当前位置: 仪器信息网 > 行业主题 > >

内羧基酸

仪器信息网内羧基酸专题为您提供2024年最新内羧基酸价格报价、厂家品牌的相关信息, 包括内羧基酸参数、型号等,不管是国产,还是进口品牌的内羧基酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合内羧基酸相关的耗材配件、试剂标物,还有内羧基酸相关的最新资讯、资料,以及内羧基酸相关的解决方案。

内羧基酸相关的论坛

  • 请问质子化的酸的羧基氢峰有什么特征?

    酸化是好象过了,打出的谱图羧基氢的峰找不到,在化学位移12.2处出现一个小鼓包。溶剂是D6-DMSO,不知是否是氢交换的缘故,还是其他的原因?请问质子化的酸的羧基氢峰有什么特征?

  • 不饱和脂肪酸的羧基碳不同的人做,化学位移会不会有变化

    我分到一个不饱和脂肪酸,和文献对照,其它数据都一样,就是羧基碳的化学位移差1,文献是178.39,而我的是179.4(全谱验证).所以问一下做NMR的高手有无此种情况.结构式见附件.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15133]请教[/url]

  • 【分享】有机合成中羧基保护方法简介!

    有机合成中羧基保护方法简介保护羧基的方法主要是酯化法,但在某些情况下,也可以用形成酰胺或酰肼等方法来进行保护.1.酯化法保护羧基:甲酯和乙酯 甲酯和乙酯作为羧酸的保护基对一系列合成操作十分适用。例如,以酯的形式进行的烷基化反应和各种缩合反应,随后酯基在酸或碱的催化下水解除去,偶尔酯基也可用热解反应消去。但简单的烷基酯作为羧酸的保护基在有些情况下并不适用,其原因往往是由于最后需用皂化反应来除去酯基。因此,实际上在合成中常甲基和乙基的衍生物取而代之。甲基的衍生物主要是苄基类型,可用温和条件下的酸处理或氢解脱除。乙基衍生物主要是β,β,β2三氯乙基等2.酯化法保护羧基:叔丁酯 叔丁酯不能氢解,在常规条件下也不被氨解及碱催化水解,但叔丁基在温和的酸性条件下可以异丁烯的形式裂去。此性质使叔丁基在那些不能进行碱皂化的情况下特别吸引人,例如:用于酮、β2酮酯、α,β不饱和酮和对碱敏感的α2酮醇以及肽的合成。在青霉素的合成中,可选择性地裂开叔丁酯以便形成β2内酰胺 在菌霉素的合成中和在容易还原的酮的制备中,都可用叔丁基来保护羧基。四氢吡喃酸具有和叔丁酯相似的对酸的不稳定性,这一保护基也类似地用于丙二酸酯类型的酮和酮酯的合成中。3. 酯化法保护羧基:苄基、取代苄基及二苯甲基酯类 这类酯保护基的特点在于它们能很快地被氢解除去。在青霉素合成中,苄酯不被温和的酯水解条件破坏,最后需由氢解除去苄酯 在谷酰胺和天门冬酰胺的合成中,以及在L2谷氨酸和L2天门冬氨酸酯的制备中,苄酯的性质都能典型地显示出来。Bowman 和Ames 将苄基酯用在活性酯(有α2活泼氢) 的烷基化或酰基化中,此法曾出色地完成脂肪酸、酮、二酮和α2醇酮的合成。芳环上或次甲基上有取代基的苄基在用酸性试剂脱去时,其敏感性可有大幅度的改变。Stewevr 在酯肽类合成中利用了亚甲苄酯易于催化脱去的优点,用其代替叔丁酯。苄酯和对硝基苄酯也可作为羧基的保护基,一个典型的例子就是其在氨基的酰化衍生物合成中的应用。在苯酯和缩酚酸的合成中,二苯甲酯具有相似的作用,但二苯甲酯在酸存在条件下的溶剂化分解太快,因此在酸性条件下不易作羧基保护基。总之,这类酯是一种有价值的保护基,其制备可用经典的方法及前述的反应制备。4.用酰胺和酰肼来保护羧基 在有限的范围内人们采用酰胺和酰肼的形式保护羧基,从其解脱方式的角度补充了酯类保护作用的不足。酰胺和酰肼对解脱酯类的温和碱性水解条件稳定,但酯类对能有效脱解酰胺的亚硝酯和用于裂解酰肼的氧化剂又均稳定,二者可以互补。制备酰胺和酰肼的经典方法是以酯或酰氯分别与胺或肼作用制备,也可直接从酸制得。酰肼已被用于抗菌素和肽的合成,在肽的合成中它们可被亚硝酸转化为叠氮化物,使得缩合反应容易发生。5. 酯的保护 酯和内酯的保护可视为羧基的间接保护,而且酯须有α2活泼氢,否则反应很复杂。酯在引进保护基后,可在很多条件下保持稳定,如HOAc/ H2O/ THF(25 ℃,1 h) ,KOH/MeOH(25 ℃,12 h) ,LiAlH4/ Et2O(25 ℃,3 h) ,CH3Li/Et2O(25 ℃,2 h) 等。可用汞盐或三氟化硼脱去脂保护基 综上所述,保护羧基的方法虽然不多,但作为保护基的酯的种类却不少,且各有特色。近年来有关羧基保护的研究主要在肽、氨基酸、抗菌素等的合成方面,且应用日见广泛。

  • 【求助】【求助】关于羧基的峰

    我的化合物含羧基,但是氢谱上9-13的地方并没有发现有峰,做质谱分子量又确实是我要的化合物,请问是什么原因,羧基有可能不出峰吗?

  • 跪求一篇文献:铜、碳钢表面自组装含羧基席夫碱缓蚀膜的实验与理论评价,万分感谢!

    文献题目如下:铜、碳钢表面自组装含羧基席夫碱缓蚀膜的实验与理论评价作 者: 陈世亮来 源: 桂林理工大学 2012年摘 要: 羧基芳香醛类席夫碱因其含有羧基和甲亚氨基结构,具有孤对电子的O和N原子极易向金属的空轨道提供电子而形成稳定化学键,因此在金属表面形成自组装膜,能有效抑制金属的腐蚀。 本文利用2-吡啶甲酰肼、2-噻吩甲酰肼、水杨甲酰肼、对氨基苯甲酸、间氨基苯甲酸、对氨基苯磺酸、对羧基苯甲醛、邻氧乙酸苯甲醛设计合成了一系列新的席夫碱缓蚀剂,用X-射线单晶衍射、紫外-可见光谱。。。。。。。。。

  • 【求助】含羧基的药物

    [size=5]各位朋友们好,我急切求助,在下想知道含有羧基的可用叔胺标记的药物有哪些?请指点迷津,诚挚感谢![/size]

  • 使用waters的AQC衍生氨基酸的人注意了

    脯氨酸与γ-氨基丁酸采用上述方法时,很难分离,从而对脯氨酸的测定产生一定影响。而γ-氨基丁酸又是人体内常见的神经递质,可由谷氨酸脱羧基生成,故广泛存在。对于来自生物提取物(工艺较滥时),这种情况尤为明显。

  • 求助碳谱做不出羧基信号

    一化合物结构确定了,(样品量不是很大),但是羧基的碳却没有做出来 求助这种情况见得多么?有没有文献支持啊求解啊

  • 带羧基样品的液相色谱分离问题

    大家好,有几个化合物分别带2个或4个羧基,想通过高效液相色谱C18柱分离,一般采用什么流动相?请有经验的版友多多指导。目前试了甲醇水效果不好。

  • 【转帖】大家知道吗,三聚氰胺有个姐妹叫NPN生物蛋白精(羟甲基羧基氮)

    新农村商网上的资料说是山东省滨州港牧丰蛋白饲料厂生产的:NPN生物蛋白精(羟甲基羧基氮)是一种新型蛋白氮饲料添加剂,NPN生物蛋白精是由有机醛基团与氮、磷营养基,经科学配比合成,经生化反应,将醛基部分氧化成羧基,使其具备了蛋白质的热量,同时NPN生物蛋白精又是适应反刍动物与非反刍动物饲料添加的一种强化型蛋白质饲料添加剂,含高效蛋白氮转换基,34±2%或43±2%,是牛、羊、禽及水产养殖业用以替代天然蛋白饲料的理想蛋白源。NPN生物蛋白精可以,降低饲料成本、提高饲料报酬,改善蛋、奶、肉的品质,并且无毒无副作用。 一、技术标准 1、外观:白色、灰色或黄色粉末 2、总氮含量(N%):34±2%或43±2%蛋白含量200%-280% 3、酸碱度(PH值):6.0-7.0或9.0-12 4、重金属(以Pb计):≤0.002% 二、用法用量 1、用量:根据配方需要可以添加不同的量,一般动物饲料为2――3%,反刍动物饲料可添加3―――5%; 2、用法:将计量的蛋白添加剂直接加入饲料中。 采用聚丙烯编织袋包装,每袋净重40公斤或50公斤。 本产品应储存在阴凉、通风、干燥的库房内,严禁与有毒物品混放。这种被称为NPN生物蛋白精的东东是什么?

  • 【求助】1H NMR的氨基、羧基质子峰没有?

    我的一个头孢母核的中间体的1Hnmr图谱中没有发现羧基和氨基的质子峰,这是不是因为这两个基团的质子与溶剂氘代DMSO发生了质子交换的原因呢?(溶剂DMSO-d6,图谱显示明显的水峰。样品浓度比较稀,信号高度约为溶剂峰的1/3)而用此中间体合成的头孢药物则可识别出羧基和氨基峰,这又似乎没有与溶剂氘代DMSO发生交换,这该如何解释呢?

  • ESI正离子下羧基是如何脱CO2的?

    ESI正离子下羧基是如何脱CO2的?

    小弟做青霉素和头孢菌素类的ESI质谱,发现正离子下都有很明显的脱CO2碎片离子,即+。如果在负离子下发生脱CO2很好理解,因为分子中只有羧基上的氢容易离去。但是正离子下羧基是-COOH这样的形式,正常应该脱去HCOO啊,请问正离子下脱去CO2的机理是什么?有质子转移发生么?如果有时怎么发生的?附上图。http://ng1.17img.cn/bbsfiles/images/2012/12/201212242116_415162_2089465_3.jpg

  • 改善酸峰形的四种途径

    改善酸峰形的四种途径 色谱工作者时常对碱性化合物拖尾(峰形差)的现象比较熟悉。这种现象通常是由于碱性化合物中的碱性氮原子与固定相中酸性硅醇基的相互作用而至。分析者通常使用加入三乙胺的办法来减少拖尾现象的发生。酸性物质峰形差的现象不多见,但同样给分析结果造成不良影响。下文以布洛芬(对异丁基苯异丙酸)的分析为例,介绍几种改善峰形的方法。 1. 增加流动相中盐的浓度。 分析布洛芬的一种方法是使用60∶40(v/v)的乙腈-5mM磷酸二氢钠。图1(a)中是使用此流 动相所得色谱图,拖尾因子高达(Tf)3.9。高盐浓度(如,25-50mm)磷酸盐可改善酸性物 质的峰形,原因是高盐可抑制溶质与硅胶的离子化以及二者之间的第二相互作用。本例中,分析者应注意分析方法本身及所分析溶质。布洛芬的酸性官能团-羧基(见图1a)的 pka4.4。5mM磷酸二氢钠的pH也是4.4,此pH在磷酸盐的缓冲范围之外(1.1-3.1)。因此, pH4.4时,布洛芬的羧基刚好达到解离平衡(离子化状态与非离子化状态共存)。羧基 (特别是离子化状态羧基)可发生离子交换作用或与硅胶表面的质子竞争,导致拖尾或增加保留。为降低这些相互作用,分析者必须使流动相的pH值远离样品的pka值。 2. 降低流动相的pH值。 将流动相的pH值降低到3.0,峰形得以改善(见图1b)。pH3.0拖尾因子高达(Tf)3.9时,在流动相缓冲范围内,但缓冲能力较低。使盐浓度增加到大于20mM可改善色谱重现性,也能改善峰形。此时布洛芬的羧基不同于pH4.4时的离子化与非离子化混合状态,而 处于单一质子化状态。质子化状态时羧基与硅胶表面质子化的硅醇基相互作用的可能性就小得多。因此,低pH值与盐条件下,布洛芬的拖尾因子降至1.8(图1b)。此结果表明,第二种相互作用已被降低,但尚未消除。另外一种改善峰形的办法及使用添加剂。 3. 加入竞争有机酸。 与加入三乙胺抑制碱性化合物拖尾原理相似,有机酸可与酸性样品组分竞争硅胶表面的活性位置。在流动相中加入1%乙酸对峰形的改善可见图1c,其中得到了对称的布洛芬峰,拖尾因子为1.0。流动相也可再作改变以期获得所希望的结果。 4. 使用另一种有机酸- 0.1%三氟乙酸。 较高浓度的乙酸会产生较高的基线噪音(图1c)。使用0.1%三氟乙酸(约13mM) 取代乙 酸及磷酸盐,使流动相更为简单,仍可获得非常对称的布洛芬峰(图1d)。除此之外,这一流动相还改善了UV透过性,满足了[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]的挥发性需要。

  • 【转帖】氨基酸的主要化学反应

    氨基酸的主要化学反应(一)茚三酮反应茚三酮反应(ninhydrin reaction)这是氨基酸的α-NH2所引起的反应。α-氨基酸与水合茚三酮一起在水溶液中加热,可发生反应生成蓝紫色物质。首先是氨基酸被氧化分解,放出氨和二氧化碳,氨基酸生成醛,水合茚三酮则生成还原型茚三酮。在弱酸性溶液中,还原型茚三酮、氨和另一分子茚三酮反应,缩合生成蓝紫色物质。所有氨基酸及具有游离α-氨基的肽都产生蓝紫色,但脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,因其α-氨基被取代,所以产生不同的衍生物。此反应十分灵敏,根据反应所生成的蓝紫色的深浅,在570nm波长下进行比色就可测定样品中氨基酸的含量。也可在分离氨基酸时作为显色剂定性、定量地测定氨基酸。 (二)氨基酸与2,4-二硝基氟苯的反应 此反应又称桑格反应(Sanger reaction)。在弱碱性(pH 8~9)、暗处、室温或40℃条件下,氨基酸的α-氨基很容易与2,4-二硝基氟苯(缩写为FDNB)反应,生成黄色的2,4-二硝基氨基酸(dinitrophenyl amino acid,简称DNP-氨基酸)。该反应由F. Sanger首先发现。多肽或蛋白质的N-末端氨基酸的α-氨基也能与FDNB反应,生成一种二硝基苯肽(DNP-肽)。由于硝基苯与氨基结合牢固,不易被水解,因此当DNP-多肽被酸水解时,所有肽键均被水解,只有N-末端氨基酸仍连在DNP上,所以产物为黄色的DNP-氨基酸和其它氨基酸的混合液。混合液中只有DNP-氨基酸溶于乙酸乙酯,所以可以用乙酸乙酯抽提并将抽提液进行色谱分析,再以标准的DNP-氨基酸作为对照鉴定出此氨基酸的种类。因此2,4-二硝基氟苯法可用于鉴定多肽或蛋白质的N-末端氨基酸。(三)氨基酸与苯异硫氰酸(PITC)的反应 此反应又称艾德曼反应(Edman reaction)。在弱碱性条件下,氨基酸的α-氨基可与苯异硫氰酸(phenylisothiocyanate, PITG)反应生成相应的苯氨基硫甲酰氨基酸(简称PTC-氨基酸)。在酸性条件下,PTC-氨基酸环化形成在酸中稳定的苯乙内酰硫脲氨基酸(phenylthiohydantoin,简称PTH)。蛋白质多肽链N-末端氨基酸的α-氨基也可有此反应,生成PTC-肽,在酸性溶液中释放出末端的PTH-氨基酸和比原来少一个氨基酸残基的多肽链。PTH-氨基酸在酸性条件下极稳定并可溶于乙酸乙酯,用乙酸乙酯抽提后,经高压液相层析鉴定就可以确定肽链N-末端氨基酸的种类。该法的优点是可连续分析出N端的十几个氨基酸。瑞典科学家P. Edman首先使用该反应测定蛋白质N-末端的氨基酸。氨基酸自动顺序分析仪就是根据该反应原理而设计的。(四)α-羧基的反应 氨基酸的α-羧基和一般的羧基一样,可以和碱作用生成盐,其中重金属盐不溶于水。氨基酸的羧基还能与醇类作用,被酯化生成相应的酯。酯化作用在人工合成多肽中常用来保护氨基酸的α-羧基。例如,氨基酸在无水乙醇中通入干燥氯化氢气体,或加入二氯亚砜,然后回流,生成氨基酸酯的盐酸盐。氨基酸的α-羧基被还原可产生相应的α-氨基醇,例如被氢硼化锂还原的反应。此性质在蛋白质一级结构的测定中是鉴定C-末端氨基酸的一种方法。(五)R基的反应 氨基酸的R侧链含有官能团时也能发生化学反应,例如丝氨酸、苏氨酸和羟脯氨酸均为含有羟基的氨基酸,所以能形成酯。酪氨酸的R侧链含有苯酚基,具有还原性,所以可利用此性质定量地测定蛋白质。另外,苯酚基和组氨酸中的咪唑基具有芳香环或杂环的性质,能与重氮化合物(如对氨基苯磺酸的重氮盐)结合而生成棕红色的化合物,此反应可用于定性、定量测定。此外,半胱氨酸的侧链上的巯基(-SH)的反应性能高,在碱性溶液中容易失去硫原子并且容易被氧化而生成胱氨酸。另外,极微量的某些重金属离子,如Ag+、Hg2+,都能与-SH基反应,生成硫醇盐,从而导致含-SH酶失活。

  • 【转帖】使用waters的AQC衍生氨基酸的人注意了

    [size=4][color=#000080]  使用waters的AQC衍生氨基酸的人注意了[/color][/size][size=4][color=#000080]  脯氨酸与γ-氨基丁酸采用上述方法时,很难分离,从而对脯氨酸的测定产生一定影响。而γ-氨基丁酸又是人体内常见的神经递质,可由谷氨酸脱羧基生成,故广泛存在。对于来自生物提取物(工艺较滥时),这种情况尤为明显。[/color][/size][size=4][color=#000080]  另外,用大连伊利特的DNFB(2,4-二硝基氟苯)衍生氨基酸,结果脯氨酸和γ-氨基丁酸分离度也不好,大家注意一下。[/color][/size]

  • 特质解谱,化合物有酰胺、羧基、酯基,请求大神们帮帮忙

    特质解谱,化合物有酰胺、羧基、酯基,请求大神们帮帮忙

    [color=#444444]质谱图和化合物结构式如图所示,需要写出裂解规律自己实在是无能为力了看分子量的裂解规律326-308=18正好减去一个水,不知道是是否是减去羧基,如果是减去羧基后变成了什么?还有后面的等等[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/05/201905161333405081_1692_1646718_3.png!w690x517.jpg[/img][img=,675,900]https://ng1.17img.cn/bbsfiles/images/2019/05/201905161333512002_6216_1646718_3.png!w675x900.jpg[/img][/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制