当前位置: 仪器信息网 > 行业主题 > >

吲达帕胺

仪器信息网吲达帕胺专题为您提供2024年最新吲达帕胺价格报价、厂家品牌的相关信息, 包括吲达帕胺参数、型号等,不管是国产,还是进口品牌的吲达帕胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吲达帕胺相关的耗材配件、试剂标物,还有吲达帕胺相关的最新资讯、资料,以及吲达帕胺相关的解决方案。

吲达帕胺相关的论坛

  • ICP-AES可以检测亚胺基二乙酸中的元素含量吗?

    ICP-AES一般是检测无机元素含量,主要是金属元素。我现有个疑问,亚胺基二乙酸想要检测一下其中的元素含量,并且它可以溶于水,那么水溶解以后是否就可以上机检测了?因曾做过这一类型的有机物,进样到ICP-AES中会熄火,不知道是不是因为有机物的原因,所以不太敢检测亚胺基二乙酸,检测有机物对仪器影响大吗?会不会把仪器烧了?请各位支招。谢谢!

  • 西达本胺通过信号通路调节促进癌细胞凋亡

    西达本胺通过信号通路调节促进癌细胞凋亡在我国,西达本胺已获批作为PTCL临床用药。西达本胺属于苯酰胺类化合物,是我国自主研发的首个亚型选择性口服HDACI,国家食品药品监督管理局已批准其用于临床试验,其选择性抑制I类HDAC1、2、3亚型和II类HDAC10亚型,可抑制肿瘤细胞增殖、促进凋亡,阻滞周期、引发DNA损伤,还可以增强抗肿瘤免疫反应。与其他抗肿瘤药物相比,西达本胺疗效好、选择性高、不良反应少。西达本胺可激活死亡受体途径和线粒体凋亡途径诱导细胞凋亡,其中最为主要的是线粒体凋亡途径,该途径受Bcl-2家族介导的细胞色素C释放通路调控。抗凋亡蛋白Bcl-2表达受到抑制,促凋亡蛋白Bax表达上调,使线粒体膜电位降低,细胞色素C释放到细胞质中,Caspase途径被激活,细胞发生凋亡。例如:西达本胺增强B淋巴瘤细胞组蛋白H3、H4 乙酰化水平,使线粒体膜电位降低随后激活Caspase 3,促进细胞凋亡;在肾癌中,它可以下调Bcl-2表达,上调Bax表达,随着药物浓度增加引起786-O 细胞凋亡。西达本胺可以调控ROS水平。HDACI可以上调ROS水平,导致DNA双链损伤。研究证明,西达本胺作用于白血病细胞后,诱导细胞内ROS产生,细胞凋亡增加[17]。此外,在胰腺癌细胞系中,西达本胺明显增强细胞内ROS的产生,上调γH2AX(DNA双链断裂的标志物)表达水平,诱发细胞DNA损伤。西达本胺通过调控细胞周期蛋白(Cyclin)、细胞周期蛋白依赖性激酶(Cyclin-dependent kinases,CDKs)以及细胞周期蛋白依赖性激酶抑制剂(Cyclin-dependent kinases inhibition,CDKI)的表达阻滞细胞周期。例如,西达本胺使MM细胞系P21、P27的表达量增高,CDK4、CDK6、Cyclin D2表达量下降,阻滞MM细胞系于G1期[19]。在NK/T细胞淋巴瘤中,西达本胺上调P21表达,下调Cyclin E表达,诱导细胞发生G0/G1期阻滞,从而抑制细胞的增殖。

  • 打耙 打耙 打耙知多少?

    奶车出牧场出来到进入生产企业的途中,奶罐里面的牛奶会出现脂肪上浮的现象。 奶车入厂后检验人员要对其指标进行检测,所以必须有专门人员对奶罐的奶进行混合,这个混合的方法就叫做打耙。 耙子必须经过消毒处理,且打耙次数不少于50次。

  • 美国制定杀虫剂吲唑磺菌胺许可限量

    近日,美国发出通报(G/SPS/N/USA/2284),美环保署制定杀虫剂吲唑磺菌胺(amisulbrom)许可限量。规定吲唑磺菌胺在葡萄中的最大残留限量为0.40ppm;在葡萄干中的最大残留限量为1.0ppm;在番茄中的最大残留限量为0.50ppm;在番茄酱中的最大残留限量为1.2ppm。 目前该通报已获批准并生效。

  • 【资料】EPA方法索引

    希望可以方便大家查找EPA方法。不好意思,上次不知道怎么没传上去。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=54842]【资料】EPA方法索引[/url]

  • 【分享】国际视点:FDA在三聚氰胺问题上自相矛盾科技博览

    国际视点:FDA在三聚氰胺问题上自相矛盾科技博览 中国婴儿奶粉三聚氰胺污染事件发生后,美国政府对所有中国产的奶制品,无论检测是否含三聚氰胺,一律封杀,并称美国产的奶粉绝对安全。而25日的一则消息,让美国政府的食品和药物管理局(FDA)脸上很挂不住。 美国媒体25日纷纷援引一位FDA发言人的话报道说,美国某生产商生产的一种畅销品牌的婴儿奶粉被检测出含有“微量”的三聚氰胺。 FDA是刚刚得出这一检测结果吗?根据美联社的报道,中国发生奶粉污染事件后,FDA就对本国奶粉展开了检查,77个婴儿奶粉样本接受了检测,但检测结果并未公开。而美联社根据美国的《信息自由法》要求FDA向其提供检测结果。对于问题样本,FDA并没有在第一时间向社会公布。 FDA在面对媒体时,仍然不愿透露检出三聚氰胺的厂商名字。在美国媒体密集的后续报道中消费者才得知,这一样本来自雀巢,FDA官员后来也被迫证实。此外,FDA还在美赞臣的某婴儿奶粉样本中检测出了一种三聚氰胺的副产品———三聚氰酸(即氰尿酸)。美联社还爆料说,尽管在FDA的检测中,婴儿奶粉主要生产商之一雅培的样本是“干净的”,但该公司也向美联社透露,在它们的内部检测中也查出自己的婴儿奶粉中含有“微量”三聚氰胺。根据美国媒体的统计数据,在美国本土生产的婴儿奶粉90%以上都来自雅培、雀巢和美赞臣三大厂商。 FDA官员25日曾表示,被发现含有三聚氰胺的某畅销品牌婴儿奶粉在生产过程中没有使用任何来自国外的原料。不过,FDA当天没有说明将如何处理奶粉中检出三聚氰胺的生产商,反而不断强调,样本中检出的三聚氰胺含量“十分低”,因此美国的婴儿奶粉仍然是“安全的”。 ` FDA负责食品安全的高级官员史蒂芬• 桑德洛夫声称:“无论从公众健康还是从婴儿健康角度,我们都认为(如此低的)含量是完全没问题的。”桑德洛夫还试图安抚广大美国父母说,“我们检测到的(三聚氰胺)水平非常低,父母们不应该因此就改变喂食选择。如果他们一直都给婴儿吃某个特定品牌的奶粉,就应该继续用下去,否则擅自停用将是一种危险的过度反应”。 FDA这一表态与先前封杀中国奶粉时说法明显前后矛盾。三聚氰胺在食品尤其是婴儿奶粉中的含量到底有没有一个安全上限值?中国奶粉污染事件之后,FDA曾在一份公告中传达了其对于三聚氰胺的“零容忍”政策,即“目前,婴儿奶粉中任何含量的三聚氰胺以及与三聚氰胺有关的化学物质都无法确认为对婴儿安全”。言外之意,婴儿奶粉中只要出现三聚氰胺就是不安全的。 当时美国的奶粉生产商、新闻媒体等都把这一表态解读为:婴儿奶粉中只要检测出三聚氰胺,无论含量高低,都不得在美国市场上销售。而桑德洛夫25日则声称,FDA从未说过、也没有暗示过,美国国内生产的奶粉完全不含三聚氰胺。美国媒体对此分析说,FDA的所言难免会让人得出这样的结论:FDA在发现本国污染样本后不得不“改口”了。 美国国会众议员巴克• 斯图帕克就指出,如果尚不能确认婴儿食品中的三聚氰胺的安全值,那么FDA就应该立即召回问题奶粉,即便其中只含有“微量”三聚氰胺。众议院负责监管FDA预算的小组委员会负责人罗莎• 德劳罗甚至批评说,FDA这样做显然是本着“市场第一、科学最后”的原则。德劳罗说:“FDA应该坚持对国内婴儿奶粉制品含三聚氰胺的‘零容忍’政策,直到它根据独立的、有力的科学证据最终确认,微量三聚氰胺不会危害婴儿健康。” 食品污染尤其是婴儿奶粉污染事件,无论发生在哪个国家都应该严肃处理,敲响警钟。而美国政府一方面把其他国家的食品安全问题视为“洪水猛兽”,对本国的厂商出了问题,却采取百般辩解的护短态度。 记者26日就FDA在美国奶粉中检出三聚氰胺采访了FDA负责与中国有关事务的主管官员克里斯托弗• 希基,但这位官员仍保持了一贯的“谨慎”作风,只答复说:“我必须与我们的新闻办公室协商后才能回答你的问题。” 来源:科技日报

  • 【分享】近日英国NICE建议应用阿达木单抗治疗银屑病

    [center]近日英国NICE建议应用阿达木单抗治疗银屑病[/center]近日,英国国家卫生与临床评价机构(NICE)公布一份指南草案:对符合一定条件的严重银屑病成人患者,可以用阿达木单抗 (adalimumab )作为一种选择治疗方法。 该指南草案限制对标准全身治疗无应答或对这类治疗不耐受或有禁忌证的患者使用阿达木单抗。标准治疗包括环孢素(ciclosporin)、甲氨蝶呤(methotrexate)及补骨脂素(psoralen)加紫外线照射。NICE的指南草案建议,第16周仍对治疗无应答的患者应停止阿达木单抗的治疗。 在以往的相关指南中,NICE向同类人群推荐依那西普(etanercept)。在最近的评价中,该机构委员们称,不做出依那西普优于阿达木单抗的推荐建议,医生可根据临床情况在这两种产品中进行选择。 阿达木单抗治疗患者应是适用抗肿瘤坏死因子的治疗人群,此类患者病情严重,NICE定义为银屑病区严重指数(PASI)达到10或超过10,皮肤病生活质量指数(DLQI)超过10; 对阿达木单抗有明显应答的银屑病定义为,治疗期间PASI数值降低75%,或PASI值降低50%且DLQI减少5个点。卫生专业人员采用DLQI数值制定治疗方案时要考虑患者的身体残疾情况或者语言或沟通困难程度。 信息来源:中国医药123网

  • 艺达思参展德国Compamed/Medica展

    德国Compamed/Medica展于2012年11月14日至16日在德国杜塞尔多夫成功举行。艺达思携多款配套生命科学仪器的流体产品亮相该展。艺达思本次推出的一项突破性技术为诊断行业的流体输送带来了更好的解决方案-通过消除流道内的尖锐转角来提升流体特性的创新多歧管板技术,是诊断和生命科学仪器中处理易结晶的盐类和缓冲溶液的理想选择。在Compamed期间,艺达思展出了Eastern Plastic的Spiral TransitionTM 多歧管板产品,直观展现了圆角区别于传统直角所带来的输送优势。另一款革新产品是Ismatec的Reglo ICC蠕动泵,可独立操控3通道蠕动泵,等同于三台单泵。是实验室灌注和培养液定量加料的理想选择。本届德国Compamed展上,吸引了不少亚洲客户。艺达思针对诊断行业创新的流体技术为亚洲客户们带了全新的解决方案。

  • DPD分光光度法测定氯胺含量及种类(饮用水标准)

    大家好: 现在正在做DPD测定氯胺的实验,需要把一氯胺、二氯胺、三氯胺分开检测,参考的是饮用水标准中的试验方法,在第二步中即使加入一小粒碘化钾,吸光度增大的很快,而且测定的C值比B值小,比N值小,想问一下,一小粒碘化钾到底加多少?B值很大是因为一氯胺过高的缘故吗?需要加入掩蔽剂吗?求大神帮忙!

  • 【原创大赛】西达本胺对SCLC肿瘤抑制作用的机制研究

    【原创大赛】西达本胺对SCLC肿瘤抑制作用的机制研究

    [align=center][font='times new roman'][size=21px]西达本胺对[/size][/font][font='times new roman'][size=21px]S[/size][/font][font='times new roman'][size=21px]CLC[/size][/font][font='times new roman'][size=21px]肿瘤[/size][/font][font='times new roman'][size=21px]抑制作用[/size][/font][font='times new roman'][size=21px]的机制研究[/size][/font][/align][align=left][size=18px]西达本胺促进[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系组蛋白乙酰化[/size][/align][align=left][size=18px] [/size][size=18px] [/size][size=16px]为验证西达本胺是否上调SCLC细胞系的乙酰化水平,我们使用Western blot[/size][size=16px]检测了不同浓度(I[/size][size=16px]C10[/size][size=16px]、[/size][size=16px]IC20[/size][size=16px]、[/size][size=16px]IC50[/size][size=16px])西达本胺处理4[/size][size=16px]8[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,S[/size][size=16px]CLC[/size][size=16px]细胞系中乙酰化组蛋白H[/size][size=16px]3[/size][size=16px]、H[/size][size=16px]4[/size][size=16px]表达水平,并以组蛋白H[/size][size=16px]3[/size][size=16px]、H[/size][size=16px]4[/size][size=16px]表达水平为对照。结果如图2-1所示。在四种亚型细胞系中,总组蛋白H[/size][size=16px]3[/size][size=16px]、H[/size][size=16px]4[/size][size=16px]表达水平无变化,乙酰化组蛋白H[/size][size=16px]3[/size][size=16px]、H[/size][size=16px]4[/size][size=16px]表达量随加药浓度增大而增多,这证明了西达本胺对S[/size][size=16px]CLC[/size][size=16px]细胞系组蛋白乙酰化的促进作用,这种作用呈剂量依赖性。[/size][/align][align=left][size=18px]A[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110102342292431_7421_5111497_3.png[/img][/align][align=left] [img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110102342295155_8286_5111497_3.png[/img][/align][align=center]图西达本胺处理48 h后乙酰化组蛋白在H69、H446(图-2-1 A)、H526、DMS114(图2-1 B)细胞中的表达情况[/align][align=center][/align][align=left][size=18px]西达本胺通过线粒体凋亡途径诱导[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系凋亡[/size][/align][align=left][size=16px]我们的功能实验表明,西达本胺[/size][size=16px]可剂量依赖的[/size][size=16px]促进SCLC细胞[/size][size=16px]系[/size][size=16px]凋亡[/size][size=16px],但其机制尚未明确。[/size][size=16px]依据国内外报道,西达本胺主要通过线粒体凋亡途径诱导细胞凋亡[/size][size=16px]。除此之外,[/size][size=16px]西达本胺[/size][size=16px]能[/size][size=16px]使[/size][size=16px]线粒体[/size][size=16px]DNA双链断裂,发生损伤。[/size][size=16px]为探究其是否通过此途径在S[/size][size=16px]CLC[/size][size=16px]细胞系中发挥作用,我们检测了加药4[/size][size=16px]8[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]H69[/size][size=16px]、H[/size][size=16px]446[/size][size=16px]、H[/size][size=16px]526[/size][size=16px]、[/size][size=16px]DMS114[/size][size=16px]细胞中由线粒体介导的C[/size][size=16px]aspase[/size][size=16px]信号通路相关蛋白Bcl-2,Bax,细胞色素C,Ca[/size][size=16px]spase 9[/size][size=16px],c[/size][size=16px]leaved Caspase 9[/size][size=16px],P[/size][size=16px]ARP[/size][size=16px],c[/size][size=16px]leaved PARP[/size][size=16px],Ca[/size][size=16px]spase 3[/size][size=16px],c[/size][size=16px]leaved Caspase 3[/size][size=16px]以及D[/size][size=16px]NA[/size][size=16px]双链断裂标志物 [/size][size=16px]γH2AX[/size][size=16px]表达水平。[/size][size=16px]Western blot[/size][size=16px]结果显示,Ca[/size][size=16px]spase 9[/size][size=16px],P[/size][size=16px]ARP[/size][size=16px] ,Ca[/size][size=16px]spase 3[/size][size=16px]表达水平无明显变化,Bcl-2表达下调,其余蛋白表达均上调(图2-2)。这些结果表明,在S[/size][size=16px]CLC[/size][size=16px]细胞中,西达本胺可以通过线粒体凋亡途径诱导细胞凋亡。[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110102342296406_3827_5111497_3.png[/img][/align][align=left][size=18px]西达本胺通过抑制[/size][size=18px]C[/size][size=18px]yclin-CDK[/size][size=18px]复合物活性阻滞[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系周期[/size][/align][align=left][font='宋体'][size=16px]据文献报道,[/size][/font][size=16px]不同HDACI对不同细胞阻滞时相不一致。为验证西达本胺对SCLC细胞周期的作用,我们检测了[/size][size=16px]经[/size][size=16px]西达本胺[/size][size=16px]处理[/size][size=16px]48[/size][size=16px] [/size][size=16px]h后,H69、H446、H526、DMS114细胞中细胞周期相关蛋白的表达水平,如图[/size][size=16px]2-3[/size][size=16px]所示。[/size][size=16px]在[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、D[/size][size=16px]MS114[/size][size=16px]细胞系中[/size][size=16px]P21、P27表达上调,C[/size][size=16px]yclin A2[/size][size=16px]与C[/size][size=16px]DK[/size][size=16px]2表达下调[/size][size=16px],说明西达本胺阻滞[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、D[/size][size=16px]MS114[/size][size=16px]于[/size][size=16px]S[/size][size=16px]期。在[/size][size=16px]H446[/size][size=16px]细胞系中[/size][size=16px]C[/size][size=16px]yclin E1[/size][size=16px]与C[/size][size=16px]DK2[/size][size=16px]表达下调[/size][size=16px],说明西达本胺阻滞其于G[/size][size=16px]1[/size][size=16px]/S期。[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110102342297519_8420_5111497_3.png[/img][size=16px] [/size][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110102342297109_6477_5111497_3.png[/img][/align][align=left][size=16px]C D[/size][/align][align=left][size=16px] [/size][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110102342300898_8640_5111497_3.png[/img][size=16px] [/size][size=16px] [/size][size=16px] [/size][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110102342300507_5958_5111497_3.png[/img][/align][align=center]图西达本胺处理48 h后周期蛋白在H69(图2-3 A)、H446(图2-3 B)、H526(图2-3 C)、DMS114(图2-3 D)细胞中的表达情况[/align][align=center][/align][align=left][size=18px]小结[/size][/align][size=16px]1[/size][size=16px].西达本胺可以增强S[/size][size=16px]CLC[/size][size=16px]细胞系组蛋白乙酰化水平。[/size][size=16px]2.西达本胺诱导S[/size][size=16px]CLC[/size][size=16px]细胞凋亡的机制可能与其激活线粒体介导的caspase凋亡途径有关。[/size][size=16px]3[/size][size=16px].[/size][size=16px]西达本胺可阻滞S[/size][size=16px]CLC[/size][size=16px]细胞周期,可能与其上调细胞周期蛋白激酶抑[/size][size=16px]制剂表达、从而抑制[/size][size=16px]C[/size][size=16px]yclin-CDK复合物活性有关。[/size]

  • 【极限体验】XB-C18斗法磺胺嘧啶银

    【极限体验】XB-C18斗法磺胺嘧啶银

    摘要:优化筛选磺胺嘧啶银的含量测定方法。考察了流动相中pH对磺胺嘧啶银保留时间的印象,并与文献中的报道进行了对比,结果表明,月旭的色谱柱,确实值得深度信任。关键词:高效液相色谱法、流动相、pH、磺胺嘧啶银 前言:磺胺嘧啶银,Silver sulfadiazine或silvadene,是一种磺胺类/银盐抗细菌药,化学式为C10H9AgN4O2S,为白色或类白色的结晶性粉末,遇光或遇热易变质。用于治疗烧烫伤创面感染,除控制感染外,还可促使创面干燥、结痂和促进愈合。涂药后,遇光渐变成深棕色。http://ng1.17img.cn/bbsfiles/images/2015/01/201501071447_531476_1609327_3.jpg该品种在2010年版中国药典二部中有收载,其中的含量测定方法为硫氰酸铵滴定法。有关物质研究为TLC法。为了增加对该品种的研究深度,查找文献开发该目标物的液相检测方法。1.实验部分2.设备和试剂高效液相色谱仪,Agilent1260;VWD检测器。乙腈、磷酸均为色谱纯,浓氨溶液、硝酸均为分析纯。1.2色谱条件检测波长:265nm;进样量:10μL;流动相:0.1%磷酸-乙腈(90:10)为流动相,等度洗脱;色谱柱:月旭,Ultimate®,XB-C18,4.6*250mm,5μm(Part. No:00201-31043,Seri. No:211303968),pH适用范围为1.5~10.0。1.3 溶液配制磺胺嘧啶银供试液配制:取本品10mg,精密称定,用20%氨水溶液溶解并定容至10ml。精密量取1.0ml,用10%硝酸溶液稀释并定容至10ml。流动相配制:因所用硝酸的质量分数为85%,取硝酸1.18ml加入到1000ml水中。经pH计测定pH为2.1。分取0.1%的硝酸溶液各250ml两份,其中一份用氨水调节pH至3.0,另一份用磷酸调整pH至1.5。然后按比例配制成三种不同pH的流动相。3.结果与讨论3.1典型色谱图 pH=1.5色谱图http://ng1.17img.cn/bbsfiles/images/2015/01/201501071448_531477_1609327_3.jpg pH=2.1色谱图http://ng1.17img.cn/bbsfiles/images/2015/01/201501071448_531478_1609327_3.jpg pH=3.0色谱图http://ng1.17img.cn/bbsfiles/images/2015/01/201501071455_531481_1609327_3.jpg3.2结果与讨论①. 月旭的色谱柱,检验该品种的峰型良好、理论塔板数高。②. 随着pH的增加,保留时间延长。但理论塔板数并没有随着保留时间的延长而降低。③. 文献中提到,流动相的pH对主成分峰的峰型有较大影响。而本实验表明,pH在2~3的范围内,峰型都良好。表明对流动相的耐用性良好。 http://ng1.17img.cn/bbsfiles/images/2015/01/201501071448_531480_1609327_3.jpg

  • 【讨论】USFDA lc/ms测定三聚氰酸\三聚氰胺

    US FDA LC/MS测定方法,供参考.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121689] USFDA lc/ms测定三聚氰酸三聚氰胺[/url]问题是用阴离子柱净化后测定三聚氰酸,阳离子柱净化三聚氰胺,能否一根固相萃取柱净化是我们的目标.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121689]USFDA lc/ms测定三聚氰酸\三聚氰胺[/url]

  • 西达本胺促进SCLC细胞系组蛋白乙酰化

    西达本胺促进SCLC细胞系组蛋白乙酰化

    [align=left][size=18px]西达本胺促进[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系组蛋白乙酰化[/size][/align][align=left][size=18px] [/size][size=18px] [/size][size=16px]为验证西达本胺是否上调[/size][size=16px]SCLC[/size][size=16px]细胞系的乙酰化水平,我们使用[/size][size=16px]Western blot[/size][size=16px]检测了不同浓度([/size][size=16px]I[/size][size=16px]C10[/size][size=16px]、[/size][size=16px]IC20[/size][size=16px]、[/size][size=16px]IC50[/size][size=16px])西达本胺处理[/size][size=16px]4[/size][size=16px]8[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系中乙酰化组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达水平,并以组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达水平为对照。结果如图所示。在四种亚型细胞系中,总组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达水平无变化,乙酰化组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达量随加药浓度增大而增多,这证明了西达本胺对[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系组蛋白乙酰化的促进作用,这种作用呈剂量依赖性。[/size][/align][align=left][size=18px]A[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350400898_8640_5887180_3.png[/img][/align][align=left][/align][align=left][/align][align=left][/align][align=center][/align][align=left][size=18px] [/size][size=18px]西达本胺通过线粒体凋亡途径诱导[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系凋亡[/size][/align][align=left][size=16px]我们的功能实验表明,西达本胺[/size][size=16px]可剂量依赖的[/size][size=16px]促进[/size][size=16px]SCLC[/size][size=16px]细胞[/size][size=16px]系[/size][size=16px]凋亡[/size][size=16px],但其机制尚未明确。[/size][size=16px]依据国内外报道,西达本胺主要通过线粒体凋亡途径诱导细胞凋亡[/size][size=16px]。除此之外,[/size][size=16px]西达本胺[/size][size=16px]能[/size][size=16px]使[/size][size=16px]线粒体[/size][size=16px]DNA[/size][size=16px]双链断裂,发生损伤。[/size][size=16px]为探究其是否通过此途径在[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系中发挥作用,我们检测了加药[/size][size=16px]4[/size][size=16px]8[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H[/size][size=16px]446[/size][size=16px]、[/size][size=16px]H[/size][size=16px]526[/size][size=16px]、[/size][size=16px]DMS114[/size][size=16px]细胞中由线粒体介导的[/size][size=16px]C[/size][size=16px]aspase[/size][size=16px]信号通路相关蛋白[/size][size=16px]Bcl-2[/size][size=16px],[/size][size=16px]Bax[/size][size=16px],细胞色素[/size][size=16px]C[/size][size=16px],[/size][size=16px]Ca[/size][size=16px]spase 9[/size][size=16px],[/size][size=16px]c[/size][size=16px]leaved Caspase 9[/size][size=16px],[/size][size=16px]P[/size][size=16px]ARP[/size][size=16px],[/size][size=16px]c[/size][size=16px]leaved [/size][size=16px]PARP[/size][size=16px],[/size][size=16px]Ca[/size][size=16px]spase 3[/size][size=16px],[/size][size=16px]c[/size][size=16px]leaved Caspase 3[/size][size=16px]以及[/size][size=16px]D[/size][size=16px]NA[/size][size=16px]双链断裂标志物[/size][size=16px] [/size][size=16px]γH2AX[/size][size=16px]表达水平。[/size][size=16px]Western blot[/size][size=16px]结果显示,[/size][size=16px]Ca[/size][size=16px]spase 9[/size][size=16px],[/size][size=16px]P[/size][size=16px]ARP[/size][size=16px] [/size][size=16px],[/size][size=16px]Ca[/size][size=16px]spase 3[/size][size=16px]表达水平无明显变化,[/size][size=16px]Bcl-2[/size][size=16px]表达下调,其余蛋白表达均上调。这些结果表明,在[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞中,西达本胺可以通过线粒体凋亡途径诱导细胞凋亡。[/size][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][size=16px]A[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350402755_79_5887180_3.png[/img][/align][align=left][size=18px] [/size][size=18px]西达本胺通过抑制[/size][size=18px]C[/size][size=18px]yclin-CDK[/size][size=18px]复合物活性阻滞[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系周期[/size][/align][align=left][font='宋体'][size=16px]据文献报道,[/size][/font][size=16px]不同[/size][size=16px]HDACI[/size][size=16px]对不同细胞阻滞时相不一致。为验证西达本胺对[/size][size=16px]SCLC[/size][size=16px]细胞周期的作用,我们检测了[/size][size=16px]经[/size][size=16px]西达本胺[/size][size=16px]处理[/size][size=16px]48[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H446[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、[/size][size=16px]DMS114[/size][size=16px]细胞中细胞周期相关蛋白的表达水平,如图所示。[/size][size=16px]在[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、[/size][size=16px]D[/size][size=16px]MS114[/size][size=16px]细胞系中[/size][size=16px]P21[/size][size=16px]、[/size][size=16px]P27[/size][size=16px]表达上调,[/size][size=16px]C[/size][size=16px]yclin A2[/size][size=16px]与[/size][size=16px]C[/size][size=16px]DK[/size][size=16px]2[/size][size=16px]表达下调[/size][size=16px],[/size][size=16px]说明西达本胺阻滞[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、[/size][size=16px]D[/size][size=16px]MS114[/size][size=16px]于[/size][size=16px]S[/size][size=16px]期。在[/size][size=16px]H446[/size][size=16px]细胞系中[/size][size=16px]C[/size][size=16px]yclin E1[/size][size=16px]与[/size][size=16px]C[/size][size=16px]DK2[/size][size=16px]表达下调[/size][size=16px],说明西达本胺阻滞其于[/size][size=16px]G[/size][size=16px]1[/size][size=16px]/S[/size][size=16px]期。[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350422585_1956_5887180_3.png[/img][size=16px] [/size][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350405804_8826_5887180_3.png[/img][/align][align=left][size=18px]小结[/size][/align][size=16px]1[/size][size=16px].[/size][size=16px]西达本胺可以增强[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系组蛋白乙酰化水平。[/size][size=16px]2.[/size][size=16px]西达本胺诱导[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞凋亡的机制可能与其激活线粒体介导的[/size][size=16px]caspase[/size][size=16px]凋亡途径有关。[/size][size=16px]3[/size][size=16px].[/size][size=16px]西达本胺可阻滞[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞周期,可能与其上调细胞周期蛋白激酶抑制剂表达、从而抑制[/size][size=16px]C[/size][size=16px]yclin-CDK[/size][size=16px]复合物活性有关。[/size]

  • SPE小柱使用体验原创征文-Anpelclean PA 聚酰胺小柱对姜黄素的净化与富集

    SPE小柱使用体验原创征文-Anpelclean PA 聚酰胺小柱对姜黄素的净化与富集

    实验目的(实验背景及目的):国家标准GB2760-2011版GB2760-2014《食品安全国家标准 食品添加剂使用标准》中规定姜黄(INS100ii,turmeric)和姜黄素(INS100i,curcumin)可作为食用色素在人造黄油、碳酸饮料、胶基糖果、巧克力制品、冷冻饮品等食品中使用,分别规定了使用量。国内目前尚未制定食品中姜黄素的HPLC和LCMSMS检测方法标准,因此建立一种快速、简便、可供确认用的检测方法十分必要。实验方法: 固相萃取柱的选择是关系到固相萃取净化步骤回收率的重要因素,它直接决定着分析组分能否定量地吸附、保留在固相萃取柱上和被一定量的洗脱溶剂洗脱。固定相的选择主要依据目标化合物的性质和样品基体(即样品的溶剂)性质。本实验对比了WatersSep-Pak C18、Agilent-ODS-C18和Anpelclean PA 聚酰胺小柱对姜黄素的净化效果,最终选择国产AnpelcleanPA 聚酰胺固相萃取柱小柱(60 mg,3 mL)。聚酰胺固定相广泛适用于各类含色素样品的净化。利用新的聚酰胺化学技术,制成与水和大多数有机溶剂,及pH0-pH14的酸性和碱性溶剂都兼容的小柱。由于聚酰胺既有亲水性又有亲脂性,对极性和非极性化合物都可以保留。与硅胶类填料不同的是,聚酰胺小柱如果在处理时不慎干涸,也能得到同样的结果。SPE小柱信息1: 货号SBAA- 1400603描述Anpelclean PA 规格60mg, 3ml聚酰胺固相萃取柱使用前,依次用3 mL 甲醇、3 mL 水活化。将上清提取液2.5 mL全部过柱,过滤速度不宜过快。上样完毕后,以2 mL 5 %甲醇水(5.9)淋洗固相萃取柱,淋洗后抽干固相萃取柱。用1.0 mL的 2 %氨化甲醇(5.5)洗脱并收集,洗脱液需尽快转移到氮吹仪,在40℃用氮气吹干后,用1.00 mL甲醇(5.1)溶解定容,过0.45 mm亲水聚四氟乙烯(PTFE)针式滤膜,供仪器测定。本标准HPLC法流动相体系采用“0.1%甲酸水-0.1%甲酸乙腈”体系,等度洗脱。姜黄素用甲醇配制成混合标准储备溶液,校正后母液浓度大致为200μg/mL,在室温或低温避光条件下,有效期至少可达6个月。以420 nm作为UV-vis或DAD检测器的检测波长;采用常规C18柱(250×4.6mm,5μm);流速:1.00 mL/min;进样量:15μL;柱温:25℃。 http://ng1.17img.cn/bbsfiles/images/2015/08/201508041901_559116_1608728_3.png 1.果冻定量限添加10 mg/kg的HPLC色谱图

  • 【分享】世界50大银行

    阿比国民银行Abbey National 英国巴克莱银行Barclays Bank PLC. 英国巴黎国民银行Banque Nationale de Paris 法国巴西银行Banco Do Brasil 巴西大和银行Daiwa Bank 日本大通曼哈顿银行Chase Manhattan Bank 美国德累斯顿银行Dresdner Bank 德国德意志银行Deutsche Bank 德国第一劝业银行Dai-Ichi Kangyo Bank 日本第一洲际银行First Interstate Bancorp 美国东海银行Tokai Bank 日本东京银行Bank of Tokyo 日本都灵圣保罗银行Istituto Bancario SanPaolo Di Torino 意大利多伦多自治领银行Toronto-Dominion Bank 加拿大富士银行Fuji Bank 日本国民劳动银行Banca Nazionale del Lavoro 意大利国民西敏寺银行National Westminster Bank PLC. 英国荷兰农业合作社中央银行Cooperatieve Centrale Raifferssen-Boerenleenbank 荷兰荷兰通用银行Algemene Bank Nederland 荷兰花旗银行Citibank 美国汉华实业银行Manufacturers Hanover Corp. 美国汇丰银行Hongkong and Shanghai Banking Corp. 香港加拿大帝国商业银行Canadian Imperial Bank of Commerce 加拿大加拿大皇家银行Royal Bank of Canada 加拿大劳埃德银行Lloyds Bank PLC. 英国里昂信贷银行Credit Lyonnais 法国伦巴省储蓄银行Cassa Di Risparmio Delle Provincie Lombarde 意大利梅隆国民银行Mellon National Corp. 美国美洲银行(全称"美洲银行国民信托储蓄会") Bank America Corp( "Bank of America National Trust and Savings Associations") 美国米兰银行Midland Bank 英国摩根保证信托银行Morgan Guaranty Trust Corp. of New York 美国纽约化学银行Chemical New York Corp. 美国纽约银行家信托公司Bankers Trust New York Corp. 美国农业信贷国民银行de Caisse Nationale Credit Agricole 法国日本兴业银行Industrial Bank of Japan 日本瑞士联合银行Union Bank of Switzerland 瑞士瑞士信贷银行Credit Suisse 瑞士瑞士银行公司Swiss Bank Corp. 瑞士三和银行Sanwa Bank 日本三井银行Mitsui Bank 日本三菱银行Mitsubishi Bank 日本太平洋安全银行Security Pacific Corp 美国西德意志地方银行Westdeutsche Landesbank Girozentrale 德国西太平洋银行公司Westpac Banking Corp. 澳大利亚西亚那银行Monte Dei Paschi Di Siena 意大利意大利商业银行Banca Commerciale Italiana 意大利意大利信贷银行Credito Italiano 意大利芝加哥第一国民银行First Chicago Corp. 美国中国银行Bank of China 中国住友信托银行Sumitomo Trust & Banking 日本

  • 【求助】溴丁酰草胺 CIPAC代码是多少

    各位大侠,不知道这个主题发到这里合不合适,我找了半天,不知道发在哪个版块。有CIPAC手册的大侠,帮我查查,溴丁酰草胺 CIPAC代码是多少?谢谢啦

  • 【讨论】-丙烯酰胺大讨论

    开始关注丙烯酰胺:2002年4月24日,瑞典国家食品管理局(Swedish National Food Administration)举行记者招待会宣布,一些富含淀粉类的食品在进行高温加工处理后都含有一种有毒的、存在潜在致癌性的化学物质——丙烯酰胺,并向全世界公布了他们的研究结果,立即引起WHO、FAO以及世界各国食品业的广泛关注。随后,挪威、瑞士、英国、美国等各国的科学家均分别进行了试验,取得了与瑞典科学家相同的实验结果,丙烯酰胺的问题进一步引起世界范围的重视。丙烯酰胺的基本性质及其应用: 丙烯酰胺(Acrylamide),CAS的登记号为79-06-1,其分子量71.09,化学分子式CH2CHCONH2。丙烯酰胺是一种不饱和酰胺,其单体为无色透明片状结晶,沸点125℃,熔点84~85℃。能溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中。丙烯酰胺单体在室温下很稳定,但当处于熔点或以上温度、氧化条件以及在紫外线的作用下很容易发生聚合反应。当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物。丙烯酰胺的来源:食品中的丙烯酰胺主要源于高温烹调,饮用水中的丙烯酰胺主要源于污水净化等工业用的聚丙烯酰胺的降解。丙烯酰胺的毒性:1 丙烯酰胺的神经毒性研究丙烯酰胺是一种中等毒性的亲神经毒物,可通过未破损的皮肤、粘膜、肺和消化道吸收入人体,分布于体液中[4]。  丙烯酰胺的神经毒性已经为许多学者所公认,大量的中毒事件也多是围绕其神经毒性方面,但丙烯酰胺导致周围神经和中枢神经系统损伤的机制还不十分清楚。现场劳动卫生学研究和体格检查发现长期职业接触丙烯酰胺的工人主要表现为四肢麻木、乏力、手足多汗、头痛头晕、远端触觉减退等,累及小脑时还会出现步履蹒跚、四肢震颤觉、深反射减退等,并发现外周神经损害多表现为通向胞体的长纤维末端首先受损,逐渐向胞体方向发展,呈“返死现象”[5]。  韩漫夫等[6]发现丙烯酰胺能使脑能量代谢受到影响,脑组织供能代偿潜能损伤,并认为这种对脑能量代谢的影响是丙烯酰胺产生神经元损伤的生化基础。丙烯酰胺中毒致周围神经病时轴突首先受累,当轴突变性时,神经元胞浆中呈持续的逆行改变,故其神经元多可恢复,神经末梢可再生。周梅荣、施建俐、秦小梅等报道了职业性丙烯酰胺中毒致小脑萎缩的案例[8];褚学斌、马佩琛、任冰等报道了丙烯酰胺中毒致视野缺损的案例[9]等。  从现已报道关于丙烯酰胺中毒的案例中可以看出,丙烯酰胺的中毒不仅仅能带来一些神经性伤害,甚至还会导致人体某些脏器发生实质性病变,从而造成严重的后遗症。我国在70年代开始报道丙烯酰胺中毒的病例,并开展了对丙烯酰胺中毒的防治研究,目前已经基本明确了丙烯酰胺毒理及临床表现,并于1996年提出丙烯酰胺中毒诊断标准(GB16370-1996)。  2. 丙烯酰胺的致癌性研究  2.1 丙烯酰胺致癌性的评估状况  大量的实验动物数据证实了丙烯酰胺具有一定的致癌作用,在实验动物的饮用水中每天加入2.0mg/kg体重的丙烯酰胺的剂量,一段时间后就可以在脑部、脊髓或其他组织中发现肿瘤细胞。Bull和Robinson等以6.25,12.5,25mg/kg的丙烯酰胺剂量经口染毒A/J小鼠,发现丙烯酰胺可诱发小鼠皮肤肿瘤,促进肺腺瘤的发展[9]。Damjanov和Friedman在饮水中加丙烯酰胺,以每天0.1、0.5、2.0mg/kg的剂量对大鼠进行104周慢性染毒,发现大鼠睾丸鞘膜肿瘤发生增加,从而认为丙烯酰胺具有一定的多巴胺拮抗作用,该机制可能是导致多种组织细胞异常增生,从而引发癌症的原因之一[10]。  Richard [11]认为,虽然各国对丙烯酰胺进行了大量的研究,并对其毒性、病理变化及毒理学特性有了较好了解,并通过实验动物模型,确认了丙烯酰胺的潜在致癌性和对生殖、神经系统的损伤作用,但是应该强调的是,虽然对丙烯酰胺职业病的流行病学研究发现了它的神经毒理作用,但是并没有说明丙烯酰胺暴露的量与癌症发生之间的联系。所以我们现在应该尽可能的获得更多的关于丙烯酰胺的资料,而不是单单强调丙烯酰胺致癌这一个方面上。  2.2 食品中丙烯酰胺的致癌性研究  食品中存在的丙烯酰胺是否存在致癌作用、多大的剂量会引起癌症,各国的科学家和研究人员存在不同的看法。  评估丙烯酰胺对人体的危险是很重要的。基于一些动物实验的结果,对丙烯酰胺的NOAEL,即最大无作用剂量水平为0.1mg/kg 体重[12]。根据新西兰国家营养机构对具有代表性的西方饮食的调查,出版了关于食品中丙烯酰胺浓度的文章[13]。通过以上文献,Ian等计算了消费者食用热的油炸薯条或油炸薯片,即经常食用的可能产生丙烯酰胺最多的食品,其中每日平均食用的丙烯酰胺的剂量在0.3μg/kg体重,这一数量是NOAEL所规定0.1mg/kg 体的三分之一,这样的话,即使消费者每天食用薯条、薯片等食品致癌的危险也是很低的[14]。虽然现在对丙烯酰胺已经进行了大量的研究,但是关于它的致癌性仍然是各国争论的焦点之一,现有数据并不足以说明食品中的丙烯酰胺可以导致某种癌症,这就需要我们通过多种实验手段、先进的科学技术来进一步深入研究食品中丙烯酰胺的问题,希望在不久的将来能够彻底的解决食品中的丙烯酰胺的问题。  3.丙烯酰胺的其他不良影响  3.1 丙烯酰胺对小鼠抗氧化能力和免疫功能的影响  小鼠经口给予不同剂量(50、100、150 mg/kg)的丙烯酰胺, 5次/7d,42d后断头取血检测指标。结果显示,染毒小鼠体重明显下降,血清脂质过氧化代谢产物(MDA)含量增高(P0 01),超氧化物歧化酶(SOD)及全血谷胱甘肽氧化酶活性于150 mg/kg染毒组降低非常明显(P0 01),150 mg/kg染毒组小鼠血中胶体炭粒清除速度明显降低,胸腺相对质量明显增加[15]。说明丙烯酰胺有抑制机体抗氧化能力和降低机体网状内皮系统吞噬功能的作用。  3.2 丙烯酰胺的基因毒性及DNA损伤作用  丙烯酰胺不能诱导细菌的基因突变,但是丙烯酰胺代谢的环氧化物——环氧丙酰胺在代谢停滞时却能诱导基因突变现象。在诱导哺乳动物细胞基因突变试验中,丙烯酰胺能表现一种很不确定的、很弱的基因突变作用。丙烯酰胺在哺乳动物细胞中可以诱导染色体失常、姊妹染色体互换、染色体倍增现象、染色体非整倍体形成以及其他有丝分裂异常现象。丙烯酰胺不能在小鼠肝细胞中诱导非常规的DNA合成,环氧丙酰胺却能诱导人体乳腺细胞的非常规的DNA合成,但环氧丙酰胺在小鼠肝细胞中的作用却不明显。  关景芳,贾文英,程林等进行了丙烯酰胺单体的细胞染色体实验观察,目的是通过对不同梯度丙烯酰胺进行诱变性实验,观察丙烯酰胺对哺乳类动物细胞遗传毒性的影响。采用细胞培养染色体畸变技术进行实验观察,结果表明,丙烯酰胺单体即诱导染色体结构畸变,又能诱导非整倍体形成。这一研究结果与WHO提出的关于丙烯酰胺的基因毒性一致,同时丙烯酰胺致畸作用有剂量反应关系,高浓度诱发大量非整倍体形成及结构变异,低浓度无诱发CHL细胞染色体畸变的作用[16]。  3.3 丙烯酰胺的生殖毒性[17]  Sickes等研究认为,丙烯酰胺的生殖毒性机制与其神经毒性的机制相似。丙烯酰胺可抑制驱动蛋白样物质的活性,导致细胞有丝分裂和减数分裂障碍,从而引起生殖损伤。  有研究证据表明[18],丙烯酰胺可以影响雄性动物的生育能力。给予雄性大鼠15mg/kg体重的丙烯酰胺,连续5天,或者给予小鼠12mg/kg体重,连续28d,均可发现其生育能力受到损害,具体表现为精子计数减少和精子活动能力减弱。说明丙烯酰胺对动物的生殖系统有一定的损伤作用,但在人类却未发现有此危害

  • 【金秋计划】银杏二萜内酯葡胺注射液对缺血性脑卒中小鼠黑质脑区的调控机制研究

    脑卒中是全球致伤致残致死3大原因之一,据全球疾病负担统计2019年全世界有1 220万人发病[1],我国有394万人首发[2];另一统计称2020年我国有340万人首发并有约220万人留下残疾[3-4]。缺血性脑卒中(ischemic stroke,IS)约占卒中类型的85%[4-5]。IS预后结局差,复发率高而且极有可能造成后遗症如偏瘫、后肢痉挛、震颤等。其病理机制也十分复杂,涉及细胞过度自噬、离子失衡与谷氨酸过度释放、氧化应激与自由基、炎症爆发和神经细胞凋亡[5-7]等。 目前治疗IS的主要方法为重组组织型纤溶酶原激活剂(recombinant tissue-type plasminogen activator,rt-PA)静脉溶栓、手术取栓和神经保护。手术风险高,rt-PA治疗时间窗短,且有出血风险,符合治疗条件的病人不到10%[8],而神经保护的药物在临床上的效果不如动物实验那么有效,目前急需开发更安全可靠的治疗IS的用药。在长期的医学实践中,银杏叶提取物在治疗脑卒中和心肌梗死方面疗效显著[9]。其中,银杏内酯作为天然的血小板活化因子(platelet activating factor,PAF)受体拮抗剂,因其具有抗炎、抗氧化、抗凋亡和神经保护的作用[10-12]而越来越受到关注。 银杏二萜内酯葡胺注射液(Diterpene Ginkgolides Meglumine Injection,DGMI)以银杏叶提取物为原料,主要组成为银杏内酯A(ginkgolide A,GA,35%)、银杏内酯B(GB,60%)、银杏内酯C(GC,2%)、银杏内酯K(GK,2%),含总银杏内酯5 mg/mL[13],银杏二萜内酯成分达98%以上[14]。临床显示,DGMI可有效改善IS发病90 d时患者的神经缺损评分,同时改善患者认知和行动能力,并且在中老年患者中疗效优于银杏叶提取物注射液(金纳多)[15-18],Zhao等[15]认为DGMI与rt-PA联用治疗急性卒中效果更佳。最新一项临床研究发现,单独使用DGMI对急性缺血性脑卒中治疗有效[19]。也有多项体内外实验证明DGMI具有改善脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIRI)的作用,主要与PAF受体[20]、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)- 蛋白激酶B(protein kinase B,PKB)、核因子-红细胞2相关因子2(nuclear factor-erythroid 2 related factor 2,Nrf2)[13]等通路有关。 黑质为重要的运动和感知调节中枢,是脑内合成多巴胺的主要核团,与背侧基底核、底丘脑构成基底运动环路[21],可能通过多巴胺能神经与IS引发的震颤等运动障碍相关。为明确DGMI在黑质脑区抗CIRI的作用通路,本研究通过建立小鼠大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)模型,模拟急性IS时脑内局灶性缺血缺氧的状态,利用转录组测序对小鼠脑样本进行测序,并结合生信分析鉴定DGMI在黑质脑区抗脑缺血损伤的作用通路及功能效应,为深入探索其作用机制提供思路。 1 材料 1.1 动物 SPF级雄性C57BL/6小鼠,6~8周龄,体质量18~22 g,购自南京市江宁区青龙山动物养殖场公司,生产质量合格证SCXK(浙)2019-0002。动物于江苏康缘药业有限公司动物房普通清洁级环境中适应性饲养1周,温度(24±2)℃、12 h光昼交替,自由进食饮水。动物实验经江苏康缘药业有限公司动物委员会批准(批号2023110101)。 1.2 药品与试剂 DGMI(商品名为尤赛金,国药准字z20120024,批号220703)由江苏康缘药业有限公司提供;银杏叶提取物761(Ginkgo biloba extract-761,EGb-761,商品名为金纳多,3.5 mg/mL,国药准字HC20181022,批号P6001)由台湾济生医药生技股份有限公司提供;1800AA型小鼠硅胶线栓购自广州佳灵生物有限公司;舒泰50(货号BN8G4VA)购自法国维克公司;2,3,5-氯化三苯基四氮唑(2,3,5-triphenyltetrazolium chloride,TTC,批号BCCJ6488)购自美国Sigma公司;RNA提取试剂盒(批号AM90890A)购自日本Takara公司;Qubit RNA BR Assay kit(批号2506001)、Qubit 1X dsDNA HS assay kit(批号2483579)购自美国Invitrogen公司;Illumina Poly(A) Capture(批号20733163)、Illumina RNA Prep Ligation(批号20723247)、IDT for Illumina RNA Index Anchors(批号20717954)、IDT for Illumina DNA/RNA UD Indexes(批号20739487)、NextSeqTM 2000 P3 300循环试剂盒(批号20751014)购自美国Illumina公司;RNA Screen Tape(批号02020849-192)、RNA Screen Tape缓冲液(批号0006698095)、D1000 Screen Tape(批号0202853-39)、D1000试剂(批号0006739609)购自美国Agilent公司。 1.3 仪器 DOM-1001型显微镜、RFLSI ZW型激光散斑血流成像系统(深圳市瑞沃德生命科技有限公司);PY-SM5(LCD)型LCD高精度智能温控器(余姚市品益电器有限公司);NanoDrop分光光度计(美国Thermo Fisher Scientific公司);4150型TapeStation自动化电泳系统(美国Agilent公司);Qubit 4.0型核酸定量仪(美国Invitrogen公司);NextSeqTM 2000型测序仪(美国Illumina公司)。 2 方法 2.1 动物分组、造模及给药 小鼠适应性饲养5 d后,随机分为假手术组、模型组、DGMI(25 mg/kg)组及EGb-761(100 mg/kg)组,为确保各组术后存活10只小鼠,假手术组设置10只,模型组设置16只,EGb-761组和DGMI组设置14只。 小鼠ip舒泰50麻醉后,参照LONGA法[22]复制MCAO模型。用线栓阻塞小鼠大脑中动脉血流,缺血1 h时,拔出线栓恢复血流,进行再灌注,并结扎颈外动脉剪口。假手术组小鼠进行颈动脉暴露处理,但不插入栓线。手术过程室温控制在(26±1)℃,术后使用加热垫等设备维持小鼠体温保持37 ℃。线栓进入后,将小鼠俯卧位固定,纵向剪开头皮,充分暴露颅骨,置于激光散斑血流成像系统下进行血流检测,确保造模成功。采用RFLSI Analysis v2.0.29.26606软件分析数据,在缺血侧及对侧一致位置添加相同的区域,得到脑血流量统计结果。对造模小鼠进行筛选,排除造模不成功、大出血、蛛网膜出血及过早死亡的小鼠,最终纳入统计的共有40只小鼠,每组分别10只。 基于本课题组预实验结果,DGMI对小鼠MCAO模型术后24 h脑梗死面积改善程度的最佳剂量为25 mg/kg。因此,本研究采用25 mg/kg剂量开展DGMI的药效评价。DGMI组术后30 min ip药物(DGMI以生理盐水将稀释成2.5 mg/mL的溶液),EGb-761组术前1 h ip药物,假手术组和模型组ip等体积生理盐水。 2.2 神经功能评分与脑组织TTC染色 小鼠再灌注24 h后进行改良版神经功能缺损评分(modified neurological severity score,mNSS)[23]。评分后取血,迅速取脑组织,?20 ℃冰箱中冷冻15 min,随后将冷冻后的脑组织切成厚度为2 mm的冠状切片共6片,使用2% TTC染液于37 ℃恒温水浴锅中避光染色10 min,用4%多聚甲醛溶液对脑片进行固定,24 h后拍照。使用Image-Pro Plus 6.0软件计算脑梗死面积。 脑梗死面积=白色缺血面积/总面积 2.3 脑黑质RNA提取和转录组测序 取小鼠脑黑质,每组4个样本,经高速冷冻研磨机粉碎成匀浆后,按照RNA提取试剂盒说明书提取RNA。经过RNA质量控制后,筛选3个符合条件的样品,按照Illumina文库制备体系,完成文库的构建稀释与上机测序。 2.4 转录组数据分析 2.4.1 转录组数据处理与质量分析 利用Trimmomatic[24]软件对测序数据进行滤过,获取高质量的数据信息,直接从基因组网站下载参考基因组和基因模型注释文件,使用HISAT2[25]和String Tie[26]软件将clean reads与参照基因组进行比对和拼接。 2.4.2 降维分析与模型评价 将各组数据进行降维分析,主要分为主成分分析和tSNE降维分析,比较各组离散程度。 2.4.3 差异表达基因(differentially expressed genes,DEGs)筛选 采用DESeq[27]软件包对各组细胞的基因表达量进行差异分析,模型组DEGs以模型组vs假手术组筛选,给药组DEGs以给药组vs模型组筛选,筛选标准为|log2差异倍数(fold change,FC)|≥2且Padjust≤0.05。 2.4.4 基因集富集分析(gene set enrichment analysis,GSEA) GSEA通路富集分析不局限于某些目标基因集,而是从所有基因的表达丰度出发,分析在不同的通路中的基因的整体表达影响,理论上更容易囊括细微但协调性的变化对生物通路的影响。参照徐小波等[28]研究,计算药物干预后表达趋势逆转的通路数与模型组特征通路总数的比值(响应值),并评价药物抗脑缺血再损伤的能力。 2.4.5 基因本体(gene ontology,GO)功能及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析 运用R语言limma[29]软件包对差异基因进行GO功能和KEGG通路富集分析,并用R语言将相关信息可视化。GO功能包括生物学过程(biological process,BP)、细胞组分(cellular component,CC)和分子功能(molecular function,MF)。使用超几何检验进行富集分析。FDR校正的P≤0.05被认为显著富集。 2.5 qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]验证关键基因表达 按照试剂盒说明书提取脑黑质中总RNA并合成cDNA,进行qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]分析。采用2?ΔΔCt法计算相关关键基因表达。溶质载体家族6成员A3(solute carrier family 18 member A3,Slc6a3)、钙调蛋白样4(calmodulin like 4,Calml4)、G蛋白亚基γ14(G protein subunit gamma 14,Gng14)、C-C基序趋化因子2(C-C motif chemokine ligand 2,Ccl2)、色氨酸羟化酶2(tryptophan hydroxylase 2,Tph2)、C-X-C趋化因子1(C-X-C motif chemokine ligand 1,Cxcl1)、β-actin引物序列见表1。 图片 2.6 统计学分析 实验结果使用Graghpad prism 9.0软件进行统计分析。两组间比较采用独立样本t检验,组间多重比较采用单因素方差分析(One way ANOVA)和Dunnett-t检验,数据以表示。 3 结果 3.1 脑血流成像结果 通过脑血流仪监测小鼠脑皮质血流量变化,如图1和表2所示,发现插入线栓缺血时,与假手术组比较,各组小鼠手术缺血侧脑皮质血流量均显著降低(P<0.001),表明缺血造模成功,建立的小鼠MCAO脑缺血再灌注模型稳定可靠。 图片图片 3.2 DGMI对MCAO模型小鼠的药效评价 3.2.1 DGMI对MCAO模型小鼠mNSS的影响 脑缺血再灌注后24 h,各组小鼠mNSS结果见图2,假手术组为0分,无神经功能损伤;与假手术组比较,模型组小鼠mNSS显著升高(P<0.001),神经功能损伤严重;与模型组比较,各给药组mNSS显著降低(P<0.01、0.001)。表明MCAO造模可导致小鼠神经功能受到损伤,引起小鼠行为学发生变化;EGb-761和DGMI可显著改善小鼠缺血再灌注造成的神经功能损伤。 图片 3.2.2 DGMI对MCAO模型小鼠脑梗死面积的影响 如图3所示,TTC染色后,假手术组脑切片呈均匀的红色,模型组脑切片缺血侧有明显的白色梗死部位;与模型组比较,各给药组小鼠脑梗死面积 显著减小(P<0.001)。表明DGMI和EGb-761可显著改善小鼠脑梗死面积,对小鼠脑梗死有一定治疗作用。 图片 3.3 转录组测序分析 3.3.1 转录组测序数据质量分析 在建立的测序文库中,超过Q30的比例在94%以上,对测序数据中reads进行滤过后,数据质量控制结果显示,与参考基因组的序列比对率在70%以上,表明测序结果较好。 3.3.2 降维分析与模型评价 经主成分分析发现,假手术组和模型组明显分离(图4-A)。对各组进行tSNE降维分析,发现DGMI组与模型组明显分离(图4-B)。 图片 3.3.3 DEGs分析 如图5-A~C所示,与假手术组比较,模型组共筛选得到88个差异表达基因(differentially expressed genes,DEGs),其中78个基因上调,10个基因下调。与模型组比较,DGMI组有21个基因上调,108个基因下调;EGb-761组有92个基因上调,84个基因下调。分别对模型组和DGMI、EGb-761组的DEGs取交集,如图5-D所示,DGMI组与模型组共有32个差异基因重合,EGb-761组与模型组共有31个差异基因重合,三者共有10个DEGs重合。 图片 图6中展示了EGb-761组、DGMI组和模型组DEGs重叠部分的热图,共53个DEGs。可以发现,这部分DEGs在给药后有不同程度的逆转。此外,在Lv等[30]通过131个小鼠和39个大鼠样本MCAO模型筛选出的15个共同DEGs中,模型组DEGs中有活化转录因子3(activating transcription factor 3,Atf3)、组织基质金属蛋白酶抑制剂1(tissue inhibitor of metalloproteinases 1,Timp1)、分化抗原14(cluster of differentiation 14,Cd14)、半乳糖结合凝集素3(lectin, galactoside-binding, soluble 3,Lgals3)、血红素加氧酶(heme oxygenase 1,Hmox1)、Ccl2、上皮膜蛋白1(epithelial membrane protein 1,Emp1)、热休克蛋白家族B成员1(heat shock protein family B member 1,Hspb1)、血小板反应蛋白基序1型去整合素和金属蛋白酶(a disintegrin and metalloproteinase with thrombospondin motifs 1,Adamts1)、波形蛋白(vimentin protein,Vim)共10个基因重合(66.7%)。Lv等[30]发现的与人类卒中易感基因联系最强的基因Adamts1、锌指蛋白(zinc finger protein 36,Zfp36)、核因子κB抑制剂zeta(nuclear factor kappa B inhibitor zeta,Nfkbiz)、Ccl2和Hmox1中,本研究模型组中也有3个重合。 图片 3.3.4 GSEA结果 如图7所示,GSEA结果显示,与假手术组比较,模型组表达相反的通路有35条,定义这些通路为模型组的特征通路;DGMI与模型组趋势相反的通路有7条,如帕金森症、色氨酸代谢、嘧啶代谢等通路,响应值为20%左右。 图片 3.3.5 DEGs的GO功能富集分析 为明确小鼠MCAO造模及药物干预后所涉及的生物学功能变化,对模型组和DGMI组小鼠脑组织DEGs进行GO功能富集分析,见图8。结果显示,模型组主要富集在细胞对白细胞介素-1和γ干扰素的反应、趋化因子互作和免疫细胞的浸润等BP,细胞外空间、细胞外区域等CC,趋化因子受体结合等MF。DGMI干预后,主要富集在分泌颗粒、神经肽激素信号通路等BP,细胞外空间与区域,多巴胺能神经突触等CC,S100蛋白结合、激素与神经肽激素等MF。 图片 3.3.6 DEGs的KEGG通路富集分析 为明确DGMI对MCAO模型小鼠KEGG通路的影响,基于获得的DEGs进行KEGG通路富集分析,见图9。结果显示,模型组前15条KEGG通路主要与炎症、凋亡和免疫反应相关,富集在细胞因子-细胞因子受体相互作用、肿瘤坏死因子(tumor necrosis factor,TNF)信号通路、白细胞介素-17(interleukin-17,IL-17)信号通路、趋化因子信号通路、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路等。DGMI组KEGG通路主要富集在神经活性配体-受体作用、多巴胺能神经突触等。 图片 进一步分析发现,模型组KEGG通路中出现频率较高(≥3)的关键差异基因为Ccl12、Ccl2、Cxcl1等,见表3。DGMI组KEGG通路中出现频率较高(≥3)的关键差异基因是Gng14、Slc6a3、Calml4等,见表4。 图片 Ccl12、Ccl2与免疫细胞趋化浸润脑区有关,Gng14编码的蛋白质参与G蛋白偶联受体通路,而Slc6a3、Calml4与多巴胺在脑内的转运分泌密切相关,提示DGMI治疗IS可能与多巴胺能信号通路密切相关。 3.4 qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]验证关键基因表达 对模型组和DGMI组部分关键基因表达进行qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]验证,如图10所示,与对照组比较,模型组小鼠脑组织Slc6a3、Tph2基因表达水平显著降低(P<0.001),Calml4、Ccl2、Gng14、Cxcl1基因表达显著升高(P<0.05、0.01、0.001);与模型组比较,DGMI组小鼠脑组织Slc6a3、Tph2基因表达显著升高(P<0.01、0.001),Calml4、Ccl2、Gng14、Cxcl1基因表达显著降低(P<0.05、0.01、0.001)。6个基因表达量的qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测结果均与转录组测序结果一致;值得注意的是,Calml4和Gng14 2个基因通过qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]和转录组测序方法获得的表达量在3个受试样本间差异较大,这可能是由于2种检测方法对基因的检测区域不同产生的,因此说明qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测对RNA-seq结果验证的必要性。总之,综合qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]与转录组测序结果,DGMI可能通过影响炎症和多巴胺相关通路改善IS。 图片 4 讨论 目前,银杏叶提取物作为天然药物产物,已被证明具有抗炎、抗氧化等多种药理作用,可以有效治疗IS。DGMI是国内常用的银杏叶提取物制剂之一,目前虽然在临床前和临床研究上都获得一定成果,但是其治疗IS的作用机制尚缺乏深入的探索。在DGMI作用机制探索的初期首先面对3方面主要的问题。第一,缺乏机制研究方向的指导。面对此问题,在组学水平,例如采用转录组测序方法,获得与疾病进程和发展相关,以及药物治疗途径相关的必要信息,将对后续针对性及更深入的研究提供方向指导。第二,对于IS,临床实验样本的获取比较困难,使得目前相关研究集中在细胞和动物实验,目前关于DGMI在动物IS实验上的转录组测序还没有相关研究内容发表以作参考。第三,由于大脑功能的实行分区域进行,且十分复杂,采用全脑均质化样本进行检测难以对获得的结果进行解析,取特定的脑区进行研究可以更精准地反映疾病和药物对脑特定的功能结构造成的变化影响。 4.1 多巴胺能神经、黑质与卒中炎症 CCL2基因编码的单核细胞趋化蛋白,可以吸引单核和淋巴细胞。CCL2/CCR2趋化因子信号通路在卒中急性期中呈现促炎作用[31],临床试验和动物实验都证明CCL2基因高表达是IS的危险因素,而且在临床上CCL2可作为多种卒中亚型急性期的标志物[32-33]。CCL2因子可由小胶质细胞促炎亚型分泌,CCL2还可能与其他趋化因子共同作用,在急性期介导CD8+ T细胞在脑中的活化和浸润[34]。不过在急性期后的慢性期,CCL2可能有利于促进血管生成和卒中恢复[35]。卒中后活化的星型胶质细胞等分泌的CXCL-1是中性粒细胞趋化因子,可以募集中性粒细胞浸润脑区。中性粒细胞会通过胞外诱捕网等方式进一步加剧卒中[36-38]。 DGMI组和模型组黑质脑区DEGs的KEGG以及GO结果显示,DGMI治疗IS可能和多巴胺能神经相关,尤其是多巴胺的转运和代谢。溶质载体蛋白(solute carrier,Slc)是一类跨膜转运蛋白,Slc18a2基因调控的囊泡单胺转运蛋白2(Vesicular monoamine transporter 2,VMAT2)依赖于质子浓度,介导多巴胺在突触前神经元中从胞质溶胶进入囊泡储存[39-41],囊泡经突触小泡循环将多巴胺运至突触前膜附近,释放多巴胺进入突触间隙,多巴胺结合突触后膜的受体后失活,而Slc6a3调控的多巴胺转运蛋白1(dopamine transporter1,DAT1)位于突触前末梢周围,依赖于Na+/Cl?从突触间隙再摄取多巴胺至突触前末梢[42]。包括多巴胺、乙酰胆碱在内的多种神经递质的受体为G蛋白偶联受体,小鼠Gng14编码的蛋白为G蛋白γ亚基,与人类GNG14同源,Gng14可能通过调节G蛋白亚基发挥作用,而Calml4是钙调蛋白,通过与钙离子结合作用于钙离子信号通路对下游信号产生影响。TPH2是5-羟色胺(5-hydroxytryptamine,5-HT)合成的关键酶,同时也会影响多巴胺的浓度,涉及其转运与代谢[43]。 多巴胺能神经元控制着脑内的奖赏系统、成瘾性以及运动功能[44],还能调控疼痛和神经炎症[45-46]。黑质-纹状体通路是主要的多巴胺能通路之一

  • 显微镜下西达本胺影响细胞克隆

    显微镜下西达本胺影响细胞克隆

    显微镜下西达本胺影响细胞克隆平板克隆的结果显示,随着加药浓度的增加克隆集落数减少,且单个集落体积逐渐减小(图 b).平板克隆结晶紫染色结果同样印证了上述结果,集落数明显减少(图c).由此可见,西达本胺显著影响 了结肠癌细胞的生物学形态和克隆形成能力. [img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306302201105759_3735_5389809_3.png[/img]

  • 谁有Spark-DAT技术的应用介绍

    无意中查到《单火花分析法测定钢和铝中夹杂物的改进》好像是介绍Spark-DAT,不知那位版友有相关的资料可以分享。

  • 【转帖】印尼检验证实 12种中国饮食品含三聚氰胺

    印尼当局对市面所销售中国制造的含奶饮食品进行检验结果,已发现12种产品的确含有三聚氰胺;这些产品其中6种是拥有进口执照合法输入的,其余列属非法进口货。   卫生部长西蒂前天在药物与食品监督署主任胡斯妮亚陪同下宣布,检验出含有三聚氰胺的12种从中国进口的奶制饮食品中,6种有向药物与食品监督署注册,包括国珍牌奶粉,Oreo牌两种枝条型薄饼,M&M's牌巧克力奶糖果和奶油巧克力,以及Snicker's牌奶油硬薄饼,这些产品被发现含有三聚氰胺8.51 PPM至945.86 PPM之间;至于也被发现含有三聚氰胺的其他非法进口中国奶制品,其中4种是奶豆浆,另两种是白兔牌糖果。   她表示,所有含有三聚氰胺的中国奶制品必须立即加以销毁,今后若发现仍有人进口,将被判处5年以上监禁或处以20亿盾(约30万新元)的罚款。  西蒂除要求出国旅游的国人勿携带上述中国产品入境外,也吁请国人不要消费新加坡当局日前公布含毒的13种中国饮食品。  她说,我们担心边界地区居民或正在新加坡购物的国人,一不小心会买到这些违禁饮食品。当局于24日下令暂时停止销售28种疑似含有三聚氰胺的中国所制饮食品,后又公布对已经注册的19种产品进行检验,由于这些产品商标与国内某些产品品牌雷同,因而引发国内厂商恐慌,有的在媒体大打广告,宣告其产品与中国产品完全不同。   西蒂部长在记者会上特别指出,国内生产的奶粉和奶品完全没有采用来自中国的奶原料,它们使用的奶原料是从澳大利亚及纽西兰进口,所以不必担心会含有三聚氰胺,民众可以安心消费。  印尼饮食业公会方面则认为,主要是要防止生产同样品牌产品的国内厂商受到影响。

  • CAPCELL PAK ADME色谱柱对丙烯酰胺的分析

    CAPCELL PAK ADME色谱柱对丙烯酰胺的分析

    键合金刚烷基的CAPCELL PAK ADME色谱柱对高极性化合物能取得良好的保留与分离。对于常规C18色谱柱难以得到良好保留与分离的极性化合物,可以增强其保留、提高分离度,是第二选择色谱柱。本次实验选择丙烯酰胺作为样品,与其他公司的高表面极性C18色谱柱的保留行为进行比较。丙烯酰胺存在于经过热加工(烤、炸)过的食品中,是具有致癌性的剧毒物质,它的极性很高,使用常规C18色谱柱很难得到良好保留。图1为使用CAPCELL PAK ADME S5和其他公司的高极性C18 5μm色谱柱对丙烯酰胺进行分析所得色谱图。http://ng1.17img.cn/bbsfiles/images/2016/08/201608250848_606680_2222981_3.jpgCAPCELL PAK ADME S5色谱柱与其他公司的高极性C18色谱柱相比,对丙烯酰胺具有更强的保留能力,且理论塔板数也更高。这是由于ADME色谱柱具有的特殊疏水性与表面极性的平衡,以及高表面极性对于丙烯酰胺这样的高极性化合物保留作用更强,因此理论塔板数也更高。另一方面,由于丙烯酰胺的紫外吸收较弱,为提高峰强需加大进样量。对此,我们考察了进样量与丙烯酰胺峰理论塔板数之间的关系,考察在不降低理论塔板数前提下的最大进样量。如图2,将丙烯酰胺以流动相(水/甲醇=98/2)溶解,分别以CAPCELL PAK ADME S5及其他公司的高极性C18 5 μm色谱柱进行分析,对进样量与丙烯酰胺峰理论塔板数之间的关系进行了探讨。http://ng1.17img.cn/bbsfiles/images/2016/08/201608250848_606681_2222981_3.jpg如图2所示,CAPCELL PAK ADME S5色谱柱和其他公司的高极性C18 5μm色谱柱均具有随着进样量的增加,理论塔板数相应降低的倾向,而CAPCELL PAK ADME S5色谱柱的这种倾向稍弱。图3为使用CAPCELL PAK ADME S5色谱柱进样4μL和使用其他公司的高极性C18 5 μm色谱柱进样1μL的分析结果对比。http://ng1.17img.cn/bbsfiles/images/2016/08/201608250848_606682_2222981_3.jpg使用CAPCELL PAK ADME S5色谱柱进样4 μL时与其他公司高极性色谱柱进样1μL所得的理论塔板数基本相当,同时峰强也是后者的4倍。

  • 乙草胺 检测求解?

    记者随机在北京新发地农产品批发市场、美廉美超市、昌平采摘园以及路边的草莓摊,购买8份草莓样品,送到北京农学院检测。经检测,样品全部检出农药乙草胺。乙草胺是一种除草剂,主要在大田作物里面,在草莓上不能使用,因而目前国家也没有登记草莓的残留标准。在美国,乙草胺已被列为b-2类致癌物,长期食用可能有致癌性。 乙草胺是一种广泛应用的除草剂。由美国孟山都公司于1971年开发成功,是目前世界上最重要的除草剂品种之一,也是目前我国使用量最大的除草剂之一。考虑到暴露在乙草胺每日摄取容许量以上对人体的潜在危害,以及地表水中乙草胺代谢物对人体的危害,现在还不能排除基因毒性的存在,欧盟委员会决定不予除草剂乙草胺再登记,已下令欧盟成员国在2012年7月23日取消其登记。现存库存的使用宽限期不能超过12个月。 乙草胺纯品为淡黄色液体,原药因含有杂质而呈现深红色。性质稳定,不易挥发和光解。不溶于水,易溶于有机溶剂。熔点大于0℃ ,蒸汽压大于133.3pa,沸点大于200℃,不易挥发和光解。30℃时与水的相对密度为1.11,在水中的溶解度微223mg/l。http://c.hiphotos.baidu.com/baike/s%3D220/sign=7c8d7269dab44aed5d4eb9e6831d876a/472309f790529822889b48e0d7ca7bcb0a46d46d.jpg 如此分子式,大家认为如何检测它呢?采用什么方法比较合适?包括前处理过程?是不是用氮磷检测器还是可以用液相?

  • 【求助】:哪能买到5-Br-PADAP

    做实验要用显色剂5-Br-PADAP,即2-( 5-溴-2-吡啶偶氮)-5-二乙氨基酚,可是买不到.请问有人买过吗?在哪里能买到?请厂家和我联系,也请知情人提供联系方式.感激万分!我的信箱是xialy000@163.com

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制