当前位置: 仪器信息网 > 行业主题 > >

纳豆激酶

仪器信息网纳豆激酶专题为您提供2024年最新纳豆激酶价格报价、厂家品牌的相关信息, 包括纳豆激酶参数、型号等,不管是国产,还是进口品牌的纳豆激酶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳豆激酶相关的耗材配件、试剂标物,还有纳豆激酶相关的最新资讯、资料,以及纳豆激酶相关的解决方案。

纳豆激酶相关的资讯

  • 密理博脂质激酶产品线拓宽
    密理博(Millipore)公司作为全球生命科学领域的策略性供应商,为生物科学研究和生物制药工业提供技术、工具和服务。2007年11月20日,密理博正式宣布拓宽P13激酶产品线,使其成为目前全球最丰富的脂质激酶产品线。密理博目前提供17种脂质激酶,既可以从市面上购买,也可以参加金标准激酶服务。其他没有一家公司可以提供如此品种繁多的激酶。 脂质激酶是一种新兴的且发展前景良好的潜在药物靶标,P13激酶可以调节各种细胞功能,包括细胞生长、增殖、分化、迁移、生存和细胞间通信。因此,P13激酶功能缺陷会导致多种疾病,包括多种形式的肿瘤。密理博新开发的脂质激酶组合和激酶服务提供切断细胞通信的工具,是开发新疗法的关键步骤。 和密理博卓越的PI3激酶HTRF™ 分析方法、激酶服务和小分子抑制剂相结合,新增的脂质激酶组合为研究者提供脂质激酶信号通路研究的最完整解决方案。新增的脂质激酶组合包括野生型和疾病相关突变型。 密理博作为全球领先的生命科学公司,为生物科学研究和生物制药研发提供前沿的技术、工具和服务。作为策略性合作伙伴,我们携手客户共同面对人类健康问题的挑战。从科研、开发到生产,我们的科学专家和创新的解决方案帮助客户处理最复杂的问题以帮助他们达到预期目标。 了解具体促销信息,请浏览密理博中国主页:www.millipore.com/cn。了解更多产品信息,请浏览密理博全球官方网站www.millipore.com,或拨打亚洲区技术服务热线:400-889-1988。
  • 网络讲座 | 转化医学系列-小分子激酶抑制剂研究最新进展
    转化医学系列网络讲座又来啦!讲座时间:2019年9月19日下午14:00-15:00讲座题目:小分子激酶抑制剂研究最新进展主讲人:吕晓冰博士(桑迪亚)讲座形式:网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)内容简介1. 概括介绍目前小分子激酶抑制剂的研究进展2. 从几家新药研发公司看目前比较热门的小分子激酶抑制剂的研究方向3. 小分子激酶抑制剂研发存在的挑战4. 激酶靶点在癌症疾病领域外的应用即刻报名扫描下方二维码,即刻报名吧!主讲人简介吕晓冰 博士华东理工大学生物化学学士;华东理工大学生物化学与分子生物学硕士;lowa State University爱荷华州立大学生物化学与生物物理博士;睿智化学生物体外部副总监;桑迪亚生物体外部高级总监。更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!主题预计时间使用Alpha技术研究RNA甲基化“橡皮擦” (ALKBH5)10/24/2019研究蛋白相互作用就是这么简单11/7/2019细胞成像分析前沿应用案例心得分享11/28/2019原来药物研发还可以这样做——基于表型筛选的药物研发11月小动物活体成像技术助力脑靶向载体的研究12/19/2019关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 密理博首家提供生物相关的全序列mTOR激酶
    2007年7月27日,密理博(MILLIPORE)公司正式发布新品mTOR激酶,作为激酶筛选服务(KinaseProfiler™ Service)的一部分。该产品为目前市面上第一个生物相关的全序列mTOR激酶。激酶筛选服务采用催化放射性同位素分析方法,提供264种激酶的特异性筛选。加入了全序列的mTOR激酶的组合可以提供高质量的混合物筛选,并且保密性强。 最近的相关研究发现,mTOR和许多人类疾病相关,如癌症、糖尿病、肥胖、心血管疾病和神经紊乱等。mTOR在相关疾病的研究中,参与细胞周期、细胞生长、蛋白合成、核糖体生物形成及自我吞噬和对重要靶标的调控过程。 密理博生命科学部提供革新的研发工具、技术服务和生物试剂,让您从事的生命科学研究和药物研发工作更加完美出色。自从2006年收购Chemicon、Upstate和Linco品牌后,产品线迅速拓宽,使密理博成为当今市场上产品种类最齐全的策略性供应商。 了解密理博更多产品信息,请登陆密理博全球官方网站:www.millipore.com,或拨打密理博中国客服热线:800-820-0865或400-889-1988。
  • 安捷伦科技推出SureSelect激酶组靶向序列捕获试剂盒
    安捷伦科技推出用于生物标记物发现的表达激酶组研究的靶向序列捕获系统 该系统可帮助研究人员寻找新的癌症疗法和药物靶标 2010年10月,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)今日推出SureSelect激酶组靶向序列捕获试剂盒,帮助研究者实现针对表达激酶(激酶组)的新一代测序研究。科研人员逐渐发现,人体内的激酶不仅是一个丰富的生物标记物来源,还是治疗癌症和其他疾病的潜在药物靶标。 这种由荷兰癌症研究所Antoni van Leeuwenhoek医院的Rene Bernards博士开发的新型分析试剂盒,能够特异性地捕获500余种已知激酶基因以及一些癌症基因和非翻译区。 &ldquo 能够同时研究大约500种激酶基因,其优势是显而易见的,通过这种方法我们可以了解激酶突变情况及其与疾病状态的关联关系,从而为在日后实现为每个癌症患者制定个性化的治疗方案提供可能,&rdquo Bernards博士说道,&ldquo 通过在SureSelect研究获得的信息,我们可以更好地将患者群分层,为他们提供特定的靶向治疗方案。因为这些激酶基因的突变通常是反映病人对癌症靶向治疗应答效果的重要生物标记物,所以我们可以借助该试剂盒对激酶进行更深入的研究。通过集中精力研究有限的基因,我们能够将测序深度最大化,并且大幅降低总体测序费用。&rdquo &ldquo 通过与Bernards博士携手合作,安捷伦成功推出了人类激酶组试剂盒,该产品能够全面富集激酶和激酶相关基因,&rdquo 安捷伦应用与化学研发基因组学中心主任Emily LeProust博士说道,&ldquo 该试剂盒使科学家能够高效地绘制整个基因组的突变,加速生物标记物的发现,并实现对患者群更合理的分层。&rdquo SureSelect 激酶组靶向序列捕获试剂盒以安捷伦高度成熟的SureSelect平台为基础,后者可以仅针对目标基因组区域进行测序,从而大大简化了实验流程。仅今年一年,在涉及各类遗传性疾病研究的论文中,就有8篇引用了SureSelect靶向序列捕获系统。 安捷伦SureSelect靶向序列捕获系统提供目前市场上最全面的的靶向富集产品以及针对多种不同测序方法和平台的最优化方案。SureSelect产品线目前包括16种产品,更多产品正在开发当中。SureSelect产品可实现在单管中富集从200 Kb到50 Mb的靶向序列。本方案除了可以支持Illumina单末端测序、双末端测序和索引方案外,还支持SOLiD系统上的片段文库格式、双末端测序和条形码方案。 用户使用安捷伦eArray xD桌面设计工具,可以轻松设计出在单管中捕获任意目标基因组的定制产品,从而提高研究效率。安捷伦还提供eArray在线设计工具,用户使用该工具可定制和安捷伦目录SureSelect试剂盒类似的产品,例如SureSelect人全外显子系列产品。SureSelect系列产品均可采用安捷伦自动化解决方案中的机器人系统,实现高度的流程自动化。 要了解更多信息,请访问www.agilent.com/genomics/sureselect 和www.agilent.com/genomics/earray 安捷伦科技公司简介 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司的18,500名员工在100多个国家为客户服务。2009财政年度,安捷伦的业务净收入为45亿美元。要了解更多安捷伦科技的信息,请访问:www.agilent.com.cn
  • Millipore与J&JPRD达成蛋白激酶筛选合作协议
    2007年1月8 日在 Billerica, Massachusetts,Millipore 宣布已与强生制药研发公司(J&JPRD)下属部门Janssen Pharmaceutical N.V.签定有关应用Upstate KinaseProfilerTM激酶筛选服务的协议,此项服务为Millipore利用放射性测量的金标准。根据这项协议,J&JPRD将提供潜在蛋白激酶抑制剂,用于Millipore的252种蛋白和脂质体激酶的筛选。 Millipore 的筛选服务帮助世界一流制药公司评价潜在的先导化学药物,及指导医用化学、优化最有前景的化合物,从而避免高成本的非特异性先导化合物筛选。KinaseProfilerTM的激酶库可用于大多数疾病相关的蛋白激酶筛选研究,并且在Millipore 位于Dundee 和 Scotland 的工厂,这一激酶库仍在发展、拓宽。Millipore KinaseProfilerTM服务的分析流程便捷、灵活,同时其严格按规则执行的操作流程保证了结果的可靠性——可重复性和可验证性。 Millipore 提供“整套”的产品和服务用于新药开发和评价,极大地加速药物开发的速度。“整套”服务包括化合物的筛选、多孔滤膜板、试剂、关键靶向治疗药物的免疫测定和应用范畴的确定,以及规范的临床前期和临床期试验结果的分析等。 更多关于 Millipore 药物开发的信息,请拨打 Millipore 免费技术服务热线800-820-0865,或访问www.millipore.com/drugdiscovery。
  • Science重磅 | meteorin-like因子通过内皮KIT受体酪氨酸激酶促进心脏修复
    “世界心脏日今天9月29日是世界心脏日(World Heart Day),是由世界心脏联盟确定,旨在世界范围内宣传有关心脏健康的知识,并让公众认识到生命需要健康的心脏。在全世界范围内,心血管疾病是威胁人类健康的高危病种,其危害无年龄、身份、地域之分。在中国,每年大约有260万人死于心脑血管疾病,死亡人数位列世界第二。《中国心血管健康与疾病报告2021》指出,每5例死亡中就有2例死于心血管病。急性心肌梗死(MI)是一种常见的由突发冠状动脉血栓形成和闭塞引起的心脏急症。急性心肌梗死期间持续的缺血组织损伤导致疤痕形成,进而可能心力衰竭。心肌梗死后形成的新血管可减轻疤痕和心功能恶化。然而心肌梗塞后形成血管生成和功能适应的细胞间的相互作用仍不完全清楚。下面跟随小编来看一下德国汉诺威医学院的研究人员今年发表在《Science》上的“心脏知识”。德国汉诺威医学院Kai C. Wollert研究团队发表题为Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase的研究。通过对急性心肌梗死的小鼠进行生物信息学分泌组分析,发现细胞因子METRNL(Meteorin-like) 在梗死边界区内皮细胞高度表达,促进心肌梗死后的血管生成、组织修复和功能适应。使用化学交联质谱法发现,KIT(受体酪氨酸激酶)是内皮细胞中METRNL细胞表面受体。为了评估METRNL是否与KIT的细胞外结构域结合,通过微量热泳动(MST)技术,检测到KIT-ECD-Fc可结合METRNL和SCF(KIT已知配体),并且亲和力很高(Kd分别是87nM和175nM),而不与血管内皮生长因子A(VEGFA)结合。Pull Down实验获得相同的结果。图注:MST技术和Pull Down检测KIT的胞外结构域与METRNL,SCF和VEGFA结合随后,作者检测时发现METRNL的治疗会增强心肌梗死区域边缘的毛细血管化,限制瘢痕的形成并对心脏功能具有持续有益的影响。研究结果: 作者定义了一种基于METRNL的髓系细胞和内皮细胞之间的交叉信号,METRNL通过KIT依赖的信号通路介导内皮细胞的血管生成作用促进心肌梗死后组织修复,为急性心肌梗死的治疗提供了新的药物靶点。心脏是人体最重要的器官之一,无论工作或者科研再忙碌,一定要注意休息。马上就要国庆节了,让我们一起为劳苦功高的心脏放个假吧!文献参考:Reboll, Marc R., et al. "Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase." Science 376.6599 (2022): 1343-1347.*文内部分图片来源自百度,侵则删。
  • 抗癌新思路:DNA修复蛋白研究进入亚纳米时代
    p   记者从中国科学技术大学了解到:近日,中国科学技术大学蔡刚团队与南京农业大学王伟武团队合作,在DNA修复的关键蛋白ATR激酶研究方面获得重大突破,在国际上首次在亚纳米尺度上描绘出ATR激酶的三维结构。通过获知这种蛋白对DNA损伤的响应机制,有望指导抗癌新药开发。国际权威学术期刊《科学》12月1日发表了该成果。 /p p   据了解,人体细胞通过不断分裂来修补和替换受损组织,每一次的分裂都需要重新“复印”一次细胞的“遗传蓝图”。随着DNA的复制,会不可避免地发生“错印”,这种损伤若是得不到修复,就会导致细胞的死亡或癌变。 /p p   一旦感受到DNA损伤的迹象,一种叫做ATR激酶的蛋白质就会活化细胞固有修复系统。作为机体负责维持细胞稳态的六大蛋白质激酶之一,ATR激酶负责启动细胞对DNA损伤和复制压力的修复。 /p p   ATR激酶是如何响应DNA损伤的,又如何活化修复系统的?解析ATR激酶的活化机制,一直是现代生命科学领域的核心问题之一。 /p p   据论文通讯作者、中国科学技术大学蔡刚教授介绍,他的团队利用电子显微镜,在0.39纳米的精度下构建了酵母中Mec1—Ddc2复合物的原子模型。这种复合物与人体内的ATR激酶和它的信号通路伴侣蛋白ATRIP,具有很高的结构相似度。 /p p   蔡刚说,对Mec1—Ddc2复合物进行数据收集、图像处理和三维重构的方法,可以获得近原子级别精度的三维结构,有助于阐明人类ATR—ATRIP复合物的结构和分子机制。 /p p   据了解,ATR激酶被视为潜在的癌症治疗靶点。处于待激活状态的ATR激酶,一旦检测到DNA损伤迹象,会迅速被激活。高分辨率的结构信息揭露了ATR激酶的调控位点,阐明其调控机制,有望指导新型癌症治疗药物的开发。 /p p   蔡刚教授和他的团队目前正在对酵母Mec1—Ddc2复合物及人类ATR—ATRIP复合体的不同激活阶段进行成像,期望开发特定性更强和效率更高的ATR激酶抑制剂,以便探索优化癌症治疗的可能性。 /p p /p
  • Nature:美国布兰迪斯大学研究人员利用核磁技术确定蛋白动态系综中的高能结构
    大家好,这周推荐一篇Nature上近期发表的使用核磁共振波谱高精度确定蛋白质稀少构象的方法。通讯作者Dorothee Kern教授是HHMI研究员,来自美国布兰迪斯大学生物化学系,她的实验室对蛋白质激酶的激活、蛋白酶的势能面有深入的研究。蛋白质在发挥功能时往往需要进入高能级的状态,然而目前缺乏确定这种功能重要、但出现较少的构象的实验方法。本文作者开发了一种通过耦合核磁得到的PCSs(pseudocontact shifts)和CPMG(Carr–Purcell–Meiboom–Gill)弛豫色散的方法,确定高分辨的稀少态构象。同时,作者定义了高能漂移的相应动力学和热力学,从而描述了整个自由能面。 作者在Adk,calmodulin和Src激酶等蛋白上发现高能PCSs可以准确定义已知的高能结构,同时在Adk的激活过程中发现了一种新的底物结合高能构象,回答了一直以来关于这个酶激活决速步骤的争论。底物的结合与产物释放都经由一个构象选择过程随后诱导进入完全关闭的反应发生构象。 不同于其它高能构象解析方法,本方法可以确定较小蛋白的domain重排以及低至0.5%比例的构象,并且同时确定结构、热力学以及热力学信息。原文链接:https://www.nature.com/articles/s41586-022-04468-9文章引用:Doi:10.1038/s41586-022-04468-9
  • 集美大学陈全胜教授团队食品顶刊综述: 基于纳米材料的光学传感器检测食品中苯并咪唑类杀菌剂的研究进展
    Introduction苯并咪唑类杀菌剂(BZD)是一类含有苯并咪唑环的内吸性杀菌剂。最常用的BZDs有苯菌灵、多菌灵(CBZ)、甲基硫菌灵(TPM)、噻菌灵(TBZ)、麦穗宁(FBZ)等。在现代农学中,BZDs广泛用于预防水果、蔬菜和其他作物的真菌病害,用于采前和采后处理;此外,它们还被用作广谱的驱虫药物,用于预防和治疗食源性动物体内寄生虫。因此,许多国家和国际权威机构都实施了严格的监管。 最近,基于纳米材料的光学技术,如比色、荧光和SERS技术,通过开发分析纳米技术在农药检测中的潜力,已经成为基于色谱技术一种替代方法。本文综述了近六年来基于纳米技术的光学传感器在水、食品和农产品中BDZ残留检测方面的研究进展。本研究特别强调了比色、荧光、SERS及其集成系统,为当前BZDs的检测现状提供了广泛的覆盖面。基于纳米材料的光学方法用于检测BDZ杀菌剂的示意图如图1所示。 图1 用各种光学方法检测BDZ的不同纳米材料及其综合方法的示意图 基于纳米材料的信号增强策略纳米材料在研究领域被广泛用于促进传感器的修饰。纳米材料由于其独特的性质,如表面修饰,生物相容性,表面等离子体共振,消光系数,催化活性等,可以提高不同传感器的检测效率。一般来说,信号增强的效果主要是因为来自大表面积的强吸附显示出优异的特异性,以及纳米材料的高电子转移速率,从而提高了不同传感器的传感效率。 基于纳米材料的光学传感器迄今为止,已经利用基于纳米材料的光学传感器构建了不同的BDZ传感技术。光学传感器在BDZ的现场检测方面具有很大的潜力和广泛的用途。图2是BDZ在基于纳米材料的光学传感器,特别是比色荧光和SERS及其集成系统的所有已发表论文的总结。图2 柱状图为基于纳米材料的比色(A)、荧光(B)和SERS(C)传感器检测BDZ杀菌剂的发展和发表论文情况比色传感器基于纳米材料的比色传感器因其对包括重金属、农药、真菌毒素、有毒细菌、生物标志物等在内的许多分析物的灵敏和选择性响应而受到了极大的关注。表面等离子体共振(SPR)是纳米材料的一个重要特征,由于纳米材料的聚集或分散,与分析物相互作用后,在可见光区域显示出明亮的颜色变化,并与分析物产生明显的线性或非线性关系。通常,有两种策略可用于制备基于比色的传感器:I)催化或结构变化引起的颜色变化;II)纳米粒子的形态转变或聚集。比色传感器中比色响应的方案如图3所示。表1是基于纳米材料的比色传感器检测食品中BDZ的研究结果。图3 比色传感器的比色响应表1 基于纳米材料的BDZ比色传感器荧光传感器荧光传感器的基本原理是荧光团或纳米粒子产生的光的发射,从激发态返回到基态。表2是基于纳米材料的荧光传感器检测食品中BDZ的研究结果。表2 基于纳米材料的BDZ荧光传感器基于非辐射能量转移的荧光传感器在检测食品和农产品中的有毒化学物质和致病菌方面引起了人们极大的研究兴趣。FRET是一种非辐射距离依赖的能量转移现象,作为一种独特、可靠、灵敏的分析技术被广泛应用于检测各种分析物。碳量子点或碳点是一种新型的发光碳纳米材料,可用于荧光分析法中的定量分析。如图4A所示,Wang课题组基于氮掺杂碳量子点和金纳米簇之间的FRET,通过两个线性响应开发了CBZ的"turnon"比率型荧光传感器,LOD分别为0.83和37.25 μmol/L。相反,考虑到上转换纳米颗粒的优势,有研究开发了一种上转换-二氧化锰发光共振能量转移生物传感器用于UCNPs对CBZ的灵敏检测,如图4B所示。图4 N-GQDs/AuNCs作为CBZ比率荧光开启传感器的示意图(A) CBZ荧光纳米传感器示意图(B) SERS传感器近年来,随着纳米技术的发展,获得了不同形态的纳米结构,它们被用作SERS活性基底,用于无标记和/或靶敏感检测各种分析物,包括农药残留水平。为了提高基于SERS的农药检测的准确度和精密度,研究人员不断致力于开发新型SERS基底、新型检测策略、原位检测系统等。表3总结了SERS技术在BDZ类杀菌剂检测和定量方面的研究进展。表3 BDZ用纳米材料SERS传感器 SERS活性基底的选择SERS活性基底的选择对SERS检测至关重要。为了制备用于BDZ的最佳SERS传感器,需要考虑三个关键点:i)SERS活性底物的拉曼信号增强能力,ii)SERS有源底物的均匀性和稳定性,iii)BDZ对SERS活性基质的亲和力。 SERS光谱的密度泛函理论(DFT)模拟在SERS信号中可以得到分子固有的拉曼信号,这可以通过DFT得到潜在的证实。理论拉曼信号借助高斯程序进行DFT分析,并给出合理的解释。然而,实验测得的拉曼和SERS信号与理论信号存在一定的差异,这可能与农药或基底的分子结构及其相互作用有关。因此,需要更多的研究来了解它们在实验上存在差异的确切原因。化学计量学对SERS传感器的影响化学计量学的关键优势在于能够从低质量的仪器数据中获得合理的检测结果,所得数据具有信号重叠性强、噪声水平高、分辨率低等特点。这种方法常应用于从光学(即比色、荧光、SERS等)、色谱、电化学和其他各种技术中获得的信号的定性和定量处理。有研究将竞争性自适应重加权采样-极限学习机(CARS-ELM)作为非线性化学计量学方法与SERS相结合,实现了苹果中TBZ浓度的快速测定;该方法在TBZ浓度为1、5、10 mg/L的蓄意污染苹果样品中的回收率为83.02%~93.54%;此外,通过PCA在P=0.05水平上的判别图确定了LOD(0.001 mg/L),如图5A所示。图5 利用SERS耦合CARS-ELM确定TBZ的方法示意图(A);SERS传感双杀菌剂界面自组装核壳二维Au@Ag纳米点阵列的制备示意图(B);便携式拉曼分析仪微滴捕获带(C);Ag-Au-IP6-Mil-101 (Fe)的制备示意图及TBZ的SERS测定(D)磁性纳米粒子(MNPs)对SERS传感器的影响磁性纳米粒子与贵金属纳米材料的结合在农药的SERS检测中开辟了新的途径,这归因于以下几个优点:MNPs的有序排列和良好调节的热点提供了完美的增强因子;磁性纳米粒子的磁性允许目标化合物从复杂基质中有效分离和富集;磁性纳米粒子的磁性赋予了SERS纳米复合基底可重复使用性;最后,磁性纳米粒子的生物相容性允许生物识别分子固定在其表面,提高了其对目标分子的特异性生物识别能力和与基质的分离能力。利用贵金属单、双金属SERS基底对BDZ进行无标记检测近年来,利用SERS技术实现痕量分子的无标记检测已成为原位应用的研究热点。如图5B所示,利用金核银壳纳米颗粒设计了一种二维纳米点阵列SERS基底,用于梨、苹果和橙汁中TBZ的可靠和可重复性测定,LOD为0.051 × 10-6。 基于氧化石墨烯(GO)的SERS传感器GO是一种单层碳材料,通过π-π堆积作用或静电作用对芳香分子具有突出的吸附能力;此外,由于电荷转移效应,它提高了拉曼信号,从而支持SERS检测。 硅基SERS传感器根据已发表的多篇文献,金属化硅由于具有大的表面积体积比可用于表面修饰、减少纳米材料之间的相互作用、独特的光学性质和易于制备等优点,已成为制备SERS基底的重要元素。基于聚二甲基硅氧烷(PDMS)的SERS传感器PDMS是柔性基底中备受研究者关注的一种聚合物凝胶,因其具有透明性、良好的拉伸强度、黏结性、无毒性和化学稳定性等优点。此外,它具有较低的拉曼截面,对拉曼信号的影响较小。 基于纸张和胶带的SERS传感器纤维素基纸模板具有三维结构、便携性、柔韧性、多孔性、非均相形貌、极小的SERS信号干扰等优点,是硅或玻璃晶片和多孔氧化铝模板的实际替代品。特别是,它可以通过毛细管作用吸收液体,使目标分析物在传感器纳米材料表面黏附和富集基于金属有机框架的SERS传感器。如图5C所示,通过在导电碳带上沉积Au纳米枝晶,生成了用于TBZSERS检测的创新型POCT装置"微液滴捕获带";作为一个自主的"微容器"用于吸附分析物。基于金属有机框架(MOFs)的SERS传感器MOFs的多孔结构是通过π-π相互作用、氢键或静电作用形成的,它们提供了一个大的比表面积来支持和稳定金属纳米结构,从而获得一种新型的SERS基底。将Au/Ag纳米结构固定到MOFs中作为一种高效的SERS基底近年来受到了广泛的关注。如图5D所示,开发了一种基于MOFs的SERS传感器(Ag-Au-IP6-Mil-101(Fe))检测果汁样品中的TBZ。 基于分子印迹聚合物(MIPs)的SERS传感器考虑到生物识别元件的局限性,MIP作为一种人工识别元件,具有与目标分子亲和力高、化学和机械稳定性好、价格低廉等优点,在检测、催化和固相萃取等领域具有广阔的应用前景;它通过具有酸性或碱性基团的单体聚合,在目标分子存在的情况下形成三维空腔,可以通过互补的形状、大小和官能团选择性地与目标分子结合。基于其他材料的SERS传感器受仿生材料的启发,将植物叶片组装到AuNPs上,产生电磁辐射热点,用于水中CBZ和TBZ的检测。有研究报道了一种用于检测水果样品中TBZ的模板生长磷烯基Au/Ag纳米复合材料SERS基底。另有研究报道了合成的聚氨酯胶束/纳米银簇用于不同果蔬表面TBZ的原位检测。集成传感器近年来,集成不同的技术来提高检测的选择性、准确性和精密度受到了广泛的关注。利用碳化钛MXene/Au-Ag纳米壳开发了一种双功能智能CBZ检测方法,如图6所示。通过电化学和SERS方法,该传感器在茶叶和大米中分别可以检测到低至0.002和0.01 μmol/L的CBZ(表4)。图6 Ti2C MXene/Au-Ag纳米杂化物用于CBZ的电化学和SERS检测表4 基于纳米材料的BDZ集成传感器Conclusion and Perspectives本文综述了基于纳米材料的检测策略,以实现对实际样品中BDZ的高效溯源。尽管这些基于纳米材料的光学及其集成传感器与传统方法相比具有一定的便利性,但在实际样品的检测中仍然存在一些挑战。在本研究中提到的BDZ中,苯菌灵和FBZ还没有被检测到。由于纳米材料与目标分析物结合的活性位点是有限的,因此关注简便和低成本的样品前处理过程是很重要的。也可以集中在芯片、纸张或带状传感器上,用于BDZ的现场检测,这将更有效地用于工业应用。——————————————————————————————————————— 陈全胜:集美大学海洋食品与生物工程学院教授,博士生导师,主要从事食品质量安全快速无损检测与智能化加工装备研发。近年来先后主持国家部省级项目20余项,出版学术英文学术著作1部,中文学术著作3部,以第一/通讯作者发表SCI论文150余篇(其中,IF10论文10余篇,ESI高被引论文15篇,ESI热点论文4篇),论文累计SCI他引6000余次,个人H指数43;累计授权发明专利50余件(含国际专利4件),成果先后获国家技术发明奖二等奖、江苏省科学技术奖一等奖和教育部自然科学奖二等奖等;先后获国家高层次人才、科技部中青年科技创新领军人才、中国高被引学者、ProSPER.Net-Scopus Young Scientist Award、中国青年科学之星和江苏省333中青年科技创新领军人才等国内外奖励和荣誉。为进一步促进动物源食品质量安全的发展,更好的保障人类身体健康和提高生活品质,仪器信息网于2023年11月15-17日举办“动物源性食品质量安全检测技术”主题网络研讨会。陈全胜老师也将在此次网络会中带来精彩报告!点击图片,免费参会
  • Megazyme生物酶促销
    产品货号:CFGK-IC-6-1 产品名称:6种阳离子混标,Li/Na/K/Ca/Mg/NH4,溶于1%稀硝酸 规格:125ml 品牌:NSI 报价:1860.00元/瓶 促销价:1300.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-BGLAN 产品名称:&beta -半乳糖苷酶 酶号:3.2.1.23 品牌:Megazyme 规格:8000Units(~40.9 U/mg) 报价:2840.00元/瓶 促销价:1700.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-BSPRPD 产品名称:蛋白酶 酶号:3.4.21.14 品牌:Megazyme 规格:1g (10 U/mg of protein) 报价:3160.00元/瓶 促销价:1900.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-AMGDF 产品名称:淀粉转葡萄糖苷酶 酶号:3.2.1.3 品牌:Megazyme 规格:40 mL(3260 Units/mL) 报价:2400.00元/瓶 促销价:1440.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-ACPEC 产品名称:酸性磷酸酶 酶号:3.1.3.2 品牌:Megazyme 规格:400 Units(~17 U/mg) 报价:2420.00元/瓶 促销价:1450.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-ALPEC 产品名称:碱性磷酸酶 酶号:3.1.3.1 品牌:Megazyme 规格:400 Units(~10 U/mg) 报价:2625.00元/瓶 促销价:1580.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-ISAMY 产品名称:异淀粉酶 酶号:3.2.1.68 品牌:Megazyme 规格:1000 Units(~280 U/mg) 报价:3060.00元/瓶 促销价:1830.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-BLAAM 产品名称:&alpha -淀粉酶 酶号:EC:3.2.1.1 品牌:Megazyme 规格:40mL - 3000 Units/mL 报价:2360.00元/瓶 促销价:1420.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-GLUKEC 产品名称:葡糖酸激酶,己糖激酶 酶号:EC:2.7.1.12 品牌:Megazyme 规格:1500 Units 报价:2740.00元/瓶 促销价:1640.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-GPDHEC 产品名称:葡萄糖-6-磷酸脱氢酶 酶号:EC:1.1.1.49 品牌:Megazyme 规格:1500 Units 报价:5000.00元/瓶 促销价:3000.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-PGIEC 产品名称:磷酸葡萄糖异构酶 酶号:EC:5.3.1.9 品牌:Megazyme 规格:10000 Units 报价:2260.00元/瓶 促销价:1350.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-PGDHEC 产品名称:6-磷酸葡萄糖脱氢酶 酶号:EC:1.1.1.44 品牌:Megazyme 规格:150 Units 报价:3160.00元/瓶 促销价:1900.00元/瓶 促销日期截止2013.12.31日 关键词:Magazyme 生物酶 促销 化学 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 技术支持:techservice@anpel.com.cn
  • Nature子刊:吃什么,决定了我们会不会患上心力衰竭
    最新研究表明,鼓励心肌细胞消耗葡萄糖,而不是脂肪酸可以帮助治疗心力衰竭德州大学西南医学中心的一项新研究表明,改变心脏细胞的能量消耗,可以帮助心脏死亡时心脏再生。这一发现公布在2月20日的《自然新陈代谢》杂志上,这将为治疗各种心肌受损的疾病(包括由病毒,毒素,高血压或心脏病引起的心力衰竭)开辟全新的途径。随后的研究表明,这种再生能力的变化似乎部分是由于破坏细胞线粒体所产生的自由基所致,这种亚细胞结构为细胞提供动力。这些自由基破坏细胞的DNA,这种现象称为DNA损伤,促使它们停止分裂。UT西南医学研究人员Hesham A. Sadek解释说,当前用于心力衰竭的药物治疗包括ACE抑制剂和β受体阻滞剂,这些都集中在试图阻止心肌丢失的恶性循环上,因为劳损进一步损害了剩余的心肌,导致更多的细胞死亡。 目前尚无用于重建心肌的治疗方法。九年前,Sadek和他的同事们发现,如果哺乳动物的心脏在生命的最初几天受到心肌细胞分裂(这些细胞负责心脏的收缩力)的刺激而受损,它们就会再生。但是,这种能力在7天之后就完全丧失了,这是一个突然的转折点,这些细胞的分裂急剧减慢。Sadek解释说,心肌细胞线粒体消耗能量的方式似乎促进了自由基产生的转变。尽管线粒体在子宫内和出生时都依赖葡萄糖,但它们在出生后的几天会转换为脂肪酸,利用母乳中的这些能量密集分子。Sadek和他的同事们想知道,强迫线粒体继续消耗葡萄糖是否会阻碍DNA损伤,进而扩大心脏细胞再生的窗口。为了验证这个想法,研究人员尝试了两个不同的实验。首先,他们研究了幼鼠,它们的母亲经过基因改造产生低脂母乳,并且在断奶后以低脂食物为食。研究人员发现,这些啮齿动物维持心脏再生的能力比正常情况晚关闭了几周,它们的心肌细胞继续表达与细胞分裂相关的基因,其窗口的时间要比那些定期喂母乳的小鼠长得多。但是,这种作用并没有持续到成年期——它们的肝脏最终通过合成饮食中缺少的脂肪来弥补其不足,这大大降低了心脏的再生能力。在第二个实验中,研究人员创造了转基因动物,其中研究人员删除一种称为丙酮酸脱氢酶激酶4(PDK4)的酶,这是心脏细胞线粒体消化脂肪酸所必需的。当研究人员提供一种药物来关闭PDK4的生产时,即使在成年期,这些动物的心肌细胞也开始消耗葡萄糖而不是脂肪酸。在研究人员模拟心脏病发作后,这些动物的心脏功能得到改善,并伴有基因表达标记,表明它们的心肌细胞仍在活跃分裂。Sadek指出,这些发现提供了原理上的证明,即可以通过控制心肌细胞线粒体消耗的能量来重新打开心脏细胞再生的窗口。他说:“最终,可能会开发出能改变心肌细胞饮食的药物,使它们再次分裂,从而逆转心力衰竭,这代表真正的治愈方法。”
  • 智云达研发的新产品——豆芽氨氮速测盒上市啦!
    豆芽作为芽苗菜中的一种,由于营养价值丰富,食用方便,烹调方法多样,集美容药用功效于一身,一直颇受广大消费者的亲睐。但是近来市场上频频曝光的“毒豆芽”事件,一度让消费者闻豆芽而色变。一些不法商贩在豆芽培育过程中违规使用铵盐、氨水类化肥,从而使得豆芽中含有大量的氨氮。北京智云达科技有限公司最新研发生产的豆芽氨氮速测盒上市了,本试剂盒适用于豆芽中氨氮的快速检测。 市场上销售的那些越是看似白净、粗壮且无根的豆芽越可能存安全隐患。一般正常培育豆芽要2-3天的时间,这样生产的豆芽一是浪费人力、物力和时间,同时自然生长的豆芽卖相不美观。铵盐、氨水类化肥含有大量的氨氮,作为化肥能促进植物生长,一些不法商贩为了加快豆芽生长,让豆芽卖相好看,为了一己私利违禁添加铵盐、氮水类化肥。 此试剂盒适合豆芽中氨氮测定,小包装方便携带,适合家庭、个人使用,且操作步骤简便,结果易于分辨。将显色管与色阶卡进行比较,即可读出豆芽中氨氮的含量。如果样品中氨氮含量≥50mg/kg,则样品为阳性样品,说明豆芽培育过程中使用了铵盐类化肥。 这些氨氮类物质在人体堆积对人体健康有潜在影响。氨氮可以在一定条件下转化成亚硝酸盐,亚硝酸盐对人体的危害大家早已心知肚明,如果长期饮用,亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。 北京智云达科技有限公司作为食品安全检测专家,为解决百姓身边的食品安全问题义不容辞。公司多年来已研发生产出200余种食品安全快速检测产品,包括仪器、试剂盒、试纸、胶体金卡等。为了百姓能吃上放心的食品,北京智云达科技有限公司接下来还会不断推出更便捷、更快速、更安全快速的食品安全检测产品! 豆芽氨氮速测盒
  • 促肾上腺皮质激素ACTH(18-39)抗体现货促销
    【详细说明】:促肾上腺皮质激素ACTH(18-39)抗体【浓 度】:1mg/1ml 抗体来源【宿 主】:兔源、鼠源、其他 克隆:单克隆抗体、多克隆抗体【适 用】:Human, Mouse, Rat, Chicken, Dog, Pig, Cow, Horse, Sheep, Monkey, others。 抗体类型:一抗 研究领域:细胞生物、神经生物学等 【性 状】:促肾上腺皮质激素ACTH(18-39)抗体冻干粉或液体【相关标记】:FITC、Gold 、HRP、PE PE-Cy3、PE-CY5、PE-CY5.5 、PE-CY7 、RBITC 、 Alexa Fluor 350、Alexa Fluor 488 、 Alexa Fluor 555 、Alexa Fluor 647、AP 、APC 、Biotin 、Cy3 、Cy5 、Cy5.5 、Cy7 。【储 存 液】: Preservative: 15mM Sodium Azide, Constituents: 1% BSA, 0.01M PBS, pH 7.4 or PBS with 0.1% sodium azide and 50% glycerol pH 7.3. -20oC, Avoid freeze / thaw cycles.【产品应用】 :Immunohistochemistry (IHC), Flow Cytometry (FACS) , Western Blotting (WB) , ELISA , Immunohistochemistry , Immunohistochemistry (Paraffin-embedded Sections) (IHC (p)) , Immunoprecipitation (IP) , Immunocytochemistry (ICC) ,Immunofluorescence (IF)等。促肾上腺皮质激素ACTH(18-39)抗体ADCY8 腺苷酸环化酶8抗体 (1)IgG :血清中含量最高,因此是最重要的抗感染分子,包括抗菌、抗病毒、抗毒素等。 IgG 还能激活补体,结合并增强巨噬细胞的吞噬功能(调理作用和 ADCC 效应),穿过胎盘,保护胎儿及新生婴儿免受感染。 (2)IgA :分单体和双体两种。前者存在血清中,后者存在于黏膜表面及分泌液中,是黏膜局部抗感染的重要因素。(3)IgM :是分子量最大,体内受感染后最早产生的抗体,具有很强的激活补体和调理作用,因此是重要的抗感染因子,且常用于诊断早期感染。  (4)IgD :主要存在于成熟 B 细胞表面,是 B 细胞识别抗原的受体。 (5)IgE :血清中含量最少的抗体,某些过敏性体质的人血清中可检测到,参与介导 I 型超敏反应和抗寄生虫感染。促肾上腺皮质激素ACTH(18-39)抗体现货促销中,为您推荐相关优质检测抗体:Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Lgr5/GPR49 肠上皮干细胞蛋白抗体 Anti-LH (Mouse Anti-Human Luteinizing Hormone Monoclonal Antibody) 鼠抗人促黄体生成素抗体 Anti-L-HDC (L-Histidine decarboxylase) L-组氨酸脱羧酶抗体 hu, mo, rat, bov, dog, pig, chi Anti-LHRH/GNRH (luteinizing hormone-releasing hormone) 黄体激素释放激素抗体/促性腺激素释放激素抗体 Anti-LIF (leukemia inhibitory factor) 白血病抑制因子抗体 Anti-Lingo-1 Nogo受体作用蛋白抗体 Anti-Livin (Inhibitors of apoptosis proterins Livin) 一种新的凋亡抑制蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 Anti-LN (laminin) 层粘连蛋白抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-LRP/MVP (Lung resistance related protein) 肺耐药相关蛋白抗体 Anti-LRRK2 (Leucine-rich repeat kinase 2) 帕金森氏病致病基因/神经系统新功能基因抗体 Anti-Lumbrokinase 抗蚯蚓纤溶酶抗体/抗蚓激酶抗体 Anti-Lysozyme 溶菌酶抗体 anti-LYVE-1(lymphalic vessel endotheilial hyaluronan receptor 1) 淋巴管内皮透明质酸受体抗体 Anti-M2-PK ( pyruvate Kinase M2) 丙酮酸激酶-M2抗体 Anti-M2-PK (pyruvate Kinase M2) 丙酮酸激酶-M2(小鼠来源抗体) Anti-Integrin αM/CD11b (Mac-1/CR3A)(Integrin-alpha2) 巨噬细胞表面分子/整合素-α2抗体 Anti-ChRM1 (muscarinic acetylcholine receptor) 毒蕈碱型乙酰胆碱受体M1抗体 Anti-MADCAM-1(-Mucosal addressin cellular adhesion molecule-1) 粘膜选址素抗体 Anti-MAG-a/b (Myelin associated glycoprotein L / S -MAG ) 髓鞘相关糖蛋白a/b抗体 Anti-MAG-a/L-MAG (Myelin associated glycoprotein) 髓鞘相关糖蛋白-a抗体 Anti-MAGE-1/HLA-A1 protein (melanoma antigen family A member 1) 黑素瘤抗原-1抗体 Anti-MAPKK1 (MAP kinase kinase 1) 丝裂原活化蛋白激酶激酶1 Anti-MAPKK2 (MAP kinase kinase 2) 丝裂原活化蛋白激酶激酶2抗体 Anti-Maspin (mammary serine protease inhibitor) 抑癌基因抗体 Anti-Matriptase 蛋白裂解酶(一种新的癌基因)抗体 Anti-MBP (Myelin Basic Protein, MBP) 髓鞘碱性蛋白抗体 Anti-MCP-1 (monocyte chemotactic protein1) 巨噬细胞趋化蛋白-1抗体 Anti-M-CSF (Macrophage Colony Stimulating Factors) 巨噬细胞克隆刺激因子抗体 Anti-MDM2 (urine double minute 2) 双微体2癌基因抗体 Anti-Megsin/SER—PINB7 丝氨酸(或半胱氨酸)蛋白酶抑制剂B7抗体 Anti-Melan-A/MART-1 黑色素瘤相关抗原/黑色素-A抗体 Anti-Metal ion transporter 拟南介金属离子转运蛋白抗体 Anti-Mfn1 (Mitofusin1) 线粒体融合蛋白1抗体 Anti-MGMT (O6-methylguanine-DNA methyltransferase) O6甲基鸟嘌呤DNA甲基转移酶抗体 anti-MT(metallothionein) 金属基质硫蛋白抗体 anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(NT) 层粘连蛋白受体1抗体(N端) anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(CT) 层粘连蛋白受体1抗体(C端) Anti-MICA(MHC class I polypeptide-related sequence A) 一种细胞应激分子抗体 Anti-Midnolin isoform Protein 1 中脑核仁蛋白1抗体 Anti-Midnolin isoform Protein 2 中脑核仁蛋白2抗体 Anti-MIF (Macrophage Migration Inhibitory Factor) 巨噬细胞移动抑制因子抗体 Anti-MIP-1α (macrophage inflammatory protein 1α) 巨噬细胞炎症因子1α抗体 Anti-MIP-1β (macrophage inflammatory protein 1β) 巨噬细胞炎症因子1β 抗体 Anti-MMP-1(matrix metalloproteinases-1) 基质金属蛋白酶-1抗体 Anti-MMP-1(matrix metalloproteinases-1)anti-Mouse 基质金属蛋白酶-1抗体(小鼠) Anti-MMP-13 (Matrix metalloproteinase 13) 基质金属蛋白酶13抗体 Anti-MMP-14(Matrix metalloproteinase-14) 基质金属蛋白酶-14抗体 Anti-MMP-2(Collagenase IV /Gelatinase A/Metallo proteinase-2) 基质金属蛋白酶-2抗体 Anti-MMP-3(matrix metalloproteinase-3/Transin-1/SL-1/Stromelysin-1 precursor) 基质金属蛋白酶-3抗体 Anti-MMP-7(Matrilysin/matrix metalloproteinases-7) 基质金属蛋白酶-7抗体 Anti-MMP-9(matrix metalloproteinase 9) 基质金属蛋白酶-9抗体 Anti-β-2-MG 鼠抗人β2微球蛋白抗体(单抗) Anti-Mo anti-KLH 小鼠抗血蓝蛋白抗体 Anti-MOG (myelin oligo-dendrocyte glycoprotein-MOG) 髓鞘少树突胶质细胞糖蛋白抗体 Anti-Mouse anti-human HAS 鼠抗人血清白蛋白单克隆抗体 Anti-Mouse IgA 兔抗小鼠IgA抗体 Anti-MPO (myeloperoxidase) 髓过氧化物酶抗体 Anti-MRP1(Multidrug Resistanec-Associated Protein 1) 多药耐药相关蛋白1抗体 Anti-MRP2 (multidrug resistance-associated protein2) 多药耐药相关蛋白2抗体 Anti-MRP3(Multidrug Resistanec-Associated Protein 3) 多药耐药相关蛋白3抗体 Anti-MrpL28 (mitochondrial ribosomal protein L28) 线粒体核糖体蛋白L28抗体 Anti-MSH-2 (MutS homolog 2) 错配修复蛋白2抗体 anti-MLH1(Mutl homolog l gene) 错配修复蛋白1抗体 Anti-MSLN (mesothelin) 间皮素抗体 anti-MUC5AC/Mucin 5AC(Gastric Mucin M1) 胃粘液素抗体 Anti-MTR-1A (Melatonin receptor-1A) 褪黑素受体/松果体素受体抗体 Anti-mucin-1/Muc-1/CD227 antigen (Epithelial Membrane Antigen ) 粘蛋白-1/上皮膜抗原抗体 Anti-MyD88 (myeloid differential protein-88) 髓样分化蛋白抗体 Anti-Myelin P0 protein( peripheral myelin prothein Zero MPZ MPP) 外周髓磷脂P0蛋白/P0蛋白抗体 Anti-Myosin (Smooth Muscle) 鼠抗人心肌肌凝蛋白(平滑肌) 单抗 Anti-N-AChR α4 (Nicotinic-Acetylcholine receptor α4) 烟碱型乙酰胆碱受体α4抗体 Anti-N-AChR α7 (Nicotinic-Acetylcholine receptor α7) 烟碱型乙酰胆碱受体α7抗体 Anti-Nanog 胚胎干细胞关键蛋白抗体 anti-Natrexone 抗纳曲酮抗体IgG Anti-NAP1 (nucleosome assembly protein 1) 核小体组装蛋白1抗体 Anti-N-cadherin N-钙粘附分子抗体 Anti-N-coR1 (Nuclear receptor co-repressor 1) 核受体辅助抑制因子抗体 Anti-Nephrin Protein 肾病蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Neurobeachin protein (AKAP550) 蛋白激酶锚定蛋白/激酶固定蛋白抗体 Anti-Neurocan 神经粘蛋白抗体 Anti-Neurofascin-155 神经束蛋白-155 Anti-NF-H(Neurofilament triplet H) 高分子量神经丝蛋白抗体 Anti-NFKBp65(p65 NF-kappa B p65NFKB) 细胞核因子/k基因结合核因子抗体 Anti-NF-L(Neurofilament triplet L) 低分子量神经丝蛋白抗体 Anti-NF-M (Neurofilament triplet M) 中分子量神经丝蛋白抗体 Anti-NF-κBp50(p50 NF-kappa B p50NFKB) 细胞核因子50/κ基因结合核因子50抗体 Anti-NGF-R/p75NTR/CD271(p75 Neurotrophin R) 神经生长因子受体抗体 Anti-NGF-β 神经生长因子-β抗体 anti-NGN3(neurogenin 3 Neurog3) 神经元素3抗体 Anti-NGX6 (nasopharyngeal carcinoma/NPC associated gene 6) 鼻咽癌细胞相关基因6抗体 Anti-NHE1(Na+/H+ Exchanger) 钠氢通道蛋白抗体 Anti-NIK(NF-kappaB-Inducing Kinase) NFkB诱导的激酶抗体 Anti-NIS(Na+/I-symporter) 钠碘转运体蛋白抗体 Anti-NK-1/SuRCtance P Receptor (Neurokinin receptor1 Tachykinin receptor1) P物质受体抗体
  • 420万!集美大学海洋食品与生物工程学院透射电子显微镜采购项目
    项目编号:[350200]ZW[GK]2022004项目名称:集美大学海洋食品与生物工程学院透射电子显微镜采购方式:公开招标预算金额:4200000元 包1:采购包预算金额:4200000元采购包最高限价:4200000元投标保证金:0元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100301-显微镜透射电子显微镜1(套)是1环境条件: 1.1 电源:220V(±10%),50Hz/60Hz;1.2 工作环境温度:15~23度1.3 工作环境湿度:<60%RH1.4 运行持久性:连续使用1.5 安装条件:地线独立接地,电阻小于100欧姆即可2 应用范围:用于对纳米材料、高分子材料、医药和生物医学等样品进行高分辨观察;3. 技术要求:3.1 加速电压:20-120KV(以100V为步长调节)3.2 分辨率:≤0.2nm3.3 ▲电子枪:钨灯丝,具有电流自动控制,灯丝计时,气压式自动升枪等功能,可选配LaB6灯丝3.4 ★观察模式:不更换硬件的前提下,可在同一台仪器上实现物镜的高分辨(HR)和高反差模式(HC)的一键切换(提供两种模式切换的截图)。适合纳米材料及病毒的高分辨观察和生物组织的高反差观察。3.5 放大倍数:高反差模式:X200~X200,000高分辨模式:X4,000~X600,000低倍模式:X50~X1,0003.6 ▲图像旋转:最大范围X1,000~X40,000,旋转角度:±90度(15度/步)3.7 ★物镜焦长:高反差模式焦长:≥8.8mm,保证高反差观察效果。3.8 ★使用高速、高灵敏的COMS荧光屏相机(帧率≥160fps)取代了传统的荧光屏观察窗,将TEM操作统一于显示器上。3.9 ★一体化直插式CMOS相机,≥1200万像素,兼顾高分辨和大视野观察;一体化主相机具有自动保护功能,防止电子束过强对CMOS的损伤。3.10 具有自动聚焦功能,适用范围:×1,000~×20,000,误差:<7um(×10,000),可设定自动欠焦量。3.11 具有自动消像散功能,适用范围:×3,000~×20,000,误差:<1.2um(×20,000)3.12▲自动图像导航:Whole View功能,超低倍观察,观察范围φ2mm;利用Whole View图像在设定倍率下自动拍照,并利用所得图片进行导航,同时保留坐标导航和图片回溯功能。3.13 自动拼图功能:高低倍下均可实现拼图,可以实现4 x 4张图片快速自动拼图(仅需4分钟),最大像素13k x 10k2.14 具有自动聚焦、自动定位可无人值守拍摄多张图片的功能,准确定位并自动拍摄数量≥99★2.15 配备自动倾斜图像捕捉系统及3D重构软件系统,能够实现自动倾转样品台、马达自动对中样品、自动拍照、EMIP-3D自动计算3D结构信息。2.16 辅助功能实时测量:测量图片或衍射图案漂移校正:对漂移图像进行校正Rizm功能:可用鼠标控制样品位置的移动(高倍)2.17 样品低损伤观察低剂量电子束观察,软件界面上电子束剂量实时显示自动预辐照功能2.18 ★两端支撑式高稳定样品杆,有效防止样品漂移、抖动(提供样品杆两端的实物图片)。2.19样品平移:X/Y ±1mm(CPU控制马达驱动),Z ±0.3mm。2.20 样品台倾斜角:±70度,可显示样品位置、倾角等。2.21 ▲物镜活动光阑:4孔光阑,最小光阑孔≤15um。2.22 真空系统:2.22.1真空逻辑由测量值控制;2.22.2★真空交换仓预抽时间≤15s,抽真空到可以显示样品图像≤20s(提供抽真空开始到显示图像的视频图像);2.22.3配有全量程规,操作界面上实时监测镜桶内真空的变化;2.22.4不使用扩散泵,配置分子泵,抽速不低于300L/s,旋转泵,抽速不低于135L/min。3. 必要配置:3.1 透射电镜主机 1台3.2自动升枪电子枪 1套3.3两级照明镜系统 1套3.4五级成像镜系统 1套3.5分子泵(流速≥300L/s) 1台3.6机械泵 1台3.7空压机 1台3.8冷却循环水 1台3.9 COMS荧光屏相机(帧率≥160fps) 1台3.10直插式1200万像素CMOS相机 1台3.11 CMOS相机与电镜一体化操作软件 1套3.12自动倾斜图像捕捉系统及3D重构软件系统 1套3.13高反差和高分辨物镜极靴 各1套3.14两端支撑式高稳定样品杆 1套3.15控制单元,包括电脑主机、键盘、鼠标、旋钮板 1套4.技术服务:为用户培训使用仪器的工作人员。其培训内容指的是仪器设备的基本原理、安装、调试、操作使用和日常保养维修等。5.性能试验与质量保证:5.1应对仪器设备的质量、规格、性能、数量进行详细和全面的检查,并出具检验证明,如有缺失,应负责赔偿。5.2仪器设备的保修期为一年。5.3售 后 服 务:厂家在福建设有办事处并配有专职的电镜维修工程师。4200000工业合同履行期限: 合同签订后(180)天内交货本采购包:不接受联合体投标
  • 贝克曼库尔特、生物梅里埃、西门子多款产品获FDA批准
    p   据FDA网站报道,贝克曼库尔特(Beckman Coulter),生物梅里埃(BioMé rieux)和西门子上个月都获得了多个美国食品和药物管理局(FDA)的批准。 /p p   丹纳赫公司的贝克曼库尔特公司(Beckman Coulter)有四项检测结果,而生物梅里埃公司和西门子公司均有两个检测许可。 /p p   美国食品和药物管理局对三种独立的Beckman Coulter MicroScan干革兰氏阴性MIC / Combo试剂盒进行了批准,以便对“在快速生长的需氧和兼性厌氧革兰氏阴性杆菌的固体培养基上生长的菌落的抗菌剂敏感性进行定量和/或定性评估”。 /p p   贝克曼库尔特公司用于测定抗苗勒氏管激素水平的化学发光免疫分析也获得了510(k)的批准。 /p p   BioMé rieux同样有一次检测从FDA获得多次批准,但有两种不同的药物。 Vitek 2 AST-GN测试已被批准使用阿米卡星(≤1 - ≥64微克/毫升)和头孢他啶/阿维巴坦(≤12 - ≥16微克/毫升)。 FDA文件说,这些测试是在Vitek 2和Vitek 2 Compact系统上对革兰氏阴性杆菌进行抗生素敏感性试验,作为确定体外对抗微生物药物敏感性的实验室辅助手段。两种测定都是定量测试。 /p p   与此同时,西门子医疗集团收到了Sysmex全自动血液凝固分析仪CS-2500的批准,这是一种全自动血液凝固分析仪,用于基于从3.2%柠檬酸钠管静脉血液采集的血浆的体外诊断止血。 /p p   西门子和Sysmex拥有涵盖止血测试的全球合作伙伴关系。该平台主要用于确定V因子,凝血因子VIII和凝血因子IX。 /p p   FDA还批准了西门子健康人Advia化学酶法血红蛋白A1c测定法。 IVD测试定量测定人抗凝血全血和溶血产物中的mmol / mol HbA1c和百分比HbA1c,并用于Advia化学系统。 /p p   另外510(k)上个月批准的是Alere BinaxNOW甲型流感和B卡2和Alere读者。 IVD免疫层析法定性检测鼻咽拭子和鼻拭子样本中的A型和B型核蛋白抗原。 Alere于十月份以五十三亿美元的价格被雅培收购。 /p p   此外,来自Euroimmun(现为PerkinElmer的一部分,Anti-Borrelia burgdorferi US Euroline-WB试剂盒)的测定法得到了FDA批准,用于定性测定人血清和血浆样品中针对伯氏疏螺旋体(Borrelia burgdorferi)的IgM类抗体,所述血清和血浆样品被发现是阳性或不明确的/ borderline使用酶免疫分析或免疫荧光分析测试程序疏螺旋体伯氏疏螺旋体抗体。 /p p   并且Fujirebio Diagnostics的Lumipulse G BRAHMS PCT测试被批准,用于定量测定人血清和血浆中的降钙素原。该测试是化学发光酶免疫测定,并在Lumipulse G系统上运行。 /p p   其他在12月份获得FDA检测或检测系统许可的公司包括Quidel公司,其B组Strep测试可用于Solana平台,Group A Strep测试用于索非亚2系统,获得了在美国市场的认可。 /p p   Ortho临床诊断被批准销售它的Vitros Imunodiagnostic产品HIV组合试剂组装和校准器。 /p p   精准肿瘤诊断公司MolecularMD也因其MRDx BCR-ABL试验获得FDA批准,用于鉴定费歇尔染色体阳性的慢性CML患者,该患者接受BCR-ABL酪氨酸激酶抑制剂Tasigna治疗,这些患者是停止治疗和监测无治疗缓解的候选人。 /p
  • 前沿合作∣岛津助力陈春英团队在PNAS上发表揭示细胞内纳米蛋白冠干扰蛋白稳态重塑细胞代谢
    2022年6月2日,国家纳米科学中心陈春英研究员团队在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America 2022, 119(23), e2200363119)在线发表了题为"Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism"的研究论文(图1),通过创新应用多维度多组学(蛋白组学、代谢组学、脂质组学)、分子间互作以及原位质谱成像等分析技术,首次揭示了“纳米蛋白冠”的蛋白组成在细胞转运过程中的动态演化模式,并发现该过程扰动细胞蛋白质稳态、能量代谢和脂质代谢过程。该研究工作得到了岛津中国创新中心(Shimadzu China Innovation Center)的技术支持。图1 论文首页标题 背景介绍当纳米材料进入生命体系时,生物流体的生物分子迅速与纳米材料表面结合,形成生物分子冠,其中纳米-血液蛋白分子互作形成的“纳米蛋白冠”,自2006年始引起科学界的广泛关注。前期工作发现纳米蛋白冠的形成决定纳米材料在多层级细胞和组织中的识别、转运、分布、功能和生物效应,是纳米材料生物应用的“黑匣子”问题,不仅决定纳米药物载体的递送效率,还会制约纳米药物的递送效率,并严重影响其有效性和安全性 [1]。该领域研究的一个重要挑战是“纳米蛋白冠”的复杂性,该复杂性受不同组织器官中生物分子的多样性以及生理病理状态的影响。然而目前对蛋白冠的蛋白组成和结构特性如何随纳米颗粒所处的生物微环境不同而发生变化,存在认知不明、机理不清的问题。 解决方案为了解决这一问题,研究人员以纳米金颗粒为模式纳米颗粒,研究了蛋白冠从血液系统到细胞内的动态演化过程(血液-溶酶体-细胞质)(图2),当纳米颗粒由血液环境经过细胞内吞进入溶酶体,再从溶酶体逃逸进入细胞质后,其表面的蛋白组成会发生巨大变化,被细胞内蛋白质分子(PKM2、HSPs、GAPDH、ASSY等)所替代,只保留部分血液环境中形成的蛋白冠成分(FIBs、APOs、HBs、C3、S100s等)(图2)。 图2. 纳米蛋白冠组成在细胞转运过程中的演化过程 随后发现,纳米蛋白冠的胞内演化扰乱细胞内的蛋白稳态(proteostasis),引发伴侣蛋白(HSC70, HSP90等)和丙酮酸激酶M2(PKM2)在胞内纳米蛋白冠表面的富集,并利用微量热泳动技术(MST)验证了PKM2、HSC70与从溶酶体逃逸出来之后的纳米蛋白冠具有极强的亲和力,这一吸附规律激发了伴侣蛋白介导的自噬反应(Chaperone mediated autophagy, CMA),即“纳米蛋白冠引发的CMA”(Protein corona induced CMA)(图3)。 图3. 纳米蛋白冠的组分与胞内蛋白(伴侣蛋白、代谢激酶)的交换引发伴侣蛋白介导的自噬(CMA)活性的升高 进一步,研究人员采用代谢组学发现“纳米蛋白冠诱导的CMA”影响细胞糖酵解,引发细胞外酸化率(ECAR)显著增加。结合脂质组学发现的特定脂质,利用iMScope TRIO(Shimadzu Corporation)进行鉴定和可视化分布分析显示在动物组织水平纳米蛋白冠的存在一定程度上扰动肿瘤组织中的脂质种类和分布(图4),扰动的脂质主要富集在胆碱代谢、甘油磷脂和鞘脂代谢途径。 图4. 纳米蛋白冠引发的CMA重塑细胞能量代谢和脂质代谢 结论综上所述,此项工作首次阐明了纳米颗粒从血液到亚细胞微环境转运过程中的演化模式,发现了“纳米蛋白冠”的胞内微环境特异性,进而重塑细胞代谢,为深入理解纳米-生物界面调控纳米材料复杂生物学效应提供了新认识和理论支撑。同时借助岛津成像质谱显微镜iMScope,可在肿瘤组织内部原位清晰展现出包括磷脂酰胆碱(PC)、磷脂酰乙醇胺 (PE)、磷脂酰肌醇(PI)类脂质等多种成分均发生了明显变化。通过空间可视化成像技术,不仅可实现在分子水平上对纯纳米粒子和纳米蛋白冠的生物毒理学效应进行有效研究,同时也为未来对更多种类的纳米搭载生物诊疗试剂和材料的毒理学和安全性评价提供更为直观有力的研究手段。 原文链接https://www.pnas.org/doi/10.1073/pnas.2200363119参考文献:[1] Cao M. et al. Molybdenum Derived from Nanomaterials Incorporates into Molybdenum Enzymes and Affects Their Activities in vivo. Nature Nanotechnology, 2021, 16: 708-716.
  • 前沿合作∣岛津助力陈春英团队在PNAS上发表揭示细胞内纳米蛋白冠干扰蛋白稳态重塑细胞代谢
    2022年6月2日,国家纳米科学中心陈春英研究员团队在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America 2022, 119(23), e2200363119)在线发表了题为"Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism"的研究论文(图1),通过创新应用多维度多组学(蛋白组学、代谢组学、脂质组学)、分子间互作以及原位质谱成像等分析技术,首次揭示了“纳米蛋白冠”的蛋白组成在细胞转运过程中的动态演化模式,并发现该过程扰动细胞蛋白质稳态、能量代谢和脂质代谢过程。该研究工作得到了岛津中国创新中心(Shimadzu China Innovation Center)的技术支持。 图1 论文首页标题 背景介绍当纳米材料进入生命体系时,生物流体的生物分子迅速与纳米材料表面结合,形成生物分子冠,其中纳米-血液蛋白分子互作形成的“纳米蛋白冠”,自2006年始引起科学界的广泛关注。前期工作发现纳米蛋白冠的形成决定纳米材料在多层级细胞和组织中的识别、转运、分布、功能和生物效应,是纳米材料生物应用的“黑匣子”问题,不仅决定纳米药物载体的递送效率,还会制约纳米药物的递送效率,并严重影响其有效性和安全性 [1]。该领域研究的一个重要挑战是“纳米蛋白冠”的复杂性,该复杂性受不同组织器官中生物分子的多样性以及生理病理状态的影响。然而目前对蛋白冠的蛋白组成和结构特性如何随纳米颗粒所处的生物微环境不同而发生变化,存在认知不明、机理不清的问题。 解决方案为了解决这一问题,研究人员以纳米金颗粒为模式纳米颗粒,研究了蛋白冠从血液系统到细胞内的动态演化过程(血液-溶酶体-细胞质)(图2),当纳米颗粒由血液环境经过细胞内吞进入溶酶体,再从溶酶体逃逸进入细胞质后,其表面的蛋白组成会发生巨大变化,被细胞内蛋白质分子(PKM2、HSPs、GAPDH、ASSY等)所替代,只保留部分血液环境中形成的蛋白冠成分(FIBs、APOs、HBs、C3、S100s等)(图2)。 图2. 纳米蛋白冠组成在细胞转运过程中的演化过程 随后发现,纳米蛋白冠的胞内演化扰乱细胞内的蛋白稳态(proteostasis),引发伴侣蛋白(HSC70, HSP90等)和丙酮酸激酶M2(PKM2)在胞内纳米蛋白冠表面的富集,并利用微量热泳动技术(MST)验证了PKM2、HSC70与从溶酶体逃逸出来之后的纳米蛋白冠具有极强的亲和力,这一吸附规律激发了伴侣蛋白介导的自噬反应(Chaperone mediated autophagy, CMA),即“纳米蛋白冠引发的CMA”(Protein corona induced CMA)(图3)。图3. 纳米蛋白冠的组分与胞内蛋白(伴侣蛋白、代谢激酶)的交换引发伴侣蛋白介导的自噬(CMA)活性的升高 进一步,研究人员采用代谢组学发现“纳米蛋白冠诱导的CMA”影响细胞糖酵解,引发细胞外酸化率(ECAR)显著增加。结合脂质组学发现的特定脂质,利用iMScope TRIO(Shimadzu Corporation)进行鉴定和可视化分布分析显示在动物组织水平纳米蛋白冠的存在一定程度上扰动肿瘤组织中的脂质种类和分布(图4),扰动的脂质主要富集在胆碱代谢、甘油磷脂和鞘脂代谢途径。 图4. 纳米蛋白冠引发的CMA重塑细胞能量代谢和脂质代谢 结论综上所述,此项工作首次阐明了纳米颗粒从血液到亚细胞微环境转运过程中的演化模式,发现了“纳米蛋白冠”的胞内微环境特异性,进而重塑细胞代谢,为深入理解纳米-生物界面调控纳米材料复杂生物学效应提供了新认识和理论支撑。同时借助岛津成像质谱显微镜iMScope,可在肿瘤组织内部原位清晰展现出包括磷脂酰胆碱(PC)、磷脂酰乙醇胺 (PE)、磷脂酰肌醇(PI)类脂质等多种成分均发生了明显变化。通过空间可视化成像技术,不仅可实现在分子水平上对纯纳米粒子和纳米蛋白冠的生物毒理学效应进行有效研究,同时也为未来对更多种类的纳米搭载生物诊疗试剂和材料的毒理学和安全性评价提供更为直观有力的研究手段。 原文链接https://www.pnas.org/doi/10.1073/pnas.2200363119 参考文献:[1] Cao M. et al. Molybdenum Derived from Nanomaterials Incorporates into Molybdenum Enzymes and Affects Their Activitiesin vivo. Nature Nanotechnology, 2021, 16: 708-716.
  • 植物也要“摘口罩”:Nature主刊揭示植物气孔如何重新打开
    人们面对病毒入侵,会通过佩戴口罩进行有效抵御。同样,植物也会通过调节气孔的开放和关闭来抵抗病原入侵。气孔关闭可减少水分流失并限制病原体进入,然而长时间关闭气孔,会导致植物光合作用以及蒸腾作用的减弱,水分的过度积累甚至会促进植物体内病原体的定殖。所以,植物其实也是需要在合适的时间“摘掉口罩”。那么,植物是如何动态调节气孔关闭和开放的?其背后的分子机理仍不清楚。今年5月,美国德州农工大学何平教授、单立波教授与山东建筑大学侯书国教授在Nature主刊合作发表了相关研究,发现了一类新的调控免疫和水分流失的分泌小肽SCREWs,阐明了SCREWs参与植物重新打开气孔的分子机制。这也是山东建筑大学首篇Nature主刊文章。植物基因里编码数以千计的小肽,而其中多数小肽的功能仍是未知的。一些小肽是植物免疫的细胞因子,被驻扎在细胞表面的受体激酶所感知。作者首先分析了拟南芥小肽合成基因的转录组学,发现受细菌鞭毛蛋白刺激时,一些小肽的合成会明显提高,并且这些小肽具有保守的C端(图1)。用这些小肽处理种苗后,发现小肽诱导激活了MAPKs(mitogen-activated protein kinases),及包括WRKY30,WRKY333,WRKY353和FRK1在内的多种PTI(pattern-triggered immunity)标志物的表达,并且证明了C端保守的两个半胱氨酸(CC)对诱导免疫反应十分重要。体内实验发现这些小肽直接决定了拟南芥是否易感染Pst DC3000(Pseudomonas syringae pv. tomato DC3000)。由此作者鉴定这些小肽为一类新的植物细胞因子,被命名为SCREWs(SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS)。图1 细胞因子SCREWs的序列比对作者的下一步是找到SCREWs的受体。受体激酶,特别是LRR-RKs(leucine-rich repeat receptor kinases)是很多内源肽的受体。作者筛选了拟南芥的受体激酶,发现NUT(AT5G25930)介导了SCREWs诱导的免疫反应。为了确定NUT是不是SCREWs的直接受体,作者使用Biacore T200,通过把NUT胞外域固定在CM5芯片上,SCREWs作为分析物流过芯片,检测得到SCREW1与NUT的亲和力达到12.95μM,SCREW2与NUT的亲和力达到6.23μM(图2)。图2 Biacore鉴定SCREWs的受体NUT(pH 7.5)为了更加接近体内的环境,作者同样使用Biacore方法检测了pH5.7条件下SCREWs与NUT的亲和力,发现在非原质体的pH条件下,SCREWs与NUT的亲和力基本一致(图3)。图3 Biacore检测非原质体酸碱条件(pH 5.7)下SCREWs与NUT亲和力前面提到,SCERWs羧基端的保守半胱氨酸对诱导免疫十分重要,这里作者同样用Biacore做了体外实验的验证,结果发现保守区域半胱氨酸的突变会使SCREWs与NUT的亲和力显著降低(图4)。由此,藉由Biacore完整、可靠的实验结果,作者确定了NUT就是SCREWs的受体。图4 关键氨基酸的突变使SCREWs与NUT的亲和力显著降低很多LRR-PKs的受体都是BAK1和相关的SERKs,利用免疫沉淀实验发现SCREW会刺激NUT-BAK1复合物的产生后,作者同样使用Biacore检测SCREW2-NUT-BAK1三元的结合(图5)。同样把NUT胞外域固定在CM5芯片上,分析物则设置固定浓度的BAK1预混多浓度的SCREW2,并且检测NUT与单独BAK1的结合试验作为对照。结果发现,BAK1的存在显著提高了NUT和SCREW2的亲和力,达到了0.38μM。图5 Biacore检测SCREW2-NUT-BAK1三组分的结合除了调控免疫,作者还发现SCREW-NUT可以调控植物的水分流失。植物缺水时,ABA会促进气孔的关闭,调控植物的水分利用和耐旱性。作者发现,SCREW-NUT通过调控ABI(ABA INSENSITIVE)的磷酸化,导致ABI磷酸酶对OST1(OPEN STOMATA 1,一种介导ABA和MAMP诱导的气孔关闭的关键激酶)的活性增加,降低S型阴离子通道的活性,最终抑制气孔关闭。总结图6 文章整体研究思路综上所述,团队首次发现了植物应对病原体侵染或水分缺失时,会通过SCREWs-NUT来控制气孔的重新开放。SCREW-NUT系统广泛分布于双子叶和单子叶植物中,说明本研究在优化植物对非生物和生物胁迫的适应性方面有重要作用。Biacore作为分子互作的金标准,轻松应对信号通路的二元,三元体系研究,在研究植物生长发育和抗逆的信号通路,转录调控等方面,深受广大农业和植物科学家的信赖。Biacore可靠的实验数据,加上科学家创新又严谨的研究思路,定会加速我国科学家们在农业和植物领域的科研进展,巩固我们在此领域的领军地位。Biacore,for a better life参考文章:Liu, Z., Hou, S., Rodrigues, O. et al. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332–339 (2022).
  • 可控蛋白质功能的纳米“计算机”研制成功
    创建用于精准医疗的纳米级计算机,长期以来一直是许多科学家和医疗机构的梦想。现在,美国宾夕法尼亚州立大学研究人员首次研制出一种纳米“计算机”,可控制参与细胞运动和癌症转移的特定蛋白质的功能。这项发表在16日《自然通讯》上的研究,为构建用于癌症和其他疾病的复杂设备铺平了道路。  宾夕法尼亚州立大学医学院尼古莱多霍利安教授及其同事创造了一个类似晶体管的“逻辑门”,可执行计算操作,由多个输入控制一个输出。  多霍利安称,这个逻辑门是一个重要的里程碑,因为它展示了在蛋白质中嵌入条件去操作并控制其功能的能力。这将给更深入地了解人类生物学和疾病,以及精准疗法的开发带来可能性。  逻辑门包括两个传感器域,旨在响应两个输入——光和药物雷帕霉素。研究团队瞄准了蛋白质焦点黏附激酶(FAK),因为它涉及细胞黏附和运动,这是转移性癌症发展的初始步骤。  研究人员首先在编码FAK基因中引入一个名为uniRapr的雷帕霉素敏感域,该域之前由实验室设计和研究过。然后,研究人员引入对光敏感的域LOV2。对两个域进行优化后,研究人员将它们组合成一个最终的逻辑门设计。  研究团队将修改后的基因插入HeLa癌细胞,并使用共聚焦显微镜在体外观察细胞。他们分别研究了每个输入对细胞行为的影响,以及组合输入的综合影响。  研究发现,他们不仅可以使用光和雷帕霉素快速激活FAK,而且这种激活导致细胞内部发生变化,从而增强了它们的黏附能力,最终降低了运动性。  研究人员称,这是第一次证明可在活细胞内构建一种可控制细胞行为的功能性纳米“计算机”。
  • Nature | 非小细胞肺癌新的驱动因素与药物靶点:CLIP1-LTK融合蛋白
    肺癌是最具侵略性的肿瘤类型之一,根据致癌因素对病人进行分层的靶向治疗会显著改善非小细胞肺癌(Non-small-cell lung cancer,NSCLC)患者的治疗效果【1】。然而在NSCLC中最常见的肺腺癌中有25-40%的病例中找不到具体的致癌驱动因素【2】。为了对非小细胞肺癌的致癌驱动因素进行进一步地探究,2021年11月24日,日本国家癌症中心东医院Koichi Goto研究组与Susumu S. Kobayashi研究组合作发文题为The CLIP1-LTK fusion is an oncogenic driver in non-small-cell lung cancer,揭开了非小细胞癌肺癌新驱动因素CLIP1-LTK融合蛋白,并发现了可以作为临床治疗的药物参考。致癌驱动因素的发现会揭示非小细胞肺癌的发病机制,比如在76%的肺腺癌样本中受体酪氨酸激酶-RAS-RAF通路会出现体细胞致癌驱动突变【3】。而基于转录组测序的方法可以帮助发现非小细胞肺癌中其他的致癌驱动因素,比如CD74-NRG1蛋白融合【4】。而基于这些研究响应开发出来的激酶抑制剂会对病人的治疗策略进行进一步的优化,从而提高患者的生存率。2013年,作者们构建了多机构联合的肺癌基因组筛查平台LC-SCRUM-Asia,该平台可以识别肺癌的致癌驱动因素,并在临床开发分子靶向治疗。作者们希望利用该平台寻找目前无法治疗的NSCLC患者中的致癌驱动因素。为了对新的致癌驱动融合基因进行鉴定,作者们对目前LC-SCRUM-Asia平台中目前成因未知的病人样本进行了全转录组测序分析(Whole-transcriptome sequencing,WTS),从中鉴定发现了一个符合阅读框的转录本:位于染色体12q24的CLIP1以及位于15q15位置的LTK融合转录本(图1)。LTK和ALK构成受体酪氨酸激酶的ALK/LTK亚家族,而CLIP1是微管末端跟踪蛋白家族的成员之一。图1 CLIP1-LTK融合蛋白结构域示意图随后,作者们想知道该融合蛋白与肺癌之间的关系,所以对LC-SCRUM-Asia平台中所有572个肺癌样本都进行了检测,发现其中有两个病人表现出CLIP1-LTK融合转录本阳性的特征,占NSCLC病人比例的0.4%,并且这两个病人体内没有其他已知的致癌驱动因素。该结果说明CLIP1-LTK融合转录本的出现可能是NSCLC的特征性致癌原因。CLIP1-LTK融合蛋白中具有coiled-coil结构域,该结构域会协助蛋白质的二聚化,因此作者们想知道该融合蛋白是否会形成二聚体从而组成性地激活LTK的激酶活性。通过CLIP1、LTK以及CLIP1-LTK分别在细胞中进行瞬时转染,作者们对LTK的磷酸化水平进行检测,发现与其他组别相比CLIP1-LTK的转染显著增加LTK的磷酸化水平, 也就是说在融合蛋白存在的情况下LTK具有更高的激酶活性。随后,作者们找到了CLIP1-LTK融合蛋白中的激酶活性缺失突变位点,该结果进一步地确认了CLIP1-LTK是组成性激活的。另外,作者们也对CLIP1-LTK融合蛋白的定位进行检测,发现CLIP1-LTK融合蛋白与LTK本身在细胞表面的表达模式不同,由于该融合蛋白缺乏LTK的跨膜结构域,所以CLIP1-LTK融合蛋白主要定位在胞质之中。进一步地,通过对细胞进行表型分析,作者们发现瞬时转染CLIP1-LTK融合蛋白的细胞会表现出圆形的细胞形态,同时细胞之间也会缺乏接触抑制,这些结果说明CLIP1-LTK融合蛋白使得细胞具有转移特征。为了证实CLIP1-LTK融合蛋白在体内的转移活性,作者们将体外培养的细胞移植到裸鼠的体侧(图2),发现只有CLIP1-LTK融合蛋白会导致肿瘤产生因因而是致癌驱动因素,并且该融合蛋白发挥作用依赖于其激酶活性。图2 CLIP1-LTK融合蛋白会导致肿瘤产生以上的结果表明,CLIP1-LTK融合蛋白可能会是NSCLC病人体内的潜在治疗靶标。所以作者们首先对CLIP1-LTK融合蛋白转染的细胞中施用了一些美国食品和药物管理局批准的或正在研究酪氨酸受体激酶抑制剂,发现其中Lorlatinib的处理会显著降低肿瘤细胞的生长。进一步地,作者们对病人进行Lorlatinib 100mg每天的常规剂量进行临床治疗,发现CLIP1-LTK融合蛋白激酶活性受到抑制,同时肿瘤的生长也会受到抑制(图3)。图3 CLIP1-LTK融合蛋白分型的NSCLC病人施用Lorlatinib会抑制肿瘤生长总的来说,该工作发现CLIP1-LTK融合蛋白是非小细胞肺癌新的致癌驱动因子,并表明激酶抑制剂Lorlatinib可以靶向该融合蛋白。未来将需要对CLIP1-LTK融合蛋白进行分子靶向抑制剂的临床开发,以及对该致癌驱动因素进行临床筛查和验证。原文链接:https://doi.org/10.1038/s41586-021-04135-5
  • 媒体称豆角成长周期施11种农药 检测环节全放行
    豆角、茄子、白菜是百姓餐桌上最常见的蔬菜。然而,这些在阳光、雨露下茁壮成长的蔬菜,更是和农药一起度过“一生”:一根豆角被“喂”11种农药,一根茄子一次性混打4种农药,刚喷过农药的蔬菜第二天就被采摘下来,运往市场销售。   “新华视点”记者近期追踪安徽部分蔬菜从田间到餐桌的全过程后发现,3个流通环节的农残检测竟一路绿灯。对于蔬菜的农残检测,有关部门回应称既“管不住”又“管不全”。   1根豆角被“喂”11种农药   菜农打药全凭“想当然”   “现在种菜不容易,三天两头要打药,基本上没有不打药的蔬菜。”正在给豆角打药的66岁的合肥菜农王明城说,这个月基本上是每天一打,不打药蔬菜就没有收成。   老王家种了3.5亩豆角,从4月初开始播种,现在即将上市。在不远处的沟塘边,记者仔细地数了数,他一共打了包括杀虫剂、杀菌剂、杀螨剂等3大类11种农药。其中,杀虫剂有7种,如点阵氟氯氰菊酯、功卡高效氯氟氰菊酯等;杀菌剂有3种,如田园农博士毒氟磷、中保克毒宝吗啉胍等;杀螨剂有1种,如哒螨灵。   有些蔬菜一天一打农药,未达安全间隔期就采收。来自庐江的菜农章天保说,小白菜的病虫害太多,特别是夏天。卖药的说几天一打,要有安全间隔期,我们看到虫子哪能放心,基本上就是一天一打。“有时当天打药,第二天就采收。”他很无奈地说。   剂量也由菜农自己说了算。和县菜农戴继霞说,这几天,她家的茄子叶子出现虫害。为了图省事,她把农药经销商给的联苯菊酯、甲氨基阿维菌素等4种农药,混在一起一次性打完了。“现在打药,还不是全靠自己摸索?反正迟早都要打的,不如一起打了算了。”   超范围用药,菜农们已经见怪不怪了。一些菜农说,每次买回来的农药包装上,登记作物大部分都不是自己种的菜。记者在王大爷打过豆角的包装上看到,登记作物为番茄、烟草、苹果树等,而戴大姐打过茄子的包装上,登记作物却是甘蓝、番茄、茶树等。   合肥一唐姓菜农说,他家的豆角长虫子,农药经销商卖给他功卡高效氯氟氰菊酯。在看过登记作物是棉花的包装后,他问卖药的,卖药的说这个可以随便用。   “想当然”打药对菜农来说,其实是无奈之举。“打一次药差不多要花40元,到现在为止,光买药就投入1500元了,卖茄子的钱还不够本。”戴继霞说,如果没有病虫害,谁想打药?现在病虫害太厉害了,不打药蔬菜就要减产甚至亏本;如果有人指导,谁还会乱打,这不是浪费钱嘛!   农残检测一次未遇   蔬菜安全难有保证   吃了“想当然”打药的蔬菜后,安全性有没有保证?记者从安徽省和县的蔬菜地里一直追踪调查到马鞍山市蔬菜市场。   8月2日,记者来到菜农戴继霞的茄子田里了解到,为了治虫害,前一日她将4种农药混着一次性打完了,3日早晨采收。然而,在她使用的联苯菊酯包装上,记者却看到,该药登记作物茶树、番茄的安全间隔期分别是7天、4天。   “严格来讲,不按照登记作物施药的,属于超范围用药,存在一定安全隐患。”安徽省农业科学院植保所农药残留检测室主任段劲生说,同时,农药的安全间隔期,是指最后一次施药至采收前的时期。若在这个时期内采收,就是不安全的。   那么,这样一根超范围用药、又完全没遵守安全间隔期的茄子,从田间到餐桌过程中,会有农残检测吗?记者试图通过全过程追踪得到答案。   第一个环节(菜农—产地批发市场):3日4时30分,戴继霞和丈夫到菜地里摘茄子;7时45分,他们将几筐茄子装上拖拉机,拉到附近的卜集蔬菜批发市场,卖给了专跑马鞍山的商贩曹老板。这个环节没有农残检测!   第二个环节(产地批发市场—销地批发市场):4日1时30分,曹老板的一车茄子经过一路奔波,到达马鞍山安民农副产品批发市场。该市场是安徽省第二大农产品批发市场。这个环节也没有农残检测!   第三个环节(销地批发市场—销地农贸市场):4日3时22分,来自马鞍山香源农贸市场的摊贩吴老板,在曹老板处批发了25斤茄子;6时30分,吴老板将批发来的菜送往香源农贸市场,开始零售。这个环节还是没有农残检测!   至此,菜农戴继霞的茄子,历时约30小时,经产地批发市场—销地批发市场—销地农贸市场等3个环节,没有任何农残检测,“顺利”到达消费者餐桌上。   “管不住”加“管不全”  科学防控体系亟待建立   问题蔬菜的农残检测为何一路绿灯?   对此,产地农业主管部门——和县农委蔬菜办公室主任柯能忠说,和县瓜菜种植面积达48万亩,以一家一户种植为主,有的菜农掌握不住用药频次、剂量、安全间隔期,“我们真的没办法管,既抓不着也管不住。”   作为产地批发市场,卜集蔬菜批发市场每天的交易量约2000斤。“我们没有农残检测设备,县里面一年能过来检测一两次就不错了。”该市场一位负责人说。   销地农业主管部门——马鞍山市农委副主任姚育东说,马鞍山市场上的蔬菜60%以上是外地菜,安民农副产品批发市场是全市最大的批发市场,日均蔬菜交易量近1000吨,每天抽检40个蔬菜样本,但这种大海捞针式的检测方式,即使抽检合格了,也代表不了蔬菜的整体安全性。   销地农贸市场对安民市场的菜全部“放行”。“我们这里每天交易的蔬菜,90%是从安民农副产品批发市场批发过来的。我听说他们对蔬菜农残检测很严,因此,我们对安民市场过来的菜都是不检测的。”香源农贸市场管理办公室工作人员蔡福庭说。   商务部特聘专家、北京工商大学经济研究中心主任周清杰认为,我国蔬菜生产的分散经营模式,容易造成农户在种植技术、质量控制等方面没有优势,种植技术凭经验,质量控制凭感觉,最终会导致主要依靠多施化肥增产,多打农药控制病虫害,这是低质量蔬菜、问题蔬菜产生的主要根源。   中国农业大学农产品流通与营销中心主任安玉发教授表示,蔬菜产销全过程中没有农残检测,与我国脆弱的“控农残”体系密不可分。一般来说,抽检应该是建立在批次上的,而从千家万户收上来的菜很难确定批次,这种大海捞针式的抽检,往往是无效的。   安玉发建议,适当设立乡镇级检测站,并给予一定的人权、事权、财权,激发监管活力,逐步增强菜农的科学用药意识,从源头上扎好质量安全监管的“篱笆”。同时,对产地农业部门应实行严格的问责制度,并将蔬菜的质量安全指标纳入当地政府的绩效考核体系中。   周清杰建议,蔬菜销地商务、工商部门应增加批发市场的质量检测硬件投入,对市场主办方也应实行质量安全的责任追究和奖励制度。加强对蔬菜批发市场的现场监管,增加质量抽检频次,构筑批发环节的蔬菜质量安全“防火墙”。
  • Illumina因美纳将捐款200万现金,发放免费试剂抗击疫情
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 新型冠状病毒(2019-nCoV)导致的肺炎疫情源自武汉,蔓延全国。Illumina因美纳作为全球基因测序的领先品牌,为了全力支持中央及各地政府的疾病防控工作,我们火速开展行动: /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 调动全球资源,增援疫区防控物资 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " Illumina因美纳将向湖北红十字会捐赠200万元人民币专项资金,用于新型冠状病毒肺炎疫区急需的医疗物资购买。同时,因美纳第一时间联络美国总部,迅速调集全球四大区资源,将分批向中国各级疾病预防控制中心和医院等免费发放逾百万元建库及测序试剂,助力新型冠状病毒全基因组测序应急需求,为病毒鉴别、溯源及变异监测提供坚实保障。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 奋力抗击疫情,全员、全天、全区域支持 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 自2019新型冠状病毒(2019-nCov)的基因组序列一经公布,因美纳技术专家年三十赶赴中国疾病预防控制中心,开展现场支持工作。由于检测工作繁重,待测序样本数量多,为了缓解一线检测人员工作压力,提升每日样本检测通量,因美纳特别提供NextSeq 550测序平台,并对建库、测序、数据分析整体实验流程进行了跟进式的现场支持与培训。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 在武汉全城隔离的情况下,因美纳工程师利用微信、视频电话等通讯手段,远程为湖北省CDC提供培训、指导、解惑,协助检测人员第一时间独立完成病毒全基因组序列测定,成功获得武汉本地分离毒株全序列重要信息。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 秉承实干为要,提供测序全流程方案 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 病毒全基因组序列是病原学确证的关键,是快速应对病毒核酸检测需求,开展引物、探针精准设计的必要条件,也是疫情进展中,病毒变异监测的重要手段。在病毒爆发最初,1月20日云南省CDC利用因美纳的新一代测序技术(NGS)从云南首例患者样本直接测得病毒全基因组序列。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 随着疫情的发展,因美纳技术专家快速响应,制定详细患者样本与毒株测序方案,无私提供各地CDC与哨点医院单位使用,同时深入一线,提供细致入微的到场装机、调试或远程技术指导,协助多家单位顺利完成病毒测序工作。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 因美纳员工虽身处全国各地,针对疫情工作成立数个特别工作组,迅速反应。对抗疫情,因美纳责无旁贷。我们将持续关注疫情进展,随时待命,积极为防控工作提供强有力的支援,与全国人民并肩打赢这场疫情防控阻击战。 /p p br/ /p p style=" text-indent: 2em " 仪器信息网持续跟踪报道科学仪器厂商在疫情防控、病毒检测方面的信息,不间断更新与补充专题内容,也积极呼吁更多仪器企业加入到驰援疫情战斗的行动中。更多厂商抗击疫情信息请点击下图,进入《抗击新冠病毒& nbsp 仪器人在行动》专题查看。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 123px " src=" https://img1.17img.cn/17img/images/202002/uepic/791a220a-44c2-4b0a-87d9-e5ea764ec1b3.jpg" title=" banner.png" alt=" banner.png" width=" 550" height=" 123" border=" 0" vspace=" 0" / /p p br/ /p
  • 240万!集美大学海洋食品与生物工程学院原子力显微镜采购项目
    项目编号:[350200]XMZS[GK]2022096项目名称:集美大学海洋食品与生物工程学院原子力显微镜采购方式:公开招标预算金额:2400000元 包1:采购包预算金额:2400000元采购包最高限价:2400000元投标保证金:0元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100301-显微镜原子力显微镜1(台)是1.扫描器:2.样品台:3.控制器:4.功能配件:原位光学显微模块、液体环境原位成像模块、海洋食品样品前处理系统、隔音减震系统、标准光栅样品、大气环境成像探针等。其他详见招标文件.2400000工业合同履行期限: 无本采购包:不接受联合体投标
  • 食用油快检试剂盒盘点,让每一滴油都清晰可见!
    近期,“罐车运油乱象”这一热点事件再次将公众对食品安全的关注推向高潮,特别是关于食用油的质量和安全问题。如何确保进入我们餐桌的食用油都安全无虞,成为了亟待解决的问题。在这样的背景下,食用油检测试剂盒这种快检方式受关注的程度也空前高涨。仪器信息网特别对食用油检测试剂盒产品技术进行了盘点,以飨读者。针对本次事件,仪器信息网特别建立“罐车运输食用油乱象,食用油安全与检测知多少”专题,针对当前食用油安全检测相关热点,检测新技术及新标准的最新动态,提供仪器检测仪器、解决方案、行业最新会议等内容。(https://www.instrument.com.cn/topic/oil2024.html)检测物质公司产品名称用途食用油黄曲霉毒素检测广东达园绿洲食品安全科技股份有限公司食用油中黄曲霉毒素B1快速检测盒(胶体金)适用于食用油中黄曲霉毒素B1的定性筛查检测山东美正生物科技有限公司黄曲霉毒素B1荧光定量检测试纸条适用于小麦/面粉、玉米、部分成品饲料、豆瓣酱、植物油的检测黄曲霉毒素B1快速定量检测试纸条(谷物、饲料、粮油)适用于快速定量检测饲料原料(如大米、玉米、小麦、大麦、高粱、豆粕、玉米粕、花生粕、麸皮、DDGS等)及饲料成品中黄曲霉毒素B1的残留浓度黄曲霉毒素B1 ELISA快速检测试剂盒可定性、定量检测玉米、大米、麦类、豆类、花生、饲料、食用油等样本中的黄曲霉毒素B1深圳市艾瑞斯仪器有限公司黄曲霉毒素B1快速检测卡用于检测谷物、饲料、粮油等样品中的黄曲霉毒素B1残留北京智云达科技股份有限公司黄曲霉毒素B1 ELISA试剂盒可定性、定量检测玉米、大米、麦类、豆类、花生、饲料、食用油、婴儿配方食品,婴儿辅助食品等样本中的黄曲霉毒素B1黄曲霉毒素总量ELISA试剂盒可定量检测玉米、大米、麦类、豆类、花生、饲料、食用油等样本中的黄曲霉毒素总量无锡科智达科技有限公司食用油黄曲霉毒素 荧光定量快速检测卡谷物、坚果、水果及其制品,以及食用油、饲料等在存贮、运输等过程中,可能产生黄曲毒毒素北京普赞生物技术有限公司黄曲霉毒素B1快速测卡检测样品包括谷物及其副产物、饲料、酱油、食用油等黄曲霉毒素B1检测试剂盒可定性、定量检测玉米、大米、麦类、豆类、花生、花生酱、饲料、食用油等样本中的黄曲霉毒素B1上海酶联生物科技有限公司黄曲霉毒素B1快速检测盒(胶体金)适用于粮食作物(玉米、大米、豆类、花生等)及其发酵产物(酱油、食醋、食用油、米酒等)产品中黄曲霉毒素B1的定性筛查检测食用油酸价/过氧化值检测深圳市艾瑞斯仪器有限公司食用油酸价快速检测试剂盒适用检测食用油中酸价食用油过氧化值快速检测试剂盒适用食用油过氧化值的快速检测广东达元绿洲食品安全科技股份有限公司食用油酸价快速检测试纸适用于对常温下为液态的食用油中的酸价进行快速检测食用油过氧化值快速检测试纸适用于对常温下为液态的食用油中的过氧化值进行快速检测食用油酸价、过氧化值快速检测试纸适用于常温下为液态的食用油中的酸价和过氧化值进行快速检测食用油酸价速测盒适用于食用油中酸价的快速检测食用油过氧化值速测盒食用油中过氧化值的快速检测上海酶联生物科技有限公司食用油酸价速测盒适用于食用油中酸价的快速测定食用油酸价检测试纸适用于常温下为液态的食用油中酸价的快速测定食用油酸价、过氧化值快速检测试纸适用于食用植物油及食用动物油的酸价和过氧化值的快速测定食用油过氧化值速测盒适合现场对食用油过氧化值进行快速检测天津朗瑞安科技有限公司朗瑞安食用油酸价快速检测卡适用于食用油酸价检测廊坊众仪科技有限公司食用油酸价、过氧化值快速检测试纸型号:DY266-C420适用于对常温下为液态的食用油中的酸价进行快速检测。麦科仪(北京)科技有限公司MKY5503 食用油酸价、过氧化值快速检测试纸适用于食用植物油及食用动物油的酸价和过氧化值的快速测定。苏州露水生物技术有限公司食用油酸败快速检测试纸适用于食用油中酸价和过氧化物值的半定量测量北京普赞生物技术有限公司食用油酸价速测盒/食用油过氧化值速测盒食用油新鲜度和过氧化酸败程度的快速检测北京维德维康生物技术有限公司食用油酸价快速检测试剂盒适用于检测食用油中的酸价四川精卫食品检测科技有限公司食用油酸价快速检测试剂盒食用油、火锅红油等油品食用油过氧化值快速检测试剂盒食用油、火锅红油、火锅底料等油品其他有害物质检测广东达元绿洲食品安全科技股份有限公司食用油有害表面活性剂快速检测盒适用于食用油等样品的快速筛查食用油中巴豆油快速检测盒适用于食用油中污染、掺入及中毒残留油中巴豆油的快速检测食用油中蓖麻油快速检测试剂盒适用于食用油中污染、掺入或非法添加蓖麻油的快速检测食用油中大麻油快速检测试剂盒适用于食用油中污染、掺入或非法添加蓖麻油的快速检测食用油中矿物油快速检测试剂盒适用于检测食用油食用油中桐油快速检测试剂盒适用于食用油中污染、掺入及中毒残留油中桐油的快速定性检测劣质油检测试剂盒适用于 可快速检测食用油是否为地沟油、煎炸老油或变质油的检测深圳市艾瑞斯仪器有限公司食用油中蓖麻油快速检测试剂盒检测食用油中是否掺有蓖麻油食用油中桐油快速检测试剂盒检测食用油中污染、掺入及中毒残留油中桐油食用油中巴豆油快速检测试剂盒检测食用油中是否掺有巴豆油食用油表面活性剂快速检测试剂盒检测食用油中是否为回收的油脂北京智云达科技股份有限公司ZYD-GDX食品安全检测箱食用油中桐油速测盒适用于食用油中污染、掺入及中毒残留油中桐油的快速定性检测食用油中大麻油速测盒适用于食用油中污染、掺入或非法添加蓖麻油的快速检测食用油中巴豆油速测盒适用于食用油中污染、掺入及中毒残留油中巴豆油的快速检测食用油中矿物油速测盒适用于检测食用油山东美正生物科技有限公司呕吐毒素ELISA快速检测试剂盒饲料、饲料原料、粮油玉米赤霉烯酮ELISA快速检测试剂盒饲料、饲料原料、粮油玉米赤霉烯酮快速定量检测试纸条适用于玉米、小麦、面粉、面饼、植物油等样本中玉米赤霉烯酮的定量检测针对油罐车混用事件,为了切实保障食用油的质量安全,矿物油作为食用油中可能存在的化工残留物,其检测工作显得尤为重要。目前针对食用油中矿物油污染物的定量测定,国家标准和行业标准尚不完善,相关部门已经着手加快制定更为具体的定量测定标准!关于本次事件涉及的食用油标准方法,仪器信息网还将持续跟踪报道,敬请关注!点击图片 免费报名近期,“罐车混用”事件再次将食品安全问题推向风口浪尖,引发社会广泛关注。油罐车在未经彻底清洗的情况下,从运输煤制油等化工类液体转而装运食用油,导致食用油可能遭受化工残留物的污染。本次粮油会议特别设立了“粮油质量安全检测技术”专题,其中对食用油中矿物油的检测技术进行了深入探讨。届时,我们将特别邀请行业专家及相关厂商技术人员参与本次网络研讨会,把最新的科研成果和检测技术呈现给大家。
  • 美开发出超快纳米级发光二极管
    据美国物理学家组织网11月16日(北京时间)报道,斯坦福大学工程学院的研究团队研发出一种超快的纳米级发光二极管(LED),能够以每秒100亿比特的速度传输数据,并比当前以激光为基础的系统装置能耗更低。研究人员表示,这是为芯片上的计算机数据传输提供超快、低能耗光源的重要步骤。相关研究报告发表在15日出版的《自然通讯》杂志上。   科研人员表示,低能耗的电控光源是下一代光学系统的关键,这能够迎合计算机行业日益增长的能源需求。传统上,工程师认为只有激光才能以极高的数据传输速率和超低能耗进行通讯。而此次研发的单一模式LED能发射单一波长的光,与激光十分相似,能像激光一样执行相同任务,且消耗的能量更低。   研究人员在新装置的中心,插入了若干座砷化铟“小岛”。当电脉冲通过时,它们能产生光。这些“小岛”的周围包裹着光子晶体(在半导体上蚀刻的微孔阵列),能像镜子一般将光线弹射聚集至装置的中央,使它们囚禁于LED内,并被迫按单一频率产生共鸣,从而形成单模光。   现有设备基本是由激光发光器与外部调制器两个装置构成。两种装置都需要消耗电力,而新款二极管将发光器和调制器的功能整合到一个装置内,大大降低了耗能量。科学家表示,新款设备可达到目前最高效设备能源效率的2000倍至4000倍。平均而言,新款LED装置能以每比特0.25飞焦(10-15焦耳)的耗能量传输数据,而当下典型的低能耗激光设备也需要消耗500飞焦来传输单个比特,其他技术则耗能更多。
  • Namocell在CRISPR中的最新应用---微管蛋白聚合抑制剂与癌症研究
    当CRISPR 遇见Namocell---微管蛋白聚合抑制剂与癌症研究最新进展微管蛋白是一种在维持细胞结构和促进细胞分裂中起着关键作用的蛋白质。抑制微管蛋白聚合已被证明是抑制癌细胞增殖的有效策略。在以往的研究中,识别能够抑制微管蛋白聚合的化合物需要利用纯化的微管蛋白或固定细胞的免疫荧光分析进行体外实验。2023年1月29日,美国Harutyun Khachatryan研究团队在Biomolecules杂志发表了文章Identifification of Inhibitors of Tubulin Polymerization Using a CRISPR-Edited Cell Line with Endogenous Fluorescent Tagging of β-Tubulin and Histone H1,提出了一种新的方法来识别微管蛋白聚合抑制剂,利用内源性荧光标记β-微管蛋白和组蛋白H1的CRISPR - Hela细胞系来鉴定微管蛋白聚合抑制剂。该方法有助于研究活细胞内源性蛋白,而不使用细胞固定、免疫染色或重组蛋白过表达。本研究使用β-微管蛋白(mCTover3)、组蛋白H1(mTagBFP2)和p62-SQSTM1(mRuby3)荧光蛋白, 用CRISPR和FAST-HDR载体系统开发HeLa细胞,采用Hana单细胞分离仪(Namocell)进行单细胞分选,使用绿色荧光通道,并分选到96孔板中进行单细胞克隆培养,然后选择一个具有均匀明亮β-微管蛋白荧光的细胞克隆大量扩增得到实验细胞。后续实验通过高内涵成像分析来动态观察微管蛋白聚合情况。用已知的微管蛋白聚合抑制剂、秋水仙碱和长春新碱处理此细胞,并证实了由此产生的微管蛋白聚合抑制的表型变化。此外,作者筛选了429个激酶抑制剂文库,鉴定出三种抑制微管蛋白聚合的化合物(ON-01910、HMN-214和KX2-391)。值得注意的是,研究中采用Namocell 单细胞分离仪帮助作者快速、轻柔、高效地获得活性高的CRISPR - Hela单细胞,利于单克隆培养及扩增,为后续更多实验提供足够的细胞工具。Namocell单细胞分离仪 l 轻 柔 - 压力小于2psi,保护细胞活性l 快 速 - 分选快(1min),初始化快(2min),样本切换快(1min)l 精 准 - 配备2-11色荧光通道,精准捕获目的细胞l 无 菌 - 一次性无菌芯片,隔绝样本污染l 轻 松 - 无需调校,开机即用l 轻 巧 - 体积小巧,方便搬动Namocell 是一家成立于美国硅谷的专注于世界领先的单细胞分选技术的生物仪器公司,2022年7月加入Bio-Techne。公司自主研发的微流控单细胞分选平台,使复杂的单细胞分选变得极其简单快速,极大地推动了单细胞分析在基础研究和临床上的应用。我们的单细胞分选仪已在细胞株的构建,单克隆抗体的筛选,细胞基因编辑,基因及细胞治疗,癌症液体活检,癌症免疫治疗,产前基因筛查,噬菌体展示,单细胞基因组学等多方面得到广泛的应用。目前Namocell微流控单细胞分选仪已经被世界各大顶尖研究机构及生物制药公司广泛应用于生命科学研究的各个领域,例如美国国立卫生研究院(NIH),美国食品药品监督管理局 (FDA),美国疾病控制与预防中心(CDC),哈佛大学,斯坦福大学,麻省理工大学,Genentech,Merck,Biogen,BMS,Janssen,Boehringer-Ingelheim等。
  • 胃癌靶向治疗新思路, Biacore觅得赫赛汀有效增敏剂
    胃癌是我国最常见的消化系统恶性肿瘤之一,患病率高,进展较快,严重影响人民健康。目前,由于胃癌的肿瘤异质性和化疗药物的耐药等问题,进展期胃癌综合治疗效果欠佳,因而开发新型胃癌治疗药物意义重大。曲妥珠单抗(trastuzumab)通过与HER2受体的细胞外区域结合, 抑制HER2同源二聚,从而阻止HER2 介导的信号转导,并且促进抗体依赖的细胞毒性作用,导致表达HER2 的细胞死亡,在胃癌中显示出生存获益。但是,许多接受曲妥珠单抗治疗的HER2阳性胃癌患者由于细胞敏感性不足和耐药性导致患者的用药反应差,对于临床治疗仍然具有巨大的挑战。2021兰州大学第二医院萃英生物医学研究中心焦作义团队在Nature Communications发表题为“Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer”的研究论文,报道了HER2下游存在的一条新的信号通路HER2/Shc1/SHCBP1/PLK1,该信号通路的异常激活与曲妥珠单抗耐药密切相关。并据此筛选发现了新型的SHCBP1-PLK1复合体的抑制剂茶黄素-3, 3’-双没食子酸(TFBG),可显著增敏曲妥珠单抗治疗胃癌的疗效。如图1所示,HER2和其他表皮生长因子受体(ERBBs)始终使用Shc1(一种细胞内支架蛋白)募集细胞质靶标激活下游途径,包括促分裂原活化蛋白激酶(MAPK)和磷脂酰肌醇3-激酶(PI3K)途径,并通过增加细胞增殖,转移和侵袭来促进肿瘤发生。SHCBP1是一种Shc1结合蛋白,在HER2激活后与支架蛋白Shc1脱离。释放的SHCBP1在Ser273磷酸化后进入细胞核,从而对HER2级联反应,然后通过与PLK1结合促进有丝分裂相互作用因子MISP的磷酸化来调控细胞有丝分裂。同时,Shc1被募集到HER2进行MAPK或PI3K途径激活。HER2-SHCBP1-PLK1这一关键的信号通路驱动曲妥珠单抗敏感并在治疗上具有针对性。图1 胃癌治疗靶点HER2下游新的信号通路HER2/Shc1/SHCBP1/PLK1据此研究人员采用虚拟筛选和SPR的方法,寻找抑制SHCBP1–PLK1结合的天然产物。在用Biacore进行小分子筛选时,将PLK1偶联到CM5芯片上,40个小分子化合物以100uM的浓度进样,经过分子量校正后通过与阳参的对比可以得到候选的小分子抑制剂(图2)。图2 Biacore对40个小分子化合物进行亲和力筛选最终研究人员选择了亲和力最强的小分子TFBG,与PLK1的亲和力为4.67 ×10-7M(图3)。TFBG对SHCBP1–PLK1互作的抑制也通过后续的Co-IP和细胞FERT实验得到了验证。在动物实验中,TFBG治疗与曲妥珠单抗联合显示出显著的生长抑制和肿瘤消退,表明在HER2阳性胃癌治疗中的潜在临床应用。图3 Biacore检测TFBG与PLK1的亲和力回顾整篇文章,研究人员采用LC-MS/MS、免疫组化、FERT、原位杂交等多种方法明确了HER2下游新的信号通路HER2/Shc1/SHCBP1/PLK1,然后以抑制SHCBP1–PLK1互作为目标,找到了小分子抑制剂TFBG,最后在细胞实验和动物实验中,TFBG联合曲妥珠单抗的方案都显示了显著的抗肿瘤效果,为胃癌临床靶向治疗提供了新思路,也对天然药物研发产生了有力推动作用。图4 文章整体思路高灵敏度的Biacore在小分子抑制剂的筛选和表征中可以输出可靠的数据,无人值守的操作能够满足高通量筛选的需求,兼具了数据质量和筛选效率。智能的筛选分析模块可以自动对样品进行分子量校正,方便直接用响应值的高低进行比较,并且可以根据需求自动进行排序或者划分阈值线,直观地呈现筛选结果,极大地提高实验效率,保证在药物开发过程中的高效性。Biacore,for a better life参考文献:Shi, Wengui et al. “Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer.” Nature communications vol. 12,1 2812. 14 May. 2021, doi:10.1038/s41467-021-23053-8关注德泉兴业,了解更多实验室仪器实验信息!
  • 沈阳警方查获激素催生豆芽 长期食用或致癌
    当您看到白白胖胖卖相特别诱人的豆芽,可要小心了。它可能是加入了无根剂、漂白粉、增粗剂等添加剂催发的豆芽。   长期食用这些用化学药品浸泡过的豆芽,会对人体产生一定的影响,甚至会致癌。   17日,沈阳公安联合工商、农委、质监等部门,将6个制售“化学豆芽”的黑窝点端掉。   其中一个黑窝点位于沈阳市和平区浑河堡乡下河湾村的一个小院内,一间约150平方米的平房内,灯光昏暗。   里边放置了50多个用白塑料布搭成的方型桶,每个约有一米高,里边是正在催发的豆芽,催发好的豆芽白白胖胖,每根都约15厘米长,色相诱人,但空气里却散发着一股酸臭味。   该窝点的老板蹇某称,他每日能出货约2000斤,送入各个卖菜点,主要为长白、砂山地区,已经干了半年多。   他承认用无根剂发豆芽,“这是正常生豆芽的方法。”当记者问为啥豆芽这么长时,他答:“我的豆芽不长,哪的豆芽都这么长。”   警方介绍,收到群众举报后,昨日凌晨在该加工点周围蹲守。凌晨4时20分,该加工点人员用三轮车运豆芽至市场准备销售时,被警方截获。   质监部门的检验报告显示,这批豆芽中含有亚硝酸钠、尿素、恩诺沙星等,其中尿素最高含量每千克达到540毫克。其加工所用药物增粗剂中检出尿素,保险粉(工业漂白用)中检出连二亚硫酸钠。   警方组织30名警力奔赴张士开发区胜发市场,拦截5辆拉豆芽的车,了解其进货情况,又追踪到其他制售该豆芽窝点,最大的一个面积达500平方米。昨日在全市共查扣6个制售“化学豆芽”的黑窝点。案件正在进一步审理中。   沈阳市公安局副局长安锦荣介绍,“公安局及有关部门决心非常大,一定要把这类违法犯罪行为狠狠打到底。”针对食品安全方面的打击要依靠全社会力量,市民如果发现,要及时向警方举报。
  • 战“痘”有方 | PerkinElmer发布猴痘病毒核酸检测试剂盒
    注意:该试剂盒仅供研究使用,且不在中国大陆销售。最近一段时间以来,除了大家日夜关注的新冠病毒疫情以外,另外一种传染性疾病——猴痘,时不时地就会登上热搜,出现在我们的眼前。猴痘(monkeypox)听上去是不是有些陌生?我们好像只听说过牛痘cowpox,还有一个英文很像的是天花(smallpox)。没错,他们都是亲戚,都属于正痘病毒属(orthopoxvirus)这个家族。猴痘其实也并不是一种新发现的病毒,世卫组织早在1970年,于非洲刚果第一次发现有人感染猴痘。而猴痘疫情也并不是很久没有出现了,美国2003年、2021年,英国2018、 2019、2021都有报道过猴痘。2022年5月初以来,已有20多个非地方性流行国家发现多例猴痘病例,且已出现人际传播。而这次特殊的一点是,出现了明显的社区传播。由于图片容易引起不适,这里就不放图了2022年7月1日,国家卫健委印发《猴痘防控技术指南(2022年版)》。指南介绍,猴痘是由猴痘病毒感染所致的一种病毒性人兽共患病,临床表现主要为发热、皮疹、淋巴结肿大。既往接种过天花疫苗者对猴痘病毒存在一定程度的交叉保护力,据WHO的数据,天花疫苗对猴痘病毒的保护率约为85%,而未接种过天花疫苗的人群对猴痘病毒普遍易感。指南指出,疾病控制旨在实现早发现、早报告、早诊断、早调查、早处置。各级各类医疗卫生机构日常接诊发热伴出疹病人时,应注意询问病例流行病学史,同时进行病原学筛查。针对近期国际上出现人际传播的猴痘病毒,PerkinElmer公司开发了对应的病原体核酸检测试剂盒,即PKamp Monkeypox Real-time PCR RUO Kit V1,该试剂盒基于多重实时荧光PCR技术,从纯化的核酸中定性检测猴痘病毒(MPXV)的核酸(DNA)。该试剂盒与天花病毒(VARV)和其他非天花正痘病毒(NVAR) 的DNA无交叉反应。正痘病毒属包含感染人类的四种病毒:天花病毒(variola,VARV)、猴痘病毒(monkeypox,MPXV)、牛痘病毒(vaccinia,VACV)(包括水牛痘,buffalopox)和牛痘病毒(cowpox,CPXV)。该试剂盒包含阳性和阴性对照,用于质控,确保报告结果的准确。另外,还添加了用于检测内源性基因RNase P的引物/探针组合,能够有效监测人类生物样本采集和核酸提取效率。特异性:针对猴痘病毒特异性F3L基因灵敏度:20拷贝/PCR反应自动化:与PerkinElmer自动化核酸检测流程完美兼容chemagen自动化核酸提取技术PerkinElmer通过结合自动化核酸提取和RT-PCR技术方面的专业知识,在提供高质量的自动化分子检测工作流程方面表现出色,这一点在新冠病毒核酸自动化检测方面得到了充分展现。在进行分子检测时,纯化的核酸质量是至关重要的,因为降解、杂质和酶抑制剂都会对最终检测数据的质量产生重大影响。PerkinElmer旗下chemagen自动化核酸提取技术完美解决了相关的问题挑战,可以高效地对目标核酸分子进行提取纯化,适用于荧光PCR检测和基因测序分析等下游应用。推荐使用chemagic™ 360全自动核酸提取仪搭配chemagic™ Viral DNA/ RNA 300 Kit H96 (货号:CMG-1033-S) 试剂盒对猴痘病毒进行提取纯化。Chemagic 360全自动核酸提取仪JANUS® G3 PCR体系构建工作站基于液体驱动的移液系统,可提供超高精度的小体积加样,从容应对PCR体系构建过程中小体积移液需求;搭配灵活的4/8通道Varispan移液机械臂,间距可调,兼容不同规格的实验耗材;移液器腔体的连接管路可实时冲洗,避免气溶胶污染或者携带污染。JANUS® G3 PCR体系构建工作站
  • 福建物构所稀土纳米探针荧光免疫分析研究获进展
    镧系解离增强荧光免疫分析技术(DELFIA)作为目前最灵敏的荧光生物检测方法,在科学研究和医疗领域已获得广泛的商业应用。商用的DELFIA试剂盒采用传统的分子探针如稀土螯合物作为标记物,存在着稀土离子标记比率低(最高10~30个稀土离子)、光化学稳定性差和价格昂贵等缺点。与稀土螯合物相比,稀土纳米发光材料具有化学稳定性高、可修饰性好、潜在生物毒性低等优点,是目前普遍看好的新一代荧光生物标记材料。然而,由于稀土离子4fN电子组态间的禁戒跃迁特性,直接利用稀土离子自身的敏化发光无法达到高灵敏检测的需求。因此,科学家设想能否结合DELFIA技术,将稀土纳米晶作为纳米探针替代分子探针稀土螯合物,利用纳米晶高度浓缩的稀土离子(每个纳米晶含成千上万个稀土离子)来提高其标记比率,并借助DELFIA增强液将纳米晶溶解生成大量强发光的稀土胶束,从而达到提高发光与检测灵敏度的目的。   在国家自然科学基金杰出青年科学基金、科技部&ldquo 973&rdquo 计划和重大科学仪器开发项目、中科院战略性先导科技专项和创新国际团队项目等支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室陈学元研究小组和结构化学国家重点实验室黄明东研究小组合作,发展了一种基于稀土纳米晶溶解增强的荧光免疫分析技术(DELBA)。该技术沿用了商用DELFIA的操作流程,简单地以稀土纳米探针替代分子探针稀土螯合物,利用稀土纳米晶高度浓缩的稀土离子提高其标记比率,极大地增强了体系的发光与检测灵敏度。项目组通过高分辨荧光光谱、元素分析等手段,以~9 nm NaEuF4为纳米荧光探针和&beta -萘甲酰三氟丙酮(&beta -NTA)为增强剂,揭示了稀土纳米晶溶解增强的发光机理,并实现了对人体广谱肿瘤标志物癌胚抗原(CEA)的高灵敏DELBA检测,检测极限达0.1 pg/mL,比商用DELFIA试剂盒降低了近3个数量级,为迄今CEA检测最优值。进一步地,该团队利用发展的DELBA技术测试了肿瘤医院20例血清CEA值,结果与商用DELFIA试剂盒基本一致,并通过测定变异系数、回收率等验证了该方法的准确度和可靠性。上述工作以通讯形式于8月11日在线发表在《德国应用化学》杂志上(Angew. Chem. Int. Ed. 2014, 53, DOI: 10.1002/anie.201405937),并申请了中国和PCT国际发明专利。   此前,该团队在基于稀土纳米荧光探针的肿瘤标志物检测方面已取得系列研究进展。例如,利用LiLuF4:Yb3+,Er3+上转换纳米荧光探针实现了对疾病标志物人绒毛膜促性腺激素&beta 亚单位(&beta -hCG)的上转换荧光(UCL)检测(Angew. Chem. Int. Ed. 2014, 53, 1252 Frontispiece) 利用超小CaF2: Ce3+/Tb3+纳米荧光探针实现对人体肿瘤标志物可溶性尿激酶受体(suPAR)的时间分辨荧光共振能量传递(TR-FRET)检测(Angew. Chem. Int. Ed. 2013, 52, 6671)。   基于稀土纳米探针的溶解增强荧光免疫分析原理示意图:a-传统DELFIA b-新技术DELBA
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制