗之乡”。目前,全市拥有超过5000亩的中药材种植基地13处,其中万亩以上的大型基地3处。赤峰中药基地采收中药场景赤峰已构建起一个涵盖化学药品、生物制药、医疗器械以及中蒙药和医药物流配送的完整产业体系。形成了从“原料药—中间体—制剂”到“道地药材—初加工饮片—配方颗粒—制剂”的成熟产业链条。在中成药生产方面,全市有两家规模较大的企业。除此之外,还有21家规模以上的中蒙药材加工企业,生产包括中药饮片、中药材、中成药和蒙药在内的120多种产品,销售网络遍布全国30个省市自治区。二、中药检测以及第三方检测对产业发展的推动作用随着绿色消费观念在中国深入人心,消费者对重金属和农药残留等问题的认识日益重视。国家也制定了严格的《药用植物及制剂进出口绿色行业标准》(WM2-2001),并对绿色中药标识实行严格管理。中药产品必须通过严格的检测并提供报告,才能进入制药厂。然而,许多中药种植基地缺乏进行成分检测的能力,这限制了中药产业的发展。随着中药(蒙药)在世界各地越来越受欢迎,对中药(蒙药)国际标准化的需求和呼声也越来越高。针对这一情况,赤峰市的大型中药企业投入巨资建立检测实验室,配备了色谱、质谱等先进仪器,不断提升中药品质。大型饮片企业也建立了自己的检测实验室,成为推动中药产业持续发展的关键力量。此外,第三方检测服务体系提供全面的检测服务,助力整个产业的进步。赤峰市产品质量检验检测中心不断加强药品检验能力的建设,技术水平持续提升,药品综合检验能力不断增强,为提高赤峰市药品质量安全水平提供了有力的技术支持。“精准蒙中药材定制与全程溯源技术研究”项目取得了阶段性成果。该项目由内蒙古天奇中蒙制药股份有限公司牵头,联合北京中医药大学、北京机械工业自动化研究所共同实施。主要目的是解决药材种源混乱和田间生产管理无序的问题,开展精准良种选育繁育、分子防伪关键技术、质量评价体系和快速检测技术等方面的研究,进一步推动中药产业的繁荣发展。天奇药业作者简介:张绍芬,大学毕业,高级畜牧师,曾任北京市延庆区工商联常务副主席。
  • 高效液相色谱监测中药的发展现状及前景
    中药的成分非常复杂,以往常用的薄层色谱等方法因其精密度、准确度、灵敏度、重现性差而不能满足现代中药的需要。高效液相色谱正是以其稳定、可靠、高效的特点成为中药研究的最重要的分析方法。目前高效液相色谱已经广泛应用于生物碱、皂苷、黄酮、蒽醌、香豆素等各种中药有效成分的测定。近年来对高效液相色谱监测中药的研究非常多,由于高效液相色谱集经典液相色谱和气相色谱的优势于一身,无论柱效、选择性还是分析程度都达到或超过了它们,近年来对高效液相色谱的不足之处进行了改进,使这项技术日臻完善。1、高效液相色谱发展近况  高效液相色谱在药物分析中的应用,主要考虑试样的预处理和分析柱、检测器的选择。在试样的预处理上,日前兴起的固相(微)萃取使得许多含量低的成分得到精制提纯,从而适于高效液相色谱的测定,而孙新国采用逆流萃取测定川芎嗪含量取得了很好的效果。中药中有些紫外吸收弱,或无特征紫外吸收的成分,直接用高效液相色谱测定,其灵敏度和分离度都不尽人意,利用柱前或柱后衍生化法可使这些成分较精确地测定出来。对于极性大、脂溶性差物质,在YWGCl8柱上不易保留,用十二烷基磺酸钠作为离子对试剂,降低其极性,延长柱上的保留时间,取得较好的分离较果。将液相色谱和质谱这两个强有力的分析技术在线连接在一起,经过三十年的发展已成为一项较为成熟的分析手段,但是它从形成伊始就存在着问题:从液相色谱流进质谱时,流动相的变化、溶剂的组成、高温高压离子化的问题制约着这种联用技术发展,大气压离子化接口具有去除溶剂和离子化的双重功效,它的引入,使得该技术在各个领域得到了广泛的应用。电喷雾离子源是一种软电离技术,一般只生成(M H) 和(M-H)-两种分子离子峰,选择性监测(mz)190的负分子离子峰,具有较高的灵敏度、准确度、专一性,满足了低浓度药物研究的需求。由张莉等人研究的三维高效液相色谱法可以同步测定葛根素和阿魏酸两种指标。通过实验证明:如果选择合适的柱温等色谱条件,乙醇作为反相高效液相色谱流动相,分析中药及中成药中有效成分,既安全又准确。结构相似的物质,普通的检测器难以检测出来,高效液相色谱-电化学法可以有效地测定黄连粉中仅差一个基团的黄芩苷和黄芩素的含量。样品经色谱柱分离后收集,再经荧光分光光度计测荧光强度,影响因素多,测定复杂,改进后的高效液相色谱-荧光法则可以不经衍生化和收集分离物,只经化学处理除杂,浓缩后直接进样即可。用该法测定贯叶连翘中金丝桃素的含量也取得了较好的结果。高效液相色谱-示差折光测黄芪精口服液中黄芪甲苷的含量也都取得了较为满意的结果。对于只有紫外末端吸收,用紫外检测时灵敏度低,基线易漂移,示差折光检测其易受外界条件干扰,蒸发散射检测器能克服以上不足,响应值只与样品质量有关,其信号相应与质量成正比,不同化合物,质量相同则信号相应基本一致。蒸发光散射检测法是基于不挥发样品分子对光的散射程度与其质量成正比,与其所含基团性质无关。只要选择适当的检测器参数,便可使流动相和溶剂完全气化,不产生信号,而样品中的各个组分以不挥发粒子存在,对光有散射,以被检测出来。因此,蒸发光散射检测器可用于含不同基团的多组分同时分离、分析。和紫外、荧光等方法相比,蒸发光散射检测法对不同物质有近似相同的响应因子,  因而不出现低浓度、高响应或高浓度、低响应的现象,有利于不同比例混合物的准确测定.高效液相色谱-蒸发光散射检验法测定银杏叶中萜类内酯含量、红参及育精胶囊中人参  皂苷Rg1和Re的含量和藤黄中藤黄酸含量都得到了很好的结果。2、高效液相色谱的研究动向  2.1缩短分析时间,提高分离效率。应用先进的检测仪器和方法,对流动相、固定相进行调节或改变,采用梯度洗脱、柱切换技术有望解决这个问题。梯度洗脱的高效液相色谱法,能分析较宽极性范围的样品,较等度洗脱具有很大的优势,但对于成分更复杂、极性范围更宽的中药样品则有些力不从心。多柱高效液相色谱法又称多维高效液相色谱法。除具有梯度洗脱一样的改变流动相浓度的优点外,还可以改变固定相种类、键合度、粒径、柱长、柱径等及流动相种类、浓度等。  2.2进一步向自动化、智能化及联用技术上发展。液相色谱与质谱联用在国外已成为测定低浓度生物药品中药物及代谢物的首选方法,LC-MS-MS法测定血浆中HIV-1蛋白酶,准确高效,血浆中残留的内源性组份和其他药物不干扰测定,既节省材料又节约时间。已经应用于体液、血浆、血清中的药物分析。中药复方注射液“清开灵”中的胆酸类物的分析采用液相色谱质谱质谱联用,效果理想。高效液相色谱-核磁共振联用在药物分析方面的作用很不错。新近提出的智能多柱高效液相色谱系统利用切换技术的模块式分离性能,把样品分块的切换进不同性质的色谱柱,再用合适的流动相洗脱。全过程采用智能化控制。3、高效液相色谱在中药分析中的应用前景  中药研究的大趋势是全成分分析,通过对从单味药到复方的不同配伍、煎煮时间等的研究,才能发现中药中化学成分的变化规律,找到中药机理之间的有机联系。中药成分繁多,且各种成分的性质遍布所有极性段、酸碱范围。实现多成分分析的最简单途径即在一根足够长的色谱柱上,采用温和的流动相,在足够久的时间内洗脱。但这与现代分析要求的简便快速相违。通过大量的应用研究表明,高效毛细管电泳在分析中药成分,尤其在分析高极性化学成分方面有较大优势,在分析大量的复方制剂方面显示了较高的能力。由于毛细管几乎不会出现高效液相色谱分析中常出现的柱床污染现象,而且用过的毛细管柱只需很短的时间进行冲洗后,即可以进行第二个样品的分析,快速高效且分辨率很高。新兴的毛细管电色谱是集高效液相色谱和毛细管电泳优势于一身的一种新型电分离微柱液相色谱技术,它是将高效液相色谱的多种填料微粒移到毛细管中,以样品与固定相间的相互作用作为分离机制,以电渗流为流动相驱动力的色谱过程。最近,一些先进的检测仪器成功的用在了高效液相色谱分析法上,使得高效液相色谱的应用更广泛,并充分利用高效快速、选择性好、灵敏度高等优点,建立更加系统的成分分析方法。通过与质谱联用、梯度洗脱、柱切换技术、配合先进的检测技术,以及与分子生物学、现代分子药理学相结合,必将在中药分析中发挥很大作用。
  • 钻石二代色谱柱又增新品
    钻石二代色谱柱自上市以来,以其优良全面的性能和优质完善的服务,深受用户的好评和信赖。 为了扩大钻石二代色谱柱的应用范围,迪马科技的每一款3&mu 和5&mu 键合相又新增3.0mm内径以及30mm柱长色谱柱。进一步满足HPLC,特别是LC-MS快速分析的应用需求。 另外,迪马科技又进一步拓展了钻石二代色谱柱在不同行业及领域的应用,比如中药/天然产物分析(红叁、何首乌、黄芩苷、脱水穿心莲内酯),禁用偶氮染料中的芳香胺,以及维生素E,维生素B2等。
  • 想用户之所想,节省成本和时间-东西分析HPLC,半制备兼分析
    高效液相色谱仪具有高分辨率、高灵敏度、速度快,色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、天然产物化学、食品分析、医药研究、环境分析、无机分析等各种领域。 东西分析从用户角度出发,研究、生产的高效液相色谱仪(HPLC)通过更换流通池,实现对样品的分析及少量样品的制备的功能,一机两用,为用户节省更大的成本和时间,广泛应用到物质的定性、定量分析及少量样品的制备,如药物和少量天然产物的半制备分析、有机物转化产物(中间体)分离纯化,新兴有机污染物及其代谢转化产物的分离富集和纯化,复杂基质(沉积物、生物样品等)的前处理净化等。LC-5520分析兼半制备高效液相色谱仪微机反控,轻松实现分析条件设置;积木式结构设计,立体式柱温箱;可快速实现分析型与半制备液相的互换;可连接柱后衍生,可兼容UV\ELSD等检测器。高性能可变波长紫外-可见光检测器抑制示差拆光技术,保证低噪声和漂移;多波长10段时间程序编程,全波段停泵扫描,可精确选择波长。高精度立式柱温箱可容纳任意两根分析色谱柱,可安装半制备色谱柱;色谱柱安装更换更人性化,兼顾了半制备色谱柱的安装需求。高压输液泵双柱塞往复式大冲程高压泵,精度高,流量范围宽;程序控制实现双泵的梯度洗脱 具有柱塞杆在线自动清洗功能。色谱工作站中英文界面,更好地满足国内外用户需求;强大的数据处理功能,可实现各种定量算法;记录谱图原始采集数据及相关信息,遵循GLP规范。应用案例紫外检测器测定多环芳烃图1 16种多环芳烃标样谱图(3ug/mL)色谱柱:Inertsil C18 4.6 mm×250mm 流动相:ACN和H2O(梯度洗脱) 紫外检测器:多波段时间编程紫外检测器测定铁皮石斛中甘露糖图2 铁皮石斛中甘露糖的测定谱图 色谱柱:Inertsil C18 4.6 mm×250mm 流动相:ACN-0.02mol/L:NH4OAc:20:80 检测波长:250nm 紫外检测器测定工业用精对苯二甲酸中对羧基苯甲醛、对甲基苯甲酸图 3 工业用精对苯二甲酸中对羧基苯甲醛、对甲基苯甲酸测定谱图色谱柱:Inertsil C18 4.6 mm×250mm 流动相:MeOH-0.02mol/L HOAc 1:9 检测波长:254nm紫外检测器测定双黄连口服液中绿原酸和黄芩苷图4 双黄连口服液中绿原酸和黄芩苷的测定谱图流动相:ACN-0.4%H3PO4 梯度洗脱 色谱柱:Inertsil C18 4.6mm×250mm 检测波长:324nm 紫外检测器测定盐酸头孢噻呋注射液中盐酸头孢噻呋图5 盐酸头孢噻呋注射液中盐酸头孢噻呋的测定谱图色谱柱:Inertsil C18 4.6mm×250mm 流动相:H2O-ACN-TFA(950:50:1200:800:1); 检测波长:254nm 蒸发光散射检测器测定黄芪甲苷图6 250ppm黄芪甲苷标准品测试谱图色谱柱:Inertsil C18 4.6x250mm 流动相:35%ACN流速:1mL/min 进样量:20uL漂移管温度:70℃ 气体流速:900mL/min蒸发光散射检测器测定齐墩果酸、熊果酸图7 50ppm齐墩果酸和100ppm熊果酸标样测试谱图色谱柱:Inertsil C18 4.6×250mm 流动相:MeOH-0.2%HOAc(88:12) 流速:1mL/min 进样量:20μL漂移管温度:60℃ 气体流速:900mL/min蒸发光散射检测器测定银杏叶提取物图8 银杏叶提取物标样测试谱图色谱柱:Inertsil C18 4.6×250mm流动相:MeOH-THF-H2O(25:10:65)漂移管温度:65℃ 气体流速:900ml/min 进样量:20uL 样 品:银杏内酯A 236ppm 银杏内酯B 92ppm银杏内酯C 176ppm 白果内酯 252ppm
  • 金钦汉:未来MPT有望接替ICP——访浙江大学金钦汉教授
    MPT,微波等离子体炬(microwave plasma torch)。也许对很多人来讲,MPT还不是一个很熟悉的名词,但它却是中国具有完全自主知识产权的技术,是我国金钦汉教授课题组于1985年首创的一种新型原子光谱用光源,并于1999年实现了百瓦级MPT光谱仪的商业化。   2013年9月4日,科技部公示 &ldquo 国家重大科学仪器设备开发专项2013年度拟立项项目&rdquo ,其中由浙江中控为承担单位的&ldquo 千瓦级MPT光谱仪的开发&rdquo 入选。此次千瓦级产品与之前的百瓦级产品相比难点在哪里?MPT与ICP(电感耦合等离子体光谱仪)等其它仪器相比具有什么样的优势?为此,仪器信息网编辑采访了浙江大学教授金钦汉,请他为大家介绍MPT的优势及未来的发展前景。 浙江大学教授 金钦汉   由百瓦级到千瓦级:&ldquo 我们的千瓦级MPT和安捷伦的MP完全不一样&rdquo   1985年,吉林大学金钦汉课题组首创了一种全新的微波等离子体激发光源&mdash MPT;   1996年,金钦汉课题组与北京海光仪器公司合作研制成功了世界上首台单通道顺序扫描MPT原子发射光谱仪;   1999年,长春吉大-小天鹅仪器公司实现了MPT光谱仪的商品化;   2000年,金钦汉课题组承担国家支撑计划项目&ldquo MPT全谱仪的研制&rdquo ,并于2003年研制成功;   2011年,MPT全谱仪作为教学仪器在浙江中控实现了商品化;   2013年,由浙江中控为牵头单位承担的&ldquo 千瓦级MPT光谱仪的开发&rdquo 入选&ldquo 国家重大科学仪器设备开发专项2013年度拟立项项目&rdquo 。   金钦汉课题组之前已经将百瓦级的MPT光谱仪成功产业化,是什么原因让其决定开发千瓦级的仪器呢?对此金钦汉介绍到,&ldquo 之前产业化的百瓦级MPT光谱仪一直是在小功率下工作,在这种情况下样品溶液雾化后直接进样时等离子体的稳定性难以保证,由此就存在去溶的问题,而去溶需要加热、蒸发等步骤,做起来比较麻烦,所以目前只能用作教学仪器。不过,一旦将功率提高到千瓦级就不会存在这个问题了。至于一直以来为什么没有开发千瓦级的仪器,最大原因就是没有找到合适的大功率微波源。&rdquo 安捷伦公司于2011年推出千瓦级MP-AES对金钦汉的激励很大,他说,&ldquo 当时我就想,我们中国人有自己的MPT技术,我们为什么不做千瓦级的仪器呢?&rdquo   同时,金钦汉特别强调,&ldquo 我们要做的千瓦级MPT和安捷伦的仪器完全不一样,我们不是跟踪,而是创新。安捷伦采用的是石英管、磁耦合、矩形波导,用的是氮气;我们用的炬管是铜管、电耦合,氮气、氩气、氦气都可以用。&rdquo 接着其介绍到,&ldquo 氮和氩的等离子体可以在石英管里形成,但是氦难以获得有光谱分析应用价值的高密度等离子体,因为氦的分子量很小,一旦形成等离子体,扩散速度太快,瞬间就会充满整个石英管,等离子体的数目密度不高,粒子间碰撞的机率就会大大减小,此种稀薄等离子体并不是理想的激发光源,就像氦ICP始终未能取得成功应用是一个道理。&rdquo   &ldquo 还有一点不同,安捷伦MP-AES固定1200W,不可调。而我们从应用的角度考虑,认为某一固定功率并不会是适于所有元素的最佳条件,因此将设置更多可调节参数,功率将从100W到1500W连续可调。&rdquo   千瓦级MPT开发难点:微波源、炬管   让MPT由百瓦级升至千瓦级,这其中的困难有多少?金钦汉介绍到,&ldquo 首先要解决的就是以上提到的微波源问题。光谱分析仪器所用的微波源对稳定性要求很高,而现在市面上一千多瓦的微波源大都是工业用的,稳定性都不高。在此次重大专项中,专门有对微波源稳定性的指标要求,我们的目标是稳定度达到千分之一。在之前与美国Hieftje教授的合作研究中,磁控管微波源的稳定度已经达到了千分之六。前段时间四川有家公司说可以做到千分之五,我们将在他们的基础上进一步提升至千分之一。&rdquo   &ldquo 此外,去年6月份,在加拿大召开的一个微波炉展览会中,我国某知名微波炉公司展出了世界上第一台全固态微波炉。据了解,他们已经做到了600W。相对于磁控管微波源来说,全固态微波源的稳定性要好很多,而且可以在低压下工作。我们现在正在和该公司商谈合作,希望能进一步提高功率,共同开发出高稳定度千瓦级别的全固态微波源。&rdquo   除了微波源之外,炬管也是一个难点。金钦汉介绍到,&ldquo 我们用的是铜质炬管,在一两百瓦时使用没有问题。但是功率增大到千瓦级之后,若炬管接头等位置处理不好容易形成微波反射,长期使用就会出现发热的问题。&rdquo 对于这个问题,金钦汉介绍到他们已经采取了一系列的改进措施,比如将电容耦合改为电导耦合等,未来还会继续改进以保证仪器可以长期稳定工作。   虽然有以上各方面的难点,金钦汉依然充满信心,他说,&ldquo MPT是我国具有完全自主知识产权的技术,我们有一定的科研基础和技术储备。现在浙江大学全力支持,浙江中控还准备专门为这个项目成立一个项目公司。我不敢说一定能做到最好,但是我相信我们整个项目组一起努力,项目目标是完全能实现的。&rdquo   展望:&ldquo 希望未来MPT可以接替ICP&rdquo   相对MPT来说,目前ICP更为业内人士所熟悉。据金钦汉介绍,&ldquo 当前进口ICP基本上都采用全固态高频电源,稳定度为千分之一&rdquo 。那么,MPT与ICP之间相比有什么优势呢?对此,金钦汉说,&ldquo 可以预期,ICP目前能够做的,MPT将来都可以做到;ICP无法直接引入空气样品,而MPT却可以实现空气直接进样分析;氦ICP迄今未能够实际应用,而氦MPT却在较小功率下即可实现。相信千瓦级MPT将为实现&ldquo 全元素&rdquo 分析创造条件,未来MPT可望接替ICP!&rdquo   接着金钦汉详细介绍了MPT的诸多优势,&ldquo 由于获得等离子体装置的结构和耦合方式有区别,ICP是通过开放的环形耦合线圈通过电感耦合获得等离子体,电磁波能并未全部被等离子体吸收,MPT是在一个谐振腔里进行工作,只要调谐得当,微波能就可差不多全部被等离子体利用,也即MPT的能量利用率远高于ICP,1200W的MPT就有望达到1600W ICP的效果。&rdquo   &ldquo ICP只能用氩气工作,而MPT可以用氩气、氮气、氦气三种气体工作。如果说用氩气工作的时候MPT与ICP的性能相当,那么用氦气工作时,MPT的性能显然就要超过ICP了。&rdquo   在灵敏度方面,金钦汉介绍到,&ldquo 带有去溶系统的100W的MPT对于不少元素的检测灵敏度就可以达到ppb数量级,千瓦级MPT的分析性能显然可与ICP相媲美。此外,MPT与AAS(原子吸收光谱法)相比,灵敏度也不差。而且,AAS一次只能测一种元素,MPT可以实现顺序扫描或者全谱直读,一次检测所有元素,只是在顺序扫描测量时所需要的样品量比较大一点而已。&rdquo   在应用方面,&ldquo MPT可以实现大气的直接连续实时监测,还可以将有机组分如油样直接雾化进样进行分析检测,这些都是ICP很难实现的。另外,在高温合金材料中非金属元素的检测方面,ICP遇到了困难(ICP检测卤素要在真空紫外的条件下),而用氦MPT则可在常压下在普通可见和紫外光谱区解决问题,包括卤素的检测。&rdquo 此外,金钦汉还介绍到,此次重大专项中也配备了强有力的应用开发单位,如中国钢研科技集团公司、西北核技术研究所等,他们主要承担MPT光谱仪在相关行业内的应用开发和标准建设等工作。   对于大家普遍关心的价格问题,金钦汉肯定地说,&ldquo MPT的价格不会比ICP贵!&rdquo 此外,他还强调到,&ldquo MPT是我们中国人的创造,而且相比ICP又具有以上各种优势,我们没有理由不将它做好。&rdquo   编辑手记   一直以来,有这样的观点:我国理论研究与世界差距并不大,但在产业化方面,却远远落后于发达国家。   我们在走访一些专家学者时发现了两个特点,一是很多科研结果都停留在了论文和样机阶段,没有了下文;另一则是因为特定需求而开发了相关仪器,但该仪器仅仅应用于某个实验室,没有得到更广泛的开发。无论是原创研发人还是厂商,都不应得到指责,因为他们都尽了自己的责任。但很显然,双方的对接&ldquo 很艰难&rdquo 。   在我们已知道的信息中,金老师对科学仪器的研发,从MPT到全谱直读ICP光谱仪,再到集成流路(IFC)芯片-数字PCR,或者是世界首创,或者是国内相关技术力量薄弱、商品化产品稀缺的。通过对金老师的此次专访,我们深切地感受到了金老师对MPT光谱仪产业化的拳拳之心。   科学仪器从理论研究、样机研发到商业化产品上市,什么机制更合理,什么形式更有利于这么多环节的衔接?这是否预示着市场上存在着&ldquo 技术转化经济人&rdquo 的需求,能否以技术转化经济人为润滑剂,让这个流程走得顺利一些?   采访编辑:叶建
  • 中国首个指纹图谱质控的中药注射剂产生
    目前中药注射剂乃至整个中药产业都面临严重的“信任危机”。如何在国家不断加大药品监督力度的情况下保证中药注射剂的安全性,就成为了解决此次信任危机的重中之重。   由于中药成分相对复杂,需要对每味中药和每种成分逐一鉴定,才能够严保质量关。但就现有的技术而言,只有指纹图谱技术能够在检测中尽可能多地反映产品全貌,因此,指纹图谱技术就成为了监督中药产品质量的关键。   具有先进分析技术的指纹图谱特别是数字化色谱指纹图谱的出现为中药产品质量的控制开辟了新途径。为促使此项技术能早日正式投入使用,企业的质检中心从2004年起就用指纹图谱全程控制注射用双黄连(冻干)的质量。无论是对注射用双黄连(冻干)的原料金银花、黄芩、连翘及提取物 还是对注射用双黄连(冻干)配剂药液及该制剂成品都进行了严格的监控。技术应用至今,注射用双黄连(冻干)成品的指纹图谱均达到国家标准。   2009年7月1日,注射用双黄连(冻干)将进入2005年中华人民共和国药典增补本,这不仅是我国唯一一个,同时也是首个采用指纹图谱控制产品质量的中药注射剂。中华人民共和国药典是药品的最高法典,代表着国家对药品的最高标准,只有安全性好、用药广泛、质量标准高的药物才能进入此药典。此举无疑是继注射用双黄连(冻干)第一个进入2000版药典的中药粉剂后,中药企业的又一次重大突破。届时中药企业会正式将指纹图谱技术应用于生产过程的各个环节,从而严格有效地控制注射用双黄连(冻干)的质量,以此保证产品质量的均一和稳定,并保证产品的有效性和安全性。   指纹图谱标准的应用,不仅能确保对中药产品的质量控制,更能提高中药产品的市场竞争力,同时对中药注射剂质量与安全再评价的顺利通过,以及整个中药行业产品质量标准的提高都将奠定良好的技术基础。
  • 全国第四家!陕西西咸新区秦汉新城特高压试验检测机构项目即将开建
    坐落于陕西西咸新区秦汉新城渭河现代服务业聚集带的特高压装备研发制造及检测中心项目,目前已完成规划方案设计批前公示,正在推进施工前期准备工作。项目建成投用后,将成为全国第四家特高压试验检测机构。项目位于秦汉新城秦阳一路以东、兰池三路以南、秦阳二路以西、兰池二路以北区域,由电力系统运行安全及智能配套综合服务商陕西秦能电力科技股份有限公司投资建设。项目计划总投资6000万元,规划总建筑面积1.23万平方米,主要建设工业厂房及相关配套。秦能电力是一家专业从事电力系统自动化和电力安全保障产品研发、生产、销售的高新技术企业,致力于特高压试验系统、智能带电作业工具库房及车库、10千伏-±1100千伏等级抢修塔、相关配套智慧云控系统等产品研发制造。“公司提供电力工器具、装备、设施、施工机具及金具的预防性试验、无损探伤及环形混凝土电杆等技术检测服务,产品广泛应用于国家电网、南方电网、内蒙古电力等电力龙头企业。”陕西秦能电力科技股份有限公司总经理蒋标表示。秦汉新城特高压装备研发制造及检测中心项目规划建设两栋工业厂房,建设特高压装备试验大厅和特高压装备研发生产基地,用于特高压装备及设备试验检测、±800千伏-1000千伏特高压输电线路应急抢修装备、抢修车研发生产。项目建成达产后,预计可实现年产值8000万元,实现利税近1000万元。“秦能电力致力于新产品研发和技术创新。”蒋标介绍,公司研发的特高压试验系统,在国内处于领先水平,特高压装备研发制造及检测中心项目建成后,将成为继中国电科院、武高院、西高院后的全国第四家特高压试验检测机构,为特高压交流试验示范工程建设和特高压电网安全、稳定、经济运行提供强有力的技术支撑,助力区域经济高质量发展。
  • 科技传统结合,高通量筛选等新技术如何打开中药创新研究突破口?
    中药是中华民族的瑰宝,几千年来,在防病治病中发挥了重要的作用,也是我国医药产业的三大支柱之一,在经济发展中发挥了重要作用。自从我国加入WTO以后,长期依赖于仿制的化学药物的发展受到了很大的冲击,而具有我国自主知识产权的中药迎来了新的发展机遇,特别是近年来西方国家对传统药物和植物药的普遍重视和注册政策的调整,给中药进入国际市场提供了一个良好的契机。 壹 从中药到新药新药的发现从样品的收集开始,可从民族、民间药物、临床名方、老药和国外天然药物中选择筛选样品,收集样品,进行基原鉴定。通过系统的构效关系分 析,进一步设计并优化活性化合物,再通过活性筛选,直至发现具有临床应用价值的化合物,从而进入新药研发阶段,*成为化学药的一类新药。 中药尽管有两千多年的临床使用历史,但临床上基本都是以复方配伍使用,各种中药的疗效包括复方的疗效如何,没有确切的数据。中药的开发仍需进行大量的筛选,而我国目前中药新药的研发极少经过发现过程,这也是我国缺少疗效独特的中药创新药物的重要原因。贰 科技与传统的结合如果有一种技术可以极大程度的缩减新药研究某个阶段的耗时,那么是否对于我国独特中药创新药物的研发颇有裨益。答案是肯定的。以高通量筛选技术为例,使用GeneVac系统,可以助力缩减新药研究阶段所用时间,无需人工值守,只需要选择相应的溶剂类型,一键开启。 GeneVac 4.0 EZ-2 GeneVac S3 HT中药创新药物发现的新方法、新技术包括“基于细胞、靶酶、亲和色谱、分子烙印技术、生物芯片等的高通量筛选技术”、“多维液相色谱-高通量筛选-LC-MS/NMR联用技术”、“LC-MS-DS/HPLC/HTS联合技术”等。叁 中药创新药物发现的新领域、新途径乔木类植物尚含有一些结构类型较新颖、生理活性较强的成分,发现活性成分的机率较高,如紫杉醇、三尖杉酯碱、喜树碱、番荔枝内酯等。海洋生物中所含化学成分结构新颖、复杂,常具有很强的生物活性,具有很好的新药开发前景。低等生物和植物共生菌具有很强的生物活性,特别是一些真菌类,很小的剂量就能够产生很强的生理作用。同时,低等生物还具有易于通过发酵生产的 优势。鲜活动物的内源性物质,其活性成分具有生理活性强、疗效确切、副作用小等特点,如蛇毒、蚯蚓纤溶酶、水蛭素、斑蝥素、蜂毒等都是活性很强的天然产物。中药复方的化学成分有别于单味中药,通过成分之间的增溶作用,使一些在单味中药研究中没有发现的成分在复方研究中被发现,如我们在补阳还五汤的化学成分研究中发现4个新的生物碱,为创新药物的发现提供新的结构化合物。中药成分的体内代谢产物,由于中药和天然药物具有比化学药更好的生物顺应性,在体内更易发生代谢,其代谢产物往往是其真正的活性成分,如黄芩苷、番泻苷等。肆 Genevac离心浓缩仪GeneVac 4.0 EZ-2系列以及S3 HT系列真空离心浓缩仪搭载独有的Dri-Pure技术,轻松解决高低沸点溶剂,不管是单一溶剂还是混合溶剂都有出色的表现。并且提供高通量的溶剂处理能力,同时处理上百个到上千个样品,缩短研发周期。上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等。 一台好的溶剂蒸发工作站可以帮助您加速前期研发的效率,保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,该系列还具备更多高端功能,详细可填写表单进行咨询。
  • 岛津推出《ICPMS-2030应用数据集册-医药篇》
    美国药典(USP) 宣布全新的USP通则章节USP(元素杂质-限值)和(元素杂质-流程)将于2018 年1月1日实施。通则 和 基于给药途径规定了关注元素的列表及其允许的日接触(PDE)限值。此次标准更新使USP 在关注元素杂质列表和PDE 方面与人用药品注册技术要求国际协调会(ICH)Q3D文件相匹配。根据药物途径,ICH和USP对于口服、注射和吸入给药的元素杂质给与了每日允许暴露限(PDE)。对元素杂质进行了分类,分为1类(Cd、Pb、As和 Hg),2A类(Co、V、Ni),2B类(Tl、Au、Pd、Ir、Os、Rh、Ru、Se、Ag、Pt),3类(Li,Sb,Ba,Mo,Cu,Sn,Cr)。元素杂质的潜在毒性根据给药途径的差异而有所不同。在产品风险评估中,必须根据最终药品的预期给药途径考虑元素杂质。还必须考虑元素天然存在(如矿物类原料的相关元素)或有意/无意添加( 如作为化学反应的催化剂,或通过工艺设备的污染)的可能性。在所有药品的风险评估中,必须考虑毒性最高且普遍存在的 1 类元素(Cd、Pb、As和 Hg)。仅在药物通过注射或吸入给药时,才可能需要考虑 3 类杂质等其他元素。USP推荐使用ICP-MS或ICP-OES测定药品及成分中元素杂质的含量。当然如果其他的测试方法通过验证并且满足可接受标准也能使用。ICP-MS的检出能力是非常优秀的,可以完美的应对USP和ICH Q3D中元素杂质测试的要求。 《2015 版中国药典》中明确规定了甘草、阿胶、黄芩等中药材种 Pb、Cd、As、Hg、Cu的测定。Pb≤5. 0 mg / kg,Cd≤0. 3 mg / kg,Hg ≤0. 2 mg / kg,Cu≤20. 0 mg /kg,As≤2. 0 mg /kg。第四部通则 2321 测试方法第二法为电感耦合等离子体质谱法。 ICP-MS 作为重要的元素分析手段,除了具有分析速度快、线性范围宽、灵敏度高等优点外,还有两个潜在的优点:一是绝对定量能力,一是多组分同时分析能力是当前体内元素强有力的分析手段,简便的技术使其应用越来越广泛。随着 ICP-MS 仪器的逐渐普及和研究工作的不断深入,ICP-MS 灵敏度高、分析速度快、方法可靠,易与其他技术联用,这些都符合了医药检测的发展需要。 岛津公司作为全球著名的分析仪器厂商,自1875年创业以来,始终秉承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。全国有数百家制药企业,面对出口应对 USP 和 ICH 必须执行。同时中国拥有传承千年的中医学,在造福子孙后代的同时中药的质控也是势在必行。故岛津分析中心汇编了这本《岛津 ICPMS-2030应用数据集册-医药篇》,希望能对药品中杂质元素的检测工作有所帮助。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 应用指南 | CMS-TLC 用于天然产物肉豆蔻提取物的分析鉴定
    应用指南 | CMS-TLC 用于天然产物肉豆蔻提取物的分析鉴定 天然产物及其潜在的活性成分及其在传统医学中的应用在药学研究领域日益引起人们的兴趣。天然产物的活性成分是理想的化学起始结构,可以在药物开发过程中进行改进,因此,目前批准的药物中有很多是基于天然产物开发的。本文介绍了利用 Advion expression CMS 和 Advion Plate Express TLC 薄层色谱质谱接口对肉豆蔻醇提物进行分析的工作流程。实验仪器质谱:expression CMS 小型台式质谱仪TLC:薄层色谱质谱接口实验方法TLC 方法 采用TLC硅胶60 F254 分离化合物,展开剂为80/20 石油醚 (bp.60-80) /二恶烷。 提取:有机肉豆蔻香料坚果磨成粗粉,取 500mg 加入 10mL 甲醇中,超声处理15min。将浆液过滤后,20000g 离心 5min,上清液储存在棕色玻璃小瓶中,5°C 保存,待进一步分析使用。 衍生:新鲜配制固蓝RR盐,浓度为 200 mg/100 mL甲醇,使用前与 0.1N 氢氧化钠溶液 2:1 混合,在室温下干燥20分钟。TLC/FIA/CMS 分析 TLC 分析:采用Advion TLC薄层色谱质谱接口进行直接提取分析,流动相为甲醇+0.1%甲酸,流速为200 μL/min。 HPLC 分析:样品通过高效液相色谱分析系统进行分析,流速为 350 μL/min,时间 5 min,流动相为乙腈+0.1% 甲酸,梯度从 50% 到 90%。 MS分析: Advion expression CMS 采用极性切换和源内 CID 扫描,质量范围为 m/z 100 到 m/z 1000。结果分析 肉豆蔻具有精神活性,它是少数能干扰大麻素的化合物之一。与另一种天然产物大麻相比,肉豆蔻提取物在紫外下对大麻素标准品(如大麻酚 (CBN)、大麻二酚 (CBD) 和四氢大麻酚 (THC))的 Rf 区域仅显示出轻微的响应。用 TLC/FIA/MS 分析 TLC 板上的该区域显示没有 THC 的质量信号,并且当通过 UHPLC/CMS 分析时,也没有迹象表明肉豆蔻提取物中存在大麻素。此外,在 Rf 值为 0.4 时,没有形成经典的固蓝 RR 颜色反应;而肉豆蔻提取物在 Rf=0.2 时呈现紫色。在紫外照射下,相应的分析物有强烈的信号,可能不是大麻素,而是肉豆蔻的主要成分之一,如黄芩苷或肉豆蔻酸。图2 肉豆蔻提取物的 TLC 和 TLC/FIA/MS 分析结果图。与 Rf = 0.40 的三种大麻素标准品(CBN、CBD 和 THC)相比,紫外下 THC 区域有轻微的阳性反应;但是,(B) 图显示在用固蓝 RR (A) 衍生时,没发生标志性颜色反应。推导表明,Rf=0.21 的未知化合物对颜色反应有干扰。同时进行了相应位置的 MS 分析(2B 中的红色椭圆形)显示,负离子模式 MS 扫描 (C) 中 m/z 402.2 处的信号和丰富的源内 CID MS 信息 (D)。 进一步的 TLC/FIA/MS 分析表明,该分析物在负离子模式下质荷比为 m/z 402.2,排除了该化合物为三肉豆蔻精的可能性。然而,CID表明甘油三酯至少含有部分月桂酸。在 UHPLC/CMS 分析( 图3 )中也确认了相同的分析物,UHPLC 保留时间为 9.02 min, MS 数据包括正、负离子模式数据以及源 CID 数据。关于该分析物确切的化学结构的进一步研究还在进行中,但表明使用 expression CMS 从天然产物分析中获得的信息更丰富。图3 (A) 肉豆蔻提取物的 UV 谱图,(B) 负离子模式下的 MS TIC 谱图,(C) 正离子模式下的 TIC 谱图,(D) t=0.92 分钟的负离子模式质谱图,和 (E) 各自的正离子模式质谱图。结论 TLC/FIA/MS 工作流程为从植物材料中提取的天然产物和药用化合物的分析增加了有价值的信息和特定的数据。 Advion Plate Express 是一种创新的样品提取设备,用于从 TLC 薄层板上直接提取化合物,提供天然产物的快速分析。 Advion expression CMS 小型台式质谱仪,具有更快的扫描速度,在线极性切换和源内 CID ,可快速提供化合物基本信息。
  • 国家药监局关于发布丹七片中异性有机物检查项补充检验方法等4项补充检验方法的公告
    国家药监局关于发布丹七片中异性有机物检查项补充检验方法等4项补充检验方法的公告(2023年第66号)根据《中华人民共和国药品管理法》及其实施条例的有关规定,《丹七片中异性有机物检查项补充检验方法》《脑立清丸(胶囊、片)中水麦冬酸检查项补充检验方法》《檀香清肺二十味丸中松香酸检查项补充检验方法》《小柴胡颗粒中黄芩提取物检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。   附件:丹七片中异性有机物检查项补充检验方法.docx 脑立清丸(胶囊、片)中水麦冬酸检查项补充检验方法.docx 檀香清肺二十味丸中松香酸检查项补充检验方法.docx 小柴胡颗粒中黄芩提取物检查项补充检验方法.docx国家药监局  2023年5月18日
  • 岛津金牌赞助第九届全国药物分析大会
    6月15日,在医药领域占有重要位置的高端学术会议-全国药物分析大会于武汉大学医学部迎来了第九届大会的召开。会议以“药物分析新时代协同合作与创新发展”为主题展开了密集的学术交流。长期以来致力于提升药物分析技术水平、助力中国医药事业发展的岛津公司,一如既往金牌赞助本次大会并为与会者带来了最新的药物分析技术与解决方案。 在大会报告环节伊始,业界著名专家清华大学的罗国安教授率先做了题为《仿肝肾器官芯片研制及在药物毒性分析中的应用》的报告。他在报告中介绍了其研发团队构建的细胞微流控芯片和模式生物微流控平台,以及探索构建的模拟心、肝等微生理环境的组织芯片,初步展示了其应用优势。他在报告中指出,来如果能够构建模拟人体的芯片(human-on-a-chip),将可能革命性地改变新药开发的进程。 随后,业界著名专家西安交通大学的贺浪冲教授做了题为《药物分析学科的探索与发展》的报告。他在报告中对近二十年以来诺贝尔化学奖获奖内容做了回顾总结,指出以医学问题为导向的分析化学基础研究极大地促进了生物学,尤其是分子生物学、细胞生物学以及生物工程技术的巨大发展。他在报告中基于AI、5G技术对当今人类社会产生的巨大影响,对我国大学的教书育人与科学建设提出了多项建议。最后,他在报告中分析了当今药物分析的基本问题与今后的拓展应用,强调药物分析要与化学、物理、数学、信息等学科交叉融合。 此外,深圳大学的张学记教授做了题为《纳米生物及药物分析-机遇及挑战》的大会报告,中国药科大学的张尊建教授做了题为《网络药理学桥接的黄芩汤联用伊立替康减毒增效质控标志物发现》的大会报告,武汉大学的陈子林教授做了题为《药物分析新方法研究》的大会报告。 大会报告结束后,进入分会报告。本次大会按学科组设6个分会场,包括:药物分析新方法、生物药物分析、中药分析、化学药物分析、分析药理学及青年学者论坛。在化学药物分析分会场岛津公司分析测试仪器市场部吴国华经理做了题为《高分辨质谱在药物未知成分分析中的新应用》的报告。他在报告中谈到,源于国家监管部门对制药行业要求的日趋严格,针对诸如仿制药一致性评价、遗传毒性杂质研究、药包材相容性研究等热点话题,药物中未知杂质分析愈加受到关注和重视。在报告中他介绍了TOF质谱的高质量准确度和多级结构功能来分析药物杂质及其质量类似物或同分异构体,并分享了三个案列:注射液中微量未知成分来归属其来源,中药复方制剂中同分异构体解析,二维液相色谱质谱联用技术分析药物稳定性研究中的各种杂质,通过这些案例展示了岛津作为制药行业全面解决方案提供者的形象。 岛津公司分析中心的技术专家陈建立做了题为《CLAM-2000和LC-MS/MS联用测定尿样中的氯胺酮及其代谢物脱氢去甲氯胺酮含量》的大会墙报发表。氯胺酮(俗称“K粉”)属于最常见的毒品种类之一。按照国际毒品检验标准,只要在生物检材中检出去甲氯胺酮或脱氢去甲氯胺酮即可作为吸食氯胺酮的证据。岛津公司开发的CLAM-2000与LC-MSMS联用系统,可利用CLAM-2000对全血、血浆、血清、尿液、唾液等生物样品自动进行蛋白质沉淀操作,然后将上清液自动传输至 LC-MS/M进行定量检测。本报告利用该系统建立了尿样中氯胺酮及其代谢物脱氢去甲氯胺酮含量的检测方法。 此外,岛津公司分析中心的技术专家郑锌等做了题为《LCMS-8050CL用于人血清中11种抗真菌药及代谢物的同时分析》的大会墙报发表。抗真菌药物的血清浓度监测被证明对于治疗真菌感染的给药方案优化甚至预防真菌感染都是最有效的方法之一。常用的抗真菌药物主要分为多烯类、吡咯类、棘白菌素类以及氟胞嘧啶等。由于药代动力学特征、副作用、药物相互作用和药物基因组学显著差异,抗真菌药在治疗过程中血药浓度个体差异很大,给治疗药物监测带来了挑战。本报告利用岛津超高效液相色谱-三重四极杆质谱(LCMS-8050CL)对血清中11种抗真菌药及代谢物进行定性定量分析。 会议期间,与会专家前来岛津展台参观交流
  • 上榜!迪马色谱柱入选多个中药配方颗粒国家药品标准
    中药配方颗粒是由单味中药饮片经水提、分离、浓缩、干燥、制粒而成的颗粒,在中医药理论指导下,按照中医临床处方调配后,供患者冲服使用。中药配方颗粒的质量监管纳入中药饮片管理范畴。按照国家药品监督管理局统一部署要求,根据国家药品标准工作程序,国家药典委员会组织相关企业开展中药配方颗粒品种试点统一标准研究,并组织专家开展标准审评工作。 NEWS  2021年4月29日,国家药典委员会发布《关于执行中药配方颗粒国家药品标准有关事项的通知》:   经国家药品监督管理局批准,首批160个中药配方颗粒国家药品标准已正式颁布,将于2021年11月1日正式实施,现在我委网站予以转发,并就有关事项通知如下: 迪马色谱柱入选多个中药品种   在国家药典委员会发布的首批160个中药配方颗粒国家药品标准中,炒牛蒡子、川牛膝、干姜、黄芩、酒黄芩、酒女贞子、牛蒡子、女贞子、山楂(山里红)等多个品种推荐使用迪马科技液相色谱柱,现将部分品种汇总如下,供广大中药配方颗粒分析工作者参考。 160个中药配方颗粒如下:备注:以上红框标注品种推荐使用迪马液相色谱柱。
  • 解决方案丨鸡肝中环丙氨嗪残留量的测定
    环丙氨嗪又名灭蛆灵、灭蝇胺,是一种新型的昆虫生长调节剂,对双翅目昆虫幼虫体有杀灭作用,尤其对在粪便中繁殖的几种常见的苍蝇幼虫(蛆)有很好的抑制和杀灭作用。它和一般灭蝇药的不同点是它杀幼虫-蛆,而一般灭蝇药只杀成蝇且毒性较大。该药具有触杀和胃毒作用,并有强内吸传导性,持效期较长,但作用速度较慢。短期内大量接触灭蝇胺对眼睛、皮肤有刺激作用,甚至引起急性中毒,产生恶心、呕吐、眩晕等健康危害,长期摄入对人体健康有不良影响。对于动物性食品中环丙氨嗪残留量的检测现可依据国家标准GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》,本方法参考上述标准,将试料中的环丙氨嗪,用三氯乙酸/乙腈溶液提取,混合阳离子交换固相萃取柱净化,高效液相色谱测定,外标法定量。图-1 环丙氨嗪的结构式仪器和耗材1仪器Fotector Plus高通量全自动固相萃取仪AH 50全自动均质器MPE系列高通量真空平行浓缩仪Auto EVA 80 全自动氮吹浓缩仪Agilent 1260高效液相色谱2 耗材MCX固相萃取柱(60 mg/3mL,P/N:RC-204-72855)3 试剂乙腈(色谱纯)甲醇(色谱纯)正己烷(色谱纯)乙酸乙酯(色谱纯)25 mmol/L乙酸铵溶液:取乙酸铵0.19 g,用水950 mL溶解,用乙酸调pH至5.0,用水稀释至1000 mL。1%三氯乙酸溶液:取三氯乙酸1g,用水溶解并稀释至100 mL。提取液:取1%三氯乙酸溶液15 mL,用乙腈稀释至100 mL。0.1 mol/L 盐酸溶液:取盐酸9 mL,用稀释至1000 mL。5%氨水甲醇溶液:取氨水5 mL,用甲醇稀释至100 mL。流动相:取25 mmol/L 乙酸铵溶液40.0 mL,用乙腈定容至1000 mL。样品制备称取试样5 g(准确到±0.01 g),于50 mL离心管中,使用AH 50全自动均质器自动加入提取液15 mL,并均质30 s。5000 r/ min离心5 min,取上清液于分液漏斗中,再于残渣中加提取液10 mL,重复提取一次,合并两次上清液,加正己烷30 mL,振摇2 min,静置使分层。收集下层液体于MPE浓缩杯中,于MPE真空平行浓缩仪50 ℃水浴中浓缩至1 mL,转至10 mL刻度离心管中,用提取液润洗浓缩杯2次,每次2 mL。合并两次提取液,以10000 r/min离心5 min,取上清液,备用。1 净化取MCX固相萃取柱安装在Fotector Plus高通量全自动固相萃取仪上,依次用甲醇5 mL、水3 mL活化,备用液过柱(控制流速约1.0 mL/ min)。依次用甲醇3 mL、0.1 mol/L盐酸溶液3 mL、水3 mL和甲醇3 mL洗柱,弃去洗出液。用5%氨水甲醇5 mL洗脱,收集洗脱液。洗脱液于EVA 80全自动氮吹浓缩仪上50℃氮吹吹干,用流动相1 mL溶解残余物,涡旋混匀,过滤,待上机分析。具体的固相萃取方法见图-2。2 固相萃取净化条件图-2 Fotector Plus固相萃取方法液相检测条件1 液相条件2 色谱图 图-3 环丙氨嗪标准溶液色谱图(200 µ g/L)图-4 鸡肝基质加标环丙氨嗪色谱图(25 µ g/kg)结果与讨论为了验证该方法的回收率,本实验向鸡肝样品中加入环丙氨嗪标准品进行低、中、高三种浓度梯度的基质加标回收验证(n=6),数据如表-1所示。加标回收率在74.5%~77.9%之间,RSD值控制在5%以内。说明该方法能够运用于动物性食品中环丙氨嗪残留量的检测。样品加标回收率及RSD值(n=6)总结本解决方案操作方便、提取和浓缩效率高、重现性好,符合GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》要求。均质过程采用AH 50全自动均质器,仪器自动加液,通过水洗、溶剂洗、超声洗三种刀头清洗方式,全方位杜绝样品间交叉污染。MPE真空平行浓缩仪实现批量、快速、高效的浓缩过程,采用水浴加热和平稳的圆周震荡模式,一批次完成16位大体积浓缩,同时保证样品的平行性和可靠性。浓缩完成后配合Fotector Plus高通量全自动固相萃取仪进行净化,从活化到上样、洗脱等一步到位,全自动过程排除人员操作带来的误差,且六通道同时进行萃取,能够实现高通量处理,最多一天能够处理180个样品;将净化后的样品直接置于EVA 80高通量全自动氮吹浓缩仪中,不仅避免转移的损失,又省时省力,真正为批量检测提供帮助。
  • 《质谱学报》"质谱技术在中草药研究中的应用"专辑
    p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 20px FONT-FAMILY: 黑体, SimHei COLOR: #0070c0" 2017年《质谱学报》第1期“质谱技术在中草药研究中的应用”专辑 /span /p p span style=" FONT-FAMILY: times new roman"    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 以下内容原创作者为《质谱学报》主编刘淑莹老师,如需全文(附英文摘要和参考文献)请联系《质谱学报》编辑部或仪器信息网编辑部 /span /span /p p span style=" FONT-FAMILY: times new roman"    strong 序 /strong 传统中医药学是中华民族的宝贵财富和智慧的结晶,是民族赖以生存繁衍的重要保障。随着现代科学的迅猛发展,对于传统中药的物质基础和作用机理研究不断深入。从这个意义上讲,中医药学这个特有的传统医药体系,是我国最有希望的主导原始创新取得突破的,对世界科技和医学发展产生重大影响的学科。2015年屠呦呦教授获得诺贝尔生理医学奖的事实证明了这一点。 /span /p p span style=" FONT-FAMILY: times new roman"   20世纪70年代,中国科学家组织团队对于世界上危害最大的疾病之一——疟疾进行攻关研究,屠呦呦最初由中医药书籍“肘后备急方”中记载的“青蒿一握,以水二升渍,绞取汁,尽服之”得到灵感。中国科学家从黄花青蒿中得到提取物青蒿素,经过艰苦的,广泛的临床试验,证明是疗效确切的。已故的梁晓天院士等根据质谱和核磁共振谱数据,正确地推断了青蒿素的过氧桥结构,从化学结构上预示了分子的构效关系。中医药的现代化的确需要传统中医药理论经验与现代科学技术相结合,青蒿素就是一个成功的案例。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman"    /span img title=" qinghaosu_副本.jpg" src=" http://img1.17img.cn/17img/images/201701/insimg/ed94ff5b-c03c-47ee-8a45-9458b7a1207c.jpg" / /p p span style=" FONT-FAMILY: times new roman" & nbsp & nbsp   自从软电离质谱技术诞生以来,质谱技术的应用范围得以大大地扩展。很多质谱学家的兴奋点也由传统的物理、化学等学科移动到生命科学相关的领域。在现代分析技术中,质谱以其快速、高灵敏度、特异性和多信息以及能够有效地与色谱分离手段联用等特点备受科学家们重视。当今质谱技术日新月异的发展,喜看各个中医药大学都添置了质谱仪器,中医药界学者逐渐接受和掌握质谱技术并灵活应用到这些组分极其复杂的药材、炮制品、代谢产物的化学成分分析以及中医药科学研究中。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman"    /span span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: #0070c0" strong 敞开式离子化质谱技术在中草药研究中的应用 /strong /span /p p span style=" FONT-FAMILY: times new roman"    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060" 作者:黄 鑫,刘文龙,张 勇,刘淑莹 /span /span /p p span style=" FONT-FAMILY: times new roman COLOR: #002060"    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060" 摘要:敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。 /span /span /p p span style=" FONT-FAMILY: times new roman"   敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。 /span /p p span style=" FONT-FAMILY: times new roman"   span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman" strong  1 敞开式离子化质谱技术的基本原理、特点和分类 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型气相离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。 /span /p p span style=" FONT-FAMILY: times new roman"   AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括气相色谱-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。 /span /p p span style=" FONT-FAMILY: times new roman"    span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman" strong 2 敞开式离子化质谱技术在中草药研究中的应用 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论,总结的应用详情列于表1。 /span /p p style=" TEXT-ALIGN: center" strong span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 表1 敞开式离子化质谱在中草药研究中的应用 /span /strong /p p style=" TEXT-ALIGN: center" table cellspacing=" 0" cellpadding=" 0" width=" 600" border=" 1" tbody tr class=" firstRow" td width=" 255" colspan=" 2" p style=" TEXT-ALIGN: center" strong 敞开式离子化质谱技术 /strong strong /strong /p /td td width=" 83" p style=" TEXT-ALIGN: center" strong 中草药 /strong strong /strong /p /td td width=" 272" p style=" TEXT-ALIGN: center" strong 分析物 /strong strong /strong /p /td td width=" 58" p style=" TEXT-ALIGN: center" strong 文献 /strong strong /strong /p /td /tr tr td rowspan=" 25" width=" 99" p style=" TEXT-ALIGN: center" 直接电离 /p /td td rowspan=" 3" width=" 156" p style=" TEXT-ALIGN: center" DI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 黄连 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 小檗碱、黄连碱、巴马汀 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 10 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 何首乌 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 2,3,5,4’-四羟基芪-2-O-葡萄糖甙-3”-O-没食子酸酯 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 10 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 南、北五味子 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 五味子醇甲、五味子醇乙 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 10 /p /td /tr tr td width=" 156" p style=" TEXT-ALIGN: center" Tissue spray /p /td td width=" 83" p style=" TEXT-ALIGN: center" 西洋参 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 人参皂苷、氨基酸、二糖 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 11 /p /td /tr tr td rowspan=" 4" width=" 156" p style=" TEXT-ALIGN: center" Leaf spray /p /td td width=" 83" p style=" TEXT-ALIGN: center" 生姜 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 姜辣素 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 12 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 银杏籽 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 银杏毒素 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 12 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 圣罗勒 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 乌索酸、齐墩果酸及其氧化产物 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 13 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 甜叶菊叶 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 甜菊糖苷类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 14 /p /td /tr tr td width=" 156" p style=" TEXT-ALIGN: center" Direct plant & nbsp & nbsp spray /p /td td width=" 83" p style=" TEXT-ALIGN: center" 八角茴香 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 莽草毒素 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 15 /p /td /tr tr td width=" 156" p style=" TEXT-ALIGN: center" Field-induced & nbsp & nbsp DI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 长春花 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 长春碱、脱水长春碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 16 /p /td /tr tr td width=" 156" p style=" TEXT-ALIGN: center" iEESI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 银杏叶 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 银杏毒素、精氨酸、脯氨酸、蔗糖 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 17 /p /td /tr tr td width=" 156" p style=" TEXT-ALIGN: center" Wooden-tip /p /td td width=" 83" p style=" TEXT-ALIGN: center" 贝母 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 贝母素、精氨酸、蔗糖 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 18 /p /td /tr tr td rowspan=" 4" width=" 156" p style=" TEXT-ALIGN: center" Field-induced & nbsp & nbsp wooden-tip /p /td td width=" 83" p style=" TEXT-ALIGN: center" 黄连 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 小檗碱、黄连碱、巴马汀、苹果酸、柠檬酸 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 19 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 甘草 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 甘草酸、甘草素 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 19 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 黄芩 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 黄芩素、黄芩苷、汉黄芩素、汉黄芩苷 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 19 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 苦参 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 苦参素、苦参碱、苦参酮 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 19 /p /td /tr tr td rowspan=" 2" width=" 156" p style=" TEXT-ALIGN: center" Al-foil ESI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 西洋参 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 人参皂苷 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 20 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 附子 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 苯甲酰乌头原碱、次乌头碱、苯甲酰新乌头原碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 20 /p /td /tr tr td rowspan=" 7" width=" 156" p style=" TEXT-ALIGN: center" Pipette-tip & nbsp & nbsp ESI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 黄连 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 小檗碱、黄连碱、巴马汀 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 21 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 牛蒡子 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 牛蒡苷及其苷元、二糖 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 21 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 莲子心 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 莲心碱、甲基莲心碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 21 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 人参 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 人参皂苷 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 21 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 西洋参 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 人参皂苷 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 21 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 三七 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 人参皂苷 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 21 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 北五味子 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 五味子甲素、乙素、五味子酯甲、酯乙 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 21 /p /td /tr tr td rowspan=" 21" width=" 99" p style=" TEXT-ALIGN: center" 直接解吸电离 /p /td td rowspan=" 13" width=" 156" p style=" TEXT-ALIGN: center" DESI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 颠茄 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 莨菪碱、东莨菪碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 22 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 毒参 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 毒芹碱类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 22 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 曼陀罗 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 16种托品烷类生物碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 22 /p /td /tr tr td width=" 83" /td td width=" 272" p style=" TEXT-ALIGN: center" 阿托品 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 23 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 甜叶菊 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 甜菊糖苷类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 24 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 鼠尾草 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 克罗烷型二萜类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 25 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 青脆枝 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 喜树碱类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 26 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 吴茱萸 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 吴茱萸碱、吴茱萸次碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 27 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 贯叶连翘 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 金丝桃苷类、糖类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 23 /p /td /tr tr td width=" 83" /td td width=" 272" p style=" TEXT-ALIGN: center" 金丝桃苷类、长链脂肪酸类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 28 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 大麦 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 羟氰苷类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 29 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 白毛茛 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 小檗碱类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 30 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 枳壳 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 橙皮甙、柚皮甙、苦橙甙等黄酮类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 31 /p /td /tr tr td rowspan=" 2" width=" 156" p style=" TEXT-ALIGN: center" DAPCI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 南、北五味子 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 萜品烯类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 32 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 人参、红参 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 人参皂苷 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 33 /p /td /tr tr td rowspan=" 6" width=" 156" p style=" TEXT-ALIGN: center" DCBI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 黄连 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 黄连素、黄连碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 34 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 黄藤 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 黄藤素 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 34 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 鱼腥草 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 别隐品碱、白屈菜红碱、原阿片碱、血根碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 34 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 黄柏 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 药根碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 34 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 粉防己 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 轮环藤酚碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 34 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 两面针 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 两面针碱、白屈菜赤碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 34 /p /td /tr tr td rowspan=" 34" width=" 99" p style=" TEXT-ALIGN: center" 解吸后电离 /p /td td rowspan=" 27" width=" 156" p style=" TEXT-ALIGN: center" DART /p /td td width=" 83" p style=" TEXT-ALIGN: center" 颠茄果 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 阿托品、莨菪碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 35 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 蒌叶 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 蒌叶酚 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 36 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 芫荽 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 大麻素类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 37 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 绿薄荷 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 大麻素类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 37 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 罗勒 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 大麻素类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 37 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 乌头属药材 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 乌头碱类生物碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 38 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 曼陀罗籽 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 托品碱、莨菪碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 39 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 萝芙木 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 单萜吲哚类生物碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 40 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 姜黄 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 姜黄素类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 41 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 荜澄茄果 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 荜澄茄油烯 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 42 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 极细当归 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 藁苯内酯 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 43 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 朝鲜当归 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 日本前胡素、日本前胡醇 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 43,44,51 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 白芷 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 白当归脑 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 43 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 川芎 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 川芎内酯 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 43 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 槟榔子 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 槟榔碱、槟榔次碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 45 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 延胡索 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 延胡索碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 45 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 贝母 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 贝母素、去氢贝母碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 45 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 钩藤 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 钩藤碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 45 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 黄芩 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 黄芩素、黄芩苷、汉黄芩素、汉黄芩苷 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 45 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 人参 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 人参皂苷类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 45 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 丁公藤 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 东莨菪内酯 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 46 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 制川乌 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 单酯和双酯型二萜类乌头碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 47 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 八角茴香 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 莽草毒素 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 48 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 桑叶 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 脱氧野尻霉素 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 49 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 厚叶岩白菜 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 熊果素、岩白菜素、鞣花酸、没食子酸 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 50 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 吴茱萸 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 吴茱萸碱、吴茱萸次碱 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 51 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 北五味子 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 五味子素、戈米辛 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 51,52 /p /td /tr tr td width=" 156" p style=" TEXT-ALIGN: center" Nano-EESI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 人参 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 人参皂苷 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 53 /p /td /tr tr td rowspan=" 2" width=" 156" p style=" TEXT-ALIGN: center" LAESI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 孔雀草 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 花青素、山奈酚等黄酮类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 54 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 鼠尾草 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 萜类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 55 /p /td /tr tr td width=" 156" p style=" TEXT-ALIGN: center" DAPPI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 鼠尾草叶 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 鼠尾草酸及其衍生物 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 56 /p /td /tr tr td rowspan=" 2" width=" 156" p style=" TEXT-ALIGN: center" LAAPPI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 鼠尾草 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 萜类 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 55 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" 枳壳 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 川皮苷、黄酮醇类、沉香醇 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 57 /p /td /tr tr td width=" 156" p style=" TEXT-ALIGN: center" PALDI /p /td td width=" 83" p style=" TEXT-ALIGN: center" 黄芩 /p /td td width=" 272" p style=" TEXT-ALIGN: center" 黄芩素、汉黄芩素 /p /td td width=" 58" p style=" TEXT-ALIGN: center" 58 /p /td /tr /tbody /table span style=" FONT-FAMILY: times new roman" & nbsp /span /p p span style=" FONT-FAMILY: times new roman"    strong 2.1 直接电离离子源 /strong /span /p p span style=" FONT-FAMILY: times new roman"   直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,液相分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。 /span /p p span style=" FONT-FAMILY: times new roman"   姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、移液器头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。移液器头模式的分析是将移液器头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种移液器头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。 /span /p p span style=" FONT-FAMILY: times new roman"    strong 2.2 直接解吸电离离子源 /strong /span /p p span style=" FONT-FAMILY: times new roman"   自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。 /span /p p span style=" FONT-FAMILY: times new roman"   DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。 /span /p p span style=" FONT-FAMILY: times new roman"   DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。 /span /p p span style=" FONT-FAMILY: times new roman"    strong 2.3 解吸后电离离子源 /strong /span /p p span style=" FONT-FAMILY: times new roman"   DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。 /span /p p span style=" FONT-FAMILY: times new roman"   EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶液相或气相样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。 /span /p p span style=" FONT-FAMILY: times new roman"    strong 2.4 在中草药质量评价和质量控制中的应用 /strong /span /p p span style=" FONT-FAMILY: times new roman"   随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。 /span /p p span style=" FONT-FAMILY: times new roman"   目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。 /span /p p span style=" FONT-FAMILY: times new roman"    strong 2.5 本实验室的研究工作 /strong /span /p p span style=" FONT-FAMILY: times new roman"   中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。 /span /p p span style=" FONT-FAMILY: times new roman"   1)中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 /span /p p span style=" FONT-FAMILY: times new roman"   2)中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 /span /p p span style=" FONT-FAMILY: times new roman"   3)对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 /span /p p span style=" FONT-FAMILY: times new roman"   4)DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 /span /p p span style=" FONT-FAMILY: times new roman"   5)开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。 /span /p p span style=" FONT-FAMILY: times new roman"   span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman"   strong 3 总结与展望 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的气相离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。 /span /p p   strong   /strong span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060" strong 《质谱学报》致谢 /strong : 此次《质谱学报》组织“质谱技术在中医药研究中的应用”专辑是逢时的,受到中医药界广大质谱工作者的热烈响应。不仅吸引了大陆的同仁,而且两岸三地的质谱工作者,如台湾的李茂荣教授、香港的蔡宗苇教授和澳门的赵静教授等都积极投稿。此专辑包括中药和其他民族药,如藏药、维药等的相关研究,从研究内容上讲,有植物药也有动物药,包括了药材、炮制品和复方药的成分分析和代谢研究。由于本刊篇幅有限,在大量来稿中只能选用19篇,对于其他审稿已通过的文章,将在以后几期中陆续刊登。另外,感谢中国科学院上海有机化学研究所的郭寅龙研究员为本专辑的出版提供指导和帮助 感谢北京大学的白玉老师、北京中医药大学的刘永刚老师、长春中医药大学的杨洪梅老师和南京中医药大学的刘训红老师在组稿过程中的贡献 感谢长春中医药大学药学院为本专辑提供部分药材图片。对于本刊编辑中存在的错误和其他问题,欢迎读者提出宝贵的意见。 /span /p p span style=" COLOR: #002060" & nbsp /span /p
  • 【获奖通知】第九届原创大赛9月获奖作品揭晓
    第九届科学仪器网络原创大赛(后简称:原创大赛,点击进入活动页面)于2016年9月30日落下帷幕。本届原创大赛自7月1日开赛以来,历时3个月,得到了全国各地的网友积极响应,征集到540篇参赛作品。大赛设有12个分赛区,分别为:色谱、质谱、光谱及X射线、材料测试、食品检测、药物分析、环境监测、样品前处理、实验室建设及认可、仪器采购、国产好仪器、综合;征文类型涉及行业综述、分析方法开发与应用、新技术发展、仪器维护维修、仪器操作使用经验、实验室管理方法与建设、仪器选型、采购交流等多个方面。9月份原创大赛获奖公示——不能错过的原创大餐 原创大赛征文已经结束,在此感谢各位坛友对活动的积极支持与关注,感谢各专区的负责人、专家评审团成员及论坛版主和专家对活动的积极响应,欢迎更多的网友们加入进来,分享您的经验与心得。第十届科学仪器网络原创大赛将于2017年7月1日开赛,欢迎您的继续关注! 原创大赛9月共有61篇作品获得月度奖励,感谢大家对原创大赛的喜爱。原创大赛年度获奖作品名单将于11月底公布,敬请期待!现将9月作品获奖情况公布如下:质谱赛区参赛作品作者名次【中秋/国庆我这么度过】【健康饮水】香精工厂废水处理前后及普通自来水中有机物的鉴定对比jimzhu一等奖ICP-MS测定尿液中碘的方法探究jieqian1211二等奖记一次机械泵故障引发的惨案zwq1973三等奖香精香料样品GCMS数据处理实例(5)----香精样品中的反应物的例子(3)jimzhu三等奖色谱赛区参赛作品作者名次SP3420A色谱仪甲醇中微量硫化氢分析danmaishenqiu一等奖“呕吐毒素”测定过程中的“呕吐”经历bingwang228一等奖离子转换色谱紫外光谱法测定有机无机阴离子的研究konglong一等奖在线固相萃取-离子色谱法测定四种芳环磺酸盐中的硫酸根离子v3137073二等奖一网打尽:岛津、安捷伦、赛默飞液相大PKv3109824二等奖【第九届原创】液相色谱分析中常见基线问题及案例解析bingwang228二等奖以SH-AC-1型阴离子柱为分离柱,离子色谱法测定纯净水中F-、BrO3-等6种微量阴离子v3127170二等奖不同程序升温对色谱峰形状的影响zyl3367898三等奖离子色谱仪检定新方法探索(一)——四元梯度泵v3143520三等奖离子色谱法测定饮料中的山梨酸、苯甲酸和糖精钠v3127170三等奖离子色谱法测定碱式碳酸锌中的硫酸根离子zhengxiujin三等奖怎样完成PURGE这个小目标lu_sunshine三等奖气相分析中的基线问题(一)——气源与气路系统xianshijiyi三等奖HPLC法测定山楂中熊果酸含量ynmyx三等奖心塞的仪器就诊——无需开膛破肚的小毛病v2960432三等奖光谱及X射线赛区参赛作品作者名次分光光度计赏析及常见故障的维修anping一等奖【健康饮水】火焰原子吸收光谱法测定几种水中金属元素含量qq250083771二等奖基于近红外光谱分析技术人血白蛋白生产过程组分IV上清液醋酸缓冲液沉淀环节控制研究qindong413二等奖ICP-OES法快速测定超基性岩中SiO2的含量abcpgf三等奖【生活中的分析】防晒化妆品的固体紫外光谱研究liufeilzu三等奖基于近红外光谱分析技术的人纤维蛋白原工艺过程流穿液中蛋白质含量的快速检测qindong413三等奖硅铝系耐火材料相含量测定——Rietveld结构精修法及XRF法验证yue_qiu三等奖材料测试赛区参赛作品作者名次2016国产磁测量好仪器系列之四:磁电输运性质测量系统ET-9000系列handsomeland二等奖解析奥林巴斯CH生物显微镜调焦机构,维修下滑跑焦故障sc360xp二等奖食品检测赛区参赛作品作者名次【生活中的分析】火锅底料中4种苏丹红染料的测定与分析bingwang228一等奖拟除虫菊酯及有机氯农药残留检测的QuEChERS前处理效果研究violet978一等奖消毒剂和清洗剂对牛奶制品抗生素检测结果的影响zhouyuhu二等奖《新技术8:儿茶酚紫色度值的CIE 1976(L,a,b)色空间数字化特征》hhciq二等奖利用有色溶液验证酶标仪的线性指标qzxmsy二等奖均匀色空间下葡萄酒颜色量化分级研究——L*a*b*法hhciq三等奖颜色测量数字化探寻-----应用实例三:浊度测量v3024149三等奖农残能力验证的操作技巧及经验分享zyl3367898三等奖且看我用特殊的方法评估实验室的重金属污染程度吧jieqian1211三等奖地市级农产品检测机构公益性定位的思考icetrob三等奖药物分析赛区参赛作品作者名次人凝血因子Ⅷ酸沉淀过程分析和近红外定量模型的建立qindong413一等奖化学药HPLC分析方法开发---苯环间位和对位取代v2700892二等奖小儿热速清口服液中黄芩苷含量测定方法的改进wangshirf三等奖基于近红外光谱分析技术人血白蛋白生产过程组分IV上清液醋酸缓冲液沉淀过程pH测定分析研究qindong413三等奖样品前处理赛区参赛作品作者名次【中秋/国庆我这么度过】+超声波维修jxyan三等奖环境监测赛区参赛作品作者名次剖析泰林HTY-DI 1000 TOC分析仪紫光灯电路,检修读数很低故障sc360xp一等奖关于非强检环境监测仪器校准技术的探讨wangliqian二等奖DWS-296型氨氮分析仪常见故障维修danmaishenqiu二等奖不同样品处理方式对检测结果的影响m3049860三等奖实验室建设及认可赛区参赛作品作者名次水份测定仪天平部分的调修zhyang56二等奖实验室培训体系搭建v2685125二等奖再说说测量不确定度的那些事pxsjlslyg三等奖“化验”?听我细说(番外篇)——8.12周年启示录,化学和分析测试教会了我什么yue_qiu三等奖ICP-MS测定“坛墨质检”提供的盲样中铅、镉、铜、锌含量的不确定度评定jieqian1211三等奖现场评审准备工作及人员分工心得分享zyj2631三等奖记一次能力验证整改vivi_vivi三等奖综合赛区参赛作品作者名次对仪器行业未来的疯狂猜想v3137745二等奖丙烯酸的研制与生产v3005330三等奖AS-AP自动进样器的进样针校正及进样体积的校准v3141050三等奖乙醚回收利用-----元芳你怎么看?v2974654三等奖CS17出峰峰型不正的原因v3141050三等奖碳硫仪一次漏气维修~~~lylsg555三等奖一种碱性颗粒的剖析konglong三等奖
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法
  • 中英共建植物和微生物科学联合中心
    p   9月24日,英国约翰· 英纳斯中心和中国科学院共建植物和微生物科学联合研究中心(CEPAMS)在上海正式挂牌。 /p p   英国大学、科研与创新国务大臣乔· 约翰逊主持揭牌仪式时表示,加强国际合作是解决世界性难题、共同面对挑战的重要手段。新成立的研究中心是英国与中国建立科学合作伙伴关系的见证,将把中英双方顶尖科学家的智慧用于提高作物产量,以应对日益增长的世界人口,同时尽可能在农业生产中降低除草剂的使用。 /p p   据介绍,这个中心是英方与中科院两个研究所(遗传与发育生物学研究所和植物生理生态研究所)的合作项目,将中英两国先进的实验室组合在一起,共同应对食品安全和可持续医疗保健全球性挑战,培育优秀科研成果。该跨国研究团队将重点增加农作物产量,生产植物和微生物高附加值产品。新中心的成立得到中科院和英国生物技术与生物科学研究理事会的资助。该机构研究人员最近取得重大突破,发现中药黄芩中含有抗癌成分。 /p p   据了解,中英两国共同投资建立的研究设施数量越来越多,这个中心是其中最新增加的一个机构。英国生物技术与生物科学研究理事会、自然环境研究理事会、经济与社会科学研究理事会和艺术与人文科学研究理事会均已开设虚拟联合中心,支持中英两国的研究合作。 br/ /p
  • 视频采访:金钦汉透露MPT最新研发进展
    日前,中国科学仪器行业的&ldquo 达沃斯论坛&rdquo &mdash &mdash 2014中国科学仪器发展年会(ACCSI 2014)在北京召开。本次发展年会上,仪器信息网采访了浙江大学金钦汉教授。金钦汉教授在接受仪器信息网采访时,对自己的研发团队、国家、母校和师长、亲友、同行及网友等表示了由衷的感谢,也透露了最新的研发进展。
  • 中成药双黄连口服液可抑制新型冠状病毒 暂无临床支持
    p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 406px height: 406px " src=" https://img1.17img.cn/17img/images/202001/uepic/bb7fdf2b-f4e2-40c4-a294-48398b6c5714.jpg" title=" 微信图片_20200131230056.png" alt=" 微信图片_20200131230056.png" width=" 406" height=" 406" / /p p style=" text-align: justify text-indent: 2em " 记者31日从中国科学院上海药物所获悉,该所和武汉病毒所联合研究初步发现,中成药双黄连口服液可抑制新型冠状病毒。此前,上海药物所启动由蒋华良院士牵头的抗新型冠状病毒感染肺炎药物研究应急攻关团队,在前期SARS相关研究和药物发现成果基础上,聚焦针对该病毒的治疗候选新药筛选、评价和老药新用研究。 /p p style=" text-align: justify text-indent: 2em " 双黄连口服液由金银花、黄芩、连翘三味中药组成。中医认为,这三味中药具有清热解毒、表里双清的作用。现代医学研究认为,双黄连口服液具有广谱抗病毒、抑菌、提高机体免疫功能的作用,是目前有效的广谱抗病毒药物之一。 /p p style=" text-align: justify text-indent: 2em " 上海药物所长期从事抗病毒药物研究,2003年“非典”期间,上海药物所左建平团队率先证实双黄连口服液具有抗SARS冠状病毒作用,十余年来又陆续证实双黄连口服液对流感病毒(H7N9、H1N1、H5N1)、严重急性呼吸综合征冠状病毒、中东呼吸综合征冠状病毒具有明显的抗病毒效应。 /p p style=" text-align: justify text-indent: 2em " 目前,双黄连口服液已在上海公共卫生临床中心、华中科技大学附属同济医院开展临床研究。 /p
  • 617万!时利和、武汉天虹等公司中标秦皇岛市环境监控中心项目
    一、项目编号:HB2021104670040004二、项目名称:2021年中央大气污染防治专项资金环境监测能力建设仪器设备三、中标(成交)信息供应商名称供应商地址供应商编码秦皇岛绿艾环保科技有限公司秦皇岛市海港区海阳路286号91130302MA095D6J1R石家庄市时利和环保设备有限公司石家庄高新区天山大街266号003-408911301017540349017山西靖田同木科技发展有限公司山西综改示范区太原学府园区产业路48号新岛科技园C座412室91140100MA0L2GE183青岛环控设备有限公司山东省青岛市崂山区深圳路170号4号楼60791370212686777411T武汉天虹环保产业股份有限公司武汉市东湖高新技术开发区华师园北路11号914201007119617485 四、主要标的信息货物类供应商名称货物名称货物品牌规格型号数量单价中标金额下浮率费率优惠率优惠产品简要描述信息优惠价/入围价秦皇岛绿艾环保科技有限公司秦皇岛市环境监控中心2021年中央大气污染防治专项资金环境监测能力建设仪器设备A包(进口)微波消解仪ETHOS UP 等1525000525000石家庄市时利和环保设备有限公司秦皇岛市环境监控中心2021年中央大气污染防治专项资金环境监测能力建设仪器设备B包(国产)原子荧光光度计BAF-4000 等118800001880000山西靖田同木科技发展有限公司秦皇岛市环境监控中心2021年中央大气污染防治专项资金环境监测能力建设仪器设备C包(国产)微波消解仪按中标供应商投标文件承诺执行110852001085200青岛环控设备有限公司秦皇岛市环境监控中心2021年中央大气污染防治专项资金环境监测能力建设仪器设备D包(国产)便携式催化氧化法非甲烷总烃VOC 分析仪PF-300(基础版)114790001479000武汉天虹环保产业股份有限公司秦皇岛市环境监控中心2021年中央大气污染防治专项资金环境监测能力建设仪器设备E包(国产)甲醛分析仪TH-309等129000002900000
  • 专家:奶粉含肉毒杆菌罕见 不会纳入标准体系
    新西兰恒天然乳品含肉毒杆菌事件备受关注。9日,国家食品安全风险评估中心开展公众开放日活动,相关专家称,婴儿奶粉中含有肉毒杆菌的情况十分罕见,对此的监测不会纳入标准体系中。   国家食品安全风险评估中心微生物实验部研究院郭云昌博士说,肉毒杆菌产生肉毒毒素需要苛刻的条件,其中一条是严格厌氧。而这一条,在非真空包装的奶粉中难以实现。尽管肉毒杆菌在环境中广泛存在,但奶粉中的污染比较罕见。从以往经验来看,我国肉毒杆菌污染多为储藏不当的变质肉类食品或家庭自制发酵豆类、谷类制品。   控制肉毒杆菌污染的关键是工艺设计和过程控制而非标准管理,世界各国和地区并无食品中肉毒杆菌及其毒素的限量规定,一般只对密闭发酵、罐头类食品规定符合商业无菌的要求。尽管本次奶粉污染事件是偶发,消费者不必恐慌,但政府监管部门应该高度重视,要综合国内召回产品检测情况和各贸易国的反馈态度以及CAC动向,确定我国今后的管理方式。   国家食品安全风险评估中心技术顾问刘秀梅研究员说,以往也有婴儿肉毒素中毒事件发生,但其与成人中毒有所不同,不是吃了含有毒素的奶粉,而是因为婴儿免疫力低下,身体发育未完全。如果含有芽孢的食物进入婴儿的胃肠道,会定植于体内,生长繁殖,进而产生毒素。但此类事件十分罕见,目前查到的是2001年英国曾发生过这类案例。   刘秀梅说,其实婴儿奶粉中更值得关注的是阪崎肠杆菌。三次国际专家评估会议,三次都在关注阪崎肠杆菌,而没有关注肉毒杆菌。2004年开始获得国际关注,2008年,国内关于婴儿配方奶粉的标准也对阪崎肠杆菌进行了相关规定,相关部门对此也是必检项目。但由于含肉毒杆菌的情况非常罕见,因此,对于奶粉的管理标准中,加入监测肉毒杆菌一项的可能性几乎为零。   怎么预防婴儿奶粉喂养安全呢?   世界卫生组织曾为此专门设置指南,如何合理喂养婴儿配方奶粉。除了厂家保障产品安全外,孩子的母亲往往承担着重要的工作。刘秀梅认为,首先要购买正规厂家生产的可靠产品。2004年阜阳奶粉大头娃娃事件中,涉事产品很多都是小作坊、黑窝点生产的三无产品。其次,喂养方式也很重要。大头娃娃事件中,也暴露了留守儿童被隔代喂养中存在的问题。老人为省钱,减量喂养奶粉。   现在流入中国的被污染的奶粉原料大约有20吨,大部分原料还没有被加工为产品,已经加工为产品的,根据要求已经被召回。流入中国的产品中,到底有没有肉毒杆菌?刘秀梅认为,产品中如果含有肉毒毒素的话,由于其潜伏期很短,一旦进入人体将会迅速发生中毒事件,而目前尚未这种事件。她建议,不要过分担心肉毒杆菌奶粉对孩子健康的危害,因为发生的可能性还是非常低的。   在9日上午国家卫生计生委召开的新闻发布会上,国家食品安全风险评估中心微生物实验部的主任李凤琴研究员也确认这一观点,她表示,到目前为止还没有接到报告因为吃含有肉毒杆菌的奶粉而有人出现不适的病例。   国家卫生计生委新闻发言人、宣传司副司长邓海华说:“国家卫生计生委的职能是标准制定和风险评估,我们接到国际食品安全当局网络通报新西兰污染乳制品问题的邮件之后,及时把有关信息向质检总局、食品药品监管总局进行了通报,配合相关监管部门做好相应的处置工作。我们还组织国家食品安全风险评估中心的相关专家,通过各种有效途径,包括博客、微博、网站、接受媒体采访等等,对于肉毒杆菌的科普知识进行了大量宣传。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制