当前位置: 仪器信息网 > 行业主题 > >

溴化亚铁

仪器信息网溴化亚铁专题为您提供2024年最新溴化亚铁价格报价、厂家品牌的相关信息, 包括溴化亚铁参数、型号等,不管是国产,还是进口品牌的溴化亚铁您都可以在这里找到。 除此之外,仪器信息网还免费为您整合溴化亚铁相关的耗材配件、试剂标物,还有溴化亚铁相关的最新资讯、资料,以及溴化亚铁相关的解决方案。

溴化亚铁相关的资讯

  • 中关村材料试验技术联盟立项《多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法》等9项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法CSTM LX 2000 01429.1—2024FC202多钒酸铵分析方法 第2部分:硅含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.2—2024FC203多钒酸铵分析方法 第3部分:铁、磷 硫含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.3—2024FC204多钒酸铵分析方法 第4部分:氧化钾、氧化钠含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.4—2024FC205多钒酸铵分析方法 第5部分:烧得率的测定 高温煅烧法CSTM LX 2000 01429.5—2024FC206民用大型客机 热固性液体垫片材料 热循环稳定性测试方法CSTM LX 6600 01430—2024FC667泵组碳足迹核算与碳标签评价规范CSTM LX 9500 01431—2024FC958零碳建造评价规范CSTM LX 9500 01432—2024FC959水质 急性毒性现场快速监测 发光细菌法CSTM LX 9803 01433—2024FC98/TC03联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
  • 具二维亚铁磁性石墨烯系统首次合成
    俄罗斯圣彼得堡国立大学的科学家与外国同事合作,在世界上首次在石墨烯中创造出二维亚铁磁性,所获得的石墨烯的磁性状态为新的电子学方法奠定了基础,有望开发出不使用硅的替代技术设备,提高能源效率和速度。描述被调查系统中霍尔效应的图表。图片来源:圣彼得堡国立大学石墨烯是碳的二维改性形式,是当今所有可用的二维材料中最轻、最坚固的,而且具有高导电性。2018年,圣彼得堡国立大学的研究人员与托木斯克州立大学、德国和西班牙的科学家一起,首次对石墨烯进行了修饰,并赋予了它钴和金的特性,即磁性和自旋轨道相互作用(在石墨烯中的运动电子与其自身磁矩之间)。当与钴和金相互作用时,石墨烯不仅保留了自身的独特性质,而且部分具有了这些金属的特性。作为新研究的成果,研究团队合成了一个具有亚铁磁性状态的石墨烯系统。这是一种独特的状态,在这种状态下物质在没有外部磁场的情况下具有磁化作用。他们使用了与之前类似的基底,该基底由一层薄薄的钴和表面的一种金合金制成。在表面合金化过程中,位错环在石墨烯作用下形成。这些环是钴原子密度较低的三角形区域,金原子更靠近这些区域。此前,人们知道单层石墨烯只能以均匀的方式完全磁化。然而,新研究表明,通过与基底结构缺陷的选择性相互作用,可以控制单个亚晶格的原子的磁化强度。“这是一个重大发现,因为所有的电子设备都使用电荷,并在电流流动时产生热量。我们的研究最终将允许信息以自旋电流的形式传输。这是新一代电子产品,一种根本不同的逻辑,以及一种降低功耗和提高信息传输速度的技术开发新方法。”圣彼得堡国立大学纳米系统电子和自旋结构实验室首席副研究员阿尔特姆雷布金解释说。此次合成的石墨烯的一个重要特征,就是强烈的自旋轨道相互作用,这种加强可以通过石墨烯下金原子的存在来解释。在磁性和自旋轨道相互作用参数的一定比例下,石墨烯有可能从熟悉的状态转变为一种新的拓扑状态。研究结果发表在最近的《物理评论快报》上。
  • 补铁要补三价铁还是二价铁?赛默飞带您细探究竟
    补铁要补三价铁还是二价铁?赛默飞带您细探究竟原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘莉 王艳萍缺铁性贫血,相信大家都不陌生,多见于婴幼儿、青少年、妊娠和哺乳期妇女,以及肿瘤性疾病和慢性出血性疾病人群,是最常见的贫血类型。据世界卫生组织(WHO)调查报告,全世界约有10%~30%的人群有不同程度的缺铁。缺铁与贫血的相关性为什么缺铁会贫血呢?血液中有红细胞、白细胞、血小板三系血细胞,其中红细胞通过血红蛋白完成运输氧的工作。血红蛋白低的时候(中国贫血标准:在我国海平面地区,成年男性Hb形式吸收,以Fe3+形式运输和贮存,最后以Fe2+的形式利用。可以说二价铁和三价铁都可以作为补铁的来源,目前市面上补铁制剂分为三类:第一类是以硫酸亚铁为代表的无机亚铁盐类;第二类是是以乳酸亚铁为代表的有机酸盐类;第三类是螯合铁剂以及铁的多肽复合物类,前两类以二价铁为主,后者以三价铁为主。给药方式主要分为口服和静脉注射两种,其中口服占绝大部分。具体应该合适哪种类型的补铁剂需要根据病情和医生详细诊断确定。无论是补铁制剂是二价铁还是三价铁,其中的二价铁和三价铁含量均需准确测定,GB1902.38-2018中规定琥珀酸亚铁中三价铁要在2%以内,USP规定蔗糖铁中二价铁不超过0.4%。(点击查看大图)补铁剂中的二价铁和三价铁检测方法三价铁二价铁的传统测试方法一般采用滴定方法:用硫代硫酸钠标准溶液滴定测定三价铁含量,用硫酸铈标准溶液滴定测定二价铁,但是滴定方法步骤较为复杂,二价铁转化难以控制,重复性较差。为了简化样品前处理和测试流程,提高测试准确度与重复性,赛默飞推出联合创新方案:采用Easion离子色谱和iCAP RQplus ICP-MS联用方法测试补铁制剂中的三价铁和二价铁。该方案可简单、快速同时分析补铁剂中的三价铁和二价铁,并且有效降低二价铁氧化率,灵敏度高、重复性好。(点击查看大图)实际应用案例一IC-ICP-MS测定琥珀酸亚铁中的三价铁和二价铁琥珀酸亚铁是典型的有机酸盐类,主要为亚铁形式存在,需要严格控制三价铁含量,IC-ICP-MS对琥珀酸亚铁分离色谱图如下所示。(点击查看大图)琥珀酸亚铁片样品测试结果与加标回收结果如下表所示,同时与滴定法结果进行比较,结果一致。(点击查看大图)实际应用案例二IC-ICP-MS测定新型补铁剂蔗糖铁注射液中二价铁含量蔗糖铁是最常用的静脉铁剂疗法之一,其活性成分是氢氧化铁(Ⅲ)-蔗糖复合物,结构与生理状态下的血清铁蛋白结构相似,在生理条件下不会释放出铁离子,且吸收率极高,药物不良反应较少。需要对其中的二价铁含量进行严格控制,IC-ICP-MS对蔗糖铁中三价铁与二价铁分离色谱图如下图所示。(点击查看大图)蔗糖铁注射液测试结果及平行性结果如下表所示,三个平行样RSD均在3%以内,重复性良好。(点击查看大图) 结论 综上所述,三价铁和二价铁均可以作为补铁制剂,只是铁存在形式与作用机理不同。而这些不同价态的补铁剂均需要对另外一种价态的铁含量进行严格控制,赛默飞推出的特色创新IC-ICP-MS联用铁形态分析方案能够方便准确高效地进行各类补铁剂中的三价铁和二价铁含量测定。如需合作转载本文,请文末留言。补铁要补三价铁还是二价铁?赛默飞带您细探究竟原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘莉 王艳萍缺铁性贫血,相信大家都不陌生,多见于婴幼儿、青少年、妊娠和哺乳期妇女,以及肿瘤性疾病和慢性出血性疾病人群,是最常见的贫血类型。据世界卫生组织(WHO)调查报告,全世界约有10%~30%的人群有不同程度的缺铁。缺铁与贫血的相关性为什么缺铁会贫血呢?血液中有红细胞、白细胞、血小板三系血细胞,其中红细胞通过血红蛋白完成运输氧的工作。血红蛋白低的时候(中国贫血标准:在我国海平面地区,成年男性Hb无论是补铁制剂是二价铁还是三价铁,其中的二价铁和三价铁含量均需准确测定,GB1902.38-2018中规定琥珀酸亚铁中三价铁要在2%以内,USP规定蔗糖铁中二价铁不超过0.4%。(点击查看大图)补铁剂中的二价铁和三价铁检测方法三价铁二价铁的传统测试方法一般采用滴定方法:用硫代硫酸钠标准溶液滴定测定三价铁含量,用硫酸铈标准溶液滴定测定二价铁,但是滴定方法步骤较为复杂,二价铁转化难以控制,重复性较差。为了简化样品前处理和测试流程,提高测试准确度与重复性,赛默飞推出联合创新方案:采用Easion离子色谱和iCAP RQplus ICP-MS联用方法测试补铁制剂中的三价铁和二价铁。该方案可简单、快速同时分析补铁剂中的三价铁和二价铁,并且有效降低二价铁氧化率,灵敏度高、重复性好。(点击查看大图)实际应用案例一IC-ICP-MS测定琥珀酸亚铁中的三价铁和二价铁琥珀酸亚铁是典型的有机酸盐类,主要为亚铁形式存在,需要严格控制三价铁含量,IC-ICP-MS对琥珀酸亚铁分离色谱图如下所示。(点击查看大图)琥珀酸亚铁片样品测试结果与加标回收结果如下表所示,同时与滴定法结果进行比较,结果一致。(点击查看大图)实际应用案例二IC-ICP-MS测定新型补铁剂蔗糖铁注射液中二价铁含量蔗糖铁是最常用的静脉铁剂疗法之一,其活性成分是氢氧化铁(Ⅲ)-蔗糖复合物,结构与生理状态下的血清铁蛋白结构相似,在生理条件下不会释放出铁离子,且吸收率极高,药物不良反应较少。需要对其中的二价铁含量进行严格控制,IC-ICP-MS对蔗糖铁中三价铁与二价铁分离色谱图如下图所示。(点击查看大图)蔗糖铁注射液测试结果及平行性结果如下表所示,三个平行样RSD均在3%以内,重复性良好。(点击查看大图) 结论 综上所述,三价铁和二价铁均可以作为补铁制剂,只是铁存在形式与作用机理不同。而这些不同价态的补铁剂均需要对另外一种价态的铁含量进行严格控制,赛默飞推出的特色创新IC-ICP-MS联用铁形态分析方案能够方便准确高效地进行各类补铁剂中的三价铁和二价铁含量测定。如需合作转载本文,请文末留言。
  • 铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法
    铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法 一、硅之测定(亚铁还原硅钼蓝光度法) 1、方法提要 试样溶于稀硝酸,滴加高锰酸钾氧化,硅酸离子全部转化成正硅酸离子,在一定酸度下与钼酸铵作用,生成硅钼杂多酸。然后在草酸存在下用亚铁还原成硅钼蓝,借此进行硅的光度测定。 2、试剂 (1)稀硝酸(1+5) (2)高锰酸钾溶液(2%) (3)碱性钼酸铵溶液: A、钼酸铵溶液(9%) B、碳酸钾溶液(18%) A、B两溶液等体积合并,贮于塑料瓶中备用。 (4)草酸溶液(2.5%) (5)硫酸亚铁铵溶液(1.5%) 称硫酸亚铁铵15g,先将稀硫酸(1+1)1ml湿匀亚铁盐,然后以水稀释至1L,溶解后摇匀备用。 3、分析步骤 称取试样30mg,加至高型烧杯(250ml)中,杯内有预热之稀硝酸(1+5)10ml,样品溶清,逸去黄色气体,加高锰酸钾(2%)2-3滴,继续加热至沸,立即加入碱性钼酸铵溶液10ml摇动10秒钟,再另入草酸(2.5%)40ml,硫酸亚铁铵(1.5%)40ml摇匀以水作参比,扣除空白倾入比色杯,在JSB系列或JQ系列分析仪器上测定,直读含量。 4、注意事项 溶解样品时应低温溶解。 二、锰之测定(过硫酸铵银盐光度法) 1、方法提要 钢铁试样,在耨、磷介质是,以银离了为催化剂,用过硫酸铵氧化将低价锰子变成高锰酸,借此进行锰的光度测定。 2、试剂 (1)定锰混合液 硝酸450ml,磷酸72ml,硝酸银7.2g,用水稀释至2L,摇匀,贮于棕色瓶中备用。 (2)过硫酸铵溶液(15%)或固体。 3、分析步骤 称样50mg,置于高型烧杯(250ml)中,溶于预热定锰混合液15ml,等试样溶解毕,加入过硫酸铵溶液(15%)10ml(联测时加固体过硫酸铵约1g)继续加热于沸并出现大气泡10秒钟后,加入40ml倾入比色杯中,在JSB系列或JQ系列分析仪器上测定,直读含量。 4、注意事项 (1)过硫酸铵加入后,需要控制煮沸10秒。 (2)记取含量时,要等少量小气泡逸去后读取。 三、磷之测定(氟化钠-氯化亚锡磷) 1、方法提要 试样在硝酸介质中,以高锰钾氧化,使偏磷酸氧化成正磷酸,与钼酸铵生成磷钼杂多酸,以氯化亚锡还原成磷钼蓝进行光度测定。酒石酸离子消除硅的干扰。氟化钠络合铁离子,生成无色络合物,并抑制硝酸分子的电离作用。 2、试剂 (1)稀硝酸(1+2.5) (2)高锰酸钾溶液(2%) (3)钼酸铵-酒石酸钾溶液 取等体种的钼酸铵溶液(10%)与酒石酸钾钠(10%)混合备用。 (4)氯化钠(2.4)-氯化亚锡(0.2%)溶液: 氯化钠24g溶于800ml水,可稍加热助溶,氯化亚锡2g,以稀盐酸(1+1)5ml,加热至全部溶清;加入上述溶液稀释至1L,必要时可过滤。当天使用,经常使用时,配大量氟化钠溶液,使用时取出部分溶液加入规定量之氯化亚锡。 3、分析步骤 称试样50mg,置于高型烧杯(250ml)中,加入预热稀硝酸(1+2.5)10ml,加热至试样溶解,逸去黄色气体,滴加高锰酸钾溶液(2%)2-3滴。再加氟化钠-氯化亚锡溶液40ml。水作参比,倾入比色杯。在JSB系列或JQ系列分析仪器上测定,读取含量。 4、注意事项 (1)氧化时应使溶液至沸,并保持5-10秒钟。 (2)分析操作手续相对保持一致致,以保证分析结果重现性和准确度。 (3)含量高至0.050%以上,色泽稳定时间较短,读数不就耽误,在0.080%时更短,要即刻读取。
  • 卫生部专家解读铁强化酱油安全与营养知识
    近日,卫生部专家就铁强化酱油安全与营养知识向公众进行了解读,以下为主要内容:   一、我国铁缺乏和贫血严重吗?   全国第四次营养与健康调查数据显示,我国各类人群的平均贫血发生率达到20.1%,其中妇女,儿童和老年人人群贫血发病率高于全国平均水平。缺铁和贫血会导致儿童生长发育不良,特别是智力发育迟缓,而这一后果并不会在改善后得到完全恢复。缺铁和贫血会导致人体虚弱无力,免疫和抗病能力下降。对社会来讲,贫血导致人群智力和劳动能力下降,影响人口素质和竞争能力,影响国家经济发展。铁缺乏的膳食因素有如下:1)肉类等动物性食品中的血红素铁摄入不足 2)膳食VC摄入不足 3)膳食植酸、多酚等铁吸收抑制剂含量较高。我国植物性膳食的特点,膳食中铁少也不易吸收利用。   二、为什么政府要推食物强化?   根据国际机构关于贫血的公共卫生严重程度等级划定,中国居民的贫血问题属于中度公共卫生问题,部分地区贫血问题已经属于严重的公共卫生问题,需要有营养干预措施。营养干预的方式主要有食物多样化、补充营养素补充剂、食物强化三种方式。   食物多样化:是营养干预的首选方式,但存在需要丰富的食物资源、很长的见效时间、大量的营养宣传教育、不适用短期内贫困人群的微营养素状况改善等缺点。   营养素补充剂:吸收高、见效快,是特殊人群补充的最佳方式,但存在成本高、依从性差、持续难等缺点,适用于特定人群(如孕妇)或时间段(自然灾害后)的营养补充。   食物强化:则是改善居民健康水平最好的低成本解决方案,是理想的成本-收益公共卫生干预方式,无需改变膳食习惯,依从性好,覆盖面广 但对于非强制性强化,推动比较困难,需要加强宣传教育。   根据世界银行统计,目前全球普遍存在的维生素A缺乏、碘缺乏以及铁缺乏和贫血导致发展中国家每年损失3%—5%的GDP。按照我国2009年的GDP 335353亿元人民币估算,我国每年为此损失约10000亿—16700亿元。这还不包括间接经济损失及患者、家庭和社会为此所付出的其他代价。   国际上已经有上百年的食物强化历史,开始实施国家现今都成为发达国家。1900年瑞典开始食盐加碘,1918年丹麦人造黄油强化,1938年美国开始推广面粉和面包强化,英国面粉钙强化,1949年日本大米强化。目前面粉强制性强化含铁或叶酸的国家有60多个,全世界约有30%商业面粉是强化的。这些强化主要在人们日常食用的调味品和主食中进行,给各国居民营养带来很大改善。   三、为什么在铁强化酱油中应用的铁营养强化剂选NaFeEDTA?   由于在食物强化技术上要考虑不改变食物的感官特性、吸收利用率等因素,铁的强化在铁剂选择上具有很大难度。水溶性铁剂具有吸收好,但存在影响食物感官、铁锈味重、胃肠刺激等缺点 水不溶性的,虽感官问题小,但通常吸收率很低。而NaFeEDTA是被认为适宜于酱油中使用的理想铁剂。   NaFeEDTA,中文名称为乙二胺四乙酸铁钠,分子式C10H12N2O8FeNa3H2O,是络合剂EDTA和金属离子Fe3+形成的稳定络合物(log k=25.1),性质很稳定,水溶性好、铁锈味弱、铁吸收率高(NaFeEDTA强化酱油中铁的人体吸收率为10.51%,约是硫酸亚铁4.73%的2倍)。目前国际上推荐的质量规格,含铁量为12.5—13.5%,EDTA为65.5—70.5%。   四、NaFeEDTA添加在食物后,会产生过量蓄积和影响其他矿物元素的吸收吗?   许多研究证实其在食物强化应用方面的特点:1)NaFeEDTA中铁的吸收是在胃肠解离出铁后与其他铁剂一样进入非血红素铁池中 2)其中只有不到1—2%的NaFeEDTA是被肠道直接吸收进入血循环,但很快并完全经尿液排出体外 3)食物强化的量不会对其他矿物元素的吸收产生不良影响,如锌 4)由于受膳食中铁吸收抑制剂(植酸和多酚等)影响较小,其铁的吸收利用率通常高于其他铁剂(如硫酸亚铁),但低植酸膳食中,两者吸收率相近 5)对于铁充足的人群,由于机体的下调功能,NaFeEDTA中铁的吸收率不高于硫酸亚铁。因此,通过日常膳食而从食物强化应用的NaFeEDTA,不会造成在人体铁的过量蓄积。   五、国际上允许NaFeEDTA在食物强化中应用吗?   国际粮农组织/世界卫生组织(FAO/WHO)食品添加剂联合专家委员会(JECFA),是FAO/WHO设立的独立委员会,是食品安全风险性评估领域的国际权威机构。JECFA在1992年开始暂时性批准NaFeEDTA在有监管下食物强化中的应用,2007年总结性评估认为NaFeEDTA是应用于食物强化的铁剂来源、是安全的,但需同时满足两个条件,即添加后每日膳食的总铁摄入不应超过0.8 mg/kg bw,以及EDTA不能超过1.9 mg/kg bw,同时也就撤销了之前的暂时性和监管。   据此,世界卫生组织于2009年在小麦粉和玉米粉强化建议中提出铁的添加水平,都推荐NaFeEDTA的使用,特别是高出粉率的面粉(由于存在植酸等铁抑制因素)中只推荐了NaFeEDTA。   另外,许多国家也批准NaFeEDTA在食品中的应用:1)美国,2004年和2006年,批准NaFeEDTA在调味饮料、酱油、甜酸酱等强化是“公认为安全的”(GRAS) 2)欧盟,2010年,欧盟食品安全委员会审议认为NaFeEDTA是一种适合于食物强化和膳食补充剂中应用的铁剂。另外,NaFeEDTA已被作为一种治疗缺铁性贫血的铁源列入英国药典(BP),推荐的口服NaFeEDTA最大剂量为1.42 g NaFeEDTA/人/天,即提供约205 mg铁/人/天,在法国、英国、意大利和瑞典,NaFeEDTA已允许用作为药物成分 3)澳洲,已经批准可以作为食物强化的铁剂。4)中国,1999年和2002年,卫生部分别批准NaFeEDTA作为铁营养强化剂并批准在酱油中强化应用。   这些法规的批准,也就说明食物强化应用的NaFeEDTA是有安全保障的。   六、我国铁强化酱油中添加NaFeEDTA的使用量是否会造成铁过量?   由于酱油是高盐产品,食用有自限性,不会过高消费。我国2002年营养与健康状况调查报道的酱油平均消费量为8.9 g/标准人日(相当于8.1 ml/标准人日)。根据卫生部规定的NaFeEDTA在酱油中使用量范围1.75—2.10 mg/ml,以通常的添加量2 mg/ml计,折合铁和EDTA含量分别为0.26 mg铁/ml和1.3 mg EDTA/ml。   按2002年酱油平均消费量8.9 g/标准人日数据,对于60 kg体重成人,每日增加的铁摄入量为2.1 mg/60 kg bw (0.035 mg Fe/kg bw),增加的EDTA摄入量为10.5 mg/60 kg bw (0.175 mg/kg bw)。所增加铁和EDTA的摄入量分别相当于铁和EDTA的最高允许量的4.4%和EDTA的ADI的9.2%。即使有少部分消费者食用酱油较多,如,15 g/日,则增加的铁和EDTA分别也仅有3.5 mg(0.058 mg Fe/kg bw)和17.5 mg(0.292 mg/kg bw),则分别相当于铁和EDTA的最高允许量的7.2%和15.4%。   总之,我国目前的酱油中NaFeEDTA的强化水平远远低于JECFA 2007年制定的食物强化应用的允许上限。因此,不存在过量方面的安全性问题。   另外,对于孕产妇和较大婴幼儿相对铁需要量大的特殊人群,以铁强化酱油来补铁还远远不够,需要有其他营养干预措施,如营养素补充剂。   七、消费者今后能自主选择铁强化或非强化的酱油吗?   2003年,我国在国际组织经费的资助下,开始推广铁强化酱油项目。酱油生产企业的参与是自愿行为,加入项目内的企业首先需建立并运行食品安全管理体系,中国CDC食物强化办公室联合卫生部卫生监督中心、中国调味品协会的专家,组成工作组,免费对自愿加入项目内的申请企业进行严格食品安全管理体系(HACCP)的验收,以保障项目铁酱油质量和食品安全。目前,加入项目内的酱油生产企业不到20家(但他们酱油市场份额占我国的40%),铁强化酱油市场份额至今尚不足2%。   2004年、2006年卫生部疾病控制司关于推广铁强化酱油,预防缺铁性贫血的通知已经明确提出:“该项目在实施中主要是对公众进行宣传教育,提高公众对铁缺乏危害和铁强化酱油效果的认识,推动铁强化酱油的使用,以达到控制缺铁性贫血的目的”。铁强化酱油推动工作开展就是通过宣传教育,让百姓了解缺铁的危害及铁强化酱油的作用,自愿选择铁强化酱油。”   因此,我国目前市场上铁强化酱油的实际状况,只是多了一个酱油品种,老百姓多了一份选择。今后,推动铁强化酱油的任务还很艰巨。
  • 磷酸铁锂迎发展“第二春”,欧美克高性能激光粒度仪需求强劲
    近日,在北京召开的第七届中国电动汽车百人会论坛(2021)上,比亚迪股份有限公司董事长王传福表示,“按照规划,到2025年,我国新能源汽车新车销售量将达到汽车新车销售总量的20%左右。”这意味着接下来5年,新能源汽车行业年复合增长率将达37%以上。结合前期“特斯拉Model Y低价发售”、“宁德时代逼近万亿股价”、“蔚来包下宁德时代磷酸铁锂电池生产线!”等新闻发酵,不难发现随着磷酸铁锂电池以其低成本高安全性的优势在中低端市场不断渗透,特别是相关技术的进步也助推磷酸铁锂电池自2020年起重新扩展市场空间,其需求快速反转向上。中国汽车动力电池产业创新联盟日前发布的数据显示,2020年我国动力电池累计销量达65.9GWh,同比累计下降12.9%。其中,三元锂电池累计销售34.8GWh,同比累计下降34.4%;磷酸铁锂电池累计销售30.8GWh,同比累计增长49.2%,是唯一实现同比正增长产品。中信证券指出,目前,特斯拉、戴姆勒等海外新能源汽车主流企业均明确了磷酸铁锂电池技术路线,预计宝马、大众等其他海外车企也将在其动力电池技术路线中选择磷酸铁锂方案。而国内无论是宁德时代的CTP电池管理控制技术还是比亚迪的“刀片电池”,磷酸铁锂的高安全性助力了其在乘用车领域的回暖,都让磷酸铁锂电池开始经历第二春!伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂第二春的帷幕已然拉开,大规模的量产也必将刺激高性能激光粒度仪的市场需求。众所周知,激光粒度分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、导电剂、隔膜涂覆用氧化铝等材料的粒度测试。从大量的制浆经验以及行业交流反馈来看,诸如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)、镍钴锰酸锂(LiNiCoMnO2)和磷酸铁锂(LiFePO4)等多种不同的正极材料,通常采用中值粒径D50、代表大颗粒的D90作为关键质控指标。不同材料不同工艺的产品对原材料的粒径要求也不尽相同,以分布在1-20μm范围内居多。负极材料以石墨为例,当其平均粒径为16-18μm,且粒度分布较为集中时,电池有较好的初放容量及首次效率。此外,随着电池隔膜的厚度要求不断提高,对其中添加阻燃材料的粒径要求也随之不断提高,常使用的隔膜氧化铝粒径从微米级逐渐发展到亚微米甚至是纳米级。随着电池性能提高对原材料的粒度要求不断提高,激光粒度仪发挥着不可替代的作用,同时对粒度测量仪器的重复性、重现性、分辨能力提出了更高的要求。锂离子电池正、负极材料标准中的粒度分布要求激光粒度仪的高分辨能力在电池材料的检验中,对测试样本中少量的大颗粒或小颗粒的准确识别有着重要的意义。比如说在电池材料活性物质中如果存在少量的大颗粒,可能会对涂布、滚压造成负面影响。如果在原材料检测时就发现,则可以避免后续不良品的产生。另一个典型的例子是粒径过小的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外颗粒直径太小,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行粒度测试,在一定程度上有助于预判后续产品性能、防范风险… … 可见,电池性能的诸多方面都与正负极材料和隔膜材料等的粒径息息相关。欧美克Topsizer激光粒度分析仪对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高品质高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光信号都精确地聚焦获取,通过精准的独立探测器焦点曲面排布设计和一致性定位工装提高粒度仪分辨能力和仪器之间的重现性。欧美克Topsizer激光粒度分析仪和Topsizer Plus激光粒分析仪是在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克LS-609激光粒度分析仪而欧美克LS-609激光粒度分析仪就采用了先进的激光粒度仪散射光能探测的设计,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式精确放置于与其散射角相对应的傅立叶透镜焦点位置,以保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。我们以具体的电池材料样品来看欧美克激光粒度分析仪的测试性能对材料准确表征的案例。1. 欧美克Topsizer激光粒度仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于最终下游应用中电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常巨大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。2. 下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。由此可见高分辨能力和重现性的激光粒度分析仪在电池原材料粒度检测领域能带来更好的质控效益。正如中国科学院院士、中国电动汽车百人会副理事长欧阳明高所说,中国动力电池技术创新模式已经从政府主导向市场驱动转型,目前中国电池材料研究处于国际先进行列。而在中国动力电池的快速创新发展必然也离不开高分辨能力和重现性的激光粒度分析仪作为质控的好帮手。通过给动力电池行业提供更专业优化的粒度检测方案,欧美克激光粒度仪的行业销售也在持续高速增长。欧美克必将一如既往不断探索,与中国动力电池行业并行快速发展,携手创造中国奇迹,助力新能源引领世界美好未来!参考资料:1. 沈兴志,珠海欧美克仪器有限公司,《高性能激光粒度分析仪在电池材料测试中的应用》2. 经济日报,《第七届中国电动汽车百人会论坛举办》3. 腾讯网,《磷酸铁锂厂家齐涨价,2021年将回潮迎来“第二春”?》4. 中国证券报,《磷酸铁锂电池迎来发展“第二春” 2020年累计销售同比增长近
  • 3.15晚会海能发布权威解决方案:亚硝酸盐,还在把它“当饭吃”!
    今天,3月15日,CCTV-2财经频道315晚会如约而至。两个多小时的时间里,过半的时间被用来披露食品安全相关的内容。网络订餐卫生、义齿重金属、红参泡糖、食品中铅、二氧化硫、菌落、过氧化值超标,食品安全问题俨然成为消费者权益受到危害的重灾区!    针对以上问题,海能仪器第一时间做出反应,科学解读相关问题,提供一手解决方案,希望对您有所帮助。    亚硝酸盐,还在把它“当饭吃”!解决方案一事件315晚会第一案,“饿了吗”背后的黑心快餐作坊!危害解读  “饿了么”背后的黑心作坊监管不力、无证经营,卫生安全不达标。甚至为了省事一次性贮存大量盒饭,隔天、数天之后再送到我们嘴边。饭菜放置的时间久,会在细菌的分解作用下,将所含的硝酸盐还原成亚硝酸盐。亚硝酸盐有致癌作用,即使加热也不能去除!  解决方案:  1 仪器与试剂  1.1 仪器  Hanon i8双光束紫外可见分光光度计    海能仪器 i8 双光束紫外可见分光光度计  1.2 试剂配置  (1)饱和硼砂溶液(50g/L) :称取5.0g硼酸钠,溶于100mL热水中,冷却备用。  (2)亚铁氰化钾溶液(106g/L):称取106.0g亚铁氰化钾,用水溶解,并稀释至1000mL。  (3)乙酸锌溶液(220g/L):称220g乙酸锌,先加30mL乙酸溶解,用水稀释至1000mL。  (4)对氨基苯磺酸溶液(4g/L):称0.4g对氨基苯磺酸,溶于100mL20%(V/V)盐酸中,混匀后,至棕色瓶中,避光保存。  (5)盐酸萘乙二胺溶液(2g/L):称取0.2g盐酸萘乙二胺,溶于100mL水中混匀后,至棕色瓶中,避光保存。  (6)亚硝酸钠标准溶液(100μg/mL):准确称取0.1000g亚硝酸钠,加水移入1000mL容量瓶,加水稀释至刻度,混匀。  (7)亚硝酸钠标准使用液(10μg/L):临用前,吸取10mL亚硝酸盐标准溶液,置于100mL容量瓶,加水稀释至刻度。  2 实验过程  2.1 样品制备  将切碎的样品取5g左右,置于50mL的烧杯中,加12.5 mL饱和硼砂溶液,搅拌均匀,以70°C左右的水约250mL,将试样洗入500mL容量瓶,加热沸腾15min,取出冷却,并放置至室温。  2.2 样品净化    在震荡上述提取液时,加入5mL亚铁氰化钾溶液,摇匀,再加入5mL乙酸锌溶液,以沉淀蛋白质。加水定容至刻度,摇匀,放置30min,除去上层脂肪,上层清液用滤纸过滤,并弃去30mL初滤液,滤液备用。  2.3 建立标准曲线  吸取亚硝酸钠标准使用液配置测试溶液,绘制标准曲线。  2.4 样品测试  吸取40mL上述滤液于50mL容量瓶中,分别加入2mL对氨基苯磺酸溶液,混匀,放置3-5min,加入1mL盐酸萘乙二胺溶液,加水至刻度,混匀,静置15min,用2cm比色皿,以零管调节零点,于波长538nm处测吸光度。    2.5 结果讨论  实验样品为2组对照实验和一个空白实验,检测发现放置较长的菜品确实亚硝酸盐高于新的菜品,不同的蔬菜本身亚硝酸盐的含量也有差别,所以放置一段时间以后亚硝酸盐的增加量也有所不同。
  • 2013食品国标制(修)订项目承担单位公布
    2013年5月2日,国家卫计委印发《2013年食品安全国家标准项目计划》的通知,通知中列出了所有2013年食品安全国家标准计划项目承担单位,全文如下:   国家卫计委关于印发《2013年食品安全国家标准项目计划》的通知   卫办监督函〔2013〕359号   各有关单位:   根据《食品安全法》和《食品安全国家标准管理办法》规定,我委在向社会公开征求意见的基础上制定了《2013年食品安全国家标准项目计划》,现印发给你们,请认真组织落实。有关工作要求如下:   一、填报项目委托协议书,及时落实食品安全国家标准项目计划   2013年食品安全国家标准计划项目承担单位应当填写《2013年食品安全国家标准制(修)订项目委托协议书》(可从卫生计生委网站http://www.moh.gov.cn下载),打印后由承担单位负责人签字并加盖单位公章(一式五份),于2013年5月20日前报送食品安全国家标准审评委员会秘书处(以下简称秘书处)。逾期未提交协议书的,视为自动放弃标准起草单位和起草人资格。秘书处对协议书进行审核后,于2013年5月31日前报送我委。   二、加强日常管理,确保食品安全国家标准项目及相关经费按时保质执行   (一)项目承担单位和项目负责人要加强食品安全国家标准制定、修订工作的管理,保证项目质量和进度,请于2013年12月30日前向秘书处提交工作中期进展报告和经费使用情况报告,于2014年6月30日前完成任务,向秘书处提交送审材料和经费决算报告。经费决算报告由财务负责人和单位负责人签字并加盖公章。   (二)未按期完成任务提交送审材料的,项目承担单位和项目负责人应当提交说明,并附经费使用情况报告,加盖单位公章后报秘书处。我委将视情况予以通报批评,并根据国家有关财经法规制度,对已拨付的项目经费采取追回等必要的处理措施。   (三)相关省(区、市)卫生厅(局、卫生计生委)、有关单位要支持并督促下属单位承担的项目工作,秘书处要督促检查项目执行情况,确保项 目计划整体进度。   2013050901.doc   2013年食品安全国家标准项目计划 序号 项目名称 制定/修订 建议承担单位 食品产品 1 藻类制品 修订 浙江省疾病预防控制中心 中国水产科学研究院 微生物检验方法 2 食品微生物检验采样与检样处理规程 修订 国家食品安全风险评估中心 理化检验方法 3 食品中B族和G族黄曲霉毒素的测定 修订 浙江省疾病预防控制中心 4 食品中M族黄曲霉毒素的测定 修订 浙江省疾病预防控制中心 食品添加剂质量规格 5 食品添加剂 4-己基间苯二酚 制定 中海油天津化工研究院 6 食品添加剂 冰结构蛋白 制定 中国食品添加剂和配料协会 7 食品添加剂 刺梧桐胶 制定 中国食品发酵工业研究院 上海市质量监督检验技术研究院 8 食品添加剂 甲基纤维素 制定 中国食品发酵工业研究院 9 食品添加剂 偏酒石酸 制定 天津科技大学 10 食品添加剂 植酸钠 制定 江西出入境检验检疫局 11 食品添加剂 羟基硬脂精 制定 中国食品发酵工业研究院 上海市食品添加剂行业协会 12 食品添加剂 海藻酸钠 修订 黄海水产研究所 中国海藻工业协会 13 食品添加剂 36项香料标准包括: 橙苷(柚皮甙提取物)、橙皮素、丁香花蕾油、根皮素、黄芥末提取物、可可酊、葡萄籽提取物、大蒜油、白兰花油、白兰叶油、红茶酊、玫瑰净油、杭白菊油、罗汉果酊、小花茉莉净油、树兰油、桂花净油、绿茶酊、椒样薄荷油、茶树油、香茅醛(合成)、香茅(精)油、麦芽酚、覆盆子酮(悬钩子酮)、丙酸苄酯、丁酸丁酯、异戊酸乙酯、苯甲酸乙酯、苯甲酸苄酯、2-甲基吡嗪、2,3-二甲基吡嗪、2,3,5-三甲基吡嗪、5-羟乙基-4-甲基噻唑、2-乙酰基噻唑、2,3,5,6-四甲基吡嗪、乙基香兰素 制定 国家食品安全风险评估中心 上海香料研究所 营养强化剂质量规格 14 维生素E琥珀酸钙 制定 广东出入境检验检疫局检验检疫技术中心 15 硝酸硫胺素 制定 景德镇出入境检验检疫局 16 维生素C磷酸酯镁 制定 中国食品添加剂和配料协会 17 生物素 制定 中国食品发酵工业研究院 18 氯化胆碱 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 19 葡萄糖酸亚铁 制定 江西省疾病预防控制中心 20 焦磷酸铁 制定 上海市质量监督检验技术研究院 21 柠檬酸亚铁 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 22 柠檬酸铁铵 制定 广西出入境检验检疫局检验检疫技术中心 23 柠檬酸苹果酸钙 制定 天津出入境检验检疫局动植物与食品检测中心 24 骨粉(超细鲜骨粉) 制定 江苏省疾病预防控制中心 天津科技大学 25 乳酸锌 制定江西省疾病预防控制中心 26 碳酸锌 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 27 亚硒酸钠 制定 张家港市产品质量监督检验所 28 硒蛋白 制定 湖北省疾病预防控制中心 29 富硒食用菌粉 制定 中国食品发酵工业研究院 中国食品添加剂和配料协会 30 L-硒-甲基硒代半胱氨酸 制定 江西省疾病预防控制中心 31 硒化卡拉胶 制定 中国食品添加剂和配料协会 32 富硒酵母 制定 中国食品发酵工业研究院 33 DHA(金枪鱼油) 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 34 葡萄糖酸锰制定 广东出入境检验检疫局检验检疫技术中心 35 葡萄糖酸铜 制定 广东出入境检验检疫局检验检疫技术中心 36 5’-单磷酸胞苷 制定 江苏省卫生监督所 37 乳铁蛋白 制定 中国食品发酵工业研究院 38 酪蛋白钙肽 制定 中国食品发酵工业研究院 中国食品添加剂和配料协会 39 海藻碘 制定 中国地方病协会 营养与特殊膳食食品 40 运动营养食品通则 修订 中国食品科学技术学会运动营养食品分会 41 孕产妇和乳母用营养补充品通用标准 制定 中国疾病预防控制中心营养与食品安全所 生产经营规范 42 食品用菌种生产卫生规范 制定国家食品安全风险评估中心 43 航空食品生产卫生规范 制定 中国航空运输协会航空食品委员会   国家卫生和计划生育委员会办公厅   2013年5月2日
  • 2023版食品安全监督抽检计划与2022版检测项目对比
    近日,网上流传一份《国家食品安全监督抽检实施细则(2023年版)》电子版,以下是该版资料与2022年版的检测项目的增减对比,大家可以参考一下有备无患。33大类名称与2022版基本相同,无变化。本文列举了前19大类检测项目增减情况。以下内容红色字体部分为2023版新增;蓝色字体部分为2022版原有,于2023版删除。1、粮食加工品类别检验项目通用小麦粉、专用小麦粉镉(以Cd计)、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇、赭曲霉毒素A、黄曲霉毒素B1、苯并[a]芘、过氧化苯甲酰、偶氮甲酰胺大米铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1、无机砷(以As计)、苯并[a]芘挂面铅(以Pb计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、黄曲霉毒素B1谷物加工品铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1玉米粉、玉米片、玉米渣黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮、苯并[a]芘米粉铅(以Pb计)、镉(以Cd计)、总汞、无机砷(以As计)、苯并[a]芘其他谷物碾磨加工品铅(以Pb计)、赭曲霉毒素A、铬(以Cr计)生湿面制品铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量发酵面制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌米粉制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌、二氧化硫残留量其他谷物粉类制成品铅(以Pb计)、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、脱氢乙酸及其钠盐(以脱氢乙酸计)2、食用油、油脂及其制品类别检验项目食用植物油酸值/酸价、过氧化值、铅(以Pb计)、黄曲霉毒素B1、苯并[a]芘、溶剂残留量、丁基麦芽酚、特丁基对苯二酚(TBHQ)食用植物油(煎炸过程用油)酸价、极性组分食用动物油脂酸价、过氧化值、丙二醛、总砷(以As计)、苯并[a]芘、铅(以Pb计)食用油脂制品酸价(以脂肪计)、过氧化值(以脂肪计)、大肠菌群、霉菌、铅(以Pb计)3、调味品类别检验项目酱油氨基酸态氮、全氮(以氮计)、铵盐(以占氨基酸态氮的百分比计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群、对羟基苯甲酸酯类及其钠盐 (以对羟基苯甲酸计)、三氯蔗糖食醋总酸(以乙酸计)、不挥发酸(以乳酸计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、对羟基苯甲酸酯类及其钠盐(以对羟基苯甲酸计)、三氯蔗糖酿造酱氨基酸态氮 、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、大肠菌群、三氯蔗糖调味料酒氨基酸态氮 、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、三氯蔗糖香辛料调味油铅(以Pb计)、酸价/酸值、过氧化值辣椒、花椒、辣椒粉、花椒粉铅(以Pb计)、罗丹明B、苏丹红I-IV、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌、二氧化硫残留量其他香辛料调味品铅(以Pb计)、丙溴磷、氯氰菊酯和高效氯氰菊酯、多菌灵、沙门氏菌、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量鸡粉、鸡精调味料谷氨酸钠、呈味核苷酸二钠、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群其他固体调味料铅(以Pb计)、总砷(以As计)、苏丹红I-IV、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、阿斯巴甜、二氧化硫残留量蛋黄酱、沙拉酱金黄色葡萄球菌、沙门氏菌、乙二胺四乙酸二钠、二氧化钛坚果与籽类的泥(酱)酸价/酸值、过氧化值、铅(以Pb计)、黄曲霉毒素B1、沙门氏菌辣椒酱苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、二氧化硫残留量火锅底料、麻辣烫底料铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、罂粟碱、吗啡、可待因、那可丁其他半固体调味料罗丹明B、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、铅(以Pb计)蚝油、虾油、鱼露氨基酸态氮、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群其他液体调味料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群味精谷氨酸钠、铅(以Pb计)普通食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)低钠食用盐氯化钾、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)风味食用盐碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)特殊工艺食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)食品生产加工用盐铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)、亚硝酸盐(以NaNO2计)4、肉制品类别检验项目调理肉制品(非速冻)铅(以Pb计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、铬(以Cr计)、脱氢乙酸及其钠盐(以脱氢乙酸计)腌腊肉制品过氧化值(以脂肪计)、总砷(以As计)、氯霉素、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、胭脂红、铅(以Pb计)发酵肉制品氯霉素、亚硝酸盐(以亚硝酸钠计)、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌酱卤肉制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、总砷(以As计)、氯霉素、酸性橙Ⅱ、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、糖精钠(以糖精计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌、商业无菌熟肉干制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌熏烧烤肉制品铅(以Pb计)、苯并[a]芘、氯霉素、亚硝酸盐(以亚硝酸钠计)、菌落总数、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、纳他霉素、胭脂红熏煮香肠火腿制品亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、氯霉素、沙门氏菌、金黄色葡萄球菌、单核增生李斯特菌、致泻性大肠埃希氏菌、铅(以Pb计)、纳他霉素5、乳制品类别检验项目液体乳(巴氏杀菌乳)蛋白质、酸度、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、丙二醇液体乳(灭菌乳)脂肪、非脂乳固体、蛋白质、酸度、三聚氰胺、商业无菌、丙二醇液体乳(发酵乳)脂肪、蛋白质、酸度、乳酸菌数、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、酵母、霉菌、山梨酸及其钾盐液体乳(调制乳)脂肪、蛋白质、铅(以Pb计)、铬(以Cr计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、商业无菌脱盐乳清粉、非脱盐乳清粉、浓缩乳清蛋白粉、分离乳清蛋白粉蛋白质、三聚氰胺乳粉(全脂乳粉、脱脂乳粉、部分脱脂乳粉、调制乳粉)蛋白质、三聚氰胺、菌落总数、大肠菌群其他乳制品(炼乳)蛋白质、三聚氰胺、菌落总数、大肠菌群、商业无菌其他乳制品(干酪、再制干酪、干酪制品)干酪:铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌;再制干酪:脂肪(干物中)、干物质含量、铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌其他乳制品(奶片、奶条等)三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌其他乳制品(奶油)脂肪、酸度、三聚氰胺、菌落总数、大肠菌群、沙门氏菌、霉菌、商业无菌6、饮料类别检验项目饮用天然矿泉水界限指标、镍、锑、溴酸盐、硝酸盐(以NO3-计)、亚硝酸盐(以NO2-计)、大肠菌群、铜绿假单胞菌、总汞(以 Hg 计)、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)饮用纯净水电导率、耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、三氯甲烷、溴酸盐、大肠菌群、铜绿假单胞菌、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)其他饮用水耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、溴酸盐、大肠菌群、铜绿假单胞菌、三氯甲烷、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)果、蔬汁饮料铅(以Pb计)、展青霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、纳他霉素、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、安赛蜜、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母蛋白饮料蛋白质、三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、菌落总数、大肠菌群、沙门氏菌碳酸饮料(汽水)二氧化碳气容量、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、菌落总数、霉菌、酵母茶饮料茶多酚、咖啡因、甜蜜素(以环己基氨基磺酸计)、菌落总数、脱氢乙酸及其钠盐(以脱氢乙酸计)固体饮料蛋白质、铅(以Pb计)、赭曲霉毒素A、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、相同色泽着色剂混合使用时各自用量占其最大使用量的比例之和其他饮料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母、沙门氏菌16、蔬菜制品类别检验项目酱腌菜
  • 广东省微生物研究所:铁还原菌研究新突破——可视化单细胞分选技术大显身手
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/735cf0d8-fb76-4678-915f-0201f136b0e9.jpg" title=" image001.jpg" alt=" image001.jpg" / /p p style=" text-align: justify text-indent: 2em " 2020年11月,广东省微生物研究所许玫英与 a href=" http://www.gdim.cn/yjdwp/gjsbjrc/201708/t20170810_379484.html" target=" _blank" title=" 杨永刚研究员" 杨永刚 /a 研究员团队在期刊《Appl Environ Microbiol》上发表文章“Visualizing and isolating iron-reducing microorganisms at single cell level”,论文第一作者为助理研究员甘翠芬。该论文在线后被环境微生物学领域著名专家DR Lovley教授评为“One of the most exciting papers in microbial iron reduction of 2020 ” /p p style=" text-align: justify text-indent: 2em " i 原文链接: /i /p p style=" text-align: justify text-indent: 2em " i https://aem.asm.org/content/early/2020/11/02/AEM.02192-20.long /i /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 一、研究背景 /strong /span /p p style=" text-align: justify text-indent: 2em " 在自然环境中,铁还原是细菌胞外电子传递的主要形式之一。铁还原菌(FeRM)不仅在矿物和腐殖质的还原中起关键作用,而且还参与硫化合物和有机物的氧化。此外,FeRM在废水处理、生物修复和生物电化学系统等许多工程过程中至关重要。铁还原菌在系统发育上普遍存在,目前还没有合适的16S rRNA或基于功能基因的检测方法对其进行检测。本文章作者合成了一种对Fe sup 2+ /sup 具有高灵敏度和选择性的耗氧Fe sup 2+ /sup 特异性荧光化学探针(FSFC)。该FSFC可以从纯培养、不同细菌共培养或含沉积物样品中选择性地鉴定和定位活性FeRM。FSFC的荧光强度可以作为细菌培养物中Fe sup 2+ /sup 浓度的指标。与单细胞分选技术相结合,该探针可以帮助从丰富的沉积物群落中识别和分离FeRM。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 二、实验设计 /strong /span /p p style=" text-align: justify text-indent: 2em " 首先作者设计合成了一种对Fe sup 2+ /sup 具有高灵敏性和选择性的特异性荧光探针(FSFC),FSFC能够定位和鉴定具有活性的FeRM,其荧光强度能够作为细菌培养物中Fe sup 2+ /sup 浓度指示。将FSFC荧光探针与单细胞分选技术结合,实现可视化识别和分选铁还原菌。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 三、结果与讨论 /strong /span /p p style=" text-align: justify text-indent: 2em " 1. FSFC的灵敏度、选择性和稳定性 /p p style=" text-align: justify text-indent: 2em " 由于碲原子对萘二甲酰亚胺荧光团的重原子作用,在没有Fe sup 2+ /sup 的情况下,FSFC是非荧光的,Fe sup 2+ /sup 可以触发FSFC的脱氢反应并引起强烈的荧光,研究表明不同浓度Fe sup + /sup 对FSFC荧光强度具有影响,并且荧光强度与Fe sup 2+ /sup 浓度呈现线性关系,因此,对于大多数环境和实验样品,FSFC可以作为Fe sup 2+ /sup 或铁还原菌的指示剂。接下来作者验证FSFC的选择性,实际环境中其他金属离子可能会影响FSFC对Fe sup 2+ /sup 的荧光影响,通过实验表明所有被测金属分别对FSFC没有显著的影响效应。并且稳定性测试实验表明FSFC在5h内保持较好的稳定性,优于经典的邻菲罗啉法。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/be4d5bbf-7af1-42ff-86a2-520b7327e82c.jpg" title=" image002.jpg" alt=" image002.jpg" / /p p style=" text-align: justify text-indent: 2em " Fig.1 FSFC对Fe sup 2+ /sup 溶液中的灵敏度、选择性和稳定性。(A) FSFC荧光光谱对不同浓度Fe sup 2+ /sup 的响应。(B) Fe sup 2+ /sup 浓度与荧光强度FI的关系为对数关系。(C) FSFC对Fe sup 2+ /sup 的选择性测试。(D) FSFC与传统邻菲罗啉法的相对稳定性。 /p p style=" text-align: justify text-indent: 2em " strong 2. 活性FeRM还原可溶性和固态Fe3+的荧光成像。 /strong /p p style=" text-align: justify text-indent: 2em " 前人的研究已经广泛证实了Shewanella和Geobacter的还铁能力。此外,有报道称,在用FeRM法还原铁的过程中,磷酸亚铁和碳酸亚铁在细胞表面聚集。实验结果表明与非铁还原菌相比S12和MR-1细菌表面的Fe2+浓度高很多。使用S. decolorationis S12、S. oneidensis MR-1、G. sulfurreducens PCA三种模式铁还原菌进行可溶性柠檬酸铁还原时发现细胞荧光强度与二价铁浓度呈良好的线性关系(图2 A-E, G)。 /p p style=" text-align: justify text-indent: 2em " Fe在自然界中主要以固体的形式存在,本研究发现上述模式菌在还原无定形水铁矿的过程中的Fe sup 2+ /sup 浓度也与荧光强度呈一致性变化趋势。值得关注的是,在用于Geobacter无定形铁还原测试时,仅有接触铁颗粒的细胞呈现荧光,而未接触铁颗粒的细胞几乎无荧光(图2F),与该菌依赖直接接触的铁还原方式一致,表明FSFC具有判断细菌细胞是否正在进行铁还原的能力。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/noimg/6d579aca-b93d-4be4-9643-9d99c0370c93.gif" title=" image003.gif" alt=" image003.gif" / /p p style=" text-align: center text-indent: 0em " Fig.2 FSFC在氧、可溶性Fe sup 3+ /sup 或固态Fe sup 3+ /sup 为电子受体的情况下对菌株PCA的荧光响应。 /p p style=" text-align: justify text-indent: 2em " strong 3. 评价不同细菌的铁还原能力。 /strong /p p style=" text-align: justify text-indent: 2em " 除铁还原能力外,不同属细菌通常具有不同的形状、表面性质和代谢物,这些都可能影响FSFC的荧光。为了进一步分析FSFC的选择性,我们使用FSFC对5个盲菌标本进行了检测。从沉积物中分离出五种还原铁性能未知的细菌。 /p p style=" text-align: justify text-indent: 2em " 实验表明,与预期的结果一样, S12和 MR-1显示荧光,阴性对照无荧光。在5个盲样细菌中,只有P. motobuensis Iβ12有荧光,但FI低于S12。其余细菌均无荧光(图4A-G),所以不同细菌的贴还原能力差异较大,且FSFC探针对不同菌的评价结果与经典邻菲罗啉法一致。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/b5d8b25b-3456-4565-bb50-22cc2784bada.jpg" title=" image004.jpg" alt=" image004.jpg" / /p p style=" text-align: justify text-indent: 2em " & nbsp span style=" text-indent: 2em " Fig.4 /span span style=" text-indent: 2em " : /span span style=" text-indent: 2em " FSFC /span span style=" text-indent: 2em " 对含有柠檬酸铁的不同细菌培养物的荧光图像。 /span span style=" text-indent: 2em " & nbsp (A) /span span style=" text-indent: 2em " Ciceribacter /span span style=" text-indent: 2em " sp. F217, (B) /span span style=" text-indent: 2em " S. hydrophobicum /span span style=" text-indent: 2em " C1, (C) /span span style=" text-indent: 2em " Bacillus /span span style=" text-indent: 2em " Iβ8, (D) /span span style=" text-indent: 2em " L. varians /span span style=" text-indent: 2em " GY32, (E) /span span style=" text-indent: 2em " P. motobuensis /span span style=" text-indent: 2em " Iβ12, (F) /span span style=" text-indent: 2em " S. decolorationis /span span style=" text-indent: 2em " S12, (G) /span span style=" text-indent: 2em " 基于邻菲罗啉法的不同菌株的铁还原测定。 /span /p p style=" text-align: justify text-indent: 2em " strong 4. FeRM与其他细菌共培养 /strong /p p style=" text-align: justify text-indent: 2em " FeRM和与其他功能的细菌共培养是了解FeRM与其他细菌之间相互作用的重要方法。 /p p style=" text-align: justify text-indent: 2em " 为了测试FSFC是否可以在共培养系统中鉴定出FeRM,作者使用乳酸作为电子供体共培养了丝状非FeRM 菌株GY32和杆状菌株S12。如图5A所示,杆状菌株S12显示出强荧光,而丝状细菌GY32在相同的铁还原培养物中没有荧光。可以看出,FSFC可以选择性地选择微生物样品中的FeRM。为了评价FSFC在更复杂环境下的可行性,用FSFC在含柠檬酸铁的灭菌底泥中共培养GY32和S12。图5C显示在没有共培养的沉积物中,只有少数颗粒显示荧光,这可能是由于这些沉积物颗粒上固有的Fe sup 2+ /sup 引起的,而没有细菌样颗粒显示出荧光。 结果表明,FSFC在沉积物中的背景荧光很小,沉积物中非活性微生物不能触发FSFC的荧光。 在共培养系统中,如图5D显示,S12表现出显著的荧光,而丝状细菌GY32没有荧光,表明FSFC在含沉积物的环境中可视化FeRM的可行性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/3534320c-0a4f-426a-94e3-70939477874e.jpg" title=" image005.jpg" alt=" image005.jpg" / /p p style=" text-align: center text-indent: 0em " Fig.5 S12和GY32共培养的荧光图像 /p p style=" text-align: justify text-indent: 2em " strong 5.可视化并从混合物中分离单细胞FeRM /strong /p p style=" text-align: justify text-indent: 2em " 除了可视化FeRM外,从多物种样品中分离FeRM对于了解铁相关的生物地球化学过程是一个普遍而重要的需要。作者结合FSFC和PI来标记富铁还原反应中的生物膜。CLSM显示,活跃的FeRM细胞主要位于生物膜的外层,而内层生物膜细胞活性较低,FSFC荧光较少,如图6A. 7个有荧光的单细胞和6个没有荧光的单细胞通过单细胞分选仪从沉积物富集的菌群中分离出来(图6)。其中有3个分离的荧光单细胞被成功培养,它们都可以使用醋酸盐作为电子供体来还原柠檬酸铁(图6G),进一步证实了FSFC在FeRM分选中的可靠性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/924c636f-7b10-41e0-8442-f58cacdcffd0.jpg" title=" image006.jpg" alt=" image006.jpg" / /p p style=" text-align: center " span style=" text-indent: 2em " Fig.6 /span span style=" text-indent: 2em " 基于 /span span style=" text-indent: 2em " FSFC /span span style=" text-indent: 2em " 可视化单细胞分选铁还原菌。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 四、结论 /strong /span /p p style=" text-align: justify text-indent: 2em " 这项研究报告了一种方法,该方法可以将FeRM可视化并从含有多物种甚至沉积物的细菌培养物中分离出来。FSFC对Fe sup 2+ /sup 具有很高的灵敏度,选择性和稳定性,并且在液体和沉积物环境中均具有低背景荧光。 在含有FeRM的纯培养物或共培养物中,FSFC可以选择性地观察活性FeRM。通过与单细胞分选技术相集成,可以从单细胞水平的样品中有效地获得目标FeRM。 这种新颖的方法可能是获得新的FeRM以及深入了解FeRM在不同环境中的生物地球化学作用的有力工具。 /p p style=" text-align: justify text-indent: 2em " 辰英科仪自主研制的单细胞分选仪PRECI SCS具有独特的可视化分选功能,所见即所得,精准实现目标细胞的逐一分离。采用独特的激光与物质相互作用原理,对于复杂生物样本中形态各异的细胞,可实现非标记状态下的精准分离。对于百纳米级的单个微生物细胞也同样适用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/c0eadba6-93d6-4b69-b71a-ae5f74d17143.jpg" title=" image007.jpg" alt=" image007.jpg" / /p p style=" text-align: center text-indent: 0em " 单细胞分选仪HOOKE PRECI SCS /p p style=" text-align: justify text-indent: 2em " HOOKE S3000采用先进的三条纹转盘共聚焦成像技术,结合稳定的Z向超快速扫描平台,极大提高成像速度,满足细胞实时动态研究需求。设备采用LED面光源激发,光线均匀,光毒性及光漂白大大降低,适合连续观测。LED光源可应对全谱段检测应用,覆盖常见荧光染料的光谱范围。紧凑的新型共聚焦光路设计,可灵活耦合在多款显微镜上,满足不同应用需求。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/775a38a0-8b79-4a40-ae0b-435a76e039c2.jpg" title=" image008.jpg" alt=" image008.jpg" / /p p style=" text-align: center text-indent: 0em " HOOKE S3000 /p p style=" text-indent: 0em " br/ /p
  • 马秀良研究员就铁电拓扑结构研究接受Nature Index专访
    钙钛矿型铁电氧化物具有外场可控的极化,可作为信息存储和逻辑器件。拓扑极化结构自身的拓扑保护性,使其在信息处理、传输、存储等方面具有重要的应用价值。然而,铁电材料中的极化拓扑结构一般都包含本体对称性不允许的连续极化旋转。如何突破铁电极化与晶格应变的相互制约,实现极化反转与晶格应变的有效调控,获得有望用于超高密度信息存储的结构单元,是当今铁电材料领域面临的一个基础性科学难题。  2015年,马秀良研究团队利用具有亚埃尺度分辨能力的像差校正电子显微术,在超薄PbTiO3铁电薄膜中不仅发现通量全闭合畴结构及其新奇的原子构型图谱,而且观察到由顺时针和逆时针闭合结构交替排列所构成的大尺度周期性阵列(Science 2015)。在此基础上,美国伯克利国家实验室Ramesh院士领导的课题组发现了具有涡旋特征的通量全闭合结构(Nature 2016)以及与唐云龙博士合作发现了斯格明子晶格(Nature 2019)。最近,马秀良研究团队又相继在铁电材料中发现半子及半子晶格(Nature Materials 2020)以及周期性电极化波(Science Advances 2021)。  针对铁电拓扑结构目前的研究现状、未来发展方向、科学研究的原动力、电子显微技术的作用、物质结构的再认识、新材料的探索等诸多话题,2021年5月,马秀良研究员和Ramesh院士同时接受了自然指数(Nature Index)的视频专访。该访谈的简要内容于2021年7月1日刊登在《自然》(Nature)上。  2014年11月开始发布的自然指数(Nature Index)是依托于具有重要影响力的国际学术期刊,统计各高校、科研院所(国家)在国际上最具影响力的研究型学术期刊上发表论文信息的数据库。自然指数现已发展成为国际公认的,能够衡量机构、国家和地区在科学领域的高质量研究产出与合作情况的重要指标,在全球范围内具有一定的影响力。(a) 斯格明子中的三维极化示意图;(b)会聚型和发散型半子交替排列所形成的周期性半子晶格示意图。
  • 仪器化压入技术及其在钢铁产品性能预测中的三位一体
    仪器化压入技术作为传统硬度试验在定量化发展道路上,结合模型创新、技术迭代所取得的质的飞跃,可以在不破坏材料的前提下,快速预测出材料的拉伸性能与断裂韧性,是传统破坏性力学试验方法的重要补充。采用仪器化压入技术,可以在钢铁材料研发过程中实现力学性能评价的减量化、无取样与短流程,也可以应用在产品服役全过程的性能跟踪与寿命预测,具有丰富的应用场景与广阔的发展前景。8月16日,中国宝武钢铁集团有限公司中央研究院力学首席工程师/教授级高工方健将于第二届试验机与试验技术网络研讨会期间分享报告,讲述仪器化压入技术及其在钢铁产品性能预测中的三位一体。关于第二届试验机与试验技术网络研讨会为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/testingmachine2023
  • 出入境检验检疫行业标准制(修)订计划公布-2011年第三批
    北京、天津、河北、山西、辽宁、上海、江苏、宁波、福建、山东、广东、深圳、新疆检验检疫局、中国检验检疫科学研究院,各有关出入境检验检疫标准化专业技术委员会:   为有效落实质检总局2011年相关重点工作部署,保障食品接触材料、入境环保微生物检疫监管工作的顺利开展,经相关检验检疫标准化专业技术委员会审议推荐,并征求总局有关业务司局意见,我委研究确定了《2011年第三批出入境检验检疫行业标准制(修)订计划项目》(见附件)。为确保本批计划项目的有效实施和管理,现就有关事项通知如下:   一、对项目负责起草单位和参加单位的要求   (一)项目负责起草单位和项目负责人应根据计划及时安排工作,尽快成立标准起草小组,严格履行起草、验证、征求意见、送审等环节工作程序和要求,确保验证数据的真实可靠,务求意见征求过程广泛且具有针对性,高质量地完成标准制修订任务。在标准制修订过程中,项目负责起草单位应主动与主管业务司(局)和检验检疫标准化专业技术委员会做好沟通,使标准符合相关法律法规和业务管理的要求。   (二)多个单位共同承担的项目,由负责起草单位组织项目实施,并与参加起草单位做好沟通,建立必要的项目协调机制,明确各自的分工,协商解决相关技术问题 参加起草单位应积极与负责单位取得联系,派遣专家参加项目起草小组,承担起标准相关部分的起草工作。双方共同努力,切实发挥标准研制多方参与、优势互补的合力作用。   (三)项目负责起草单应做好对标准研制所需标准样品、试剂等基础核心物质供应情况的摸底调查和及早准备,防止因标准样品、试剂等缺乏造成标准研制时间后延或项目撤销情况的发生。   (四)项目负责起草单位应提供标准研制配套经费保障,确保标准研制各环节工作的顺利推进。   二、对各单位标准化管理部门的要求   (一)各负责起草单位标准化管理部门要加强对项目执行过程的管理,做好对项目进度、项目协调机制、人员参与情况、执行过程问题等的跟踪检查,遇有重大问题应及时向我委科技与标准管理部汇报 同时要为项目起草小组提供必需保障,确保其按时高质量的完成标准起草工作。   (二)各单位标准化管理部门应严格项目调整审查手续。在计划项目执行过程中,如项目确需调整,项目负责起草单位应填写《出入境检验检疫行业标准项目计划调整申请表》,所在单位标准化管理部门应认真审核后报送我委,同时通过检验检疫标准管理信息系统上报电子文档,并按照我委批复的意见执行。《出入境检验检疫行业标准项目计划调整申请表》的报送不得晚于项目完成时限之前三个月(以邮戳为准)。   三、对各有关检验检疫标准化专业委的要求   (一)各有关专业委应根据本专业项目实际,适时组织开展项目中期检查、预审或统稿工作,针对问题做好阶段性把关,并与业务工作做好有效衔接。   (二)请各有关专业委根据自身人员和业务实际,安排专人进行指导,跟踪项目起草的全过程,确保项目技术路线的准确性和起草质量。   (三)各有关专业委应根据本专业项目特点,对项目在征求意见环节需针对性征求意见的专家人选做出考虑,并及时与项目承担单位标准化管理部门做好协调。   四、其它注意事项   (一)专业委指导专家、项目负责人和参与单位之间应建立良好的项目协作关系,确保项目的进度和质量。专业委组织项目中期检查、预审或统稿工作时,应将参与单位纳入相关工作当中,切实发挥参与单位在制标过程中的作用。   (二)为扩大检验检疫标准化工作的影响力和服务力度,增强检验检疫行业标准的实用性和有效性,鼓励各项目负责起草单位吸纳有条件和能力、愿意共同参与标准制修订活动的科研院所、企事业单位参加项目起草小组的工作。   (三)标准制修订补助经费另行下达。   二○一一年九月一日   附件:2011年第三批出入境检验检疫行业标准制(修)订计划项目 序号 计划编号 项目名称 计划完成时间 负责起草单位 1 2011B421 入境环保微生物菌剂符合性检验规程 2013 辽宁检验检疫局 2 2011B422 入境环保微生物菌剂取样操作规程 2013 辽宁检验检疫局 3 2011B423.1 入境环保微生物菌剂检测方法 第1部分:地衣芽孢杆菌 2013 辽宁检验检疫局 4 2011B423.2 入境环保微生物菌剂检测方法 第2部分:短小芽孢杆菌 2013 辽宁检验检疫局 5 2011B423.3 入境环保微生物菌剂检测方法 第3部分:巨大芽孢杆菌 2013 辽宁检验检疫局 6 2011B423.4 入境环保微生物菌剂检测方法 第4部分:嗜酸氧化亚铁硫杆菌 2013 辽宁检验检疫局 7 2011B423.5 入境环保微生物菌剂检测方法 第5部分:副溶血性弧菌 2013 辽宁检验检疫局 8 2011B423.6 入境环保微生物菌剂检测方法 第6部分:金黄色葡萄球菌 2013 辽宁检验检疫局 9 2011B423.7 入境环保微生物菌剂检测方法 第7部分:沙门氏菌 2013 辽宁检验检疫局 10 2011B423.8 入境环保微生物菌剂检测方法 第8部分:志贺氏菌 2013 辽宁检验检疫局 11 2011B423.9 入境环保微生物菌剂检测方法 第9部分:致泻大肠埃希氏菌 2013 辽宁检验检疫局 12 2011B423.10 入境环保微生物菌剂检测方法 第10部分:淡紫拟青霉 2013 辽宁检验检疫局 13 2011B423.11 入境环保微生物菌剂检测方法 第11部分:恶臭假单胞菌 2013 辽宁检验检疫局 14 2011B423.12 入境环保微生物菌剂检测方法 第12部分:哈茨木霉 2013 辽宁检验检疫局 15 2011B423.13 入境环保微生物菌剂检测方法 第13部分:黄孢原毛平革菌 2013 辽宁检验检疫局 16 2011B423.14 入境环保微生物菌剂检测方法 第14部分:焦曲霉 2013 辽宁检验检疫局 17 2011B423.15 入境环保微生物菌剂检测方法 第15部分:解淀粉芽孢杆菌 2013 辽宁检验检疫局 18 2011B423.16 入境环保微生物菌剂检测方法 第16部分:类产碱假单胞菌 2013 辽宁检验检疫局 19 2011B423.17 入境环保微生物菌剂检测方法 第17部分:恶臭假单胞菌 2013 辽宁检验检疫局 20 2011B424 出口食品接触材料检验规程 高分子材料类 2012 山东检验检疫局 21 2011B425 出口食品接触材料检测方法 纸、再生纤维材料 亚甲基双硫氰酸酯迁移量的测定 液相色谱-质谱法 2012 中国检科院 22 2011B426 出口食品接触材料检测方法 糯米纸 聚乙烯醇(PVA)含量的测定 紫外-可见分光光度法 2012 新疆检验检疫局 23 2011B427 出口食品接触材料检测方法 水性食品模拟物中甲醛的测定 液相色谱法 2012 山西检验检疫局 24 2011B428 出口食品接触材料检测方法 高分子材料 橄榄油中邻苯二甲酸酯迁移量的测定 GC-MS法 2012 宁波检验检疫局 25 2011B429 出口食品接触材料检测方法 纸、再生纤维材料 硼酸盐的测定 2013 上海检验检疫局 26 2011B430 出口食品接触材料检测方法 纸、再生纤维材料 烷基酚的测定 2012 中国检科院 27 2011B431 出口食品接触材料检测方法 纸、再生纤维材料 多环芳烃的测定 2013 深圳检验检疫局 28 2011B432 出口食品接触材料检测方法 木质材料 软木塞中氧化残余物的测定 碘量滴定法 2012 福建检验检疫局 29 2011B433 出口食品接触材料安全卫生技术规范 2012 山东检验检疫局 30 2011B434 出口食品接触材料检测方法 高分子材料 食品模拟物中2,4,4'-三氯-2'-羟基二苯醚(三氯生)的测定 2013 北京检验检疫局 31 2011B435 出口食品接触材料检测方法 高分子材料 食品模拟液中2,4-二羟基二苯甲酮的测定 2012 江苏检验检疫局 32 2011B436 出口食品接触材料检测方法 高分子材料 食品模拟液中 2-羟基-4-甲氧基二苯甲酮的测定 2012 江苏检验检疫局 33 2011B437 出口食品接触材料检测方法 高分子材料 双酚A的测定 酶联免疫法 2012 上海检验检疫局 34 2011B438 出口食品接触材料检测方法 高分子材料 N,N-二(2-羟乙基)烷基酰胺(C10-C18)的检测 液相色谱/质谱法 2013 河北检验检疫局 35 2011B439 出口食品接触材料检测方法 高分子材料 N,N'-二(2,6-二异丙基苯基)碳二亚胺的检测 液相色谱/质谱法 2013 天津检验检疫局 36 2011B440 出口食品接触材料 高分子材料 2,4-二氨基-6-苯基-1,3,5-三嗪含量的测定 2012 江苏检验检疫局 37 2011B441 出口食品接触材料检测方法 高分子材料 食品模拟物中BPA、BADGE、BFDGE及其羟基的测定 液相色谱-质谱法 2012 山东检验检疫局 38 2011B442 出口食品接触材料检测方法 再生纤维素薄膜 涂层中溶剂残留量的测定 2012 广东检验检疫局 39 2011B443 出口食品接触产品 刀具和凹形餐具 第1部分:准备食物用刀具的要求 2012 北京检验检疫局 40 2011B444 出口食品接触产品 刀具和凹型餐具.第2部分:不锈钢和镀银餐具的要求 2012 北京检验检疫局
  • 欧盟对EDTA铁钠作为食品中铁强化剂的科学意见
    EDTA铁钠作为铁强化剂的安全性以及来自EDTA铁钠的铁的生物利用率。至于铁本身的安全性--可能的铁摄入量--并不在这个科学委员会的评估范围之内。   应欧盟委员会的要求,食品添加剂及营养强化剂科学委员会公布EDTA(乙二胺四乙酸)作为普通食品(包括食品补充剂)以及特殊营养用途食品的铁强化剂的科学意见。所公布的科学意见涉及EDTA铁钠作为铁强化剂的安全性以及来自EDTA铁钠的铁的生物利用率。至于铁本身的安全性--可能的铁摄入量--并不在这个科学委员会的评估范围之内。   有关EDTA铁钠的铁生物利用率的信息立基于人体铁强化研究。科学委员会根据这些研究得出结论,来自于EDTA铁钠的铁具有生物可利用性。研究进一步发现,EDTA铁钠中的铁的生物利用率是硫酸亚铁的二至三倍,同时可以有效与血红蛋白的结合。   科学委员会指出,EDTA铁钠中的铁的吸收会依照人体的铁量进行调整,方式与其他铁化合物类似,通过在食品中添加EDTA铁钠进行铁强化并不会导致人体铁过载。这些研究同样对动物(老鼠)和人体(铁强化研究)内EDTA铁钠对食品中其他营养物质(例如锌、铜、钙、锰以及镁)的吸收和代谢产生的影响进行了分析,结果并未发现影响吸收和代谢现象。   科学委员会称,两项为期90天针对老鼠体内EDTA铁钠的研究为他们提供了数据。根据这些数据,委员会得出的无可见不良作用剂量水平为每天每公斤体重250毫克EDTA铁钠。根据一项为期61天的老鼠摄入EDTA铁钠研究,委员会得出的无可见不良作用剂量水平为每天每公斤体重84.3毫克(提供每天每公斤体重11.2毫克铁)。基于这项研究得出的发现,联合食品添加剂专家委员会(JECFA)2000年得出结论,在饮食中填入EDTA铁钠在满足铁营养需求的同时并不会导致铁的过量摄入。   委员会指出,针对鼠伤寒沙门氏菌(7株)和大肠杆菌(2株)的试管内诱变性试验结果显示为阴性,但试管内老鼠淋巴瘤试验结果显示为微弱阳性,观察到中度细胞毒性。在此次试管内老鼠淋巴瘤试验中,还观察到与其他铁化合物有关的类似结果,EDTA钠铁(III)产生的影响可能与铁有关,而不是EDTA.此外,试管内老鼠微核试验结果显示为阴性。   欧盟一份EDTA风险评估报告指出,EDTA及其钠盐在极高摄入剂量情况下可产生较低的致突变性。根据多项结果为阴性的研究以及一项非整倍体诱发剂作用机制阀值的假设,EDTA及其钠盐对人体并不具有致突变性。科学委员会认为,根据所获得的信息,EDTA铁钠作为铁强化剂不会产生基因毒性方面的安全隐患。   虽然并未对EDTA铁钠进行化学毒性和致癌性研究,但对于包括EDTA 三钠、EDTA二钠钙和EDTA磷酸氢二钠在内的其他EDTA盐还是进行了一些研究。与其他EDTA金属一样,EDTA铁钠在内脏内分裂为一种具有生物可利用性的铁和一种EDTA盐,在评估EDTA铁钠的安全性时,其他EDTA盐的毒理学研究具有可参考性。根据这些研究,EDTA盐并不具有致癌性。   根据老鼠食用EDTA磷酸氢二钠、EDTA三钠、EDTA四纳、EDTA二钠钙等类似EDTA盐的发育研究获取的数据,死亡率、生育能力或者致畸作用均与这些化合物无关。根据老鼠EDTA铁钠的一项发育毒性研究,科学委员会得出的无可见不良作用剂量水平为每天每公斤体重200毫克。   发展中国家对将EDTA铁钠作为食品的一种铁强化剂进行了大量现场测试。根据这些测试,EDTA铁钠并未对参与长期EDTA铁钠强化测试的人产生副作用。委员会指出,EDTA的光降解能够促进甲醛的形成。欧洲食品安全局的食品添加剂、调味料、加工辅料和原料专家组(AFC)对甲醛在食品添加剂生产和制备过程充当防腐剂进行了分析,结果并未发现口服摄入的甲醛具有致癌性的任何证据。AFC专家组认为,在遵照相关部门建议的量摄入EDTA铁钠情况下,EDTA的降解产物甲醛并不对人体造成安全隐患。   食品添加剂及营养强化剂科学委员会请求将EDTA铁钠作为一种铁强化剂,建议应该在特殊营养用途食品中添加EDTA铁钠,每天为体重60公斤的成年人提供22.3毫克铁,为体重30公斤的儿童提供11.1毫克铁。为了达到这一铁摄入量,成年人和儿童每天分别需要摄入大约168毫克和84毫克EDTA铁钠。   对于食品补充剂,委员会并没有建议具体的摄入量,但指出应该与当前被批准用于食品补充剂的其他铁类似。以EDTA铁钠形式摄入的铁量,体重60公斤的成年人每天不应超过22.3毫克,体重30公斤的儿童每天不应超过11.1毫克。为达到同样的摄入量,食品补充剂中添加的EDTA铁钠应与特殊营养用途食品相同,即成年人和儿童每天分别需要摄入大约168毫克和84毫克EDTA铁钠。   委员会指出,维生素与矿物质专家组(EVM)建议的摄入量只供参考,补充摄入量大约为每天17毫克铁,(相当于体重60公斤的成年人每天每公斤体重摄入0.28毫克)。对于绝大多数人来说,这一摄入量不会产生副作用。每天17毫克铁可由128.3毫克EDTA铁钠提供,EDTA为89毫克,相当于成年人每天每公斤体重摄入大约1.5毫克EDTA,体重15公斤的儿童每天每公斤体重摄入5.9毫克EDTA.   基于这些摄入量,委员会计算出所有铁以EDTA铁钠形式摄入情况下的EDTA摄入量。对于特殊营养用途食品,成年人每天摄入的EDTA大约在116毫克左右,儿童为每天58毫克左右。对于食品补充剂,成年人每天摄入的EDTA大约在116毫克左右,儿童为大约在58毫克左右。这两种情况下的EDTA摄入量为,成年人每天每公斤体重1.9毫克左右,体重15公斤的儿童为每天每公斤体重3.9毫克左右。   对于强化食品,假设EDTA铁钠摄入量按照委员会的建议,体重15公斤的儿童每天摄入的EDTA平均在11.3毫克,成年男性为24.6毫克,第95百分位的儿童为24.6毫克,成年人为58.5毫克。若以单位体重表示则分别为每天每公斤体重0.8毫克和0.4毫克,第95百分位情况下分别为每天每公斤体重1.7毫克和1.0毫克。   委员会指出,虽然EDTA的每日允许摄入量还没有确定,但联合食品添加剂专家委员会已制定了EDTA二钠钙的每日允许摄入量标准,为每天每公斤体重2.5毫克,摄入的EDTA为每天每公斤体重1.9毫克。EDTA二钠钙为欧洲唯一获得批准的EDTA衍生物。   如果将EDTA铁钙作为一种铁强化剂,添加进所有3种来源--特殊营养用途食品、强化食品和食品补充剂,儿童平均每天摄入的EDTA为每天每公斤体重8.6毫克,成年人平均每天摄入的EDTA为每天每公斤体重4.2毫克 第95百分位的儿童为每天每公斤体重9.5毫克,成年人为每天每公斤体重4.8毫克。这超过了为EDTA二钠钙制定的EDTA每日允许摄入量标准,也就是每天每公斤体重1.9毫克。委员会无法评估个体摄入所有3种添加EDTA铁钠的产品的可能性,但这种可能性并不高。   如果以EDTA铁钠形式每天摄入22.3毫克铁(相当于摄入165毫克EDTA铁钠),每天将额外摄入9毫克纳。通常情况下,欧洲人每天摄入的纳平均在4500至1.1万毫克之间,即使食用所有3种添加EDTA铁钠的产品,额外摄入的纳量也不足为虑。   委员会认为,来自EDTA铁钠的铁具有生物可利用性,如果每天摄入的EDTA不超过每天每公斤体重1.9毫克,将EDTA铁钠作为普通食品的一种铁强化剂不会造成安全隐患。如果按照建议的量,将EDTA铁钠作为公众强化食品的一种铁强化剂,同样不会造成安全隐患。委员会指出,如果将EDTA铁钠用于特殊营养用途食品或者童提供11.1毫克铁,EDTA的成年人摄入量将为每天每公斤体重1.9毫克,儿童为3.9毫克。
  • 我国将制定18项钢铁、有色金属检测新标准
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知。其中中国钢铁工业协会、中国有色金属工业协会、国家标准化管理委员会将主管制定18项钢铁、有色金属检测标准,其中涉及的仪器以电感耦合等离子体光谱法和电感耦合等离子体质谱法为主。另外还将修订17项钢铁、有色金属产品检测标准。 2014年第一批国家标准制修订计划之钢铁、有色金属检测标准制定   《钢板 抗凹性能试验方法》   本标准规定了金属板材抗凹性试验方法的试验原理、术语、试样、试验设备、试验程序、试验说明和试验报告。本标准规定了评价金属板材成形后部件抗凹性试验方法,主要用于汽车冲压件选材和优化,其他行业可参考使用。本标准适用于测定厚度0.2mm~3mm的金属板材。   《钢铁及合金 钙和镁含量的测定 电感耦合等离子体质谱法》   钢铁中痕量镁和钙元素多是由冶炼过程中的炉渣、炉衬及原材料等引入的,也有的是特意加入的,虽然其含量甚微,却起到十分微妙的作用。在钢的冶炼控制技术和钢洁净度不断提高的今天,优化和准确掌握钙、镁加入含量,严格控制、准确赋值钢铁中痕量的镁和钙含量具有重要的意义。   《高合金钢 多元素含量的测定 X-射线荧光光谱法(常规法)》   X射线荧光光谱法具有分析速度快、样品前处理简单、可分析元素范围广且不破坏样品、曲线线性范围宽、光谱干扰少等优点,应用范围非常广泛。与其他光谱分析方法相比,对于测定高含量元素和基体元素,具有独特的优势。因此,用X射线荧光光谱法测定高合金钢已为实验室普遍应用,但目前尚无国家标准和行业标准。为此,有必要制订高合金钢的国家标准分析方法,以填补此项空白,并与产品标准相适应。   《金属材料 高应变率扭转试验方法》   目前金属材料高应变率剪切性能主要采用分离式霍普金森扭杆试验技术测试,各研究者均基于相同的试验原理。但由于还没有试验方法的规范,各研究者在具体的处理方式上存在一定的差别,导致试验结果的不一致。通过本标准的制定和实施,可以提高金属材料高应变率下扭转力学性能测试结果的一致性和可比性,有利于提升对材料动态力学性能的认识,提高工程结构冲击响应的分析评估水平。   《活性炭吸附金容量及速率的测定》   目前国内外尚没有直接测定活性炭吸金性能的国家/行业方法标准,而是通过测定其它吸附参数(如碘吸附值、亚甲基蓝吸附值等)间接反映活性炭的吸金能力。但由于活性炭吸附金的机制与吸附碘等分子的机制存在明显的区别,因而采用间接碘值参数无法准确而有效的反映出活性炭的实际吸附金的能力。因此,亟需建立测定活性炭吸附金容量(Q值、K值)及吸附速率的方法标准,以便准确地评价活性炭吸附金的性能,为生产提供可靠的数据指标,有效的指导生产。   《纯铑化学分析方法 铂、钌、铱、钯、金、银、铜、铁、镍、铝、铅、锰、镁、锡、锌、硅的测定 电感耦合等离子体质谱法》   含铑系列合金和铑化合物及铑粉,在电子工业、军工、催化、测温、化工及首饰行业中具有不可替代的重要作用和广泛用途。这些产品大都需要以纯铑为原料来制备,铑的纯度直接影响和制约产品的使用性能及加工工艺。因此,制订电感耦合等离子体质谱法测定铑中杂质元素是非常迫切和必要的。   《工业硅化学分析方法 第X部分:汞含量的测定氢化物发生-原子荧光光谱法》   为了满足工业硅国家标准中增加汞元素的控制要求的需要,特提出制定工业硅中汞元素的测试方法标准。目前国内原子荧光光谱仪越来越普及,且该分析技术也越来越成熟,利用原子荧光光谱法能快速准确地测定工业硅中的汞元素含量,采用该方法制定统一的工业硅分析标准具有十分重要的现实意义。   《工业硅化学分析方法 第X部分:六价铬含量的测定 二苯碳酰二肼分光光度法》   随着工业硅生产工艺不断发展,伴随加工产品要求的不断提高及产品出口量的日益增加,越来越多的工业硅,尤其是单晶硅,多晶硅作为重要的原材料应用在电子行业。因此国内外客户对工业硅产品中有毒有害元素的限制要求越来越高。从客观上对我国工业硅产品的出口设立了绿色的壁垒。为了应对这一形势,提高我国工业硅在国际市场上的竞争力,规范六价铬等有害元素的检测,赢得国际用户对我国标准检测结果的认可势在必行。   《建筑用铝及铝合金表面阳极氧化膜及有机聚合物涂层、性能检测方法的选择》   由于铝合金建筑型材具有多种表面处理方式,而且又存在着大量的性能项目和试验方法,到底该选择何种表面处理方式,需要进行何种性能项目检测以及该选择何种试验方法进行评价,这些问题一直困扰着建筑工程师和铝合金建筑型材生产企业的技术人员,但目前还无相关的国家标准和其他权威技术资料以供使用,尽快制订《建筑用铝及铝合金表面阳极氧化膜及有机聚合物涂层、性能检测方法的选择》标准是十分必要的。   《铑化合物分析方法 第1部分:铑量的测定 硝酸六氨合钴重量法》   铑具有高熔点、高稳定性、高硬度和强耐蚀抗磨性等特性, 铑主要用作高质量科学仪器的防磨涂料和催化剂,而铑化合物在催化、电镀、有机合成制药、新能源的开发等方面有广泛的应用,铑化合物作为贵金属均相催化剂,已广泛用于氢甲酰化、加氢、羰基合成等重要的化工过程中。本项目的目的在于建立可靠的分析方法,准确测定铑化合物中的铑含量,为铑化合物产品的质量控制及其产品交易提供可靠的依据。   《区熔锗锭化学分析方法 第1部分 砷含量的测定 砷斑法》   区熔锗锭为锗的主要产品,世界产量每年大概在80吨左右,国内产量每年大概在60吨左右,其中约有70%左右,约42吨左右出口到美国、日本、比利时、德国等发达国家,国内最大的锗产品生产及供应商为云南临沧鑫圆锗业股份有限公司,其区熔锗锭的产销量占到了全国产销量的60%以上,其次为云南驰宏锌锗等8家公司在生产。随着锗材料应用领域的不断拓展,区熔锗锭的使用厂商要求生产单位提供区熔锗锭化学成分(杂质成分)检测数据,因此需要制定出相应的化学成分的检测方法标准。   《铜及铜合金软化温度的测定方法》   随着铜及铜合金产品在军工、航天航空、核电、船舶、冶金和高铁工业的广泛应用,特别是许多材料在高温环境下使用,材料在高温下的抗软化性能显得尤为重要。软化温度是指合金保温一小时后的硬度下降至原始硬度的80%时所对应的加热温度。软化温度的高低是评价合金材料抗高温软化性能的量化指标,目前国内外还没有测定铜及铜合金材料软化温度的方法,在高温下使用铜材的软化温度都是未知数 。因此有必要起草铜及铜合金软化温度的测定的国家标准。   《铅精矿化学分析方法 铊量测定 电感耦合等离子体原子发射光谱法》   《铜精矿化学分析方法 铊量的测定 电感耦合等离子体质谱法》   《锌精矿化学分析方法 铊量测定 电感耦合等离子体原子发射光谱法》   由于铊在自然界中含量很低,但对环境的污染和中毒的报道常有报道。随着科学技术的不断进步,近几年,铊被大量用于电子、化工、冶金、通讯等方面,具有很大的潜在危险。铊是一种稀散元素,以微量存在于铁、锌、铅等硫化物矿中,在冶炼过程中会产生废气、废水、废渣而进入环境,不可忽视。为对铊进行有效控制,建立矿物中铊的检测很有必要。   《铱化合物分析方法 第1部分:铱量的测定 硫酸亚铁电流滴定法》   铱的高熔点、高稳定性使其在很多特殊场合具有重要用途,新材料镀铱铼管用于国家航天军工事业,而铱化合物是重要的化工催化剂及制备其它铱试剂的原料。氯铱酸用于制造涂层电极,氯碱行业电解槽,也是重要的化工催化剂及铱试剂原料 三氯化铱是显示器的液显颜色材料 四氯化铱用于防腐涂料 Ir[Ⅲ]化合物是1-3-丁二烯的聚合催化剂,也是N2H4分解的催化剂,用于卫星姿态控制。本项目的目的在于建立可靠的分析方法,准确测定铱化合物中的铱含量,为铱化合物产品的质量控制及其产品交易提供可靠的依据。   《铱化合物分析方法 第2部分:银、金、铂、钯、铑、钌、等杂质元素的测定电感耦合等离子体发射光谱法》   铱化合物在催化行业中具有重要作用和广泛用途。铱化合物的纯度直接影响和制约产品的使用性能及加工工艺,国内已有多家单位生产。目前,铱化合物中无机杂质元素的测定没有统一的标准分析方法。为保证分析结果的准确和分析方法的标准化,制订电感耦合等离子体发射光谱法测定铱化合物中杂质元素是非常必要的。   《球墨铸铁件 超声波检测》   统一国内球墨铸铁件内部缺陷的检测方法,对铸件和检测仪器作出一些可探测要求的规定,同时对球墨铸铁缺陷的记录和评定也达成统一的认识。 适用大型球墨铸铁件(如风电类铸件)和小型球墨铁件(如压缩机类铸件)。 2014年第一批国家标准制修订计划之钢铁、有色金属检测标准修定
  • 多项光谱法将成为钢铁有色金属行业国家标准
    仪器信息网讯 2013年7月18日,国家标准委下达了2013年第一批国家标准制修订计划的通知。其中有关钢铁、有色金属检测方法制修订标准有35项,涉及的检测仪器包括火焰原子吸收光谱仪、ICP、ICP-MS、高频红外碳硫、分光光度计、试验机等。其中采用原子吸收光谱法的标准有8项,ICP法的有3项,XRF法1项,分光光度法4项。   在众多检测方法中,《海绵钛、钛及钛合金化学分析方法铜量的测定火焰原子吸收光谱法》修改了检测方法,引入原子吸收光谱法进行检测 《海绵钛、钛及钛合金化学分析方法铌量的测定5-Br-PADAP分光光度法及电感耦合等离子体发射光谱法》修改了检测方法,引入了ICP检测法。《含镍生铁 镍、钴、铬、铜、磷含量的测定 电感耦合等离子体原子发射光谱法》为初次制定,采用了ICP法 《纯铂化学分析方法钯、铑、铱、钌、金、银、铝、铋、铬铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体质谱法》为初次制定,采用了ICP-MS法,《硅铁 硅、锰、铝、钙、磷、钛、铬、铜、镍和铁含量的测定波长色散X-射线荧光光谱法(熔铸玻璃片法)》为初次制定,采用了波散XRF法。 《2013年第一批国家标准制修订计划的通知》中钢铁、有色金属行业检测标准 项目名称 标准性质 制修订 代替标准号 采用国际标准 完成时间 主管部门 归口单位 起草单位 铁矿石 铜含量的测定 火焰原子吸收光谱法 推荐 修订GB/T 6730.36-1986 ISO 5418-2:2006 2014 中国钢铁工业协会 全国铁矿石与直接还原铁标准化技术委员会 上海出入境检验检疫局、冶金工业信息标准研究院 海绵钛、钛及钛合金化学分析方法铜量的测定火焰原子吸收光谱法 推荐 修订 GB/T 4698.1-1996   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 西北有色金属研究院 锡精矿化学分析方法 第7部分:铋量的测定 火焰原子吸收光谱法 推荐 修订 GB/T 1819.7-2004   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡精矿化学分析方法 第8部分:锌量的测定 火焰原子吸收光谱法 推荐 修订 GB/T 1819.8-2004   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第10部分:镉量的测定 火焰原子吸收光谱法和EDTA滴定法 推荐修订 GB/T 10574.10-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第7部分: 银量的测定 火焰原子吸收光谱法和硫氰酸钾电位滴定法 推荐 修订 GB/T 10574.7-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第8部分:锌量的测定 火焰原子吸收光谱法推荐 修订 GB/T 10574.8-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第9部分:铝量的测定电热原子吸收光谱法 推荐 修订 GB/T 10574.9-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 含镍生铁 镍、钴、铬、铜、磷含量的测定 电感耦合等离子体原子发射光谱法推荐 制定     2014 中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 中钢集团吉林铁合金股份有限公司 海绵钛、钛及钛合金化学分析方法铌量的测定5-Br-PADAP分光光度法及电感耦合等离子体发射光谱法 推荐 修订 GB/T 4698.22-1996   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 西北有色金属研究院 锡铅焊料化学分析方法 第13锑、铋、铁、砷、铜、银、锌、铝、镉、磷、金量的测定 电感耦合等离子体原子发射光谱法 推荐 修订 GB/T 10574.13-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 纯铂化学分析方法 钯、铑、铱、钌、金、银、铝、铋、铬铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体质谱法 推荐 制定     2015 中国有色金属工业协会 全国有色金属标准化技术委员会 贵研铂业股份有限公司 硅铁 硅、锰、铝、钙、磷、钛、铬、铜、镍和铁含量的测定 波长色散X-射线荧光光谱法(熔铸玻璃片法) 推荐 制定     2014中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 邯钢 金属铬 磷含量的测定 铋磷钼蓝分光光度法 推荐 修订 GB/T 4702.3-1984   2014 中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 中信锦州金属股份有限公司等 海绵钛、钛及钛合金化学分析方法 硅量的测定 钼蓝分光光度法 推荐 修订 GB/T 4698.3-1996   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 西部金属材料股份有限公司 锡精矿化学分析方法第11部分:三氧化二铝量的测定 铬天青S分光光度法 推荐 修订 GB/T 1819.11-2004   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第11部分:磷量的测定结晶紫-磷钒钼杂多酸分光光度法 推荐 修订 GB/T 10574.11-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡精矿化学分析方法 第10部分:硫量的测定 高频红外吸收法和碘酸钾滴定法 推荐 修订 GB/T 1819.10-2004   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第12部分:硫量的测定 高频红外吸收光谱法 推荐 修订 GB/T 10574.12-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 钽铌化学分析方法 氮量的测定 惰气熔融热导法 推荐 修订 GB/T 15076.13-1994   2015 中国有色金属工业协会 全国有色金属标准化技术委员会宁夏东方钽业股份有限公司 钢的硫印检验方法 推荐 修订 GB/T 4236-1984 ISO 4968:1979 2014 中国钢铁工业协会 全国钢标准化技术委员会 武汉钢铁(集团)公司、冶金工业信息标准研究院 钢管壁厚超声波检测方法 推荐 制定   EN10246-13:2007 2014 中国钢铁工业协会 全国钢标准化技术委员会 钢铁研究总院、冶金工业信息标准研究院 金属材料 高应变速率拉伸试验 第2部分:液压伺服与其他试验系统 推荐 制定   ISO 26203-2:2011 2014 中国钢铁工业协会 全国钢标准化技术委员会 宝山钢铁股份有限公司 金属材料 韦氏硬度试验 第1部分:试验方法 推荐 制定     2014 中国钢铁工业协会 全国钢标准化技术委员会 北京有色金属研究总院 金属材料 延性试验 泡沫金属的压缩试验方法 推荐 制定   ISO 13314:2011 2015 中国钢铁工业协会 全国钢标准化技术委员会 湖北出入境检验检疫局、武汉钢铁(集团)公司等 金属和合金的腐蚀 低铬铁素体不锈钢晶间腐蚀试验方法 推荐 制定     2015 中国钢铁工业协会 全国钢标准化技术委员会 宝钢不锈钢有限公司、冶金工业信息标准研究院 无缝和焊接铁磁性钢管(埋弧焊除外)自动全周向磁漏检测 推荐 修订 GB/T 12606-1999 ISO 10893-3:2011 2014 中国钢铁工业协会 全国钢标准化技术委员会 天津钢管集团股份有限公司、冶金工业信息标准研究院等 铬铁 氮含量的测定 中和滴定法 推荐 修订 GB/T 5687.4-1985   2014 中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 中钢集团吉林铁合金股份有限公司 金属铬 铬含量的测定 硫酸亚铁铵滴定法 推荐 修订 GB/T 4702.1-1997   2014 中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 中信锦州金属股份有限公司等 铁矿石 全铁含量的测定 EDTA光度滴定法 推荐 制定     2014 中国钢铁工业协会全国铁矿石与直接还原铁标准化技术委员会 广东出入境检验检疫局、冶金工业信息标准研究院、宝山钢铁股份有限公司、中山大学 可渗透性烧结金属材料 透气度的测定 推荐 制定     2014 中国有色金属工业协会 全国有色金属标准化技术委员会 西安宝德粉末冶金有限责任公司 铝箔试验方法方法 第1部分:铝箔厚度的测定 称量法 推荐 修订 GB/T 22638.1-2008   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南浩鑫铝箔有限公司、厦门厦顺铝箔有限公司、华北铝业有限公司 铝箔试验方法方法 第2部分:针孔的检测 推荐 修订 GB/T 22638.2-2008   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南浩鑫铝箔有限公司、厦门厦顺铝箔有限公司、华北铝业有限公司 铝箔试验方法方法 第3部分 铝箔的粘附性测定方法 推荐 修订 GB/T 22638.3-2008   2015 中国有色金属工业协会全国有色金属标准化技术委员会 云南浩鑫铝箔有限公司、西南铝业(集团)有限责任公司、华北铝业有限公司钛及钛合金化学成分分析取制样方法 推荐 制定     2014 中国有色金属工业协会 全国有色金属标准化技术委员会 宝钛集团有限公司、宝鸡钛业股份有限公司
  • 上海禾工科仪:以服务赢得浙江客户信赖!
    MT-V6全自动电位滴定仪匹配5个高精度滴定馈液单元 浙江新材料行业 近日,浙江某新材料有限公司成功采购了上海禾工科学仪器的 MT-V6 全自动电位滴定仪,为其化学分析检测工作注入了强大动力。 该公司在检测氯化亚铁中的亚铁含量、酸度,铁铬液流电池电解液中的亚铁含量、三价铬含量、酸度,聚合硫酸铁或聚氯化铁中的三价铁含量,聚氯化铝中的氧化铝含量等项目时,面临着精准检测的需求。 合作伊始,浙江某新材料有限公司致电咨询我司。负责浙江地区的商务经理迅速响应,根据用户需求精准推荐了 MT-V6 全自动电位滴定仪,并匹配 5 个高精度滴定馈液单元,满足了多通道配液测定不同样品中的元素含量的要求,为用户提供了精准的选型方案。 然而,用户因时间紧张无法实地考察。面对这一情况,上海禾工科学仪器主动提出承诺我司所有AKF系列卡尔费休水分测定仪、AT/CT/MT系列自动滴定仪系列等多款产品均可“30天无理由退换货”,并提供售后上门安装调试培训等超预期售后服务,成功消除了用户的顾虑,使其坚定地选择了采购 MT-V6 全自动电位滴定仪及5个高精度滴定馈液单元。 由于用户急需使用该设备,在当天下午便果断签合同并全额付款,同时希望尽快发货及安排工程师上门安调。我司上海禾工科学仪器全力配合,收到货款后当天安排仓库发出货物;尽管当时售后技术工程师全员满负荷工作,但次日协调安排应用技术工程师经理前往进行售后上门安装调试以及培训。最终,售后上门安调服务圆满完成,专业、高效、贴心的服务获得了用户的高度好评。 值得一提的是,MT-V6在检测用户样品时符合HG-T4311-2012 工业氨化路、HGT 4538-2022水处理剂氣化亚铁、HGT4672-2014水处理剂聚氨化铁、GBT 22627-2022水处理剂聚氨化铝等行业标准,充分体现了其检测的准确性和专业性。 不仅如此,上海禾工科学仪器还将为用户提供3年整机质保、长期技术支持服务以及售后定期巡回等服务,充分展现了对产品品质的信心和对客户的负责态度。 此次合作,不仅彰显了上海禾工科学仪器 MT-V6 全自动电位滴定仪在技术和性能上的卓越优势,更体现了其以客户为中心,快速响应客户需求,提供全面优质服务的经营理念。相信在未来,上海禾工科学仪器将继续凭借其专业的产品和服务,为更多行业客户创造价值。
  • 澳大利亚含磁铁玩具强制标准7月1日生效
    澳大利亚关于含有磁铁的儿童玩具的强制标准《消费者保护通报No.5含有磁铁的儿童玩具消费品安全标准》将于2010年7月1日正式生效。该强制性标准于2010年2月16日发布,主要采用了澳大利亚新西兰标准AS/NZS ISO 8124.1:2002玩具安全第1部分———机械和物理特性相关的安全方面,及其2号修订件(主要阐述了含危险性磁铁或磁铁部件的玩具的安全要求)。   含有细小强力磁铁是一种具有危害性的儿童玩具。儿童若吞下两片磁铁,或在不同时间分别吞下一片磁铁和一片或多片金属片,处在肠内不同区域的磁铁片就可能会隔过胃或肠内壁互相吸附在一起,压碎被夹住的内脏组织,阻止血液流通,酿成严重伤害,造成感染者死亡等事故。鉴于此,澳大利亚规定,自2010年7月1日开始,供应商应确保向澳大利亚提供的所有相关产品已经符合该强制性标准,否则将会被严厉罚款并召回产品。如果玩具含有松散的危险磁铁或磁性部件,其包装和说明书中应含有类似以下的声明:“警告!本产品含有小型磁铁。吞入体内的磁体可能在肠内相互吸附,导致严重感染甚至死亡。如果吞入或吸入磁铁,请立即就医。”此外,玩具中使用的磁铁应具有足够大的尺寸,以防止磁铁被吞入儿童口中。   本强制性标准适用于供14岁以下儿童玩耍的含有磁铁的产品,涉及含有磁铁的积木玩具、装饰玩具、磁铁套装玩具等,但不适用于下列产品:运动物品、露营产品、自行车、家用和公共运动场所设备、蹦床、电子游戏件、由燃气或蒸汽发动机供能的模型以及时尚珠宝。   统计数据显示,2009年宁波地区出口至澳大利亚的玩具总值近700万美元,其中不少为含有磁铁的儿童玩具,这使出口企业面临严峻的挑战。检验检疫部门提醒生产或出口此类玩具的企业:应加强对最新玩具法规和标准信息的了解,重视安全生产管理,严格按照欧美等发达国家和地区的强制性标准进行生产,加强冲击测试或使用周期测试,保证磁铁不会掉落,以保障儿童的安全。
  • 马来西亚下月开始实施钢铁进口检测标准
    国际贸易及工业部副部长拿督耶谷沙岸9月4日表示,为确保进口的钢铁符合品质标准,马来西亚将于10月13日实行进口钢铁标准检测措施,规定钢铁进口商须取得马来西亚规格及工业研究局批准的证书方可进口。这项措施将在马来西亚的古晋、民都鲁、巴生港、柔佛、亚庇及槟城海港实行,各港口已设立了钢铁检测实验室,避免因进口程序上的延误增加进口商的成本压力。
  • 河北将制定去产能三年行动计划 今年压减钢铁产能1000万吨
    p   产业结构偏重是造成河北大气污染严重的根本原因之一。为着力推动产业转型升级,河北将制定去产能三年行动计划,今年将压减钢铁产能1000万吨以上、煤炭1062万吨、水泥100万吨、焦炭500万吨、平板玻璃500万重量箱、火电50万千瓦,钢铁“僵尸企业”全部出清。 /p p   为治理大气污染,从2013年起,河北以化解钢铁产能为“牛鼻子”,开始实施“6643”工程。5年来,河北超额完成目标任务,累计压减炼钢产能6993万吨、炼铁产能6442万吨、水泥7057万吨、平板玻璃7173万重量箱,压减煤炭消费量4400万吨。持续推进产业结构调整和能源结构调整,推动河北省大气环境质量明显改善。2017年,河北省各设区市PM2.5年平均浓度较2013年下降39.8%,超额完成《大气污染防治行动计划》任务。 /p p   此外,为加大污染治理力度,今年河北省级财政资金将向八大重点领域倾斜,其中强化生态治理,安排资金103亿元,同比增长43.1%。安排大气污染防治资金49.3亿元。 /p
  • 展会回顾|北京得利特参加2024钢铁企业节油技术与设备润滑管理交流会
    “2024钢铁企业节油技术与设备润滑管理交流会”8月14-16日在河北召开,以“培育新质生产力应对行业新挑战”为主题会议内容在“碳达峰、碳中和”目标要求下,钢铁工业双碳目标的实现离不开设备运转过程的节能减排、减少摩擦、降低能耗、提高能效,这些都将促使钢铁工业使用油技术不断突破,等级不断提升。钢铁行业从原料场、焦化、烧结、炼铁、炼钢到热轧和冷轧等生产线机组众多,拥有大量用油设备,润滑油脂在各种类型的机械设备上起到了减少摩擦、保护设备、降低设备故障率以及润滑、冷却、防锈、清洁、密封和缓冲等作用。无论是润滑油、燃料油、加工油、切削油、防锈油、清洁剂等,都是保证钢铁生产过程顺利进行的重要条件。因此,油品优化是提升设备润滑水平、延长设备使用寿命,降低润滑成本,从而实现钢铁企业的降本增效和节能减排的重要手段之一。经中国设备管理协会同意,中国设备管理协会冶金行业国际合作服务中心定于2024年8月14-16日在河北省唐山市召开钢铁企业节油技术与设备润滑管理交流会,同期召开以“培育新质生产力应对行业新挑战”为主题的第十届中国钢铁产业链新设备新技术新材料采购合作大会。得利特受邀参加,有很多客户进入我们的展示台 。向我们咨询了油品测定仪。我们技术人员很专业的给客户讲解了关于自动运动黏度测定仪、自动酸值测定仪、石油产品微量水分测定仪等仪器。感谢每一次的交流学习的机会,得利特将竭诚为各油液监测系统用户服务,在油品检测方面严格把关产品质量,提供技术支持,为油液监测发展贡献一份微薄之力。参展仪器A1011自动运动粘度测定仪可测量透明或半透明液体,包括轻重质燃料油、润滑油、添加剂、废油的运动粘度。是具有恒温、粘度测试、清洗、烘干等功能的全自动机型,不需人员随机操作,操作员在放样后,可以离开现场,仪器可以自动完成全部任务。应用领域在电力、石油、化工、环保及科研部门。适应标准:GB/T265、ASTM D445A1045自动酸值测定仪采用电位滴定法原理,通过对滴定过程中的电电位及滴定体积进行记录,找出等当点及对应的标准滴定溶液的体积,从而求出样品中酸值或碱值。仪器可准确检测变压器油、汽轮机油、抗燃油、柴油、汽油等石油产品的酸值。应用于化工、电力、石油、环保、铁路等行业。适应标准:GB/T 7304、GB/T 18609、ASTM D664A1072石油产品微量水分试验器是一款带排、加液功能的水分检测仪器。卡尔—费休库仑滴定法电量法用于准确测量样品中微量水分含量,此方法具有精度高、测试成本低的优点而被广泛应用。本仪器基于卡尔—费休库仑滴定法原理,准确测定液体、固体、气体中的微量水分,用于电力、石油、化工、制药、食品等行业。适用标准:GB/T 7600、GB/T11133、GB/T11146、GB/T6023、GB/T606等
  • 水质检测-水体中有机物质分析方法
    水体中的污染物质除无机化合物外,还含有大量的有机物质,它们是以毒性和使水体溶解氧减少的形式对生态系统产生影响。已经查明,绝大多数致癌物质是有毒的有机物质,所以有机物污染指标是水质十分重要的指标。 水中所含有机物种类繁多,难以一一分别测定各种组分的定量数值,目前多测定与水中有机物相当的需氧量来间接表征有机物的含量(如CoD、BOD等),或者某一类有机污染物(如酚类、油类、苯系物、有机磷农药等)。但是,上述指标并不能确切反映许多痕量危害性大的有机物污染状况和危害,因此,随着环境科学研究和分析测试技术的发展,必将大大加强对有毒有机物污染的监测和防治。 一、化学需氧量(COD) 化学需氧量是指水样在一定条件下,氧化1升水样中还原性物质所消耗的氧化剂的量,以氧的m8从表示。水中还原性物质包括有机物和亚硝酸盐、硫化物、亚铁盐等无机物。化学需氧量反映了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之一。 对废水化学需氧量的测定,我国规定用重铬酸钾法,也可以用与其测定结果一致的库仑滴定法。 (一)重铬酸钾法(CODcI) 在强酸性溶液中,用重铬酸钾氧化水样中的还原性物质,过量的重铬酸钾以试铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据其用量计算水样中还原性物质消耗氧的量。反应式如下: 测定过程见图2&mdash 35。 水样20mL(原样或经稀释)于锥形瓶中 &darr &larr H8S0&lsquo 0.48(消除口&mdash 干扰) 混匀 &larr 0.25m01/L(1/6K2Cr20?)100mL &darr &larr 沸石数粒 混匀,接上回流装置 &darr &larr 自冷凝管上口加入A82S04&mdash H2S0&lsquo 溶液30mL(催化剂) 混匀 &darr 回流加热2h &darr 冷却 &darr &larr 自冷凝管上口加入80mL水于反应液中 取下锥形瓶 &darr &larr 加试铁灵指示剂3摘 用0.1m01从(N氏久Fe(S04)2标液滴定,终点由蓝绿色变成红棕色。 图2&mdash 35 CoDcr测定过程 重铬酸钾氧化性很强,可将大部分有机物氧化,但吡啶不被氧化,芳香族有机物不易被氧化;挥发性直链脂肪组化合物、苯等存在于蒸气相;不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸钾氧化,并与硫酸银作用生成沉淀;可加入适量硫酸汞缀合之。 测定结果按下式计算: 式中:V。&mdash &mdash 滴定空白时消耗硫酸亚扶铵标准溶液体积(mL)5&mdash Vl&mdash &mdash 滴定水样消耗硫酸亚铁铵标准溶液体积(mL); V&mdash &mdash 水样体积(mL); &lsquo c&mdash &mdash 硫酸亚铁铵标准溶液浓度(m01儿)t3 8&mdash &mdash 氧(1/20)的摩尔质量(8/m01)。 用o.25m01几的重铬酸钾溶液可测定大于50m8从的COD值;用0.025m01儿重铬酸钾溶液可测定5&mdash 50m8/L的COD值,但准确度较差。 (二)恒电流库仑滴定法 恒电流库仑滴定法是一种建立在电解基础上的分析方法。其原理为在试液中加入适当物质,以一定强度的恒定电流进行电解,使之在工作电极(阳极或阴极)上电解产生一种试剂(称滴定剂),该试剂与被测物质进行定量反应,反应终点可通过电化学等方法指示。依据电解消耗的电量和法拉第电解定律可计算被测物质的含量。法拉第电解定律的数学表达式为: 式中:W&mdash &mdash 电极反应物的质量(8); I&mdash &mdash 电解电流(A); t&mdash &mdash 电解时间(s); 96500&mdash &mdash 法拉第常数(C); M&mdash &mdash 电极反应物的摩尔质量(8); n&mdash &mdash 每克分子反应物的电子转移数。 库仑式COD测定仪的工作原理示于图2&mdash 36。由库仑滴定池、电路系统和电磁搅拌器等组成。库仑池由工作电极对、指示电极对及电解液组成,其中,工作电极对为双铂片工作阴极和铂丝辅助阳极(置于充3m01几H2SOd,底部具有液络部的玻璃管 内),用于电解产生滴定剂;指示电极底部具有液络部的玻璃管中),以其电位的变化指示库仑滴定终点。电解液为10.2m01/L硫酸、重铬酸钾和硫酸铁混合液。电路系统由终点微分电路、电解电流变换电路、频率变换积分电路、数字显示逻辑运算电路等组成,用于控制库仑滴定终点,变换和显示电解电流,将电解电流进行频率转换、积分,并根据电解定律进行逻辑运算,直接显示水样的COD值。 使用库仑式COD测定仪测定水样COD值的要点是:在空白溶液(蒸馏水加硫酸)和样品溶液(水样加硫酸)中加入同量的重铬酸钾溶液,分别进行回流消解15分钟,冷却后各加入等量的、硫酸铁溶液,于搅拌状态下进行库仑电解滴定,即Fe&rdquo 在工作阴极上还原为Fe&rdquo (滴定剂)去滴定(还原)CrzOv2&mdash 。库仑滴定空白溶液中CrzOv&rdquo 得到的结果为加入重铬酸钾的总氧化量(以O 2 计);库仑滴定样品溶液中CrzO v&rdquo 得到的结果为剩余重铬酸钾的氧化量(以02计)。设前者需电解时间为&lsquo o,后者需&lsquo ,则据法拉第电解定律可得: 式中:1r&mdash &mdash 被测物质的重量,即水样消耗的重铬酸钾相当于氧的克数; I=&mdash 电解电流; M&mdash &mdash 氧的分子量(32); n&mdash &mdash 氧的得失电子数(4); 96500&mdash &mdash 法拉第常数。 设水样coD值为c5(mg儿);水样体积为v(mL),则1y· c2,代入上式,经整理后得: 本方法简便、快速、试剂用量少,不需标定滴定溶液,尤其适合于工业废水的控制分析。当用3mI&lsquo o.05mol儿重铬酸钾溶液进行标定值测定时,最低检出浓度为3m8入;测定上限为100m8/L。但是,只有严格控制消解条件一致和注意经常清洗电极,防止沾污,才能获得较好的重现性。 二、高锰酸盐指数, 以高锰酸钾溶液为氧化剂测得的化学耗氧量,以前称为锰法化学耗氧量。我国新的环境水质标准中,已把该值改称高锰酸盐指数,而仅将酸性重铬酸钾法测得的值称为化学需氧晕。国际标准化组织(1SO)建议高锰酸钾法仅限于测定地表水、饮用水和生活污水。 按测定溶液的介质不同,分为酸性高锰酸钾法和碱性高锰酸钾法。因为在碱性条件下高锰酸钾的氧化能力比酸性条件下稍弱,此时不能氧化水中的氯离子,故常用于测定含氯离子浓度较高的水样。 酸性高锰酸钾法适用于氯离子含量不超过300m8儿的水样。当高锰酸盐指数超过5mg从时,应少取水样并经稀释后再测定。其测定过程如图2&mdash 37所示。 取水样100mL(原样或经稀释)于锥形瓶中 &darr &larr (1十3)H:SO&lsquo 5mL &lsquo 混匀 &darr &larr o.olmoI儿高锰玻钾标液(十KMn04)10.omL 沸水浴30min &darr &larr o.olo omot儿草酸钠标液(专Nasc20&lsquo )lo.oomL 退色 &lsquo &darr &larr o.01m01儿高锗酸钾标液回滴 终点微红色 : 图2&mdash 37 高锗酸盐指数测定过程 测定结果按下式计算: 1.水样不经稀释 高锰酸盐指数 式中:Vl&mdash &mdash 滴定水样消耗高锰酸钾标液量(mL); K&mdash &mdash 校正系数(每毫升高锰酸钾标液相当于草酸钠标液的毫升数); M&mdash &mdash 草酸钠标液(1/.2Na2C20d)浓度(nt01从); 8&mdash &mdash 氧(1/20)的摩尔质量(8/m01); 100&mdash &mdash 取水样体积(mL)。 2.水样经稀释 高锰酸盐指数 式中2V。&mdash &mdash 空白试验中高锰酸钾标液消耗量(mL) Vz&mdash &mdash 分取水样体积(mL); f&mdash &mdash 稀释水样中含稀释水的比值(如10.omL水样稀释至100mL.,Ng/=0.90)l 其他项同水样不经稀释计算式。 化学需氧量(CODcr)和高锰酸盐指数是采用不同的氧化剂在各自的氧化条件下测定的,难以找出明显的相关关系。一般来说,重铬酸钾法的氧化率可达90%,而高锰酸钾法的氧化率为50%左右,1两者均未达完全氧化,因而都只是一个相对参考数据。 三、生化需氧量(BOD) 生化需氧量是指在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。同时亦包括如硫化物、亚铁等还原性无机物质氧化所消耗的氧量,但这部分通常占很小比例。 有机物在微生物作用下好氧分解大体上分两个阶段。第一阶段称为含破物质氧化阶段,主要是含碳有机物氧化为二氧化碳和水;第二阶段称为硝化阶段,主要是含氮有机化合物在硝化菌的作用下分解为亚硝酸盐和硝酸盐。然而这两个阶段并非截然分开,而是各有主次。对生活污水及性质与其接近的工业废水,硝化阶段大约在5&mdash 7日,甚至10日以后才显著进行,故目前国内外广泛采用的20℃五天培养法(BODs法)测定BOD值一般不包括硝化阶段。 BOD是反映水体被有机物污染程度的综合指标,也是研究废水的可生化降解性和生化处理效果,以及生化处理废水工艺设计和动力学研究中的重要参数。 (一)五天培养法(20℃) 也苏标准稀释法。其测定原理是水样经稀释后,在29土1℃条件下培养5天,求出培养前后水样中溶解氧含量,二者的差值为BOD5。如果水样五日生化需氧量未超过7m8/L,则不必进行稀释,可直接测定。很多较清洁的河水就属于这一类水。 对于不合或少含微生物的工业废水,如酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BODs时应进行接种,以引入能降解废水中有机物的微生物。当废水中存在着难被一般生活污水中的微生物以正常速度降解的有机物或有剧毒物质时,应将驯化后的微生物引入水样中进行接种。 1.稀释水 对于污染的地面水和大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以保证在培养过程中有充足的溶解氧。其稀释程度应使培养中所消耗的溶解氧大于2血8凡,而剩余溶解氧在1m8儿以上。 稀释水一般用蒸馏水配制,.先通入经活性炭吸附及水洗处理的空气,曝气2&mdash 8h,使水中溶解氧接近饱和,然后再在20℃下放置数小时。临用前加入少量氯化钙、氯化铁、硫酸镁等营养盐溶液及磷酸盐缓冲溶液,混匀备用。稀释水的pH值应为7.2,BOD5应小于0.2血8儿。 高锰酸盐指数 (mg/L) 系 数 < 5 5 &mdash 10 10 &mdash 20 > 20 0 . 2 、 0 . 3 0 . 4 、 0 . 6 0 . 5 、 0 . 7 、 1 . 0 如水样中无微生物,则应于稀释水中接种微生物,即在每升稀释水中加入生活污水上层清液1&mdash 10mL,或表层土壤浸出液20&mdash 30mL,或河水、湖水10&mdash 100mL。这种水称为接种稀释水。为检查稀释水相接种液的质量,以及化验人员的操作水平,将每升含葡萄糖和谷氨酸各150m8的标准溶液以1:50稀释比稀释后,与水样同步测定BODs,测得值应在180&mdash 230m8儿之间,否则,应检查原因,予以纠正。 2.水样稀释倍数 水样稀释倍数应根据实践经验进行估算。表2&mdash 13列出地面水稀释倍数估算方法。工业废水的稀释倍数由CODcr值分别乘以系数0.075、o.15、0.25获得。通常同时作三个稀释比的水样。表2&mdash 13 由高锰酸盐指数估算稀释倍数乘以的系数 3.测定结果计算 对不经稀释直接培养的水样: 式中Icl&mdash &mdash 水样在培养前溶解氧的浓度(m8儿); &lsquo :&mdash &mdash 水样经5天培养后,剩余溶解氧浓度(m8儿)。 对稀释后培养的水样: 式中:Bl&mdash &mdash 稀释水(或接种稀释水)在培养前的溶解氧的浓度(m8儿); Bz&mdash &mdash 稀释水(或接种稀释水)在培养后的溶解氧的浓度(m8儿); f1&mdash &mdash 稀释水(或接种稀释水)在培养液中所占比例; f2&mdash &mdash 水样在培养液中所占比例。 水样含有铜、铅、锌、镉、铬、砷、氰等有毒物质时,对微生物活性有抑制,可使用经驯化微生物接种的稀释水,或提高稀释倍数,以减小毒物的影响。如含少量氯,一般放置1&mdash 2h可自行消失;对游离氯短时间不能消散的水样,可加入亚硫酸钠除去之,加入量由实验确定。 本方法适用于测定BOD5大于或等于2m8儿,最大不超过6000m8儿的水样;大于6000m8儿,会围稀释带来更大误差。 (二)其他方法 1.检压库仑式BOD测定仪 检压库仑式肋D测定仪的原理示于图2&mdash 38。装在培养瓶中的水样用电磁搅拌器进行搅拌。当水样中的溶解氧因微生物降解有机物被消耗时,则培养瓶内空间中的氧溶解进入水样,生成的二氧化碳从水中选出被置于瓶内的吸附剂吸收,使瓶内的氧分压和总气压下降、用电极式压力计检出下降量,并转换成电信号,经放大送入继电器电路接通恒流电源及同步电机,电解瓶内(装有中性硫酸铜溶液和电解电极)便自动电解产生氧气供给培养瓶,待瓶内气压回升至原压力时,继电器断开,电解电极和同步电机停止工作。此过程反复进行使培养瓶内空间始终保持恒压状态。 根据法拉第定律;由恒电流电解所消耗的电量便可计算耗氧量。仪器能自动显示测定结果,记录生化需氧量曲线。 2.测压法 在密闭培养瓶中,水样中溶解氧由于微生物降解有机物而被消耗,产生与耗氧量相当的COz被吸收后,使密闭系统的压力降低,用压力计测出此压降,即可求出水样的BOD值。在实际测定中,先以标准葡萄糖&mdash 谷氨酸溶液的BOD值和相应的压差作关系 曲线,然后以此曲线校准仪器刻度,便可直接读出水样的BOD值。 3.微生物电极法 微生物电极是一种将微生物技术与电化学检测技术相结合的传感器,其结构如图2&mdash 39所示。主要由溶解氧电极和紧贴其透气膜表面的固定化微生物膜组成。响应BOD物质的原理是当将其插入恒温、溶解氧浓度一定的不含BOD物质的底液时,由于微生物的呼吸活性一定,底液中的溶解氧分子通过微生物膜扩散进入氧电极的速率一定,微生物电极输出一稳态电流;如果将BOD物质加入底液中,则该物质的分子与氧分子一起扩散进入微生物膜,因为膜中的微生物对BOD物质发生同化作用而耗氧,导致进入氧电极的氧分子减少,即扩散进入的速率降低,使电极输出电流减少,并在几分钟内降至新的稳态值。在适宜的BOD物质浓度范围内,电极输出电流降低值与BOD物质浓度之间呈线性关系,而BOD物质浓度又和BOn值之间有定量关系。 微生物膜电极BOD测定仪的工作原理示于图2&mdash 40。该测定仪由测量池(装有微生物膜电极、鼓气管及被测水样)、恒温水浴、恒电压源、控温器、鼓气泵及信号转换和测量系统组成。恒电压源输出o.72V电压,加于Ag&mdash A8C1电极(正极)和黄金电极(负极)上。黄金电极因被测溶液BOD物质浓度不周产生的极化电流变化送至阻抗转换和微电流放大电路,经放大的微电流再送至A&mdash D转换电路,改A&mdash V转换电路,转换后的信号进行数字显示或记录仪记录。仪器经用标准BOD物质溶液校准后,可直接显示被测溶液的BOD值,并在20min内完成一个水样的测定①。该仪器适用于多种易降解废水的&rsquo BOD监测。除上述测定方法外,还有活性污泥法、相关估算法等。 四、总有机碳(TOC) 总有机碳是以碳的含量表示水体中有机物质总量的综合指标。由于TOC的测定采用燃烧法,因此能将有机物全部氧化,它比如Ds或COD更能反映有机物的总量。 目前广泛应用的测定TOC的方法是燃烧氧化J4F色散红外吸收法。其测定原理是:将一定量水样注入高温炉内的石英管,在900一950℃温度下,以铂和三氧化钻或三氧化二铬为催化剂,使有机物燃烧裂解转化为二氧化碳,然后用红外线气体分析仪测定C02含量,从而确定水样中碳的含量。因为在高温下,水样中的碳酸盐也分解产生二氧化碳,故上面测得的为水样中的总碳 (TC)。。为获得有机碳含量,可采用两种方法:一是将水样预先酸化,通入氮气曝气,驱除各种碳酸盐分解生成的二氧化碳后再注入仪器测定。另一种方法是使用高温炉和低温炉皆有的TOC测定仪。将同一等量水样分别注入高温炉(900℃)和低温炉(150℃),则水样中的有机碳和无机碳均转化为COz,而低温炉的石英管中装有磷酸浸渍的玻璃棉,能使无机碳酸盐在150℃分解为C02,有机物却不能被分解氧化。将高、低温炉中生成的CO:&lsquo 依次导入非色散红外气体分析仪,分别测得总碳(TC)和无机碳(IC),二者之差即为总有机碳(TOC)。测定流程见图2&mdash 41。该方法最低检出浓度为o.5mg/I。 五、总需氧量(TOD) 总需氧量是指水中能被氧化的物质,主要是有机物质在燃烧中变成稳定的氧化物时所需要的氧量,结果以02的m8儿表示。 用TOD测定仪测定ToD的原理是将一定量水样注入装有铂催化剂的石英燃烧管,通入含已知氧浓度的载气(氮气)作为原料气,则水样中的还原性物质在900℃下被瞬间燃烧氧化。测定燃烧前后原料气中氧浓度的减少量,便可求得水样的总需氧量值。 TOD值能反映几乎全部有机物质经燃烧后变成C02、H20、N0、S02&hellip 所需要的氧量。它比BoD、CoD和高锰酸盐指数更接近于理论需氧量值。但它们之间也没有固定的相关关系。有的研究者指出,BODs/TOD=0.1&mdash 0,6;CoD/TOD=0.5&mdash 0.9,具体比值取决于废水的性质。 TOD和TOC的比例关系可粗略判断有机物的种类。对于含碳化合物,因为一个碳原子消耗注⑦ 参阅孙裕生等,《分析仪器》,(1),1992年两个氧原子,即Oz/C=2.67,因此从理论上说,TOD=2.67TOC。若某水样的TOD/TOC为2.67左右,可认为主要是含碳有机物j若TOD/TOC>4.o,则应考虑水中有较大量含S、P的有机物存在;若TOD/TOC<2.6,就应考虑水样中硝酸盐和亚硝酸盐可能含量较大,它们在高温和催化条件下分解放出氧,使TOD测定呈现负误差。 六、挥发酚类 根据酚类能否与水蒸气一起蒸出,分为挥发酚与不挥发酚。通常认为沸点在230℃以下的为挥发酚(屑一元酚);而沸点在2助℃以上的为不挥发酚。 酚屑高毒物质,人体摄入一定量会出现急性中毒症状;长期饮用被酚污染的水,可引起头昏、骚痒、贫血及神经系统障碍。当水中含酚大于5m8/L时,就会使鱼中毒死亡。 酚的主要污染源是炼油、焦化、煤气发生站,木材防腐及某些化工(如酚醛树脂>等工业废水。 酚的主要分析方法有容量法、分光光度法、色谱法等。目前各国普遍采用的是4&mdash 氨基安替吡林分光光度法;高浓度含酚废水可采用溴化容量法。无论溴化容量法还是分光光度法,当水样中存在氧化剂、还原剂、油类及某些金属离子时,均应设法消除并进行预蒸馏。如对游离氯加入硫酸亚铁还原;对硫化物加入硫酸铜使之沉淀,或者在酸性条件下使其以硫化氢形式逸出;对油类用有机溶剂萃取除去等。蒸馏的作用有二,一是分离出挥发酚,二是消除颜色、浑浊和金属离子等的干扰。 (一)4&mdash 氨基安替比林分光光度法 酚类化合物于pHl0.0土o.2的介质中,在铁氰化钾的存在下,与4&mdash 氨基安替比林(4&mdash AAP)反应,生成橙红色的p5l噪酚安替比林染料,在510nm波长处有最大吸收,用比色法定量。反应式如下: 显色反应受酚环上取代基的种类、位置、数目等影响,如对位被烷基、芳香基、酯、硝基、苯酰、亚硝基或醛基取代,而邻位未被取代的酚类,与4&mdash 氨基安替比林不产生显色反应。这是因为上述基团阻止酚类氧化成醌型结构所致,但对位被卤素、磺酸、羟基或甲氧基所取代的酚类与4&mdash 氨基安替比林发生显色反应。邻位硝基酚和间位硝基酚与4&mdash 氨基安替比林发生的反应又不相同,前者反应无色,后者反应有点颜色。所以本法测定的酚类不是总酚,而仅仅是与4&mdash 氨基安替比林显色的酚,并以苯酚为标准,结果以苯酚计算含量。 用20m2d比色皿测定,方法最低检出浓度为o.12n8/L。如果显色后用三氯甲烷萃取,于460n2n波长处测定,其最低检出浓度可达o.o02m8/L;测定上限为0.12m8从。此外,在直接光度法中,有色络合物不够稳定,应立即测定;氯仿萃取法有色络合物可稳定3小时。 (二)溴化滴定法 在含过量
  • 韩国帕克谈中国本土化:在中国成立亚太区售后维修中心
    近两年随着贸易摩擦的频发,中美科技之争给世界分工带来了巨大冲击。宏观来看,由于十四五”规划文件的牵引、地方政策的支持以及国产采购的倾斜,支持支持国产仪器的发展似乎已经成为政府、市场以及公众的共识。巨浪之下,外资企业在中国市场是否会面临更复杂的挑战,该如何应战?又该如何制定更佳的本土化策略… … 这些问题已然站在风口浪尖,由此仪器信息网特别发起“外资企业本土化”活动,广泛征集各外企高层高瞻远瞩的观点。韩国Park原子力显微镜自2017年在北京设立北京代表处以来,短短四年间,系列本土化策略开展及业绩的快速增长业界有目共睹。以下,仪器信息网特别邀请Park原子力显微镜大中华区销售总经理梁埈豪针对“外资企业本土化策略”发表观点,分享他眼中Park原子力显微镜的中国本土化。Park原子力显微镜大中华区销售总经理梁埈豪Instrument:贵公司哪年正式进入中国市场,中国市场的销售额在公司整体业绩中的占比多少,贵公司怎样定位中国市场呢?2002年 帕克(Park,以下称为帕克)科研型原子力显微镜进入中国市场,2017年成立北京代表处, 帕克工业全自动原子力显微镜进入中国市场。中国市场的销售份额在全球公司整体业绩中有重大占比。中国的半导体市场是新兴的朝阳产业, 帕克把中国市场作为第一优先市场。中国市场的队伍也在不断壮大。帕克原子力显微镜北京代表处自2017年从最初的3人发展到现在的近40人。为了更好地服务中国市场,韩国帕克总部中国工程师比例也占了总职员人数的百分之十五。Dr. Sang-il Park在中国分享报告疫情发生前,帕克公司CEO朴尚一博士(Dr. Sang-il Park)每年来中国一次以拜访中国重要客户。疫情发生后,CEO朴尚一博士也都定期通过电话拜访重要客户,以期长期合作。帕克产品定位于计量型原子力显微镜、平板扫描器以及帕克独有的非接触成像模式。帕克拥有一流的售后团队,在中国区建立有7个配件仓库,分别位于北京、上海、广州、合肥、武汉、台湾新竹和台南。与此同时,今年八月份在中国建立了亚太区的售后维修中心。帕克是原子力显微镜的开发者,1986年研制了世界首台商用原子力显微镜。继而一直致力于原子力显微镜技术的研发与应用 ,目前已覆盖高新科技产业等多个领域。而这种科技创新的脚步将永不辍息。产品定位:侧重于纳米领域的形貌&力学测量和半导体先进制成工艺的计量的新技术新产品的开发。Park独有的技术是将XY和Z扫描器分离,实现探针与样品间的真正非接触,避免形貌扫描过程中因探针磨损带来的图像失真,快速成像还可以大大提高测试效率,降低实验测试成本。企业定位:致力于新产品和新技术的开发,为客户解决各种技术难题,提供完善的解决方案。Park的原子力显微镜以高尖端产品质量和快捷优质的售后服务受到广大客户的认可。竞争定位:公司会不停升级产品,提高产品的不可替代力。除此之外,公司将定期深入调研,调研各类用户群体购买原子力显微镜产品的购买力、价格敏感度、品牌偏好、采购渠道、采购频率等,来满足客户的个性化需求。综上,以此来提高市场份额和市场影响力。客户定位:原子力显微镜可以在真空、超高真空、气体、溶液、电化学环境、常温和低温等环境下工作,因此具有较广的应用范围。比如:材料科学领域、聚合物科学领域、半导体工业领域、电化学领域、生命科学领域等。这些领域的研究者都可以使用该显微镜进行科学研究,以此取得更快更佳的研究成果。Instrument:一直以来,贵公司在中国坚持什么样的发展战略,开展了哪些具有代表性的本土化工作,取得哪些重要进展和重大成就?具体工作比如,短短几年内增加了近30位售后工程师,3个测试实验中心,并在基地建立备件仓库和亚太售后维修中心,为客户免费测试样品,展现机器性能(demo中心)等。在本土化的工作中,我们引以为豪是一流的产品以及优秀的售后服务。不断更新换代的产品能满足用户多样化的研发需求。而我们的售后中心能快速响应顾客故障诊断,快速实现硬件更换。值得一提的是,我们覆盖半导体先进制程的大部分客户,甚至在一些特殊的半导体领域处于垄断地位。Instrument:贵公司在中国是否设立了生产制造基地?在未来发展的蓝图里,我们有建立生产制造基地的计划。目前我们先建立售后维修中心,以此为起点,实现帕克产品在中国生产。Instrument:请从产品技术等方面介绍贵公司在中国的本土化研发或创新情况。公司目前人员规模在不断壮大。经典产品如NX-Wafer是一款同时配有缺陷检测仪和轮廓仪的低噪声高通量原子力显微镜,可以进行快速可靠的纳米级EPI质量控制,用于窄沟槽轮廓的精确测量,为其提供全自动原子力显微镜解决方案,并且可以进行2,4,6,8,12寸全自动化测量。帕克NX系列的所有产品都致力于新技术新产品(在纳米领域的形貌&力学测量和半导体先进制程工艺的计量方面)的研发。帕克为中国用户提供定制化的本土服务,竭尽全力满足顾客的需求。Instrument:最近几年,科学仪器已成为科技界关注的焦点之一,您认为当前中国科学仪器市场的营商环境发生了怎样的变化,外企面临哪些新的挑战,又将迎来哪些利好机遇?近年来,中国成为全球实验室分析仪器市场增长最快的地区。科技创新是各国提高综合国力的关键力量,科学仪器与国家战略密切相关。科学仪器作为国家科技进步的基石,中国的研发强度每年都呈增长的趋势。中国实验室分析仪器市场有望继续增加,作为外企,帕克也在积极寻求本土化的方案。在保有产品特色的基础上,积极引进人才,着重技术研发,掌握核心技术,竭力为多样化的用户需求提供定制性服务。中国仪器的发展得到了国家政府的大力支持,取得了飞速的发展。这对帕克来说是很好的机遇,可以为中国用户提供高分辨率高解析的原子力显微镜,并为其带来专业优质的产品体验。Instrument:您是如何看待中国科学仪器市场未来的发展方向?针对这些发展趋势,贵公司会有哪些具体的本土化计划?受疫情的影响,智能制造将会得到大幅度的发展。帕克作为科技企业也由此获得了崭新的发展机遇。FX40 自动换针(上)和激光对焦(下)2021年6月,帕克针对研究领域推出一款新型全自动原子力显微镜——Park FX40。该显微镜拥有智能的自动化性能。比如:先进的双摄像头系统可自动校准探针和样品的位置、自动更换探针、自动识别扫码、自动进行激光校准等。除此之外,原子力显微镜中最快速精确的真正非接触模式展现了一流的控制力,距离更是达到了亚米级别。专为FX设计的Park OS SmartScan软件,只需通过简易的单击成像就能为用户提供最佳体验。我们将加速技术升级,竭心尽力于研发。接下来会有不同的新品推出来满足不同用户的需求。以售后维修中心为契机,早日实现中国地区的本土化生产,让公司的蓝图更加的绚丽多彩!
  • 深度辟谣:国产食盐“添加剂”堪比砒霜 纯属胡说八道!
    p & nbsp & nbsp & nbsp & nbsp 近日,网上流传一些关于质疑国产食盐安全的文章。网传文章提到,“国产食盐里面有种可怕的添加剂——亚铁氰化钾”在生活中,烹饪食物的时候,食用盐遇高温有可能会使亚铁氰化钾分解成氰化钾这种剧毒物质,在10秒钟内能使人丧失意志,几分钟内可以毒死一人。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/16c184d4-d034-470a-bfb3-b6f12fb92936.jpg" title=" 2.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 网传文章中还提到,“奥运会、世博会特供食盐及出口食盐均不含亚铁氰化钾”。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/f0411be1-7d8c-4e84-b11b-62e69dfe3840.jpg" title=" 3.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 这一传言在网上迅速传播。很多网友面对传言真假难辨,忧心忡忡。国产食盐究竟安全吗?国产食盐中真的含有亚铁氰化钾吗?这种物质会对人体产生危害吗? /p p & nbsp & nbsp & nbsp & nbsp 为了查证传言的真实性,我们记者首先来到了北京的一家大型连锁超市,在调味品区的货架上,记者发现,这里一共有12种不同种类的食盐。其中国产食盐有9种,除了竹盐和湖盐这两种盐里面没有添加“亚铁氰化钾”外,其他7种食盐,包括低钠岩盐、深井岩盐和海藻岩盐里都标明含有亚铁氰化钾。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/c579d6e3-d9aa-4e44-83f1-e339f6d6da6d.jpg" title=" 4.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 看来网传文章提到的,国产食盐含有亚铁氰化钾这一说法还是真实的。 /p p & nbsp & nbsp & nbsp strong & nbsp 亚铁氰化钾是一种合法的食品添加剂。 /strong /p p & nbsp & nbsp & nbsp & nbsp 那么食盐中抗结剂亚铁氰化钾真的像传言说的那样是一种慢性毒药吗?含有亚铁氰化钾的国产食盐对人体会不会造成伤害呢?为此,记者找到了中华预防医学会健康传播分会常务委员钟凯。钟凯在食品安全方面有着多年的研究和经验。他告诉记者,亚铁氰化钾是一种合法的食品添加剂,国产食盐中的亚铁氰化钾长期食用并不会给人体带来伤害。 /p p & nbsp & nbsp & nbsp & nbsp strong 中华预防医学会健康传播分会常务委员钟凯: /strong 其实最简单的判别标准,它是一种合法的食品添加剂,那么在批准它使用之前要经过很多很多科学研究和数据支持,包括了大家关心的,比如说急性毒性、慢性毒性,有没有致畸、致癌等等各种各样的毒性,全部都筛查一遍之后,没有问题才会批准它使用,所以不会有这种慢性危害,我们在批准一种添加剂的时候,已经考虑到了大家想到的长期大量吃会不会有问题。 /p p & nbsp & nbsp & nbsp & nbsp 钟凯介绍说,亚铁氰化钾是低毒物质,按照中国国家标准的规定,食盐中的抗结计以亚铁氰根计含量不得超过每公斤10毫克。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/8d10c763-6d79-421f-b205-4164d965b71d.jpg" title=" 5.jpg" / /p p & nbsp & nbsp & nbsp & nbsp strong 钟凯 中华预防医学会健康传播分会常务委员: /strong 根据世界卫生组织和国际粮农组织专家委员会的评估数据,亚铁氰化钾要造成人健康上负面效应,至少每天,成年人可能要摄入1.5毫克,那么如果按照我们国家标准规定这个量来推算的话,相当于你每天要吃3两左右的食盐,而我们正常人一天吃的食盐能到20克的话,就已经非常非常咸了。 /p p & nbsp & nbsp & nbsp & nbsp strong 亚铁氰化钾在高温下可以分解产生氰化钾这种剧毒物质吗? /strong /p p & nbsp & nbsp & nbsp & nbsp 钟凯告诉记者,氰化钾确实是一种剧毒物质,但是它和食盐中抗结剂亚铁氰化钾完全不同。 /p p & nbsp & nbsp & nbsp & nbsp strong 中华预防医学会健康传播分会常务委员钟凯: /strong 亚铁氰化钾它听起来是亚铁氰化钾,但是它和氰化钾,其实差别非常大,氰化钾里面的氰根,它是可以游离出来产生毒性,在亚铁氰化钾里面,氰根是跟铁离子结合,它的结合力非常强,结合得很紧密,所以它化学性质很稳定,不会释放这种有毒的氰化物,所以它俩不是一回事,完全不是一回事,氰化钾是剧毒物,但是亚铁氰化钾它基本上就是一个低毒或者无毒的东西。 /p p & nbsp & nbsp strong & nbsp & nbsp 食用盐遇高温有可能会使亚铁氰化钾分解成氰化钾,这种说法正确吗? /strong /p p & nbsp & nbsp & nbsp strong & nbsp 中华预防医学会健康传播分会常务委员钟凯: /strong 这种说法肯定是不靠谱,因为亚铁氰化钾本身化学性质是非常稳定的,那如果你要让它分解,倒不是说不行,你大概需要400(摄氏)度的温度,我们在家里做饭、做菜的时候,到200(摄氏)度的时候就已经要烧焦了,所以你在家里是不可能让它分解,做菜的时候。 /p p & nbsp & nbsp & nbsp & nbsp 钟凯做了一个假设,即使食盐中亚铁氰化钾在高温的状态下,真的分解出了氰化钾,想要达到让人中毒的剂量也是完全不可能的。 /p p & nbsp & nbsp & nbsp & nbsp strong 中华预防医学会健康传播分会常务委员钟凯: /strong 首先亚铁氰化钾在烹饪过程当中是不会分解出氰化物的,退一万步说,它真的分解了,那食盐里面,它分解出氰化物的量要造成一个成年人中毒的话,大概你需要一次性吃几十公斤的盐。 /p p & nbsp & nbsp & nbsp & nbsp 钟凯告诉记者,亚铁氰化钾用作抗结剂不仅在中国适用,在国外一些国家的标准,食盐中含有亚铁氰化钾也是符合规定和标准的。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/cdbcf8e1-6028-43c5-aef0-21b646d894fb.jpg" title=" 6.jpg" / /p p & nbsp & nbsp & nbsp strong & nbsp 中华预防医学会健康传播分会常务委员钟凯: /strong 在国际标准当中,亚铁氰化钠、亚铁氰化钾、亚铁氰化钙都是可以用于食盐抗结,那么它还没有做限量规定,在美国标准当中,亚铁氰化钠是可以用于食盐抗结。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/1a35a929-c613-4e50-a47f-864804e04870.jpg" title=" 7.jpg" / /p p & nbsp & nbsp & nbsp & nbsp strong 中华预防医学会健康传播分会常务委员钟凯: /strong 那么在欧盟的标准和日本的标准当中,都是亚铁氰化钠、亚铁氰化钾、亚铁氰化钙都可以用于食盐抗结。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/be563d51-e8b5-4460-aff0-ab67e94d0b7b.jpg" title=" 8.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 我国在盐中允许添加的食品添加剂可以作为抗结剂使用的一共有5种,即亚铁氰化钾、亚铁氰化钠,柠檬酸铁铵、二氧化硅和硅酸钙,那为什么我国主要使用亚铁氰化钾作为抗结剂呢? /p p & nbsp & nbsp & nbsp & nbsp strong 中华预防医学会健康传播分会常务委员钟凯: /strong 食盐使用抗结剂主要是防止结块,那么使用哪一种抗结剂,实际上主要考虑到一个是企业它的工艺,一个是成本以及它抗结效果,选择了亚铁氰化钾或者亚铁氰化钠,都是因为它的价格便宜,效果好。 /p p & nbsp & nbsp & nbsp & nbsp strong 那么,这些在盐和代盐制品中添加的抗结剂究竟是什么样子呢?大部分食盐为什么会选择亚铁氰化钾作为抗结剂呢? /strong /p p & nbsp & nbsp & nbsp & nbsp 记者来到了中盐国本盐业有限公司。在这里我们终于见到了亚铁氰化钾的样品。中盐国本盐业有限公司研发质检部部长 崔志强告诉记者,亚铁氰化钾,俗名黄血盐钾,黄血盐。是一种浅黄色结晶颗粒。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/6515fc76-10ef-4147-9081-a8beb4b7eebd.jpg" title=" 9.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 中盐国本盐业有限公司研发质检部部长崔志强:亚铁氰化钾,黄色的黄血盐,黄色的一个产品,那么这个添加剂是联合国国际食品法典委员会允许使用的,也是咱们国家的食品添加剂委员会允许使用的这种食品添加剂。 /p p & nbsp & nbsp & nbsp & nbsp 为了能够直观的感受到亚铁氰化钾在原料盐和成品盐当中的含量,中盐国本公司的实验员随机抽取了两个样本,原料盐——无碘精制盐和成品盐——精制食用盐进行检测。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/5385c89d-e3b8-4676-bb70-138cc623f6ba.jpg" title=" 10.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 原料盐和成品盐各取5克之后,实验员又拿起了一个塑料瓶,从这个里面也取了5克白色的样本,这里面装的是什么呢? /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/a232f4fe-2c6c-45bd-b053-7c085430080a.jpg" title=" 11.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 中盐国本盐业有限公司研发质检部化验员张玲玲:这个是实验室的分析纯氯化钠,它是用来做这个试验空白,试验对比。 /p p & nbsp & nbsp & nbsp & nbsp 三个样本取样之后,实验员在试管里加入了蒸馏水,震荡直至完全溶解。紧接着,实验员又拿出一个棕色的瓶子。 /p p & nbsp & nbsp & nbsp & nbsp 中盐国本盐业有限公司研发质检部化验员张玲玲:这里面装的是硫酸亚铁溶液,然后硫酸亚铁和盐里面的亚铁氰化钾反应,生成普鲁士蓝。 /p p & nbsp & nbsp & nbsp & nbsp 实验员在试管里加入了4毫升硫酸亚铁溶液,又加入了50毫升蒸馏水定容。十分钟静置之后,三个试管里面的溶液,颜色发生了一些改变。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/b2cf7d8a-bbb0-4071-bf5a-0020d21b261b.jpg" title=" 12.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 中盐国本盐业有限公司研发质检部化验员张玲玲:然后很明显 ,2号颜色最深,3号跟1号比的话也是颜色要深一些,就是它不同浓度呈现出来颜色也是不一样,蓝色程度也是不一样。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/e7996f1d-bc0a-492a-a9cc-b59608594cc5.jpg" title=" 13.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 接下来,实验员要把三个试管里的溶液分装到比色皿里面,通过分光温度计得出数值,对2号和3号试管里亚铁氰化钾的具体含量进行测定。 /p p & nbsp & nbsp & nbsp & nbsp 中盐国本盐业有限公司研发质检部化验员张玲玲:这是刚才所测的原料无碘精制盐分析报告,可以看一下,亚铁氰化钾,以亚铁氰根计是8.06毫克每千克,属于合格范围,这是刚才所检测的3号,成品精制食用盐的分析报告,这是这个检测结果亚铁氰化钾,以亚铁氰根计含量是4.36毫克每千克。 /p p & nbsp & nbsp & nbsp & nbsp 记者了解到,盐业公司在保证原料盐的各项指标合格安全之后,才会根据生产的需要,进行大量的流水线生产。 /p p & nbsp & nbsp & nbsp & nbsp 原料盐在经过再次清洁之后,会进入投料车间,我们市场见到的加碘盐、低钠盐等各种品种的盐,就需要在这个环节进行加料再加工。添加了各种配料的原料盐,再被送进这个大搅拌罐里,混合均匀之后会传送到灌装车间。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0fca8642-3b83-4790-980e-db2333c7c6ea.jpg" title=" 14.jpg" / /p p & nbsp & nbsp & nbsp & nbsp strong 中盐国本盐业有限公司生产主管张万峰: /strong 这是全部自动化的,而且大伙儿可以看到整个流程全部是密封的。 /p p & nbsp & nbsp & nbsp & nbsp 在灌装车间里,分别有立式和袋装两种食盐的包装,从封袋到包装,也全部是自动化完成。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/751e7f42-02a0-400c-a0ab-fff5621f62d3.jpg" title=" 15.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 配料添加符合国家标准,生产全部密封环境,自动化的搅拌、灌装、分装和包装,使得进入我们千家万户的食用盐,有效地保证了食用的安全性。 /p p & nbsp & nbsp & nbsp & nbsp strong 网传文章中提到,奥运会、世博会、亚运会、大运会拒绝转基因食品,奥运会、世博会、亚运会以防止恐怖主义的级别保证食盐安全,以防短期来华的外国友人误食亚铁氰化钾。这种说法可信吗? /strong /p p & nbsp & nbsp & nbsp & nbsp 中国盐业总公司的盐生产量现在不仅在亚洲是第一位,同时也是世界前十名,也是我们中国最大的盐业生产企业和销售企业。中国盐业总公司盐品营销中心副主任崔静告诉记者,特供盐的概念是根本不存在的,在国家一些大型活动上使用的盐都是市面上随处可见的含有亚铁氰化钾的普通食盐。 /p p & nbsp & nbsp & nbsp & nbsp strong 中国盐业总公司盐品营销中心副主任崔静: /strong 我们中盐北京公司还有中盐上海公司,是我们两个位于重要直辖市的两个企业,常年保证国家一些大型活动,然后还有中央国家机关的一些食盐的保障供应任务,比方说这个2008年的奥运会,还有上海的世博会,包括我们最近关注的这个一带一路的峰会,都是我们这两个企业进行供应,我们特意求证了一下这个事情,根本不存在特供这个概念,其实我们供应的产品也都是普通市面上,我们销售的一些产品。另外呢,我们还特意求证了浙江省盐业集团公司,因为前不久举世瞩目的G20峰会是在杭州举行,浙江省盐业集团作为食盐的(供应)单位,现在也是明确提出来对方并没有要求,对亚铁氰化钾有特别要求,(提)供也是普通市面上这些产品。 /p p & nbsp & nbsp & nbsp & nbsp strong 网传文章提到我国出口的食盐都不含有亚铁氰化钾,这种说法是真实的吗? /strong /p p & nbsp & nbsp & nbsp & nbsp 记者了解到,在中盐金坛盐化有限责任公司的食盐大约有95%供应国外市场,5%供应上海市场,其中有26个国家的出口盐都添加有亚铁氰化钾。 /p p & nbsp & nbsp & nbsp & nbsp strong 中盐金坛盐化有限责任公司品质部副部长谢兴胜: /strong 我们这个产品就是供应到国内和供应到国外是同一个质量,同一个标准,同一个生产线出来的,中间商把我们的产品,25公斤一袋包装(成品)分装以后再卖到美国和欧洲,欧洲地区去,这些国家对这个亚铁氰化钾都从来没有提出过异议。 /p p & nbsp & nbsp & nbsp & nbsp 谢兴胜告诉记者,在出口的26个国家当中,唯独不包含日本,也就是说出口到日本的盐都是不添加亚铁氰化钾的,这是为什么呢? /p p & nbsp & nbsp & nbsp & nbsp strong 中盐金坛盐化有限责任公司品质部副部长谢兴胜: /strong 日本例外,主要是由于日本,因为是岛国,就是(日本)老百姓从古到今都是用海盐,用海盐颗粒比较大,流动性比较好,没有必要加亚铁氰化钾做抗结剂,老百姓只是一个用盐的习惯,不加亚铁氰化钾,所以日本的话法律上没有禁止,但是老百姓一般不认可加亚铁氰化钾,所以造成了有些媒体或者有些老百姓认为,日本为什么不加亚铁氰化钾,就是由于亚铁氰化钾有风险的这个造成误会。 /p p & nbsp & nbsp & nbsp & nbsp 网传文章提到,“上个世纪90年代,美国有一个标准中提到食盐中可以加入13 mg/kg以下的亚铁氰化物,但是前提条件是“限于食品制造或加工必须时使用”。国际食品法典委员会及日本、澳大利亚和新西兰、欧盟都允许亚铁氰化钾作为食品添加剂使用(然而,据目前了解到的信息,这些国家是不用的)。”真的是这样吗? /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/c0e9a815-7975-4d48-a134-f91dc6323818.jpg" title=" 16.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 记者在北京的一家大型连锁超市里看到,这里售卖的进口食盐有3种,这3种食盐均为海盐,除一款澳洲海盐标明没有添加抗结剂外,另外两种进口盐并没有明确标明食盐成分里是否含有亚铁氰化钾。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/b9030287-52f3-4f79-bbd7-0aae7fcb5a96.jpg" title=" 17.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 不过,记者发现,这其中的一种进口海盐里含有一种名为“亚铁氰化钠”的添加剂,而这种添加剂与亚铁氰化钾作用一样,都是可以当做食品的抗结剂来使用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/358445f8-6fa9-4c0a-a2e2-522ce19bcf24.jpg" title=" 18.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 随后,记者又来到了位于北京朝阳区的一家进口超市。在这里,记者看到调味品货架上有很多进口食盐,来自意大利、法国、美国、澳大利亚和日本5个国家,一共6个品牌11个品种,这其中有一部分进口食盐配料成分里并没有明显标注含有抗结剂。 /p p & nbsp & nbsp & nbsp & nbsp 但是,记者也发现有来自4个国家的5款盐都添加了一种叫做亚铁氰化钠的抗结剂。他们分别是产于意大利的阳光细粒海盐、产于荷兰的莫盾牌无碘盐、产于法国的鲸鱼牌粗海盐180g和产于法国鲸鱼牌美国细海盐750g以及产于澳大利亚的亚赛克萨烹饪海盐。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/d4e56e5c-77b5-45e3-abf6-139a720abb1b.jpg" style=" float:none " title=" 19.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/44913184-c698-42c8-bf9a-86ef2e31d2c5.jpg" style=" float:none " title=" 20.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/ecd97888-0679-4e02-aadd-faf5df382f07.jpg" style=" float:none " title=" 21.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/c4fcdb3f-d7a7-46c5-8224-3457394e28de.jpg" style=" float:none " title=" 22.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/d93a5644-51ca-4bbd-beaa-5c7b2bf9ed20.jpg" style=" float:none " title=" 23.jpg" / /p p & nbsp & nbsp strong & nbsp 那么是不是在国外销售的洋品牌食盐就不含亚铁氰化物抗结剂呢? /strong /p p & nbsp & nbsp & nbsp & nbsp 网传文章提到“国内出售的莫顿牌盐添加剂里赫然写着亚铁氰化钠,而国外亚马逊上出售的莫顿牌无碘盐,人家抗凝结剂使用的是硅酸钙”。真实情况是这样吗? /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/6d0ec8c1-94ad-41e9-bc30-774c6a880418.jpg" title=" 24.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 记者在亚马逊美国官网上真的找到了网传文章中提到的抗结剂为硅酸钙的莫顿牌海盐。不过,我们也发现了同品牌的另一款盒装粗盐,成分中明确标明含有亚铁氰化钠,然而这款添加了亚铁氰化物的盐反而卖得更好,竟然成为亚马逊的畅销盐。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/06d32908-fc11-44c1-b392-510bae1e5e06.jpg" title=" 25.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 而在另一个国外购物网站上,我们还发现了一款产自瑞士的名为Jurasel牌的食盐,它的成分表中明确标明含有亚铁氰化钾,这也是国产食盐中最常添加的抗结剂。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0c12e678-9713-4d1a-b565-e4a507bb6a42.jpg" title=" 26.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 为了进一步求证国外食盐是否含有亚铁氰化物这一抗结剂,我们《消费主张》栏目组向海外网友寻求了帮助,随后陆续收到了来自美国、英国和法国网友发来的所在地超市的视频。 /p p 在美国网友提供的视频中,美国超市里售卖的莫盾牌的一款海盐标明含有亚铁氰化钠。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/623bba4d-ee9d-4509-890b-792578198fee.jpg" title=" 27.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 而在英国格拉斯哥市的一家名为Waitrose的超市,这里售卖的食盐,除了亚赛克萨的一款食盐没有标明抗结剂,Waitrose的普通袋装盐、普通瓶装盐和精品水晶海盐以及一款Losalt牌食盐的成分表中都明确标明含有亚铁氰化钠。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/d68f1ebe-e5e1-4f58-9757-eb36343cc5d9.jpg" title=" 28.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/6c000010-1307-4459-b883-a1cc0843efc7.jpg" style=" float:none " title=" 29.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/5f477e1d-f31d-4037-9604-d55610ad2d35.jpg" style=" float:none " title=" 30.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/ff3d196d-44a0-4dc6-8e92-ab70c2d66d41.jpg" style=" float:none " title=" 31.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 此外,法国巴黎网友也在当地超市中发现一款名为ceselos的食用盐,成分中标有抗凝剂为E535,而E535就是欧盟标准中允许使用的亚铁氰化钠。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/dc6dcaad-5d92-4645-9297-af517d207014.jpg" style=" float:none " title=" 32.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/2e4e4798-676d-41eb-803c-0750ba6b2e81.jpg" style=" float:none " title=" 33.jpg" / /p p & nbsp & nbsp 事实证明,无论是在国内销售的进口食盐还是国外超市以及外国购物网站销售的洋品牌食盐,大都含有亚铁氰化钾、亚铁氰化钠这样的抗结剂。 /p p & nbsp & nbsp & nbsp & nbsp 而记者在北京的进口超市里也发现了很多国产的食盐在售卖,几位外国的消费者,他们都不相信最近网上疯传的中国食盐所含亚铁氰化钾有毒的传言,他们一直在买中国产的食盐,他们认为中国食盐很安全。 /p p & nbsp & nbsp & nbsp & nbsp 国家盐产品质量监督检验中心,对我国所有食盐进行检测和研究,也参与制定食用盐的国家标准。国家盐产品质量监督检验中心副主任赵毅,从事食用盐的研究有二十年,他对近期出现的一些传言也予以了驳斥。 /p p & nbsp & nbsp & nbsp & nbsp strong 赵毅 国家盐产品质量监督检验中心副主任: /strong 像帖子里面说,咱们国内抗结剂添加的种类,就说明(网友)完全不了解咱们国家标准规定的哪些种类,咱们国家一些相关规定,第二说这个亚铁氰化钾和碘酸钾会发生剧烈反应,这些都是缺乏一些基本化学常识。 /p p br/ /p
  • 武钢集团昆明钢铁股份有限公司300.00万元采购气体净化器
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工[招标公告] 云南省-昆明市-安宁市 状态:公告 更新时间: 2022-09-17 招标文件: 附件1 武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工招标公告1.招标条件 本招标项目武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工已批准建设,建设资金来自自筹资金,招标人为武钢集团昆明钢铁股份有限公司。项目已具备招标条件,现对该项目施工进行公开招标。2.工程概况与招标范围 2.1招标项目名称:武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工。 2.2建设地点:武钢集团昆明钢铁股份有限公司新区炼铁厂1#高炉 。 2.3建设规模:300万元。 2.4计划工期:20日历天。 2.5招标范围: 按招标技术文件及提供的设计图纸等相关资料,完成1#高炉炉顶放散煤气净化改造、 均压煤气净化回收改造。其中: 1#高炉炉顶放散煤气净化改造:在炉顶三台DN650放散阀前端增加1套旋风除尘器及相关阀门; 均压煤气净化回收改造:利用高炉煤气干法布袋除尘系统中的一个箱体作为煤气回收净化装置,铺设煤气回收管道及引射装置;以上施工范围内的零星土建施工、钢结构、管道及支架制作及安装、设备、电气、仪表、液压润滑系统的拆除及安装施工、设备调试等,包括但不限于以下工作: 2.5.1排压煤气全回收管路、阀门及引射器安装;2.5.2在炉顶液压站内,安装一组液压阀台及液压管道安装,站外液压管道、润滑管道安装。 2.5.3干法除尘1个箱体利旧改造,切割掉2.5米;脉冲系统利旧;放散系统利旧;重新开DN900进出口;制作安装2m3中间灰罐一套;卸灰DN300电动阀3台;滤袋、龙骨398条。 2.5.4炉顶放散阀平台钢结构改造加固,炉顶2#放散阀拆装,小旋风除尘器安装,增压水泵、管道、阀门安装调试。 2.5.5电气柜安装接线、电缆、桥架、穿线管铺设、设备调试。 2.5.6钢结构、管道防腐,油漆由乙方提供,颜色由甲方确定。 2.5.7煤气管道、箱体保温,所需保温材料根据图纸要求由乙方提供。 2.5.8工程施工所需的工程机械及车辆全部由乙方自行提供。 2.5.9根据工艺技术要求配合设计单位完成PLC控制系统调试(编程由设计单位负责)。 2.5.10施工过程资料及设备随机资料等按甲方要求进行归档。 2.5.11硬化输灰通道地面。 2.5.12施工范围内特种设备及仪表检测检验和报验取证、注册登记。 2.5.13本工程甲供材和设备采购由招标人提供,甲供材范围详见招标人提供的招标工程量清单中“分部分项工程清单与计价表”的“项目特征”描述,甲供材料以外所有材料及辅料均由投标人提供。 具体详见招标工程量清单、技术文件及附件、施工图纸。 2.6其他内容: 2.6.1工期:与1#高炉中修同步,进场时间由招标人提前20日历天通知中标人,施工周期20日历天。 2.6.2质量要求标准:按照国家建筑工程施工质量验收规范要求,一次性验收合格。3.合格投标人的资格要求 3.1投标人资格要求: [施工总承包﹒冶金工程﹒一级](含)以上 并在人员、设备、资金等方面具有相应的施工能力。 3.2项目负责人资格要求: [注册二级建造师﹒建筑工程](含)以上或者[注册二级建造师﹒机电工程](含)以上 3.3投标其他条件: 3.3.1.投标人必须是在中国境内合法注册企业、具有独立法人资格的单位,具备有效的营业执照、安全生产许可证; 3.3.2.拟派往本项目的项目负责人须具备有效的安全生产考核合格证(B证); 3.3.3.拟派往本项目的专职安全生产管理人员须具备有效的安全生产考核合格证(C证); 3.3.4未被列入中国宝武集团和昆钢公司禁入名单的单位; 3.3.5资格审查方式:资格后审。 3.4本次招标不接受联合体投标。联合体投标的,应满足下列要求:4.招标文件的获取 4.1凡有意参加投标者,请于2022年09月17日09时00分至2022年09月22日17时00分(北京时间,下同),登录宝华智慧招标共享平台下载电子招标文件。 4.2招标文件费:500.00元。 4.3购标所需材料:(1)营业执照;(2)资质证书;(3)安全生产许可证;(4)项目负责人注册证书及安全生产考核合格证(B证);(5)安全生产管理人员的安全生产考核合格证(C证)。 注:以上验证资料请以原件扫描件形式压缩至一个压缩文件内在购标附件中登录宝华智慧招标共享平台递交,资料审核通过方可购买招标文件。 宝华客服热线:4001800060(投标系统操作及CA证书办理问题咨询)。 欧贝平台热线:400-920-9595(注册、自荐问题咨询) 网上购标方法 :具体操作方法详见宝华智慧招标共享平台“操作指南”。5.提交投标文件的截止时间与地点 5.1投标文件递交的截止时间(投标截止时间,下同)为2022年10月09日09时30分,投标人应在截止时间前通过宝华智慧招标共享平台递交电子投标文件。 5.2逾期送达的投标文件,宝华智慧招标共享平台将予以拒收。6.发布公告的媒介 本次招标公告同时在宝华智慧招标共享平台(https://www.baohuabidding.com)和中国招标投标公共服务平台(http://www.cebpubservice.com/)上发布。7.招标人及招标代理机构联系方式招标人: 武钢集团昆明钢铁股份有限公司 招标代理机构: 上海宝华国际招标有限公司 地 址: 云南省安宁市圆山南路 地 址: 上海市宝山区克山路550弄8号楼 联系人: 苏庆峰 联 系 人: 张钰婧 电 话: 13808799359 电 话: 13368806647 2022年09月17日 附件: 武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工-招标公告.pdf × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:气体净化器 开标时间:null 预算金额:300.00万元 采购单位:武钢集团昆明钢铁股份有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海宝华国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工[招标公告] 云南省-昆明市-安宁市 状态:公告 更新时间: 2022-09-17 招标文件: 附件1 武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工招标公告1.招标条件 本招标项目武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工已批准建设,建设资金来自自筹资金,招标人为武钢集团昆明钢铁股份有限公司。项目已具备招标条件,现对该项目施工进行公开招标。2.工程概况与招标范围 2.1招标项目名称:武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工。 2.2建设地点:武钢集团昆明钢铁股份有限公司新区炼铁厂1#高炉 。 2.3建设规模:300万元。 2.4计划工期:20日历天。 2.5招标范围: 按招标技术文件及提供的设计图纸等相关资料,完成1#高炉炉顶放散煤气净化改造、 均压煤气净化回收改造。其中: 1#高炉炉顶放散煤气净化改造:在炉顶三台DN650放散阀前端增加1套旋风除尘器及相关阀门; 均压煤气净化回收改造:利用高炉煤气干法布袋除尘系统中的一个箱体作为煤气回收净化装置,铺设煤气回收管道及引射装置;以上施工范围内的零星土建施工、钢结构、管道及支架制作及安装、设备、电气、仪表、液压润滑系统的拆除及安装施工、设备调试等,包括但不限于以下工作: 2.5.1排压煤气全回收管路、阀门及引射器安装; 2.5.2在炉顶液压站内,安装一组液压阀台及液压管道安装,站外液压管道、润滑管道安装。 2.5.3干法除尘1个箱体利旧改造,切割掉2.5米;脉冲系统利旧;放散系统利旧;重新开DN900进出口;制作安装2m3中间灰罐一套;卸灰DN300电动阀3台;滤袋、龙骨398条。 2.5.4炉顶放散阀平台钢结构改造加固,炉顶2#放散阀拆装,小旋风除尘器安装,增压水泵、管道、阀门安装调试。 2.5.5电气柜安装接线、电缆、桥架、穿线管铺设、设备调试。 2.5.6钢结构、管道防腐,油漆由乙方提供,颜色由甲方确定。 2.5.7煤气管道、箱体保温,所需保温材料根据图纸要求由乙方提供。 2.5.8工程施工所需的工程机械及车辆全部由乙方自行提供。 2.5.9根据工艺技术要求配合设计单位完成PLC控制系统调试(编程由设计单位负责)。 2.5.10施工过程资料及设备随机资料等按甲方要求进行归档。 2.5.11硬化输灰通道地面。 2.5.12施工范围内特种设备及仪表检测检验和报验取证、注册登记。 2.5.13本工程甲供材和设备采购由招标人提供,甲供材范围详见招标人提供的招标工程量清单中“分部分项工程清单与计价表”的“项目特征”描述,甲供材料以外所有材料及辅料均由投标人提供。 具体详见招标工程量清单、技术文件及附件、施工图纸。 2.6其他内容: 2.6.1工期:与1#高炉中修同步,进场时间由招标人提前20日历天通知中标人,施工周期20日历天。 2.6.2质量要求标准:按照国家建筑工程施工质量验收规范要求,一次性验收合格。3.合格投标人的资格要求 3.1投标人资格要求: [施工总承包﹒冶金工程﹒一级](含)以上 并在人员、设备、资金等方面具有相应的施工能力。 3.2项目负责人资格要求: [注册二级建造师﹒建筑工程](含)以上或者[注册二级建造师﹒机电工程](含)以上 3.3投标其他条件: 3.3.1.投标人必须是在中国境内合法注册企业、具有独立法人资格的单位,具备有效的营业执照、安全生产许可证; 3.3.2.拟派往本项目的项目负责人须具备有效的安全生产考核合格证(B证); 3.3.3.拟派往本项目的专职安全生产管理人员须具备有效的安全生产考核合格证(C证); 3.3.4未被列入中国宝武集团和昆钢公司禁入名单的单位; 3.3.5资格审查方式:资格后审。 3.4本次招标不接受联合体投标。联合体投标的,应满足下列要求:4.招标文件的获取 4.1凡有意参加投标者,请于2022年09月17日09时00分至2022年09月22日17时00分(北京时间,下同),登录宝华智慧招标共享平台下载电子招标文件。 4.2招标文件费:500.00元。 4.3购标所需材料:(1)营业执照;(2)资质证书;(3)安全生产许可证;(4)项目负责人注册证书及安全生产考核合格证(B证);(5)安全生产管理人员的安全生产考核合格证(C证)。 注:以上验证资料请以原件扫描件形式压缩至一个压缩文件内在购标附件中登录宝华智慧招标共享平台递交,资料审核通过方可购买招标文件。 宝华客服热线:4001800060(投标系统操作及CA证书办理问题咨询)。 欧贝平台热线:400-920-9595(注册、自荐问题咨询) 网上购标方法 :具体操作方法详见宝华智慧招标共享平台“操作指南”。5.提交投标文件的截止时间与地点 5.1投标文件递交的截止时间(投标截止时间,下同)为2022年10月09日09时30分,投标人应在截止时间前通过宝华智慧招标共享平台递交电子投标文件。 5.2逾期送达的投标文件,宝华智慧招标共享平台将予以拒收。6.发布公告的媒介 本次招标公告同时在宝华智慧招标共享平台(https://www.baohuabidding.com)和中国招标投标公共服务平台(http://www.cebpubservice.com/)上发布。7.招标人及招标代理机构联系方式 招标人: 武钢集团昆明钢铁股份有限公司 招标代理机构: 上海宝华国际招标有限公司 地 址: 云南省安宁市圆山南路 地 址: 上海市宝山区克山路550弄8号楼 联系人: 苏庆峰 联 系 人: 张钰婧 电 话: 13808799359 电 话: 13368806647 2022年09月17日 附件: 武钢集团昆明钢铁股份有限公司炼铁厂1#高炉放散、均压煤气净化回收治理项目施工-招标公告.pdf
  • 精准助力土壤三普之快速测定土壤中有机碳
    国务院于今年2月份发出第三次土壤普查的通知,其土壤普查理化性状检测指标中,就有机质项目的检测要求。土壤有机质主要来源于土壤中动、植物的残体以及微生物生命活动所产生的有机物质,主要成分为C和N的有机化合物;其含量将决定植物的生长发育,并且对土壤的养分结构、理化性状起着关键性作用。东北黑土地就由于其富含有机质而土壤肥沃,素有“谷物仓库”之称。目前,测定土壤中有机质的方法多采用先测定土壤中的有机碳含量(TOC),再乘以与有机质的换算系数1.724,即为土壤有机质的含量。所以需准确测试土壤中的有机碳。土壤有机碳检测方法一般分为燃烧氧化法和化学氧化法两类。Ø 化学氧化法——做样速度较慢(大于0.5h),受基体影响较大化学氧化法是较为传统的方法,主要通过重铬酸钾-浓硫酸溶液将土壤溶液中的有机碳氧化,再通过硫酸亚铁滴定或分光光度法进行定量测定。此类方法虽然所需设备较为简单,但是实际测试时却有较多不足:(1)需要试剂种类较多,操作步骤复杂,做样周期较长,往往需要半小时以上;(2)由于土壤中的基体非常复杂,且各个地方的土壤成分差异大,同计量的试剂对有机碳的氧化是否彻底,将会影响测定结果;(3)在滴定法或分光光度法测定时,样品基体不同,也对其显色产生不同程度的干扰,造成数据不准,需根据样品再摸索掩蔽剂等条件。Ø 燃烧氧化法——做样3-4min即可出结果,不受基体影响燃烧氧化法方法是较新的方法,该方法是将土壤样品称量后,加酸加热去除无机碳,后置于高温灼烧(1100℃左右)使土壤样品中的有机碳氧化为二氧化碳,最后用仪器检测器测定产生的CO2值,并转换为TOC浓度。此方法有以下优势:(1)样品固体进样即可,制备流程少、做样简单、可操作性强;(2)做样速度快,固体样品进入仪器只需3-4min即可完成测试;(3)无需多种试剂,只需加酸即可,试剂损耗小;(4)不受样品基体影响,由于燃烧温度高,可更加充分地将有机碳氧化,所以无论什么样品基体,均可得到准确结果。以下为土壤有机质测定相关标准对比 :标准氧化方式检测原理试剂耗时NY/T 85-1998土壤有机质测定法重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时NY/T 1121.6-2006土壤检测第6部分:土壤有机质的测定重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时LY/T 1237-1999森林土壤有机质的测定及碳氮比的计算重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时HJ 658-2013 土壤 有机碳的测定 氧燃烧—滴定法高温燃烧氢氧化钡吸收,草酸滴定氢氧化钡、草酸、酚酞、盐酸5小时HJ 615-2011 土壤 有机碳的测定 重铬酸钾氧化-分光光度法重铬酸钾-硫酸溶液加热分光光度法重铬酸钾,硫酸,硫酸汞8小时HJ 695-2014 土壤 有机碳的测定 燃烧氧化-非分散红外法高温燃烧非分散红外法(NDIR)磷酸或盐酸3-4分钟德国耶拿可为您提供燃烧法测试土壤中TOC的全套解决方法:方案1:总有机碳分析仪multi N/C+ HT 1300采用燃烧法可直接测量土壤固体中的TOC含量,具有以下特点,保证实验的高效准确。可分析液体或固体样品… … … … … … … … … … … … … … … … … 软件切换,无需机械移动冷开机20分钟内即可工作,进样3-4min出结果… … … … 实验效率高直接称量于陶瓷舟中… … … … … … … … … … … … … … … … … … … 操作简便最高称样量达3g… … … … … … … … … … … … … … … … … … … … … 保证样品代表性燃烧温度可达1300℃ … … … … … … … … … … … … … … … … … … 充分氧化无需催化剂… … … … … … … … … … … … … … … … … … … … … … … … 低耗材成本高聚焦NDIR检测器 … … … … … … … … … … … … … … … … … … … 抗干扰,宽范围方案2:元素分析仪multi EA 4000全自动固体TOC分析,可全参数分析TOC、TIC、TC参数。具备自动加酸处理等功能。应用实例:通过测定多种标准土验证方法准确性,测试结果均在质控范围内,且测试6次,RSD在0.76~6.29%。具体数据如下:标准品号平均值%RSD (n=6)%标准值相对误差%GBW073140.876.290.86% ± 0.1%1.2NST-62.190.862.2% ± 0.1%0.3GBW07416a0.720.760.73% ± 0.05%0.69GBW074591.280.991.27% ± 0.05%0.39注:multi N/C+ HT 1300方案测定通过以上数据可知,采用耶拿的快速燃烧法测定土壤有机碳,准确度、精密度等指标均符合土壤分析要求,从根本上解决了人为分析误差、污染和环境污染等弊端,消除了基体干扰对结果的影响;提高工作效率,可实现批量化分析。
  • 刘相华一生情系中国钢铁 对仪器比对爱人钟情
    刘相华教授最近很忙,在国内的几家大型汽车生产企业来回奔波,本是一个学者的他,却干起了开拓市场的活,为的是“推销”他们开发出的一项节能减排新产品——用于汽车减重的差厚板。   “所谓差厚板,就是可以根据客户的需求,一次成形轧制出厚度不同的一整块钢板,这样不仅最大程度减轻了结构重量,还节约了成本。”他说,经过前期探索,这种依托他们的发明专利生产出差厚板产品,已经提供给上汽集团,通过了台架实验和装车道路实验,现已稳定生产,开始批量供货。与一汽、长城、奇瑞、吉利等汽车生产企业的合作也在洽谈之中。   轧钢新技术的产、学、研、用,显然已经在他脑中融会贯通。实际上,生产这种差厚板产品的技术雏形早在2001年他去美国考察汽车板生产新技术时,就已经形成了。看到当时因为车身不同位置对钢板厚度的需求不同,美国人采用激光拼焊技术生产变厚度板时,作为轧钢专家,他提出用轧制方法一次成形的思路。这当然得益于他一生结缘钢铁的专业敏感,同时也得益于他始终重视应用而得来的敏锐的市场嗅觉。   钢铁情结始于孩提时代   实际上,刘相华的钢铁情结,从孩提时代就有了。   忆起1958年大炼钢铁、文革后缺钢少铁、改革开放之初依赖引进办钢铁的历程,他说:“在拿到我国改革开放后第一批钢铁领域博士学位证书之时,也担起了振兴中国钢铁事业的责任和使命”。博士毕业后,为了学习国外先进的钢铁生产技术,他出国深造。学成归国后,他在轧钢领域钻研拼搏,攻克了有限元理论与编程、智能轧制技术、变厚度轧制理论等一个个学术堡垒、帮助现场解决了超细晶粒钢生产、板带钢控轧控冷、计算机辅助孔型设计、数学模型优化等一个个技术难题,在30多本科技进步奖励证书上,凝结着他的心血和汗水。   “我们这一代人年轻时上山下乡,成长过程历经磨难,深知承上启下、齐心协力奔小康的历史责任。国家富强需要钢铁,把钢铁搞上去,回报节衣缩食供养我们读书的父母,无愧引领我们入门的师长。”他如数家珍地谈起钢铁对我们生活的巨大影响,“没有这么多钢铁做支撑,就不会有今天舒适的住房和便捷的交通,不会有强大的国防和日益增强的国际地位,从神舟上天到蛟龙入海,现代工业和现代科技一点也离不开钢铁。” 言辞之间透漏出他对选择走上钢铁之路感到自豪,表达了对发展我国钢铁事业的坚定信念。   坚忍不拔 迎来超级钢时代   七年前,当记者在北京钢铁研究院的一家宾馆里见到这位作为国家863计划超级钢项目负责人的刘相华时,他还在为开发400MPa和500MPa级超级钢,实现普碳钢强度翻番日夜奔波。那时他已经预见到,未来几年,我国普通钢铁产品强度将大面积提高到400MPa和500MPa。今天事实已经证实了他的预言,现在建筑部门已经把我国主力钢筋的强度定位到400MPa级,我国钢铁年产量早已超越了美国、日本、欧洲等全部发达国家的总和,当年“钢铁元帅”的大国梦已经实现。超级钢的开发成功与普及应用,已缩小了钢材品种、质量与国外的差距,中国正在由钢铁大国向钢铁强国迈进。   新事物的诞生似乎总伴随着争议,刘相华表示,在863计划超级钢课题立项之初学术界也有争论,在钢铁这个被国外认为是夕阳工业的领域中还能搞出什么名堂?到底走什么样的技术路线?面对种种的疑问,他依然坚定地认为中国的国情决定了钢铁在整个国民经济里仍然起着至关重要、不可替代的作用,在经济高速发展的现阶段,钢铁领域的科研成果更加需要迅速转化为生产力,钢铁的产量、质量上去了,整个工业的健康发展,就有了良好的原材料基础。   凭着一股韧劲,刘相华教授带领着他的课题组成员在实验室钻研,到钢厂、汽车厂等现场进行工业实验,终于在国际上率先实现了超级钢(超细晶粒钢)工业生产,其成果在宝钢、鞍钢、本钢、一汽等很多厂家应用,取得了突出的经济效益和社会效益,为钢铁工业腾飞和振兴东北老工业基地做出了贡献,在国内外钢铁界产生了重要影响。   实验室为家 对仪器比对爱人钟情   刘相华办公室里唯一的装饰物,就是墙上的一副书法作品了,“天道酬勤,厚德载物。”八个字力透纸背,这种氛围让我体会到:他正是那种把别人喝咖啡的时间都用到钻研学问和工作中的人。   环视四周,记者被刘相华教授办公桌上一个硕大的水杯吸引了视线,原来,这个杯子是唐山的一位学生送的。一次,这位学生来到实验室看望刘教授,见他一会儿忙着给学生修改论文、一会儿准备报告的幻灯片、还要处理实验室的重要事情,一个上午一直在伏案工作,连出去接杯水的时间都顾不上,敬师心切的学生就给恩师买了这个出奇硕大的杯子。   “倒一次水,就够我喝半天了。”刘相华教授说这话时,言语中透着一丝由衷的幸福。忙到废寝忘食?没经历过的人也许很难想象那种忘我的工作状态,为了和时间赛跑,这个在公路上只开40迈的科学家,一步二个台阶半跑着上楼已成习惯,不经意间多抢出几秒钟早点儿进入办公室,因为那里有等待他批改的学位论文,有等他决断的科研计划,有等他推导的数学公式,有等他勾画的发展蓝图,有他的职责、他的事业,有他的企盼、他的梦想……   学校实验楼前后几任值夜班的师傅见证了他总是最后一个离开实验室 外出归来先回实验室后回家也已经成了习惯。积年累月,他的妻子似乎已经适应并习惯了他的这种生活状态,“曾经埋怨,实验室才是他的家,但现在更多的是关怀和理解了。”   在恩师白光润教授架鹤西归的当天,凌晨4点师母把临危的电话打到刘相华教授的家中,可没想到凌晨4点他仍然在实验室带领着他的弟子们紧张地准备着一个钢铁项目的竞标文档,从实验室直接赶到医院急救室……   “明天我的学生们一定能作到”   作为我国知名钢铁专家、国家钢铁领域重点科研项目带头人,刘相华教授在进行科学研究的同时非常重视把研究方法和研究成果传授给学生,致力于钢铁行业的人才培养。他略带微笑地告诉我,他一上讲台就兴奋,一走进学生中间就感到亲切和责任。“我的身边总有一批才华横溢的研究生,听到哪位学生又作出了新的成绩,是让我最高兴的事”。正是这涓涓细流,孕育着江河的澎湃、折射着大海的包容。   作为一名博士生导师,他对学生既严格要求,又从学业和生活各个方面关怀体贴。因材施教,重视对研究生基础理论的训练和实际动手能力的培养。为了使研究生能够在实践中得到锻炼,他奔走于各大钢铁企业,利用熟悉现场的条件,为学生选择具有应用背景的研究课题,使学生能够在生产实践的风浪中,真刀真枪地干起来。   正像他办公室墙上的那八个大字:天道酬勤,厚德载物。刘相华教授童年的理想随着我国钢铁工业的飞速发展正在一步步成为现实。国家973计划、863计划、国家科技支撑计划、自然科学基金重大项目、重点项目等一系列国家科研项目,对钢铁领域的发展给予了巨大支持,刘相华教授也在其中感受到付出艰辛和成长的喜悦。由于在钢铁领域的科研成果,他获得了三项国家科技进步奖,一项国家技术发明奖,一项国家发明创业奖和30多项省部级科学技术奖励 出版、参编了10部学术著作 发表的研究论文被SCI收录的有290多篇次,被引用7200多篇次 在他指导下,已经有95名博士、96名硕士获得学位,他的学生已成为我国钢铁工业发展的中流砥柱。   刘相华教授曾经带领着国家重点实验室,作为本领域科研的国家队,起到了“引领钢铁材料发展方向,推动轧钢行业技术进步”的重要作用。实验室近些年取得的若干代表性成果为此提供了佐证。   “山再高高不过脚面,只要往上走,成功往往就在进一步的努力之中。”刘相华总会以这样的话激励自己和学生在钢铁科学研究这条艰辛的路上披荆斩棘、勇往前行。   “我在给学生讲课的时候常常提到,钢铁产业的中心应该也必然会转移到中国,现在我们要看到优势,找出差距,向高精尖产品迈进。”谈到学生,刘相华动情地说,“说到底我还是个老师,我有世界上最好的学生。今天我们暂时还没有做到的,明天我的学生们一定能作到!”
  • 食品添加剂标准变身“国家药典”
    据国家卫生部公告,胆钙化醇、氰钴胺等14种食品添加剂的产品标准,均按照《中华人民共和国药典》(2010年版)的质量要求进行生产和检验。这意味着,国家对食品添加剂的管理,将与新出台的国家药典相对接,使之更符合中国的具体国情、药品生产和传统用药习惯!   根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现指定胆钙化醇等14种食品添加剂的产品标准按照《中华人民共和国药典》(2010年版)相关质量要求和检验方法执行。   对此,国家标准频道认为:药品各生产、销售企业,应及时关注标准类的变动信息。做到信息最大程度的了如指掌,才能更好的避免不必药的麻烦。此外,作为消费者,应尽可能多的去了解所谓的食品添加剂,在药店里对应产品。所以,请大家在超市、认清楚食品标签的标注,切勿换了个名字,就不知道是啥了!   附:食品添加剂与《中华人民共和国药典》的相应品种   胆钙化醇等14种食品添加剂 食品添加剂 《中华人民共和国药典》中的相应品种 1 胆钙化醇 维生素D3 2 d-α醋酸生育酚 维生素E 3 植物甲萘醌 维生素K1 4 氰钴胺 维生素B12 5 烟酰胺 烟酰胺 6 泛酸钙 泛酸钙 7 硫酸镁 硫酸镁 8 氧化镁 氧化镁 9 硫酸亚铁 硫酸亚铁 10 富马酸亚铁 富马酸亚铁 11 氧化锌 氧化锌 12 柠檬酸锌 枸橼酸锌 13 碘化钠 碘化钠 14 碘化钾 碘化钾
  • 上海华谊集团技术研究院领导一行考察上海精科
    优势互补 友诚合作 共同发展   7月23日,上海华谊集团技术研究院张春雷副院长带领该院相关部室专家来我上海精科考察,公司总经理樊志强亲自迎接各位专家到来,陪同客人们先后参观了公司产品展示厅、应用实验室、分析仪器研究室,向客人介绍了公司贯彻落实上海仪电发展新战略和精科发展战略进行新的定位、新的构思。我上海精科发挥整体优势、有效地进行资源整合与形成产品市场融合的机制、加大科技投入和积极研发具有自主知识产权的高科技产品的发展思路,受到了上海华谊集团技术研究院领导的高度关注,双方期望进一步加强合作,携手共同发展。   上海精科实验室产品系列品种齐、应用范围广,集中公司整体优势服务于用户,可以通过仪器成套供应与一站式服务,简化客户采购程序,帮助客户解决应用过程带来的挑战。今年6月,我公司与华谊集团就仪器设备供应与服务进行多次交流,华谊集团技术研究院对上海精科产品寄予厚望。上海精科自主研发的气相色谱、粘度计、熔点仪、颗粒仪(悬浮物、分子颗粒)、电子天平(十万分之一等)、粘度计、热分析仪(表面)、酸度计、滴定仪、电导仪、离子计、多参数仪等系列产品给上海华谊集团技术研究院专家们留下深刻印象,双方达成共识:建立一个上海精科实验室仪器使用示范室, 对试剂站、环境监测站采购仪器设备提供可行性方法,优势互补。现在,双方正进行技术层面接触。   随后,专家们专程赶往电化学事业部考察。公司常务副总经理、电化学事业部总经理汤志东向客人们详细介绍了事业部电化学实验室仪器和在线环保仪器系列产品特点。我电化学事业部作为国内老字号电化学研发生产企业,近年来进一步加强科学管理,推动了经营年年发展。如今,实验室电化学仪器不断推陈出新,不断满足行业用户日益增长的分析要求,如708多参数分析仪,其集成了三种电化学基本分析方法,其中关键技术达到国际同类仪器先进水平 近年来,事业部借国家高度重视环境保护政策与营造低碳环保氛围的东风,创新发展各种大型的在线环保仪器,并使环保仪器产销两旺,如新近开发的COD582型在线化学需氧量(COD)测定仪,其采用重铬酸钾氧化,密封高温快速消解,用硫酸亚铁铵滴定的方法,测定水中COD值 这些产品的关键技术在国内处于领先地位。专家们对我公司电化学事业部取得的成就表示赞赏,希望能加强合作,一起为我国的环保产业发展贡献力量。   上海华谊集团技术研究院设有工业催化、精细化工、高分子材料、化工过程与装备四个研究室,一个中试示范基地,一个分析测试中心等业务平台,并集聚了一批专家、教授,包括国家有突出贡献中青年专家,国务院政府特殊津贴获得者,教授级高级工程师,高级工程师,研究生导师,该院具有国内一流的研究开发环境及软硬件设施,是上海华谊集团公司战略性中长远产业化技术及项目的开发机构。   上海精科总经理樊志强和上海华谊集团技术研究院张春雷副院长(左一)在一起
  • 十三种污水处理基础指标的分析方法汇总
    p    span style=" color: rgb(0, 112, 192) " strong 一、化学需氧量(CODcr)的测定 /strong /span /p p   化学需氧量:指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量,单位为mg/L。而我国一般采用重铬酸钾法作为依据。 /p p   1、方法原理 /p p   在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵溶液回滴。根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量。 /p p   2、仪器 /p p   (1)回流装置:带250ml锥形瓶的全玻璃回流装置(如取样量在30ml以上,采用500ml锥形瓶的全玻璃回流装置)。 /p p   (2)加热装置:电热板或变组电炉。 /p p   (3)50ml酸式滴定剂。 /p p   3、试剂 /p p   (1)重铬酸钾标准溶液(1/6 =0.2500mol/L:)称取预先在120℃烘干2h的基准或优级纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。 /p p   (2)试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。 /p p   (3)硫酸亚铁铵标准溶液:称取39.5g硫酸亚铁铵溶于水,边搅拌便缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 /p p   标定方法:准确吸收10.00ml重铬酸钾标准溶液与500ml锥形瓶中,加水稀释至110ml左右,缓慢加入30ml浓硫酸,混匀。冷却后,加入三滴试亚铁灵指示液(约0.15ml)用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色及为终点。 /p p   C[(NH4)2Fe(SO4)2]=0.2500× 10.00/V /p p   式中,c—硫酸亚铁铵标准溶液的浓度(mol/L) V—硫酸亚铁铵标准滴定溶液的用量(ml)。 /p p   (4)硫酸-硫酸银溶液:与2500ml浓硫酸中加入25g硫酸银。放置1-2d,不时摇动使其溶解(如无2500ml容器,可在500ml浓硫酸中加入5g硫酸银)。 /p p   (5)硫酸汞:结晶或粉末。 /p p   4、注意事项 /p p   (1)使用0.4g硫酸汞络合氯离子的最高量可达40mL,如取用20.00mL水样,即最高可络合2000mg/L氯离子浓度的水样。若氯离子浓度较低,亦可少加硫酸汞,是保持硫酸汞:氯离子=10:1(W/W)。如出现少量氯化汞沉淀,并不影响测定。 /p p   (2)水样去用体积可在10.00-50.00mL范围之间,但试剂用量及浓度按相应调整,也可得到满意结果。 /p p   (3)对于化学需氧量小于50mol/L的水样,应该为0.0250mol/L重铬酸钾标准溶液。回滴时用0.01/L硫酸亚铁铵标准溶液。 /p p   (4)水样加热回流后,溶液中重铬酸钾剩余量应为加入少量的1/5-4/5为宜。 /p p   (5)用邻笨二甲酸氢钾标准溶液检测试剂的质量和操作技术时,由于每克邻笨二甲酸氢钾的理论CODCr为1.167g,所以溶解0.4251L邻笨二甲酸氢钾与重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODCr标准溶液。用时新配。 /p p   (6)CODCr的测定结果应保留三位有效数字。 /p p   (7)每次实验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时尤其注意其浓度的变化。 /p p   5、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)取3个磨口锥形瓶,编号0、1、2 向3个锥形瓶中分别加入6粒玻璃珠。 /p p   (3)向0号锥形瓶中加20mL蒸馏水(用胖度移液管) 向1号锥形瓶中加5mL进水样(用5mL的移液管,要用进水润洗移液管3次),然后再加入15mL蒸馏水(用胖度移液管) 向2号锥形瓶中加20mL出水样(用胖度移液管,要用进水润洗移液管3次)。 /p p   (4)向3个锥形瓶中分别加入10mL重铬酸钾非标液(用10mL的重铬酸钾非标液移液管,要用重铬酸钾非标液润洗移液管3次)。 /p p   (5)将锥形瓶分别放到电子万用炉上,然后打开自来水管将水充满冷凝管(自来不要开的过大,凭经验)。 /p p   (6)从冷凝管上部向3个锥形瓶中分别加30mL硫酸银(用25mL的小量筒),然后分别摇匀3个锥形瓶。 /p p   (7)插上电子万用炉插头,从沸腾开始计时,加热2小时。 /p p   (8)加热完毕后,拔下电子万用炉插头,冷却一段时间后(多长时间凭经验)。 /p p   (9)从冷凝管上部向3个锥形瓶中分别加90mL蒸馏水(加蒸馏水原因:1.从冷凝管上加水,使加热过程中冷凝管内壁的残留水样流入锥形瓶,减小误差。2.加定量的蒸馏水,使滴定过程中的显色反应更加明显)。 /p p   (10)加入蒸馏水后会放热,取下锥形瓶冷却。 /p p   (11)彻底冷却后,向3个锥形瓶中分别加3滴试亚铁灵指示剂,然后分别摇匀3个锥形瓶。 /p p   (12)用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。(注意全自动滴定管的使用方法。滴定完一个要记得读数,并将自动滴定管液位升至最高处,进行下一个滴定)。 /p p   (13)记录读数,计算结果。 /p p   span style=" color: rgb(0, 112, 192) " strong  二、生化需氧量(BOD5)的测定 /strong /span /p p   生活污水与工业废水中含有大量各类有机物。当其污染水域后,这些有机物在水体中分解时要消耗大量溶解氧,从而破坏水体中氧的平衡,使水质恶化。水体因缺氧造成鱼类及其他水生生物的死亡。 /p p   水体中所含的有机物成分复杂,难以一一测定其成分。人们常常利用水中有机物在一定条件下所消耗的氧,来间接表示水体中有机物的含量,生化需氧量即属于这类的一个重要指标。 /p p   生化需氧量的经典测定方法,是稀释接种法。 /p p   测定生化需氧量的水样,采集时应充满并密封于瓶中。在0——4摄氏度下进行保存。一般应在6h内进行分析。若需要远距离转运。在任何情况下,贮存时间不应超过24h。 /p p   1、方法原理 /p p   生化需氧量是指在规定条件下,微生物分解存在水中的某些可氧化物质、特别是有机物所进行的生物化学过程中消耗溶解氧的量。此生物氧化全过程进行的时间很长,如在20摄氏度下培养时,完成次过程需要100多天。目前国内外普遍规定于20加减1摄氏度培养5d,分别测定样品培养前后的溶解氧,二者之差即为BOD5值,以氧的毫克/升表示。 /p p   对某些地面水及大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以降低其浓度和保证有充足的溶解氧。稀释的程度应使培养中所消耗的溶解氧大于2mg/L,而剩余溶解氧在1mg/L以上。 /p p   为了保证水样稀释后有足够的溶解氧,稀释水通常要通入空气进行曝气,便稀释水中溶解氧接近饱和。稀释水中还应加入一定量的无机营养盐和缓冲物质,以保证微生物生长的需要。 /p p   对于不含或少含微生物的工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD5时应进行接种,以引入能分解废水中有机物的微生物。当废水中存在着难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引入水样中进行接种。 本方法适用于测定BOD5大于或等于2mg/L,最大不超过6000mg/L的水样。当水样BOD5大于6000mg/L,会因稀释带来一定的误差。 /p p   2、仪器 /p p   (1)恒温培养箱 /p p   (2)5——20L细口玻璃瓶。 /p p   (3)1000——2000ml量筒 /p p   (4)玻璃搅棒:棒的长度应比所用量筒高度长200mm。在棒的底端固定一个直径比量筒底小、并带有几个小孔的硬橡胶板。 /p p   (5)溶解氧瓶:250ml到300ml之间,带有磨口玻璃塞并具有供水封用的钟型口。 /p p   (6)虹吸管,供分取水样和添加稀释水用。 /p p   3、试剂 /p p   (1)磷酸盐缓冲溶液:将8.5磷酸二氢钾,21.75g磷酸氢二钾,33.4七水合磷酸氢二钠和1.7g氯化铵溶于水中,稀释至1000ml。此溶液的PH应为7.2 /p p   (2)硫酸镁溶液:将22.5g七水合硫酸镁溶于水中,稀释至1000ml。 /p p   (3)氯化钙溶液:将27.5无水氯化钙溶于水,稀释至1000ml。 /p p   (4)氯化铁溶液:将0.25g六水合氯化铁溶于水,稀释至1000ml。 /p p   (5)盐酸溶液 :将40ml盐酸溶于水,稀释至1000ml。 /p p   (6)氢氧化钠溶液 :将20g氢氧化钠溶于水,稀释至1000ml /p p   (7)亚硫酸钠溶液:将1.575g亚硫酸钠溶于水,稀释至1000ml。此溶液不稳定,需每天配制。 /p p   (8)葡萄糖—谷氨酸标准溶液:将葡萄糖和谷氨酸在103摄氏度干燥1h后,各称取150ml溶于水中,转入1000ml容量瓶内并稀释至标线,混合均匀。此标准溶液临用前配制。 /p p   (9)稀释水:稀释水的PH值应为7.2,其BOD5应小于0.2ml/L。 /p p   (10)接种液:一般采用生活污水,在室温下放置一昼夜,取上清液使用。 /p p   (11)接种稀释水:分取适量接种液,加入稀释水中,混匀。每升稀释水中接种液加入量为生活污水1——10ml 或表层土壤侵出液20——30ml 接种稀释水的PH值应为7.2。BOD值以在0.3——1.0mg/L之间为宜。接种稀释水配制后应立即使用。 /p p   4、计算 /p p   1、不经稀释直接培养的水样 /p p   BOD5(mg/L)=C1-C2 /p p   式中:C1——水样在培养前的溶解氧浓度(mg/L) /p p   C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L)。 /p p   2、经稀释后培养的水样 /p p   BOD5(mg/L)=[(C1-C2)—(B1-B2)f1]∕f2 /p p   式中:C1——水样在培养前的溶解氧浓度(mg/L) /p p   C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L) /p p   B1——稀释水(或接种稀释水) 在培养前的溶解氧浓度 (mg/L) /p p   B2——稀释水(或接种稀释水) 在培养后的溶解氧浓度 (mg/L) /p p   f1 —— 稀释水(或接种稀释水)在培养液中所占比例 /p p   f2 —— 水样在培养液中所占比例。 /p p   B1——稀释水在培养前的溶解氧 /p p   B2——稀释水在培养后的溶解氧 /p p   f1——稀释水在培养液中所占比例 /p p   f2——水样在培养液中所占比例。 /p p   注:f1,f2的计算:例如培养液的稀释比为3%,即3份水样,97份稀释水,则f1=0.97,f2=0.03。 /p p   5、注意事项 /p p   (1)水中有机物的生物氧化过程,可分为二个阶段。第一阶段为有机物中的碳和氢、氧化生成二氧化碳和水,此阶段称为碳化阶段。完成碳化阶段在20摄氏度大约需20天左右。第二阶段为含氮物质及部分氮,氧化为亚硝酸盐及硝酸盐,称为硝化阶段。完成硝化阶段在20摄氏度时需要约100天。因此,一般测定水样BOD5时,硝化作用很不现著或根本不发生硝化作用。但对于生物处理池的出水,因其中含有大量的硝化细菌。因此在测BOD5时也包括了部分含氮化物的需氧量。对于这样的水样,,可以加入硝化抑制剂,抑制硝化过程。为此目的,可在每升稀释水样中加入1ml浓度为500mg/L的丙烯基硫脲或一定量固定在氯化钠上的2-氯带-6-三氯甲基啶,使TCMP在稀释样品中的浓度大约为0。5 mg/L。 /p p   (2) 玻璃器皿应彻底清洗干净。先用洗涤剂浸泡清洗,然后用稀盐酸浸泡,最后依次用自来水,蒸馏水洗净。 /p p   (3) 为检查稀释水和接种液的质量,以及化验人员的操作水平,可将20ml葡萄糖-谷氨酸标准溶液用接种稀释水稀释至1000ml,按测定BOD5的操作步骤。测得BOD5的值应在180—230mg/L之间。否则应检查接种液、稀释水的质量或操作技术是否存在问题。 /p p   (4) 水样稀释倍数超过100倍时,应预先在容量瓶中用水初步稀释后,再取适量进行最后稀释培养。 /p p    span style=" color: rgb(0, 112, 192) " strong 三、悬浮性固体物质(SS)的测定 /strong /span /p p   悬浮固体表示水中不溶解的固体物质的量。 /p p   1、方法原理 /p p   测定曲线内置,通过测定样品对特定波长的吸光度 转换为待测参数的浓度值,并通过液晶显示屏显示。 /p p   2、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)取1支比色管加入25mL进水样,然后用蒸馏水加至刻度线(因进水SS较大,若不稀释可能会超过悬浮物测试仪的最大限度,使结果不准。当然进水取样量不固定,若进水太脏就取10mL,用蒸馏水加至刻度线)。 /p p   (3)开启悬浮物测试仪,向类似于比色皿的小盒内加入蒸馏水至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,若不为零则按清零键,将仪器清零(测一次即可)。 /p p   (4)测进水SS:将比色管内的进水样倒入小盒内润洗3次,然后将进水样加至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,测三次,求取平均值。 /p p   (5)测出水SS:将出水样摇匀,润洗三次小盒?(方法同上) /p p   3、计算 /p p   进水SS的结果为:稀释倍数*测进水样读数 出水SS的结果直接为测出水样仪器读数 /p p    span style=" color: rgb(0, 112, 192) " strong 四、总磷(TP)的测定 /strong /span /p p   1、方法原理 /p p   在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常集成磷钼蓝。 /p p   本方法最低检出浓度为0.01mg/L(吸光度A=0.01时所对应的浓度) 测定上限为0.6mg/L。可适用于测定地面水、生活污水及日化、磷肥、机加工金属表面磷化处理、农药、钢铁、焦化等行业的工业废水中的正磷酸盐分析。 /p p   2、仪器 /p p   分光光度计 /p p   3、试剂 /p p   (1)1+1 硫酸。 /p p   (2)10%(m/V)抗坏血酸溶液:溶解10g抗坏血酸于水中,并稀释至100ml。该溶液储存在棕色玻璃瓶中,在冷处可稳定几周。如颜色变黄,则弃去重配。 /p p   (3)钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24· 4H2O]于100ml水中。溶解0。35g酒石酸锑氧钾[K(SbO)C4H4O6· 1/2H2O]于100ml水中。在不断的搅拌下,将钼酸铵溶液徐徐加到300ml(1+1)硫酸中,加酒石酸锑钾溶液并且混合均匀。试剂贮存在棕色的玻璃瓶中于冷处保存。至少稳定2个月。 /p p   (4)浊度-色度补偿液:混合两份体积的(1+1)硫酸和一份体积的10%(m/V)抗坏血酸溶液。此溶液当天配制。 /p p   (5)磷酸盐贮备溶液:将磷酸二氢钾(KH2PO4)于110° C干燥2h,在干燥器中放冷。称取0.217g溶于水,移入1000ml容量瓶中。加(1+1)硫酸5ml,用水稀释至标线。此溶液每毫升50.0ug磷。 /p p   (6)磷酸盐标准溶液:吸取10.00ml磷酸盐贮备液于250ml容量瓶中,用水稀释至标线。此溶液每毫升含2.00ug磷。临用时现配。 /p p   4、测定步骤(仅以测进、出水样为例) /p p   (1)将取回的进水样、出水样摇匀(生化池上点的水样要摇匀放置一段时间取上清液)。 /p p   (2)取3支具塞刻度管,第一支具塞刻度管加蒸馏水加至上部刻度线 第二支具塞刻度管加5mL进水样,然后用蒸馏水加至上部刻度线 第三支具塞刻度管 /p p   的盐酸浸泡2h,或用不含磷酸盐的洗涤剂刷洗。 /p p   (3)比色皿用后应可以稀硝酸或铬酸洗液浸泡片刻,以除去吸附的钼蓝呈色物。 /p p   span style=" color: rgb(0, 112, 192) " strong  五、总氮(TN)的测定 /strong /span /p p   1、方法原理 /p p   在60℃以上的水溶液中过硫酸钾按如下反应式分解,生成氢离子和氧。 K2S2O8+H2O??KHSO4+1/2O2 KHSO4& amp #8594K++HSO4_ HSO4& amp #8594H++SO42- /p p   加入氢氧化钠用以中和氢离子,使过硫酸钾分解完全。在120℃-124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐。而后用紫外分光光度法分别于波长220nm与275nm处测定其吸光度,按下式计算硝酸盐氮的吸光度: A=A220-2A275 从而计算总氮的含量。其摩尔吸光系数为1.47× 103 /p p   2、干扰及消除 /p p   (1)水样中含有六价铬离子及三价铁离子时,可加入5%盐酸羟胺溶液1-2ml,以消除其对测定的影响。 /p p   (2)碘离子及溴离子对测定有干扰。碘离子含量相对于总氮含量的0.2倍时无干扰。溴离子含量相对于总氮含量的3.4倍时无干扰。 /p p   (3)碳酸盐及碳酸氢盐对测定的影响,在加入一定量的盐酸后可消除。 /p p   (4)硫酸盐及氯化物对测定无影响。 /p p   3、方法的适用范围 /p p   该方法主要适用于湖泊,水库,江河水中总氮的测定。方法检测下限为0.05mg/L 测定上限为4mg/L。 /p p   4、仪器 /p p   (1)紫外分光光度计。 /p p   (2)压力蒸汽消毒器或家用压力锅。 /p p   (3)具塞玻璃磨口比色管。 /p p   5、试剂 /p p   (1)无氨水,每升水中加入0.1ml浓硫酸,蒸馏。收集流出液于玻璃容器中。 /p p   (2)20%(m/V)氢氧化钠:称取20g氢氧化钠,溶于无氨水中,稀释至100ml。 /p p   (3)碱性过硫酸钾溶液:称取40g过硫酸钾,15g氢氧化钠,溶于无氨水中,稀释至1000ml,溶液存放在聚乙烯瓶内,可储存一周。 /p p   (4)1+9盐酸。 /p p   (5)硝酸钾标准溶液:a、标准贮备液:称取0.7218g经105-110℃烘干4h的硝酸钾溶于无氨水中,移至1000ml容量瓶中定容。此溶液每毫升含100毫克硝酸盐氮。加入2ml三氯甲烷为保护剂,至少可稳定6个月。b、硝酸钾标准使用液:将贮备液用无氨水稀释10倍而得。此溶液每毫升含10毫克硝酸盐氮。 /p p   6、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)取3个25mL的比色管(注意不是大的比色管)。第一支比色管加蒸馏水加至下部刻度线 第二支比色管加1mL进水样,然后用蒸馏水加至下部刻度线 第三支比色管加2mL出水样,然后用蒸馏水加至下部刻度线。 /p p   (3)分别向3个比色管加5mL碱式过硫酸钾 /p p   (4)将3个比色管放入到塑料烧杯内,然后放到高压锅内加热。进行消解。 /p p   (5)加热完毕,拆开纱布,自然冷却。 /p p   (6)冷却后,再向3个比色管分别加1mL1+9的盐酸。 /p p   (7)向3个比色管分别加蒸馏水至上部刻度线,摇匀。 /p p   (8)使用两种波长,用分光光度计测。首先用波长275nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数 再用波长220nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数。 /p p   (9)计算结果。 /p p    span style=" color: rgb(0, 112, 192) " strong 六、氨氮(NH3-N)的测定 /strong /span /p p   1、方法原理 /p p   典化汞和典化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在教宽的波长范围不内具强烈吸收。通常测量用波长在410—425nm范围。 /p p   2、水样的保存 /p p   水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时加硫酸水样酸化至PH& lt 2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氨而遭致污染。 /p p   3、干扰及消除 /p p   脂肪胺、芳香胺、醛类、丙酮、醇类和有机氮胺类等有机化合物,以及铁,锰,镁和硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可以酸性条件下加热以除去对金属离子的干扰,还可以加入适量的掩蔽剂加以消除。 /p p   4、方法的适用范围 /p p   本法最低检出浓度为0.025mg/l(光度法),测定上限为2mg/l.采用目视比色法,最低检出浓度为0.02mg/l。水样作适当、预处理后,本法可适用于地面水,地下水、工业废水和生活污水。 /p p   5、仪器 /p p   (1)分光光度计。 /p p   (2)PH计 /p p   6、试剂 /p p   配制试剂用水均应为无氨水。 /p p   (1)纳氏试剂 /p p   可选择下列一种方法制备 /p p   1、称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,该为滴加饱和的二氧化汞溶液,并充分搅拌,出现朱红色沉淀不在溶解时,停止加氯化汞溶液。 /p p   另称取60g氢氧化钾溶于水中,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静至过夜,将上清液移入聚乙烯瓶中,密塞保存。 /p p   2、称取16 g氢氧化钠,溶于50ml水中,充分冷却至室温。 /p p   另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 /p p   (2)酸钾钠溶液 /p p   称取50g酒石酸钾钠(KNaC4H4O6.4H2O)溶于100ml水中,加热蒸沸以除去氨,冷却,定溶至100ml。 /p p   (3)铵标准贮备溶液 /p p   称取3.819g经100摄氏度干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 /p p   (4)铵标准使用溶液 /p p   移取5.00ml胺标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 /p p   7、计算 /p p   从校准曲线上查得氨氮含量(mg) /p p   氨氮(N,mg/l)=m/v*1000 /p p   式中,m——由校准查得氨氮量(mg),V——水样体积(ml)。 /p p   8、注意事项 /p p   (1)钠氏试剂碘化汞与碘化钾的比例,对显色反映的灵敏度有较大影响。静止后生成的沉淀应除去。 /p p   (2)滤纸中长含痕量铵盐,使用时注意用无氨水洗涤。所有玻璃器皿应避免实验室空气中氨的沾污。 /p p   9、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)将进水样、出水样分别倒入到100mL的烧杯内。 /p p   (3)向两个烧杯内分别加入1mL 10%的硫酸锌和5滴氢氧化钠,用2个玻璃棒分别搅拌。 /p p   (4)静置3分钟后开始过滤。 /p p   (5)将静置后的水样倒入到滤斗内,过滤部分后将底下烧杯内的滤液倒掉,然后再用此烧杯接漏斗内剩余的水样,直到过滤完毕再次将底下烧杯内的滤液倒掉。(换言之用一漏斗的滤液洗两次烧杯) /p p   (6)分别过滤完烧杯内的剩余水样。 /p p   (7) 取3个比色管。第一支比色管加蒸馏水加至刻度线 第二支比色管加3--5mL进水样滤液,然后用蒸馏水加至刻度线 第三支比色管加2mL出水样滤液,然后用蒸馏水加至刻度线。(所取进、出水样滤液的量不固定) /p p   (8)分别向3个比色管分别加1mL酒石酸钾钠和1.5mL纳氏试剂。 /p p   (9)分别摇匀,计时10分钟。用分光光度计测,用波长420nm,20mm的比色皿。记数。 /p p   (10)计算结果。 /p p    span style=" color: rgb(0, 112, 192) " strong 七、硝酸盐氮(NO3-N)的测定 /strong /span /p p   1、方法原理 /p p   水样在碱性介质中,硝酸盐可被还原剂(戴氏合金)在加热情况下定量被还原为氨,经蒸馏后被吸收于硼酸溶液中,用纳氏试剂光度法或酸滴定法测定。 /p p   2、干扰及消除 /p p   亚硝酸盐在此条件下,亦被还原为氨,需预先除去。水样中的氨及氨盐亦可在加入戴氏合金以前,预蒸馏使除去。 /p p   本法尤适用于严重污染的水样中硝酸盐氮的测定,同时,亦可作为水样中亚硝酸盐氮的测定(由水样在碱性预蒸馏去除氨和铵盐后,测定亚硝酸盐总量,减去单独测定的硝酸盐量后,即为亚硝酸盐量)。 /p p   3、仪器 /p p   带氮球的定氮蒸馏装置。 /p p   4、试剂 /p p   (1)氨基磺酸溶液:称取1g氨基磺酸(HOSO2NH2)溶于水,稀释至100ml。 /p p   (2)1+1盐酸 /p p   (3)氢氧化纳溶液:称取300g氢氧化纳溶解于水,稀释至1000ml。 /p p   (4)戴氏合金(Cu50:Zn5:Al45)粉剂。 /p p   (5)硼酸溶液:称取20g硼酸(H3BO3)溶于水,稀释至1000ml.。 /p p   5、测定步骤 /p p   (1)将取回的3号点和回流点的样摇匀后放置澄清一段时间。 /p p   (2)取3个比色管。第一支比色管加蒸馏水加至刻度线 第二支比色管加3mL3号点样上清液,然后用蒸馏水加至刻度线 第三支比色管加5mL回流点么上清液,然后用蒸馏水加至刻度线。 /p p   (3)取3个蒸发皿,降3个比色管中的液体对应倒入蒸发皿中。 /p p   (4)向3个蒸发皿中分别加入0.1mol/L的氢氧化钠调节PH至8。(使用精密PH试纸,范围为5.5—9.0之间的。每个约需氢氧化钠20滴左右) /p p   (5)开启水浴锅,将蒸发皿放到水浴锅上,温度设定为90℃,直至蒸干为止。(约需2小时) /p p   (6)蒸干后,取下蒸发皿冷却。 /p p   (7)冷却后分别向3个蒸发皿中加1mL酚二磺酸,用玻璃棒研磨,使试剂与蒸发皿中的残渣充分接触,静置片刻后,再研磨一次。放置10分钟后,分别加入约10mL的蒸馏水。 /p p   (8)分别向蒸发皿中边搅拌边加入3--4mL氨水,然后将其移到对应的比色管中。分别加蒸馏水至刻度线。 /p p   (9)分别摇匀,用分光光度计测,用波长410nm,10mm的比色皿(普通玻璃的、稍新的)。并记数。 /p p   (10)计算结果。 /p p   span style=" color: rgb(0, 112, 192) " strong  八、溶解氧(DO)的测定 /strong /span /p p   溶解在水中的分子态氧称为溶解氧。天然水中的溶解氧含量取决于水中与大气中氧的平衡。 /p p   一般采用采用碘量法测溶解氧 /p p   1、方法原理 /p p   水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀,加酸后,氢氧化物沉淀溶解并与碘离子反应释放出游离碘。以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,可计算溶解氧的含量。 /p p   2、测定步骤 /p p   (1)用广口瓶取回的9号点的样,静置十几分钟。(注意用的是广口瓶,并注意取样方法) /p p   (2)用玻璃弯管插入广口瓶样内,用虹吸法向溶解氧瓶中吸入上清液,先少吸一些,润洗溶解氧瓶3次,最后再吸入上清液注满溶解氧瓶。 /p p   (3)向满的溶解氧瓶中加入1mL硫酸锰和2mL碱性碘化钾。(注意加的时候的注意事项,从中部加入) /p p   (4)盖上溶解氧瓶的瓶盖,上下摇匀,隔几分钟再摇,摇匀三次。 /p p   (5)再向溶解氧瓶中加入2mL浓硫酸,摇匀。放在暗处静置五分钟。 /p p   (6)向碱式滴定管(带橡胶管、玻璃珠的。注意酸式、碱式滴定管的区别)倒入硫代硫酸钠至刻度线,准备滴定。 /p p   (7)静置5分钟后,取出放在暗处的溶解氧瓶,将溶解氧瓶中的液体倒入到100mL的塑料量筒内,润洗3次。最后倒至量筒的100mL刻度线。 /p p   (8)将量筒内的液体倒入到锥形瓶中。 /p p   (9)用硫代硫酸钠向锥形瓶中滴定至无色,然后加入一滴管淀粉指示剂,再用硫代硫酸钠滴定,直至褪色,记录读数。 /p p   (10)计算结果。 /p p   溶解氧(mg/L)=M*V*8*1000/100 /p p   M为硫代硫酸钠溶液浓度(mol/L) /p p   V为滴定时消耗硫代硫酸钠溶液的体积(mL) /p p   span style=" color: rgb(0, 112, 192) " strong  九、总碱度 /strong /span /p p   1、测定步骤 /p p   (1)将取回的进水样、出水样摇匀。 /p p   (2)将进水样过滤(若进水较干净,则不需过滤),用100mL的量筒取滤液100mL到500mL的三角烧瓶中。用100mL的量筒取摇匀后的出水样100mL到另一个500mL的三角烧瓶中。 /p p   (3)分别向两个三角烧瓶中加3滴甲基红-亚甲基兰指示剂,呈浅绿色。 /p p   (4)向碱式滴定管(带橡胶管、玻璃珠的,50mL的。而溶解氧测定中用到的碱式滴定管是25mL的,注意区分)倒入0.01mol/L的氢离子标液至刻度线。 /p p   (5)分别向两个三角烧瓶中用氢离子标液滴定呈现淡紫色,记录所用的体积读数。(切记滴定完一个之后读数,并加满滴定另一个。进水样约需四十多毫升,出水样约需一十多毫升) /p p   (6)计算结果。用氢离子标液的用量*5即为体积。 /p p    span style=" color: rgb(0, 112, 192) " strong 十、污泥沉降比(SV30)的测定 /strong /span /p p   1、测定步骤 /p p   (1)取一个100mL的量筒。 /p p   (2)将取回的氧化沟9号点的样摇匀,倒入量筒至上部刻度线处。 /p p   (3)开始计时30分钟后,读出分界面的刻度读数并记录。 /p p span style=" color: rgb(0, 112, 192) " strong   十一、污泥体积指数(SVI)的测定 /strong /span /p p   SVI的测定是用污泥沉降比(SV30)除以污泥浓度(MLSS)即为结果。但要注意换算单位。SVI的单位为mL/g。 /p p    span style=" color: rgb(0, 112, 192) " strong 十二、污泥浓度(MLSS)的测定 /strong /span /p p   1、 测定步骤 /p p   (1)将取回的9号点的样和回流点的样摇匀。 /p p   (2)将9号点的样和回流点的样各取100mL到量筒中。(9号点的样用测污泥沉降比所取得即可) /p p   (3)用旋片式真空泵分别过滤量筒内9号点的样和回流点的样。(注意滤纸的选用,所用的滤纸是提前称好的滤纸。若当天9号点的样要测MLVSS,过滤9号点样就要选用定量滤纸,反正选用定性滤纸。另外注意定量滤纸与定性滤纸的的区别) /p p   (4)取出过滤的滤纸泥样放到电热鼓风干燥箱,干燥箱温度升至105℃开始计时干燥2小时。 /p p   (5)取出干燥后的滤纸泥样放到玻璃干燥器内冷却半小时。 /p p   (6)冷却后用精密电子天平称量并记数。 /p p   (7)计算结果。污泥浓度(mg/L)=(天平读数-滤纸重量)*10000 /p p    span style=" color: rgb(0, 112, 192) " strong 十三、挥发性有机物质(MLVSS)的测定 /strong /span /p p   1、测定步骤 /p p   (1)将9号点的滤纸泥样用精密电子天平称量后,将滤纸泥样放入到小的瓷坩埚内。 /p p   (2)开启箱式电阻炉,温度调至620℃,将小瓷坩埚放入到箱式电阻炉内约2小时。 /p p   (3)两小时后,关闭箱式电阻炉,冷却3小时后将箱式电阻炉的门开一点小缝,再次冷却半小时左右,确保瓷坩埚温度不超过100℃。 /p p   (4)取出瓷坩埚放到玻璃干燥器内再次冷却半小时左右,放到精密电子天平上进行称量,并记录读数。 /p p   (5)计算结果。 /p p   挥发性有机物质(mg/L)=(滤纸泥样重+小坩埚重-天平读数)*10000。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制