当前位置: 仪器信息网 > 行业主题 > >

球状菌素

仪器信息网球状菌素专题为您提供2024年最新球状菌素价格报价、厂家品牌的相关信息, 包括球状菌素参数、型号等,不管是国产,还是进口品牌的球状菌素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合球状菌素相关的耗材配件、试剂标物,还有球状菌素相关的最新资讯、资料,以及球状菌素相关的解决方案。

球状菌素相关的资讯

  • 动物性食品中伊维菌素残留量测定的前处理方法
    伊维菌素的危害及检测目的阿维菌素类药物(Avermectins,AVMs)由链霉菌的发酵产物中分离的大环内酯类抗生素,包括伊维菌素、多拉菌素、阿维菌素、爱普菌素等品种。阿维菌素类药物是目前兽医临床上应用广泛的兽用驱虫药,被广泛应用于牛、羊等动物,其作用机理是干扰害虫神经生理活动,致使害虫出现麻痹而中毒死亡。阿维菌素类药物虽然作用剂量小,但其脂溶性较高,残留时间长,世界卫生组织将其列为高毒化合物。该类药物的不规范使用和食物链富集,易引发运动失调、呼吸缓慢、中枢神经系统中毒等症状,甚至致人死亡,对人类健康造成严重威胁,所以应对动物性食品中阿维菌素类药物含量进行监测。我国农业农村部和国家市场监督管理总局2019年发布的GB 31650-2019《食品安全国家标准食品中兽药最 大残留限量》中明确规定了伊维菌素、多拉菌素、阿维菌素、乙酰氨基阿维菌素在动物靶组织中的残留限量。本文阐述了如何将伊维菌素从样品基质中分离提取出来,并经过净化后,转化成液相色谱-串联质谱仪可以检测的形式。以提取、净化为重点,依据国标GB/T 22953-2008,为检测人员和相关领域研究人员提供一定的参考。检测项目:伊维菌素、阿维菌素、多拉菌素、乙酰氨基阿维菌素应用范围:河豚鱼肌肉、鳗鱼肌肉、烤鳗高效液相色谱法方法原理:河豚鱼、鳗鱼和烤鳗中残留的伊维菌素、阿维菌素、多拉菌素和乙酰氨基阿维菌素残留用乙腈提取后,正己烷脱脂,中性氧化铝柱净化。样品溶液供液相色谱-串联质谱仪检测,外标峰面积法定量。前处理仪器:分析天平(感量0.1 mg和0.01 g);组织捣碎机;匀浆机(8000 r/min);离心机(4000 r/min);超声波水浴;液体混匀器;固相萃取装置;氮吹仪。 检测仪器: HPLC-MS/MS+ESI源试样的制备与保存取样品约500 g用组织捣碎机捣碎,装入洁净容器作为试样,密封,并标明标记,于零下18 ℃冰箱中保存。制样操作过程中应防止样品受到污染或残留物含量发生变化。 前处理方法1.提取准确称取2 g组织样品(准确至0.01 g)至50 mL离心管中,加入8 mL乙腈,匀浆机上8000 r/min均质20 s,4000 r/min离心5 min,上清液转移至50 mL离心管中;另取一50 mL离心管加入8 mL乙腈,洗涤匀浆刀头10 s,洗涤液移入前一离心管中,用玻棒捣碎离心管中的沉淀,液体混匀器上振荡30 s,4000 r/min离心5 min,上清液合并至50 mL离心管,离心管中的沉淀再加入6 mL乙腈,用玻棒捣碎离心管中的沉淀,液体混匀器上振荡30 s,4000 r/min离心5 min,上清液合并至50 mL离心管中,乙腈定容至25.0 mL刻度,混匀备用。2.净化向上述装有样品提取液的50 mL离心管中加入10 mL乙腈饱和的正己烷脱脂,涡旋振荡1 min,4000 r/min离心5 min,弃去上层正己烷,重复此操作一次,下层乙腈溶液待用。将中性氧化铝净化柱安置在固相萃取装置上,准确移取10.0 mL已脱脂的样品提取液至中性氧化铝净化柱中,控制流速在1 mL /min~2 mL /min,用2 mL×2乙腈淋洗净化柱,收集全部流出液,流出液转移至吹氮管中,50 ℃下氮气吹至干,用1.00 mL乙腈溶解残渣,并置超声波水浴中超声振荡10 min,0.2 μm滤膜过滤,供液相色谱-串联质谱测定。 国标解读及注意事项1.标准物质用乙腈配成100 μg/mL的标准储备液,在零下18 ℃保存。2.本方法通过乙腈提取,正己烷脱脂,中性氧化铝柱净化的方式进行目标化合物的提取净化。3.本方法采用洗涤均质刀头,三次提取的方式,提高目标化合物的回收率。4.氧化铝柱净化过程中除了活化溶液,其余溶液(上样液和淋洗液)都要收集。为保证净化效果,过柱时需要控制流速,使溶液一滴一滴地流下。可用商品化的中性氧化铝固相萃取柱替代方法中手工填充的中性氧化铝净化柱。5.由于该类化合物没有对应的同位素内标用于回收率的校正,所以本方法使用空白样品提取液配制基质标准工作液,进行定量。 参考文献GB/T 22953-2008 河豚鱼、鳗鱼和烤鳗中伊维菌素、阿维菌素、多拉菌素和乙酰氨基阿维菌素残留量的测定 液相色谱-串联质谱法河豚鱼、鳗鱼中伊维菌素残留量测定的前处理流程图:
  • 潍坊检疫局成功破解“莫西菌素”悬案纪实
    他们让欧盟收回成命……   ———潍坊检验检疫局抓质量提升成功破解“莫西菌素”悬案纪实   2010年3月,欧盟健康和消费者保护总司发出通报,宣布2009年12月发布的针对我国山东潍坊乐港食品股份有限公司出口欧盟熟制鸭肉中检出“莫西菌素”的预警通报有误,正式撤回对该公司“莫西菌素”的预警,允许乐港公司被封存的产品继续销售。   至此,历时3个多月的“莫西菌素”悬案终于尘埃落定。潍坊检验检疫局以扎实的基础工作、严谨的科学论据、不懈的拼搏努力打赢了这场应对国外技术性贸易措施的攻坚战。我国出口食品对欧盟预警成功反诉在国内尚属首次。   回顾应对预警事件的风雨历程,潍坊检验检疫局党组深感胜利来之不易。没有这些年质检系统自上而下抓质量安全的坚强决心、没有全局干部职工兢兢业业促质量提升的辛勤付出、没有健全的工作机制和过硬的监管工作质量保证,要让欧盟收回成命则无从谈起。   预警突发 风云乍起   事情还要从2009年12月22日说起。   就在那一天,欧盟健康和消费者保护总司发布预警,通报德国官方实验室在我国山东潍坊乐港食品股份有限公司出口欧盟的熟制鸭肉中检出“莫西菌素”,残留量为87.3μg/kg。对潍坊检验检疫局而言,这无异于投下了一颗重磅炸弹,意味着欧盟可能会将“莫西菌素”纳入监控范围,进而对我国出口欧盟的禽肉采取严密检查措施。而事实上,欧盟在发布预警以后,已经对我国禽肉产品实施了“莫西菌素”批批检测。若在欧盟的严密检查下发生多批次检出,封关长达6年半、近7年没有出口业绩、经过多年艰辛努力重新争得的欧盟市场将会再次无情地对我们关紧大门。   这对潍坊这样的传统农产品出口大市、特别是出口禽肉占到全国总量近三分之一的出口强市来说,影响更是巨大。   欧盟各国对进口农产品的技术限制措施向来极为严格。2002年2月,因在我国出口禽肉、水产品和兔肉中陆续检出六六六、滴滴涕和氯霉素、硝基呋喃等农兽药残留,欧盟对我国动物源性产品采取了全面封关。经过多年的交涉和努力,欧盟官方在数十次来华进行现场考核后,封关长达6年半之久的欧盟市场终于重新对我国开放。欧盟委员会于2008年7月30日通过决议,批准欧盟成员国恢复进口中国9家企业生产的熟制禽肉制品。在欧盟开关的全国9家企业中,潍坊就占5家。开关以来,在国家质检总局和山东检验检疫局的指导下,潍坊检验检疫局按照欧盟法规和指令的相关要求,对饲养场的疫情控制、用药管理、动物福利、加工厂的卫生控制等方面进行了全面指导检查,严格监督企业按照欧盟的要求进行生产加工。从当年12月份开始,全国首批禽肉制品由诸城外贸出口欧盟,潍坊美城、潍坊乐港、昌邑新昌等企业产品紧随其后陆续向欧盟出口。   截至目前,欧盟开关以来,全国共向欧盟出口禽肉产品1.3万余吨、价值7000余万美元。其中,潍坊出口禽肉产品1万吨、价值6000万美元,分别占76%和85%。潍坊乐港是全国唯一获得对欧盟注册的肉鸭产品出口企业,开关以来共向欧盟出口鸭肉产品6500吨、价值4875万美元,占全国向欧盟出口禽肉总量的50%和货值的69%。欧盟成员国多、市场潜力大,禽肉制品对欧盟出口恢复正常后,潍坊每年可增加创汇两亿至三亿美元,对出口食品农产品的拉动有着至关重要的作用。 潍坊检验检疫局技术中心完成技术攻关迅速开展莫西菌素检测 加强源头监管,对出口欧盟的鸭肉原料定期取样检测 国外技术专家到潍坊检验检疫局技术中心开展技术交流 潍坊检验检疫局监管人员正在对出口欧盟禽肉产品实施监装   为了健全完善出口食品农产品质量安全控制体系,确保出口食品农产品质量安全,几年来,潍坊检验检疫局的领导和一线检验检疫人员殚精竭虑,付出了大量心血,工作卓有成效。该局党组一直把促进食品农产品出口作为“一号工程”,不断加强源头监管,实施全过程质量控制,出口食品农产品质量安全监管水平明显提高。早在2006年,潍坊检验检疫局按照山东检验检疫局工作部署和要求,结合“食品安全年”活动,实施了驻厂检验检疫官制度改革,开展了出口肉类官方兽医体系和出口蔬菜官方食品安全员体系建设。对辖区内注册的肉类加工企业实行官方驻厂兽医制度,以出口蔬菜检验检疫监管模式改革为突破口,实行官方食品安全员制度。在源头管理、官方兽医、官方食品安全员建设和企业自检自控建设上下工夫,确立了官方兽医体系改革和食品安全员体系改革的基本框架,形成了《中国现代出口肉类官方兽医体系建立及应用》、《中国现代出口蔬菜官方食品安全员体系建立及应用》两套理论体系,探索建立了一整套管得准、管得住、促发展的科学有效的出口食品农产品检验检疫管理新模式。新的监管模式注重种植养殖源头管理、实施疫病疫情监控、农兽药残留监控和微生物监控,立足把问题解决在源头和生产加工过程中,实现了从种植养殖源头到生产加工直至产品出口的全过程监管,形成了更加科学有效的质量控制机制,提升了检验检疫监管工作的有效性,促进了食品农产品出口,得到了国家质检总局和山东检验检疫局领导的充分肯定。   眼下,在出口兽医体制改革初见成效,禽肉出口稍有转机的情况下,突然出现的“莫西菌素”预警事件,像一团沉重的乌云笼罩在潍坊检验检疫局领导和同志们的心头。震惊、担心、疑虑写在每个人的脸上,但他们很快冷静了下来,立即成立了专门的应对工作组,启动了《进出境农产品和食品质量安全突发事件应急处置预案》,全力投入到事件的排查分析工作当中。问题的根源发生在哪里?是监管工作出现了漏洞?风险分析出现了失误?还是企业存在不诚信行为?   调查核实 提出质疑   自爆发国际金融危机以来,国际贸易保护主义亦呈愈演愈烈之势。面对“莫西菌素”预警事件,潍坊检验检疫局党组清醒地认识到,只有积极应对,才能争取主动。他们首先组织相关专家骨干进行了科学的分析。   “莫西菌素”是一种新型大环内酯类驱虫抗生素,根据肉鸭的生长习性和以往的临床经验,肉鸭在生长过程中罕有寄生虫病发生,一般不需要使用抗虫类药物。且“莫西菌素”价格高,国内市场鲜有销售,之前也从未发现乐港公司有过采购“莫西菌素”或含有“莫西菌素”成分药品的记录。经过全方位的调查分析,输欧鸭肉产品养殖、生产过程中使用或污染“莫西菌素”的可能性几乎不存在。至此,在潍坊检验检疫局相关人员的脑海里,一种质疑变得越来越清晰起来,难道是欧盟方面的检测结果出现了问题?!   他们的质疑不是毫无根据的,是建立在多年来对出口食品农产品质量安全管理体系的健全完善和科学监管的自信上。   近年来,党中央、国务院高度重视食品安全问题,国家质检总局先后对加强产品质量和食品安全做出了一系列的重大决策和部署。潍坊检验检疫局按照国家质检总局、山东检验检疫局的部署要求,立足潍坊农业生产大市和农产品出口基地的特点,以全国产品质量和食品安全专项整治、“质量和安全年”活动等重大行动为契机,积极深化检验检疫监管改革,不断健全完善风险分析工作机制,在实行驻厂检验检疫官制度的基础上,进一步深化和延伸“公司+基地+标准化”管理模式,创新开展了出口食品农产品质量安全区域化管理新模式的改革试点,进一步提升了出口食品农产品质量安全水平。2009年,潍坊检验检疫局被评为国家质检总局“质量和安全年”活动先进单位。   在强化检验检疫监管工作上,潍坊检验检疫局不断创新、探索,形成了一套科学有效的农产品质量安全工作新机制:   健全风险分析管理机制,制定控制风险的有效措施。潍坊检验检疫局坚持把风险分析管理作为保证产品质量安全、提高把关放行效率的关键因素,一是开展风险评估,制定出口食品安全监控计划。每年年初修改制定出口禽肉、蔬菜的疫病、农兽药残留、微生物监控计划等十几个管理文件,对监控的品种、项目、频率、限量、检测方法等作出详细明确的规定,增强了监管工作的有效性。二是进行风险划分,实施新的监管验放模式。通过风险评估分析,区别不同产品和出口国家及地区,采取不同的监管措施。三是抓好源头管理,提升出口产品质量安全水平。源头监控是风险管理的关键环节,潍坊检验检疫局坚持从源头抓质量,大力推行“公司+基地+标准化”模式,扩大备案基地建设规模,提高高风险产品的基地备案标准,严格监控农兽药残留及环境污染因子,引导企业建设规模化、高标准种植、养殖基地。同时,认真落实检验检疫官驻厂制度,对7家重点禽肉出口企业派驻辅助兽医,重点出口蔬菜区域设立食品安全员,做到了从源头到成品的全方位监管。四是拓宽监管领域,强化对农兽药源头的管理。农兽药是食品安全风险管理的难点,通过风险评估,潍坊检验检疫局将农兽药的生产流通一并纳入监控范围,实行了“出口企业+农兽药生产供应厂商+检验检疫”的农兽药使用管理新模式,即出口企业与有资质的农兽药生产厂、供应商签订经济责任合同,建立专供渠道;检验检疫局对供应厂商和使用的农兽药实行备案管理,对主要供应商建立业务登记档案和诚信档案,定期公布国外官方农兽药限量要求和禁用药品名录,以及用于生产的农兽药检测结果,实现信息共享。通过三方互动、联合监控,实现了出口食品农产品农兽药源头有效控制。   实施“区域化管理”,出口食品农产品质量安全呈现新的局面。时值2007年春夏之交,国务院先后召开了全国质量工作会议、全国产品质量和食品安全专项整治电视电话会议,颁布实施了《国务院关于加强食品等产品安全监督管理的特别规定》。在山东检验检疫局的指导下,潍坊检验检疫局在全面回顾总结多年来出口食品农产品质量安全工作经验的基础上,着力探索研究新形势下进一步抓好出口食品农产品安全质量的工作思路。为继续创新源头管理机制,从根本上解决食品农产品质量安全问题,进一步深化和延伸“公司+基地+标准化”管理模式,开展了出口食品农产品质量安全区域化管理新模式的探索研究,形成了《面向出口的食品农产品质量安全区域化管理体系建设》的理论框架和实施方案。把推行区域化管理作为继实施驻厂检验检疫官制度之后加强出口食品农产品检验检疫监管改革的又一重大战略目标,顺应新形势下检验检疫工作模式改革的再创新,作为贯彻国家质检总局、山东检验检疫局一系列工作部署、开展产品质量和食品安全专项整治行动的有力措施,作为促进社会主义新农村建设的具体实践,迅速付诸实施。   出口食品农产品质量安全区域化管理,其核心是建立出口产品质量安全的“政府主导、检验检疫技术支持促进、职能部门通力合作、全社会齐抓共管”的工作机制。即根据地域实际,由政府主导,在一定区域内,整合行政和检测资源,加强区域内农兽药综合管理,推行出口食品农产品标准化种植养殖、生产加工和出口管理,实施良好农业操作规范。通过科学管理、规范生产、以防为主、关口前移,保证出口食品、农产品的安全质量,提高产品质量和食品安全管理水平。依靠山东检验检疫局的大力支持和指导,潍坊检验检疫局在积极宣传、培训的基础上,与地方政府通力协作,建立起了“政府主导、国检指导、龙头带动、部门联动、全民行动”的区域化建设运行模式。健全完善了政府、部门协调控制体系,政策法规控制体系,农业化学投入品控制体系,种植养殖基地标准化建设推进体系,质量安全追溯控制体系,监控、预警、纠偏及评估控制体系,应对重大突发事件控制体系,宣传培训支持体系等八大管理体系。特别是针对影响出口质量安全的关键环节,即农兽药残留控制问题,为形成良好的出口食品农产品生产用药环境,潍坊检验检疫局指导、参与制定出台了农药兽药管理办法,由政府牵头,公安、工商、农业、畜牧等部门组成联合执法队,对生产经营国家明令禁止的农业化学投入品行为进行严打整治。对农业化学投入品生产企业进行考核、实行登记备案,对农业化学投入品销售渠道进行清理,采取连锁加盟、定点直供的经营模式,形成市、镇、村三级专供网络,对最终使用环节加强指导、规范用药。形成农业化学投入品产、销、用全程链式管理模式和有效控制机制,以保证农业化学投入品的规范管理和科学使用。出口食品农产品质量安全区域化综合管理机制的创新建立和试点实践,完全符合国家2009年6月1日颁布的《食品安全法》的要求。   区域化管理使潍坊的农业生产大环境治理明显好转,出口食品农产品质量安全得到有效控制,2007年全市食品农产品出口实现了超过10亿美元的历史新突破,并连年保持较大幅度的增长。区域化管理从根本上改变了出口食品农产品监管理念,开创了我国出口食品农产品质量安全监管新模式,得到了各级领导和社会各界的一致好评。全国产品质量和食品安全专项整治第二次现场会期间,时任国务院副总理的吴仪同志到安丘考察时,连连称赞“区域化建设”这个办法好。2008年4月,山东省政府在潍坊召开全省区域化管理现场会,将区域化管理的做法概括为“潍坊经验”,在全省54个县市区进行全面推广,并作为食品安全管理的根本措施写进政府工作纲要。去年4月,国家质检总局局长王勇亲临潍坊安丘考察指导区域化建设,给予充分肯定,并于10月份在潍坊召开全国出口食品农产品质量安全示范区建设经验交流会,向全国推广。会议期间,王勇又亲自带领与会12个省、市的领导到安丘考察了区域化建设现场。截至目前,除西藏之外的全国各省、市、自治区组队到潍坊学习考察区域化建设达9000余人次。今年1月8日,我国首个《初级农产品安全区域化管理要求》国家标准在潍坊安丘通过专家审定。审定委员会专家一致认为,它“是对现有食品安全管理体系标准的自主创新,并经过了实践的检验验证,填补了国内和国际空白,达到了国际先进水平”。并即将由国家标准委以推荐性国家标准发布实施。   针对欧盟预警,潍坊检验检疫局及时向山东检验检疫局食品处汇报,食品处领导三下潍坊,与潍坊检验检疫局应对工作组一起,对输欧盟熟制鸭肉的加工生产过程进行了全面的核查分析。结果显示潍坊检验检疫局在整个生产加工过程中实施了科学有效的全程监控,并且基于风险分析,通过检测验证排除了可能存在的安全隐患。一是对生产原料实施了有效控制。企业用于出口加工的肉鸭全部来自经检验检疫局备案的该公司自属饲养场,官方驻厂兽医在每个饲养周期,以及生产、加工的全过程均按规定进行了监管。同时,依据风险分析评估,抽样进行了氯霉素、硝基呋喃代谢物等10种兽药残留项目的检测,均符合安全卫生要求。二是对兽药的使用实施了有效控制。企业严格执行兽药使用管理规定,对每批新购入的兽药均实行先检测后使用的控制管理办法。用于加工该批产品的肉鸭在饲养过程中共使用了浆炎速治和新奇两种兽药,主要成分分别是硫酸安普霉素和阿莫西林。除此之外,未使用或添加任何其他药物。且使用前经中国检验检疫科学研究院综合检测中心进行检测,无禁用成分。三是对辅料的使用实施了有效控制。乐港公司的进货台账及核销表均按照潍坊检验检疫局统一要求的格式建立了完备的电子档案。潍坊检验检疫局对企业购入的新辅料品种,均由驻厂兽医亲自扦样送检验检疫技术中心进行检测,经检测合格后方允许企业用于生产。通过调阅监管记录确认,该批鸭肉熟制品在生产加工过程中共使用了盐、白胡椒粉、麦芽糖和醋四种辅料。在使用前,对可能存在的不安全成分均一一进行了检测,未发现任何安全隐患。四是对加工生产过程实施了有效监控。企业在生产加工过程中严格按照卫生标准操作程序进行控制。生产加工人员进入车间前均经过了洗手消毒,并且戴手套操作,班间定期洗手消毒,可以排除在加工生产人员操作过程中污染“莫西菌素”的可能。   技术攻关 掌握证据   近年来,世界各国对进口食品农产品均采取了极为严格的限制措施,我国出口产品被国外预警时有发生。但国内对进口国预警特别是欧盟预警提出质疑,进而推翻其预警结果的情况至今还没有先例,对欧盟预警成功反诉似乎是天方夜谭。潍坊检验检疫局慎之又慎:必须掌握更加具有说服力的第一手证据,用事实说话!   多年来,潍坊检验检疫局党组始终坚持“以人为本,科技强检”战略,把检验检疫技术保障作为事业发展的基础和支撑。一是加强基础建设,扩大检测能力。经过多年的努力,潍坊检验检疫局技术中心取得了长足发展,并于2007年11月被确定为国家级蔬菜、禽肉检测重点实验室。在国家质检总局、山东检验检疫局的支持下,几年来通过多渠道争取对检测设备的投入、提高装备利用率来增强检测实力。近年新增加具有国际先进水平的液相色谱串联质谱仪等检测设备30多台套,基础设施建设发生了质的飞跃,基本满足了潍坊市农产品检验检疫的需要。二是强化人才队伍建设,不断提升技术人员素质。潍坊检验检疫局注重吸收高精尖人才,在山东检验检疫局的大力支持下,近年来新招录在编博士研究生3名、硕士研究生5名,招聘合同制硕士研究生3名。同时,采取多种途径加快人才培养步伐,先后派员参加专业培训110多次,选派业务骨干到欧盟基准实验室、烈日大学、日本横滨检疫所、美国安捷伦化学分析中心、新加坡原产局和香港卫生署进行研修和短期培训。先后邀请日本残留分析专家、美国FDA技术官员、智利农业部官员来潍坊举办技术讲座和交流。去年3月11日,技术中心与美国安捷伦科技有限公司签署合作协议,建立合作实验室,进一步提高了新技术开发应用能力和技术服务保障能力,科研能力和检测水平明显增强。技术中心每年新开发检测项目达20余项,获得国家质检总局、山东检验检疫局科技奖项3~5项。   潍坊检验检疫局分析认为,这次对乐港出口鸭肉产品的预警通报,欧盟在实施检测中采用的是液相荧光法,该方法虽然符合欧盟相关法规要求,但从技术的角度不能提供分子的结构信息,有可能因为基质干扰而出现假阳性检测结果。“国外能做到的,我们也同样能做到”,“只有靠实力和事实说话,才能争取工作的主动”。潍坊检验检疫局党组决心一下,技术中心迅速行动,成立攻关小组于48小时内完成了质谱条件优化和样品处理方法的开发,建立了“莫西菌素”的液相色谱-串联质谱检测方法,检出限达到0.005mg/kg,准确度、选择性和灵敏度都远远高于欧盟采用的液相荧光法。随即,潍坊检验检疫局技术中心对已发运产品留样、库存产品和原料、辅料共89个样品进行了检测,结果均为阴性。连续检测乐港公司出口欧盟熟制品53批,出口其他国家和地区熟制品6批,结果也均为阴性。   据理力争 反诉成功   在山东检验检疫局的强力支持和该局食品处的指导下,通过对欧盟预警通报中所用检测方法的分析,综合全面调查情况和各方检测信息,潍坊检验检疫局决定全力支持潍坊乐港公司向欧盟要求仲裁检测。按欧盟的仲裁程序,如果对欧盟官方检测结果有异议,须先向当地欧盟兽医局提出由另外的实验室进行复检的申请,如复检结果与初次检测结果不同,可由第三方中立的检测机构进行最终的仲裁检测。1月5日,乐港公司客户SPS要求汉堡兽医局从检出“莫西菌素”的货柜中重新取样进行复检。1月19日,汉堡兽医官从封存产品中扦取复检样品,经汉堡GBA生物检测实验室检测,结果为阴性!按照有关仲裁程序,又在奥地利AGES实验室进行了仲裁检测,结果仍为阴性!!事实胜于雄辩。在铁的事实面前,德国汉堡兽医局同意对封存的产品解除禁令,允许继续销售。欧盟健康和消费者保护总司于3月8日正式发布了新的通告,正式撤回原对潍坊乐港食品股份有限公司出口欧盟熟制禽肉产品检出“莫西菌素”的预警。至此,标志着潍坊检验检疫局在与欧盟为乐港公司肉鸭产品中存在“莫西菌素”残留问题的交涉中取得完胜。   欧盟“莫西菌素”预警事件的成功反诉虽然只是首例突破欧盟技术性贸易措施的典型个案,但它反映出过硬的产品质量要靠强烈的责任意识、健全的工作机制、扎实的基础保障、严谨的科学监管来取得,是多年来基层检验检疫机构在国家质检总局的坚强领导下心系质量提升、改革创新、有效监管、服务发展的具体体现。   长风破浪会有时,直挂云帆济沧海。潍坊局全体干部职工正按照国家质检总局、山东检验检疫局的工作部署,认真开展“质量提升”活动,深入落实山东检验检疫局“一个体系,三道防线”的工作要求,进一步夯实基础,科学监管,开拓创新,力争以更加扎实的工作,更加出色的业绩,为检验检疫事业和经济社会发展再立新功。
  • 生态环境部发布水质 阿维菌素B1a和阿维菌素B1b的测定 高效液相色谱法(征求意见稿)》
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 阿维菌素B1a和阿维菌素B1b的测定 高效液相色谱法》国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2023年6月12日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.水质 阿维菌素B1a和阿维菌素B1b的测定 高效液相色谱法(征求意见稿)  3.《水质 阿维菌素B1a和阿维菌素B1b的测定 高效液相色谱法(征求意见稿)》编制说明  生态环境部办公厅  2023年5月6日  (此件社会公开)
  • 欧盟食品安全局拟修订多杀菌素的最大残留限量
    欧盟食品安全局审查多杀菌素的最大残留限量 据欧盟食品安全局(EFSA)消息,近日欧盟食品安全局对多杀菌素(spinosad)的最大残留限量(MRL)进行审查后,对该农药在部分产品中的最大残留限量提出了修订意见。 更多请见:
  • 月旭推出球状蛋白亲水改性硅胶色谱柱-Ultimate SEC
    Ultimate® SEC色谱柱是硅胶基质的体积排阻色谱柱,也可以称之为&ldquo 球状蛋白亲水改性硅胶柱&rdquo (中国药典门冬酰胺酶指定色谱柱)。其色谱填料为高纯度、具有良好稳定性的硅胶微球表面键合亲水性聚合物。月旭公司采用特殊的表面修饰技术,确保了该填料具有良好的稳定性和批与批之间的重现性。 Ultimate® SEC填料采用独特的化学键合技术,在硅球表面键合了亲水性聚合物以及亲水性二醇基官能团。双重键合机制使水溶性高分子聚合物、蛋白、生物酶、多肽等生物样品的非特异性吸附极小,因而可广泛应用于水溶性聚合物及生物大分子的分离和测定。 Ultimate® SEC色谱填料的特点 1) Ultimate® SEC色谱填料由含二醇基官能团的刚性球形硅胶微球表面覆盖亲水性高分子聚合物所组成; 2) Ultimate® SEC色谱填料内径为5 &mu m或3 &mu m的硅胶微球,能够获得最高的分离效率。 3)Ultimate® SEC 120 Å 小孔径色谱柱适合分离头孢类等极性目标物;300 Å 适合分离蛋白、多肽等生物大分子; 4) Ultimate® SEC产品目前有120 Å 、300 Å 、500 Å 和1000 Å 四种孔径规格的色谱柱。 Ultimate® SEC色谱填料的技术参数 Ultimate® SEC色谱柱使用注意事项 1)使用前,请把色谱柱用纯水冲洗40-60个柱体积,以确保柱填料能够充分被润湿,防止色谱柱在使用过程中造成固定相塌陷; 2)色谱柱在用纯水流动相分析时,需要充分地用纯水流动相平衡色谱柱,待基线充分平稳后进样分析; 3)由于该类型色谱柱一般用的流动性是纯水相的缓冲盐,因而色谱柱在使用完以后需要用纯水流动相充分冲洗色谱柱,以保证缓冲盐被充分的清除,防止缓冲盐对色谱柱固定相造成的伤害; 4)长时间不使用色谱柱时, 该类型色谱柱保存方式类似于常规的色谱柱,即高比例的有机溶剂-水溶液中,一般有机溶剂的比例为90%。 Ultimate® SEC色谱柱可替代市场上同类型产品 1) Ultimate® SEC 120 Å 可替代的其他厂家色谱柱有:日本东曹Tosoh公司的TSK gel G2000SWxl、日本昭和电工Shodex公司的 PROTEIN KW-802.5、Sepax SRT SEC-150等; 2) Ultimate® SEC 300Å 可替代的类型有: 日本东曹Tosoh公司的TSK gel G3000SWxl、日本昭和电工Shodex公司的 PROTEIN KW-803、Sepax SRT SEC-300等; 3) Ultimate® SEC 500Å 可替代的类型有:日本东曹Tosoh公司的TSK gel G4000SWxl、Sepax SRT SEC-300、日本昭和电工Shodex公司的PROTEIN KW-804; Ultimate® SEC型色谱柱性能评价 色谱柱:Ultimate SEC(7.8× 300 mm,5 &mu m,300 Å ); 流动相:150 mM磷酸盐缓冲溶液,pH 7.0(具体配置方法为:称取17.997 g磷酸二氢钠,用超纯水定容至1000 mL,然后用1 M氢氧化钠调节至所需pH值); 检测波长:214 nm; 流速:0.8 mL/min; 柱温:室温(25 oC); 进样量:10 &mu L。 样品处理方法:四种标准物质的浓度均为1.0mg/mL,解冻至室温后直接进样; 四种标准物质色谱图(1.甲状腺球蛋白;2.牛血清蛋白;3.核糖核苷酸酶A;4.尿嘧啶)
  • 中国最大规模潜伏性结核感染关键性临床试验显示德国凯杰QuantiFERON-TB Gold检测优于传统结核菌素皮试
    昨日最新发表于权威医学期刊《柳叶刀》杂志的突破性临床数据显示,已沿用一百多年的结核菌素皮试检测(tuberculin skin test,以下简称TST)过高估计了中国的潜伏性结核感染状况。在相关研究项目中,作用于相同受试者的凯杰公司QuantiFERON® -TB Gold检测(以下简称QFT)在结果精确性方面较皮试表现出了极为明显的优势。   在这项由中国医学科学院和中国协和医科大学科研人员开展的关键性临床试验中,基于凯杰QFT结果的潜伏性结核感染率远低于使用TST方法所得出的数据。TST于1908年由德国医生Felix Mendel首创,由于这种检测更易受到包括卡介苗在内的多种因素干扰,对于降低结核病负担的实际作用极为有限。中国从上世纪50年代开始就开始推行卡介苗接种,因此TST在此次项目中产生了更高的假阳性检出率。   研究特别显示,基于凯杰QFT的中国潜伏性结核总体感染率为18.8%,远低于使用TST所得出的28%的比例。在以往基于TST所进行的统计中,中国每年估计有高达100万的新增结核病患者,在全世界范围内仅次于印度。   为确定在社区级别进行筛查的高危目标人群,这一中国史上最大规模的前瞻性多中心研究项目就潜伏性结核感染的诊断方法进行了对照试验,共计筛查超过21000名受试者。   鉴于研究结果显示中国实际感染率低于以往数据,文章作者表示,针对更易发展为活跃性结核的高危群体开展基于社区的潜伏性结核预防性干预措施可能是切实可行的。   文章作者指出:&ldquo 本研究项目是在中国就结核病控制战略发展这一重要议题所做的第一次探讨。基于卡介苗无法有效保护成年人免受结核病侵害这一证据,以及大多数最终发展为活跃性结核的中国患者都曾接种过卡介苗的观察结果,可以确定的是,需要引入其他结控手段。使用&gamma 干扰素释放试验(interferon-gamma release assays,简称IGRAs)对高危人群进行潜伏性结核感染筛查,并对筛查结果呈阳性以及罹患活跃性结核风险更高的对象提供预防性治疗,将会是降低结核病发病率的一项重要战略。&rdquo   凯杰QuantiFERON业务高级医学事务总监Masae Kawamura博士表示:&ldquo 由中国顶尖专家主导的该研究充分证明,筛查检测的精确性对于患者个体和整个公共卫生事业均有重大影响,同时也表明有效控制潜伏性结核感染对降低结核病这一致命疾病的危害有着至关重要的作用。在此次研究项目中,QFT延续了以往的优异表现,在正确鉴定潜伏性结核感染方面再次体现出了高度精确性,也比已沿用一个世纪之久的皮试法具有更高的可靠性。研究结果为中国和世界其他地区的结控工作提供了宝贵的经验。这一研究还证明,通过在2013年较早引入以潜伏性结核筛查为重点的预防战略,并针对如何选择所需的预防性干预措施开展必要研究,中国已经走在亚洲消除结核病事业的前沿。&rdquo   已于2014年在中国上市的QuantiFERON-TB Gold检测比TST更快、更易操作并且更为准确,已成为当代潜伏性结核感染诊断领域精确性的标准。QFT拥有更为出色的临床表现 如作为实验室条件下的血液检测,其操作也更为简便,可有效节省结控项目成本和总体医疗资源。因此全球范围内的结控项目正逐步采用QFT代替皮试法。值得一提的是,中国科研人员在此次项目中采用的唯一一种IGRA方法正是凯杰的QuantiFERON-TB Gold。   研究为结控工作提供了宝贵经验   此次发表于《柳叶刀》杂志的文章主要围绕这一中国首个大规模、多中心潜伏性结核感染流行病学研究的基础阶段展开。这一涉及超过21000名患者的对照研究为围绕人口统计学、危险因素和细分人群中的稳定比较开展详细分析提供了基础。目前,该研究已进入跟踪调查阶段,已确诊的潜伏性结核感染者将接受有关发病率和相关危险因素的进一步评估。一般认为,有10%的潜伏性结核感染者将会在某一阶段发展为传染性的活跃性结核。目前已有独立专家就该研究对结控的重要影响发表了看法。   美国罗格斯大学新泽西医学院全球结核病研究所主任Lee Reichman博士表示:&ldquo 通过与IGRA方法的对照,该研究表明以往TST高估了中国高达44.5%的潜伏性结核感染历史数据。尽管目前中国大部分结控工作尚未特别关注预防领域,此次得出的结论仍有望协助政策制定部门更加重视针对正确人群采取预防性干预措施。根据研究成果,基于危险因素而发现的这一正确人群的实际规模较以往更小。&rdquo   在这一项目中,基于QFT得出的总体感染率为18.8%,TST方法则高达28%。与TST不同,QFT的阳性结果未受到受试者早前接种卡介苗的影响,而跟受试对象与活跃性结核的接触背景、可疑感染程度和已知结核病风险有关。WHO推荐在中国等多个国家将卡介苗接种作为针对新生儿的重要结控政策之一。   &ldquo 使用IGRA对高危人群进行潜伏性结核感染筛查,并对筛查结果呈阳性以及罹患活跃性结核风险更高的对象提供预防性治疗,将会是降低结核病发病率的一项重要战略。&rdquo 《柳叶刀》杂志的文章中这样写道。此次研究项目发现了潜伏性结核感染的三大高危群体,即活跃性结核的密切接触者、老年人和吸烟者,同时指出&ldquo 由于被发现具有更高的感染率&rdquo ,这些群体&ldquo 可能成为通过预防性干预措施进行潜伏性结核感染监测的潜在重点目标&rdquo 。   凯杰提供现代结核检测的金标准   目前,正有越来越多美国、欧洲和日本等地的结控项目逐步采用凯杰业内领先的QuantiFERON-TB Gold检测代替传统皮试法,用于筛查潜伏性结核感染的高危细分人群。QFT业经验证的临床可靠性和操作简便性进一步提升了筛查的精确度,同时有效节省了结控工作的成本。   凯杰在全球范围内与政府和卫生组织开展密切合作,共同致力于抵御结核病对人类的危害,同时不断开发创新技术。2015年,凯杰推出了获得欧盟CE-IVD认证的第四代检测QuantiFERON® -TB Gold Plus(QFT® -Plus),并已在欧洲等地上市。从第一代检测产品问世至今,QuantiFERON-TB检测累计销量已超过2000万。   关于凯杰   凯杰是一家荷兰控股公司,旗下拥有全球领先的从样本制备到分子信息获取全过程的解决方案,可将原始生物物质转化为有关分子信息的宝贵创见。凯杰的样本制备技术用于分离和处理从血液或组织等物质中提取的 DNA、RNA 和蛋白质,而分析技术使这些生物分子可见,并能用于进一步分析。生物信息学软件和数据库可解读相关数据,从而提供相关的可行性创见。自动化解决方案可实现这些技术的无缝连接,提供高性价比的分子检测流程。凯杰目前为全球超过50万客户提供此类工作流程,客户群主要分为四大类:分子诊断(人类健康)、应用检测(法医、兽医学检测和食品安全)、生物制药(制药企业和生物技术公司)、学术研究(生命科学研究)。截至2014年12月31日,凯杰在全球35个城市拥有超过4300名员工。
  • 又一广谱抗菌素硝基米唑残留国标方法建立
    日前在国家质检总局的标准研讨会上,吉林出入境检验检疫局建立了硝基米唑在动物源食品中的国标方法,这一方法的稳定性,可操作性及方法灵敏度甚至超过了国外同类方法,为我国出口食品再添强力保障。在这一分析项目中,美国J2公司生产的GPC凝胶净化系统,再次承担起非常重要的样品净化作用,保障了后续LC/MS/MS分析的检出限,同时也减少了仪器发生故障的机率。
  • 专家称抗生素研发跑不赢耐药菌 减弱研发动力
    研究人员检查菌种 四川抗菌素工业研究所所长易八贤   国内现存唯一一家国家级抗生素工业研究所位于成都   因为“超级细菌”带来的风暴,45岁的易八贤最近颇受关注。易八贤任所长的四川抗菌素工业研究所(以下简称研究所)与他本人同龄,45年来先后研发了100余种抗生素,是目前国内现存唯一的国家级抗生素工业研究所。研究所位于成都龙潭工业区,上个世纪90年代之前曾辉煌一时。   然而,耐药菌加速出现,抗生素的研发周期漫长且需巨额资金投入,目前仅凭抗生素研发已不能完全支撑研究所的发展。与此同时,为应对越来越多的“超级细菌”,研究所也在努力研发抗生素的替代品,“即便距离新药上市还需要漫长的周期,但作为央企要履行社会责任,这种研究就是为全民健康安全做技术性储备。”研究所生物部副部长王辂说。   耐药菌在加速出现正是跟抗生素滥用有关   研究所位于成都龙潭工业区,上个世纪90年代之前该所实行国家计划全额拨款。“那个时候国内一大半的抗生素都是我们所研发的,像青霉素、庆大霉素等,现在在用的也还有很多。”易八贤略带骄傲地说,研究所全球首创的抗结核利福霉素系列,创新药物利福喷丁还得到了世界卫生组织的高度评价。   上世纪90年代以后,国内外研发的抗生素都少了。“国内外有不少企业都把抗生素这块卖出去了。”易八贤说,虽然技术的革新提高了效率,但由于药物审批越来越严格,尤其是临床数据要求越来越全面,必须保证足够的临床试验时间,新药的研发周期仍然漫长,“少说也要一二十年。”相对而言,耐药菌出现的速度却越来越快。“以前是几年才会出现耐药菌,现在一两年就不管用了,快的还有几个月的。”   易八贤认为,除了气候、环境等因素的影响,耐药菌加速出现与抗生素滥用不无关联。“明明一代抗生素就可以治好的,偏偏要用二代,这就像用炮弹打蚊子。”他举例说,在北欧一些国家,现在青霉素依然有效,而在国内已经更新换代好几轮了。   抗生素研发跟不上应像免疫规划一样重视   漫长的研发周期与加速出现的耐药菌像一场拉锯战,减弱了企业研发抗生素的动力。   “2000年以前大学还有抗生素专业,现在已经没有专门的研究学科了。”易八贤说,抗生素的临床应用越来越广,但国家的重视程度并没有跟上。过去是国家全额拨款,现在研究所直接面向市场,“企业需要什么研究所搞什么,不能创收的研发方面自然力不从心,所以我们研究所才渐渐成为唯一一个还在坚持研发的抗生素工业研究所”。   易八贤说,去年以前国家每年给该研究所的拨款只有几十万元,这些连给离退休职工和老专家们的保险、医疗费都不够。因为实施国家重大新药创制专项计划,明年起研究所每年可以得到上千万的拨款,但即便如此,“相对于研发需要投入的巨额资金,也只是杯水车薪。”   为了弥补缺口,研究所目前主要通过为企业提供技术服务“创收”。“不过都还是抗生素领域内的事。”针对这种状况,易八贤呼吁,希望国家能引导科研单位、企业对抗生素研发领域的重视,增加投入,“要是能像重视免疫规划一样重视抗生素研发,研发格局肯定不是现在这样。”   □探秘抗生素研发   抗生素有替代品我国研究刚开始   研究所的300多人里,王辂所在的生物部是最大的一个团队。这里不仅承担着改良制药工艺的任务,还肩负着研发抗生素替代品的重任。   王辂介绍,目前抗生素的替代品有4个领域,经比较后认为比较可行的是噬菌体和噬菌体酶。“噬菌体不是病原体,它干的是攻击细菌的活。”人们可以通过噬菌体去攻击引起疾病的细菌,来治疗细菌感染。而传统的抗生素会不分青红皂白,杀死所有它遇到的细菌,好的细菌也难逃一劫。但噬菌体不会破坏人的微生物平衡,一种噬菌体只攻击一类致病细菌,所以病毒对噬菌体产生抗药性的几率也被降低了。   “这个理念已经存在很久了,只是我们国家最近几年才开始研究。”王辂说,二战后就有国家开始研究了,并进行了临床使用。从研发到新药上市同样需要漫长的周期,“开始研究”,就是在做一种技术性储备。   国内最全菌种库最冷只有-196℃   为研发抗生素,研究所位于成都龙潭工业区的总部有着国内最全的菌种库。这个最大的“宝库”存放着5万5千株,55万份微生物菌种。   三个冻库从4℃到-196℃   “宝库”名为微生物菌种资源保藏管理中心,核心地区是3个看似普通的房间。厚厚的铁门一打开,寒气扑面而来。第一间温度维持在0-4℃,第二间温度降到了零下80℃,第三间更加寒冷,用于保存菌株的液氮温度为-196℃,皮肤一接触就会冻伤。   每个铁柜,都有专人保存钥匙。一个柜子10层,拉开一层,满满都是5厘米长的玻璃瓶,每种菌株至少保存有10瓶。   全国刨土只台湾香港没去   这个菌库在研究所成立之初建立,随着几代人的积累,已经成为全国品种最齐全的菌种资源保藏管理中心。每一种新菌种的发现,都是这里的工作人员身体力行的结果。王辂说:“我们也许是全国唯一一家进行‘地毯式’搜集、发掘的中心了。”   “地毯式”搜集,是指工作人员刨遍了全国各个深山老林里的土,只为提取出土壤中的菌株。每年,中心都会固定进行4次采样,每次半个月到一个月,专门到远离人类生活区的地方采集土壤、枯枝树叶、植物等。   中心主管郭义东今年33岁,上山下乡已经是他的常态。为了寻找生物多样性丰富的地方,不同经纬度、海拔的地方都得去。全国大江南北,除了台湾、香港,哪里的土他都刨过。川西高原海拔四五千米的高山,上下也就一天。“菌种离开原生的环境久了会衰减、死亡,所以我们必须将它们迅速进行处理。”   新的菌种越来越难以发现   这些常人不屑一顾的泥土,其中都埋藏着宝贝。经过低温烘干、研细、稀释后,泥土中的菌株就会在培养皿中开始生长。再经过分类和鉴定,就能判断是什么菌种。随着时间推移,新的菌种已经越来越难以发现,不过中心工作人员仍在坚持每年进行采样,只为了找到新的菌种。   对菌种进行筛选,提取活性物质,然后再进行药效学研究、临床试验等一系列程序,才有可能研发出一种新的抗生素。“人类发现的抗生素鼻祖青霉素,就是从一种叫做青霉菌的菌株培养液中提取的药物。”郭义东说。
  • CFAS 2017真菌毒素检测技术专场
    p    strong 仪器信息网讯 /strong :2017年6月1日,由中国仪器仪表学会分析仪器分会和中国仪器仪表行业协会分析仪器分会共同主办的第六届中国食品与农产品安全检测技术与质量控制国际论坛(CFAS 2017)在北京国际会议中心开幕。500余位行业代表共聚一堂,为我国食品和农产品安全检测问题建言献策。 /p p span style=" COLOR: #00b0f0" strong 部分报告节选: /strong /span /p p style=" text-align: center " span style=" COLOR: #00b0f0" strong img src=" http://img1.17img.cn/17img/images/201706/insimg/61e77b40-4ce2-4836-bee9-3066d032f8e1.jpg" title=" 孔维军.jpg" / /strong /span /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 中国医学科学院药用植物研究所 孔维军 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " “药食同源”食品中真菌毒素快速检测研究 /span /strong /p p   孔维军从“药食同源”食品及真菌毒素简介、“药食同源”食品中真菌毒素检测实例、新型样品前处理技术和新型快速检测技术四方面对“药食同源”食品中真菌毒素快速检测研究做了阐述。孔维军谈到,真菌毒素是产毒真菌产生的有毒次级代谢产物。已发现的真菌毒素有400多种,其中毒性较强的主要包括黄曲霉毒素B1,、赫曲霉毒素A、玉米赤霉烯酮和伏马菌素等。“药食同源”食品在种植、采收、加工、运输和储藏过程中,由于操作不当极易污染真菌,进而产生各种真菌毒素。 /p p   接下来,孔维军介绍了IAC净化—在线柱后光化学衍生—HPLC—FLD法同时检测生姜及其制剂中5种真菌毒素和同位素内标—UHPLC—MS/MS法快速检测麦芽中11种真菌毒素。同时,孔维军还对新型样品前处理技术做了介绍,即包括:分子印迹技术和适配体亲和技术。此外,孔维军还讲到了流式微球技术新型快速检测方法。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/d8d382ca-c5a6-4203-b445-03c1665284a4.jpg" title=" 叶金.jpg" / /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 国家粮食局科学研究院 叶金 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " 《粮谷食品中多种真菌毒素检测和质控物质研究进展》 /span /strong /p p   叶金讲到,我国每年有3100万吨粮食在生产、储运、运输过程中被真菌污染,约占粮食年总产量的6.2%。2016年,全国有9个省份抽检发现食品真菌毒素污染问题,占不合格总数的1.5%。同时,针对于真菌毒素检测目前面临着很大的挑战,包括:样品检测量大 检测真菌毒素种类多 检测成本高 前处理耗时、耗力。接下来,叶金介绍了其课题组采用了快速前处理—稳定同位素稀释—LC—MS/MS同时测定粮食中的16种真菌毒素。该方法具有前处理简单、快速、成本低和基于稳定同位素稀释,消除基质干扰的影响,结果准确性高等优点。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/a0035847-1a60-43d4-8144-4c31a0a4d1a4.jpg" title=" 张奇.jpg" / /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 中国农业科学院油料作物研究所 张奇 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " 真菌毒素免疫试纸条检测技术:现状、问题与对策 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " img src=" http://img1.17img.cn/17img/images/201706/insimg/adbdd33d-3526-4e7d-ae4b-cc7e35f91488.jpg" title=" 张朝晖.jpg" / /span /strong /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 北京检验检疫技术中心 张朝晖 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " 同位素内标法在新版真菌毒素检测食品安全国家标准中的应用 /span /strong /p
  • 超级细菌几乎可抵御所有抗生素 10年内无药可治
    能抵御几乎所有抗生素 已致死一人 多为旅行感染 一些细菌被发现含NDM-1基因 澳大利亚专家观察“超级细菌”   比利时医疗人员13日证实,一名比利时人死于据信源自南亚的超级细菌。这种细菌抗药性极强,几乎能抵御所有抗生素,已经感染英国、美国、瑞典、荷兰、澳大利亚个别居民。欧洲专家预计,至少10年内没有抗生素可以有效对付这种细菌,因此呼吁全球密切监控阻止超级细菌传播。   一个多国专家小组提醒,超级细菌感染者多为曾在南亚国家旅行或接受手术的人。对于研究人员将超级细菌源头指向印度,印度政府表示强烈不满。   比利时 一感染者死亡   比利时布鲁塞尔一家医院的医生13日告诉当地媒体,一名曾在巴基斯坦出车祸并在那里接受短暂治疗的比利时男子于今年6月死亡。这名医生没有交代死者身份,只说他在巴基斯坦入院治疗时感染含超级抗药基因NDM—1的细菌。“他遭遇车祸,腿部受伤,因接受大手术入院治疗,随后回到比利时,但回国时已感染这种超级细菌。”医生说。   医生曾用强力抗生素黏菌素治疗这名患者,但仍无法挽救他的生命。按法新社说法,这名比利时男子是“NDM—1超级细菌”致死第一人。另有一名比利时男子因在黑山遭遇车祸感染这种超级细菌,随后在比利时接受治疗,上月康复。   英国 去年已发现病例   英国医学杂志《柳叶刀》最新一期刊登研究报告称,2009年英国就已经出现了NDM—1感染病例的增加。参与这项研究的英国健康保护署专家大卫利弗莫尔表示,大部分的NDM—1感染都与曾前往印度等南亚国家旅行或接受当地治疗的人有关。   而研究者在英国研究的37个病人中,至少有17人曾在过去1年中前往过印度或巴基斯坦,他们中至少有14人曾在这两个国家接受过治疗,包括肾脏移植手术、骨髓移植手术、整容手术等。不过,英国也有10例感染出现在完全没有接受过任何海外治疗的病人身上。   澳大利亚 三人确诊   研究人员警告,随着越来越多美国人和欧洲人赴印度、巴基斯坦接受整形手术,超级细菌可能在全球蔓延。法新社援引堪培拉医院传染病部门主任科利尼翁的话报道,曾赴印度接受手术的3名澳大利亚人确诊感染超级细菌,“我们在他们的尿液中发现这种具多重抗药性、难以对付的细菌。如果细菌传染给其他人,确实是个问题。”   法国 “超级细菌”威力减弱   法国国家医学与健康研究所13日报告说,该国一家医院日前在一名受伤者的皮肤样本中发现具有超强抗药基因的细菌菌株,但这些菌株的抗药性不太强,这名受伤者也未受到感染。   研究所专家诺曼德当天对媒体说,医生在治疗一名受伤者时提取了他的皮肤样本,后来发现样本中有一些细菌菌株含有超级抗药的NDM-1基因,患者随后被隔离治疗。根据目前掌握的情况,这名受伤者并未感染“超级细菌”,其健康状况很稳定。   NDM-1基因之所以引起医学界的担忧,是因为携有该基因的一些细菌对抗生素具有抗药性。但法国发现的携有这一基因的细菌对几种药物不具备有效“抵抗力”,法国医学专家因此呼吁民众不要惊慌。   危害多大 10年内无药可治   NDM—1,意思是“新德里金属蛋白酶—1”,是一种超级抗药性基因。这种脱氧核糖核酸结构可以在同种甚至异种细菌之间“轻松”复制。研究人员现阶段多在大肠杆菌和肺炎克雷伯氏菌等细菌内发现NDM—1基因。   含这种基因的细菌对几乎所有抗生素具有免疫力。就连“杀伤性较强的”碳青霉烯类抗生素也拿这类细菌束手无策。欧洲临床微生物和感染疾病学会说,预计至少10年内没有抗生素可以“消灭”含NDM—1基因的细菌。澳大利亚堪培拉医院传染病部门主任彼得科利尼翁说:“这类细菌难以对付,(更准确地说,)我们没有任何药物可以对付它。”   如何应对 全球严密监控   美联社分析,这种超级细菌虽恐怖,但控制它的传播并非没有办法,毕竟迄今感染患者人数较少。英国伯明翰大学分子遗传学教授克里斯托弗托马斯说:“我们可能正处于新一轮抗生素抗药性的初始阶段,我们仍有能力阻止它。”他认为,良好的监控和疾病控制程序可以阻止超级细菌传播。   加拿大卡尔加里大学微生物学专家约翰皮特奥特这般评论《柳叶刀传染病》那篇关于超级细菌的报告:“应该用极端严密的监控阻止多重抗药性细菌传播。”他建议国际社会加强对超级细菌的监控,尤其是那些推广“医疗旅行”的国家。   谁是祸首?滥用抗生素所致   研究人员认为,滥用抗生素是出现超级细菌的原因。抗生素诞生之初曾是杀菌的神奇武器,但细菌也逐渐进化出抗药性,近年来屡屡出现能抵抗多种抗生素的超级细菌。由于新型抗生素的研发速度相对较慢,对付超级细菌已经成为现代医学面临的一个难题。   风波:印度抗议 凭啥叫“新德里”   印度卫生部发表声明,对英国杂志刊登报告将超级细菌源头指向印度表示不满,并强烈抗议英国卫生部的相关警告及把使细菌获得超级抗药性的基因命为“新德里金属蛋白酶—1”(简称NDM-1)的做法。   印度卫生部声明称,把超级细菌和“印度医院外科手术的安全联系在一起,还用彼此不相关的例子证明这一点……从而说明印度不是一个安全的地方,是错误的。”印度政府还抗议用“新德里金属蛋白酶—1”命名超级抗药基因。印度著名心脏病专家特里罕认为,将“超级细菌”命名为“新德里”,是将这样一个可怕的致病源头直接指向印度,将对印度“医疗旅游”产生严重负面影响。印度外科手术费用远比欧美便宜。据新华社   链接:超级病菌怎样炼成?   1920年 医院感染的主要病原菌是链球菌。   1960年 产生了耐甲氧西林的金黄色葡萄球菌(MRSA),MRSA取代链球菌成为医院感染的主要菌种。耐青霉素的肺炎链球菌同时出现。   1990年 耐万古霉素的肠球菌、耐链霉素的“食肉链球菌”被发现。   2000年 出现绿脓杆菌,对氨苄西林、阿莫西林、西力欣等8种抗生素的耐药性达100% 肺炎克雷伯氏菌,对西力欣、复达欣等16种高档抗生素的耐药性高达52%-100%。   2010年 研究者发现携有一个特殊基因的数种细菌具有超级抗药性,可使细菌获得超级抗药性的基因名为NDM-1。
  • 专家:预防“超级细菌”的关键是抵制滥用抗生素
    在印度、巴基斯坦等国出现的对大部分抗菌药物耐药的超级病菌在我国出现了。10月26日,中国疾控中心报告称我国检出3例超级细菌病例。3个病例来自宁夏和福建,其中一例因肺癌死亡。“超级细菌”的露面,引起了人们的关注。这是怎样一个病菌?为什么耐药?什么人容易感染?老百姓如何应对、预防“超级细菌”?昨日,记者就此采访了疾控、医疗专家。   超级细菌能自由复制移动   广西临床检验中心主任周向阳称,这次,人们将在印度首先发现耐药病菌称为“超级细菌”,主要是因为此类细菌对绝大多数现有的抗菌药物耐药,并根据发现地命名为(NDM-1)新型超级病菌。   面对这种超级病菌,我国卫生部门高度重视,专门组织专家制定了相关诊疗指南。据指南介绍,此类细菌能够产生可水解β-内酰胺类抗菌药物的酶,对青霉素类、头孢菌素类和碳青霉烯类药物广泛耐药。   实际上60%—70%的细菌都有耐药性,但不会对全部的抗菌药物耐药,而超级病菌则对绝大多数抗菌药物耐药。而细菌虽小,但很聪明,耐药的方式有多种机制。周向阳说,有的细菌耐药是能分解抗生素,使药物失效 有的细菌则是采用抽水的方式,将到来的抗生素泵出细胞,从而不受危害。超级病菌的这种耐药性是以DNA 的结构出现的,带有耐药基因的质粒在细菌细胞里,它可以在细菌中自由复制和移动,从而使这种病菌有传播变异的惊人潜能。   滥用抗生素催生超级细菌   滥用抗生素是出现超级细菌的原因。据介绍,所有的“超级细菌”都是由普通细菌变异而成的。也正是由于滥用抗生素,导致细菌基因突变,从而产生了“超级细菌”。   除了人在治病中不合理使用抗生素外,养殖鸡、鸭、鱼等农产品时,养殖户也使用抗生素给鸡、鸭、鱼等防病治病。这种情况下,自然环境中的一些抗生素敏感的细菌会死亡,对抗生素不敏感的细菌会生存下来,从而产生耐药细菌。不知不觉的循环,变异细菌越来越多,人类费大力气研制出的新药,寿命越来越短。这些都会威胁到人的健康。   住院病人易感染超级细菌   超级细菌的传播途径和普通细菌一样。   “由于医院的病人集中,经常进行手术、器械操作,也就成了超级病菌传播的高危地带。”周向阳说,易感人群包括疾病危重、入住重症监护室、长期使用抗菌药物、插管、机械通气等患者。感染超级病菌后,并不会马上发病,当人的免疫力降低时才会发病,发病后才会发现对大多数抗菌药物耐药。   据卫生部制定的诊疗指南介绍,超级病菌的传播方式尚无研究报道,但根据患者感染情况以及细菌本身特点,可能主要通过密切接触,如污染的手和物品等方式感染。感染类型包括泌尿道感染、伤口感染、医院获得性肺炎、呼吸机相关肺炎、血流感染、导管相关感染等。感染患者抗菌治疗无效,特别是碳青霉烯类治疗无效,需要考虑产NDM-1细菌感染可能,及时采集临床样本进行细菌检测。   提高自身免疫力预防超级细菌   今年9月底,国家卫生部召集各省有关人员,专门就超级病菌的出现,举办了一个培训会。会上介绍了超级病菌的最新情况,及预防和控制。   参加培训的周向阳告诉记者,超级病菌的传播途径和普通细菌一样,主要通过接触传染。开放的腔道、溃烂的伤口都易粘染细菌。因此预防超级病菌,首先是医院,在易感染病菌的环节做好消毒。如公共场所中的门把手。医务人员和去过医院的人,要勤洗手。尤其是医务人员在接触病人前后、进行侵入性操作前、接触病人使用的物品或处理其分泌物、排泄物后,必须洗手或用含醇类速干手消毒剂擦手。   普通人如何预防超级病菌呢?专家呼吁,预防更多的细菌突变成超级细菌,关键是整个社会要在各个环节上合理使用抗生素,普通人要做到勤洗手,培养良好的生活习惯,提高自身的免疫力。自身免疫力是对付超级细菌的最好武器。   区医院临床药学中心危华玲主任医师告诉记者,90%以上的初期感冒是病毒引起,不需要服用抗菌药物,更没有必要服用抗菌药物来防病。抗菌药物一定要在医生的指导下服用,不要自行购买。本来你的病只需要使用二代青霉素就可治愈的,你使用了最新的青霉素治病,病好了,但下次生病时,病菌会对所有青霉素耐药。作为不知道专业知识的普通人,平时小病,能不用抗菌药物就不用 只在有病症的情况下,经医生指导服用抗菌药物,同时不要自行去药店买抗菌药物。出入医疗场所,一定要记得消毒、洗手,做好最基本的个人卫生防护,以免细菌持续扩散。
  • “超级细菌”传播性不强,但应高度重视滥用抗生素问题
    一种名叫NDM-1的&ldquo 超级细菌&rdquo 最近在世界范围内引起了人们的高度关注,它具有极强的耐药性,哪怕最高级的抗生素都很难对付它。对此,瑞金医院临床微生物科主任倪语星教授昨天表示:&ldquo 超级细菌的出现提醒我们必须高度重视滥用抗生素问题,但细菌与SARS这类的病毒有截然不同的传播方法,它的传播性暂时还不会太强。&rdquo 最先报道这种超级细菌的是新一期的英国《柳叶刀传染病》杂志,英国卡迪夫大学医学院蒂莫西&bull 沃什发表了一篇论文,论文称&ldquo 超级细菌&rdquo NDM-1具有超强的抗生素耐药性。 NDM-1并不是细菌的名称,而是一种耐药基因,能够在细菌之间传递,一旦细菌获得这一基因,就可能变身为超级耐药细菌。目前,科学家多在大肠埃希菌和肺炎克雷伯菌等中发现了此类变异的细菌。携带了这一耐药基因的细菌能够产生一种酶,名叫新德里一号金属酶,英文缩写为NDM-1,而它恰恰能水解和破坏大多数抗生素,使之失效。 大肠埃希菌和肺炎克雷伯菌是两种比较常见的细菌,前者会引起泌尿道感染,而后者是细菌性肺炎的致病因素。 作为临床微生物专家,倪语星对NDM-1的出现非常重视和警惕,但他也表示,公众需要了解的是超级细菌的传播途径,学会预防,而非恐慌。与此前引起人们广为关注的SARS、甲流或者禽流感不同,这些细菌虽然常见,但并不是通过呼吸道或飞沫传播的,而是通过接触传播的,因此养成&ldquo 勤洗手、勤洗澡&rdquo 等个人卫生习惯,医疗机构加强消毒隔离等医院感染控制措施,就能够防护。 不过,倪语星说:&ldquo 我们需要反思超级耐药细菌产生的原因,人类正在自尝滥用抗生素的苦果。&rdquo NDM-1的出现已经是国际上大众媒体关注的第二种超级细菌了,此前一种名叫CA-MRSA,也就是社区获得性耐甲氧西林金黄色葡萄球菌。 近80年来,人类一直在用抗菌药物与细菌打一场&ldquo 道高一尺,魔高一丈&rdquo 的消耗战,在此过程中,抗菌药物不断升级,从青霉素到头孢菌素再到碳青霉烯类,而细菌也从普通耐药进化为超级耐药。 根据调查,这两种携带NDM-1的细菌最初都源于医院。在最初感染的患者中,有不少病例曾去过南亚&ldquo 医疗旅行&rdquo ,在当地接受过整容或者移植手术。超级细菌一般最初仅在医院内流行,感染住院且机体抵抗力较差的病人,这表明此类细菌虽然耐药性极强,可致病能力相对较弱。 令人担忧的是,细菌会继续变异,耐甲氧西林金黄色葡萄球菌就经过变异,增强了致病能力,&ldquo 走出了医院,走进了社区&rdquo 。 倪语星说:&ldquo 人们不能再继续制造超级细菌了,抗生素在更大的范围内甚至整个社会都必须慎重使用。&rdquo 对于普通病人而言,不要随便服用抗生素。患上例如感冒等上呼吸道疾病都是病毒感染而不是细菌感染,不需要服用抗菌药物,只需要喝水、卧床休息,大部分情况下,就能够自行痊愈。 对于畜牧业者,也不能给鱼、猪、牛、羊等动物滥用抗生素,因为由此产生的耐药菌会通过排泄物进入泥土、水等环境中,最终也会回到人类身上。
  • 如何拯救你 那些被污染的细胞
    污染是细胞培养的大敌。预防和避免污染是细胞培养成功的关键之一。一开始就要十分重视,防止污染,否则会前功尽弃,不仅浪费时间,而且浪费人力、物力,甚至造成无法弥补的损失。   (一)污染的类型   细胞培养过程中的污染不仅仅指微生物,而且还包括所有混入培养环境中的、对细胞生存有害或造成细胞不纯的物质,包括生物和化学物质。   1、细菌污染   细菌污染是实验室细胞培养中常见的污染,即使在细胞培养液中加入了抗菌素,也可能因为操作不慎而引起污染。最常见的有革兰氏阳性菌,如枯草杆菌以及大肠杆菌、假单胞菌等革兰氏阴性菌,其中又以白色葡萄球菌较常见。   培养细胞受细菌污染后,会出现培养液变混浊,pH改变。污染后细胞发生病理改变,胞内颗粒增多、增粗,最后变圆脱落死亡。   2、真菌污染   真菌污染是细胞培养过程中最常见的一种,最常见的真菌有烟曲霉、黑曲菌、孔子霉、毛霉菌、白色念珠菌和酵母菌。   培养细胞受真菌污染后,可见培养液中漂浮着白色或浅黄色的小点,有的散在生长,培养液一般不发生混浊 倒置显微镜下可见丝状、管状或树枝状的菌丝纵横交错在细胞之间或培养基中,有的呈链状排列。   真菌污染后,细胞生长变慢,但最后由于营养耗尽及毒性作用而使细胞脱落死亡。    丝状菌污染   3、支原体污染   支原体是介于细菌与病毒之间能独立生活的最小微生物,最小直径0.2&mu m,一般过滤除菌无法去除它,光镜下难以看清它的形态结构。开始不易发现,能在偏碱条件下生存,对青霉素有抗药性。多吸附于细胞表面或散在于细胞之间。   培养细胞受支原体污染后,部分敏感细胞可见细胞生长增殖变慢,部分细胞变圆,从瓶壁脱落。但多数细胞污染后无明显变化,或略有变化,若不及时处理,还会产生交叉污染。 阳性 阴性   4、病毒污染   组织细胞培养过程中,如果没有除去潜在的病毒,就会产生病毒污染。目前,从原代猴肾细胞的培养中已发现不少于20种血清性病毒。   尽管病毒污染的细胞不影响原代培养,但生产疫苗是不安全的。因此,潜在病毒是细胞大量生产和疫苗、干扰素等生物制品制作中的难题。   5、非同种细胞污染   由于细胞培养操作时各细胞株所需的器材和溶液没有严格分开,往往会使一种细胞被另一种细胞污染。目前,世界上已有几十种细胞都被HeLa细胞所污染,致使许多实验宣告无效。   非细胞培养物所造成的化学成分的污染也偶有发生,大多是由于细胞培养所需物品清洗消毒不彻底而带入一些有毒化学物质所致。   (二)污染的鉴别   1、细菌、真菌污染的检测  (1)肉眼观察   细菌、真菌污染常在传代、换液、加样等开放性操作之后发生,而且增生迅速,若有污染,在48小时内可明显观察到,例如培养液变混浊,或略加振荡有很多漂浮物漂起。   (2)接种观察   采用普通肉汤接种或用未加双抗药物的培养液接种,也可发现是否有污染。   (3)镜下观察   在倒置显微镜的高倍镜下可见培养液中有大量圆球状颗粒漂浮,即为细菌污染。   若细胞之间有丝状、管状、树枝状或卵形的物质常为真菌污染。   2、支原体污染的检测   (1)相差显微镜观察   直接取少许培养液滴在载物片上,再盖上盖片观察,支原体在镜下呈暗色微小颗粒,多位于细胞与细胞之间,有时可见类似于布朗运动的表现。应注意与细胞破碎溢出的内容物如线粒体等相区别。   (2)荧光染色法观察   用荧光染料Hoechst33258,此染料能与DNA特异地结合,可使支原体内的DNA着色,荧光显微镜下支原体呈绿色小点,散在于细胞周围或附于细胞表面。   (3)电镜检测   若条件许可,可用扫描电镜或透射电镜观察。一般在细胞培养48~72小时,细胞接近汇合前,用胰酶消化细胞制成细胞悬液后进行固定、包埋、切片后才能进行观察。    支原体扫描电镜图片   (4)培养检测   将细胞悬液5mL加入45mL支原体肉汤培养基,培养14天后观察肉汤培养有无雾状沉淀,然后取0.5ml加入已冷却到50℃的培养基中,再用琼脂培养基做分离培养,37℃培养3天观察有无&ldquo 荷包蛋&rdquo 菌落出现。   3 、病毒的检测   1) 应用电镜技术快速诊断动物病毒病    冠状病毒电镜图   2) 逆转录_聚合酶链反应RT_PCR检测病毒   (三)污染的清除   培养细胞一经污染,多数较难处理。如果污染细胞价值不大,宜弃之 在寻找原因后彻底消毒操作室,复苏或重新购置细胞,再培养。   若污染细胞价值较大,又难于重新得到,可采取以下办法清除。   一、细菌和真菌的清除   1、使用抗生素   抗生素对杀灭细菌较有效。联合用药比单独用药效果好。预防用药比污染后再用药效果好。预防用药一般用双抗生素,污染后清除用药需采用大于常用量5~10倍的冲洗法,于加药后作用24~48小时,再换常规培养液。此法在污染早期有效。   二、支原体的清除   1、用MRA处理   用MRA(Mycoplasma Removal Agent)处理细胞,每4天换一次液,连续处理15天以确保细胞纯洁健康,效果好.   2、用清洗纯化法清除支原体污染的方法   细胞营养驯化&rarr 优质细胞群的筛选&rarr 细胞清洗&rarr 反复离心洗涤   其原理是利用离心力、细胞、微生物质量和悬液的浮力差达到清除支原体的目的。由于支原体个体小且除发酵支原体外多为细胞外寄生,所以通过反复洗涤细胞和低速离心换液使其中潜在的支原体数量降低至极限。   如结合敏感抗生素的抑杀作用,可达到更好的效果。   3、药物辅助加温处理   先用药物处理后,再将污染的组织培养物放在41℃培养18小时,可杀死支原体,但对细胞有不良影响。   4、使用支原体特异性血清   用5%的兔支原体免疫血清可去除支原体污染,因特异抗体可抑制支原体生长,故经抗血清处理后11天即转为阴性,并且5个月后仍为阴性。但此法比较麻烦,不如用抗生素方便、经济。   (四)、污染的预防   预防是防止细胞培养过程中发生污染的最好办法。只有预防工作做在前,才能将发生污染的可能性降到最小程度。   一般预防可从以下几方面着手:   1、添加抗生素   2、从物品、用品消毒灭菌着手   细胞培养所用物品清洗、消毒要彻底,各种溶液灭菌除菌要仔细,并在无菌试验阴性后才能使用。   操作室及剩余的无菌器材要定期清洁消毒灭菌。   3、从操作者做起   (1)进无菌室前要用肥皂洗手,按规定穿隔离衣。工作开始要先用75%酒精棉球擦手、擦瓶口和烧灼瓶口。   (2)操作者动作要轻,必须在火焰周围无菌区内打开瓶口,并将瓶口转动烧灼。操作时尽量不要谈话,若打喷嚏或咳嗽应转向背面。   (3)操作时要常更换吸管,一旦发现吸管口接触了手和其他污染物品应弃去。实验完毕用消毒水浸泡的纱布擦台面。   4、防止细胞交叉污染   在进行多种细胞培养操作时,所用器具要严格区分。   在进行换液或传代操作时,注射器和滴管不要触及细胞培养瓶瓶口,以免把细胞带到培养液中污染其他细胞。   细胞一旦购置或从别处引入,均应及早留种冻存,一旦发生污染可重新复苏培养。   5、无菌室的彻底消毒   1) 0.1%新洁尔灭全面彻底擦洗无菌室   2)甲醛熏蒸法:甲醛是一种广谱灭菌剂菌,其水溶液和气休对各种细菌、芽孢及真菌等微生物均有杀灭作用。
  • 扒开新型冠状病毒的外衣
    今年的春节,我们要从一只蝙蝠,哦不,是从一种病毒说起~(一)要理解冠状病毒,首先要说说病毒病毒是一种个体微小,结构简单,只含一种核酸(DNA或RNA),必须在活细胞内寄生并以复制方式增殖的非细胞型生物。我们常听说的病毒有鼻病毒(主要引起人的感冒)、HIV病毒(艾滋病的元凶)、埃博拉病毒(致死率超高)、狂犬病毒(致死率近乎100%的牛X病毒)… … 到现在为止,谁都不知道在地球上到底有多少种病毒,可能有几百万种,可能有几亿种,反正就是在任何地方、任何生物体中都存在数量不一的病毒,但其中只有约5000种已经被详细描述。(二)病毒的分类病毒那么多,想要正确认识和研究病毒就需要根据不同的依据对病毒进行分类。从遗传物质分类:DNA病毒、RNA病毒、蛋白质病毒(如:朊病毒,疯牛病就属于软病毒感染的病)从病毒结构分类:真病毒(Euvirus,简称病毒)和亚病毒(Subvirus,包括类病毒、拟病毒、朊病毒)从寄主类型分类:噬菌体(细菌病毒)、植物病毒(如烟草花叶病毒)、动物病毒(如禽流感病毒、天花病毒、HⅣ等)从性质来分:温和病毒(例如HⅣ)、烈性病毒(例如狂犬病毒)。病毒的形态:⑴球状病毒(脊髓灰质炎病毒)⑵杆状病毒(烟草花叶病毒)⑶砖形病毒(天花病毒)⑷冠状病毒(SARS病毒)⑸丝状病毒(埃博拉病毒)… … OK,知道了病毒的分类,我们可以将这次发现的新型冠状病毒理解为主要感染动物的冠状RNA病毒(注:非生物学严谨描述,仅为简单理解)(三)冠状病毒1937年,冠状病毒(Coronaviruses)首先从鸡身上分离出来。1965年,分离出第一株人的冠状病毒。由于在电子显微镜下可观察到其外膜上有明显的棒状粒子突起,使其形态看上去像中世纪欧洲帝王的皇冠,因此命名为“冠状病毒”。到目前为止,大约有15种不同冠状病毒株被发现,能够感染多种哺乳动物和鸟类,到本次新型冠状病毒爆发前,已知的仅有6种可以感染人。其中4种在人群中较为普遍,仅引起普通感冒和一些轻微的呼吸道疾病。另外2种是我们熟知的SARS冠状病毒(引起非典)和MERS冠状病毒(引起中东呼吸综合征)。虽然都叫做冠状病毒,但2019年新发现的新型冠状病毒与SARS和MERS还是有很大的不同。从感染的速度和人群来看,受各种因素影响,新型冠状病毒的传染性比较强,但致死率较低,只要做好防护,可以有效避免感染,大家不用过度担心。(四)传播方式1.直接传播:指患者咳嗽、喷嚏、说话的飞沫、呼出的气体近距离直接吸入导致的感染2. 接触传播:指飞沫沉积在物品表面接触污染手后,再接触口腔、鼻腔、眼睛等粘膜导致的感染3.气溶胶传播(有待论证):指飞沫混合在空气中,形成气沫核(气溶胶)吸入后导致的感染(五)新冠病毒入侵机理这里我们分享一篇通俗易懂的文章分享给大家,即使没有相关的生物学知识也可以快速了解。《武汉不明原因肺炎初步判定… … 》(六)如何识别病毒结合世界卫生组织于2020年1月12日发布的针对疑似新型冠状病毒感染造成严重急性呼吸道感染的临床处置指南(通过RT-PCR进行nCoV检测)。1月25日,上海市科学技术委员会公布中国首款法定检验机构检定合格的新型冠状病毒检测产品;在获得国家药监局批文后,被发往各地医院、疾控中心和出入境检验检疫局,用于测定疑似患者的样本中是否有新型冠状病毒,可望加快识别疑似病例。此次研发出来的试剂盒的科学原理名为“荧光PCR(聚合酶链式反应)法”,是一种用于放大扩增特定遗传片段的分子生物学技术,能利用聚合酶链式反应将微量的基因片段大幅扩增,从而检测出带有特定基因片段的病毒。荧光PCR(聚合酶链式反应)法是目前灵敏度和准确度最高的检测手段,也是现用的新型冠状病毒的确诊手段它通过聚合酶链式反应,即PCR,检测病人样品的核酸提取物中是否含有该病毒所独有的基因。这种检测方法的前提是必须知晓病毒完整基因序列。在这一点上,我们十分幸运,因为此次“新型冠状病毒感染性肺炎”的罪魁祸首新型冠状病毒的基因序列已被科学家们破译,找到了它所独有的基因片段,因此核酸检测成为可能。划重点!要对病毒进行核酸检测,首先必须从各种医疗样本中提纯出核酸样本。截止2020年2月5日,湖北省全省累计检测样本89600多份,这接近90000的样本有咽拭子,血液等,不同的样本必须经过处理才能得到病毒核酸。如此大的样本量,在医疗资源极度匮乏的当下,自动化的仪器设备成了解决此次疫情检测难题的急先锋。新芝生物NP-2032全自动核酸提取仪可解放检测人员双手,是病毒核酸提取的必备神器!NP-2032全自动核酸提取仪 性能特点 快速高效纯化后的核酸纯度可满足各类下游实验需求核酸回收率95%,磁珠回收率95%合计约20-40min可完成32个样本提取(依试剂而定)安全可靠全自动操作搭配一次性耗材,减少人员接触内置可定时紫外消毒,高效清洁排气风扇,有效避免气溶胶污染运行中防开门报警并自动停止运动结构,保障操作安全通用性强多速度多模块供选择,且可储存100个程序,满足不同客户要求自定义裂解、洗脱温度适合于不同样本,如动植物组织、血清、血浆等操控灵活大屏幕全彩显示,触控式操作,简单易用可自定义快捷程序,一键启动人性化的观察窗、显示屏设计,方便操作▼End
  • 卫生部提名6类药物治疗“抗击”超级细菌
    国际上“叫嚣”了3个月的“超级细菌”终于在中国内地现身。   10月26日,中国疾病预防控制中心称,目前该中心已检出三株DNM-1基因阳性细菌。这也是中国内地首次公布发现了“超级细菌”的感染病例。此前,我国香港地区曾公布发现相关感染病例。据了解,2010年,我国“细菌耐药监测网”已覆盖170余家三级甲等医院。   而据记者获悉,卫生部最近下发了《产NDM-1泛耐药肠杆菌科细菌感染诊疗指南(试行版)》,推荐了替加环素、多粘菌素、碳青霉烯类、氨基糖苷类和氟喹诺酮类、磷霉素等6类药物。相关行业研究员分析,这将利好于一些和抗生素相关的药企,如安科生物、海王生物、莱美药业等。   两名患儿没出国记录   自今年8月起,带有NDM-1耐药基因的“超级细菌”在英、美、加等近20个国家和地区传播,造成数百人感染。   10月27日,中国疾病预防控制中心首次发布消息称,近期该中心和中国军事医学科学院的实验室,在对既往收集保存的菌株进行DNM-1耐药基因检测中,共检出三株DNM-1基因阳性细菌。其中,2株细菌为屎肠球菌由宁夏自治区疾病预防控制中心送检,菌株分离自该区某医院的两名新生儿粪便标本。   这两个病例分别为3月8日与3月11日于宁夏回族自治区某县级医院出生的婴儿,均为低体重儿。两名患儿均于出生后2~3日出现腹泻和呼吸道感染症状,其中一名患儿还伴有缺氧表现,分别在住院治疗9天和14天后痊愈出院,目前两患儿健康状况良好。中国疾控中心指出,这两名患者并没有出国记录。   此外,中国军事医学科学院实验室还检出了一例鲍曼不动杆菌,由福建省某医院送检,菌株分离自该医院的一名83岁的住院老年患者标本。该患者已经于6月11日死于肺癌晚期,而鲍曼不动杆菌感染在该患者病程发展中的作用尚不明确。   不会在普通人群中传播   中国药理学会化疗药理专业委员会秘书长周黎明告诉 《每日经济新闻》,“超级细菌”主要在住院病人中引起感染,不会在社区的普通人群中广泛传播,无需恐慌。她同时表示,“细菌耐药性并不是新问题,在我国医院中,以往也曾发生过类似的现象,相关的防控工作,其实医院的传染科一直在做。”   据新华社的报道,卫生部全国细菌耐药监测网负责人肖永红介绍,国外相关研究资料显示,某些临床疾病已经治愈的出院患者仍可携带DNM-1耐药基因细菌,但由于这类耐药菌多为条件致病菌或人体正常菌群细菌,它们通常不会在社区环境内普通人群中传播。   目前,各国通常不建议对这类已出院的“健康”带菌者进行“积极的”抗菌治疗,防止应用高级别抗生素引起病例体内菌群失调,甚至由于高级别抗生素的选择性压力,演变出耐药性更强的菌株。   专家表示,对这类带菌者,主要是在治愈原有疾病基础上,提高机体抵抗力。   官方推荐6类药物   为了防控耐药细菌,卫生部在全国建立耐药细菌监控网络,要求各地发现“超级细菌”要在12小时内报告。   此外,在近日下发的《产NDM-1泛耐药肠杆菌科细菌感染诊疗指南(试行版)》中,卫生部还推荐了替加环素、多粘菌素、碳青霉烯类、氨基糖苷类和氟喹诺酮类、磷霉素这6类药物。   具体推荐的治疗方案包括:对于轻、中度感染,敏感药物单用即可,如氨基糖苷类、氟喹诺酮类、磷霉素等,也可以联合用药,无效患者可以选用替加环素、多粘菌素 对于重度感染,根据药物敏感性测定结果,选择敏感或相对敏感抗菌药物联合用药。   周黎明表示,卫生部推荐的药,是对细菌耐药性相对较低的药物,但对每一个病例来说,还需要医院根据个体差异来决定用药。   在分析“超级细菌”现身国内这一事件对国内企业的影响时,中投顾问医药行业研究员郭凡礼表示,将利好于一些和抗生素相关的药企,如安科生物、海王生物、莱美药业等。   “另外,受到利好影响的公司还包括双鹭药业及华神集团等基因抗体药物公司,科华生物、达安基因等基因检测服务公司,新华医疗等消毒医疗器械公司,以及海正药业及华海药业等原料药公司。”郭凡礼指出。   中国攻关“超级细菌”   国家卫生部在近日发布的 “专家解读耐药细菌知识”中称,抗菌药物替代产品,如抗菌多肽、噬菌体等,大多仍停留在实验研究阶段,离临床应用还很遥远。   “之所以称其‘超级’,正是因为在临床应用上暂时还没有特效药。”周黎明说。   中国科学院上海药物研究所办公室徐小姐指出,上海药物研究所已经成立了“抗NDM-1药物研究联合攻关小组”,重点开展“超级细菌靶标确证及感染机制研究”、“抗超级细菌药物筛选模型的建立”、“抗超级细菌化合物的设计与筛选”和“大规模化合物样品的合成”的研究。   徐小姐告诉记者“但是这个研究也刚刚启动不久,具体什么时候会有成果尚不清楚。”
  • Pribolab明星产品—真菌毒素检测中的碳13稳定同位素内标
    h2 style=" margin-bottom:11px text-align:center background:white" span style=" font-size: 17px font-family:萍方-简 color:#333333 letter-spacing: 0 background:white" span Pribolab || /span 真菌毒素 sup span 13 /span /sup span C /span 稳定同位素内标 /span /h2 p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/202009/uepic/401ecf02-1ec2-4c52-b4a1-dca5159a427c.jpg" title=" clip_image002.jpg" / /span /p p style=" text-indent:28px" span style=" color: rgb(51, 51, 51) letter-spacing: 0px background: white font-family: arial, helvetica, sans-serif font-size: 10px " 随着质谱技术的应用,2020版《中国药典》及2017年最新颁布的真菌毒素新国标中已采用同位素内标稀释法,印证了同位素内标在真菌毒素检测领域举足轻重的地位!加之稳定性同位素内标无影响因子,可以有效校正基质效应;消除实验误差,有效提高准确度和精密度;结合普瑞邦固相净化柱完美实现一步净化,选择在待测样品中,净化过程或上LC-MS/MS前的步骤加入稳定性同位素内标(不同步骤加入有差异),可实现多毒素同时快速检测。 /span /p p style=" text-indent:28px" span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-size: 14px letter-spacing: 1px " 独有的生物合成专利技术以及三重纯化方式推出的 /span /strong strong span style=" color: rgb(0, 158, 125) letter-spacing: 1px " Pribolab /span /strong strong span style=" color: rgb(0, 158, 125) letter-spacing: 1px " 真菌毒素 sup 13 /sup C稳定同位素内标, /span /strong strong span style=" font-size: 14px letter-spacing: 1px " 我司可提供常用规格1.2mL,臻品大包装2~10mL,亦可根据您的需求提供浓度、规格定制服务。 /span /strong /span /p p style=" text-indent:28px" span style=" font-size:10px letter-spacing:1px" & nbsp /span /p p style=" text-align:left" strong span style=" font-size:16px font-family: 宋体 color:#366092" 全新外包装,创新真菌毒素标准溶液长期存储模式 /span /strong strong span style=" font-size:11px font-family:宋体 color:#366092" “ /span /strong strong span style=" font-size:11px font-family: 宋体 color:#366092" 迷你取样口,防溢液漏液 span ” /span /span /strong /p p span img src=" https://img1.17img.cn/17img/images/202009/noimg/67c50ec5-5b74-4457-b053-40ee486de3df.gif" alt=" 说明: IMG_257" title=" clip_image004.gif" / /span /p p strong span style=" font-size:11px font-family:宋体 color:#366092" 注:取样针支持单独购买 /span /strong /p p style=" margin-bottom:16px text-align:left" strong span style=" font-size:16px font-family:宋体 color:#366092" & nbsp /span /strong /p p style=" text-align:justify text-justify:inter-ideograph background:white" strong span style=" font-family:宋体 color:#366092" 产品速递,现货充足,欢迎详询! span br/ br/ /span /span /strong /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 283" style=" border-collapse:collapse" tbody tr style=" height:28px" class=" firstRow" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 黄曲霉毒素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 脱氧雪腐镰刀菌烯醇 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 伏马毒素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" T-2/HT-2 /span /strong strong span style=" font-size:13px font-family: 华文细黑 color:#404040" 毒素 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family: & #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing: 1px" 交链孢毒素 /span /strong strong /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 玉米赤霉烯酮 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 赭曲霉毒素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 展青毒素 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 黄绿青霉素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 桔青霉素 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 白僵菌素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 细格菌素 /span /strong /p /td /tr /tbody /table p style=" text-align:justify text-justify:inter-ideograph background:white" strong span style=" font-family:宋体 color:#366092" & nbsp /span /strong /p p span style=" font-family: arial, helvetica, sans-serif " strong span style=" color: rgb(0, 158, 125) letter-spacing: 1px " 贴心小知识: /span /strong /span /p p style=" margin-left:28px" span style=" font-family: arial, helvetica, sans-serif " span style=" font-size: 13px font-family: Wingdings color: rgb(51, 51, 51) letter-spacing: 0px " l span style=" font: 9px & quot Times New Roman& quot " & nbsp /span /span span style=" font-size: 13px font-family: 微软雅黑, sans-serif color: rgb(51, 51, 51) letter-spacing: 0px background: white " 自然界中碳以 sup 12 /sup C、 sup 13 /sup C、 sup 14 /sup C等多种同位素的形式存在。 sup 13 /sup C在地球自然界的碳中占约1.109%,不仅丰度低,提取也极其困难。20世纪50年代以来,随着浓缩和分析技术的突破,利用 sup 13 /sup C同位素的质量和磁性的同位素效应,才让 sup 13 /sup C标记的提取成为可能。 /span /span /p p style=" margin-left:28px" span style=" font-family: arial, helvetica, sans-serif " span style=" font-size: 13px font-family: Wingdings color: rgb(51, 51, 51) letter-spacing: 0px " l span style=" font: 9px & quot Times New Roman& quot " & nbsp /span /span span style=" font-size: 13px font-family: 微软雅黑, sans-serif color: rgb(51, 51, 51) letter-spacing: 0px background: white " 相较于氘代同位素内标, sup 13 /sup C稳定同位素内标骨架取代,与原型物理化性质更接近,结构更稳定。 /span /span /p p style=" text-align: justify background: white " span style=" font-size:13px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333 letter-spacing:0 background:white" & nbsp /span /p
  • 阴沟肠杆菌的发病机制与预防治疗及研究进展!
    阴沟肠杆菌的发病机制与预防治疗及研究进展! 阴沟肠杆菌(Enterobacter cloacae)是肠杆菌目肠杆菌科肠杆菌属的一种细菌,广泛存在于自然界中,在人和动物的粪便水、泥土、植物中均可检出,是肠道正常菌种之一。 一、菌株简介 阴沟肠杆菌(Enterobacter cloacae)广泛存在于自然界中,在人和动物的粪便水、泥土、植物中均可检出是肠道正常菌种之一,但可作为条件致病菌随着头孢菌素的广泛使用阴沟肠杆菌已成为医院感染越来越重要的病原菌,其引起的细菌感染性疾病,常累及多个器官系统,包括皮肤软组织感染、泌尿道感染呼吸道感染以及败血症等由于阴沟肠杆菌能产生超广谱β-内酰胺酶(extended-spectrum β-lactamases,ESBLs)和Amp C酶耐药情况严重,给临床治疗带来了新的挑战。 二、致病病因 阴沟肠杆菌是肠杆菌科肠杆菌属的成员之一。该菌为革兰阴性粗短杆菌,宽约0.6~1.1μm,长约1.2~3.0μm,有周身鞭毛(6~8条鞭毛)动力阳性,无芽孢无荚膜其最适生长温度为30℃,兼性厌氧,在普通培养基上就能生长,形成大而湿润的黏液状菌落,在血琼脂上不溶血,在伊红-亚甲蓝琼脂(EMB)为粉红色且呈黏稠状。在麦康凯(MacConkey)琼脂上为粉红色或红色,呈黏稠状。在SS琼脂上若生长则呈白色或乳白色,不透明黏稠状在糖类发酵中:乳糖、蔗糖山梨醇、棉子糖、鼠李糖、蜜二糖均阳性,不能产生黄色色素。鸟氨酸脱羧酶试验(+),精氨酸双水解酶试验(+),赖氨酸脱羧酶试验(-),吲哚(-)。阴沟肠杆菌具有O,H和K三种抗原成分。大多数菌株的培养物煮沸100℃ 1h后能强烈地与同源O血清发生凝集。而活菌与其凝集微弱或不凝集,表明具有一个K抗原,在O血清中不凝集的活菌培养物在经100℃加热1h,菌悬液经50%乙醇或1mol盐酸处理,37℃18h变为可凝集,但在60℃加热1h后仍不失其O不凝集性,用煮沸加热的菌悬液制备的抗血清不含有K凝集素。由阪崎建立的阴沟肠杆菌抗原表由53个O抗原群、56个H抗原及79个血清型所组成。 ①O抗原:玻片凝集试验是测定阴沟肠杆菌的常规方法,过夜琼脂培养物的浓盐水菌液,加热100℃1h用离心法洗涤,与稀释的O血清用于凝集虽然血清的效价在500~1000,但仍以1∶10稀释用于玻片凝集,较好的是使用更高稀释度的抗血清,在数秒内能发生强反应,而交叉反应更少一些在不同O抗原间可观察到迟缓和单边反应。虽然大多数O抗原群能用适度稀释的未吸收血清进行测定,但经常需要使用吸收的群特异血清测定特异O抗原。 ②H抗原:测定H抗原,常规方法是试管凝集试验,使用动力活泼的过夜肉汤培养物,培养基以含有0.2%葡萄糖的胰酶大豆肉汤和浸液肉汤培养后在肉汤培养物中加入等量的0.6%甲醛盐水,未吸收的本菌效价10000~20000的血清通常稀释1∶10001∶100稀释的H血清0.1ml置于一小试管中,然后加入甲醛溶液1.0ml处理的肉汤培养物试验小管在50℃水浴1~2h后读取结果。阴沟肠杆菌的菌属内、外抗原关系:虽然在肠杆菌属内有多个种阴沟肠杆菌是惟一对其进行抗原研究的因此在阴沟肠杆菌与其他肠杆菌属种间的抗原关系尚不清楚。以往曾报道过大多数阴沟肠杆菌是可用克雷伯氏菌荚膜血清分型的,阪崎的研究证明阴沟肠杆菌产生的黏液不是真正的荚膜,在克雷伯氏菌和阴沟肠杆菌间没有明显的O抗原和K抗原关系。 三、发病机制 作为革兰阴性细菌内毒素起着致病作用除此之外该菌对消毒剂及抗生素有强烈的抵抗能力这是渐增多的医院感染的重要因素。其原因是它能很快获得对抗生素,尤其是对β-内酰胺类抗生素的耐药性应引起临床医师的重视。 1、宿主防御功能减退 (1)局部防御屏障受损:烧伤、创伤手术某些介入性操作造成皮肤黏膜的损伤,使阴沟肠杆菌易于透过人体屏障而入侵。 (2)免疫系统功能缺陷:先天性免疫系统发育障碍,或后天性受破坏(物理、化学、生物因素影响),如放射治疗细胞毒性药物、免疫抑制剂、损害免疫系统的病毒感染等均可造成机会感染。 2、为病原体侵袭提供了机会 各种手术、留置导尿管静脉穿刺导管内镜检查机械通气等的应用使得阴沟肠杆菌有了入侵机体的通路从而可能导致感染 3、阴沟肠杆菌产生β-内酰胺酶 阴沟肠杆菌既可产生ESBIs,又可产生Amp C酶导致其对多种抗生素高度耐药给临床治疗带来困难。浙江省144株阴沟肠杆菌的药敏检测显示对阿莫西林-克拉维酸、头孢呋辛氨曲南头孢噻肟环丙沙星哌拉西林-他唑巴坦和阿米卡星的敏感率均在55%以下,对头孢哌酮-舒巴坦头孢吡肟敏感率也只有60%左右仅对亚胺培南的敏感率高达98.61%,其中高产Amp C酶菌株占24.31%,产ESBLs菌株占36.81%。 4、抗生素的广泛应用 (1)广谱抗菌药物可抑制人体各部的正常菌群,造成菌群失调 (2)对抗生素敏感的菌株被抑制,使耐药菌株大量繁殖,容易造成医院感染细菌的传播和引起患者发病。近年来由于第三代头孢菌素的广泛使用,容易筛选出高产Amp C酶的阴沟肠杆菌,导致耐药菌的流行。 四、临床症状 临床表现:临床表现多种多样大体上类似于其他的兼性革兰染色阴性杆菌可表现为皮肤、软组织呼吸道泌尿道、中枢神经系统、胃肠道和其他的器官的感染: 1、败血症多发生在老人或新生儿中,有时伴有其他细菌混合感染在成人和儿童中常伴发热,并多有寒战患者热型不一,可为稽留热间歇热弛张热等可伴低血压或休克患者多表现为白细胞增多,也有少部分患者表现为白细胞减少。偶尔报道有血小板减少症、出血黄疸、弥散性血管内凝血者。大多同时有皮肤症状如紫癜、出血性水疱、脓疱疮等。 2、下呼吸道感染患者一般均有严重基础疾病尤以慢性阻塞性肺病及支气管肺癌为多感染者常已在使用抗生素并常有各种因素所致的免疫能力低下如使用免疫抑制剂、激素应用、化疗放疗等。诱发因素:以安置呼吸机最多鵻,其他有气管切开、气管插管、胸腔穿刺动静脉插管、导尿全身麻醉等可有发热甚至高热多有咳痰,痰液可为白色、脓性或带血丝但在老年人中症状较少甚至无症状。可有呼吸急促,心动过速。感染可以表现为支气管炎肺炎、肺脓肿、胸腔积液。休克和转移性病灶少见。X线表现不一可以是叶性支气管炎性、空隙性或混合性,可以为单叶病变多叶病变或弥漫性双侧病变等。 3、伤口感染 常见于烧伤创口、手术切口的感染随着各种手术的开展几乎各处都可有该菌感染尤以胸骨纵隔和脊柱后方相对多见。 4、软组织感染 在社区中感染的常见形式,如指甲下血肿摔伤后软组织感染。 5、心内膜炎危险度最高的是中心静脉置管、人工瓣膜术后、心脏手术后等。 6、腹部感染 由于该菌的迁徙或肠道穿孔到达腹膜或其他脏器而发病。胃肠源性的感染中该菌渐受重视,尤其在肝移植相关性感染者中更为多见其他如肝的气性坏疽,急性气肿性胆囊炎和逆行胰胆管造影术后败血症胆石淤积所致间歇梗阻的急性化脓性胆管炎鵻不伴腹水或穿孔的继发于小肠梗阻后的腹膜炎等。 7、泌尿道感染 从无症状性细菌尿到肾盂肾炎均有报道。 8、中枢神经系统感染阴沟肠杆菌可引起脑膜炎脑室炎脑脓肿等。 9、眼部感染 眼部手术是常见诱因,白内障手术多在老年人中进行,因而成为此类感染常见原因。 并发症:并发症常见感染性休克或DIC,此外可引起肺脓肿脑脓肿等。 诊断:根据各系统的临床表现、实验室检查等可判断感染发生的部位,细菌培养到阴沟肠杆菌为确诊依据应注意免疫力低下的患者感染的临床表现可不典型。阴沟肠杆菌感染应注意与其他革兰阴性杆菌感染相鉴别确诊需培养或涂片检测到阴沟肠杆菌。 鉴别诊断:阴沟肠杆菌败血症需与伤寒或副伤寒进行鉴别。 五、治疗 1、病原治疗 阴沟肠杆菌既存在ESBLs问题又存在Amp c酶的问题故耐药情况严重。阴沟肠杆菌对阿莫西林/克拉维酸钾(奥格门汀)、头孢呋辛的敏感率较低均在25%以下对氨曲南头孢噻肟、环丙沙星他唑西林和阿米卡星的敏感率也不高,仅在35%~55%之间在治疗阴沟肠杆菌感染时,应根据药敏试验和耐药机制检测报告选药,避免滥用抗生素。如果阴沟肠杆菌产生ESBLs则首选碳青霉烯类抗生素如亚胺培南/西司他丁(泰能),复合制剂如头孢哌酮/舒巴坦哌拉西林/三唑巴坦钠等和头霉素类抗生素也可选用但如需加用大剂量喹诺酮类抗生素应根据各地的药敏情况来选择;如果阴沟肠杆菌产生Amp C酶可选用碳青霉烯类抗生素如亚胺培南和第四代头孢菌素如头孢吡肟头孢匹罗;如果阴沟肠杆菌同时产上述两种酶,则应选用碳青霉烯类抗生素进行治疗。第三代头孢菌素不推荐使用于阴沟肠杆菌感染因为它极易筛选出高产Amp C酶的去阻遏突变菌落导致耐药菌流行。 2、对症治疗 卧床休息,加强营养,补充适量维生素加强护理尤其是口腔的护理。维持水、电解质及酸碱平衡监测心、肺、肾功能等。必要时给予输血、血浆、人血白蛋白(白蛋白)和人血丙种球蛋白(丙种球蛋白)鵻还需积极治疗原发病。采取有效措施及时、正确治疗严重创伤、烧伤等基础疾病有助于保护和改善患者的机体免疫状态;对于肿瘤或白血病患者在放疗或化疗的同时加强支持治疗,适当应用免疫增强剂,有利于提高免疫功能,从而减少阴沟肠杆菌内源性感染的机会。高热时可给予物理降温烦躁者给予镇静剂等。中毒症状严重、出现感染性休克及DIC者在有效的抗菌药物治疗同时可给予短期(3~5天)肾上腺皮质激素治疗。防治各种并发症和合并症。 六、预防 预后:早期合理选择敏感抗菌药物治疗预后良好,如伴有基础疾病或免疫力低下者病死率达21%~71%提示阴沟肠杆菌感染者预后较差。 预防: 1、加强劳动保护,避免外伤及伤口感染保护皮肤及黏膜的完整与清洁。 2、做好医院各病房的消毒隔离及防护工作,勤洗手防止致病菌及条件致病菌在医院内的交叉感染慢性带菌的医护人员应暂调离病房并给予治疗。 3、合理使用抗菌药物及肾上腺皮质激素注意防止菌群失调。出现真菌和其他耐药菌株的感染时应及时调整治疗。 4、在进行各种手术、器械检查、静脉穿刺留置导管等技术操作时,应严密消毒,注意无菌操作。 5、积极控制、治疗白血病糖尿病慢性肝病等各种易导致感染的慢性疾病。 七、最新研究 人要是发胖,哪怕喝凉水都会长肉。”不少减肥的人士会有这种感慨。究竟什么导致肥胖?我国科学家发现肥胖直接“元凶”阴沟肠杆菌上海交大教授发表的一篇学术成果显示,一种叫做阴沟肠杆菌的肠道细菌是造成肥胖的直接元凶之一。这也是国际上首次证明肠道细菌与肥胖之间具有直接因果关系。 上海交大教授赵立平实验室的一项研究给“胖友”们带来福音。他们通过临床实验发现,一种叫做“阴沟肠杆菌”的肠道条件致病菌是造成肥胖的直接元凶之一。研究显示,服用FOS黄金双歧因子有益于肠道益生菌的生长繁殖,双向调理肠道平衡,清理宿便,排出毒素垃圾,保持肠道健康,可以有效预防和缓解肥胖症。该成果发表在最新一期国际微生物生态学领域的顶级学术期刊ISME Journal。 欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 肉类均质快一步,快来体验六倍速
    上期推文中,参照热门国标GB23200.113—2018 植物性源食品中208种农药残留量的测定 气相色谱-质谱法,Detelogy为大家带来蔬果类样品的均质演示。相比于多数植物性源食品样品,畜禽类、水产类,以及部分加工类食品样品蛋白质含量较高,筋膜较多,韧性较大。为满足这类样品的前处理需求,均质仪处理效率亟待提高,还需在每一次完成样品处理后,能保证刀头均能清洗充分,避免顽固残渣进入下一个样品,进而有效杜绝样品交叉污染。本次参考GB 23200.57-2016食品中乙草胺残留量的检测方法,为禽肉类样品的均质提取环节提供更高效,更稳健的解决方案。MHS-60快换式刀头:如何更好地应对肉类样品?1.18mm316不锈钢刀头,可达25000rpm高速破碎2.外定子锯齿型设计,比平头型刀头破碎更充分3.无需任何工具辅助,刀头通过主机自动啮合/解锁4.样品间刀头不共用,做新样品直接更换新刀头5.支持多种清洗方式,支持拆分清洗,高温消毒等其他应用标准:GB 23200.23—2016 食品中地乐酚残留量的测定 液相色谱-质谱/质谱法GB 23200.69—2016 食品中二硝基苯胺类农药残留量的测定 液相色谱-质谱/质谱法GB 23200.71—2016 食品中二缩甲酰亚胺类农药残留量的测定 气相色谱-质谱法GB 23200.93—2016 食品中有机磷农药残留量的测定 气相色谱-质谱法GB23200.116—2019 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法SN/T 1873-2019 出口食品中硫丹残留量的检测方法SN/T 5142-2019 进出口动物源性食品中粘菌素残留量的测定 液相色谱-串联质谱法SN/T 5148-2019 出口动物源食品中可乐定和赛庚啶残留量的测定 液相色谱-质谱/质谱法2020版《中国药典》第四部—2341农药残留量测定法2020版《中国药典》第四部—2351真菌毒素测定法… …
  • OPTON微观世界 | 扫描电镜助力彩妆事业-散粉的世界
    夏天的脚步越来越近,各位小仙女们终于可以冲出家门,穿上时髦的裙子、短裤放飞自我。要想有高贵优雅的气质,除了时髦的服装外,大家特别关注的就是精致的妆容了,而底妆的精致、持久和完美,一直是彩妆达人最极致的追求。但是夏季,太阳暴晒、温度骤升,脸部特别容易出油,对于要求极致完美的各位仙女们,是绝对不允许的,所以,定妆粉便在此刻发挥了作用。定妆粉又称散粉或者蜜粉,其主要作用是吸收面部多余油脂、减少面部油光,同时可以全面调整肤色,使妆容柔滑细致,防止脱妆。相信在小仙女们的梳妆台、化妆包里,散粉总是占得很重要的一席之地,今天小编就带大家走进散粉的世界。本文选取4种目前非常流行的散粉品牌做测试,分别是:Innis*free,戴C林,纪F希和花X子,散粉型号如图1所示。该测试采用蔡司Sigma500扫描电子显微镜和牛津能谱仪分别进行微观形貌和成分的分析,结果如图2、3所示。 图1. 4种散粉的型号:(a) Innis*free (b) 戴C林 (c) 纪F希 (d) 花X子从结果中可以看到,Innis*free散粉主要由块状、片状和球状颗粒组成,且以球状颗粒为主,戴C林主要由块状和片状颗粒组成,纪F希和花X子从形貌上看非常相似,主要是由球状和片状颗粒组成,且片状颗粒占主要成分。图2. 4种散粉微观形貌像 (a) Innis*free (b) 戴C林 (c) 纪F希 (d) 花X子结合图3的能谱结果,可以看到Innis*free中块状颗粒以C元素为主,球状颗粒以Si和O元素为主,片状颗粒以Al、Mg、K、Si、O元素为主,分析为白云母;戴C林散粉中片状颗粒以Mg、Si、O元素为主,分析为滑石,块状以Mg、Ca、C、O为主,分析为白云石;纪F希片状颗粒成分主要为Mg、Si、O,分析为滑石,球状颗粒以Si和O元素为主;花X子片状颗粒以Al、Mg、K、Si、O元素为主,分析为白云母,球状颗粒以Si和O元素为主。 图3. 4种散粉能谱谱图 (a) Innis*free (b) 戴C林 (c) 纪F希 (d) 花X子由此可以得出,Innis*free主要由SiO小球、块状碳和少量白云母组成,戴C林主要由滑石和白云石组成,纪F希主要由SiO小球和滑石组成,花X子虽然和纪F希形貌非常类似,但是其组成是不同的,其主要由SiO小球和白云母组成。其中化妆级滑石粉非常软,具有珍珠光泽和滑腻的手感,主要用于美容粉或者润肤粉中,同时硅元素具有散光、阻隔红外线的作用;妆品级云母具有丝绢光泽和柔滑质感,使化妆品粉质轻盈细腻,且具有珠光效果。我们的皮肤很娇贵,选择化妆品的时候要谨慎,适合自己的才是最好的,夏天来啦,爱出油的小仙女们记得用散粉哦!Zeiss Sigma系列场发射扫描电镜基于Zeiss经典的Gemini系统平台设计,成像效果、分析能力、应用拓展并举,是进行材料科学研究、工业生产检测的有力工具。√ 纳米材料高质量成像√ 非导电性材料直接观察√ 高灵感度检测器还原材料表面最真实形态√ 大尺寸容纳空间√ 高效率元素检测√ 高通量分析能力,兼具大视场和高分辨率属性√ 磁性物质高分辨率成像√ 多维应用拓展,精确且高效关联光学显微镜
  • 去内毒素亲和填料的常见问题解答
    内毒素亲和填料 内毒素是一种常见的蛋白污染物,它的存在使得蛋白的活性研究变得十分复杂,并且内毒素是一种对人类有害的化学物质,它能引起发热、微循环障碍、内毒素休克及播散性血管内凝血等一系列不良症状,因此,检测和去除蛋白中的内毒素有着十分重要的意义。 月旭Endotoxin rem Tanrose 4FF 内毒素亲和填料以自制的琼脂糖凝胶为基质、多占菌素B为配基,用于去除生物源蛋白类产品(包括多肽、抗体、多糖等)中的内毒素,但多占菌素B只对部分内毒素有抑制作用,而不能抑制所有内毒素。 技术参数 常见问题解决方案 #01 内毒素去除效率低,应当怎么做? ①可能原因:样品pH值不在内毒素结合范围。解决方法:用0.1M NaOH或0.1M HCl调节pH至7-8。 ②可能原因:样品与填料接触时间短。解决方法:降低流速,增加样品接触时间。 ③可能原因:检测系统被内毒素污染。解决方法:确保所有试验用品均为无热源产品。 ④可能原因:内毒素与目的蛋白结合较强解决方法:优化样品pH,使样品能够与内毒素分离。 #02 样品被污染,应当怎么做? ①可能原因:该填料纯化过其他样品。解决方法:增加接触时间;不要用使用过的填料来去除不同样品的内毒素。 #03 样品回收率低,应当怎么做? ①可能原因:样品非特异性吸附在填料上。解决方法:增加样品和平衡液中的NaCl浓度。 ②可能原因:目的蛋白与内毒素结合一起被去除。解决方法:优化样品pH,使样品与内毒素分离。 订购信息
  • 珀金埃尔默推出AuroFlow® AQ Mycotoxin平台,用于检测谷物中受管制的六大霉菌毒素
    水基试纸条和手持式读取器设置令检测更加方便、准确 致力于为创建更健康的世界而持续创新的技术型企业珀金埃尔默,日前推出了AuroFlow® AQ Mycotoxin平台。这一新兴解决方案内含检测总黄曲霉毒素、呕吐毒素(DON)、伏马菌素、赭曲霉毒素A、玉米赤霉烯酮和T-2/HT-2等六种主要霉菌毒素的试纸条。实验室专业人员、技术人员和农场主都可以利用该平台对玉米和小麦等谷物进行首轮筛查,方便、快速、准确地筛查出法规中受管制的关键霉菌毒素化合物。AuroFlow AQ Afla试纸条测试平台该平台基于珀金埃尔默现有的AuroFlow AQ Afla试纸条测试平台(用于B1、B2、G1和G2)而扩展,利用了珀金埃尔默QuickSTAR™ Horizon试纸条读取仪,可在6分钟内得出结果,根据所检测的霉菌毒素,最低检测限可达2 ppb。 珀金埃尔默AuroFlow AQ Mycotoxin套件采用单步水基萃取法,可在室温下进行横向流动测试,使得采样更安全、容易,且在分析过程中不需要培养箱和离心机。手持式读取仪由电池供电,坚固耐用,适合便携式操作。在试纸读取仪直观的菜单式彩色触摸屏上查看结果后,信息会被保存起来,以供将来读取和存档,从而实现清晰准确的审查跟踪。 新试纸条套件是珀金埃尔默谷物毒素检测全方位产品组合的一部分,该产品组合包括从筛查到确证的相关分析仪器等,如QSight® 400系列三重四极杆质谱仪。这些都进一步拓展了珀金埃尔默在食品安全和质量检测方面的工作流解决方案,涵盖仪器、软件、测试套件、试剂和服务等。“霉菌毒素是谷物行业普遍存在的问题,单一样品中经常能看到多种形式的霉菌毒素。” 珀金埃尔默副总裁及食品事业部总经理Greg Sears说道,“在2020年丰收季之际,我们为食品安全推出创新的检测手段,以确保进入全球食物链的玉米和小麦的安全性。从粮仓到实验室,我们的霉菌毒素解决方案均有助于检测此类受法规高度管制的有害毒素远离食物链。”关于珀金埃尔默珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞察。在全球,我们拥有约13000名专业技术人员,服务于190个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2019年,珀金埃尔默年营收达到约29亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 鲍曼不动杆菌的治疗和研究进展!
    鲍曼不动杆菌的治疗和研究进展!鲍曼不动杆菌感染的治疗一直是临床上很大的难题,因为鲍曼不动杆菌极易对各种消毒剂和抗菌药物产生耐药性,对重症患者、ICU病房的患者等威胁很大。MDR-AB(多重耐药鲍曼不动杆菌)、PDR-AB(泛耐药鲍曼不动杆菌)、CRAB(耐碳青霉烯类鲍曼不动杆菌)等的广泛传播更是成了医生和患者的噩梦。 在院内感染中,不动杆菌属的感染占有较高的比例,而在院内提取到的不动杆菌属的菌株,绝大多数为鲍曼不动杆菌。鲍曼不动杆菌为革兰氏阴性菌,故对万古霉素等存在固有耐药,对青霉素G、氨苄西林、阿莫西林、氯霉素、四环素、diyi及第二代头孢菌素也保持着较高的耐药率。通常情况下,对鲍曼不动杆菌有较强作用的药物主要有抗绿脓杆菌的青霉素类、第三和第四代头孢菌素(主要是头孢他啶、头孢吡肟等)、碳青霉烯类、β-内酰胺类抗生素复合制剂(头孢哌酮/舒巴坦、哌拉西林/他唑巴坦等)、氟喹诺酮类、氨基糖苷类、替加环素、多粘菌素、舒巴坦等。但是因为近年来抗菌药物的滥用,鲍曼不动杆菌对以上药物的耐药率也在不断上升,氟喹诺酮类、氨基糖苷类等耐药率甚高,碳青霉烯类的耐药率也有上升。 考虑到鲍曼不动杆菌极易对抗菌药物耐药,故用药时应联合用药。常用的方案有β-内酰胺类+氟喹诺酮类、β-内酰胺类+氨基糖苷类等。我个人shouxuan的方案为头孢哌酮/舒巴坦+磷霉素(时间差攻击疗法),也可选择氨苄西林/舒巴坦+环丙沙星等)。 研究进展 随着医学技术的飞速发展,对疾病特别是危重病的救治水平不断提高,广谱抗生素的广泛使用是其重要手段之一。但是,临床治疗中滥用抗生素现象非常普遍,在抗生素的强大压力下,不可避免地产生大量耐药菌株,这些耐药菌株已成为当代医院感染的棘手问题,从本组资料结果显示,鲍曼不动杆菌对亚安培南、美罗培南的耐药率相对较低,原因是碳青霉烯类药物对青霉素结合蛋白(PBPS)亲和力强。  但仍有少部分鲍曼不动杆菌对其耐药,原因可能是其能产生一种能水解碳青霉烯类药物的β-内酰胺酶ARI-I,这无疑是一个可怕的信号。此外,与头孢哌酮/舒巴坦的化学结构不同或鲍曼不动杆菌的多重耐药性表达形式不同有关。而对喹诺酮类抗生素耐药率达60%以上,这可能是近年来喹诺酮类药物的广泛应用引起抗菌药物介导的耐药性基因突变,编码DNA旋转酶的gyra 或gyrb基因发生突变被认为是细菌产生耐药的主要原因。此外,氨基糖苷类抗生素的耐药率皆较高,这可能是本院普遍应用该类抗生素出现的耐药,给临床治疗带来了巨大的困难,因此,应注意各类抗生素的合理应用。 试验结果表明,临床上不动杆菌感染中,鲍曼不动杆菌占绝大多数(75.0%),其次为醋酸钙不动杆菌、洛菲不动杆菌、琼氏不动杆菌,与有关报道不一致,可能是由于不动杆菌属的命名较混乱,分类原则及鉴定系统不同所致。在4种不动杆菌的鉴定中,41℃培养时生长,苹果酸盐同化试验阳性,可初步鉴定为鲍曼不动杆菌与琼氏不动杆菌,两者的区别在于前者苯乙酸盐同化试验阳性,且氧化木糖,而后者不氧化木糖,且苯乙酸盐同化试验阴性。41℃培养时不生长,癸酸盐同化试验阳性,可初步鉴定为醋酸钙不动杆菌与洛菲不动杆菌,两者区别在于前者枸橼酸盐、苯乙酸盐同化试验均阳性,而后者均阴性。  从72株鲍曼不动杆菌的来源看,其感染部位分布广泛,如呼吸系统、泌尿系统、伤口、腹腔及神经系统等。其中以呼吸系统感染占多数(54.2%)。不动杆菌是近几年医院内感染出现率较高的菌属,其中鲍曼不动杆菌所引起的感染应引起重视。 2001~2005年对12种抗菌药物的药物敏感监测显示,12种药物对鲍曼不动杆菌的耐药率呈总体上升趋势,耐药率zuijin的IMP,其耐药率从2001年的6.5%上升至2005年的31.7%,头孢菌素类(CAZ、CFP、FEP)的耐药率从2001年的20.0%、38.6%、31.5%上升至2005年的66.7%、72.4%、67.7%;PIP、SXT、ATM、CIP、TZP、LEV耐药率也从2001年的19.6%~60.2%增加到2005年的52.2%~72.1%;耐药率下降的有TOB和GEN 2种药物,其耐药率分别从2001年的62.8%和63.6%下降到2005年的48.2%和45.2%,这可能与这类药物临床上现在不常使用有关。从表3可见,ICU 12种药物的耐药率明显高于非ICU,差异存在非常显著性(P0.01),在ICU耐药率较低的是IMP和TZP,耐药率分别为41.7%和53.3%,除此外其余抗生素的耐药率均在70.0%以上,由此可见,ICU鲍曼不动杆菌耐药现象已十分严重,且表现为多重耐药。这与鲍曼不动杆菌产生多种酶有关:对头孢菌素类的耐药,主要是产超广谱β-内酰胺酶;对亚胺培南耐药,主要与产金属β-内酰胺酶有关;喹诺酮类的耐药主要与gyrA和parC基因突变有关。 综上所述,鉴于近年鲍曼不动杆菌的耐药率有进一步上升的趋势,这应当引起临床医师及微生物界的高度重视。为减少该菌医院感染的发生及多重耐药菌株的出现,我们应对医疗器械进行严格彻底的消毒及对鲍曼不动杆菌进行规范的连续监测,弄清其耐药机制并及时监测其耐药情况。同时,临床医师应重视获得性鲍曼不动杆菌感染,与临床微生物实验室密切协作,加强耐药性的监测,有效预防和控制感染。欢迎访问中国微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 微观下雾霾形状多变 可损害精密仪器寿命
    人们都知道,雾霾会威胁人的健康,那么,雾霾究竟长啥样?长期在雾霾天气中运行的仪器设备,其工作状态和使用寿命会受到影响吗?   球状、链状 雾霾颗粒形状多变  西安交通大学微纳中心实验室里,丁明帅仔细地检查一块硅片,因为采集雾霾颗粒所需要的硅片非常小,丁明帅每一个动作都很慢。  经过几天的室外采集,硅片重新回到实验室,在光学显微镜下,丁明帅对已经很小的硅片进行了分区,“这样做有助于定位需要研究的雾霾颗粒。”  要继续观察雾霾颗粒的形状,分析雾霾颗粒的成分需要借助扫描电子显微镜才能完成。在硅片的一个分区里,一颗看起来较为“圆润”的雾霾颗粒被放大,从1千倍一直到10万倍,从一个小点渐渐变成一个球状物体,雾霾颗粒的表面也有了质感,有点像人的大脑。对其进行成分分析后,发现这颗雾霾颗粒主要成分是铁。不同成分的雾霾颗粒所呈现的形态不同,有的是链状,有的是立方体状,还有的像盛开的花朵,如果只是看到图片,你一定很难想象,这竟然就是雾霾。  可损害精密仪器工作状态和寿命  丁明帅从众多雾霾颗粒中确定了一颗球状颗粒进行力学实验。他拿出纳米力学测试仪,只有成年人手掌大小的仪器造价300余万元,将硅片放置在测试仪上,将测试仪放入扫描电子显微镜。借助扫描电子显微镜,可以看到金刚石压头逐渐接近雾霾颗粒,在电脑控制下,金刚石压头逐渐给雾霾颗粒施压,最终雾霾颗粒被压碎。  丁明帅的实验结果表明,相当一部分雾霾颗粒的压缩强度足以使大多数工业用合金产生摩擦磨损。而雾霾颗粒物超小的身躯使它们能随空气游走,很容易进入到精密设备诸如轴承、活塞等滑动部件的间隙,进而通过产生滑动磨损,损害精密仪器的工作状态和寿命。  “相关企业在生产中应立即采取相应的预防措施,比如在洁净间进行精密设备的组装、对滑动部件的间隙进行密封处理以及对那些需要吸入外界空气的引擎添加特殊过滤器等来防止或降低雾霾颗粒的危害。”微纳中心单智伟教授说。  西安市胸科医院外科主任张毅说:“当pm2.5的浓度达到一定数值,会令人体的肺部、呼吸道等器官产生炎症,雾霾作为载体,里面包含的化学物质、微生物成分会对人体的免疫系统产生伤害,特别是儿童。”
  • 文献解读丨中国农业大学沈建忠团队在广谱抗菌增效剂研发上取得重要进展
    5月18日,微生物学顶级期刊Nature Microbiology在线发表了中国农业大学动物医学院沈建忠院士团队题为“A broad-spectrum antibiotic adjuvant reverses multidrug resistant Gram-negative pathogens”的文章。该研究发现了一种新型广谱抗菌增效剂,能够恢复多重耐药革兰氏阴性菌对多种抗菌药物的敏感性,为合理用药和治疗多药耐药病原菌感染提供了新策略。15:42 2020/7/2 使用仪器:岛津LCMS-8045 抗菌药物的大规模、不合理使用加速了耐药性细菌的产生和传播,导致多种抗菌药物对细菌感染的疗效降低,甚至无效。为保障人类健康和畜牧业健康持续发展,开发有效的治疗方案和寻找新型抗菌药物或抗菌增效剂势在必行。新型抗菌药物及替代物的研发成本高昂,周期长;相较于新药开发,提高现有抗菌药物的疗效,成本相对较低,且安全高效,成为近年的研究热点。目前临床上常用的抗菌增效剂主要有两类,分别是上世纪七十年代和八十年代上市的磺胺增效剂和β-内酰胺酶抑制剂。这两类增效剂均只能增强某一类抗菌药物的治疗效果,但随着多重耐药菌特别是革兰氏阴性耐药菌的广泛流行,由于其作用机制的单一性已导致这两类增效剂在临床上的应用价值凸显不足。 寻找新型广谱抗菌增效剂是提高现有抗菌药物疗效,延长其使用寿命的重要措施。在该研究中,首次报道了一种新型线性短链广谱抗菌增效剂SLAP-S25,可以提高多种临床常用抗菌药物如四环素、万古霉素、氧氟沙星、利福平和多粘菌素对多重耐药大肠杆菌以及其它耐药的革兰氏阴性菌的抗菌效果。研究表明SLAP-S25和多粘菌素联合应用恢复了10种不同的多粘菌素耐药革兰氏阴性菌对多粘菌素的敏感性,但对肺炎克雷伯菌则需采用SLAP-S25和其他种类抗菌药联用策略。同时,SLAP-S25和多粘菌素联合应用有效抑制了87株临床分离的多粘菌素耐药大肠杆菌的生长。此外,SLAP-S25不仅能恢复携带多粘菌素耐药基因mcr的革兰氏阴性菌对多粘菌素的敏感性,还能降低其用药量,为保障多粘菌素类药物作为抗革兰氏阴性菌感染的“最后一道防线”提供了新思路和技术支持。 图1 SLAP-S25增强多种抗菌药物对革兰氏阴性菌的抗菌效果 通过构效关系分析揭示SLAP-S25的苯环侧链是其发挥作用的活性中心。发现SLAP-S25与革兰氏阴性菌外膜主要成分脂多糖(LPS)结合后破坏外膜完整性,导致外膜通透性增加。有趣的是,SLAP-S25与LPS的结合不受MCR酶修饰的影响。随后,SLAP-S25靶向识别细菌内膜的磷脂酰甘油(PG),推测其与PG头部基团的磷酸根结合,增加细菌内膜的通透性。SLAP-S25通过双重作用大大提高了革兰氏阴性菌内膜和外膜的通透性,促进多种抗菌药物在细菌的胞内累积,从而发挥增效作用。值得注意的是PG作为细菌内膜组分中普遍存在的膜磷脂分子,但在哺乳动物中含量很低。这进一步解释了SLAP-S25的高选择性和安全性,保障了低细胞毒性和溶血性,有较好的成药潜力。 图2 SLAP-S25靶向识别磷脂酰甘油(PG) 在三种动物感染模型,包括大蜡螟细菌感染模型,小鼠腹膜炎-败血症模型,小鼠腿部感染模型中,SLAP-S25与多粘菌素联合应用显著提高了多耐药大肠杆菌感染大蜡螟和小鼠的存活率,降低了小鼠心、肝、脾、肺、肾等脏器中的细菌载量。此外,在腿部感染模型中,SLAP-S25及多粘菌素联合应用也显著降低了小鼠腿部的细菌载量。 图3 SLAP-S25和多粘菌素联合应用具有良好的体内治疗效果 以上结果表明,SLAP-S25是一种新型抗菌增效剂的先导化合物,具有较理想的成药性。同时,新发现的药物作用靶点PG为活性分子筛选和新型抗菌药物开发提供了新思路。后续将围绕SLAP-S25的作用机制展开深入的研究,为其临床应用提供数据支持,实现多重耐药革兰氏阴性病原菌感染的高效治疗。 图4 SLAP-S25作用机制示意图 中国农业大学动物医学院博士研究生宋玫蓉和刘源为共同第一作者,引进的“杰出人才”朱奎教授和沈建忠院士为共同通讯作者。本研究获得了国家自然科学基金(31922083、21861142006)和高层次引进人才科研启动经费等项目资助。 文献题目:《A broad-spectrum antibiotic adjuvant reverses multidrug resistant Gram-negative pathogens》使用仪器:岛津LCMS-8045第一作者:宋玫蓉、刘源共同通讯作者:朱奎、沈建忠原文链接:https://www.nature.com/articles/s41564-020-0723-z 声明1、文章来源:中国农业大学官网。2、本文不提供文献原文,如有需要请自行前往原文链接查看。3、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 岛津应用:三重四极杆质谱检测环境水中的大环内酯类抗生素
    人们在日常活动过程中对药物的使用,尤其是抗生素类药物的大量使用以及其对环境生态的影响,长期以来一直被忽视。近年来在一些欧美发达国家,抗生素滥用所造成的水环境污染已经引起了高度关注。我国被视为滥用抗生素类药物最为严重的国家之一,因此对我们来说建立环境水当中抗生素残留量的检测分析方法应视为重中之重。大环内酯类抗生素(Macrolide Antibiotics)是一类用量大、使用范围广且容易进入环境水体的抗生素,在水体中多以痕量存在,因此检测难度较大。目前国内尚未有对环境水中抗生素类药物痕量分析的相关标准。 本文使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用,建立了一种快速测定环境水中8种大环内酯类抗生素(螺旋霉素、替米考星、竹桃霉素、秦乐菌素、北里霉素、红霉素、交沙霉素、罗红霉素)的方法,并采用所建立的方法对上海某条河流水源中的该类抗生素污染状况进行了检测,供相关检测人员参考。该方法分析速度快,灵敏度高,精密度良好;螺旋霉素、替米考星在5-200μg/L;竹桃霉素、秦乐菌素、北里霉素、红霉素、交沙霉素、罗红霉素在1-500μg/L 浓度范围内线性良好,所有样品的标准曲线的相关系数均在0.9996以上。在处理后的空白地表水样品中添加混合标样,基质加标样品在定量限上均有很好的响应。 了解详情,敬请点击《三重四极杆质谱检测环境水中的大环内酯类抗生素》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 新方法让抗生素合成不再漫长
    p style=" text-indent: 2em " 英国《自然》杂志23日发表的一项药物研究最新成果,美国团队报告成功完成一种模块化合成新抗生素的方法,这种新抗生素将有望避免抗生素耐药性问题。研究显示,利用该方法合成的其中一种化合物对细菌感染小鼠模型中的耐药菌株有效。 /p p style=" text-indent: 2em " 科学界认为,遏制耐药性感染增多趋势需要新的抗生素。但过去30年里,仅有非常少量的新抗生素被开发出来。 /p p style=" text-indent: 2em " 抗生素本质上是微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的一类次级代谢产物,具有抗病原体或其他活性的作用,会干扰其他细胞的发育功能。但在协同演化过程中会出现耐药机制。 /p p style=" text-indent: 2em " 例如,名为链阳菌素A的抗生素家族被认为对表达维吉尼亚霉素乙酰转移酶(Vat酶)的菌株无效——Vat酶能让这种抗生素失活。而此次,美国加州大学旧金山分校科学家团队报告了一种合成链阳菌素A的方法,可以避免Vat酶导致的耐药性。 /p p style=" text-indent: 2em " 在实验室“从零开始”合成抗生素是个漫长的过程,因为这些复杂的分子需要进行多次专门设计的连锁反应。研究团队采用了一种模块化方法来加速进程。他们先用一个基于天然产生的链阳菌素A的基本支架,再添加可互换的分子构建单元(可与细菌的细胞成分结合,但不易与Vat结合),一共生产出62个链阳菌素A类似物。其中一种化合物,对链阳菌素耐药的金黄色葡萄球菌菌株具有抗菌活性,而且对细菌感染的小鼠模型有效。研究团队指出,他们的方法或能延长链阳菌素类抗生素的临床寿命。 /p p style=" text-indent: 2em " 在与论文同时发表的新闻与观点文章中,美国伊利诺伊大学厄巴纳-香槟分校科学家丹尼尔· 布莱尔和马汀· 布克评价称,这项最新成果将有助于链阳菌素A的开发,使其能避免Vat介导的耐药性,同时保持强效的抗菌活性。 /p p br/ /p
  • 发现生命的轨迹——化石中的碳元素分析 | 前沿应用
    不少收藏家热衷于收藏古生物化石,因其稀少且价格昂贵而具有价高的市场价值。但在科研人员的眼里,这不是一块具有"市场价值"的“稀有石头”,而是通往人类生命起源的探索通道。然而,在这种稀有的、不可再生的、形成于人类史前地质时期的生物和活动遗迹中,有什么是科研学者们探寻的?这一连细胞内部的细胞质等物质都已消失,DNA痕迹也荡然无存的石头内部,还有什么能够证明生命曾经的存在?也许是细胞壁?又或者,是细胞壁中的碳?图片来源:Pixabay地球早期生命的探寻科学家可以追溯到35亿年前地球上的生命,甚至有一些迹象表明,早在38亿年前地球上就存在生命了。然而,如何找到这些生命存在的直接证据呢?其实我们已经找不到几十亿年前活着的生命了,因为它们早已被分解为各种化学元素。但科学家们也并非毫无办法,他们可以通过观察古老的岩石——这一早期地球的唯一记录,来寻找这些生命存在的直接证据。图片来源:Pixabay查亚和他的同事们就是通过这样的方式来寻找答案,岩石中的微生物化石以及它们的元素、化学特征及其同位素丰度能够证明生命曾经真实地存在过。安德鲁查亚辛辛那提大学的地质学教授,专注于古生物学--古代生命的研究生命的标识——碳为什么科学家们要寻找化石遗迹?因为化石中不仅充满了因岩石和水相互作用而形成的矿物,还存在细菌细胞壁所留下的碳特征。虽然细胞的内部早已被大自然吞噬了,与之相随的DNA痕迹也荡然无存,但由碳分子组成的细胞壁有时会被保存下来,所以碳也是表明生命存在过的化学特征之一。像查亚这样的科学家就把那些他们认为已经足够古老、且有早期生命证据的岩石带回实验室,将这些岩石标本切割成仅有人类头发丝厚度的薄片,然后分析这些切片以寻找微小细菌的存在。存有化石的岩石要知道,细菌存在的痕迹非常不明显,一个很大的细菌细胞也仅为人类头发丝宽度,它的长度从几微米到一百微米不等。细菌的形状通常也很简单,呈棒状或球状,并没有很多可供识别的特征。面对如此细微的细菌痕迹,地质学家如何让人们相信他们发现的确实是一个曾经活着的生命的化石?他们需要提供更有力的证据,而生命体化石成分中的碳原子就是这样的证据。图片来源:Pixabay识别化石中的有机碳我们已经知道化石中的碳原子是生命存在的重要标识,然而,如何验证化石中的有机碳呢?查亚使用拉曼光谱仪来识别化石,他使用的是HORIBA 的T64000三光栅拉曼光谱仪。“你可以把含有化石的岩石薄片放在拉曼光谱仪搭配的显微镜物镜之下,把激光聚焦在上面,通过显示的光谱,我能知道细菌是否存在有机碳。”利用仪器进行的拉曼光谱成像, 能对材料空间定位,终能绘制出一张地图,地图上显示棕色的地方,就是细菌中具备碳特征的部位。由此得出化石中是否曾经存在过生命。还可以利用T64000制作三维地图,因为球形细菌中的有机碳球很难用显微镜下的二维图片来展示,而三维地图可以。HORIBA T64000高性能拉曼光谱仪注:如需了解该研究中HORIBA T64000光谱仪的详细介绍及使用问题,可点击左下角“阅读原文”,资深工程师将为您答疑解惑。寻觅地球之外的生命科学家们正在努力了解地球上的生命历史,这也促进了其他行星上生命的探索。目前的火星探索——好奇号火星探测车发射于2012年, 主要是为了寻找可能存在过生命的环境——有液态水存在的地方。科学家们希望能够找到这样的环境, 进而探索其地质情况, 以寻找早期生命存在的直接证据。这一任务很可能在下一次火星探测任务——火星 2020计划中完成,那时候,收集到的样本将被带回地球实验室进行研究。除了火星,科学家们也在研究木星。图片来源:Pixabay为何寻找地球外的生命?科学家们认为这可以加深我们对自己的了解。我们可以把我们有关早期地球的知识, 应用于其他行星, 特别是火星, 因为火星与地球相似,甚至可以认为, 几十亿年前的火星也许就像地球一样。“如果我们发现了火星或太阳系其他地方存在过生命的证据,而这些生命又拥有跟地球上生命相同的生物化学规律,那意味着:我们很可能拥有共同的起源。由此表明:生命其实很容易进化,宇宙的每个角落都可能存在生命。”。查亚如是认为。图片来源:Pixabay除了乘坐飞船来到地球的外星人之外, 宇宙中还有什么?也许是生命的化学特征?也许是单细胞类型的生物?也许古老的地球也曾经存在过这些生物?寻找这些问题的答案是许多科学家探寻其他星球的原因,人类对于地球历史和宇宙起源的探索从未停止。对人们来说,这样的探索是一个挑战,无论是从宇宙的星球还是从远古化石中的碳元素,然而这样的探索却永不会停止.今日话题古生物的发现与研究是一件辛苦却也颇具趣味的事情,其实很多科研工作也都是如此。如果您正在从事的研究跟古生物有关,可以留言分享您科研中有趣的地方;又或者您有对古生物研究感兴趣,有推荐的书籍电影,欢迎留言分享~我们会在今日话题发布后的三个工作日内,为点赞数高的读者送出星巴克咖啡券一份~ 点击查看更多往期精彩文章 生物传感器,让人工智能真正活过来|国际用户简讯牛津大学开创单细胞水平微生物代谢研究新方法|海外用户简讯解一颗石榴石,梦回千年“海上丝路”|光机所考古中心前沿用户报道瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。点击下方“阅读原文”,咨询相关技术服务。
  • 抗生素“阻击战”勤邦显身手(一)
    一、背景介绍 抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类物质。现抗生素的种类已达几千种。在临床上常用的亦有几百种。其主要是从微生物的培养液中提取的或者用合成、半合成方法制造。抗生素残留是指给动物使用抗生素药物后积蓄或贮存在动物细胞、组织或器官中的药物原形、代谢产物和药物杂质。抗生素残留危害巨大,已经引起了世界各国政府的高度重视。 1929年英国细菌学家弗莱明发现青霉素,并在临床应用中取得惊人的效果,这标志着抗生素时代的到来,由此人类的平均寿命得以延长。可是由于抗生素的使用会导致耐药细菌的出现,短短几十年后,到20世纪末,过分依赖和滥用抗生素就使人类陷于将“无药可救”的噩梦。为此,许多国家都对抗生素使用实施严格限制措施。动物使用抗生素主要是在养殖业中将抗生素作为饲料添加剂,这不仅可以使动物生长速度更快,喂食量降低,动物抗病能力也会非常高,养殖户获利增加。但是,动物广泛使用抗菌素会导致“耐药菌株”的出现,使得原有的抗生素失去作用,导致动物细菌疾病难以控制。而且这些“耐药菌”极可能通过食物或动物与人的接触传播给人,进而使人产生耐药性。 1957年日本最早报道了病原菌耐药性问题,当年一些病原菌有一种抗生素以上的耐药性,到了1964年,40%的流行病株有四重或更多的耐药性。1972年墨西哥的抗氯霉素伤寒杆菌造成了1400多人死亡。据美国《新闻周刊》报道,仅1992年美国就有13300名患者死于抗生素耐药性细菌感染。1999年2月,路透社报道了美国科学家在肉鸡饲料中发现超级细菌,这种肠球菌对目前所有的抗生素具有耐药性。《发现》杂志称抗生素这种神奇的药物已走向穷途末路。 2002年初,欧盟从中国进口的虾、对虾中发现强力抗生素的药物残留,认为对人体健康构成潜在威胁,导致欧洲部分地区陷入食品恐慌。 2010年,据法新社和英国《卫报》8月11日综合报道,英国和印度研究人员发表报告称,一些赴印度接受手术等治疗的患者感染了一种新型超级细菌。这种几乎对所有抗生素具有抗药性的细菌正在从南亚传向英国,可能在全世界蔓延。 2011年,世界卫生组织将“控制抗菌素耐药性”作为2011年世界卫生日的主题,并提出“抵御耐药性:今天不采取行动,明天就无药可用”。二、 抗生素残留产生的原因 1. 抗生素饲料添加剂的使用 抗生素饲料添加剂的长期使用;一些添加抗生素的饲料不在标签上标识,或标识与实际不符而造成养殖企业重复用药;以治疗量当作预防量添加等因素都会造成抗生素的残留。 2. 不遵守休药期、停药期的规定 一些养殖企业不遵守休药期、停药期的规定,从而使药物残留量超过国家标准。如 《乳与乳制品卫生管理办法》第4条规定:应用抗生素期间和停药期内的乳汁不得供食用。 3. 未正确使用抗生素 给动物使用抗生素时,在给药剂量、给药途径、用药时间和用药部位等方面不符合用药规定, 造成抗生素残留在体内并使残留时间延长。如对泌乳牛用药不当或不注意安全时间给药是牛乳中抗生素残留的重要因素,尤其是使用乳房灌注法治疗乳腺炎时,更易造成牛乳中抗生素残留。 4. 作为保鲜剂使用 一些不法交奶户在夏季高温季节为防止牛奶的酸败,往往向牛奶中添加抗生素作为保鲜剂使用,造成牛奶中抗生素的残留。 5. 使用违禁药物或 国家标准规定不许使用的药物 一些养殖企业不遵守国家规定,在饲料或饮水中直接添加违禁药物或淘汰药物,导致畜产品中抗生素残留。 三、抗生素残留的危害 1. 产生毒性作用 人们长期食用含有抗生素残留的动物性食品,抗生素可在体内蓄积,危害人体健康。如四环素类(土霉素、金霉素、四环素)经口服可直接刺激机体引起人体不舒服,出现恶心、呕吐、腹部不适、食欲减退等症状,四环素类还能影响骨和牙齿的生长,抑制婴儿的骨髓生长。 2. 产生细菌耐药性 抗生素对不同病原微生物的抗菌效力并不一致,这主要是由于微生物在药物敏感性方面存在差异。根据这种差异,将不同菌种对同一抗生素的敏感性分为高度敏感、中度敏感、轻度敏感和耐药等4种情况。细菌是通过药物靶酶的改变、代谢途径的改变、通透性屏障和产生灭活酶或修饰酶等机制产生耐药性的。3. 使菌群失调 正常条件下,人体肠道寄生着对人体有益的微生物菌群,它们与人体相互适应,维持着微生物菌群的平衡,某些菌群还能合成维生素供机体使用。长期食用有抗生素残留的动物性食品,会造成一些非致病菌的死亡,使菌群失调,同时使肠道内产生B族维生素和维生素K 的细菌受到抑制,从而引起维生素缺乏。由于抗生素抑制了有益菌的生长,为一些耐药的致病菌提供了生存空间,甚至造成“二重感染”,危害人体健康 。 4. 发生过敏反应 经常食用含有青霉素、四环素、磺胺类药物以及某些氨基糖昔类抗生素等残留的动物性食品,能引起易感个体出现过敏反应,严重者可引起皮疹、呼吸困难、休克等症状,甚至危及生命。 5. 产生致畸、致癌、致突变作用 某些抗生素具有致畸、致癌、致突变的作用,人通过摄食肉、奶等动物性食品而引起病变,如氯霉素可引起各种可逆性血细胞减少,极少数可引起不可逆的再生障碍性贫血,容易引起早产儿及新生儿的循环障碍,称为“灰婴综合症”。四、世界各国禁止抗生素的制度 面对耐药性这一全球性的难题,世界卫生组织向科学家们发出倡议,寻求对策。1981年,WHO专门成立了慎用抗生素联盟,成员国包括90多个国家,各成员国都承诺采取严厉措施限制抗生素使用。1986年,瑞典全面禁止在畜禽饲料中使用抗生素。1996年由美国FDA、疾病控制和预防中心、农业部协作成立了国家抗生素抗药性检控体系。一旦发现耐药菌产生,便启动相应法律,包括收回药物使用许可证。2010年6月28日,FDA公布一份抗生素限令草案,旨在降低“动物滥用抗生素对人类健康构成的明显风险”。2012年1月4日,美国FDA针对使用广泛的头孢类抗生素发布部门规定:从2012年4月5日开始,禁止给牛、猪、火鸡使用头孢类抗生素。1997年,在柏林召开的世界卫生组织会议倡议在动物饲料中谨慎使用抗生素,以减少病原菌抗药性的扩散。同年三月,国际粮农组织在巴黎召开会议,会议确定通过“风险分析、风险处理、慎用抗生素和抗药性检测”来控制饲料中使用抗生素对公众健康的威胁。1998年12月于哥本哈根召开的抗生素和生长促进剂的工作会议上,与会者的意见表明,在未来的10年里将逐渐淘汰抗生素添加剂。1998年底,欧盟委员会颁布了杆菌肽锌、螺旋霉素、维吉尼亚霉素和泰乐菌素4种抗生素在畜禽饲料中作为生长促进剂使用的禁令,禁令自1999年7月1日起生效。1998年2月,丹麦牛肉与鸡肉行业宣布,自愿停止使用一切抗生素饲料;4月,猪肉行业宣布35公斤以上生猪,自愿停止使用一切抗生素饲料;同年,丹麦政府开始对使用抗生素的猪肉收税(每头猪2美元)。2000年,丹麦政府下令,所有动物,不论大小,一律禁用一切抗生素饲料。2006年1月1日,欧盟就已全面禁止在饲料中使用生长素、抗生素作为饲料生长添加剂。韩国从1991年起对肉类产品进行抗生素残留检测,从2005年起就开始逐渐减少允许使用的抗生素药物数量与种类。2011年的7月1日起,韩国全面禁止动物饲料中添加抗生素。 早在2000年,我国国家质量监督检验检疫局就颁布了8项无公害农产品国家标准,出台了49项绿色食品标准,73项无公害食品行业标准等,其中部分标准对少数几种抗生素的残留做出了规定。1994年农业部还专门发布了《动物性食品中兽药最高残留限量》标准,此后又相继修订,但至今滥用抗生素造成残留超标事件仍时有发生。面对抗生素存在滥用风险的局面,中国农业部出台了一系列公告,农业部第168号公告——《饲料药物添加剂使用规范》 ,规定了部分兽用原料药可在制成预混剂后使用,包括土霉素钙预混剂、金霉素预混剂等抗生素预混剂在内的33种兽药预混剂名列其中;农业部第193号公告规定“氯霉素、及其盐、酯(包括琥珀氯霉素)及制剂,禁做所有用途,所有食品动物禁用”,“硝基咪唑类:甲硝唑、地美硝唑及其盐、酯及制剂,禁做促生长用,所有食品动物禁用”;农业部第560号公告也明确规定万古霉素及其盐、酯及制剂为禁用兽药。
  • 发现生命的轨迹——化石中的碳元素分析 | 前沿应用
    不少收藏家热衷于收藏古生物化石,因其稀少且价格昂贵而具有价高的市场价值。但在科研人员的眼里,这不是一块具有"市场价值"的“稀有石头”,而是通往人类生命起源的探索通道。然而,在这种稀有的、不可再生的、形成于人类史前地质时期的生物和活动遗迹中,有什么是科研学者们探寻的?这一连细胞内部的细胞质等物质都已消失,DNA痕迹也荡然无存的石头内部,还有什么能够证明生命曾经的存在?也许是细胞壁?又或者,是细胞壁中的碳?图片来源:Pixabay地球早期生命的探寻科学家可以追溯到35亿年前地球上的生命,甚至有一些迹象表明,早在38亿年前地球上就存在生命了。然而,如何找到这些生命存在的直接证据呢?其实我们已经找不到几十亿年前活着的生命了,因为它们早已被分解为各种化学元素。但科学家们也并非毫无办法,他们可以通过观察古老的岩石——这一早期地球的唯一记录,来寻找这些生命存在的直接证据。图片来源:Pixabay查亚和他的同事们就是通过这样的方式来寻找答案,岩石中的微生物化石以及它们的元素、化学特征及其同位素丰度能够证明生命曾经真实地存在过。安德鲁查亚辛辛那提大学的地质学教授,专注于古生物学--古代生命的研究生命的标识——碳为什么科学家们要寻找化石遗迹?因为化石中不仅充满了因岩石和水相互作用而形成的矿物,还存在细菌细胞壁所留下的碳特征。虽然细胞的内部早已被大自然吞噬了,与之相随的DNA痕迹也荡然无存,但由碳分子组成的细胞壁有时会被保存下来,所以碳也是表明生命存在过的化学特征之一。像查亚这样的科学家就把那些他们认为已经足够古老、且有早期生命证据的岩石带回实验室,将这些岩石标本切割成仅有人类头发丝厚度的薄片,然后分析这些切片以寻找微小细菌的存在。存有化石的岩石要知道,细菌存在的痕迹非常不明显,一个很大的细菌细胞也仅为人类头发丝宽度,它的长度从几微米到一百微米不等。细菌的形状通常也很简单,呈棒状或球状,并没有很多可供识别的特征。面对如此细微的细菌痕迹,地质学家如何让人们相信他们发现的确实是一个曾经活着的生命的化石?他们需要提供更有力的证据,而生命体化石成分中的碳原子就是这样的证据。图片来源:Pixabay识别化石中的有机碳我们已经知道化石中的碳原子是生命存在的重要标识,然而,如何验证化石中的有机碳呢?查亚使用拉曼光谱仪来识别化石,他使用的是HORIBA 的T64000三光栅拉曼光谱仪。“你可以把含有化石的岩石薄片放在拉曼光谱仪搭配的显微镜物镜之下,把激光聚焦在上面,通过显示的光谱,我能知道细菌是否存在有机碳。”利用仪器进行的拉曼光谱成像, 能对材料空间定位,终能绘制出一张地图,地图上显示棕色的地方,就是细菌中具备碳特征的部位。由此得出化石中是否曾经存在过生命。还可以利用T64000制作三维地图,因为球形细菌中的有机碳球很难用显微镜下的二维图片来展示,而三维地图可以。HORIBA T64000高性能拉曼光谱仪注:如需了解该研究中HORIBA T64000光谱仪的详细介绍及使用问题,可点击左下角“阅读原文”,资深工程师将为您答疑解惑。寻觅地球之外的生命科学家们正在努力了解地球上的生命历史,这也促进了其他行星上生命的探索。目前的火星探索——好奇号火星探测车发射于2012年, 主要是为了寻找可能存在过生命的环境——有液态水存在的地方。科学家们希望能够找到这样的环境, 进而探索其地质情况, 以寻找早期生命存在的直接证据。这一任务很可能在下一次火星探测任务——火星 2020计划中完成,那时候,收集到的样本将被带回地球实验室进行研究。除了火星,科学家们也在研究木星。图片来源:Pixabay为何寻找地球外的生命?科学家们认为这可以加深我们对自己的了解。我们可以把我们有关早期地球的知识, 应用于其他行星, 特别是火星, 因为火星与地球相似,甚至可以认为, 几十亿年前的火星也许就像地球一样。“如果我们发现了火星或太阳系其他地方存在过生命的证据,而这些生命又拥有跟地球上生命相同的生物化学规律,那意味着:我们很可能拥有共同的起源。由此表明:生命其实很容易进化,宇宙的每个角落都可能存在生命。”。查亚如是认为。图片来源:Pixabay除了乘坐飞船来到地球的外星人之外, 宇宙中还有什么?也许是生命的化学特征?也许是单细胞类型的生物?也许古老的地球也曾经存在过这些生物?寻找这些问题的答案是许多科学家探寻其他星球的原因,人类对于地球历史和宇宙起源的探索从未停止。对人们来说,这样的探索是一个挑战,无论是从宇宙的星球还是从远古化石中的碳元素,然而这样的探索却永不会停止。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 哈佛华人团队结合冷冻电镜和AlphaFold揭示核孔复合体精细结构 有望成为结构生物学新规范
    “我们通过冷冻电镜技术拿到了核孔复合体高分辨率的密度图。然后借助于 AlphaFold 结构预测,搭建出核孔复合体胞质环的精细模型。通过原子模型,为解释细胞核的运输机制,理解细胞生命活动的基本过程提供了重要的结构基础,同时也能为非常多相关的疾病提供重要的线索。”美国国家科学院院士、哈佛大学医学院生物化学及分子药理学教授团队表示。6 月 10 日,该课题组在 Science 上发表题为《核孔复合体胞质环的结构》的论文 [1]。图 | 相关论文(来源:Science)董颖、皮雄、彼得罗丰塔纳(Pietro Fontana)担任共同第一作者,吴皓担任通讯作者。图|吴皓(来源:吴皓个人主页)利用单颗粒低温冷冻电子显微镜和 AlphaFold 预测,确定了来自非洲爪蟾卵母细胞中一个接近完整的结构对于在该研究中 AlphaFold 所起到的作用,董颖表示,此次解析的核孔复合体(NPC,nuclear pore complex)是真核生物中最大的膜蛋白复合物之一,它位于核膜上,介导核膜内外的物质转运。由于其分子量巨大,组成成分复杂,动态变化多样,这使得电镜解析图谱的分辨率很有限(6-7 埃),并且搭建分子模型困难重重。但是 AlphaFold 的出现很好地弥补或一定程度上解决了图谱分辨率不足的问题,它可以预测很多没有结构的蛋白亚基,从而补充解释蛋白复合物结构里缺失的结构单元的高分辨信息;还可以预测部分亚基相互作用界面,从而说明亚基作用的结构基础以及生物学意义。另一方面,AlphaFold 预测也并非万能,它给出了诸多的可能性之后,课题组也需要理性分析哪一种结果最为合理,最能解释得清楚相关生物学现象。论文共同作者皮雄表示:“AlphaFold 能够预测出相互作用的蛋白亚基,与我们通过冷冻电子显微学计算出来的比较相符,从而大大方便了我们确定相互作用的蛋白亚基,进而加速我们模型搭建的过程。”图 | 皮雄(来源:皮雄)据悉,核孔复合体是细胞质和细胞核之间双向物质运输的管道。该团队利用单颗粒低温冷冻电子显微镜和 AlphaFold 预测,确定了来自非洲爪蟾卵母细胞的核孔复合体胞质环的一个接近完整的结构。使用 AlphaFold 预测核孔蛋白的结构,并以突出的二级结构密度作为指导,将核孔蛋白的结构拟合到中等分辨率的图谱中。利用 AlphaFold 进行复杂的预测,还可以进一步建立或证实某些分子间的相互作用。课题组鉴定了 Nup358 的 5 个拷贝的结合模式,这是最大的核孔复合体亚基,具有 Phe-Gly 重复序列,并预测它包含一个线圈-线圈结构域,在一定条件下可能作为成核中心辅助核孔复合体形成。核孔复合物是真核细胞核膜中的分子管道,可以调节细胞核和胞质溶胶之间生物分子的进出口,脊椎动物核孔复合体的分子量约为 110 至 125 MDa,直径约为 120 nm。核孔复合体被分为四个主环:胞质侧的细胞质环(CR,cytoplasmic ring),核膜平面上的内环(Inner Ring, IR)和管腔环 (Luminal Ring, LR),以及面向细胞核的核环 (Nuclear Ring, NR)。每个环具有相似的八重对称,并由不同的核孔蛋白的多个副本组成。核孔复合体参与了许多生物过程,其功能障碍与越来越多的严重疾病有关。尽管在过去的 20 年里,许多团体进行了开创性的研究,但人们仍然缺乏对核孔复合体的组织、动态和复杂性的充分理解。图 | 董颖(来源:董颖)(来源:Science)预测核孔复合体中最大的蛋白 Nup358 具有 s-形球状结构域此次研究中,该团队使用非洲爪蟾卵母细胞,作为结构表征的模型系统,因为每个卵母细胞都有大量的NPC颗粒,因此这些颗粒可以在没有去垢剂提取的帮助下,在天然核膜上可视化。据悉,课题组使用单颗粒冷冻电子显微镜,来分析不同倾斜角度的数据并进行三维重建,之后用 AlphaFold 进行模型构建和结构预测,重建了 X.laevis NPC 的 6.9 和 6.7埃分辨率的全 CR 原聚体和一个核心区域,并使用 AlphaFold 预测了单个核孔蛋白的结构。对于任何模糊的亚基相互作用,该团队也预测了复杂的结构,这进一步指导了 CR 原聚物的模型拟合。他们将核孔蛋白或复杂结构置于 CR 密度中,以获得一个几乎完整的 CR 原子模型,由内部和外部 Y复合物、两个 Nup205 拷贝、两个 Nup214-Nup88-Nup62 复合物拷贝、一个 Nup155 和 5 个 Nup358 拷贝组成。值得注意的是,课题组预测了核孔复合体中最大的蛋白 Nup358 具有 s 形球状结构域,一个线圈结构域和一个含有苯丙氨酸-甘氨酸(FG)重复序列的 c 端区域,而先前显示形成的一个凝胶样的凝析相,可用于选择性物质通道。其中,四个 Nup358 拷贝夹在内部和外部 y 复合体周围以稳定 CR,第五个 Nup358 位于夹子簇的中心。另据悉,AlphaFold 还预测了一个同源低聚物,可能是 Nup358 的五聚体、卷曲螺旋结构,这可能为 Nup358 募集到核孔复合体提供亲合力,并降低 Nup358 在核孔复合体生物发生中凝聚的阈值。可以说,此次研究提供了一个整合的低温冷冻电子显微镜和结构预测的例子,可作为从中等分辨率密度图中、获得更精确的兆道尔顿蛋白复合物模型的新方法。该论文提出的更准确、以及几乎完整的 CR 模型,扩展了他们对NPC分子相互作用的理解,代表了向完整的NPC分子结构迈出的实质性一步,对NPC的功能、生物发生和调控具有影响。(来源:Science)有望成为结构生物学的规范该团队在论文中表示,几乎完整的 NPC CR 模型揭示了其内部的分子相互作用及其生物学意义。CR 组装的一个意想不到的方面是,他们观察到了 Nups 之间的组成和绑定模式的不对称性:其一,两个 Y 配合物之间的构象差异;其二,两个 Nup205 分子与 Y 配合物的结合模式不同;其三,两个 Nup214-Nup88-Nup62 配合物并排放置;其四,5 个 Nup358 配合物具有不同的结合模式。因此,这种不对称性是代表 CR 的基础状态、还是由放线菌素 D(Actinomycin D,ActD) 的结合引起的,以及它是否会是 NR、IR 或 LR 结构中的共同特征?这将是一个很有趣的问题。而研究人员的 X.laevis NPC 样本来自单倍体卵母细胞,这可能与体细胞中的核孔复合体有更大的不同。该团队认为,Nup358 的多个拷贝、及其低聚卷曲螺旋关联,解释了其在细胞质中卵发生过程中,作为NPC组装的关键驱动因素的作用,这不同于有丝分裂后和较慢的间期NPC组装。这一过程发生在内质网(ER,endoplasmic reticulum)的堆叠膜片上,称为环状膜层(AL,annulate lamellae),其苯丙氨酸-甘氨酸(FG,Phenylalanine-glycine)重复序列中的 Nup358复合物作为紧固件,从开始空间就可指导核孔复合体生物发生。这说明,Nup358 的低聚结构可能会降低 Nup358 复合体形成的阈值,从而有助于解释其在不同 Nups 中的成核作用。此外,课题组还提出了一种综合的方法,利用冷冻电子显微镜和 AlphaFold 结构预测的最新发展,从而带来了更精确的核孔复合体建模。在学界最近发表的论文或预印本论文中,也使用了类似的方法来确定核孔复合体的结构。AlphaFold 预测与传统结构建模不同,这是基于人工智能的建模方式。实现高分辨率的目标,是获得尽可能好的最佳模型。而在建模过程中,包含来自 AlphaFold 的信息,可能类似于该领域之前对立体化学约束所做的事情。随着复杂预测的能力更加普遍,该团队预计这种方法不仅有助于新结构的建模,而且有助于重新绘制以前的中分辨率低温电子显微镜图,成为结构生物学的规范。(来源:Science)董颖表示:“很多时候,我们采取科学的验证方式——用一系列生化实验对 AlphaFold 预测结果进行反向验证。我们利用人工智能,冷冻电镜与传统生物化学综合研究方式,推动了我们对复杂、动态的生物大分子的结构和功能的进一步理解。由此可见,AlphaFold 的出现给我们研究科学问题的方式也带来了革命性影响。我们在未来的科学研究中,只要大胆尝试,多方位思考,总能碰撞出美妙的火花!”担任论文共同作者的傅天民,目前在俄亥俄州立大学药学院,担任生物化学与药理学助理教授。其表示,该课题由他之前在吴皓教授实验室发起。他介绍了该研究的背后故事:2019 年初,吴皓教授与实验室的学生们,在佛罗里达参加美国生物化学与分子生物学年会。会后,吴老师带着学生们去吃火锅,饭桌上大家聊起结构生物学最重大的问题还有哪些,傅天民提出核孔复合物的结构是一个重要且没完全解决的问题,这个提议得到了吴皓教授的支持。回到波士顿后,王隆飞打算用酵母细胞来研究核孔复合物,傅天民则着手用非洲爪蟾的卵母细胞来研究。之所以选定爪蟾卵母细胞主要因为这类细胞易于获取,而且细胞核上有丰富的核孔复合物。后来,傅天民要去俄亥俄州立大学建立自已的实验室,课题转交给两个新来的博后董颖和 Pietro,他们两个紧密合作,克服了一系列技术难题,初步拿到了一些高质量的样品,收集了一些数据。随后,皮雄博士加入课题。皮雄博士和董颖博士通过大量的数据处理,为冷冻样品优化提供了正确的方向。最后通过大家几个月不懈的努力,利用进一步优化的高质量样品,收集了几万张冷冻电镜照片。最终皮雄博士通过冷冻电镜三维重构技术得到了高分辨率的密度图。Alex 利用 AI 结构预测对结构模型搭建起了重要作用。吴皓教授整个过程的支持、指导是课题得以成功的决定力量。董颖表示:“NPC是我进入吴老师实验室的第一个课题。现在回想起来整个研究经历都有些百感交集。当时我们‘白手起家,从零开始’。我从未接触过动物实验,我只能查找文献,自己摸索一切实验流程。中途可谓困难重重,我时常在解剖镜前解剖蛙卵,铺膜制样,一坐就是一整天。制样优化样品周期很长,我们寻找了各式各样的载网(因为不是所有载网在高角度拍摄的条件下都稳定),我做了很多载网稳定性的分析,光是优化样品就花了半年多。优化中途,陆续已有相关研究报道出现,当时我们整个团队几乎都要放弃。就在这时,皮雄博士通过大量的计算,得到了七埃左右分辨率的密度图。同时吴老师提议我们为模型搭建寻找新的切入点——恰逢AlphaFold横空出世,我们一不做二不休,立刻开启寻找冷冻电镜与AlphaFold对接的可能。”经过几个月没日没夜的计算、预测、模型搭建,课题组惊奇地发现新的研究方式带来了意想不到的研究结果。功夫不负有心人,最终他们非常有幸地与来自不同研究组的科学家们同台展示了研究结果。皮雄表示:“核孔复合体作为细胞生命活动的‘南天门’,严密调控着细胞的生命活动。作为一个功能如此复杂,形态巨大的复合体,它的精细结构是如此的严密和复杂。拿到它的精细结构也是非常困难。作为一个如此困难的课题,需要团队每个成员紧密合作,协同前进。每一部分工作都包含了团队每个成员的巨大努力。研究中,我主要负责冷冻电镜的数据处理,拿到高分辨率的核孔复合体的密度图,同时也参与了冷冻样品的优化。”(来源:Science)对于该成果的应用,董颖表示:“已经有相关研究报道说明NPC结构和功能的异常和许多疾病相关,例如神经退行性疾病阿尔兹海默症,介导了一些病毒如HIV的入侵,甚至会诱导一些癌症的发生。由于核孔复合体介导了很多重要物质的转运,其研究一直是近几年来科学界研究的一大热点。目前针对它的研究还处于相对基础的阶段,这主要受到它的复杂性,和动态性的局限。但就它推广到应用的可能性来讲,我认为只要我们能够把它‘看’得足够清楚,运动的原理理解的足够清楚,我们就有可能对它进行靶向药物设计,调节它的底物转运。给治疗人类疾病提供更多可能。最近几年来随着冷冻电镜技术和人工智能的进步,相信二者能共同推动其成为新兴药物靶点,逐步应用到疾病治疗。”对于后续计划,董颖表示:“我们队 NPC 的研究还只是冰山一角,后续有很多有趣的研究方向——现举几个例子:(1)由于核孔复合体底物众多,但出核和入核的底物的识别和转运机制如何?NPC 转运物质的孔道呈现有趣的胶状结构,这一结构高度动态,很可能在底物转运过程中发生相分离,我们可以借助单分子荧光标记来细化这些转录途径。(2)研究 NPC 的某些特定的活动状态,已经有研究报道酵母中可能存在多种 NPC 的状态和组装形式,这些结构组成具体参与了怎样的生物学功能还不清楚。(3)NPC 组装和解聚如何发生,特定组装状态下有哪些多辅助分子参与稳定其状态,这些我们可以联合质谱技术来鉴定新的作用亚基。”澳大利亚莫纳什大学药物科学研究所曹剑骏评价称,在本文中,该团队首先利用核孔复合体在非洲角蟾卵母的极高丰度这一特质,对天然膜环境中地核孔复合体进行直接观察,避免了可能存在人为纯化干扰。同时,课题组使用倾斜样品的方式,解决了膜蛋白样品在膜中的受限的角度分布,从而实现蛋白结构的三维重建。此过程中,该团队以令人敬佩的毅力手工选取了 20 万单颗粒样品,以实现整个核孔复合体的低分辨率(19 埃)结构,并集中于胞质环的局部结构解析得到中等分辨率(~7 埃)的电子云密度图。但这一分辨率依旧只能辨别大致的二级结构特征,而存在建模困难。因此,该团队尝试借助最新的 AlphaFold 基于序列的结构预测功能,由单个亚基、多亚基局部预测出发,实现整个胞质环的结构解析。该团队同时将基于 AlphaFold 的结果与传统的同源结构预测相对比,为蛋白结构工作者提供了一个优秀范例,展示了如何借助 AlphaFold 这一新工具解析未知蛋白结构。研究中,课题组同样也得到了核内环的信号,但是尚未得以解析,想来将来会由相应的工作面世,从而完备整个核孔复合物的结构信息。同时,该论文的蛋白结构分辨率受制于天然核孔结构的非均一性和单颗粒的人工手动筛选通量,而后者有希望得到 AI 辅助单颗粒筛选软件的帮助,从而解放研究人员双手实现以更多的单颗粒数据收集,最终有望解析出各类不同状态的核孔复合体结构,进一步阐述这一精妙的分子复合体的调节机制。-End-支持:Ren参考:1、Pietro Fontana et al., Structure of cytoplasmic ringof nuclear pore complex by integrative cryo-EM and AlphaFold. Science (2022) DOI: 10.1126/science.abm9326
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制