当前位置: 仪器信息网 > 行业主题 > >

辛酸镁盐

仪器信息网辛酸镁盐专题为您提供2024年最新辛酸镁盐价格报价、厂家品牌的相关信息, 包括辛酸镁盐参数、型号等,不管是国产,还是进口品牌的辛酸镁盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合辛酸镁盐相关的耗材配件、试剂标物,还有辛酸镁盐相关的最新资讯、资料,以及辛酸镁盐相关的解决方案。

辛酸镁盐相关的资讯

  • 欧盟可能限制使用全氟辛酸及相关物质
    德国与挪威合作,计划于2014年10月17日就全氟辛酸提交一份文件,称为《附件XV限制资料文件》。该份文件根据《化学品註册、评估、授权和限制法规》(REACH法规)附件XV内的相关资料规定匯编而成。   2014年3月5日,欧洲化学品管理局(ECHA)宣布,德国与挪威政府已展开一项资料收集工作,以确定全氟辛酸及全氟辛酸相关物质的使用、数量和供应情况,以及技术上和经济上可行的替代品。   这些资料将会用于评估替代品以及匯编「限制资料文件」。该份文件最终可能会导至限制含有全氟辛酸的物品及混合物在市场贩售。如当局採用限制措施,欧洲委员会将会把有关措施纳入REACH法规附件XVII内。   附件XVII现已载有一份禁止在欧盟市场贩售的产品清单,包括含有若干类邻苯二甲酸盐的玩具和儿童护理物品,以及含偶氮染料的纺织品。   多项产品会含有全氟辛酸,包括纺织品、地毯、家具布料、纸张、皮革、碳粉、清洁剂和地毯护理剂、密封剂、地板蜡及油漆。全氟辛酸会残留在若干物件上,包括电线绝缘体、专用电路板、用于衣服的防水膜(如Gore-Tex)、外科植入物、牙线和不粘涂层。此外,瑞典化学品管理局(KEMI)在一份报告中特别指出,进口产品(如户外衣服)是全氟辛酸的主要来源。   德国及挪威正制订限制全氟辛酸及相关物质(可以分解为全氟辛酸的前体物质)的建议。建议将涉及全氟辛酸、相关物质、其混合物、製品以及其他物质成份的製造、使用及市场贩售。含有全氟辛酸及相关物质的进口货亦包括在内。   德国及挪威展开资料收集工作的目的,在于尽量鼓励更多相关人士回答问卷,就全氟辛酸及相关物质的使用、供应以及技术上和经济上可行的替代品等问题提供资料。   收集资料的对象包括全氟辛酸、全氟辛酸盐和全氟辛酸相关物质的生产商、替代品生产商、消防泡沫生产商,以及纺织品整理加工业、摄影成像业及半导体业等下游使用者。   德国及挪威邀请可能受限制措施影响或持有相关资料的人士,于2014年4月30日提出意见。相关人士可以通过以下网址填写问卷及提交资料:http://goo.gl/yqWbFq   若德国及/或挪威提出限制措施的建议,欧洲化学品管理局亦会进行公众谘询。
  • 挪威将限制消费品中的全氟辛酸
    挪威近日宣布将限制消费品中的全氟辛酸化合物(perfluorinated compound ,PFOA)。生效日期将根据产品属性从2014年6月开始生效。   2013年6月28日,挪威环保局宣布了一项消费品中PFOA及其盐类和酯类的国家禁令。限制令适用于固体和液体产品,也包括纺织品。   PFOA被用于一系列消费品。它可被用于制造含氟聚合物,转而用于防水夹克。还可被用于制造地板蜡、蜡纸以及电线中的绝缘体。   该公告修订了《挪威产品法》第2-32节。禁令的生效日期根据产品属性从2014年6月1日开始。   新法律的重点图表格一所示:   表格一 管辖范围 法规 物质 范围 要求 生效日期 挪威 产品法规第2-32节“含有全氟辛酸铵的消费品” PFOA及其盐类和酯类 纯物质 混合物 ≤10毫克/千克 2014年6月1日 2016年1月1日 (半导体的粘合剂以及胶卷、相纸或屏幕的摄影涂层) 纺织品 地毯 表面有涂层的消费品 ≤1.0微克/平方米 2014年6月1日 消费品 ≤0.1% 2014年6月1日 2016年1月1日 (半导体中的箔或磁带) 豁免 食品包装和食品接触材料 医疗设备 2014年6月1日之前销售的消费品备用零件
  • 没特殊手段难申项目:风光基层科研背后的辛酸
    p   随着年底封账大限到来,不少高校迎来了科研项目报销的高峰期。针对有媒体曝出的“某高校学生排队替导师报销经费”,新华社记者在采访中了解到,类似情况实际上在很多高校都存在。 /p p   而费时费人费力的项目经费报销场景仅仅是表面的。一些高校和科研机构的基层科研人员反映,项目申请猫腻多、申报文书复杂、经费设计僵化等问题,才是“捆”住科研人员手脚的最大弊端。 /p p    strong 项目申请:没点“特殊手段”不行? /strong /p p   准备申请资料是科研项目申请的第一步,然而这项看似简单的基础工作却给基层科研人员带来了很多苦恼。吉林大学一位青年教师透露,申请一个省部级重大或产学研项目,从开始申请到结项,超过10项材料。 /p p   湖北一所高校教师王越峰(化名)说,申请一项国家级课题要填报教育部、省厅、学校、学院等几个部门的表格,包括工作汇报表、评估表、课题创新表等各种各样的表格。而填表的内容也十分复杂,包括仪器设备费用、交流费用、调研费用、材料费等预算。 /p p   “人文学科项目虽然少了一些科研仪器设备的预算,但是填表依然复杂,基本上一张表填下来都要上万字,而且很多问题都没有实际意义。”某高校新闻学专业教师夏洁(化名)说。 /p p   为了提高项目的中标率,有高校还办起了专门的申报指导培训班。北京某市属高校副教授华向峰(化名)表示,现在省部级、国家级项目申请人多,中标率有时不到两成,如果能有名家和业内人士指点,对项目方向等进行把握,成功率肯定会更高。 /p p   北京师范大学一位教授告诉记者,现在基层科研“僧多粥少”现象突出,为了完成项目课题和论文等重要的考核指标,一些人不得不使用“特殊手段”。“科研项目申请时裙带关系和人情非常重要。如果项目组里没有一些‘大咖’坐镇领衔,或者不认识评审专家,没有硬关系,项目基本申请不到。” /p p   strong  资金使用:咋就成了“头疼事”? /strong /p p   一些科研人员表示,费了九牛二虎之力拿到项目,只是更多纠结的开始。其中经费使用是最让人头疼的项目。 /p p   北京建筑大学一位青年教师表示,拿到项目后钱不好花已经成为大家面临的共性问题。“在写计划的时候就要把未来几年内所有花钱的计划都列好,一旦确定就不能更改,哪一项花多了就要自己补。” /p p   吉林某高校一位青年教师告诉记者,在此前做项目时他和同事曾遇到过这样的情况:其他经费先用完了,但是发论文的经费还没有用完,想申请对资金项目作出调整,又遭到了学校和项目管理方的踢皮球,最终只能自己搭钱完成项目。 /p p   武汉一所高校副教授王慧娟(化名)说,课题研究中总会碰到新问题,并不在最初的预算当中,基本上每个课题项目都会有20%的支出经费不能通过财务报销,迫不得已只能找其他途径填补漏洞。 /p p   山东省一家科研机构负责人王新(化名)说:“我们要买一个服务器,就要一级一级往上打报告,先给计算中心,再给科学院,再到省级政府采购中心统一采购,正常周期要半年甚至一年,耽误大量科研时间,完全等不起。”有高校教师表示,做项目时甚至连买一本书都要层层上报,往往等批下来了书也用不到了,并且稍有不慎,购书款便会因为“与项目无关”等原因而无法报销。 /p p   记者从中国传媒大学、吉林大学等部分高校了解到,在科研报销中,不仅排队麻烦、手续复杂,还要承受很多额外的压力:由于负责报销的财务人员一般不懂科研,稍有疑问就拒绝报销,甚至还有财务人员“认熟脸”“看心情”,给基层科研人员带来很多麻烦。 /p p   此外,一些项目经费还要被“雁过拔毛”。据了解,一般高校对于本校项目采取不提取或5%左右低比例提取,而一些高校和科研院所对于校内外合作项目等的管理费提取比例高达10%以上。北京某高校一位青年教师人员向记者抱怨:“本来一个5万元的项目,单位直接就划走1万元,极为‘简单粗暴’。” /p p    strong 行政的“手”:不该伸得太长 /strong /p p   采访中记者了解到,在当前的高校和科研机构管理体系中,从申报、审批,到考察、结项等各个环节中,行政的“手”伸得过长,“影子”几乎无处不在,对科研人员管理多、服务少,制度设计僵化,不利于基层科研顺利开展。 /p p   有高校科研人员建议,在建立起一套完善的科研监管和审计制度后,科研项目的审批应当结合实际情况处理。项目申报、结项审计等大的审批权力应保留在上级部门手中,而增购材料、设备等审批可留给基层科研单位自己处理,科研单位应当有一定的自主决定权,这样才能保证科研工作及时顺利地推进下去。 /p p   南开大学周恩来政府管理学院教授徐行表示,不管容易出毛病,但管理也要有度,留给科研必要的发展空间,为科研人员“减负”“松绑”。 /p p   天津市科委相关负责人表示,为了缓解目前基层科研趋于僵化、矫枉过正的问题,在加强审计的同时,也应该改革目前管理过死的审批方式,建议完善结项审计,弱化立项前预算严格结项审计,让科研活动得以顺畅进行。 /p p   一些基层科研人员建议,应该增加项目评审的透明度,建立透明、公开、专业的评审机制,严格避免把个人关系带入其中,同时提高监督管理效率,切实管好用好科研项目和经费。 /p
  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒   杂味的味精   小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。   小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。   小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。   小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。   “炒菜不用放盐了”   小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。   在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。   记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)   商户:这一个月我光在这个地方就十几吨吧。   商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。   商户:这个货就可以呀,一般酒店用都用这种。   商户:基本都是川菜馆。   商户:饭店都吃。   商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。   记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?   商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。   味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。   商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。   果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。   这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。   商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。   包装是一回事实际含量是另一回事   记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。   商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。   商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。   虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。   商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。   商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。   记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。   发苦的味精   其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?   记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。   小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。   这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?   这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。   村民:它家一直就是味精厂。   这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。   添加物不止是盐、淀粉、石膏   记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。   销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。   这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。   销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。   销售员说,别看只比标准低几个点,利润就是这样省出来的。   销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。   这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。   销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。   在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。   销售人员:还有厉害的。   除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。   销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。   据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?   打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。   五、六百元的硫酸镁不可能是食品级的   这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。   记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)   记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)   记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。   销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。   味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?   记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。   结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。   建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 从“红曲风波”认识软毛青霉酸、桔青霉素和红曲色素
    软毛青霉素及相关青霉菌毒素近期,日本著名药企小林制药被推上了风口浪尖,部分消费者在服用该公司含有红曲成分的保健品后,出现肾脏等方面的健康问题,导致小林制药已撤回8种红曲保健品作为功能性标识食品的备案,其中3种商品已经召回。图片图片来源:财经网一般情况下,红曲类保健食品会检测是否含有已知的真菌毒素—桔青霉素。小林制药表示,他们选择的红曲菌不携带能产生桔青霉素的基因,在原材料测试报告中也的确没有检测到桔青霉素。3月29日,小林制药公司向日本厚生劳动省报告,其红曲产品中导致问题的成分可能为“软毛青霉酸(Puberulic acid)”。软毛青霉酸是在发酵过程中由青霉菌产生的天然毒素。据文献报道,从青霉菌发酵液中已分离出软毛青霉酸(Puberulic acid)、密挤青霉酸(Stipitatic acid)及其三种类似物Viticolins A–C等环庚三烯酚酮类(Tropolone)毒素。青霉菌毒素具有耐高温和侵害实质器官的特性,加热烹调也很难使其毒性减弱。目前,有关软毛青霉酸等青霉菌毒素导致的肾脏毒性报道较少,仍需进行相关研究。由于红曲菌在发酵过程中并不能产生软毛青霉素,有专家推测小林制药的红曲产品可能因为原料受到了青霉菌的污染而产生了软毛青霉酸,但具体原因还需后续的调查确认。相信该事件的发生将进一步促进红曲类食品检测的加强,相关检测标准将在不远的将来应运而生。红曲及其用途图片来源:财经网红曲也叫红曲红、红曲霉、红曲米,其作为一种天然发酵产物,成分复杂,包括多种具有生物活性的物质。红曲可应用于制药、酿酒、食品着色等方面,具有悠久的历史和公认的保健价值,特别是在降血脂、降胆固醇方面具有积极效果。目前,国内生产的红曲主要有三类,分别是酿酒红曲、色素红曲和功能红曲。▶ 酿酒红曲的糖化力高、酯化力强、有独特的曲香,广泛用于各种黄酒、白酒、醋、酱的酿造;▶ 色素红曲的色价很高,是纯天然的食品着色剂,通常用于肉制品、腐乳等食品的着色。▶ 功能红曲是指以大米为原料,用纯培养的红曲菌发酵生成的莫纳可林K(又称洛伐他汀,结构式见下图)等生物活性物质的红曲,常被用作防治心血管疾病的保健品和药品的原材料。各大厂商包括小林制药已将红曲米类食品开发为具有降血脂、降胆固醇功能的保健食品。我国对红曲类产品的使用要求红曲色素,属于复合色素,常用红曲添加剂为大米的红曲酶发酵产物或其提取物,为多种天然色素的混合物。目前, 已确定出化学结构的红曲色素主要有6种,包括黄色素、橙色素和红色素,结构如下:随着科学认识的不断深入和对食品安全要求的提高,我国对红曲及其制品的应用和管理日趋严格。国家食品药品监督管理局在《关于以红曲等为原料保健食品产品申报与审评有关事项的通知》中规定,红曲推荐量每日暂定不超过2g,产品中洛伐他汀应当来源于红曲,总洛伐他汀推荐量每日暂定不超过10mg,且不适宜在少年儿童、孕妇、哺乳人群使用等;《GB 2760-2024食品安全国家标准 食品添加剂使用标准》红曲米及红曲红作为着色剂可用于腐乳、碳酸饮料、果冻、糕点、配制酒等多种食品中,其中风味发酵乳中的最大使用量不得超过0.8g/kg,糕点中的使用量不得超过0.9g/kg,焙烤食品馅料及表面用挂浆不得超过1.0g/kg;另外,《GB 5009.150-2016食品安全国家标准 食品中红曲色素的测定》规定了对风味发酵乳、果酱、腐乳、干杏仁、糖果、方便面制品等食品中红曲红素、红曲素、红曲红胺3种红曲色素的测定方法。值得注意的是,红曲色素(又称红曲红)是发酵产生的多种天然色素的混合物,由于发酵工艺的不同,市售红曲色素所含的色素成分及其含量不尽相同,也并非上述所有常见成分均可检出。另外,GB 5009.150-2016和SN/T 3843-2014标准中将红曲红胺的CAS号3627-51-8写为126631-93-4,而后者对应的名称为N-芴甲氧羰基-8-氨基辛酸(N-Fmoc-8-Aminooctanoic acid),对应的结构式见下图。尽管该化合物的分子式和分子量与红曲红胺完全相同,导致二者在一级质谱的分子离子峰完全相同(均为[M+H]+ = 382, [M-H]- = 380),然而二者的化学结构却差别巨大,因此其核磁谱图和二级质谱上的碎片离子峰有显著差别,在HPLC上的出峰时间和UV吸收也有明显的区别。检测人员在标准物质选择、采购和使用中应多加注意,避免产生错误的检测结果。红曲在发酵过程中可能因菌株变异或污染产生桔青霉素,其有很强的肾脏毒性,摄入过量会导致肾损害,因此桔青霉素是红曲类产品必检项。《GB 1886.181-2016食品安全国家标准 食品添加剂 红曲红》中规定红曲红中桔青霉素的限量为0.04 mg/kg。《GB 1886.66-2015食品安全国家标准 食品添加剂 红曲黄色素》中规定红曲黄色素中桔青霉素的限量为1.0 mg/kg。阿尔塔科技作为被CNAS认可的食品安全检测有机标准物质生产制造商,根据科研单位检测热点,快速响应,积极研发软毛青霉酸、桔青霉素、红曲色素及其相关产品,助力食品安全检测,为守护广大消费者的身体健康保驾护航。 红曲发酵过程可能产生的相关毒素标准品:了解更多产品或需要定制服务,请联系我们
  • 北京大学王初课题组发展硫辛酰化修饰的组学鉴定新方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心王初课题组在Journal of American Chemical Society杂志上发表题为“Quantitative Site-Specific Chemoproteomic Profiling of Protein Lipoylation”的研究文章。在这项工作中,作者发展了新型的用于捕获硫辛酰化修饰的化学探针,并结合定量化学蛋白质组学的技术,首次实现在大肠杆菌和哺乳动物细胞中的硫辛酰化修饰位点全局性鉴定与定量,并对大肠杆菌中特定底物蛋白中三个硫辛酰化修饰位点的调控和硫辛酰化修饰合成酶的功能进行了研究。 硫辛酰化修饰是一种通过酰胺键将硫辛酸共价连接到蛋白质赖氨酸残基上的翻译后修饰。硫辛酰化修饰在进化中高度保守,并且位于细菌和哺乳细胞核心代谢途径几种重要蛋白质复合物(丙酮酸脱氢酶复合物,酮戊二酸脱氢酶复合物和支链酮酸脱氢酶复合物)的活性口袋中,作为关键辅因子发挥着重要的催化作用。硫辛酰化修饰的失调与人类代谢紊乱、癌症等疾病相关。因此,加深对硫辛酰化修饰调节的理解对于研究与这些疾病相关分子机制具有重要的意义。 早期工作主要通过结构生物学和生物化学的方法对单个蛋白硫辛酰化修饰进行研究。近些年来,科学家们通过将基于抗体或化学连接的方法与基于质谱的蛋白质组学技术结合,实现了不同细胞类型和组织中硫辛酰化修饰的检测。然而,硫辛酰化抗体的结合亲和力不足,无法实现对所有硫辛酰化修饰蛋白进行鉴定。最近,北京大学陈兴课题组发展了一种化学连接策略用于硫辛酰化修饰蛋白的鉴定(Angew. Chem. | 蛋白质硫辛酰化修饰的化学标记),但未能实现在组学层面对硫辛酰化修饰位点的定量分析和检测。而使用选择反应检测扫描(SRM)的方法则可以实现对特定的底物蛋白二氢硫辛酰胺乙酰转移酶(DLAT)中硫辛酰化修饰位点进行相对定量,但很难实现对所有的硫辛酰化修饰位点进行全覆盖。因此,到目前为止,仍然缺乏一种用于全局分析蛋白质组中蛋白质硫辛酰化修饰的位点特异性鉴定和定量的方法。本论文发展了一种标记硫辛酰化修饰的探针和一套具有位点分辨率的定量化学蛋白质组技术。作者受醛基基团保护策略中常用的基于硫缩醛的方法启发,设计了丁醛探针BAP。该探针中含有醛基,可与硫辛酰化修饰发生缩合反应,并结合生物正交基团炔基,通过铜催化的点击化学反应引入可切割的富集标签。作者结合底物序列分析结果,使用V8蛋白内切酶Glu-C代替常规的胰蛋白酶Trypsin,实现了对大肠杆菌中所有已知硫辛酰化修饰位点的鉴定。在大肠杆菌中,其中一个蛋白底物二氢硫辛酰赖氨酸乙酰转移酶ODP2上含有三个修饰位点,在Glu-C进行酶切后会产生完全一致的肽段序列。为了能够对ODP2中三个硫辛酰化修饰位点进行区分,作者巧妙地利用修饰肽段下游的序列来代表三个硫辛酰化修饰位点,结合稳定同位素二甲基化定量的方法,开发出一种能够将ODP2上三个硫辛酰化位点进行区分定量的流程。利用发展的大肠杆菌硫辛酰化修饰位点定量策略,本研究对ODP2中三个硫辛酰化修饰任意的单突变和双突变组合菌株中硫辛酰化修饰状态进行分析。实验结果显示,ODP2中三个硫辛酰化修饰位点在体内的调控是相对独立的,并且当体内感受到整体的硫辛酰化修饰降低到一定限度时,会启动一定的补偿调控机制。作者进一步在大肠杆菌中探究了硫辛酰化修饰从头合成途径(由辛酸转移酶LipB和硫辛酰化合成酶LipA级联介导调控)和硫辛酰化修饰直接合成途径(由硫辛酸蛋白连接酶LplA调控)在硫辛酰化修饰合成过程的重要性。作者对三个硫辛酰化修饰合成酶LplA、LipB和LipA进行敲除,利用开发的位点定量流程对大肠杆菌中所有已知硫辛酰化修饰位点进行定量。实验结果显示,在营养充足的情况下,从头合成途径比直接合成途径起了更重要的作用。同时LplA在辛酸充足的条件下能够发挥与LipB类似的辛酸转移酶的功能。但是相比之下,LipB是体内更为重要的辛酸转移酶。作者接下来将该定量化学蛋白质组学流程运用到哺乳细胞体系中。作者发现,在人源细胞大多数的硫辛酰化修饰肽段都含有两个酸性氨基酸,这严重影响了质谱正离子检测模式下肽段的检测效率。为了解决这个问题,作者在常规的酸切标签DADPS的结构中引入了一个额外的氨基,发展了新一代酸切割的生物素叠氮标签CY58。利用新型的电离辅助亲和标签CY58,结合二甲基化标记定量策略,作者成功地实现了对人源细胞中所有已知的六个硫辛酰化修饰位点进行定量。最后,作者利用BAP探针结合质量标签的方法,成功地实现对甘氨酸裂解系统 H 蛋白(GCSH)中硫辛酰化修饰的修饰率进行测量,未来有望进一步在蛋白质组水平上直接检测所有蛋白中硫辛酰化修饰的修饰率。总之,本工作为组学层面的硫辛酰化修饰位点定量分析提供了强有力的工具,极大地助力了硫辛酰化修饰位点的功能研究。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心的王初教授。其指导的化学与分子工程学院2016级博士研究生赖书畅和博士后陈颖博士为本文的共同第一作者。王初课题组杨帆博士,肖伟弟博士和刘源博士等合作者为本课题做出了突出的贡献。该工作得到了科技部、基金委、北京分子科学国家研究中心、教育部生物有机和分子工程重点实验室的经费支持。
  • 从美环保局警告信看PFAS分析检测的市场机会
    12月初,美国环境保护署(EPA)正式向Inhance Technologies LLC公司发出通知,要求其停止生产某些全氟烷基和多氟烷基物质(PFAS)。这些化学物质是在其氟化高密度聚乙烯(HDPE)塑料容器生产过程中产生的,这为包装工业提供了重要应用价值,这些容器又用于各种家庭消费品、杀虫剂、燃料、汽车和其他工业产品的包装,此举旨在保护公众免受危险PFAS化学物质的暴露。  EPA指出,长链PFAS化学物质会随着时间在人类的身体和环境中积累。即使是微量暴露也可能会显著增加人们的长期健康风险。人们会通过饮用水、捕食含有PFAS的鱼以及被PFAS污染的地下水而接触到这些PFAS物质。根据美国疾病控制中心和其他数据显示,近乎所有测试者血液中至少含有一种该企业制造的PFAS。即使没有进一步的暴露,单次暴露的PFOA(全氟辛酸,Inhance生产的主要PFAS类型之一)也需要十多年的时间才能排出体外。Inhance每年对多达2亿个容器进行氟化处理,远超过美国家庭容器处理的规模,释放出来的有毒物质会对饮用水供应造成严重污染,对数百万人造成不良健康影响。  Inhance公司为2500万磅塑料进行表面处理,据EPA估计,该工艺每年会向环境释放约700克的问题全氟化合物。EPA认为这可能污染饮用水,给上百万人的健康带来风险。Inhance公司则辩称生成的全氟化合物只有15克,可以忽略不计。双方在具体数据上存在分歧。  此事凸显了环境领域一个长期争议的焦点问题——全氟化合物的风险管理。这类物质具有极强的技术性能,在塑料、涂料、 TEXT型材料等领域有重要应用。但是它们大多难以降解,可能对环境和健康产生危害。EPA对其风险的判断标准也明显更为谨慎。Inhance公司表示,其技术使塑料容器回收再利用不受影响。其他专家也指出,氟化塑料不会降解出这类小分子物质。但是表面处理工艺优化或多层塑料结构可能有助于避免问题化合物的生成。相关的技术创新和改进势在必行。  从美环保局警告信看PFAS分析检测的市场机会  1. 样品前处理:需要标准化的程序,例如稀释、提取、精炼等。  2. 检测仪器:常用的PFAS检测仪器包括液相色谱(LC)或液相色谱串联质谱仪(LC-MS/MS) (点击了解仪器)据了解,现行的PFAS分析检测的相关国家标准并不多,主要应用领域为食品安全、电子电器产品、食品接触材料、纺织品等。此外,国家标准计划《纺织品 全氟及多氟化合物的测定 第1部分:液相色谱-串联质谱法》正在起草中,主要起草单位中纺标检验认证股份有限公司等,主管部门为中国纺织工业联合会。对于科学仪器行业来说,环境分析测试是一个全球增长的市场,约为2.5亿美元,预计增长率为15-20%。五年前,还没人谈论PFAS,而在2024年初举办的摩根大通医疗会上我们看到多位仪器巨头CEO频繁提及,而PFAS也不仅仅局限于水质检测的市场,已经开始超越环境市场,拓展到食品安全领域,甚至还可能拓展到其他市场。  安捷伦 CEO Mike McMullen :随着监管PFAS化学品的法规有所增加,消费者的专业关注度也在增长,基于此FDA和其他机构开始考虑PFAS是否会对已确定的影响之外对人体健康产生其他后果。因此,安捷伦、沃特世的CEO都频繁提及PFAS的增长,其可以通过分析仪器设备提供服务。  沃特世CEO Udit Batra:食品和环境领域的年均增长率为中个位数,大致与全球GDP增长相当。这主要是由于对食品和环境中PFAS等杂质进行更高灵敏度分析测试的需求在逐年增长,基于此Waters也在积极关注该领域,提供高灵敏度的分析检测仪器。
  • 瞄准前沿赛道,看美迪西如何让寡核苷酸药物研发“提质增效”
    美迪西是一家专业的生物医药临床前综合研发服务CRO,服务覆盖药物发现、药学研究及临床前研究的全过程,致力于为全球的医药企业和科研机构提供全方位的符合国内及国际申报标准的一站式新药研究服务。 图1.美迪西产业园(上海南汇分部)。 2020年前后,随着国外多款寡核苷酸药物成功获批上市,美迪西敏锐地意识到寡核苷酸药物的发展潜力并开始搭建自己的研发平台。在搭建过程中,美迪西在综合考虑了品牌的市场占有率及自身的使用习惯之后,选择从沃特世购置仪器、耗材及信息学软件,专门用于寡核苷酸药物的研究,目前已建立起成熟的寡核苷酸药物研发体系。分析技术助力寡核苷酸药物研发 “提质增效” 美迪西化学部副主任田宝泉说: 寡核苷酸药物研发中,分析检测是不可或缺的一环。分离和质量控制在研发过程中占据着至关重要的地位。 制备型液相色谱提升纯化效率 美迪西化学分析部助理主任宋德奎负责寡核苷酸药物的纯化、分析方法开发与测试。为了改善寡核苷酸的峰回收率和峰形,宋德奎团队通过沃特世的制备型液相色谱LC Prep AutoPurification系统搭配ACQUITY UPLC OST C18色谱柱完成基于离子对试剂的反相色谱纯化。 图2.美迪西纯化分析实验室。 宋德奎主任介绍说: “ 寡核苷酸药物制备时容易产生N+1、N-1这类较难分离的杂质,因此对高压制备的分离度有很高的要求。常规来说,生物活性筛选对纯度的要求一般在85%-90%以上,而目前我们的回收率可以达到95%以上,远超行业的平均水平,这得益于Waters AutoPurification系统给予我们的性能保障。 ” Waters AutoPurification系统搭配了沃特世2545泵,其背压可以达到6,000psi,出色的耐高压性能完美满足了寡核苷酸制备的要求。宋德奎主任说:”这意味着我们可以用甲醇体系实现更好的分离度。此外,由于2545泵的稳定性很好,保留时间稳定,我们可以利用白天工作时间制备样品并优化纯化方法,夜晚时再进行自动化样品纯化,大大提升了工作效率。” 超高效液相色谱实现快速、高质量的分离 在完成纯化工作后,宋德奎团队会通过超高效液相色谱UPLC测定样品纯度。 “ 之所以选用UPLC,是因为其可以在很短时间内就达到对难分离杂质的分离要求,在提高效率的同时保证了分离质量。 宋德奎 ”由于寡核苷酸药物结构特殊性,易与金属发生非特异性吸附。美迪西选择了Waters ACQUITY Premier UPLC系统,该系统采用MaxPeak高性能表面(HPS)技术,其接触样品的色谱表面惰性化处理非常适合用于改善寡核苷酸的分离和检测。 宋德奎主任说:“使用过程中,我们能明显地感受到它相较于传统UPLC系统的优越性 - 可以更好地减少残留、拖尾现象,帮助我们获得更好的峰形和可重现的结果,节省了很多的时间成本。” 智能化的LC-MS系统搭配信息学平台赋能深度表征 寡核苷酸样品经过分离后,需要通过质谱做进一步鉴定和表征。宋德奎主任介绍说:“我们早前在建小分子药物分析平台的时候,就选择了沃特世的高分辨质谱BioAccord LC-MS高分辨质谱系统用于分子量表征。使用过程中发现,它出色的性能同样可以满足寡核苷酸药物分子量表征的需求。” 图3.宋德奎主任带领的化学分析团队使用高性能的Waters LC-MS系统进行寡核苷酸药物表征分析。 值得一提的是,BioAccord LC-MS系统支持自动执行校准设置和系统健康状态检查。 宋德奎主任表示: “ 这套智能化系统不仅为我们免去了手动校正的时间和工作量,而且很好地保障了数据的一致性,为我们提供了更准确、可靠的结果。 ” 该系统还搭载了waters_connect实验室信息学平台,可以为分析人员提供一整套简单易操作的工作流,包含分子量确认、去卷积等功能。分析人员只需按固定流程操作,就能获得想要的结果,并根据预设模板生成数据报告。 “最开始的时候,只有我们的分析人员在使用这套系统。而现在,我们的合成人员也能熟练地操作它了。它的简单易用让合成人员能够自行完成分析,更快地拿到结果,也使得分析人员能够从样品测试工作中解放出来,更专注解决复杂分析问题。”宋德奎主任说,“目前,这套设备基本每天24小时满负荷运转。” 高灵敏度液质联用技术缩短生物分析方法开发周期 生物分析是药物临床前DMPK研究的关键环节。美迪西药物代谢动力学部DMPK副主任万咪咪负责大分子早期药代动力学评价和代谢物鉴定。 “ 在非临床早期研究中,由于缺乏寡核苷酸药物相关代谢研究,液质联用(LC-MS)是寡核苷酸药物生物定量分析的首选方法,可避免未知代谢物对检测的干扰。另外,对于一些特殊的取材,如肝穿刺活检组织样品,有的时候只能拿到几个mg。面对如此少量的样品,必须要通过高灵敏度的仪器才能得到更可靠的分析结果。 万咪咪 ” 2022年初,美迪西专门采购了沃特世的ACQUITY Premier UPLC液相系统和Xevo TQ-XS三重四极杆质谱仪,用于寡核苷酸药物的生物样本定量分析。 万咪咪主任评价道:“我们团队在使用ACQUITY Premier UPLC系统后的明显感受是残留显著降低,而且它能提供更好的峰形、可重现的定量分析结果,以及灵敏度的显著提升,这些优势给我留下了深刻的印象。” 图4.美迪西药物代谢动力学部。 前沿分析技术加速寡核苷酸药物研发 实验室分析技术贯穿药物开发全生命周期的各个阶段,迎合了实际需求的技术创新,也为寡核苷酸药物研发“加速跑”提供了强劲的推动力。 “ 作为CRO企业,我们以效率和质量赢得客户信任,助力客户快速推进研发管线,加速商业化进程。在先进、可靠的实验室技术的加持下,推动中国自主研发的药物早日实现商业化生产,这是我们美迪西一直以来的目标和使命。 田宝泉 ” 点击此处,查看完整客户案例。
  • 河南宝丰黑木耳检测镁超标3倍!硫酸镁浸泡为增重
    近日,河南宝丰黑木耳被检测发现镁超标,每千克黑木耳中镁的含量竟然达到了8500多毫克,而国家限定不得超过2500毫克。  宝丰县食品药品监督管理局的执法人员以顾客的身份买了一些黑木耳,并连夜送往洛阳黎明化工研究院化工新材料检测中心进行检测,监测结果让执法人员大吃一惊。  黑木耳被检测,镁超标指数惊人!  宝丰县食品药品监督管理局的执法人员告诉记者,他们在杨庄监督检查之后,看到路边晾晒了大面积的黑木耳。而执法人员警觉到,宝丰不属于这类黑木耳的生产地,这批黑木耳应该有很大的问题。  随即,执法人员以消费者的身份购买了一批黑木耳,并连夜将这些黑木耳送往洛阳黎明化工研究院化工新材料检测中心进行检测。  经过一个夜晚的等待,黑木耳的检测结果也很快出来,从检测报告上来看,每千克黑木耳中镁的含量竟然达到了8500多毫克,而国家限定黑木耳中的镁元素含量每千克不得超过2500毫克,所以,这批黑木耳中的镁元素严重超标。  惊人!这样的黑木耳生产过程!  宝丰县食药监局稽查大队负责人张晓兵告诉记者,这家黑作坊的老板的黑木耳是从山东滕州进购的。  黑作坊老板把进购来的黑木耳再掺入硫酸镁、白糖等东西,将黑木耳进行二次加工。加工之后,老板再将黑木耳摊放在比较隐蔽的地方进行晾晒。  在确定了黑作坊的违法事实后,执法人员将黑作坊的所有不合格黑木耳全部没收。最后确定,不合格的黑木耳总重高达2905.5公斤。  我们将这批有问题的黑木耳送到了河南国康监测中心,中心的张主任告诉我们,不法商贩之所以用硫酸镁和白糖浸泡黑木耳是为了给其增重。但是这些用硫酸镁等化学原料浸泡的黑木耳会让食用者出现恶心、呕吐、腹泻,甚至是昏迷的不良反应。
  • 超短链全氟烷基化合物“三氟乙酸”分析利器——超临界流体色谱质谱联用技术
    近年来,以三氟乙酸(TFA)为代表的超短链全氟烷基化合物(超短链PFAS)大量赋存于城市河水中这一问题已对城市生态及饮用水生产带来了巨大挑战,监测和精确定量饮用水源中的超短链PFAS已经迫在眉睫。针对高极性的超短链PFAS,高效环保的超临界流体色谱质谱联用技术可以提供良好保留和高灵敏度检测结果。背景介绍PFAS是一类广泛用于消费品和工业生产的含氟有机化合物。全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)是两种含八个碳的全氟烷基酸类化合物(PFAA),因具有较高的环境持久性和毒性,已在全球范围内逐步淘汰。然而,取而代之的是一些超短链(C1&minus C3)(图1)和短链(C4&minus C7)PFAA,其在环境、血液及尿液样本中正在被广泛检出【1,2】,引发了人们对健康影响的担忧。图1 超短链(C1&minus C3)全氟烷基化合物特别是含量较高的三氟乙酸被认为含有损坏生育能力和儿童发育毒性,正在全球范围内引起广泛关注。据欧洲新闻网报道,欧洲农药行动网络(PAN Europe)及其成员于5月27日联合发布了一项研究报告,对来自10个欧盟国家的23个地表水样本和6个地下水样本的联合调查发现,所有检测的水样中均检测到PFAS,其中23个样本(79%)的TFA浓度超过了欧盟饮用水指令中“PFAS总量”的拟议限值;而在检测到的总PFAS中,TFA占总量的98%以上【3】。TFA是含有两个碳的全氟羧酸,属于超短链(C1&minus C3)全氟烷基化合物。其在环境中普遍存在,主要来源包括PFAS农药、氢氟碳化物制冷剂、污水处理和工业污染(图2)。尽管目前对TFA的生物毒性效应研究有限,考虑到其持久性和全球传播特性,正在引起全球多国的密切关注【4,5】。图2 杀虫剂、杀菌剂和药品中的碳键全氟甲基在环境条件下通过氧化裂解转化为TFA特色应用方案使用高效环保的超临界流体色谱(SFC)分离技术,结合超高灵敏度三重四级杆质谱检测器,岛津中国创新中心开发了包括TFA在内的五种超短链PFAS快速分析方法。与反相液相色谱不同,SFC可以充分保留仅有一到三个碳的超短链PFAS,有效降低基质的干扰(图3)。图3 SFC-MS/MS和LC-MS/MS分析超短链PFAS色谱对比图(1ng/mL标液)使用SFC-MS/MS对纯水配置的系列标准溶液进行分析,可得到良好线性和较低检测限(见表1),进一步,对不同地表水样品进行检测,结果发现,均检测到一定量TFA,使用内标法定量,分别为几百个到几千个ppt,说明TFA在城市水体都存在较为严重的污染(图4、图5)。图4 SFC-MS/MS分析地表水样品1中超短链PFAS图5 SFC-MS/MS分析地表水样品2中超短链PFAS表1 SFC-MS/MS分析水样中超短链PFAS线性和检出限总结采用超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)建立超短链(C1&minus C3)全氟烷基化合物的快速分析方法。由于超临界流体色谱独特的分离选择性,使用SFC-MS/MS分析种类繁多的PFAS,可以得到与反相色谱截然不同的溶出顺序和出峰行为。SFC-MS/MS可作为反相液相色谱质谱联用技术一种有力补充,对超短链PFAS进行更准确定量。随着对PFAS及其降解产物(TFA等)认识的不断深入,全球各国需要加强对这些持久性化学品的监管和限制, 旨在减少PFAS污染,保护生态系统和人类健康。超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)注解*:超临界流体色谱(SFC):使用超临界流体作为流动相的色谱分离技术。以超临界流体CO2为流动相的SFC分离技术不仅高效而且节能环保,作为一种绿色分离技术在制药、食品和石油领域得到越来越广泛的应用。参考文献1. Guomao Zheng, Stephanie M. Eic, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 42, 15782–15793.2. Isabelle J. N., Daniel H., Hanna L. W., Vassil V., Ulrich B., Karsten N., Marco S., Sarah E. H, Hans P. H. A., and Daniel Z., Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022 56, 10, 6380-6390.3. 欧洲水体中的PFAS污染引发关注:塞纳河等河流中令人惊讶的三氟乙酸浓度.【微信公众号:新污染物监测与分析】4. Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 2022, 56,9428-9434.5. Thomas M. Cahill. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes. Environ. Sci. Technol. 2024, 58, 6, 2966–2972.本文内容非商业广告,仅供专业人士参考。
  • 科学家借助病毒研究新的抗衰老途径
    科学家借助病毒研究新的抗衰老途径什么灵丹妙药能永葆颜面青春?最近科学家首次借助病毒的指点,筛选出了对抗皮肤细胞疲劳和损害的物质,并试图将它应用于护肤品。世界最大的护肤品原液生产商之一美丽加芬公司17日发布消息,将与日本最大的医学护肤品研究机构综医研株式会社合作研究这一新的抗衰老途径。科研人员实验了23种之前被认为有抗疲劳效果的物质,发现抗细胞疲劳效果最显着的物质是咪唑二肽(imidapeptide),研究认为,其机理是抑制氧化作用的后续反应。这项研究依托大坂市立大学医学部进行,论文发表在最近的《日本药理学与治疗》杂志。这项突破的基础,是通过检测一种皮肤和黏膜上常见的病毒,来定量化细胞的疲劳程度。这一灵感源于日本大阪市立大学十几年前一次实验,当时实验人员请一群大学生连骑4个小时自行车,再测试他们口唇黏膜上的病毒数量,发现数量激增。“这个实验很有意思,我们还注意到,人在劳累时口唇更容易生疱疹。”综医研社长小池真也告诉科技日报记者,研究人员倾向于认为,这些正常时候跟人体细胞和平共处的病毒,对其寄主的健康状况很敏感,“一种解释是,病毒在‘意识’到细胞即将死亡时,会迅速繁殖,造成炎症,以争取传播到下一个寄主”。尽管无法说明其中机理,但用病毒来指征细胞疲劳的科研成果,被转化到综医研病毒医科学研究所,用于各种抗疲劳成分的检测。此次验证其抗皮肤细胞衰老作用前,咪唑二肽已经被应用于日本的运动保健药品中,一些运动员会服用。美丽加芬公司总经理张文源说,这种物质一般从鸟的胸肌中提取,在金枪鱼的尾部和人的大脑中浓度也很高,有趣的是,这些器官都需要“持续做功”,维持长期氧化过程。“咖啡因只是让神经系统认为身体不疲劳,但咪唑二肽可以在细胞层面消除氧化过程带来的有害刺激。如果能够用于人类皮肤,将是激动人心的突破。”张文源说。此前,美丽加芬的研究人员利用脂质微粒包裹技术,第一次将“自由基捕手”α-硫辛酸复配成稳定的弱酸性细腻乳液,进入皮肤缓释,α-硫辛酸可消除皮肤中的自由基,并还原肌肤内的VC、VE、辅酶Q10的抗氧功能,但曾因性质极不稳定无法应用于护肤品。张文源说:“我们喜欢做一些比较新奇特的东西,以取得科学护肤的突破。”用病毒来指征细胞疲劳的方法,还用在常见的护肤成分“胎盘素”对皮肤细胞作用的机理研究中,目的是找到精准作用的成分。张文源说,改进后的胎盘素原液产品会在明年上市。
  • 贝因美等三品牌奶粉检出反式脂肪酸
    涉贝因美、圣元优博、伊利三品牌   含量未超出内地和国际安全标准   昨日,有媒体报道指国内三个奶粉品牌产品含有反式脂肪酸成分。广州市工商部门指出,目前这三款奶粉销售正常,并没有要求商超等对其下架。食品专家指出,反式脂肪酸不得人为添加,但可能天然带有,国家标准对反式脂肪酸的含量有限制。   昨日有香港媒体报道称,由该媒体委托进行的检测发现,内地三个颇受欢迎的奶粉品牌,其产品含有反式脂肪成分。其中贝因美冠军宝贝俱乐部、圣元优博,以及伊利金装三只婴儿配方奶粉中,每100克奶粉含有0.4克至0.6克反式脂肪(又称反式脂肪酸)。但三种奶粉包装上均未注明含有反式脂肪。但该三种奶粉的反式脂肪含量尚未超出内地和国际安全标准。   报道还指出,目前内地法律没有规定婴儿配方奶粉包装须注明反式脂肪含量。   公司回应:   确含反式脂肪酸但安全   本报记者昨天则从工商部门获悉,目前这三款奶粉销售正常,并没有要求商超等对其下架。"这主要涉及到一个标准问题,"工商部门相关负责人称,"广州对奶粉等乳制品的市场监管,严格按照国家的统一标准,包括组织日常抽检和市场巡查,但对于国标中未明确的项目,工商部门只能在市场监管中予以关注,但不能强制下架。"   记者昨日致电上述品牌奶粉客服咨询,其中贝因美客服人员指出,公司曾在官网发布了有关反式脂肪酸的说明,奶粉之中确含有反式脂肪酸,但含量是安全的。贝因美官网一份发表在2010年11月的《郑重说明》指出,"贝因美选择以若干种天然植物油复合调配富含人体必需脂肪酸的精炼植物油作为贝因美配方奶粉的主要脂肪原料,脂肪酸组成合理均衡非常接近母乳中的脂肪结构,并严格控制反式脂肪酸,产品完全符合最新国家标准".   而圣元奶粉客服人员则表示,公司正在核实网上消息的真实性,按照消息所指的含量换算,产品中反式脂肪酸占总脂肪酸的比例仅为1.57%,而国家标准规定,反式脂肪酸最高含量应小于总脂肪酸的3%."反式脂肪酸是牛奶中天然存在的,我们并没有人为添加。"该客服人员称,公司还有比国家标准更严格的内控标准,产品检测合格才能上市。至于产品中并无标注反式脂肪酸,她就表示国家标准没有要求。   反式脂肪酸禁人为添加   奶业专家王丁棉指,由于婴儿器官处在发育阶段,过多摄入反式脂肪酸会增加肾功能的压力,导致其他不良症状。所以国家设立一个安全系数加以控制。"国内外标准不一致。我认为如果检测接近临界点的话问题不大,若高出好多则肯定有问题。"他还指出,在奶粉加工生产过程中,脂肪酸会变性而产生反式脂肪酸。   儿科专家、中国医学科学院教授丁宗一昨日则对本报记者表示,他对香港媒体报道的科学性、权威性表示质疑。按照国际食品法典精神,反式脂肪酸对婴幼儿健康有害,不能作为营养物或原料加入到乳粉之中,但生产过程中难免会产生反式脂肪酸,所以规定控制在3%以下,但绝不允许人为添加。   国家卫计委在2010年曾发布《专家解读反式脂肪酸管理及相关知识》一文,称尚未发现食物中的天然反式脂肪酸对健康有不利影响,甚至有研究显示天然的反式脂肪酸对人体健康可能有益。但是,长期过量食用氢化加工产生的反式脂肪酸可引起人体血脂代谢异常,增加心血管疾病发生的风险。
  • 这些仪器及方法,教你挑选放心酸菜!
    刚刚结束的3.15晚会将“老坛酸菜”推上了风口浪尖,谁曾想,陪伴了一代人的经典口味,最终以如此令人咋舌的姿态出现在大众视野。 据报道,老坛酸菜并非全部在企业标准化腌制池中腌制。记者跟随企业的货车,暗访到了老坛酸菜的真实生产“车间”。露天的农田,一个个铺着塑料薄膜的土坑,腌制好的酸菜就放在土坑里。工人们有的穿着拖鞋,有的光着脚,踩在酸菜上,就连称量酸菜的磅秤也是直接放到酸菜上,一边干活一边抽烟,抽完的烟头甚至直接扔到酸菜上,更别提一次性口罩、手套了… … 这些“土坑酸菜”存在的食品安全问题,远比你想的还危险! 一、 环境导致的微生物污染传统发酵食品,除了乳酸菌之外,还含有酵母、霉菌等多种菌株。在发酵的过程中,如果环境(无氧、洁净)或温度没有控制好,就会造成某种非乳酸菌的微生物类群占据主导地位,从而导致微生物污染。食品中微生物的检测,可以参考如下方案:方案1、食品和物体表面中微生物检测方案使用仪器:微生物自动分析仪(点击进入相应仪器专场)微生物快速检测系统 检测项目:活菌总数、大肠菌群、大肠杆菌、粪大肠菌群、肠杆菌、金黄色葡萄球菌、绿脓杆菌/铜绿假单胞菌、沙门氏菌、李斯特菌、粪肠球菌、酵母菌方案优势:相比于传统的平板计数法,方便、快捷,不需要样品前处理,直接加样,系统自动出报告,无需专业检测人员。二、 腌制蔬菜产生的亚硝酸盐亚硝酸盐是一种致癌物。腌制过程中,蔬菜本身所含的硝酸盐被生物酶还原为亚硝酸盐;如果用变质腐烂的蔬菜腌制,亚硝酸盐含量会更高。同时,菜叶上附着的一些环境细菌也有类似的生物酶,也可以将硝酸盐转化成亚硝酸盐,所以腌菜里不可避免的会有亚硝酸盐。酱腌菜中亚硝酸盐的检测,可参考如下方案:方案2、水果蔬菜中硝酸盐、亚硝酸盐检测方案使用仪器:离子色谱仪(点击进入相应仪器专场)离子色谱仪 样品谱图:方案优势:参照GB 5009.33-2010,采用离子色谱法可准确测定植物产品中的硝酸盐和亚硝酸盐。三、 食品添加剂严重超标为了防止酸菜腐败,同时保持良好的色泽,这些土坑酸菜会添加超过标准2-10倍的防腐剂(亚硫酸钠、二氧化硫、山梨酸、苯甲酸等),以及日落黄、柠檬黄等人工色素。食品中添加剂检测,可参考如下方案:方案3、食品中二氧化硫(亚硫酸盐)检测方案使用仪器:定氮仪(点击进入相应仪器专场)全自动定氮仪 方案优势:采用凯氏定氮仪进行食品中二氧化硫的测定。总的二氧化硫通过酸性气体蒸馏而被释放,经过氧化氢溶液氧化形成硫酸,然后用标准氢氧化钠溶液进行滴定。方案4、食品中山梨酸检测方案使用仪器:液相色谱仪(点击进入相应仪器专场)高效液相色谱仪 样品谱图:方案优势:参照国标的基础上,也行液相条件优化,可同时实现山梨酸、苯甲酸、糖精钠、安赛蜜、脱氢乙酸5种物质同时分析。四、 农药及重金属污染土坑酸菜的原料,未经清洗、检测等预处理,较容易存在农药及重金属(如铅、镉)等超标情况。食品中农药残留量、重金属的检测,可参考如下方案:方案5、蔬菜中农药残留检测方案使用仪器:气相色谱仪(点击进入相应仪器专场)气相色谱仪 样品谱图:方案优势:采用气相色谱电子捕获器检测器检测,对于负电性强的化合物具有极高的灵敏度,可分别测出痕量的六六六、滴滴涕。方案6、米粉和蔬菜中重金属检测方案使用仪器:电感耦合等离子体质谱仪(点击进入相应仪器专场)电感耦合等离子体质谱仪 方案优势:采用微波消解预处理的方式,可同时测定铅砷镉铬汞铜锌锰等多种金属元素。 小编为大家整理了酸菜腌制过程中可能涉及的4个关键风险点,并附上部分参考仪器及检测方案,帮助企业在生产过程中抓好食品安全管理,检测机构顺利开展实验,让大众吃上真正、放心的“老坛酸菜“。 (注:以上仪器及方案仅为小编部分挑选,不构成任何推荐或购买意见,仅参考,谢谢!) 更多相关解决方案,请关注行业应用栏目 ——酱腌菜检测方案专场
  • 最新日程发布!第五届环境新污染物分析检测网络会议第二轮通知
    随着我国环境质量持续改善,新污染物引发的环境和健康风险受到社会各界的广泛关注。为了促进环境新污染物监测技术的交流探讨,仪器信息网作为主办单位,将于2024年7月30日-8月1日举行 “第五届环境新污染物分析检测”网络会议。会议共设置新污染物的监测现状与标准解读、新污染物的筛查与识别、全氟和多氟烷基物质(PFAS)监测、微塑料监测、抗生素与耐药基因监测5个专场,将邀请国家环境分析测试中心、中国环境监测总站、中科院生态环境研究中心、北京大学、北京师范大学、天津大学、同济大学、上海交通大学等在新污染物领域研究最专业、最活跃的单位资深专家分享新污染物监测检测技术成果及应用进展。会议亮点如下:&bull 《新污染物生态 环境监测标准体系表》今年发布,监测标准体系分析方法标准共计182 项,涉及到的仪器包括色谱、质谱、傅里叶红外光谱、拉曼光谱等,会议设置新污染物监测标准解读专场,邀请最新标准起草单位的起草人对整个标准体系及2023年发布的空气、水质、土壤中的新污染物检测标准分别进行解读;&bull 对新发布的新污染物的筛查技术指南进行解读,相关筛查技术包括靶向与非靶向筛查、高通量筛查等,涉及高分辨色-质谱、气相色谱-飞行时间质谱等仪器设备;&bull PFAS、微塑料、抗生素与耐药基因等的监测一直是新污染物的研究热点与重点领域,会议将对其环境行为、检测方法与技术等展开交流。具体会议信息如下:1、会议名称:“第五届环境新污染物分析检测”网络会议2、主办单位:仪器信息网3、会议时间:2024年7月30日-8月1日4、会议日程(更新中):7月30日上午专场一:新污染物的监测现状与标准解读土壤和沉积物中全氟辛基磺酸和全氟辛酸及其盐类测定标准解读杨文龙 国家环境分析测试中心 高级工程师环境空气中新污染物测定标准的解读王荟 江苏省环境监测中心 室主任/正高《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》标准解读(拟)刘金林 国家环境分析测试中心 副研究员7月30日下午专场二:新污染物的筛查与识别大气中硝基有机组分的非靶向识别:基于取代特征的生成机制推测邱兴华 北京大学环境科学与工程学院 教授赛默飞气质联用技术助力新污染物筛查分析朱薇 赛默飞世尔科技(中国)有限公司 GCMS产线应用工程师新污染物筛查准确度评定技术指南解读徐驰 中国环境监测总站 工程师基于气相色谱-飞行时间质谱的大气中新污染物的非靶向筛查高丽荣 中国科学院生态环境研究中心 研究员7月31日上午专场三:全氟和多氟烷基物质(PFAS)监测全氟烷基化合物识别、环境行为及健康效应戴家银 上海交通大学 教授全氟化合物在卵生生物中的富集、组织分配及代际传递罗孝俊 中国科学院广州地球化学研究所 研究员新型全氟/多氟化合物识别和环境行为史亚利 中国科学院生态环境研究中心 研究员7月31日下午专场四:微塑料监测待定冯成洪 北京师范大学 教授环境微塑料介导的复合污染与防控刘宪华 天津大学 教授被忽视的微纳塑料来源:实验试剂和溶剂中的污染王艳华 陕西师范大学 副教授待定张裕祥 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 副研究员8月1日上午专场五:抗生素与耐药基因监测供水全流程系统中抗生素与耐药基因的监测方法与应用李伟英 同济大学环境科学与工程学院 教授黄河上游复杂基质中新污染物的分离、分析方法研究王雪梅 西北师范大学 教授/博士生导师待定宋洲 湖北省地质实验测试中心 高级工程师5、会议报名链接:(直接点击免费报名)https://www.instrument.com.cn/webinar/meetings/newpollutant2024/目前,本次会议赞助厂商如下:
  • 工信部:石化化工行业鼓励推广应用的技术和产品目录公示
    日前,工业和信息化部发布石化化工行业鼓励推广应用的技术和产品目录公示,新型微通道反应器装备及连续流工艺技术、超重力偶氮化反应器装备新技术、反应精馏成套技术、高纯/超高纯化学品精馏关键技术、高效高可靠多级化工离心泵关键技术等32项技术和产品在列。石化化工行业鼓励推广应用的技术和产品目录序号技术/产品名称技术/产品简介主要技术经济指标已推广应用情况适用领域推荐单位1新型微通道反应器装备及连续流工艺技术以新型连续流微通道反应系统为核心,可应用于多系列精细化学品的连续高效合成和规模化生产,尤其是放热剧烈、反应物或产物不稳定、物料配比严格、高温高压等危险化学反应。反应器总时空转化率STC≥20 mol⋅m-3⋅h-1;反应器温度T适用范围-100℃≤T≤350 ℃;反应器压力P适用范围≤10MPa;反应器单套处理量≥ 2000 t/a。该技术已应用于硝化、氯化、氧化、重氮化、烷基化等工艺中。精细化工中国石油和化学工业联合会2超重力偶氮化反应器装备新技术针对传统间歇反应器生产效率低、人工强度大等问题,开发了超重力偶氮化连续反应新工艺,可大幅降低生产过程危险化学品存量,实现精细化学品生产过程的流程再造和连续化生产,提升生产过程安全水平。主反应器体积较釜式反应器降低98%;原料转化率由98.5%提高到99.8%,产品收率提高2%;生产过程物料存量下降了90%以上,生产效率提高60%;高COD废水量减少20%,能耗降低30%以上。该技术已应用于染料和颜料的偶氮化反应。精细化工浙江省经济和信息化厅3反应精馏成套技术该技术创建了普适性反应精馏过程概念设计方法,实现了催化填料结构尺寸的优化和调控,发明出高性能的催化填料,开发了一系列高效的反应精馏成套技术,相比于反应与分离各自独立的过程,该反应精馏技术具有转化率高、选择性好、能耗低等优点,在酯化、水解、酯交换、叠合等过程中有着广泛的应用前景。反应转化率提高30-50%;催化剂利用率提高80-110%;选择性提高10-40%;能耗降低20-50%;产能提高20-40 %。该技术已在多家石化企业应用。石化中国石油和化学工业联合会4高纯/超高纯化学品精馏关键技术采用高效、抗堵的FGVT塔板精馏关键技术,高效率、大通量的BH型填料精馏关键技术,以及精馏全流程节能的四层面响应曲面优化技术(4D-RSM)等,提高了精馏效率,实现了塔内、塔间、工段间、装置间全流程节能优化。FGVT塔板的分离效率提高30%以上,操作弹性提高33%;BH 型填料的分离能力提高50%以上,压降降低37%;能耗降低30%以上。该技术已在化工企业应用。化工中国石油和化学工业联合会5高效高可靠多级化工离心泵关键技术开发了高效高可靠典型多级化工离心泵系列产品,改进了多级化工离心泵效率低、轴向力过大的问题,可提升多级离心泵总体节能降耗水平。关键技术提高了整泵效率和流体动力学稳定性,效率可提高9.8个百分点,轴向力可减小50%以上,可解决多级化工离心泵扬程和效率低、轴向力过大的难题;零部件节材15%-20%,机组成本降低10-15%。该系列产品已应用于石油开采、油气集输、石油炼制、化纤化肥、煤化工等行业。化工中国石油和化学工业联合会6智能乘用胎半钢一次法成型系统以轮胎成型过程的智能化为核心,通过开发智能成型装备的信息化管理控制软件、突破非接触检测与多传感器数据融合及视觉感知技术、攻关自适应控制算法等核心关键环节,实现了系统的智能化控制、智能感知和故障诊断、半部件自动定中及实时纠偏等功能,并采用模块化的产品研发理念,实现了不同客户个性化需求的快速定制,有效提升了轮胎成型装备的智能化水平。系统单循环时间低于40s,日产量可达1400套;同寸级的规格调整时间小于5min,跨寸级规格调整时间小于40min;每72小时设备有效运行时间高于97%。该技术已在多家轮胎企业应用,可在橡胶轮胎行业的推广应用。轮胎中国石油和化学工业联合会7农林废弃物快速热解液化及其产品高值化梯级利用与关键装备技术首创了农林废弃物自混合下行床快速热解制腐植酸新工艺及成套装备,可以生物腐植酸为主要原料生产高值靶向腐植酸环境材料,实现了铬污染土壤可持续修复的工业化,技术可用于重金属污染土壤和盐碱地改良。液体收率提高15%以上,含灰降至不高于0.1%;生物腐植酸纯度不低于96%,活性官能团提高3倍以上,成本降低80%。该技术已应用于污染和退化土壤修复。生物化工中国石油和化学工业联合会8提高轻油收率的深度延迟焦化技术开发了深度延迟焦化技术,解决了炉管结焦过快等问题,具有结焦速率低、停留时间长、处理量大、轻油收率高等特点。与目前先进技术相比:焦化炉单程处理量提高至60万吨/年,提高50%;注汽量降低至1000kg/hr,降低50%;清焦周期延长1倍左右;焦炭产率系数降低至1.4左右;石油焦产率平均降幅10%。该技术已在炼油企业实现应用。石油炼制中国石油和化学工业联合会9对苯二胺类防老剂新型过程强化技术采用贵金属催化氢化合成橡胶防老剂6PPD,可简化流程,实现连续化生产,提升安全性、降低能耗物耗。结晶点≥45.5℃;加热减量(70±2℃) ≤0.5%;灰分(750±25℃)≤0.1% ;纯度(GC法)≥97%。消耗下降30%,能耗下降20%,原料单耗下降5%,吨产品成本下降了10%以上。该技术已在多家橡胶企业实现应用。橡胶中国中化集团有限公司10高效合成、低能耗尿素工艺技术采用全冷凝反应器的尿素合成高压圈、两段式工艺流程,设置简捷中压系统,降低了高压汽提塔负荷和中压蒸汽消耗,工艺能耗低于传统水溶液全循环法尿素装置和CO2汽提法尿素装置。吨尿素消耗原料液氨568kg,CO2 735kg,循环水(10℃温差)65t,耗电25kWh,吨尿素耗蒸汽(2.4MPa饱和蒸汽)700kg;与传统CO2气提法尿素工艺比,吨尿素2.4MPa饱和蒸汽消耗可降低300kg,电耗增加2kw.h,循环水耗降低10t,原料液氨和CO2消耗相当;尿素主装置吨产品综合能耗折标煤107.8kg,比传统CO2气提法尿素装置低25-30%。该技术已在氮肥生产企业实现应用。化肥中国石油和化学工业联合会11绿色高效催化防脱氯连续加氢技术结合不同催化剂的特性,采用磁分离、膜分离等技术实现万吨级邻苯二胺、2,5-二氯苯胺连续化生产,具有工艺清洁,安全风险小,自动化程度高,能耗低,设备腐蚀程度低,产品质量稳定等特点。硝基物加氢原料转化率大于99.95%,选择性大于99%,其中氯代硝基苯加氢脱氯副反应产物选择性小于0.1%,吨产品的催化剂消耗小于1kg,产品含量大于99.95%;生产1t邻苯二胺产生的废水量较硫化碱还原法减少95%;连续化加氢反应风险为“1级”,氢气消耗下降15%。该技术已在精细化工行业实现应用。精细化工中国中化集团有限公司12基于工业互联网的石化行业重大危险源风险管控与应急一体化系统根据石化行业风险分析及安全需求,开发了生产企业、油气田、油库、长输管道等基于工业互联网的石化行业重大危险源风险管控与应急一体化系统,并在大型石化企业、油气储运设施成功应用,提升企业安全生产和应急管理的可视化、集成式、智能化水平。研发基于红外特征吸收光谱及多波长激光光谱分析的泄露检测技术,通过3μm以下H2S、CO、CH4和C2H4特征吸收光谱抗干扰测量及计算机层析技术的多线吸收光谱水平场快速反演,实现ppb级1公里范围水平场泄露准确识别和早期预警。该技术已在石化生产和储运企业、及安全生产监管部门的工业互联网系统建设中得到应用。石化中国石油和化学工业联合会13Robust-IC 全流程智能控制系统将互联网、大数据、人工智能与石油化工生产过程深度融合,解决了石化生产装置中多变量、非线性、强耦合、纯滞后、间歇式和连续式控制并存、多约束和多目标调控等技术难题,提高石化生产装置智能化水平。智能控制率达98%以上,平稳率达100%;控制回路均方差降低20-90%;收率提高0.2-3.0%;能耗降低0.5-10%。该系统已在多套石化炼油生产装置应用。石化中国石油和化学工业联合会14大型气流床气化技术气流床气化从原料形态分为水煤浆、干煤粉两种,水煤浆气化技术将煤粉制成煤浆,气化炉气化温度1350~1500℃;粉煤气化技术是用气化剂将煤粉夹带入气化炉,在1500~1900℃高温下气化,残渣以熔渣形式排出。先进气流床气化工艺具有气化压力高、处理能力大、碳转化率高、煤种适应范围较宽等特点,还可协同处置危险废物。水煤浆气化技术:气化压力1.5-8.7MPa,碳转化率>98.5%,冷煤气效率70%,有效气(CO+H2)含量80%;与固定床气化工艺相比,能耗降低10%以上。粉煤气化技术:气化压力2.0-4MPa,碳转化率≥99%,冷煤气效率80%,有效气(CO+H2)含量90%;与固定床气化工艺相比,能耗降低10%以上。该技术已经应用于煤化工等行业。煤化工、石化中国石油和化学工业联合会15基于界面调控和粒径优化的分散稳定技术基于可有效调控固液界面张力三元共聚物(NDF)和动态优化固体粒径及其分布技术(NDJ),解决了固液体系生产、储运和使用中界面不容、性能劣化、体系不稳的问题。在煤化工领域,煤浆浓度提高62%,稳定在1000mPa/s时存放45天无沉淀;在材料领域,熔体流动速率提高至33%;在农药领域,载药量提高50%。该技术已应用于化工、材料和农药领域。石化中国石油和化学工业联合会16面向石化行业的危化品存储运输监控系统针对危化品存储、车辆运输过程中存在的监控信息不全面、监控数据不准确、调度信息不科学等问题,将卫星导航、物联网技术、云计算技术、智能感知等技术应用于危化品车辆运输管理,提高了危化品车辆运输的生产管控水平。支持30万台终端接入位置服务平台;支持不少于1万的管理用户数,并可平滑扩展;满足信息安全三级要求;车载终端温度、压力、液位、胎压等常用传感器可配置兼容接口;支持3G/4G/5G移动通信;支持视频传输,最高可达720P;定位精度高于10m,速度精度优于0.2m/s。该技术已在多家石化企业应用。石化中国石油和化学工业联合会17管道完整性管理及智能分析决策技术围绕油气输送管道完整性管理及智能分析决策业务需求,开发多种技术的管道完整性管理及智能分析决策成套技术,可以有效提升管道完整性管理的专业化、科学化、智能化水平。管道不同批次检测数据对齐覆盖率100%;有效提高管道维修决策可靠性,降低检维修费用15%以上;提高管道数据关联性和利用率。该技术已在部分原油管道、成品油管道、天然气管道、集输管道及厂际管道得到应用。石化中国石油化工集团有限公司18石化企业水务智能技术以智能传感器为基础,对工业水系统的实时信息实现无线自动采集,实现从工业水生产运行中心到生产装置的各个层次的系统监控、统计分析及智能预警,通过工业水多水源分配优化、循环水系统全流程优化、污水系统整体优化。系统运行稳定,数据满足系统要求;系统整体功能完备,界面友好、互动性强,接口具有较强的开放性;系统安装配置灵活方便,支持快速部署与应用,易维护;系统支持并发用户数大于1000人;系统优化模型计算稳定收敛,计算误差小于5%;模型计算响应时间小于5秒,数据库服务器处理时间小于2秒,应用服务器处理时间小于3秒,数据查询响应时间小于3秒,系统能支持7×24小时的业务访问。该技术适用于流程行业的工业水系统(新鲜水系统、循环水系统),已在石化企业应用。化工天津市工业和信息化局19石化储罐完整性管理关键技术针对石化储罐(群)安全管理需求,开发形成了“检测+评价+决策+系统”的储罐完整性管理成套技术,可实现储罐结构形变和基础沉降的全面、精确、快速检测与评价。储罐结构形变识别精度±3mm以内;储罐腐蚀检测可靠性85%以上,风险因素辨识率90%以上;基于全面检查评价、风险评价和腐蚀预测的完整性综合分析与决策方法,有效提高开罐检维修修计划可靠性,降低检维修费用20%以上;储罐(群)完整性管理系统有效提高数据利用率和罐区管理水平。该技术已应用于多个石油储备库。石化中国石油化工集团有限公司20基于液化天然气(LNG)冷能利用的液体空分设备利用高压LNG气化过程的冷量,以较低的水电消耗生产液氧、液氮和液氩等产品,减少常规LNG气化过程中对周边环境的影响。采用先进的空分流程工艺和制造技术,比常规空分设备节电50%;采用乙二醇闭式循环,取消了常规的循环冷却水系统以及冷冻机组,节省水消耗70%。该设备已应用于液化天然气LNG接收站项目。石化装备中国石油和化学工业联合会21双氧水本质安全化技术针对双氧水生产中的安全环保问题,优化了气相燃爆高风险环节的工艺设计,降低了双氧水装置的废气排放,形成了包含工艺、控制、设备等内容的双氧水装置安全保障系列技术,提升了双氧水装置的自动化监控水平。尾气排放量降低80%以上;总磷含量平均降低50%以上;关键安全参数实现在线软测量分析,误差小于8%。该技术已用于多家石化企业双氧水装置。精细化工中国石油和化学工业联合会22周期性扩缩流动强化传热减阻节能技术开发了流道间距可调的连续扩缩错/逆流翅片板换热器以及组合式梅花瓣型/多向波纹型超长内翅片管换热器,可在流程工业严苛工况下实现余热资源高效利用。开发的扩缩变流冷凝式余热回收换热装置比传统翅片管式换热器传热系数提高2倍,内翅片管比传统光管换热器传热系数提高1.5倍;换热装备寿命提高30%,实现了高效低能耗。该技术已在化工行业实现应用。石化中国石油和化学工业联合会23满足国VI升级的FCC汽油关键组分定向分离技术该技术通过蒸馏切割将FCC汽油分离为轻、中和重三个汽油馏分,对中汽油馏分进行溶剂双向萃取,实现了“烷烃/环烷烃/大分子烯烃”、“小分子烯烃”和“芳烃和硫化物”三组关键组分的同时分离。芳烃和硫化物与重汽油馏分可直接选择性加氢脱硫,减少辛烷值损失;其余组分可作为高辛烷值调和组分或生产高辛烷值组分及高附加值化工产品原料。催化汽油精制后总硫小于10mg/kg;50%以上的高烯烃催化汽油不进行加氢脱硫;氢耗较加氢技术减少1/2~2/3,RON损失少1~2个单位。该技术已在多家炼油企业应用。石油炼制中国石油和化学工业联合会24煤基合成气制乙二醇工程技术该技术以合成气为原料,以亚硝酸甲酯为中间循环物质,经草酸二甲酯制备乙二醇产品,工艺路线安全、环保。草酸二甲酯选择性95%以上,时空产率600g/(kgcath)以上;草酸二甲酯转化率99.9%,乙二醇选择性95.0%以上,乙二醇的时空产率400g/(kgcath)以上;酯化羰化尾气经处理后的NOx≤80mg/m3;产品乙二醇纯度稳定达到99.9%以上,220nm下的紫外透过率85%以上,满足国标优等品要求;酯化羰化工段有效避免传统技术采用亚硝酸钠引发产生的废盐。该技术已经在多家煤化工企业实现应用。煤化工中国石油和化学工业联合会25PX氧化催化剂绿色制备关键技术该技术开发了醋酸钴水溶液、醋酸锰水溶液、醋酸钴锰水溶液和钴锰溴水溶液四种PX氧化催化剂及绿色制造技术。催化剂活性高、稳定性好,可减少环境污染,改善生产和应用环境。与传统技术相比,吨醋酸钴节约27kg钴、511kg醋酸及1t硝酸;吨醋酸锰节约73kg锰和602kg醋酸;醋酸钴能耗低于传统工艺的2%;醋酸锰和溴化锰可基本实现零外供能耗;产品中主要杂质含量降低90%。该技术在多家石化企业应用。石化浙江省经济和信息化厅26大规模低阶煤管式间接干燥工艺技术与装备采用间接换热低温干燥技术,以低压过热蒸汽作为干燥介质,通过与壳程内水蒸气间接换热实现干燥,煤中水分除尘、冷却后回收可作为项目补充用水,大幅降低废水产生量,适用于高水分低阶煤的提质和加工利用。褐煤水分由35-45%降低到10-12%;无固体或液体废弃物排放,干燥尾气中的粉尘含量达到200mg/m3(标况)以下;干燥机蒸发的水蒸气回收率可达94%;与现行通用技术相比,废水产生、处理量下降90%。该技术已在煤化工企业实现工业化应用。煤化工中国石油和化学工业联合会27三峰级配制备高浓度水煤浆成套技术基于煤浆复合流理论的三峰级配制备高浓度气化煤浆技术,配套研制了大型细磨机与超细磨机系列关键设备和专用添加剂,可在大幅度降低气化能耗的同时将细化/超细化改性污泥形成的均质浆液作为液相填充载体,实现了高掺量污泥与煤协同制浆。在单棒磨制浆基础上将煤浆浓度提高3-6个百分点,高掺量污泥与煤协同制浆技术可达到污泥(含水95%)/干煤≥5%; 水煤浆浓度每提高 1 个百分点,1000Nm3合成气煤耗降低7.51kg,氧耗降低8.61Nm3;与现有单棒磨技术相比,生产单位产品可节约标煤7%、水资源19%、无污泥排放。该技术已在煤化工企业实现应用。煤化工中国石油和化学工业联合会28高性能耐硫变换催化剂和净化剂成套关键技术针对煤或石油焦等制氢亟需的高压耐硫变换催化剂及净化剂存在抗水合性能差、易粉化、变换系统易“飞温”等技术难题,开发了高性能耐硫变换催化剂和净化剂成套关键技术,解决了催化剂床层在高浓度CO条件下易“飞温”的问题,实现了过程安全可控、高效脱除杂质气体和可控变换。催化剂在200℃水热处理4小时物相不发生变化;镁铝尖晶石载体强度不低于150N/cm,比表面积不低于180m2/g;催化剂强度不低于150N/cm,比表面积不低于150m2/g,催化剂CO转化率可在40-95%之间调整;与传统技术生产镁铝尖晶石载体相比,载体生产过程实现无废水排放,焙烧温度从约700℃降至550℃,每吨载体节省电耗15%以上;与传统催化剂生产技术相比,催化剂生产过程减少废水排放60%以上;降低活性金属氧化物用量20%以上。该技术已在煤化工领域实现应用。煤化工福建省工业和信息化厅29高性能聚四氟乙烯分散树脂产业化新技术设计开发了新型反应装置,实现反应体系的高效分散性、粒径分布均匀性以及聚合体系稳定性,提高了聚四氟乙烯的压缩比。针对现有聚四氟乙烯分散树脂生产废水中含有全氟辛酸的问题,开发了靶向捕获污水处理技术,可回收废水中98%以上的全氟辛酸或含量降至ppb级。废水中全氟辛酸回收率达到98%以上(或降至ppb级);乳液输送稳定性提升,破乳料减少90%。该技术已经实现工业化应用。化工新材料四川省经济和信息化厅30焦炉气制甲醇绿色技术该技术以焦炉气为原料生产甲醇,开发了废水汽提及热量回收、锅炉排污水回收等节能、节水绿色工艺,资源利用效率提高。该技术还可用于低阶煤分质分级利用领域,利用中低温热解煤气生产甲醇产品,发挥热解煤气潜在价值,实现资源综合利用、节能减排。该技术适用于17000~125000Nm3/h焦炉气制甲醇;30万吨/年焦炉气制甲醇装置运行能耗1272.4kgce/t。该技术已在焦炉气制甲醇领域实现应用。煤化工中国化工集团有限公司31高纯度(≥95%)过氧化氢异丙苯生产工艺及产品采用空气替代氧气制备过氧化氢异丙苯(CHP)新工艺,工艺简单安全,污染物零排放,生产周期短,产品产出率高,一次精镏可达到95%含量的优质产品。外观无色透明,纯度不低于95%; 活性氧含量不低于9.98%;密度不低于1.04g/ml;PH值4-8;色相(Gardner)不大于1。该产品已在医药生产行业应用。精细化工辽宁省工业和信息化厅32红矾钠有机还原制备氧化铬绿和铬酸酐联产清洁技术利用淀粉和葡萄糖混合物为还原剂,低温加压高效还原红矾钠,并与铬酸酐生产过程耦合,实现清洁生产,提高了资源利用率,全流程削减了污染物排放。红矾钠的液相还原转化率和含铬硫酸氢钠中六价铬的还原转化率均接近100%;可同时制备冶金级氧化铬和颜料级氧化铬,颜料级氧化铬绿符合国家标准;能耗降低约12%。该技术已应用于铬盐行业。无机盐中国石油和化学工业联合会
  • 婴幼儿食品和乳品中烟酸和烟酰胺的测定
    烟酸和烟酰胺统称为维生素B3,是人体必需的维生素之一,在生长、代谢、发育过程中发挥着重要的作用。烟酸在体内可转化为烟酰胺,烟酰胺是辅酶I、辅酶II的组成部分,而辅酶I、辅酶II是许多脱氢酶的辅酶,在氧化还原反应中起着传递氢的作用,与糖酵解、脂肪代谢、丙酮酸代谢、高能磷酸键的生成有密切关系,并在维持皮肤和消化器官正常功能中起着重要作用。烟酸和烟酰胺是婴幼儿食品和乳品中重要的营养成分,对婴幼儿生长发育起着重要作用。因此在婴幼儿食品和乳品中,生产商会添加烟酸和烟酰胺等多种维生素来满足婴幼儿营养需要。国家规定在婴儿配方食品中烟酸(烟酰胺)的限量为70-360g/100kJ,在较大婴儿和幼儿配方食品中烟酸(烟酰胺)的含量最小值为110 g/100kJ。目前食品中烟酸和烟酰胺的检测方法主要包括超临界流体色谱法、离子色谱法、液相色谱法、液相色谱串联质谱法和微生物法等。液相色谱法由于具有灵敏度高、定量准确等优点,成为近年来应用较为广泛的检测方法。日立参照国标,使用高效液相色谱法对婴幼儿食品和乳品中烟酸和烟酰胺进行测定,结果优异,显示了日立高效液相色谱仪的高性能。实验部分 表1. 色谱分析条件 图1.标准品的提取色谱图(上)和等高线图(下)结果与讨论 表2.标准品重现性结果(n=6)(1.0mg/L) 从实验结果可以看出,烟酸和烟酰胺的保留时间和峰面积均获得了良好的重现性。 图2.标准曲线结果 从实验结果可以看出,烟酸和烟酰胺在0.10-25.00mg/L浓度范围的线性相关系数均达到了1.0000,显示了良好的线性。 图3.实际样品前处理流程 图4.实际样品结果 对市售的奶粉和米粉按图3处理后进行烟酸和烟酰胺的测定,并对样品进行加标回收率的测定,在样品中添加的烟酸和烟酰胺的回收率在90.20%~104.00%之间。使用DAD二极管阵列检测器对实际样品与标准品的光谱图进行比较,排除假阳性峰的干扰。结论 本实验所用方法可用于检测婴幼儿食品和乳品中的烟酸和烟酰胺,标准曲线线性良好,通过DAD二极管阵列检测器还可排除假阳性峰的干扰。可用于生产企业、质检等部门对烟酸和烟酰胺的检测。 日立Primaide高效液相色谱仪性能优异、操作简便、结实耐用,可让您获得精准、高灵敏度的实验结果。 关于日立高效液相色谱仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm
  • 全日程公布!“第五届环境新污染物分析检测”网络会议下周一召开
    点击免费报名新污染物治理列为全面推进美丽中国建设的重要内容,是当前生态环境工作新热点。自2022年国务院办公厅印发《新污染物治理行动方案》后,截至2023年底,31个省份已制定新污染物治理行动方案。在进行新污染物治理的过程中,监测技术是不可或缺的核心环节。为了了解新污染物关键核心技术进展,促进环境新污染物监测技术的交流探讨,仪器信息网于2024年7月29日-8月1日召开“第五届环境新污染物分析检测”网络会议,就大家密切关注的新污染物的最新监测技术方法与应用进展等展开交流,为广大从事新污染物监测领域的相关工作者提供一个即时、高效的交流和学习的平台。会议共设置“新污染物研究与进展-安捷伦环境领域整体解决方案”、“新污染物的监测现状与标准解读”、“新污染物的筛查与识别”、“全氟和多氟烷基物质(PFAS)监测”、“微塑料监测”、“抗生素与耐药基因监测”6个专场,将邀请国家环境分析测试中心、中国环境监测总站、中科院生态环境研究中心、北京大学、北京师范大学、天津大学、同济大学、上海交通大学等在新污染物领域研究最专业、最活跃的单位资深专家分享新污染物监测技术成果及应用进展。具体会议信息如下:1、会议名称:“第五届环境新污染物分析检测”网络会议2、主办单位:仪器信息网3、会议时间:2024年7月29日-8月1日4、会议全日程:7月29日下午专场一:新污染物研究与进展-安捷伦环境领域整体解决方案(点击报名)14:00--14:30安捷伦新污染物GCMS分析进展孔晔 安捷伦科技(中国)有限公司 应用工程师14:30--15:00安捷伦液质联用系统新污染物分析解决方案刘东静 安捷伦科技(中国)有限公司 LC-MS应用工程师15:00--15:30安捷伦环境基质中微塑料自动定性定量测试整体解决方案张晓丹 安捷伦科技(中国)有限公司 应用工程师15:30--16:00Agilent原子光谱在水质土壤等环境中的分析解决方案郭伟 安捷伦科技(中国)有限公司 原子光谱应用工程师7月30日上午专场二:新污染物的监测现状与标准解读(点击报名)09:30--10:00新污染物环境监测技术与标准现状邢冠华 中国环境监测总站 正高级工程师10:00--10:30土壤和沉积物中全氟辛基磺酸和全氟辛酸及其盐类测定标准解读杨文龙 国家环境分析测试中心 高级工程师10:30--11:00环境空气中挥发性新污染物监测标准解析王荟 江苏省环境监测中心 室主任/正高11:00--11:30水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法标准解读刘金林 国家环境分析测试中心 副研究员7月30日下午专场三:新污染物的筛查与识别(点击报名)14:00--14:30大气中硝基有机组分的非靶向识别:基于取代特征的生成机制推测邱兴华 北京大学环境科学与工程学院 教授14:30--15:00赛默飞气质联用技术助力新污染物筛查分析朱薇 赛默飞世尔科技(中国)有限公司GCMS产线应用工程师15:00--15:30基于气相色谱-飞行时间质谱的大气中新污染物的非靶向筛查高丽荣 中国科学院生态环境研究中心 研究员15:30--16:00全二维气相色谱-高分辨多反射飞行时间质谱的非靶向筛查新污染物案例张志杰 LECO力可公司 质谱部总监16:00--16:30新污染物筛查准确度评定技术指南解读 徐驰 中国环境监测总站 工程师7月31日上午专场四:全氟和多氟烷基物质(PFAS)监测(点击报名)09:00--09:30全氟烷基化合物识别、环境行为及健康效应戴家银 上海交通大学 教授09:30--10:00全氟化合物质谱分析技术研究马强 中国检验检疫科学研究院 首席专家10:00--10:30全氟化合物在卵生生物中的富集、组织分配及代际传递罗孝俊 中国科学院广州地球化学研究所 研究员10:30--11:00区域环境PFAS污染、识别和风险史亚利 中国科学院生态环境研究中心 研究员11:00--11:30环境影响下,全氟与多氟烷基化合物在动物性食品中的分析研究范赛 北京市疾病预防控制中心 研究员7月31日下午专场五:微塑料监测(点击报名)14:00--14:30环境多介质中微塑料赋存、残留与风险分析冯成洪 北京师范大学 教授14:30--15:00环境微塑料介导的复合污染与防控刘宪华 天津大学 教授15:00--15:30岛津微塑料分析解决方案王娟娟 岛津企业管理(中国)有限公司 应用工程师15:30--16:00被忽视的微纳塑料来源:实验试剂和溶剂中的污染王艳华 陕西师范大学 副教授16:00--16:30高分子材料全生命周期老化降解产物分析关键技术及设备张裕祥 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 副研究员8月1日上午专场六:抗生素与耐药基因监测(点击报名)09:30--10:00供水全流程系统中抗生素与耐药基因的监测方法与应用李伟英 同济大学环境科学与工程学院 教授10:00--10:30黄河上游复杂基质中新污染物的分离、分析方法研究王雪梅 西北师范大学 教授/博士生导师10:30--11:00抗生素绿色分析方法与典型环境介质分布特征研究宋洲 湖北省地质实验测试中心 高级工程师11:00--11:30水中微塑料-生物膜内耐药基因的监测及微塑料对耐药基因水平转移的作用机制张国晟 同济大学 博士后5、会议报名链接:https://www.instrument.com.cn/webinar/meetings/newpollutant2024/目前,本次会议赞助厂商如下:
  • 新冠发病另一种机制被找到!研发抑制透明质酸合成的特效药有望成为治疗新冠肺炎的新策略
    新冠肺炎仍在全球肆虐,截至2021年9月28日,已在全球感染超2.3亿人,死亡超472万。变异毒株的不断涌现使新冠病毒与人类共存成为大概率事件,寻找应对新冠病毒的防治策略已成为全球科学家和政府面临的重要议题。  目前,国内外已有数款预防新冠的疫苗获批上市,但治疗新冠肺炎依然缺乏特效药。因此,探索不同病毒株共同的致病机制显得尤为重要。  2021年9月28日,深圳市第三人民医院、复旦大学生物医学研究院以及杭州创将医疗科技有限公司共同主办《NamiRNA、透明质酸与新冠肺炎治疗新策略研讨会暨羟甲香豆素在新冠临床治疗中的应用推介会》,会议邀请到国内外多位新冠防治领域的知名专家和学者,研讨会采取线上加线下的形式,介绍了新冠防治新策略的最新进展和研究成果,以期使国内外的新冠防治工作者得到新冠研究最新动态。  会上复旦大学生物医学研究院于文强指出,新冠致病的罪魁祸首或为HIS基因序列。在过去的近10年里,于文强团队发现了一类在细胞核内发挥独特激活作用的NamiRNA(NuclearActivatingmiRNA),打破了传统miRNA抑制理论经典,创造性地提出NamiRNA-增强子-基因激活理论,这也为新冠致病新机制的研究打下基础。  疫情初期,于文强团队就投入到新冠快速检测和致病机制攻关研究,解析新冠肺炎特殊临床和病理改变分子机制,寻找全新有效防治方案。经研究发现,新冠病毒基因组与人类基因组存在5段完全相同的基因序列,长度为24~27 nt,团队将它命名为HIS(Human Identical Sequence)。HIS在159258个新冠病毒基因组广泛存在,且能靶向性地激活人体中肺、血管等非免疫细胞中与炎症相关的基因。因此,人感染新冠病毒后致病的罪魁祸首很可能是HIS基因序列——携带HIS基因序列的新冠病毒进入人体后和人类基因中HIS共同作用,这可能是引起“炎症因子风暴”的重要原因。  由此于文强与合作团队推出抑制透明质酸合成,治疗新冠的新策略。于文强团队发现,新冠患者的血浆中透明质酸的升高,与淋巴细胞降低和肺部毛玻璃病变等临床症状密切相关。而HIS能够激活透明质酸的合成酶,引起透明质酸增加。在新冠肺炎患者的血浆中,透明质酸是升高的。透明质酸又名玻尿酸,是一种酸性粘多糖,分为大分子和小分子,小分子是重要的炎性介质。  在随后的动物实验中,于文强团队发现,单用透明质酸处理就能引起小鼠肺部典型CT影像学的毛玻璃病变,进一步证实透明质酸是新冠致病的共同物质基础和治疗新靶点,以透明质酸为靶点抑制其合成,可以成为新冠治疗的新策略。  4-MU是透明质酸合成抑制剂,对应药物为中国已上市治疗胆囊炎的口服处方药羟甲香豆素。  此后,于文强团队与深圳市第三人民医院卢洪洲团队合作开展临床试验,共入组新冠肺炎患者130例。初步研究结果显示,羟甲香豆素能显著促进患者体内淋巴细胞恢复,同时改善患者肺部病变。“这项研究找到了新冠的发病机制,进而明确了要怎么去治疗新冠。幸运的是,还找到了羟甲香豆素这样有效的药物。”卢洪洲教授表示。  鉴于国内新冠患者数量较少,该团队联合杭州创将医疗科技有限公司进行合作,在玻利维亚、厄瓜多尔等南美国家开展相关临床试验的前期准备工作。  目前,羟甲香豆素在新冠治疗及阻断重症发展中的作用仍待进一步研究。于文强团队与卢洪洲团队、南方科技大学糖生物学王鹏团队正在申请新课题,将从细胞水平、动物模型和临床试验三个层面入手,深入研究羟甲香豆素对不同新冠变异株的作用及分子机制,以期降低新冠高危人群病死率,将新冠变成 “普通感冒”,为全球应对新冠变异和治疗,提供简单易行可推广的中国方案。
  • 生命来自太空 美首次在彗星尘埃中检测发现氨基酸
    《新科学家》杂志网站8月17日报道称,美研究人员第一次在彗星尘埃样品中发现了甘氨酸——一种结构最为简单的氨基酸。该发现证实,早期地球生命的部分构成元素来自于太空。  氨基酸对生命来说至关重要,它是构成蛋白质分子的基本单位。过去曾在陨石上发现过氨基酸,表明这种化合物有可能存在于星际空间。而在冰冷的彗星上发现氨基酸,这还是第一次。  研究人员是在对美宇航局“星尘号”飞船带回的彗星尘埃样品进行分析后发现氨基酸的。“星尘号”飞船于1999年2月发射,主要目的是探测维尔特二号彗星和它的彗发成分组成。它于2004年1月飞越维尔特二号彗星,飞越彗星时从彗星彗发收集到彗星尘埃样品,并拍摄了详细的冰质彗核图片。2006年1月,“星尘号”返回舱成功地在地球着陆。  在2008年,研究人员就在该样品中发现了多种氨基酸,以及含氮的有机化合物——胺类物质,但是当时没有弄清楚,这些物质究竟是源于彗星还是来自于地球污染。为此,研究人员花了近两年时间寻找答案。由于样品太少,研究工作非常艰苦。实际上,除了甘氨酸这种最简单的氨基酸外,这些样品材料均不足以用来追踪任何化合物。在只有大约十亿分之一克的甘氨酸中,研究人员检测出相对丰富的碳同位素。与地球上的甘氨酸相比,样品中甘氨酸含有更多的碳13,从而证明它们源于太空。  科学家们对地球生命的起始之谜一直存有浓厚兴趣。以往的研究认为,在地球早期历史中,曾有小行星和彗星撞击地球,而新的发现表明这些星体携带着氨基酸。这也使人们不得不产生联想——或许生命源于太空。正如美国宇航局戈达德航天中心的科学家杰米艾尔希拉所言,“我们不知道生命是如何开始的,但这个发现有助于我们了解地球原始时期的面目”。  艾尔希拉表示,目前所研究的样品仅来自彗星彗发,而彗核则可能会含有更复杂的氨基酸混合物和更高水平的氨基酸形式。  报道称,要想得到彗核样品,只能寄望于欧空局的“罗塞塔”彗星探测器。该探测器于2004年3月2日升空,预计在2014年抵达“丘留莫夫-格拉西缅科”彗星,在其彗核上着陆并探测,获取有关太阳系形成和生命起源的信息。如果一切顺利,“罗塞塔”将成为人类首个近距离绕彗星运行、进而投放登陆器在彗星表面着陆的探测器。
  • 外包工加错消毒剂!里约终于公布碧池原因...一池盐酸!
    话说,里约那一滩“碧池”大家还记得吗?  前几天,这次奥运会跳水项目的泳池突然一夜变绿...  到底咋就变绿了?  网友也是各种脑洞大开...  有人说是黄+蓝=绿,尿的...  也有人说是巴西故意弄成绿色以此呼应国旗的颜色。  更有网友说,这是主办方贴心,特地为运动员把泳池调成绿色,好缓解强日光对眼睛的刺激。  昨天... 德国的跳水选手抱怨...  这池水简直弥漫着一股屁味.........  而匈牙利的水球运动员也表示....  这池水辣眼睛。。。  不得不接受队医的紧急处理........  好吧....  于是所有人都在问...  这特么究竟为什么???  刚开始,里约奥组委也是全程蒙比,完全不造是什么情况,只是说不会对运动员的身体造成危害。  通过几天的调查...  今天,泳池变绿的真实原因总算是被调查出来了......  他们表示: 东西加错了,加错啦!!!  原来,场馆的一个contractor往两个池子里分别倒了80升的双氧水!  (Contractor这词嘛,在国外你要说是承包工好,说是临时工也行,总之就是这人是我们外面外包找来的,不是我们自己人!)  然而....  这哥们万万没搞懂.....  这两个池子之前并没有用双氧水来消毒,而用的是氯!  现在双氧水一加,刚刚好抵消掉了池水中氯的杀菌作用。 没了杀菌消毒剂,自然导致池水中绿藻繁殖,这才变绿了。  --------- 当当当 化学时间到 --------  一般来说,游泳池消毒有两种方法:  1 用氯系消毒剂,比如用像自来水厂一样用少量的氯气,或者用漂白粉次氯酸钙等等... 总之原理就是在水中生成次氯酸离子消毒灭菌。  2 用双氧水消毒。 利用双氧水的强氧化性来消毒。  一般来说,单独用,两种消毒方式都有效果..  然而!!!  里约,把这两个。弄混了!!!  他们之前用的氯系消毒剂,之后这个临时工又往里面加了双氧水....  那么....  两者反应就生成了没有消毒作用的盐酸,水和氧气,所以水藻才出来了。  泳池才变绿...  敲黑板!!!  2017高考题:  里约奥运会的跳水池先是使用了氯系消毒剂做池水消毒,后来又往池水中加入了双氧水,请问为何池水会变绿? 试写出其中的化学反应原理并解释。  答:因为次氯酸和双氧水反应生成盐酸,二氧化碳和氧气  HClO + H2O2 = HCl + O2 + H2O  而盐酸没有消毒作用,促进了藻类的繁殖。  事情现在是搞清楚了...  所以你们为什么会觉得辣眼睛?  里面有盐酸这特么当然辣眼睛啦!  (虽然被稀释的非常稀.. )  那这两滩“碧池”怎么办?  在花样游泳运动员抱怨花游池太绿,他们比赛时都看不清互相之后,里约官方终于重新放水清理了大池...  里约官方表示,这么大一池水,接近100万加仑... 光是排水就要10小时,排完再放水又要10小时..... 我们但愿能赶上花样游泳的比赛.....  好吧..  但愿你们能好.......  然而...  现在跳水那边还是绿的.........  他们表示不影响比赛,先不换... 不换.......  他们会进一步启动池水的净水循环系统,希望能这么慢慢把池水净化回来.......  好吧,心疼跳水运动员3秒钟...
  • 氨基酸衍生法数据大PK:OPA or 茚三酮,原来选它
    氨基酸是构建生物机体的众多生物活性大分子之一,是构建细胞、修复组织的基础材料。它被人体用于制造抗体蛋白、血红蛋白、酶和激素以维持和调节新陈代谢,是一切生命之源。 由于氨基酸的重要性,合适可靠的检测方案将成为评估食品、饲料、药物及生理样品中氨基酸指标的重要选择。 HPLC—柱后衍生法,50多年来作为氨基酸领域的重要检测手段,因为其高效的测试准确性和重现性,深受广大用户的信赖。氨基酸检测在药物、食品、饲料中的主要应用有 ● 通过分析氨基酸组鉴定多肤和蛋白质;● 原料药和中间体中的杂质和有关物质的测定;● 药物中单个或总氨基酸的定量, 包括复杂基质中标记物的测定;● 重组蛋白生产过程的控制;● 确定氨基酸组成也是保证食品和饲料营养价值的必要条件;● 用于产品质量及过程监测。 衍生方法介绍Pickering Laboratories根据上述应用的检测对象的不同,将衍生方法分为OPA衍生法和茚三酮衍生法,两种方法都可以与任何氨基酸阳离子交换柱和洗脱液组合使用。其中我们称为Trione ® 的*茚三酮试剂,也广泛应用于氨基酸分析仪中。 OPA法与茚三酮法区别见下表:氨基酸衍生法 _Trione® 试剂(*)分析法OPA试剂分析法衍生试剂TlOO-预混试剂 ;自生产日期起计算, 4个月保质期(950 ml/瓶) TlOOC -预混试剂;自生产日期起计算, 4个月保质期(950 mL/瓶) T200 - 2部分试剂,混合后使用,从生产之日起12个月保质期;4组/箱(900mL/瓶)OD104-氨基酸分析用OPA稀释液; O120-OPA试剂(5g/瓶) 3700-2000 -疏基化合物。(10g/瓶) 这三种产品都是用于氨基酸OPA分析法适用样品一级和二级氨基酸一级氨基酸 在与OPA反应之前需要检测二级氨基酸氧化步骤。使用氧化步骤时,一级氨基酸的检测灵敏度会有所降低。检测器UV/VISFLD仪器灵敏度10 pmole (在色谱柱上)2 pmole (在色谱柱上)色谱柱&洗脱液适用于任何阳离子交换柱氨基酸分析法与任何用于氨基酸分析的阳离子交换柱配合使用配置单泵Ony×PCXI vector PCX+ 0.5 m L反应器单泵Ony×PCX/ vector PCX+ 0.15 ml反应器。 *需要带有0.5 mL和0.1 mL反应器的双泵OnyxPCX来检测二级氨基酸。 在此模式下, 初级氨基酸的灵敏度会降低。 色谱柱的选择图1:钠柱氨基酸分析选择 图2:锂柱氨基酸分析选择 图3:氨基酸标品 图4:豆粕样品 图5:水解单克隆样品 Pickering产品 完整解决方案欧洲药典8.0对于氨基酸的柱后衍生茚三酮法做了详细的要求,药典对于包括化学、 动物、 人或草药来源的活性物质、赋形剂和制剂,顺势疗法制剂,抗生素,制剂和容器等都有所要求。 Pickering Laboratories 将欧洲药典作为测试依据,为客户提供完整的氨基酸分析解决方案。 Pickering 柱后衍生仪 解决方案包括Onyx PCX/Vector PCX 柱后衍生仪器、分析柱、保护柱、缓冲液和Trione ® 茚三酮试剂。并且对方法进行了优化, 在符合药典各项体系适宜性要求的同时,提高了分析的灵敏度及分析效率。 Pickering全套试剂包 图6:依据欧洲药典8.0法测试氨基酸 关于Pickering Laboratories 美国Pickering Laboratories公司是全球仅有的专业提供人工测试体液和柱后衍生化学试剂、色谱柱、分析方法等柱后衍生分析整体解决方案的机构,其不断创新及良好的信誉被众多的美国政府机构如EPA、ATF、FDA、AOAC和世界知名的厂商所认可。
  • 报告回放发布!“第五届环境新污染物分析检测”网络会议圆满落幕
    新污染物治理列为全面推进美丽中国建设的重要内容,是当前生态环境工作新热点。2024年7月29日-8月1日,仪器信息网举办了“第五届环境新污染物分析检测”网络会议,就大家密切关注的新污染物的最新监测技术方法与应用进展等展开交流,吸引了1000余人报名参会。会议设置了“新污染物研究与进展-安捷伦环境领域整体解决方案”、“新污染物的监测现状与标准解读”、“新污染物的筛查与识别”、“全氟和多氟烷基物质(PFAS)监测”、“微塑料监测”、“抗生素与耐药基因监测”等六大专场,共邀请了27位来自科研院所、检测机构、高校及仪器厂商等新污染物领域中权威、专业、资深的专家分享最新标准体系建设解读、最新检测技术成果及行业动态进展等,专家老师们在直播间答疑解惑,互动十分热烈。“新污染物研究与进展-安捷伦环境领域整体解决方案”专场中,安捷伦科技(中国)有限公司的应用工程师团队——孔晔、刘东静、张晓丹、郭伟,深入剖析了公司在新污染物检测领域的最新进展。他们详细介绍了GC-MS分析方法的革新、LC-MS技术的优化、红外成像技术在微塑料监测中的应用,以及ICP-MS的应用解决方案。“新污染物的监测现状与标准解读”专场中,《新污染物生态 环境监测标准体系表》牵头单位中国环境监测总站的邢冠华老师全面介绍了当前监测技术与标准的发展状况,杨文龙、王荟、刘金林等标准起草专家深入解读了即将执行的针对空气、水质和土壤中新污染物的检测标准。未来,新污染物监测将通过多元化的标准体系——包括国家标准、行业标准、团体标准和技术文件——实现规范化,并促进高通量筛查、现场快速监测、在线监测和实验室自动化分析等技术的革新,逐步构建起完善的新污染物环境监测技术体系。“新污染物的筛查与识别”专场中,5位专家分别分享了新污染物筛查的准确度评定技术指南,重点探讨了大气中硝基有机物的非靶向识别方法。他们还展示了基于气相色谱-质谱、气相色谱-飞行时间质谱和全二维气相色谱-高分辨多反射飞行时间质谱等前沿技术的高效新污染物筛查策略。“全氟和多氟烷基物质(PFAS)监测”专场中,国家杰青、上海交通特聘教授戴家银老师领衔开讲,分享新型PFAS识别、环境行为、毒理效应及机制研究,讨论了其对公众健康的潜在影响。此外,该专场还涵盖了PFAS的质谱分析技术、区域环境PFAS的检测以及其在动物性食品和生物体内的富集研究。“微塑料监测”专场汇集了多位专家,他们从微塑料的形态、特征入手,深入探讨了不同来源微塑料的测试分析方法,同时分析了微塑料领域的研究趋势和当前仪器检测能力的科研需求,为这一复杂问题提供了多角度的见解。“抗生素与耐药基因监测”专场中,宋洲教授分享了抗生素绿色分析方法以及它们在典型环境介质中的分布特征;王雪梅教授则聚焦于黄河上游的新污染物分析技术;李伟英和张国晟两位专家则分别讲解了供水系统全流程、水中微塑料-生物膜相关的抗生素监测方法,为控制抗生素污染和耐药性传播提供了重要洞见。为了回馈大家对会议的支持,以及方便相关从事者能够不断学习,根据报告嘉宾的要求,部分报告视频将设置回放,会议日程及相关回放见下表:相关报告信息如下:7月29日专场一:新污染物研究与进展-安捷伦环境领域整体解决方案14:00--14:30【 点击观看 】 安捷伦新污染物GCMS分析进展孔晔 安捷伦科技(中国)有限公司 应用工程师14:30--15:00【 点击观看 】 安捷伦液质联用系统新污染物分析解决方案刘东静 安捷伦科技(中国)有限公司 LC-MS应用工程师15:00--15:30【 点击观看 】安捷伦环境基质中微塑料自动定性定量测试整体解决方案张晓丹 安捷伦科技(中国)有限公司 应用工程师15:30--16:00【 点击观看 】 Agilent ICP-MS助力环境科研发展郭伟 安捷伦科技(中国)有限公司 原子光谱应用工程师7月30日上午专场二:新污染物的监测现状与标准解读09:30--10:00新污染物环境监测技术与标准现状邢冠华 中国环境监测总站 正高级工程师10:00--10:30土壤和沉积物中全氟辛基磺酸和全氟辛酸及其盐类测定标准解读杨文龙 国家环境分析测试中心 高级工程师10:30--11:00【 点击观看 】 环境空气中挥发性新污染物监测标准解析王荟 江苏省环境监测中心 室主任/正高11:00--11:30【 点击观看 】水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法标准解读刘金林 国家环境分析测试中心 副研究员7月30日下午专场三:新污染物的筛查与识别14:00--14:30【 点击观看 】 大气中硝基有机组分的非靶向识别:基于取代特征的生成机制推测邱兴华 北京大学环境科学与工程学院 教授14:30--15:00【 点击观看 】赛默飞气质联用技术助力新污染物筛查分析朱薇 赛默飞世尔科技(中国)有限公司GCMS产线应用工程师15:00--15:30基于气相色谱-飞行时间质谱的大气中新污染物的非靶向筛查高丽荣 中国科学院生态环境研究中心 研究员15:30--16:00【 点击观看 】全二维气相色谱-高分辨多反射飞行时间质谱的非靶向筛查新污染物案例张志杰 LECO力可公司 质谱部总监16:00--16:30新污染物筛查准确度评定技术指南解读徐驰 中国环境监测总站 工程师7月31日上午专场四:全氟和多氟烷基物质(PFAS)监测09:00--09:30全氟烷基化合物识别、环境行为及健康效应戴家银 上海交通大学 教授09:30--10:00全氟化合物质谱分析技术研究马强 中国检验检疫科学研究院 首席专家10:00--10:30【 点击观看 】 全氟化合物在卵生生物中的富集、组织分配及代际传递罗孝俊 中国科学院广州地球化学研究所 研究员10:30--11:00区域环境PFAS污染、识别和风险史亚利 中国科学院生态环境研究中心 研究员11:00--11:30【 点击观看 】环境影响下,全氟与多氟烷基化合物在动物性食品中的分析研究范赛 北京市疾病预防控制中心 研究员7月31日下午专场五:微塑料监测14:00--14:30【 点击观看 】 环境多介质中微塑料赋存、残留与风险分析冯成洪 北京师范大学 教授14:30--15:00【 点击观看 】环境微塑料介导的复合污染与防控刘宪华 天津大学 教授15:00--15:30【 点击观看 】 岛津微塑料分析解决方案王娟娟 岛津企业管理(中国)有限公司 应用工程师15:30--16:00【 点击观看 】被忽视的微纳塑料来源:实验试剂和溶剂中的污染王艳华 陕西师范大学 副教授16:00--16:30【 点击观看 】 高分子材料全生命周期老化降解产物分析关键技术及设备张裕祥 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 副研究员8月1日专场六:抗生素与耐药基因监测09:30--10:00供水全流程系统中抗生素与耐药基因的监测方法与应用李伟英 同济大学环境科学与工程学院 教授10:00--10:30【点击观看】黄河上游复杂基质中新污染物的分离、分析方法研究王雪梅 西北师范大学 教授/博士生导师10:30--11:00抗生素绿色分析方法与典型环境介质分布特征研究宋洲 湖北省地质实验测试中心 高级工程师11:00--11:30【点击观看】水中微塑料-生物膜内耐药基因的监测及微塑料对耐药基因水平转移的作用机制张国晟 同济大学 博士后
  • 赫施曼助力硝酸、盐酸的测定与使用
    硝酸和盐酸是试验室常用试剂,它们是易挥发酸类的代表,较高浓度下,在空气中会产生白雾,是其蒸汽与水蒸汽结合而形成的小液滴,危险性较高,试剂浓度也会有较大波动。硝酸、盐酸的含量测定一般用滴定法,滴定剂用氢氧化钠,其中比较特殊的是发烟硝酸,要用到轻体安瓿球(用于易挥发试剂),盐酸虽然不用,但浓盐酸的浓度一般是36%到38%之间,用盐酸作滴定剂时,也要先用滴定法测出其具体浓度数值后再用于试验和计算。滴定法作为含量分析中的经典方法,常用仪器是滴定管。赫施曼的光能滴定器和电子滴定器,可代替常规滴定管,能够实现抽提加液、手转/手按控制滴定速度、屏幕直接读数,可解决滴定管的三大难点:灌液慢、控速难,读数乱(不同人、不同位、不同次的凹液面读数均有可能出现偏差)。硝酸和盐酸具有的挥发性和腐蚀性,导致其在使用时,也更加危险,如果试剂瓶敞口时间过长,其浓度也会有较大变化。赫施曼的ceramus瓶口分配器,在瓶口上沿设计了密封阀,可以在瓶口处进行试剂密封,阻止挥发性、腐蚀性、易结晶、有毒有害的试剂进入到仪器内,如不阻止,会明显降低仪器的寿命、精度和稳定性,这也是相比于排液管处密封阀的一大优势。如果担心试剂扩散到外界环境中,可加装过滤管(选配),可以防止试剂挥发、外泄,也可保护试剂不受外界空气中水分、二氧化碳等气体的影响,形成了对人员(环境)、试剂、仪器的三大保护。赫施曼的ceramus瓶口分配器和滴定器,可助力试验室更加便捷、安全地使用硝酸、盐酸,甚至王水和氢氟酸等危险试剂,可代替量筒、移液管等玻璃量具,降低人为误差和失误。
  • 赛默飞的验“毒”术:教你测定“毒淀粉”中的顺丁烯二酸(酐)
    毒奶粉、瘦肉精、塑化剂&hellip 近年来食品&ldquo 染毒&rdquo 事件频发,食品安全已经成为公众关注的焦点之一。因此,作为食品安全问题源头之一的食品添加剂也渐渐进入消费者视野。今年3月,台湾爆发&ldquo 毒淀粉&rdquo 事件,食物中惊现含有顺丁烯二酸(酐) 的有毒淀粉。作为检测领域的世界领导者,赛默飞世尔科技(以下简称:赛默飞)积极响应,针对顺丁烯二酸酐可水解成马来酸的特性,提出运用离子色谱法测定淀粉中的顺丁烯二酸(酐)的解决方案。 顺丁烯二酸(HO2CCH=CHCO2H),又称&ldquo 马来酸&rdquo ,是饱和二元羧酸,可以用于树脂化学黏合剂原料。在淀粉中加入一定量的顺丁烯二酸,可增加食物的弹性、黏性、外观光亮度、以及保质期。然而,长期超标食用含顺丁烯二酸的食品,将极大程度损伤人体肾脏功能,甚至引发不孕不育。令人担忧的是,食品专家指出,顺丁烯二酸(酐)在食品领域可能存在一定滥用现象,成本的低廉以及效果的显著促使不法商家使用顺丁烯二酸(酐)作为食品添加剂,以谋取暴利。 离子色谱法测定淀粉中的顺丁烯二酸(酐) 顺丁烯二酸与反丁烯二酸(又称&ldquo 富马酸&rdquo )互为几何异构体,其中反丁烯二酸可以作为食品添加剂应用于食品中,主要起酸度调节剂作用,是食品添加剂卫生标准(GB2760-2011)允许添加的食品添加剂。相反,顺丁烯二酸(酐)则并未收入允许添加的食品添加剂目录。对于顺丁烯二酸(酐)在食品领域可能存在的滥用现象,赛默飞推出一种测定淀粉中顺丁烯二酸(酐)的方法,以满足食品安全监测的迫切需求。 顺丁烯二酸酐遇水则水解成马来酸,因此可以通过检测样品中马来酸的含量,得到顺丁烯二酸(酐)的总量。赛默飞针对马来酸作为一种有机酸极易溶于水且呈阴离子状态的特性,运用离子色谱法测定淀粉中顺丁烯二酸(酐)的测定方法。 与我国目前已有毛细管电泳法以及现行国家标准GB/T 23296.21-2009采用的高效液相色谱法等检测方法相比,赛默飞推出的离子色谱法测定淀粉中顺丁烯二酸(酐),不但样品前处理简单、便捷,而且方法稳定,线性范围内相关性好,准确度高,受其他因素干扰小,可以成为检测淀粉中的马来酸的有效手段。 赛默飞验&ldquo 毒&rdquo 术解决食品安全中的添加剂隐患 作为科学服务领域的世界领导者,赛默飞始终积极关注食品安全问题。对于近年来食品添加剂引发的食品安全事故层出不穷,赛默飞采取快速应对方式,在事件发生的第一时间组织分析专家开展检测工作,及时建立和发布相应解决方案。除了&ldquo 毒淀粉&rdquo ,赛默飞对于&ldquo 毒奶粉&rdquo 、塑化剂、瘦肉精等都有着独到的验&ldquo 毒&rdquo 术。 早在&ldquo 毒奶粉&rdquo 事件爆发之时,美国食品和药物管理局就发布过用赛默飞TSQ Quantum LC-MS/MS系统检测婴儿配方乳制品中三聚氰胺和三聚氰酸残留的方法。2007年,美国国家食品安全与技术中心又借助赛默飞的TSQ Quantum Ultra TM三重四级杆液相色谱串联质谱仪,建立了一个新的液相色谱串联质谱方法测定食品中的三聚氰胺。除了提供先进的检测技术,赛默飞还将独有的线样品前处理技术TurboFlow色谱净化和TSQ Quantum LC-MS/MS分析结合,使分析流程得到大大简化和操作自动化。赛默飞三聚氰胺检测方法因此获得了&ldquo 2009荣格食品饮料业技术创新奖&rdquo 。除此之外,赛默飞还针对塑化剂中的邻苯二甲酸二乙基乙酯(DEHP)和邻苯二甲酸二异壬酯(DINP),瘦肉精中的&beta -受体激动剂,以及防霉保鲜剂中的富马酸二甲酯(DMF)等食品添加剂推出了简单易行,分析时间短,且适用于大规模筛选的处理办法。 不止如此,赛默飞立足于整个食品安全的产业链,涵盖仪器设备、试剂以及LIMS实验室信息管理系统的无敌产品组合,为大家提供从农场到实验室到工厂&mdash &mdash 最全面的食品安全解决方案。 了解更多赛默飞食品安全完全解决方案信息,请点击http://www.thermo.com.cn/foodsafety。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 通用电气医疗将举办氨基酸分析在欧美临床应用研讨会
    氨基酸分析在欧美临床应用非常普遍,越来越多的学者认识到氨基酸的定量分析与临床的多种疾病如遗传性代谢缺陷病、恶性肿瘤、急慢性肝病、肾病以及中枢神经系统疾病的诊断、治疗以及疗效观察有着密不可分的关系,同时氨基酸水平的监测还可为术后或衰竭病人的支持治疗和烧伤病人的康复提供依据。 近年来,氨基酸分析技术有了很大的改进,一次可测血浆,脑脊液,尿液中的氨基酸含量种类高达40种,并且具有极高的重复性。Biochrom 专用氨基酸分析系统在欧美主要医院安装超过200台,主要用户如英国的 Guy’s hospital, London 和美国的 Philadelphia Children hospital 等。 通用电气中国医疗集团将邀请 Biochrom Hoefer 公司技术专家 Anthony Le 讲述有关氨基酸分析在欧美的临床应用。 会议详情请点击:http://www.instrument.com.cn/show/news/003209.shtml
  • 食品包装中的防油剂可致血液污染
    美欧各国加强监测多氟烷基磷酸酯   加拿大多伦多大学科学家发现,垃圾食品包装材料及微波爆米花袋上的化学物质会转移到食物中去,并被人体吸收,导致血液化学污染。该研究成果发表在近日出版的《环境与健康展望》杂志上。   全氟羧酸(PFCAs)是一种可分解的化学物质,主要用于制造不粘锅及食品包装材料的防水剂、防污剂。而全氟辛酸(PFOA)目前已在全世界各地的人体内发现。   由多伦多大学化学系的杰西卡和斯科特马伯里领导的研究小组推测,人体内全氟羧酸的来源可能与多氟烷基磷酸酯(PAPS)有关。PAPS在快餐食品包装材料或微波爆米花袋中作为防油剂使用。   研究人员让大鼠口服或注射PAPS三个星期,并监测其血液中多氟烷基磷酸酯和全氟羧酸的代谢物及全氟辛酸的浓度。虽然研究人员尚不能证明多氟烷基磷酸酯是人体内发现的全氟辛酸和全氟羧酸的唯一来源,但此项研究发现,多氟烷基磷酸酯代谢物是全氟辛酸和全氟羧酸的主要来源,因此人体内发现的全氟辛酸很可能与人们平时接触多氟烷基磷酸酯有关。   目前世界各国政府对于监测多氟烷基磷酸酯的兴趣不断增长。加拿大、美国及欧洲各国政府已经表示要长期监测这些化学物质。新研究为监管机构制定相关政策提供了有价值的信息。
  • 警惕!日本多地水体检出全氟化合物含量超标,这些仪器及标准或引起关注
    据新华社6月26日报,日本多地近期陆续出现水体和居民血液中有机氟化合物含量超标的情况。现阶段,日本对全氟和多氟烷基物质含量的暂定国家标准为每升水50纳克,而多处水质检查报告显示,这类物质含量甚至达到日本暂定国家标准的420倍。那么,什么是全氟化合物?又有哪些危害呢?全氟化合物,一般指全氟和多氟烷基类物质 (per- and polyfluoroalkyl substances, PFASs),是碳骨架上氢原子部分或全部被氟原子取代的一类人工合成化合物。PFAS具有较强的的表面活性(加入水中可以降低水的表面张力)、化学和热稳定性(不易发生化学反应)、疏水性和疏油性。PFAS 半衰期(自行转变为无害元素,浓度降到一半的时间)长达10年之久,其稳定性强且极难降解,易在环境和生物体内累积,呈现出明显的生物富集性。其中,全氟辛烷磺酸(perfluorooctanesulfonic acid, PFOS)及其盐类以及全氟辛酸(perfluorooctanoic acid, PFOA)已被联合国环境规划署认定为持久性有机污染物(persistent organic pollutants, POPs),并被列入《斯德哥尔摩公约》进行国际管控。已有的毒理研究表明,全氟化合物会对实验动物造成肝脏毒性、发育与生殖毒性、遗传和免疫毒性以及致癌性等。美国环境保护署(EPA)也指出,暴露于一定水平的PFAS下可能会导致人体健康风险,包括影响胎儿和婴儿发育、癌症、肝损害、免疫疾病、甲状腺失调和心血管疾病等。全氟化合物检测标准有哪些?所属行业标准号标准名称所用仪器及设备环境ISO 21675:2019水质全氟及多氟化合物的测定固相萃取-液相色谱/质谱法固相萃取仪、液质联用仪、液相色谱仪更多实验室常用设备,请查看:旋转蒸发仪、浓缩仪、超纯水机、涡旋混匀器点击查找更多…EPA 533-2019饮用水中的全氟和多氟烷基物质的测定同位素稀释阴离子交换固相萃取-液相色谱/串联质谱法ASTM D7979-2019采用液相色谱串联质谱法(LC/MS/MS)测定水、污泥、流入物、 流出物和废水中全氟烷基和多氟烷基物质的标准试验方法EPA 537.1-2020固相萃取-液相色谱/串联质谱法测定饮用水中的多氟烷基物质DB 32/T 4004-2021水质 17种全氟化合物的测定高效液相色谱串联质谱法ASTM D7968用液相色谱串联质谱法(LC/ MS/MS)测定土壤中多氟化合物的标准试验方法DIN 38414-14:2011德国检验水,废水和污泥的标准方法.污泥和沉淀物(第5组)-第14部分:污泥,堆肥和土壤中选定全氟化合物(PFC)的测定.使用高性能液相色谱法的方法食品GB 5009.253-2016食品安全国家标准 动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定GB 31604.35-2016食品安全国家标准 食品接触材料及制品 全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定GB/T 5750.8-2023生活饮用水标准检验方法:第8部分:有机物指标工业制造GB/T 31126-2014纺织品 全氟辛烷磺酰基化合物和全氟羧酸的定GB/T 37760-2019电子电气产品中全氟辛酸和全氟辛烷磺酸的测定 超高效液相色谱串联质谱法SN/T 5352-2021纸制耐热材料中全氟和多氟化合物的测定
  • 新污染物治理,迫在眉睫——访中科院生态环境中心王亚韡研究员
    新污染物一般是指人工合成或自然存在的化学品或微生物,新近发现其环境赋存可引起显著已知或可疑的毒性作用与健康危害,尤其是需要重视那些已有比较充分科学数据表明其对生态环境及人体健康有危害或有较高风险,但政府监管部门对其管理措施尚不完善或尚未列入优先管控名录的污染物。部分新污染物具有较强的环境/生物持久性、明显的生物富集性、可以进行长距离全球迁移等特性,能够对人体健康和生态环境构成危害。目前,新污染物的环境暴露、可能导致的健康危害以及引发相关疾病的分子机制仍是一个国际性科学难题,是新污染物研究最薄弱的环节之一。王亚韡,中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室副主任、研究员、博士生导师,长期从事新污染物的分析方法、环境过程及暴露机制研究。目前,王亚韡已发表SCI收录论文150余篇,全部论文被引用6000余次,先后获国家杰青、优青、中国科学院青年科学家奖、中国化学会青年化学奖、中科院卢嘉锡青年人才奖等项目支持及奖项。近日,仪器信息网特别采访了王亚韡研究员,请他就国内持久性有机污染物(POPs)和新污染物污染现状、相关研究进展以及治理难点进行了分享。中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室副主任、研究员、博士生导师 王亚韡2003年,王亚韡考入中国科学院生态环境研究中心攻读博士学位,开启了他新污染物的研究之路。2006年,王亚韡博士毕业,就在同年,《斯德哥尔摩公约》(以下简称《公约》)将“短链氯化石蜡”纳入持久性有机污染物(POPs)候选名单。到了2008年,王亚韡随我国政府代表团参与《公约》POPs审查委员会会议时发现:我国关于短链氯化石蜡的相关环境行为及风险评估研究几乎为“零”,我国又是氯化石蜡生产大国,每年产能可达100万吨,对相关管理部门而言,这是一个巨大的挑战,相关研究的开启成为迫切的需求。王亚韡等中国科学院生态环境研究中心(以下简称“生态环境中心”)的科研人员在江桂斌院士的带领下也随之开始了对氯化石蜡等新型污染物的研究。经过10多年的持续研究,目前,生态环境中心发表有关“短链氯化石蜡”的相关论文在国内起到引领作用,并为全球范围内开展相关环境管理提供了有力的技术支撑。污染物覆盖范围广、替代难度大目前,共有30种(类)POPs物质被列入公约管制物质名单,其中18种物质属于新增POPs范畴。既然这些污染物已被《公约》纳入管控,那可不可以不使用这些污染物或使用无害的物质进行替代呢?但事实并非想象的那么容易。王亚韡介绍说,新污染物和POPs种类繁多,涵盖生活消费、工业生产等不同领域,广泛存在于日常的用品中。以氯化石蜡为例,它本身是一种塑料添加剂和阻燃剂,但并非不可替代。“而问题是氯气是我国氯碱行业的副产品,而氯化石蜡是氯碱行业用来平衡氯气的重要产品。使用氯化石蜡作为添加剂,一方面是它原料来源丰富,另一方面,它的价格在市场中较有优势,因此,限制生产对于相关行业具有较大的挑战。”而对于某些POPs物质来说,又与氯化石蜡情况不同。王亚韡补充说:“目前,某些POPs物质在一些应用领域里目前是不可或缺的。”他举例,全氟辛酸(PFOA)由于“不粘锅涂层事件”而在世界范围内受到广泛关注。“但这种物质是氟化工领域里面非常重要的一种化工产品,广泛使用于消防、航空、农药、氟塑料、氟橡胶等众多领域,被誉为工业味精。虽然其已经被《公约》纳入新增POPs名单,但在很多领域短期由于没有合适的替代品和替代技术,而不得不申请特定豁免。”王亚韡还表示,即使在一些领域使用了该物质的类似物作为替代品,但它们与PFOA结构的类似性也决定了环境行为及毒性效应的相似性,并不能彻底解决环境安全问题。“协同检测”有望实现常规监测王亚韡从2008年起便随中国代表团参加《公约》国际审查,当提及中国在国际环境保护中的地位时,王亚韡说:“中国在国际谈判中扮演着非常重要的角色,并一直坚持做一个‘负责任的大国’,其中包含两层含义,一是对国际环境保护的负责,同时也是对我国环境安全的负责。他介绍说,中国坚持“大国责任”政策,近几年对新污染物的重视程度越来越高。2020年6月生态环境部发布消息,下一步将把持久性有机污染物监测纳入全国环境监测体系;2021年1月27日全国生态环境保护工作会议指出着手开展新污染物监测与评估。不过,我国在相关新污染物的管理方面仍存在很多问题。王亚韡认为:将新污染物纳入常规检测体系,目前最大的问题还是“监测清单”的建立上。新污染物种类繁多,不能将所有的新污染物都纳入监测体系中,需要根据各个行业现状综合考量;其次便是监测能力建设的问题,将污染物纳入监测体系必须有标准的分析方法,但新污染物覆盖范围广、包含种类多、性质差异大、分析方法多且复杂,分析体系的搭建成了一项非常具有挑战性的难题。王亚韡认为,目前较为可行的方法是形成新污染物与传统污染物的“协同检测”。如果可以成功开发出将几类污染物进行“协同检测”的方法,将会大大降低监测能力建设过程中投入的人力及资金成本。他说:“但这种方式需要以‘监测清单’的确定为基础,同时也要考虑到物质性质的相似性,仍有很多问题有待研究。”研究成果“碎片化”,顶层设计是关键谈到我国新污染物和POPs的污染现状,王亚韡表示,我国是化工大国,化工生产在我国GDP中具有很高的占比,这也决定了我国新污染物的环境库存较大。相比于传统污染物,我国对新污染物的研究起步并不晚,且在部分研究领域进展属于世界前列,这也与我国国情密切相关。“虽然我国相关的研究成果很多,但整体较为碎片化,没有一个系统的研究规划,研究主要集中在新污染物的环境转化、毒性效应和人群暴露机制方面。而对管理部门而言,关键是需要掌控相关化学品生产和排放的研究数据,才便于相关部门进行管控,而这也是目前所欠缺的。”王亚韡建议针对某些对我国影响深远的新污染物,由国家立项,对某个污染物从生产排放、环境迁移及转化到人体健康进行系统性的全生命周期研究,最后形成完善的评估报告,这对相关部门实施相应的化学品管控具有重要的意义。王亚韡说:“目前,我们也在积极的根据我国化工生产的特点做一些前瞻性的调研工作,并提供给相关管理部门,让他们意识到问题的存在,为以后逐步形成系统性、预判性的研究打下基础。”王亚韡实验室一角合作开发实现成果转化,创新研究防患于未然虽然已经进行了十余年的短链氯化石蜡研究,但是王亚韡表示,氯化石蜡分为短链、中链和长链,虽然目前《公约》清单中只对短链氯化石蜡进行了管控,但这三类物质在产品中多以混合物的形式存在,且相似的结构也决定了它们相似的环境行为,这就对化学品的管控提出了很大的挑战。王亚韡分析,从《公约》的发展进度来看,中链和长链氯化石蜡很有可能在不久的将来被纳入管控建议清单中,所以未来,他还将对中链和长链氯化石蜡开展进一步的研究,为将来环境管控的需求提供重要的数据参考。同时,王亚韡提到了2020年9月生态环境中心与岛津企业管理(中国)有限公司(以下简称“岛津”)签订的“创新研发合作框架协议”,该协议旨在推动现代科学分析仪器以及创新研发在生态环境与健康中的应用,首期的研究就聚焦在持久性污染物分析方法建立及标准化、区域性污染物监测技术及创新、环境样本前处理装置开发以及仪器零部件设计等,王亚韡的一个合作项目就包含其中。王亚韡在采访中还表示,生态环境中心正与岛津在杭州高等研究院环境学院中共建一个创新协作平台,以合作开发新的环境分析相关技术并实现技术转化。王亚韡课题组也正在该平台进行新污染物分析方法体系的开发。针对我国目前对新污染物管控中迫切解决的监测问题,该研究将开发不同新污染物的协同检测方法。该方法体系的建立将为我国实现传统污染物和新污染物的协同监测提供极大的便利条件,节约大量人力及经济成本。王亚韡实验室一角王亚韡也坦然,虽然我国对新污染物的研究已经经过了二十余年的研究,但目前对典型新污染物的环境行为和暴露机制仍存在很多未知,还需要更多环境工作者参与进来,为国家环保工作贡献力量。(撰稿编辑:吴优)后记:采访后,我们来到了王亚韡老师的实验室参观,并不宽敞的实验室中摆满了各类仪器,就是这样一间并不起眼的屋子里,产出的数据让有关部门的管控措施有了依据,让中国在国际谈判中更有底气,让中国的环境治理工作更进一步。王亚韡也只是中国众多科学家的一个缩影,向科学家致敬,向奋斗在一线的科研工作者致敬!
  • 新污染物最新标准体系建设进展如何?有哪些最新监测技术?
    新污染物危害生态环境和人体健康,是全球关注的重大环境问题之一。我国新污染物监测工作薄弱,监测技术体系不健全,环境监测方法不完善。急需开展新污染物监测靶向与非靶向、高通量筛查方法,建立重点管控新污染物环境监测标准,因此加强新污染物监测技术研究至关重要。我国在十四规划和中长期规划中首次将“新污染物的治理”列为环境保护的重要内容,与大气污染、水污染、土壤污染和固废处置等并列为我国当前和今后一段时间内环境保护的重大战略目标。2022年5月,国务院办公厅印发《新污染物治理行动方案》,明确了“筛、评、控”和“禁、减、治”的总体工作思路,提出在2025年年底前,初步建立新污染物环境调查监测体系。截至2023年底,31个省份已制定新污染物治理行动方案。2023年,生态环境部印发《2023年新污染物环境监测试点工作方案》,由中国环境监测总站牵头,会同生态环境部南京环境科学研究所、生态环境部华南环境科学研究所、国家海洋环境监测中心、生态环境部环境发展中心国家环境分析测试中心等多家技术支持单位,对口帮扶天津、河北、江苏、浙江、山东、湖北、广东、广西、重庆、陕西等10个省(区、市)开展试点监测,并同步开展了监测技术方法研究,启动300种化学物质的环境风险筛查和20种优先评估化学物质的环境风险评估。同年2月,生态环境部会同有关部门印发《重点管控新污染物清单(2023年版)》,对14种具有突出环境风险的新污染物,实施禁止、限制、限排等管控措施。2024年3月,生态环境部发布《新污染物生态 环境监测标准体系表(征求意见稿)》,公布了182项分析方法标准,其中,已发布48项,在研13项,拟制订121项,涉及的监测介质主要为水和废水、环境空气和废气、土壤和沉积物、固体废物等,仪器品类主要有气相色谱-质谱法、气相色谱-高分辨质谱、气相色谱-三重四极杆质谱法、高效液相色谱、气相色谱等,监测指标以列入管控清单、履约、 优控名录和优评计划中的新污染物为主。《体系表》与土壤和沉积物相关的分析方法标准52项,已发布16项、在研3项、拟制订33项;与空气废气相关的分析方法标准38项,已发布15项、在研2项、拟制订21项;与水质相关的分析方法标准56项,已发布15项、在研7项、拟制订34项。其中,《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法(HJ1290-2023)》、《环境空气 65 种挥发性有机物的测定 罐采样/气相色谱-质谱法(HJ 759-2023) 》、《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1333-2023)》三项为土壤、大气、水质最新发布标准。除此之外,对于新污染物的筛查与识别,最新发表了《新污染物筛查准确度评定技术指南 气相色谱-质谱法(试行)》标准。为了深入了解新污染物最新监测技术的进展,与最新发布的水、土、气标准涉及的技术方法,仪器信息网于2024年7月29日-8月1日召开的“第五届环境新污染物分析检测”网络会议中,设置了“新污染物的监测现状与标准解读”专场,邀请了4位来自相关标准牵头单位的起草人,为大家全面解读发布的标准体系及最新技术标准,包括技术要点,仪器设备、方法误区等,欢迎大家踊跃参与!相关报告信息如下:7月30日上午专场:新污染物的监测现状与标准解读(点击报名) 09:30--10:00新污染物环境监测技术与标准现状邢冠华 中国环境监测总站 正高级工程师10:00--10:30土壤和沉积物中全氟辛基磺酸和全氟辛酸及其盐类测定标准解读杨文龙 国家环境分析测试中心 高级工程师10:30--11:00环境空气中挥发性新污染物监测标准解析王荟 江苏省环境监测中心 室主任/正高11:00--11:30水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法标准解读刘金林 国家环境分析测试中心 副研究员会议报名链接:https://www.instrument.com.cn/webinar/meetings/newpollutant2024/报告嘉宾简介:邢冠华 正高级工程师中国环境监测总站邢冠华,博士,中国环境监测总站正高级工程师,“全国青年岗位能手”、生态环境监测“三五”人才“一流专家”,目前主要从事新污染物环境监测技术方法及标准化研究,负责国家新污染物环境监测试点工作。杨文龙 高级工程师国家环境分析测试中心杨文龙,高级工程师。主要从事多环境介质中传统和新污染物的分析测试技术、污染状况调查及质量保证与质量控制体系研究。全国土壤及地下水污染状况调查专项质控专家。中国履行《蒙特利尔议定书》消耗臭氧层物质监测专委会委员。先后参与完成国家重大科学仪器设备开发专项、国家重点基础研究发展计划(973计划)及新污染物试点监测等科研项目。参与制订十余项环境保护行业标准。王荟 室主任/正高江苏省环境监测中心现任江苏省环境监测中心分析部部长,是“国家环境保护地表水环境有机污染物监测分析重点实验室”技术带头人和研究骨干,承担及参与省部级项目3项、市厅级4项,参加或承担国家方法标准制定10项、地方标准2项,发表论文20余篇,参与编写专业技术专著5部,作为主要技术人员获得国家环境保护科学技术奖二等奖、江苏省环境保护科学技术奖一等奖、三等奖和江苏省分析测试二等奖。曾获生态环境部全国环境监测三五人才的“一流专家”和江苏省生态环境厅“污染防治攻坚巾帼标兵”等称号。刘金林 副研究员国家环境分析测试中心刘金林,国家环境分析测试中心,博士,副研究员,长期从事持久性有机污染物方面的研究工作,主持国家自然科学基金、生态环境分析方法标准制修订项目等多个项目,发表论文十余篇。近年来研究工作主要集中于全/多氟化合物的分析方法、环境行为与毒性机理等方面,负责制定全氟化合物标准分析方法一项,关注全氟化合物及替代物在污染源及环境中的行为及其机理,依托多个国际合作项目推动有关全氟化合物管控与替代,为我国国际公约履约行动提供支撑。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制