当前位置: 仪器信息网 > 行业主题 > >

西那洛尔

仪器信息网西那洛尔专题为您提供2024年最新西那洛尔价格报价、厂家品牌的相关信息, 包括西那洛尔参数、型号等,不管是国产,还是进口品牌的西那洛尔您都可以在这里找到。 除此之外,仪器信息网还免费为您整合西那洛尔相关的耗材配件、试剂标物,还有西那洛尔相关的最新资讯、资料,以及西那洛尔相关的解决方案。

西那洛尔相关的论坛

  • 德国MKC MKC-N-ad二阶网络模块

    德国MKC MKC-N-ad二阶网络模块是一款专为工业自动化、数据通信及控制系统设计的先进网络设备。该模块凭借其卓越的性能、灵活的配置和可靠的质量,在多个工业领域得到了广泛应用。以下是对该模块的详细介绍: 一、产品概述 品牌与型号:德国MKC公司以其卓越的技术实力和丰富的行业经验,推出了MKC-N-ad二阶网络模块。该型号模块集成了先进的网络技术和数据处理能力,为工业自动化系统提供了强大的支持。 功能特点:MKC-N-ad二阶网络模块支持多种通信协议和接口标准,能够轻松实现与其他设备的互联互通。同时,其内置的高性能处理器和优化的算法,确保了数据传输的高效性和准确性。此外,该模块还具备强大的数据处理能力,能够对接收到的数据进行实时分析和处理,为控制系统提供精确的数据支持。 二、技术特性 高精度与稳定性:MKC-N-ad二阶网络模块采用高精度元器件和先进的制造工艺,确保了数据传输和处理的精确性和稳定性。即使在恶劣的工业环境中,也能保持稳定的性能表现。 模块化设计:该模块采用模块化设计,方便用户根据实际需求进行灵活配置和扩展。用户可以根据系统规模和应用场景的不同,选择合适的模块组合,实现最优化的系统配置。 网络通信能力:MKC-N-ad二阶网络模块支持多种网络通信协议,包括以太网、Modbus等,能够轻松实现与上位机、PLC等设备的通信和数据交换。同时,其强大的网络通信能力也为远程监控和管理提供了便利。 安全防护:该模块内置了多种安全防护机制,包括数据加密、访问控制等,确保了数据传输过程中的安全性和隐私性。用户可以根据实际需求设置不同的安全策略,保护系统免受非法访问和攻击。 三、应用领域 MKC-N-ad二阶网络模块广泛应用于机械制造、汽车制造、电子制造、食品饮料等多个行业。在生产线自动化、物流仓储、环境监测等场景中,该模块能够发挥重要作用,提高生产效率、降低运营成本并提升产品质量。 四、总结 德国MKC MKC-N-ad二阶网络模块以其高精度、稳定性、模块化设计和强大的网络通信能力,在工业自动化领域展现出了卓越的性能和广泛的应用前景。随着工业4.0和智能制造的不断发展,该模块将继续发挥其重要作用,推动工业自动化技术的不断进步和升级。

  • 【网络会议】:帕纳科科技日暨帕纳科新品XRF现场发布会网络直播

    【网络会议】:帕纳科科技日暨帕纳科新品XRF现场发布会网络直播

    【网络会议】:帕纳科科技日暨帕纳科新品XRF现场发布会网络直播【讲座时间】:2015年10月15日 9:00【主讲人】:Dr. Youhong Xiao ;Dr. Lieven Kempenaers Dr. Youhong Xiao 帕纳科总部XRF应用专家Dr. Lieven Kempenaers 帕纳科总部台式能谱仪Benchtop产品经理。【会议介绍】荷兰帕纳科公司是全球X射线衍射和X射线荧光光谱分析仪器及软件的主要供应商。具有近70年的行业经验。其产品主要应用于科学研究、工业过程控制以及半导体材料的无形测量领域。 2015年3月,帕纳科隆重推出新一代X射线荧光光谱分析系统Zetium(ZT),其创造的SumXcore——多核X射线分析技术,使X射线光谱技术进入了一个新的里程碑,使X射线分析工作者获得了一个全新高校的X射线分析工具。 基于SumXcore多核X射线分析技术,Zetium将WDXRF、EDXRF及XRD技术整合在一起,可同时分别得到Be- Am 和Na-Am 所有元素的光谱数据和定量分析结果,大大提高了分析速度或分析质量。而且使X射线荧光做微小区域分析和Mapping成为可实现的分析方法。 定期举办“帕纳科科技日”的技术交流活动,这已成为应用实验室与国内X射线分析仪器的技术人士的一个良好的交流平台,2015年度的“帕纳科科技日”是帕纳科最新Zetium X射线荧光光谱系统在国内的首次亮相,特别邀请帕纳科荷兰总部肖又红博士讲解“Zetium的核心技术——SumXcore的实验与应用”。精彩不止如此,能量色散型X射线荧光光谱技术近年来得到了飞速发展,使得XRF由传统的应用领域拓展到了许多新的领域,如环保、食品、玩具、药检、现场检验等,来自帕纳科荷兰总部的Lieven Kempenaers博士还将为您介绍“台式能量色散荧光技术的进步”,所有研讨会内容将会通过网络技术为您直播现场盛况,并在线解答客户提问。期待您报名参与此次网络直播!-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年10月15日 9:004、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16965、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 美托洛尔-MRM峰型极差

    美托洛尔-MRM峰型极差

    安捷伦6410QQQ采集的数据,对美托洛尔进行MRM,出现了图一中的双峰,改变流动相比例及PH值,峰型有所改变,但依然很差(见图二)。初始流动相,当有机相比例增大时(大于50%),峰型改善(也不好),后面的几种物质无法分开;当有机相比例偏小时(小于50%),则出现峰型极差或者图一中的双峰。请大家帮忙分析一下,谢谢![img=美托洛尔提取离子图-1,690,517]http://ng1.17img.cn/bbsfiles/images/2018/07/201807141707307198_1436_3440419_3.jpg!w690x517.jpg[/img],[img=美托洛尔提取离子图-2,690,517]http://ng1.17img.cn/bbsfiles/images/2018/07/201807141707402828_1450_3440419_3.jpg!w690x517.jpg[/img]

  • 提高纳米材料研究及应用水平、尽在第二届“纳米表征与检测技术”主题网络研讨会

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“纳米表征与检测技术”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]18[/color]日[color=#ff0000] 早9:30[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]谭平恒(中国科学院半导体研究所)[/b][/align][align=left][b]解德刚(西安交通大学)[/b][/align][align=left][b]胡学兵(景德镇陶瓷大学)[/b][/align][b]蔡小舒(上海理工大学)马书荣(赛默飞)毛晶(天津大学)陈强(岛津)彭开武(国家纳米科学中心)[/b][size=16px]纳米材料是纳米科技的基础和主要研究内容,而适合于纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。[/size][size=16px]基于此,仪器信息网[/size][size=16px]将于2019年12月18日组织举办第二届“纳米表征与检测技术”主题网络研讨会,邀请该领域专家,围绕纳米材料常用分析和表征技术,从成分分析、形貌分析、粒度分析、结构分析以及界面表面分析等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流。共同提高纳米材料研究及应用水平。[/size][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/nano2/[/url]

  • 【2015药典】盐酸艾司洛尔

    【2015药典】盐酸艾司洛尔

    1. 杂质I2. 盐酸艾司洛尔 盐酸艾司洛尔样品制备 制备方法有关物质衍生溶液:取盐酸艾司洛尔对照品约10 mg,置10 mL量瓶中,加入1 mol/L盐酸溶液1 mL,放置30分钟,加1 mol/L的氢氧化钠溶液1 mL使中和,用流动相A 稀释至刻度,摇匀。分析条件 色谱柱Diamonsil C18(2) 250 x 4.6 mm,5 μm (Cat#:99603)流动相流动相A:乙腈:甲醇:磷酸盐缓冲液(取磷酸二氢钾3.0 g,加水至650 mL)=15:20:65流动相B:甲醇梯度流速1 mL/min柱温30 ℃检测器UV 222 nm进样量20 μL 色谱图有关物质衍生溶液http://ng1.17img.cn/bbsfiles/images/2016/04/201604211737_591070_708_3.png 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数 N USP拖尾因子 分离度 1 3.842 6280189 655879 2747.059 0.670 -- 2 11.157 29271705 784686 1512.532 5.026 10.154 本品种同时使用了SpursilC18色谱柱,在药典规定条件下进行检测,满足药典要求。

  • 【求助】马来酸噻吗洛尔

    哪位做 马来酸噻吗洛尔基本信息 英文名 D-Timolol maleate 别名 (+)-3-[3-(tert-Butylamino)-2-hydroxypropoxy]-4-morpholino-1,2,5-thiadiazole maleate 产品名称 马来酸噻吗洛尔 右旋噻吗洛尔马来酸盐 (+)-3-[3-(叔丁基氨基)-2-羟基丙氧基]-4-吗啉基-1,2,5-噻二唑马来酸盐 分子结构 分子式 C13H24N4O3S.C4H4O4 分子量 432.49 CAS 登录号 26839-77-0 EINECS 登录号 248-034-7 ,[color=#DC143C]请说一下色谱条件[/color]

  • CATO独家 | 奈必洛尔杂质标准品

    CATO独家 | 奈必洛尔杂质标准品

    [font=宋体]◇[/font][b][font=宋体]奈必洛尔[/font][/b][font=宋体]杂质[/font][font=宋体][font=宋体] 奈必洛尔杂质是指在奈必洛尔([/font][font=Calibri]Nebivolol[/font][font=宋体])的生产或保存过程中产生的非目标化合物。奈必洛尔杂质有多种,包括但不限于以下几种:奈比洛尔杂质([/font][font=Calibri]L-[/font][font=宋体]奈必洛尔),英文名称为[/font][font=Calibri](-)-Nebivolol[/font][font=宋体],[/font][font=Calibri]CAS[/font][font=宋体]号为[/font][font=Calibri]118457-16-2[/font][/font][font=宋体];[/font][font=宋体][font=宋体]奈必洛尔杂质[/font][font=Calibri]9[/font][font=宋体],[/font][font=Calibri]CAS[/font][font=宋体]号为[/font][font=Calibri]920275-23-6[/font][/font][font=宋体];[/font][font=宋体][font=宋体]奈必洛尔杂质[/font][font=Calibri]C[/font][font=宋体](非对映体混合物),英文名为[/font][font=Calibri]Nebivolol Impurity C (Mixture of Diastereomers)[/font][/font][font=宋体];[/font][font=宋体][font=宋体]奈必洛尔杂质[/font][font=Calibri]B[/font][font=宋体],英文名为[/font][font=Calibri]Nebivolol impurity B[/font][font=宋体],[/font][font=Calibri]CAS[/font][font=宋体]号为[/font][font=Calibri]119365-25-2[/font][/font][font=宋体];[/font][font=宋体][font=宋体]去氟奈必洛尔,英文名为[/font][font=Calibri]Desfluoro Nebivolol[/font][/font][font=宋体];[/font][font=宋体][font=宋体]奈必洛尔杂质[/font][font=宋体]Ⅰ和奈必洛尔杂质Ⅱ等。[/font][/font][font=宋体][font=Calibri] CATO[/font][font=宋体]标准品提供的[/font][/font][b][font=宋体]奈必洛尔[/font][/b][font=宋体]全套的杂质[/font][font=宋体],[/font][font=宋体]这些杂质对于药物的纯度和稳定性研究至关重要,也是药物研发过程中不可或缺的一部分[/font][font=宋体]。[/font][img=,605,513]https://ng1.17img.cn/bbsfiles/images/2024/02/202402182153192686_9605_6381607_3.png!w605x513.jpg[/img][font=宋体][color=#05073b][back=#fdfdfe] 广州[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]佳途科技[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]股份有限公司[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]深知药物研发与质量控制的重要性[/back][/color][/font][font=宋体][font=宋体],[/font][font=Calibri]CATO[/font][font=宋体]标准品厂家,提供[/font][/font][b][font=宋体]奈必洛尔[/font][/b][font=宋体]全套[/font][font=宋体]的[/font][font=宋体]杂质,为客户提供更加精准、可靠的分析标准品,助力药物研发事业的快速发展[/font][font=宋体],[/font][font=宋体]以满足客户在药物研发和质量控制方面的需求。[/font]

  • 提高纳米材料研究及应用水平、尽在第二届“纳米表征与检测技术”主题网络研讨会

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“纳米表征与检测技术”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]18[/color]日[color=#ff0000] 早9:30[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]谭平恒(中国科学院半导体研究所)[/b][/align][align=left][b]解德刚(西安交通大学)[/b][/align][align=left][b]胡学兵(景德镇陶瓷大学)[/b][/align][b]蔡小舒(上海理工大学)马书荣(赛默飞)毛晶(天津大学)陈强(岛津)彭开武(国家纳米科学中心)[/b][font=&][size=16px]纳米材料是纳米科技的基础和主要研究内容,而适合于纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。[/size][/font][font=&][size=16px]基于此,仪器信息网[/size][/font][font=&][size=16px]将于2019年12月18日组织举办第二届“纳米表征与检测技术”主题网络研讨会,邀请该领域专家,围绕纳米材料常用分析和表征技术,从成分分析、形貌分析、粒度分析、结构分析以及界面表面分析等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流。共同提高纳米材料研究及应用水平。[/size][/font][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/nano2/[/url]

  • 迪马产品应用有奖问答09.30(已完结)——酒石酸美托洛尔片的检测

    10,抽取5个版友);幸运奖5名(2钻石币)zengzhengce163(注册ID:zengzhengce163)千层峰(注册ID:jxyan)翠湖园(注册ID:hhx050)馨语(注册ID:huangdm)dyd3183621(注册ID:dyd3183621)【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================酒石酸美托洛尔片的检测方法:HPLC基质:动物提取物应用编号:101462化合物:酒石酸美托洛尔固定相:Platisil ODS色谱柱/前处理小柱:Platisil ODS 5u 150 x 4.6 mm样品前处理:【有关物质】 取本品细粉适量(约相当于酒石酸美托洛尔50 mg),精密称定,置25 ml量瓶中,加流动相是两,超声处理30min使酒石酸美托洛尔溶解,放冷,用流动相稀释至刻度,摇匀,滤过,取续滤液作为供试品溶液;精密量取适量,用流动相定量稀释制成每1 ml中含酒石酸美托洛尔10 ug的溶液,作为对照溶液。 【含量测定】 取本品20片,精密称定,研细,精密称取适量(约相当于酒石酸美托洛尔60 mg),置200 ml量瓶中,加流动相适量,超声处理30min使酒石酸美托洛尔溶解,放冷,用流动相稀释至刻度,摇匀,滤过,测定。色谱条件:检测波长:UV 280 nm(有关物质) UV 275 nm(含量测定) 流动相:醋酸盐缓冲液(取醋酸铵3.9 g,加水810 ml溶解,加三乙胺2.0 ml,冰醋酸10.0 ml,磷酸3.0 ml,摇匀)-乙腈(824:146) 洗脱方式:等度 流速:2.0 ml/min 柱温:30 ℃ 进样量:20 ul文章出处:P864关键字:酒石酸美托洛尔,酒石酸美托洛尔片,2010版中国药典,HPLC,含量测定、有关物质,铂金,Platisil ODS谱图:含量测定样品色谱图http://www.dikma.com.cn/Public/Uploads/images/jiushisuanmeituoluoer.GIF有关物质http://www.dikma.com.cn/Public/Uploads/images/jiushisuanmeituoluoer-dz.GIFhttp://www.dikma.com.cn/Public/Uploads/images/jiushisuanmeituoluoer-gs.GIF图例:1. 酒石酸美托洛尔

  • 【原创大赛】富马酸比索洛尔片溶出度异常原因

    【原创大赛】富马酸比索洛尔片溶出度异常原因

    混迹论坛多年,第一次参加原创。其实,检验工作中的很多问题的解决过程都可以写下来,以待下次有类似问题出现时,作为借鉴参考。我以前没有检验过富马酸比索洛尔片,这次做的是进口标准复核品种富马酸比索洛尔片。鉴别、含量测定、有关物质都还很顺利,也没当回事。最后就剩下溶出度了。早上上班,先把脱气机开机,加水,溶出仪开机,加热打开。脱气机的水脱好气后,按照标准配制溶出介质,配好后用量筒量取规定体积倒入溶出杯,待温度平衡好后,用温度计测量温度,设置好溶出仪的参数,OK,投药。规定时间后,自动取样,样品过滤,上机。第二天,查看实验结果,发现溶出度结果很低,见下表。[img=,516,375]http://ng1.17img.cn/bbsfiles/images/2017/09/201709051639_01_1863591_3.jpg[/img]于是开始查找原因,突然想起来,实验室的另外一个奇葩检品,不能使用自动取样器上的滤膜过滤,必须使用特制的玻璃滤器过滤,否则溶出度数据低的离谱。再开机,仔仔细细的配制新的溶出介质。从溶出杯里手动取样,用特制玻璃滤器过滤,数据很好。皆大欢喜。然而,又手动取样用自动取样器上的滤膜过滤,数据也很好,见下表。很意外,不是滤膜的问题。[img=,558,375]http://ng1.17img.cn/bbsfiles/images/2017/09/201709051640_01_1863591_3.png[/img]自动取样降解,手动取样正常,不是滤膜的问题,就是取样器其他环节的问题。看看取样器,发现取样器由于长期使用,部分有锈蚀的地方,猜测是由于锈蚀的取样针导致了富马酸比索洛尔的降解。为了证实这一猜测,拿了实验室的一个锈掉的长金属取样针头接上注射器,从溶出杯里取样过滤。同时,用相同的注射器不接金属针头从同一个溶出杯取样过滤。上机测定,结果是经过金属针头的溶出度结果比不经过金属针头的低很多。终于找到原因了。标准复核完成后,在复核说明中特别说明了这一注意事项。另:问题解决后,反复跟厂家实验室技术人员沟通,他们才表示厂家实验室也采用手动取样。那厂家起草的标准为何不提呢?且前期沟通,对该项也未做说明。令人费解!

  • 【原创大赛】近红外光谱分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测

    【原创大赛】近红外光谱分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测

    [align=center][b][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测[/b][/align][align=left][b]摘要: [/b]利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,对美洛西林钠、舒巴坦钠混合过程进行了在线监测。在研究中,分别建立了基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型,通过3个平行实验的在线混合过程,结果显示MBSD法和舒巴坦钠百分含量测定法均能有效的监测其混合过程,有效的证明了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于舒巴坦钠、美洛西林钠混合在线监测的可行性。[/align][b]关键词[/b]:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];分析模型;混合均匀度;在线监测自从2004年美国食品与药品监督管理局提出“过程分析技术”以来,全球的药品生产企业正在向着更高技术含量的生产方式和质量控制方式进军。近红外(Near infrared,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url])光谱分析技术因其快速,无损的特点成为“过程分析技术”的重要组成部分,是制药企业进行产品中间体质量控制的重要方法之一。传统的检测方法为高效液相色谱法,紫外可见分光光度法等需要停止混合操作时才能取样检测,并且等待检测结果所需的时间也比较长,工作效率比较低,而[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱可以进行在线检测,连续记录不同混合时间内混合物的光谱图,建立数学模型对采集数据进行分析,从而判断各组分之间是否已经达到质量均一,工作效率大幅度的提高。本研究利用 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] 光谱分析技术在线监测美洛西林钠舒巴坦钠的药物混合过程,从而实现混合终点的准确判断。[b]1 材料1.1试剂[/b]美洛西林钠(13102041,山东瑞阳制药有限公司)舒巴坦钠(SS201310-26,江西东风制药有限公司)[b]1.2仪器和软件[/b]AntarisII型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](美国ThermoFisher公司),附有积分球采样模块;RESULT采样软件;电子分析天平(Sartorius BT224S,德国);TQ数据处理软件;表面皿;药匙;自制搅拌器。[b]2 方法2.1样品的准备[/b]精密称取舒巴坦钠固体原料药10.00g,美洛西林钠固体原料药40.00g,以备进行在线混合光谱的采集。平行制备3批样品,进行混合光谱的采集。[b]2.2模型的建立[/b]目前,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于混合过程在线监测的方法可分为活性药物成分(API)定量分析模型监测和基于移动块标准偏差(MBSD)的定性分析模型监测。前者为基于API药物含量的定量监测模型,当达到混合终点时,API的含量趋于一定值,可以依据模型监测的含量是否达到理论值并趋于稳定进行混合终点的监测;后者为基于光谱的标准偏差的定性监测模型。MBSD法的基本原理为:连续采集的若干张光谱间的标准偏差变化率趋于稳定并小于限定的一阈值时可认为达到了混合终点。其具体的计算步骤为:首先确定用于计算光谱标准偏差的光谱的条数n(即移动块的宽度),当[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析仪器采集到n张光谱后计算n张光谱的峰面积(或最大峰高、平均峰高等)的标准差,当采集到n+1张光谱时将第一张光谱移除,计算最近n张光谱的标准差,如此类推,最终得到随时间变化的光谱的标准偏差,根据标准差的变化进行混合终点的监测。本研究中建立了舒巴坦钠含量的定量分析模型和基于MBSD法的定性分析模型同时对用于混合终点的判断。[b]2.3在线混合光谱的采集[/b]将称取的美洛西林钠、舒巴坦钠原料药样品放入表面皿中,然后将表面皿放在Antaris II型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]积分球采样模块的上面,采用积分球漫反射采样方式进行光谱的采集。在运行在线混合工作流的同时采用自制的搅拌器进行样品的混合,采集得到混合过程的原始光谱,同时监测混合过程。波长范围10000-4000cm[sup]-1[/sup],每张光谱扫描次数4,混合过程中每间隔5s进行一张光谱的采集,光谱分辨率为8.0cm[sup]-1[/sup],每4个小时进行背景光谱的采集。每张[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱由1557个变量点组成。[b]2.4定量定性分析模型用于终点判断数据分析[/b]将在线混合过程进行监测,得到在线混合过程数据进行分析,以便了解混合全过程信息以及混合过程的监测。[b]2.5混合终点分析[/b]当得到混合终点时分别采集混合后的样品6处的原始[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,利用舒巴坦钠的定量分析模型预测混合终点时不同样品点处的舒巴坦钠的含量,判别是否混合均匀。[b]3 实验结果3.1分析模型的建立[/b]本研究中分别建立了在线混合过程的舒巴坦钠定量监测模型和基于移动块标准偏差的定性监测模型。[b]3.1.1 定性分析模型的建立[/b]目前混合均匀度在线监测常用的方法为MBSD法,本研究中MBSD法定性建模的参数为:选择的3个光谱区间包括全光谱、5275.6-4806.3cm[sup]-1[/sup](称为Region1)及7096.76-6344.66cm[sup]-1[/sup](称为Region2);用于计算光谱偏差的光谱的条数为5(即移动块的宽度为5)。[b]3.1.2 定量分析模型的建立[/b]本研究中所建立的定量分析模型用于监测混合过程中舒巴坦钠的百分含量的变化,因为本实验中舒巴坦钠和美洛西林钠两者间的混合比为4:1,当达到混合终点时,舒巴坦钠的百分含量应该在20%左右。其模型的具体参数见上一章中得到的舒巴坦钠百分含量的定量分析模型。[b]3.2混合在线过程数据分析[/b]本研究中平行进行了3次混合过程的在线监测,分别对3次实验结果进行分析,以充分了解混合监测过程。[b]3.2.1 第一批实验结果分析3.2.1.1 原始光谱图[/b]图1给出了混合过程中采集得到的208张原始光谱,由图中可知,处于下面的光谱较稀疏,可能属于混合刚开始的阶段,光谱会有较大的差异;处于上面的光谱较密集,其原因为随着混合的不断进行,光谱间差异越来越小,所以光谱较集中。[align=center][img=,498,274]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141912_01_1626619_3.png[/img][/align][align=center]图1 第一批混合过程原始光谱[/align][align=center] [/align][b]3.2.1.2 在线混合过程结果分析[/b]图2为定性分析模型中得到的3个光谱区间的峰面图,其中M1为全光谱建模的峰面积变化,M2为Region 1(5275.6-4806.3cm-1)的峰面积变化,M2为Region 2(7096.76-6344.66cm-1)的峰面积变化,由峰面积的变化图可知,混合过程的前100s其变化较为明显,M1不断升高,M2和M3(7096.76-6344.66cm-1)不断下降,之后峰面积值趋于稳定。[align=center][img=,525,234]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141913_01_1626619_3.png[/img][/align][align=center]图2 光谱区间峰面积图[/align]图3为舒巴坦钠含量及标准偏差变化图,由图中显示在混合的初期阶段,尤其是前100s左右,四个表征混合均匀度的参数均有着较大的变化趋势,在200-300s间四个参数有稍微较小的波动,此后随着混合过程的不断进行,表征混合均匀度的四个参数变化范围均变小,模型给出的舒巴坦钠的百分含量在20%左右,舒巴坦钠和美洛西林钠混合较为均匀,达到了混合终点。由图可知前100s是混合的主要阶段,此阶段舒巴坦钠的百分含量和标准偏差均有着明显的变化。[align=center][img=,538,292]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141914_01_1626619_3.png[/img][/align][align=center]图 3 含量和标准偏差变化图[/align][align=center](a舒巴坦钠百分含量变化 b全光谱峰面积标准差 c Region1峰面积标准差 d Region2峰面积标准差)[/align][align=left] 当达到混合终点时分别采集表面皿下6个点的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,根据建立的模型测定其舒巴坦钠的百分含量,看混合是否均匀。表2给出了用所建模型得到的6个点的舒巴坦钠的百分含量值,6个点舒巴坦钠的百分含量值在20%左右,说明混合较为均一,但是最大的值达到了22.41%,可能是由于混合装置过于简陋,加上是人为搅拌进行混合,不能达到很好的混合,部分地方没有进行很好的混合。从实验的可行性方面,初步证实了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]技术用于美洛西林钠舒巴坦钠混合的可行性。[/align][align=center]表1混合后不同点舒巴坦钠百分含量值[/align][align=center] [img=,570,70]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141915_01_1626619_3.png[/img][/align][b]3.2.2 第二批实验结果分析3.2.2.1 原始光谱图[/b]图4给出了第二批混合过程中采集得到的203张原始光谱,其混合过程原始光谱的特征和第一批混合过程较为相似,混合初期光谱变化较为明显,随着混合的进行,光谱差异变小,光谱较为密集。[align=center][img=,488,280]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141915_02_1626619_3.png[/img][/align][align=center]图4 第二批混合过程原始光谱[/align][align=left] [b]3.2.2.2 在线混合过程结果分析[/b][/align]图5为各个光谱波段峰面积的变化图,由图中显示开始的100s内峰面积有着较大的变化幅度,随着混合的不断进行,峰面积的变化趋势不断减小并逐渐趋于稳定。[align=center][img=,516,307]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141916_01_1626619_3.png[/img][/align][align=center]图5 光谱区间峰面积图[/align][align=center](a 全光谱峰面积 bRegion 1峰面积 cRegion 2峰面积)[/align]图6为舒巴坦钠含量及标准偏差变化图,由图可知在混合的初期阶段大约0-100 s时,舒巴坦钠百分含量值及峰面积的标准偏差值有着明显的变化,全光谱峰面积的标准偏差(Full Range STD)在200-400 s间有较为明显的波段,此后随着混合过程的不断进行,四个参数变化范围均变小,模型给出的舒巴坦钠的百分含量在20%左右。由此可知前100 s是混合的主要阶段,此阶段舒巴坦钠的百分含量和标准偏差均有着明显的变化。[align=center][img=,551,327]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141917_01_1626619_3.png[/img][/align][align=center]图6 含量和标准偏差变化图[/align][align=center](a 舒巴坦钠百分含量 b 全光谱峰面积标准偏差 c Region 1峰面积标准偏差 d Region 2峰面积标准偏差)[/align]当达到混合终点时,采集表面皿底部6处的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,检测混合过程是否达到均一,表2列出来了6处的舒巴坦钠的百分含量值,由表2可知达到混合结束后得到的6处的舒巴坦钠的百分含量均在20%左右,说明混合较为均匀。同时,由于实验条件的限制加上搅拌时人为因素的影响等,各点之间含量也着较大的差异。[align=center]表2 舒巴坦钠百分含量[/align][align=center] [img=,566,84]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141918_01_1626619_3.png[/img][/align][b]3.2.3 第三批实验结果分析3.2.3.1 原始光谱图[/b]图7给出了混合过程中采集得到的207张原始光谱,由图中可知,得到的原始光谱图与第一批和第二批有着相似的结果,即混合的初期光谱差异大,因此光谱较为稀疏(偏下方的光谱),随着混合的进行,光谱间差异变小,光谱变得密集(偏上方的光谱)。[align=center][img=,505,262]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141919_01_1626619_3.png[/img][/align][align=center]图7 第三批混合过程原始光谱[/align][b]3.2.3.2 在线混合过程结果分析[/b]图8给出了混合过程中3个光谱区间峰面积的变化趋势值,由图中可知0-100s间三个光谱区间的峰面积有着明显的变化,100-200s间峰面积有着明显的变化,但是变化幅度没有前100s大,200s以后峰面积变化趋势变小。说明前200s是混合的主要阶段,峰面积变化较为明显。[align=center][img=,519,343]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141919_02_1626619_3.png[/img][/align][align=center]图 8 光谱区间峰面积图[/align][align=center](a 全光谱峰面积 bRegion 1峰面积 cRegion 2峰面积)[/align]图9为舒巴坦钠百分含量及光谱峰面积的标准偏差随时间变化的趋势图,其变化趋势和峰面积的变化趋势相似,前100s变化幅度较大,100-200s间也有较为明显的变化,但是变化幅度不是很明显,200s后舒巴坦钠的百分含量和峰面积的标准偏差均趋于稳定,说明此时光谱差异变小,混合趋于均匀。[align=center][img=,529,352]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141920_01_1626619_3.png[/img][/align][align=center]图9 含量和标准偏差变化图[/align][align=center](a舒巴坦钠百分含量变化 b全光谱峰面积标准差 c Region1峰面积标准差 d Region2峰面积标准差)[/align]表3为达到混合终点时采集表面皿底部的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱得到的不同点的舒巴坦钠的百分含量值,由表中显示6个点的舒巴坦钠的百分含量值在20%左右,但是6个点之间舒巴坦钠百分含量间存在较大的差异,测得的最小值为17.80%,其原因可能是一方面由于实验条件的限制混合不够均匀,一方面用于舒巴坦钠含量测定的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]定量分析模型也有一定的偏差,可能引起含量检测的差异存在。[align=center]表3 混合后不同点舒巴坦钠百分含量值[/align][align=center] [img=,564,66]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141921_01_1626619_3.png[/img][/align][b]3.3小结[/b]通过3个混合平行实验的进行可知所建立的基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型能够有效的监测舒巴坦钠、美洛西林钠的混合过程。由舒巴坦钠百分含量和标准偏差变化图可知两者的变化有着相关性,当舒巴坦钠的百分含量变化幅度大时,其标准偏差的变化幅度也较大,因此两者均可以用于混合过程的在线监测,证实了实验的可行性。[b]4 结论和讨论[/b]本研究采用AntarisII傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对美洛西林钠、舒巴坦钠混合过程进行了在线监测。在研究中,分别建立了基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型,然后Antaris II傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]漫反射采样方式采集混合过程中的光谱,实时监测混合过程的进行。通过3个平行实验的在线混合过程,结果显示MBSD法和舒巴坦钠百分含量测定法均能有效的监测其混合过程,有效的证明了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于舒巴坦钠、美洛西林钠混合在线监测的可行性。此外,MBSD法因为无需进行一级数据的采集,方法较为简单且容易理解,目前常用于混合过程的在线监测。本研究中有效证实了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术在舒巴坦钠美洛西林钠样品在线混合过程中应用的可行性,在样品的在线混合监测中有着重要的应用价值和应用前景。该技术能够克服传统方法费时、繁琐等缺点,而且可以实现过程的实时在线监测,让生产者充分了解整个生产过程中的参数变化。 [b]参考文献[/b]陆婉珍, 褚小立. [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url])和过程分析技术(PAT). 现代科学仪器, 2007(004):13-17.SieslerH, Ozaki Y, Kawata S, et al. Near-infrared spectroscopy: principles .Instruments, Applications, 2002:35-181.Bhushan,K.R.,et al.Detection of breastcancer microcalcifications using a dual-modality SPECT/[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] fluorescent probe. J Am Chem Soc, 2008. 130(52):17648-17649.贾燕花. [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在化学药品生产过程控制应用初探. 北京协和医学院, 2011.Fevotte.G,et al.Applications of [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]spectroscopy to monitoring and analyzing the solid state during industrialcrystallization processes . Int J Pharm, 2004, 273(1):159-169.张敏.盐酸林可霉素多晶型分子构象对其红外光谱行为的影响.中国抗生素杂志, 2005, 30(009):529-532.Blanco M,R Goz"01ez Ba,E.Bertran,Monitoring powder blending in pharmaceutical processes by use of nearinfrared spectroscopy . Talanta, 2002, 56(1):203-212,田科雄.不同装载系数和混合时间对添加剂预混料混合均匀度的影响.河北畜牧兽医, 2004, 20(9):52-53.孙栋. 基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的几种固体粉末混合均匀度快速检测研究. 山东大学硕士学位论文, 2012年.

  • 硒化铋Bi2Se3二维层状拓扑绝缘体材料的螺旋生长进展

    硒化铋Bi2Se3二维层状拓扑绝缘体材料的螺旋生长进展

    [color=#333333]最近,合肥微尺度物质科学国家实验室和化学与材料科学学院曾杰教授研究组在拓扑绝缘体二维层状纳米材料硒化铋Bi2Se3的结构设计、合成与生长机理研究方面取得重要进展。研究人员对Bi2Se3晶体的成核及生长进行了动力学调控,通过引入螺旋位错首次实现了二维层状材料的螺旋生长,将材料由分立的层状转变成连续性的螺旋条带,从而获得了一种既不同于单层又有别于传统块体的新型纳米材料。该成果以“Screw-Dislocation-Driven Bidirectional Spiral Growth of Bi2Se3Nanoplates”为题发表在《德国应用化学》杂志上(Angew. Chem. Int. Ed. 2014,DOI:10.1002/anie.201403530)。[/color][color=#333333]据巨纳集团低维材料在线91cailiao.cn的技术工程师Ronnie介绍,类石墨烯层状结构的硒化铋Bi2Se3因其简单的能带结构、远大于室温的能量涨落体带隙,被认为是最有前景的拓扑绝缘体材料之一。拓扑绝缘体是一种近几年被发现的新型量子物质态,在能量无耗传输、自旋电子学以及量子计算机等方面有着很大的应用前景。拓扑绝缘体除了奇异的不受缺陷和非磁性杂质散射的拓扑表面态外,若在其中引入一个螺旋位错的线缺陷,还可能会产生一对拓扑保护的一维螺旋态,从而创造一条完美的导电通道。曾教授课题组基于特色的可控制备手段,从晶体生长的动力学理论出发,通过将反应体系维持在极低的过饱和条件下,使Bi2Se3在成核过程中产生螺旋位错的缺陷,从而诱导层状材料进行双向的螺旋生长,打破硒化铋Bi2Se3本征的晶体生长模式。此外,研究人员还通过对螺旋生长速度的控制,合成出不同发展程度的螺旋结构,从中阐明了二维层状材料的螺旋生长机理。这项研究为实现一维拓扑螺旋态提供了材料基础,有助于促进Bi2Se3在拓扑绝缘体、热电以及催化等方面的新发展。此外,探索螺旋生长的方式对于合成其他二维层状材料的螺旋结构,从而调制材料的物理性能也有重要的指导意义。转自[img=,500,263]http://ng1.17img.cn/bbsfiles/images/2017/07/201707051342_01_2047_3.jpg[/img]低维材料在线:[/color]http://www.91cailiao.cn/index.php/news/57.html

  • 硒化铋Bi2Se3二维层状拓扑绝缘体材料的螺旋生长进展

    硒化铋Bi2Se3二维层状拓扑绝缘体材料的螺旋生长进展

    最近,合肥微尺度物质科学国家实验室和化学与材料科学学院曾杰教授研究组在拓扑绝缘体二维层状纳米材料硒化铋Bi2Se3的结构设计、合成与生长机理研究方面取得重要进展。研究人员对Bi2Se3晶体的成核及生长进行了动力学调控,通过引入螺旋位错首次实现了二维层状材料的螺旋生长,将材料由分立的层状转变成连续性的螺旋条带,从而获得了一种既不同于单层又有别于传统块体的新型纳米材料。该成果以“Screw-Dislocation-Driven Bidirectional Spiral Growth of Bi2Se3 Nanoplates”为题发表在《德国应用化学》杂志上(Angew. Chem. Int. Ed. 2014, DOI:10.1002/anie.201403530)。据巨纳集团低维材料在线91cailiao.cn的技术工程师Ronnie介绍,类石墨烯层状结构的硒化铋Bi2Se3因其简单的能带结构、远大于室温的能量涨落体带隙,被认为是最有前景的拓扑绝缘体材料之一。拓扑绝缘体是一种近几年被发现的新型量子物质态,在能量无耗传输、自旋电子学以及量子计算机等方面有着很大的应用前景。拓扑绝缘体除了奇异的不受缺陷和非磁性杂质散射的拓扑表面态外,若在其中引入一个螺旋位错的线缺陷,还可能会产生一对拓扑保护的一维螺旋态,从而创造一条完美的导电通道。曾教授课题组基于特色的可控制备手段,从晶体生长的动力学理论出发,通过将反应体系维持在极低的过饱和条件下,使Bi2Se3在成核过程中产生螺旋位错的缺陷,从而诱导层状材料进行双向的螺旋生长,打破硒化铋Bi2Se3本征的晶体生长模式。此外,研究人员还通过对螺旋生长速度的控制,合成出不同发展程度的螺旋结构,从中阐明了二维层状材料的螺旋生长机理。这项研究为实现一维拓扑螺旋态提供了材料基础,有助于促进Bi2Se3在拓扑绝缘体、热电以及催化等方面的新发展。此外,探索螺旋生长的方式对于合成其他二维层状材料的螺旋结构,从而调制材料的物理性能也有重要的指导意义。[align=center][img=,500,263]http://ng1.17img.cn/bbsfiles/images/2017/07/201707071343_01_2047_3.jpg[/img][/align]

  • 头孢克洛检测有关物质的问题?

    有没有朋友做头孢克洛的液相分析,我们在测有关物质时,在42——50min都有两个大包,是怎么回事,7月份测时还没有,现在是进了两针后就有了,我们试剂和水都换过了,就是除不掉,有没有人知道还有什么办法吗? 流动相A:7.8%磷酸二氢钠缓冲液(用磷酸调PH为4.0) 流动相B:7.8%磷酸二氢钠缓冲液(用磷酸调PH为4.0)/乙腈=275/225 梯度:t/min 0 30 45 50 51 61 A% 95 25 0 0 95 95

  • 诚聘网络信息管理员——天津博纳艾杰尔科技有限公司

    招聘说明网络信息管理员人数:1人主要职责:1. 负责网络(论坛/BBS、公司官网/合作网站)信息维护、推广及图片编辑工作2. 协助完成线上、线下各项活动执行、反馈、结果统计。可参与策划者为佳3. 负责网络活动文案,主题帖,新闻,软文等撰写4. 懂得如何引导网友情绪,把握论坛、网站发展方向5. 熟知调动网友积极性的多种方法,知道如何通过多种渠道进行网络推广6. 能够主动配合并按时完成上级领导交办的其他工作岗位要求:1.统招本科及以上学历,有至少一年网宣工作经验(网络信息维护及推广工作经历为佳,淘宝等网店管理次之),熟悉并热爱网宣事业。熟练使用Office 工具,如:Word, Excel, Power point等。性格活泼,踏实肯干。具有一定化学背景者优先,曾在色谱行业工作者优先,曾为论坛版主者优先。【应聘者请认真阅读此条,不符者请绕行。如遇工作能力极强者,条件可适当放宽。】2. 文字功底强,思维灵活,有良好的工作习惯(尤指文件管理、整理方面)。能承受高压力工作。3. 善于与人沟通,有较强的协调力及良好的团队意识。有责任心,吃苦耐劳。做事认真细致,积极进取。4. 为人正直、开朗,乐于接受新鲜事物,且尝新能力强。5. 会使用排版软件(Adobe Illustrator, Indesign 等)、图片处理软件(Adobe Photoshop)者优先。6. 男性优先。工作地点:天津经济技术开发区西区备注:邮件标题包含:姓名、应聘职位、期望薪金、到岗时间;简历请勿以附件形式发送。有意者请将简历发送至:ying_tang@agela.com.cn

  • 【求助】HPLC法测盐酸普萘洛尔含量

    HPLC法测盐酸普萘洛尔含量,采用紫外检测器,用安捷伦-SB-C18柱,以乙腈:0.05M磷酸二氢钾30:70为流动相,但出来的色谱峰拖尾,且峰形对称性差。本人试过加酸加碱来改善拖尾,但效果不明显,特此求助,望有关人士能解我燃眉之急,非常感谢!!

  • 第二届“颗粒研究应用与检测分析”主题网络研讨会(2021)

    [align=center][img]https://img1.17img.cn/17img/images/202103/webinar/36af542f-66e9-44ec-897d-7a91fa340fc4.jpg[/img][/align]颗粒学研究包罗万象,涉及食品、医药、化工、材料、冶金等各行各业。2020年,席卷全球的新型冠状病毒平均直径约为100纳米,属于纳米颗粒,新冠病毒的气溶胶传播也属于颗粒研究的范畴。疫情进一步推动颗粒学的研究与应用向着更小、更复杂、更尖端的纵深快速发展,同时,颗粒研发与质控所必须的相关检测分析技术也在不断迭代升级。基于此,仪器信息网联合中国颗粒学会,将于2021年3月24日-3月26日组织召开第二届“颗粒研究应用与检测分析”主题网络会议。分设[b]能源颗粒和电池材料、药物制剂与粒子设计、气溶胶与新冠病毒、超微及纳米颗粒、颗粒测试与表征[/b]五个分会场,邀请业内著名颗粒学学者、检测分析专家及企业代表,针对颗粒学研究应用及检测分析的前沿热点和疑难问题进行探讨,为颗粒学的研发应用端与检测分析端搭建交流平台。热忱欢迎国内外颗粒领域的专家、学者、技术人员、企业界代表及研究生踊跃参会、交流。报名链接:https://insevent.instrument.com.cn/t/w2

  • 意大利锡耶纳风光(二)

    意大利锡耶纳风光(二)

    [b][color=#cc0000]意大利锡耶纳风光(二)[/color][color=#cc0000][/color][color=#cc0000][img=,690,501]https://ng1.17img.cn/bbsfiles/images/2021/05/202105271009219784_1355_1841897_3.jpg!w690x501.jpg[/img][/color][/b]

  • 2015中国药典检测方案有奖问答01.08(已完结)——注射用盐酸艾司洛尔

    2015中国药典检测方案有奖问答01.08(已完结)——注射用盐酸艾司洛尔

    问题:注射用盐酸艾司洛尔:有关物质衍生溶液中杂质和盐酸艾司洛尔的分离度是多少?答案:10.154获奖名单:zengzhengce163(ID:zengzhengce163)WUYUWUQIU(ID:wulin321)dyd3183621(ID:dyd3183621)http://ng1.17img.cn/bbsfiles/images/2016/01/201601081731_581399_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601081732_581400_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601081732_581401_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601081732_581402_708_3.jpg活动奖励】幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。注射用盐酸艾司洛尔样品制备 制备方法含量测定对照品溶液:取盐酸艾司洛尔对照品,加水溶解并定量稀释制成每1 mL 约含50 μg 的溶液。有关物质衍生溶液:取盐酸艾司洛尔对照品约10 mg,置10 mL量瓶中,加入1 mol/L盐酸溶液1 mL,放置30分钟,加1 mol/L的氢氧化钠溶液1 mL使中和,用流动相A 稀释至刻度,摇匀。分析条件(含量测定) 色谱柱Diamonsil C18(2) 250 x 4.6 mm,5 μm (Cat#:99603)流动相乙腈:甲醇:磷酸盐缓冲液(取磷酸二氢钾3.0g,加水溶解并稀释至650 mL)=15:20:65 流速1 mL/min柱温30 ℃检测器UV 222 nm进样量20 μL 分析条件(有关物质) 色谱柱Diamonsil C18(2) 250 x 4.6 mm,5 μm (Cat#:99603)流动相流动相A :乙腈:甲醇:磷酸盐缓冲液(取磷酸二氢钾3.0 g,加水至650 mL)=15:20:65流动相B:甲醇梯度流速1 mL/min柱温30 ℃检测器UV 222 nm进样量20 μL 色谱图含量测定对照品溶液http://ng1.17img.cn/bbsfiles/images/2016/01/201601081023_581265_708_3.png 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 9.345 677855 56730 13763.887 1.061 -- *药典要求理论板数按盐酸艾司洛尔峰计算不低于2000有关物质衍生溶液http://ng1.17img.cn/bbsfiles/images/2016/01/201601081025_581266_708_3.png 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数 N USP拖尾因子 分离度 1 3.842 6280189 655879 2747.059 0.670 -- 2 11.157 29271705

  • 【转帖】生命科学新的里程碑:DNA双螺旋结构发现前前后后

    作者:徐九武 文章来源:科技日报 生命科学新的里程碑:DNA双螺旋结构发现前前后后 丰富多彩、引人入胜的生命现象,历来是人们最为关注的课题之一。在探索生物之谜的历史长河中,一批批生物学家为之奋斗、献身,以卓越的贡献扬起生物学“长风破浪”的航帆。今天,当我们翻开群星璀璨的生物学史册时,不能不对J沃森(JinWatson)、F克里克(FrancisCrick)的杰出贡献,予以格外关注。50年前,正是这两位科学巨匠提出了DNA双螺旋结构模型的惊世发现,揭开了分子生物学的新篇章。如果说十九世纪达尔文进化论在揭示生物进化发展规律、推动生物学发展方面,具有里程碑意义的话,那么,DNA双螺旋结构模型的提出,则是开启生命科学新阶段的又一座里程碑。由此,人类开始进入改造、设计生命的征程。   诚然,生物科学的每一次突破都是其自身发展到一定阶段的产物,是不同学科新理论、新技术相互渗透融合的结果,但勿庸置疑,它首先是科学家个人创造性劳动的宝贵结晶。今天,了解DNA双螺旋结构模型产生的背景、条件,以及对生物学发展产生的积极影响,对我们深刻认识这一重大发现的科学价值,正确把握现代生命科学发展的规律和方向,是大有裨益的。正是基于这一认识,笔者撰写了这篇短文,权作对DNA双螺旋结构模型提出50周年的纪念。   浩繁纷杂的生物尽管千差万别,但不论哪一个种类,从最小的病毒直至大型的哺乳动物,都毫无例外地可以把自己的性状一代一代地传下去;而无论亲代与子代,还是子代各个体之间,又多少总会有些差别,即便是双胞胎也不例外。人们曾用“种瓜得瓜,种豆得豆”和“一母生九子,九子各别”,生动形象地概括了存在于一切生物中的这一自然现象,并为揭开遗传、变异之谜进行了不懈的努力。   17世纪末,有人提出了“预成论”的观点,认为生物之所以能把自己的性状特征传给后代,主要是由于在性细胞(精子或卵细胞)中,预先包含着一个微小的新的个体雏形。精原论者认为这种“微生体”存在于精子之中;卵原论者则认为这种“微生体”存在于卵子之中。但是这种观点很快为事实所推翻。因为,无论在精子还是卵子之中,人们根本见不到这种“雏形”。代之而来的是德国胚胎学家沃尔夫提出的“渐成论”。他认为,生物体的任何组织和器官都是在个体发育过程中逐渐形成的。但遗传变异的操纵者究竟是何物?仍然是一个谜。   直到1865年,奥地利遗传学家孟德尔在阐述他所发现的分离法则和自由组合法则时,才第一次提出了“遗传因子”(后来被称作为基因)的概念,并认为,它存在于细胞之内,是决定遗传性状的物质基础。1909年,丹麦植物学家约翰逊用“基因”一词取代了孟德尔的“遗传因子”。从此,基因便被看作是生物性状的决定者,生物遗传变异的结构和功能的基本单位。1926年,美国遗传学家摩尔根发表了著名的《基因论》。他和其他学者用大量实验证明,基因是组成染色体的遗传单位。它在染色体上占有一定的位置和空间,呈直线排列。这样,就使孟德尔提出的关于遗传因子的假说,落到具体的遗传物质———基因上,为后来进一步研究基因的结构和功能奠定了理论基础。尽管如此,当时人们并不知道基因究竟是一种什么物质。直至本世纪40年代,当科学工作者搞清了核酸,特别是脱氧核糖核酸(简称DNA),是一切生物的遗传物质时,基因一词才有了确切的内容。1951年,科学家在实验室里得到了DNA结晶;1952年,得到DNAX射线衍射图谱,发现病毒DNA进入细菌细胞后,可以复制出病毒颗粒… 在此期间,有两件事情是对DNA双螺旋结构发现,起了直接的“催生”作用的。一是美国加州大学森格尔教授发现了蛋白质分子的螺旋结构,给人以重要启示;一是X射线衍射技术在生物大分子结构研究中得到有效应用,提供了决定性的实验依据。   正是在这样的科学背景和研究条件下,美国科学家沃森来到英国剑桥大学与英国科学家克里克合作,致力于研究DNA的结构。他们通过大量X射线衍射材料的分析研究,提出了DNA的双螺旋结构模型,1953年4月25日在英国《发现》杂志正式发表,并由此建立了遗传密码和模板学说。之后,科学家们围绕DNA的结构和作用,继续开展研究,取得了一系列重大进展,并于1961年成功破译了遗传密码,以无可辩驳的科学依据证实了DNA双螺旋结构的正确性,从而使沃林、克里克同威尔金斯一道于1962年获得诺贝尔医学生理学奖。

  • 洛氏硬度计九种故障的分析与排除

    在使用洛氏硬度计的过程中,如果显示值不对,那么造成这种因素的原因有很多,现在我把一些常见故障的分析和排除总结为以下九点。1 在给洛氏硬度计加预负荷初,指针发现有抖颤动的情况。主要原因是平键与升降丝杆的压槽配合有间隙。只要拧紧硬度计的平键紧固螺丝或更换即可。2 主负荷加载完成后,硬度计指针有颤动情况,造成这种情况的原因可分三种,一砝码托盘上有油。二缓冲器相对工作台不平衡。三硬度计机身不水平。找出问题后就可针对具体情况选择清理油污、调整缓冲器、校正硬度计工作台。3 进行洛氏硬度计主负荷加载时,出现指针抖动。原因是洛氏硬度计加荷手柄有松动情况或者缓冲油不足。排决方法,拧紧松动的顶丝,加油并排净空气。4 主负荷加载后,硬度计指针出现较长时间太转动。原因是砝码吊杆太长,调成短杆就解决了。5 硬度计主负荷加载后,指针还是静止不动。造成的原因是主负荷没加上,或者缓冲器油针关闭了油孔。解决方法是把硬度计吊杆长度调短,打开缓冲器,调开油针。6 硬度计加主负荷时,指针转动迅速。主要原因是缓冲器的油针在最大开口位置或者缓冲无油。排除方法,调节油针至合适位置,加油排净空气。7 硬度计加主负荷时,指针转动缓慢。主要原因有下面几种:缓冲器的油针调节过小,缓冲器油太脏或粘度大,百分表测量杆有较大的摩擦,主轴系统有阻力。分析出原因后,针对进行,油针调节,更换合适机油,消除摩擦,清洗主轴系统。8 硬度计加主负荷时,指针时走时停,快慢不均匀。主要原因有两种,一是洛氏硬度计缓冲器油缸有空气。二是硬度计不水平致使机身与砝码发生碰撞或接触。解决时,一要排除油缸中的空气。二要调整硬度计致水平。9 硬度计主负荷卸除后指针还伴有跳动现象。原因是砝码吊杆与大杠杆链接处的球头与秋窝进入油污,清除即可。

  • 你的朋友都收藏啦!卡拉洛尔残留测定前处理方法

    [font=宋体]卡拉洛尔的危害及检测目的[/font][font=宋体] [/font][font=宋体][font=宋体]卡拉洛尔又名咔唑心安,化学名[/font]4- (3-[font=宋体]异丙胺基[/font][font=Times New Roman]-2-[/font][font=宋体]羟丙氧基[/font][font=Times New Roman]) [/font][font=宋体]咔唑,属β肾上腺受体阻断剂,在兽医临床中常用于消除动物紧张,特别是在运输过程中防止因应激导致的动物死亡。β肾上腺受体阻断剂目前已成为临床上常见的七类兽药残留之一,其代表性药物卡拉洛尔常在动物屠宰前数小时内注射使用,因此相对其他兽药可能对消费者造成的健康风险更高。因此我国农业农村部和国家市场监督管理总局[/font][font=Times New Roman]2019[/font][font=宋体]年发布的[/font][font=Times New Roman]GB 31650-2019[/font][font=宋体]《食品安全国家标准食品中兽药最大残留限量》中明确规定了卡拉洛尔在猪靶组织中的残留限量。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]本文阐述了如何将卡拉洛尔从样品基质中分离提取出来,并经过净化后,转化成[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]可以检测的形式。以提取、净化为重点,依据行标[/font]SN/T 4144-2015[font=宋体],为检测人员和相关领域研究人员提供一定的参考。[/font][/font][font=宋体] [/font][font=宋体]检测项目:卡拉洛尔[/font][font=宋体] [/font][font=宋体]应用范围:猪肉、鱼肉、虾肉、肝脏、肾脏、脂肪、奶、鸡蛋和蜂蜜[/font][font=宋体] [/font][font=宋体][font=宋体]高效液相色谱[/font]-[font=宋体]质谱[/font][font=Times New Roman]/[/font][font=宋体]质谱法[/font][/font][font=宋体][font=宋体]方法原理:试样中的卡拉洛尔用甲醇(脂肪用乙酸乙酯[/font]-[font=宋体]正己烷溶解提取)提取,提取液经[/font][font=Times New Roman]MCX[/font][font=宋体]柱净化(脂肪用[/font][font=Times New Roman]GPC[/font][font=宋体]净化)后,供液相色谱[/font][font=Times New Roman]-[/font][font=宋体]质谱[/font][font=Times New Roman]/[/font][font=宋体]质谱仪测定,外标法峰面积定量。[/font][/font][font=宋体]前处理仪器:[/font][font=宋体] [/font][font=宋体][font=宋体]凝胶净化色谱仪;电子天平(感量[/font]0.01 g [font=宋体]和[/font][font=Times New Roman]0.1 mg[/font][font=宋体]);组织捣碎机;涡旋混匀器;氮吹仪;均质机([/font][font=Times New Roman]10000 r/min[/font][font=宋体]);离心机([/font][font=Times New Roman]6000 r/min[/font][font=宋体]);具塞塑料离心管([/font][font=Times New Roman]50 mL[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]检测仪器:[/font][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS+ESI[font=宋体]源[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]样品的制备与保存[/font][font=宋体] [/font][font=宋体]1.[font=宋体]肌肉(猪肉)、内脏(肝脏、肾脏)、脂肪和水产品(鱼肉、虾肉):取代表性样品约[/font][font=Times New Roman]500 g[/font][font=宋体],用组织捣碎机捣碎,装入洁净容器作为试样,密封并做好标识,于零下[/font][font=Times New Roman]18 [/font][font=宋体]℃下保存。[/font][/font][font=宋体] [/font][font=宋体]2.[font=宋体]奶、蜂蜜、鸡蛋:取代表性样品约[/font][font=Times New Roman]500 g[/font][font=宋体],搅拌均匀后装入洁净容器内密封并做好标识,于[/font][font=Times New Roman]4 [/font][font=宋体]℃下保存。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]前处理方法[/font][font=宋体] [/font][font=宋体]1.[font=宋体]提取[/font][/font][font=宋体] [/font][font=宋体]肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉[/font][font=宋体] [/font][font=宋体][font=宋体]称取[/font]5 g[font=宋体]试样(精确至[/font][font=Times New Roman]0.01 g[/font][font=宋体])于[/font][font=Times New Roman]50 mL[/font][font=宋体]具塞离心管中,加入[/font][font=Times New Roman]15 mL[/font][font=宋体]甲醇,涡旋提取[/font][font=Times New Roman]2 min[/font][font=宋体],用均质器([/font][font=Times New Roman]10000 r/min[/font][font=宋体])均质[/font][font=Times New Roman]2 min[/font][font=宋体],[/font][font=Times New Roman]5500 r/min[/font][font=宋体]离心[/font][font=Times New Roman]3 min[/font][font=宋体],将有机相转移至[/font][font=Times New Roman]50 mL[/font][font=宋体]容量瓶中,残渣再用[/font][font=Times New Roman]15 mL[/font][font=宋体]甲醇均质提取一次。离心合并有机相,用水定容至[/font][font=Times New Roman]50 mL[/font][font=宋体],待净化。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]奶、蜂蜜、鸡蛋[/font][font=宋体] [/font][font=宋体][font=宋体]称取[/font]5 g[font=宋体]试样(精确至[/font][font=Times New Roman]0.01 g[/font][font=宋体])于[/font][font=Times New Roman]50 mL[/font][font=宋体]具塞离心管中,加入[/font][font=Times New Roman]15 mL[/font][font=宋体]甲醇,涡旋提取[/font][font=Times New Roman]2 min[/font][font=宋体],[/font][font=Times New Roman]5500 r/min[/font][font=宋体]离心[/font][font=Times New Roman]3 min[/font][font=宋体],将有机相转移至[/font][font=Times New Roman]50 mL[/font][font=宋体]容量瓶中,残渣再用[/font][font=Times New Roman]15 mL[/font][font=宋体]甲醇涡旋提取一次。离心合并有机相,用水定容至[/font][font=Times New Roman]50 mL[/font][font=宋体],待净化。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]脂肪[/font][font=宋体] [/font][font=宋体][font=宋体]称取[/font]2 g[font=宋体]试样(精确至[/font][font=Times New Roman]0.01 g[/font][font=宋体])于[/font][font=Times New Roman]50 mL[/font][font=宋体]具塞离心管中,加入[/font][font=Times New Roman]20 mL[/font][font=宋体]乙酸乙酯[/font][font=Times New Roman]-[/font][font=宋体]环己烷([/font][font=Times New Roman]1+1[/font][font=宋体])溶解并混匀,[/font][font=Times New Roman]5500 r/min[/font][font=宋体]离心[/font][font=Times New Roman]3 min[/font][font=宋体],将有机相转移至[/font][font=Times New Roman]50 mL[/font][font=宋体]容量瓶中,残渣再用[/font][font=Times New Roman]20 mL[/font][font=宋体]乙酸乙酯[/font][font=Times New Roman]-[/font][font=宋体]环己烷([/font][font=Times New Roman]1+1[/font][font=宋体])溶解提取一次。离心合并有机相,用乙酸乙酯[/font][font=Times New Roman]-[/font][font=宋体]环己烷([/font][font=Times New Roman]1+1[/font][font=宋体])定容至[/font][font=Times New Roman]50 mL[/font][font=宋体],待净化。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]2.[font=宋体]净化[/font][/font][font=宋体] [/font][font=宋体]肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉、奶、蜂蜜、鸡蛋[/font][font=宋体] [/font][font=宋体]MCX[font=宋体]柱([/font][font=Times New Roman]60 mg/3 mL[/font][font=宋体])依次用甲醇[/font][font=Times New Roman]3 mL[/font][font=宋体]和水[/font][font=Times New Roman]3 mL[/font][font=宋体]活化,加入[/font][font=Times New Roman]5.0 mL[/font][font=宋体]待净化液,用[/font][font=Times New Roman]3 mL[/font][font=宋体]水淋洗,用抽空[/font][font=Times New Roman]3 min[/font][font=宋体]。用[/font][font=Times New Roman]5 mL 5 %[/font][font=宋体]三乙胺[/font][font=Times New Roman]-[/font][font=宋体]甲醇洗脱,收集洗脱液,于[/font][font=Times New Roman]40 [/font][font=宋体]℃氮气浓缩吹干,残渣用[/font][font=Times New Roman]50 %[/font][font=宋体]乙腈水溶液[/font][font=Times New Roman]1.0 mL[/font][font=宋体]溶解后,加[/font][font=Times New Roman]2 mL[/font][font=宋体]乙腈饱和正己烷脱脂,下层清液过[/font][font=Times New Roman]0.45 [/font][font=宋体]μ[/font][font=Times New Roman]m[/font][font=宋体]滤膜,供[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]测定。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]脂肪[/font][font=宋体] [/font][font=宋体]凝胶渗透色谱条件[/font][font=宋体] [/font][font=宋体][font=宋体]凝胶色谱净化系统:[/font]Accuprep[font=宋体]([/font][font=Times New Roman]J2[/font][font=宋体]);[/font][/font][font=宋体] [/font][font=宋体][font=宋体]凝胶净化柱:[/font]Bio-Beads S-X3[font=宋体]([/font][font=Times New Roman]38 [/font][font=宋体]μ[/font][font=Times New Roman]m[/font][font=宋体]~[/font][font=Times New Roman]75 [/font][font=宋体]μ[/font][font=Times New Roman]m[/font][font=宋体]),[/font][font=Times New Roman]400 mm[/font][font=宋体]×[/font][font=Times New Roman]25 mm[/font][font=宋体](内径);[/font][/font][font=宋体] [/font][font=宋体][font=宋体]流动相:乙酸乙酯[/font]-[font=宋体]环己烷([/font][font=Times New Roman]1+1[/font][font=宋体]);[/font][/font][font=宋体] [/font][font=宋体][font=宋体]流速:[/font]5 mL/min[font=宋体];[/font][/font][font=宋体] [/font][font=宋体][font=宋体]收集时间:[/font]7 min~17 min[font=宋体]。[/font][/font][font=宋体] [/font][font=宋体]净化过程:[/font][font=宋体] [/font][font=宋体][font=宋体]取[/font]10 mL[font=宋体]待净化液于[/font][font=Times New Roman]GPC[/font][font=宋体]样品管中,用[/font][font=Times New Roman]GPC[/font][font=宋体]柱净化,收集洗脱液,于[/font][font=Times New Roman]40 [/font][font=宋体]℃旋转蒸发至干,残渣用[/font][font=Times New Roman]50 %[/font][font=宋体]乙腈水溶液[/font][font=Times New Roman]1.0 mL[/font][font=宋体]溶解后,加[/font][font=Times New Roman]2 mL[/font][font=宋体]乙腈饱和正己烷脱脂,下层清液过[/font][font=Times New Roman]0.45 [/font][font=宋体]μ[/font][font=Times New Roman]m[/font][font=宋体]滤膜,供[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]测定。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]国标解读及注意事项[/font][font=宋体] [/font][font=宋体]1.[font=宋体]卡拉洛尔标准物质用乙腈配成[/font][font=Times New Roman]100 [/font][font=宋体]μ[/font][font=Times New Roman]g/mL[/font][font=宋体]的标准储备液,在[/font][font=Times New Roman]0 [/font][font=宋体]℃~[/font][font=Times New Roman]4 [/font][font=宋体]℃ 避光保存。[/font][/font][font=宋体] [/font][font=宋体]2.[font=宋体]本方法使用甲醇提取两次目标化合物,阳离子交换柱富集净化,相当于[/font][font=Times New Roman]0.5 g[/font][font=宋体]试料进行上机检测(其中脂肪样品用乙酸乙酯[/font][font=Times New Roman]-[/font][font=宋体]正己烷提取两次,再用[/font][font=Times New Roman]GPC[/font][font=宋体]柱净化,相当于[/font][font=Times New Roman]0.4 g[/font][font=宋体]试料进行上机检测)。[/font][/font][font=宋体]3.MCX[font=宋体]固相萃取过程中需要控制流速,使溶液一滴一滴地流下,以保证离子交换的效果。[/font][/font][font=宋体]洗脱过程中洗脱溶剂少量多次加入,可以增加洗脱率。[/font][font=宋体] [/font][font=宋体]4.[font=宋体]在[/font][font=Times New Roman]GPC[/font][font=宋体]净化过程中配合紫外检测器使用,可以准确监测目标化合物及杂质的流出情况。[/font][/font][font=宋体] [/font][font=宋体]参考文献[/font][font=宋体] [/font][font=宋体]SN/T 4144-2015 [font=宋体]出口动物源性食品中卡拉洛尔残留量的测定 液相色谱[/font][font=Times New Roman]-[/font][font=宋体]质谱[/font][font=Times New Roman]/[/font][font=宋体]质谱法,由南京滴纯生物科技有限公司发表,欢迎垂询![/font][/font]

  • 【12月份原创】月旭Welchrom® C18测定头孢克洛

    头孢克洛干混悬剂检测报告一.样品分子结构中文名英文名分子结构头孢克洛干混悬剂Cefaclor见附件http://ng1.17img.cn/bbsfiles/images/2013/12/201312141606_481995_1621890_3.gif二. 样品来源记录样品化学名:头孢克洛干混悬剂样品商品名:上市品头孢克洛干混悬剂(希刻劳)样品测定描述:有关物质检测生产厂家:礼来苏州制药有限公司三. 液相方法条件方法来源:中国药典2010年版二部具体方法:色谱柱:月旭Welchrom C18, 5μm, 4.6×250mm(货号:00310-02043;序列号:w13211564)波长:220nm流动相/梯度洗脱:流动相A:0.78%磷酸二氢钠溶液(取磷酸二氢钠7.8g,加水溶解并稀释至1000ml,用磷酸调节pH值至4.0),流动相B:0.78%磷酸二氢钠溶液(pH4.0)-乙腈(55:45);按下表进行线性梯度洗脱。时间(分钟)流动相A(%)流动相B(%)095530752545010050010051[align=ce

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制