当前位置: 仪器信息网 > 行业主题 > >

细胞色素

仪器信息网细胞色素专题为您提供2024年最新细胞色素价格报价、厂家品牌的相关信息, 包括细胞色素参数、型号等,不管是国产,还是进口品牌的细胞色素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞色素相关的耗材配件、试剂标物,还有细胞色素相关的最新资讯、资料,以及细胞色素相关的解决方案。

细胞色素相关的论坛

  • 【求助】细胞色素c循环伏安中出现的问题

    我以ITO导电玻璃作为电极,其表面经过3-氨丙基三乙氧基硅烷进行了修饰,然后浸在细胞色素c的磷酸盐缓冲溶液(pH=7)中经过一段时间的吸附。然后以此修饰了的ITO作为工作电极,铂为对电极,参比电极为甘汞电极,电解液为磷酸盐缓冲溶液(pH=7),做出的循环伏安曲线很漂亮。但是我发现随着扫描速的增加,其氧化还原电位差越来越大,也就是说两个峰都随着扫描速度的增加往两端移动,不知道是什么原因。理论上,其峰电位应该是不变的,希望各位大侠们不吝赐教,谢谢!!我用的是CHI660a。

  • 【原创大赛】探讨细胞色素P450酶系作为农药残留生物标志物的可行性

    农残检测版块我看大部分作品都是仪器检测方面的内容,可是农药残留现在不单单是残留本身的问题了,还有对作物本身的影响及这些受影响的作物人体摄入后又有哪些变化呢?很少提及!另外,农药残留如果单从仪器检出方面来评估的话,可能对整个地区的横断面的描述缺乏论据,如果我们能找出一个预警的信号,根据这个信号有针对性的检测,相比工作效率事半功倍,而且对这个地区农残的危害可以有一个预见作用。 因此,出于以上考虑,我把自己近期的一个课题摘要,跟大家分享一下,欢迎批评指正,也希望对大家有所启发。探讨细胞色素P450酶系作为农药残留生物标志物的可行性目的和意义农药使用范围不断地扩大,新型农药不断涌现,这必然造成对农作物和环境的污染。因此及时、准确地对污染情况进行分析、监测,减少和防止对农作物和环境的污染以及对污染情况进行评估显得刻不容缓。传统的监测和评估是利用现代化仪器和手段进行准确定量的理化分析,但有些农药代谢分解迅速不易检出,而且仅凭含量无法反映这些农药对生物的效应,要检测和评估其对生物和环境质量的影响,就要研究在农药作用下生物体内各种指标的变化。生物标志物(biological marker)就适应了这种需要。生物标志物是指生物体由于接触外源毒物后而产生可在生物介质中测定到的细胞、生物化学和生物分子的改变,主要包括机体酶系统、细胞内的DNA、蛋白质、、谷胱甘肽、抗坏血酸以及结构生理生化功能等。细胞色素P450酶系是生物体中最重要的一组代谢酶,可由许多内源性和外源性的化学物质诱导。利用P450酶系的诱导作用,可以将其作为毒物污染机体在分子水平上敏感的生物标记物。农药作为外源性毒物,生物体在遭受其污染后会诱导P450酶系进行解毒。因此,本研究项目探索细胞色素P450酶系作为农药污染生物标志物的可行性。拟用常用农药胁迫生物体,检测生物体内细胞色素P450酶系总量的变化,搞清常用农药不同浓度胁迫生物体后与生物体内细胞色素P450酶系剂量-效应关系以及细胞色素P450酶系各个家族、亚家族的诱导效应,找出农药污染后体内细胞色素P450酶系中变化较特异的家族或亚家族,作为农药污染后特异的诊断评估工具,可为我国环境质量评价、化学物毒性评价、生态风险评价与预警系统提供理论依据国内外研究进展细胞色素P450酶系是生物体中最重要的一组代谢酶,根据酶的氨基酸序列相似性,细胞色素P-450酶系被分类并命名为家族(CYP1,2,3)、亚家族(A,B,C…)、单个基因(A1,2,3…),当前发现的P450基因超家族包括36个基因家族,其可由许多内源性和外源性的化学物质诱导。利用P450酶系的诱导作用,可以将其作为毒物污染机体在分子水平上敏感的生物标记物。目前国内外非常重视污染物监测的生物标志物研究,肝细胞色素P450酶系的诱导已被提出作为评价环境污染状况的最灵敏的生物学反应之一。国内外很多学者研究了野生动物、鱼类、蚯蚓、小麦等生物细胞色素P450酶系对多环芳烃(PAHs)、多氯联苯(PCBs)污染的指示作用,对哺乳动物和鱼类研究主要集中肝细胞色素P4501A1,因为与该细胞色素结合的EROD(乙氧基异酚唑酮)便于检测,而对于植物细胞色素P450酶研究则集中考察其总量的变化上。有关生物体细胞色素P450酶系作为常用农药污染的生物标志物的研究少见报道,有些只研究特定农药污染水体后葱属植物的EROD的指示作用。对所涉及的细胞色素P450酶系各个家族对农药污染后指示作用的系统研究未见报道。对于农药污染后体内细胞色素P450 酶系总量及各个家族亚家族含量变化较特异的指示生物的研究亦未见报道,对生物体细胞色素P450酶系作为农药污染空气、土壤、水体的生物标志物的系统研究尚属空白。技术发展趋势:1. 细胞色素P450将作为农药残留的长期生物效应的诊断工具,考察农药残留的危害性。[/

  • 天然色素——β—胡萝卜素

    胡萝卜中含有大量的β-胡萝卜素,摄入人体消化器官后,可以转化成维生素A,是目前最安全补充维生素A的产品 (单纯补充化学合成维生素A,过量时会使人中毒)。它可以维持眼睛和皮肤的健康,改善夜盲症、皮肤粗糙的状况,有助于身体免受自由基的伤害。不宜与醋等酸性物质同时服用。作用与功能1、维持皮肤粘膜层的完整性,防止皮肤干燥,粗糙;2、构成视觉细胞内的感光物质;3、促进生长发育,有效促进健康及细胞发育,预防先天不足。促进骨骼及牙齿健康成长;4、维护生殖功能;5、维持和促进免疫功能。数据介绍,胡萝卜具有预防和抑制肺癌的作用。胡萝卜所含的胡萝卜素进入人体后,会转化成维生素A。每一个胡萝卜分子可以转化成2 个维生素A 分子。胡萝卜素是一种具有生理活性的物质,在动物体内可转化成维生素A,可治疗夜盲症,干眼病及上皮组织角化症;具有抑制免疫活性细胞过度反应,淬灭引起免疫抑制的过氧化物,维持膜的流态流动性,有助于维持免疫功能必需的膜受体状态,对免疫调节分子的释放起作用。通过上述机制,增强了淋巴细胞、巨嗤细胞或NK细胞等的抗肿瘤功能,尤其对肺癌、食道癌、鳞癌等有显著的预防和改善的效果,故具有防癌、抗癌、抗衰老作用,在医药工业上可做抗癌药;由于具有抵抗自由基的作用,对心血管病及其他慢性病有治疗作用。应用β—胡萝卜素作为一种食用油溶性色素,其本身的颜色因浓度的差异,可涵盖由红色至黄色的所有色系,因 此受到食品业相当热烈的欢迎。其非常适合油性产品及蛋白质性产品的开发,做食用橙色色素和营养强化剂,如:人造奶油、胶囊、鱼浆炼制品、素食产品、速食面的调色等。而经过微胶囊处理的β—胡萝卜素,可转化为水溶性色素,几乎所有的食品都可应用。另外,β—胡萝卜素在饲料、化妆品等方面有重要用途。

  • 伟大的发现——中山大学发现杀癌细胞病毒 不损伤正常细胞

    广州中山大学研究发现天然病毒M1可杀灭癌细胞中新网广州10月13日电(许青青 蔡珊珊) 记者13日从广州中山大学获悉,该校中山医学院颜光美教授课题组研究发现天然病毒M1能选择性地感染并杀伤包括肝癌、结直肠癌、膀胱癌、黑色素瘤在内的多种体外培养的癌细胞,而对正常细胞无毒副作用。全球癌症发病率呈现快速增长态势,现有的治疗手段远远未能满足临床需求。颜光美教授课题组发现,M1病毒是一种从中国海南岛分离得到的天然病毒,能选择性地感染并杀伤包括肝癌、结直肠癌、膀胱癌、黑色素瘤在内的多种体外培养的癌细胞,而对正常细胞无毒副作用。整体动物实验表明,经尾静脉注射的M1病毒能显著富集在肿瘤组织并抑制肿瘤生长,正常器官则不受影响。除细胞水平及动物实验之外,课题组还使用临床标本离体活组织培养模型进一步证实了上述新型溶瘤病毒的有效性和特异性。据悉,该研究成果对阐明新型天然溶瘤病毒M1选择性杀伤肿瘤细胞的机制和研发新型靶向抗肿瘤药物都具有重要意义。相关资料:癌细胞增殖方式癌细胞是一种变异的细胞,是产生癌症的病源,癌细胞与正常细胞不同,有无限生长、转化和转移三大特点,也因此难以消灭。癌细胞由“叛变”的正常细胞衍生而来,经过很多年才长成肿瘤。“叛变”细胞脱离正轨,自行设定增殖速度,累积到10亿个以上我们才会察觉。癌细胞的增殖速度用倍增时间计算,1个变2个,2个变4个,以此类推。1912年8月13日,法国医生发现癌细胞。

  • 天然色素与合成色素的区别

    [font=SimSun, STSong, &]首先请您看看正在使用的色素的配料表,如果您看到以下关键词,[/font][font=SimSun, STSong, &]代表您已经选用了合成食用色素:亮蓝、诱惑红、日落黄、柠檬黄、赤[/font][font=SimSun, STSong, &]藓红等。所以,您会开始关注更健康的选择:天然色素!接下来,我们[/font][font=SimSun, STSong, &]先来聊聊食用色素:[/font][font=SimSun, STSong, &]一、食用色素的安全分析和隐患:[/font][font=SimSun, STSong, &]1.食用色素的功能:改善食品色泽,引起人产生食欲,给人以味道的联[/font][font=SimSun, STSong, &]想,造成美味感。影响人们对风味、口感的感觉;判断食物是否新鲜的[/font][font=SimSun, STSong, &]依据之一。[/font][font=SimSun, STSong, &]2.食用色素的分类:天然色素、人工合成色素。[/font][font=SimSun, STSong, &]【天然色素】是由天然资源获得的食用色素,主要从动物和植物组织及[/font][font=SimSun, STSong, &]微生物(培养)中【提取】,其中植物性着色剂占多数。[/font][font=SimSun, STSong, &]1.天然色素对人体无毒害,安全性高。中国是目前世界上允许使用天然[/font][font=SimSun, STSong, &]色素最多的国家;[/font][font=SimSun, STSong, &]2.大部分天然色素有一定的营养成分。[/font][font=SimSun, STSong, &]3.天然色素能更好地模仿天然物的颜色,着色时的色调比较自然;[/font][font=SimSun, STSong, &]4.天然色素部分品种具有特殊的芳香气味,添加到食品中能给人带来愉[/font][font=SimSun, STSong, &]快的感觉;[/font][font=SimSun, STSong, &]5.成本高,坚牢度较差,强酸强碱、高温、光照等会影响其稳定性。[/font][font=SimSun, STSong, &]6.较难自行调配出任意色调; [/font][font=SimSun, STSong, &]7.在加工及流通过程中,受外界因素的影响易劣变;[/font][font=SimSun, STSong, &]8.由于共存成分的影响,有的天然色素有异味。[/font][font=SimSun, STSong, &]【合成色素】是人工化学合成方法所制得的有机与无机色素,主要是指[/font][font=SimSun, STSong, &]以煤焦油中分离出来的苯胺染料为原料制成的有机色素。[/font][font=SimSun, STSong, &]1.成本低、价格廉。具有色泽鲜艳,着色力强,易溶解,易调色。大多[/font][font=SimSun, STSong, &]以煤焦油为原料制成,其化学结构属偶氮化合物,可在体内代谢生成β[/font][font=SimSun, STSong, &]—萘胺和α—氨基-1-1萘酚,这两种物质具有潜在的致癌性。[/font][font=SimSun, STSong, &]2.人工合成色素不仅不能向人体提供必要的营养物质,而且有些还会危[/font][font=SimSun, STSong, &]害人体健康。比如,苏丹红能造成人类肝脏细胞的DNA突变。其他的人工[/font][font=SimSun, STSong, &]合成色素也会对人体造成伤害,会引发过敏、腹泻、结石,甚至有致突[/font][font=SimSun, STSong, &]变、致癌、致畸作用。[/font][font=SimSun, STSong, &] 总的来说,天然色素和合成色素各有优缺点,选择使用哪种色素需[/font][font=SimSun, STSong, &]要根据具体应用和需求来决定。在食品、医药、化妆品等领域,通常更倾[/font][font=SimSun, STSong, &]向于使用天然色素,因为它们更安全、更稳定。[/font]

  • 西达本胺通过信号通路调节促进癌细胞凋亡

    西达本胺通过信号通路调节促进癌细胞凋亡在我国,西达本胺已获批作为PTCL临床用药。西达本胺属于苯酰胺类化合物,是我国自主研发的首个亚型选择性口服HDACI,国家食品药品监督管理局已批准其用于临床试验,其选择性抑制I类HDAC1、2、3亚型和II类HDAC10亚型,可抑制肿瘤细胞增殖、促进凋亡,阻滞周期、引发DNA损伤,还可以增强抗肿瘤免疫反应。与其他抗肿瘤药物相比,西达本胺疗效好、选择性高、不良反应少。西达本胺可激活死亡受体途径和线粒体凋亡途径诱导细胞凋亡,其中最为主要的是线粒体凋亡途径,该途径受Bcl-2家族介导的细胞色素C释放通路调控。抗凋亡蛋白Bcl-2表达受到抑制,促凋亡蛋白Bax表达上调,使线粒体膜电位降低,细胞色素C释放到细胞质中,Caspase途径被激活,细胞发生凋亡。例如:西达本胺增强B淋巴瘤细胞组蛋白H3、H4 乙酰化水平,使线粒体膜电位降低随后激活Caspase 3,促进细胞凋亡;在肾癌中,它可以下调Bcl-2表达,上调Bax表达,随着药物浓度增加引起786-O 细胞凋亡。西达本胺可以调控ROS水平。HDACI可以上调ROS水平,导致DNA双链损伤。研究证明,西达本胺作用于白血病细胞后,诱导细胞内ROS产生,细胞凋亡增加[17]。此外,在胰腺癌细胞系中,西达本胺明显增强细胞内ROS的产生,上调γH2AX(DNA双链断裂的标志物)表达水平,诱发细胞DNA损伤。西达本胺通过调控细胞周期蛋白(Cyclin)、细胞周期蛋白依赖性激酶(Cyclin-dependent kinases,CDKs)以及细胞周期蛋白依赖性激酶抑制剂(Cyclin-dependent kinases inhibition,CDKI)的表达阻滞细胞周期。例如,西达本胺使MM细胞系P21、P27的表达量增高,CDK4、CDK6、Cyclin D2表达量下降,阻滞MM细胞系于G1期[19]。在NK/T细胞淋巴瘤中,西达本胺上调P21表达,下调Cyclin E表达,诱导细胞发生G0/G1期阻滞,从而抑制细胞的增殖。

  • 干细胞研究或迎来“黄金时代”

    10多年来,干细胞疗法一直被认为能够给那些遭受遗传和退行性疾病折磨的人带来希望。而就在几天前,随着两个研究团队在于日本横滨召开的国际干细胞研究学会(ISSCR)年会上宣告了他们在人类临床研究中取得的成果——一项聚焦于罕见的遗传神经病,另一项则着眼于老年人的视力丧失,这一希望又朝着现实迈出了一步。  美国加利福尼亚州纽瓦克市干细胞公司报告了用人体神经干细胞治疗梅氏病(PMD)所取得的鼓舞人心的研究成果。PMD是一种渐进式的致命疾病,该病通过基因突变抑制了髓鞘的正常生长,后者是大脑中包裹神经纤维的一种保护物质。缺乏髓鞘,神经信号便会流失;病人,通常是婴儿,便会经历运动协调能力退化以及其他神经病症状。据干细胞公司负责研究的副总裁Ann Tsukamoto介绍,该公司之所以选择PMD来测试其神经干细胞技术,缘于目前尚没有这种疾病的治疗方法,且通过基因检测和磁共振成像能够确诊这种疾病。她说:“这便为最有效的早期介入创造了一个机会。”  该公司建立了一个从成熟神经组织中分离出的高度纯化的神经干细胞库。研究人员将这些神经干细胞注入啮齿动物体内后,它们并没有形成肿瘤,事实上,这些细胞在小鼠的大脑中游走,并分化成不同类型的神经细胞,其中就包括分泌能够保护神经纤维的髓鞘的细胞。Tsukamoto介绍说,当神经干细胞被注入小鼠后,它们表现出了“强大的移植和迁移能力,并形成新的髓鞘”。  该公司如今正赞助对4名PMD婴幼儿患者进行该技术的初期安全试验。加利福尼亚大学旧金山分校的研究人员,向每位患者大脑中的4个区域中的每一个区域移植了7500万个神经干细胞,并随之进行了免疫抑制治疗,这样受体才不会排斥外来的细胞。Tsukamoto报告说,在试验过程中并没有出现安全隐患。此外,在18个月后进行的磁共振成像显示,在轴突周围形成了新的髓鞘,并且对患者进行的临床观察表明,他们的运动机能保持稳定或出现了小幅提升。干细胞公司如今正计划进行更大规模的试验。Tsukamoto表示,一旦这种疗法被证明是有效的,它将带来多发性硬化、大脑性麻痹和阿尔茨海默氏症的神经干细胞新疗法。  在这次会议上,神户市日本理化研究所(RIKEN)发育生物学中心的干细胞研究人员Masayo Takahashi,报告了她的研究小组在针对与年龄相关的黄斑变性(AMD)的临床前研究所取得的进展。在AMD中,视网膜色素上皮(RPE)细胞的生长出现了问题,并且位于视网膜下部的血管出现了渗漏。这些情况导致眼睛中心部位的视力下降。Takahashi的研究小组研制出一种方法,即用外科手术摘除有问题的血管,同时用源自病人自身细胞的新RPE细胞替代受损的RPE细胞。利用被称为细胞再编程的一项技术,研究人员采集了病人的皮肤细胞,并将其转化为所谓的诱导多能干(iPS)细胞,这种细胞能够分化成人体中的所有细胞。研究人员随后将iPS细胞转化为RPE细胞。由于iPS方法使用的是病人自身的细胞,因此避免了对免疫抑制药物的需求。  由Takahashi小组生成的RPE细胞表现出了真正人体RPE细胞的特征结构和基因表达模式。她报告说,将它们注入小鼠并没有引发肿瘤,并且这些细胞在移植到猴子体内后存活了6个多月。Takahashi希望在得到必要的批准后,能够在1年内开展人体试验。  英国剑桥研究学院癌症中心的干细胞研究人员Fiona Watt指出,在ISSCR上发表的这些研究结果将帮助该领域“积攒力量”。而美国哈佛医学院的干细胞科学家George Daley则更为乐观。他说,记住这次年会上报告的这些进展;并表示对明年在波士顿召开的2013年ISSCR年会充满期待。

  • 【分享】细胞生长受什么因素影响?影响细胞生长的因素

    细胞在体外进行培养,失去了机体的调节和控制。因此,除满足营养的要求外,还必须使细胞生存环境尽量接近活体的环境。外环境的培养条件如温度、渗透压、酸碱度等均能影响细胞的生长。 一、温度 一般哺乳类及禽类细胞体外培养的适宜温度是37~38℃。温度过高或过低都会影响到细胞的生长。细胞耐受低温的能力比抗热的能力强,在低温下,细胞的代谢活力及核分裂降低。温度不低于0℃时,虽影响细胞代谢,但并无伤害作用;把细胞置于25~35℃时,细胞仍能生存和生长,但速度减缓;放在40℃数小时后,再置回37℃培养细胞仍能继续生长。但如果在40℃下暴露时间太长,对细胞生长不利,甚至变圆脱落于瓶壁。若温度过低,在降到冰点以下时,细胞因胞外水和胞质结冰而受损死亡。但若向培养液中加入甘油或二甲亚砜等保护剂,封入安瓿中后,置于液氮中,可起保护作用,此时细胞可耐受-70℃以下温度,能长期储存,解冻后细胞复苏,仍能继续生长增殖,细胞生物性状不受任何影响。此为保存细胞的主要手段。 高温对细胞培养不利。细胞在39~40℃培养1小时,能受到一定损伤,但仍有可能恢复,但不能忍受温度再升高2℃,持续数小时,即在41~42℃中培养1小时,细胞损伤严重,温度至43℃以上时细胞多数被杀死。高温主要引起酶的灭活、类脂质破坏,核分裂的破坏,产生凝固酶使细胞发生凝固,另外使蛋白质变性。因此,体外培养细胞时一定要避免高温。 二、渗透压 细胞在高渗溶液或低渗溶液中,可以立即发生皱缩或肿胀、破裂。所以,渗透压是体外培养细胞的重要条件之一。哺乳动物和其他动物组织细胞体外培养的渗透压的维持主要与NaCl有关,但不能忽视其他电介质渗透压的关系。渗透压与单位体积溶媒内溶质的分子数和离子数成正比。为此,按一定比例控制培养液中离子平衡,维持正常渗透压是很重要的。这不仅是为了维持细胞张力,而且是为了调节细胞的代谢。因为细胞外离子输送和离子浓度改变着其他营养物质的输送(如氨基酸、蔗糖等),直接影响细胞基本合成系统。 理想的渗透压因细胞的类型及种族而异,人血浆渗透压为290mmol/L,被视为是体外培养人类细胞的理想渗透压。哺乳类动物细胞的渗透压一般为290~300mmol/L。人胚肺成纤维细胞为250~325mmol/L,鼠则为310mmol/L左右。在实际应用中,260~320mmol/L的渗透压可适于大多数细胞。

  • 白癜风治疗常用中药淫羊藿促进色素合成作用的分子机制和药效物质

    [size=14px] [/size] [size=14px]黑色素合成是一个复杂过程,由三种主要的色素合成酶催化:酪氨酸酶(TYR)、TYR相关蛋白1(TYRP1)和多巴胺互变异构酶(DCT)。TYR、TYRP1和DCT属于TYR蛋白家族(TYRs)。成熟的TYRs在胞内被转运定位于黑色素体中,进而促进合成黑色素。虽然这三种酶都参与黑色素合成,但只有TYR是黑色素生成所必需的。[/size] [size=14px] [/size] [size=14px]淫羊藿中一种含量高、低性毒的黄酮类成分——朝藿定B(EB),并初步证明了EB是一种黑色素生成强诱导剂和TYRs激活剂。然而,尚不清楚EB促进黑色素合成的具体机制。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]1)首次对EB在色素合成药理活性进行了探究;[/size] [size=14px]2)通过体内外多种色素脱失模型上评估EB色素合成作用;[/size] [size=14px]3)EB从表达、活性和稳定性三方面靶向TYRs,从而发挥色素合成作用。[/size] [size=14px]1、EB促进黑色素产生[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]作者首先使用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)对淫羊藿提取物进行鉴定,朝藿定B(EB)是主要生物活性成分,对黑素生成和TYR激活表现出最高的效果。随后通过不同浓度(25、50和100μM)的EB处理两种黑色素瘤细胞系并检测黑色素含量,IBMX为阳参,发现EB以剂量依赖性方式显著增加细胞内黑色素含量(图1)。[/size] [size=14px]图片[/size] [size=14px]图1 EB以浓度依赖方式促进黑色素产生[/size] [size=14px]进一步在不同时间点(0、12、24、48和72小时)检查黑色素含量,发现EB以时间依赖性方式诱导的黑色素生成(图2)。[/size] [size=14px]图片[/size] [size=14px]图2 EB以时间依赖方式促进黑色素产生[/size] [size=14px]2、EB促进黑素体生物合成[/size] [size=14px]接着收集并检查了人体皮肤组织样本进一步验证 EB的促黑色素生成作用,发现EB在原代黑素细胞、人类皮肤器官培养物中诱导显著的黑色素生成作用。黑色素在黑素体中合成并储存,然后分布到周围的角质形成细胞,黑素体的数量、大小和成熟阶段反映了黑素细胞的黑色素生成能力。作者发现EB 治疗组中存在比对照组更多的黑素体,此外EB通过增加黑素体数量并促进黑素体成熟来刺激黑色素生物合成。接着对EB处理和未处理的人类原代黑素细胞进行了转录组分析,差异基因显著富集在“黑色素生物合成过程”、“黑素体/黑素体膜”等,这些数据证实了 EB 在黑色素生物合成和黑素体形成中的调节作用(图3)。[/size] [size=14px]图片[/size] [size=14px]图3 EB增加黑色素体的数量和成熟促进黑色素合成[/size] [size=14px]3、EB增加TYR表达[/size] [size=14px]为了阐明EB诱导黑素生成的机制,作者研究了TYR的参与,发现EB诱导的TYR在mRNA和蛋白质水平上的双重正向调节。MITF是众所周知的TYR关键调节因子,也是黑素生成的主要调节因子。作者发现EB刺激后MITF的mRNA和蛋白表达水平显著上调,表明EB通过经典的 MITF 依赖性机制上调黑素生成中TYR的表达。此外,EB可以影响转运相关基因的mRNA表达,特别是OCA2和SLC45A2,表明EB在黑素体生物发生和成熟中调节复杂的过程,这可能解释黑素体增加的变化黑素体中黑色素的数量和含量(图4)。[/size] [size=14px]图片[/size] [size=14px]图4 EB增加TYR表达[/size] [size=14px]黑色素的产生是由多种信号系统启动和调节的,作者接着研究了EB对黑素生成的上游信号通路的影响,发现cAMP水平和PKA表达不受EB影响,表明经典的cAMP-PKA-MITF色素沉着途径不参与EB诱导的黑素生成。相比之下,PI3K/AKT 信号通路的级联,以及MAPK途径受到影响。这些数据证明EB 控制多种色素途径来影响黑色素的产生(图5)。[/size] [size=14px]图片[/size][size=14px]图5 EB影响多条信号通路[/size] [size=14px]4、EB促进TYR活性[/size] [size=14px]在黑色素合成中,TYR是催化限速步骤(L-酪氨酸羟基化为L-多巴)的关键酶。作者接着研究了EB对TYR催化活性的影响,发现EB体外可以加速TYR与底物左旋多巴的反应速率,在细胞内以剂量依赖性方式显著增强TYR活性。进一步在斑马鱼和小鼠中开发了两种使用TYR抑制剂的脱色模型,确定了EB可以作为TYR激活剂并在体内发挥重新色素沉着作用。此外,在HQ引起的色素脱失模型中, EB有效地重新激活了皮肤TYR活性。数据表明EB通过在体外和体内促进TYR活性来发挥色素沉着作用(图6)。[/size] [size=14px]图片[/size] [size=14px]图6 EB促进TYR活性来发挥色素沉着作用[/size] [size=14px]5、EB对抗莫诺苯宗诱导的色素脱失[/size] [size=14px]莫诺苯宗是一种临床局部脱色剂,可以通过TYR和黑素体降解机制诱导白癜风样色素脱失。因此,作者使用单苯宗来研究EB是否发挥再色素作用并影响TYR和黑素体异常降解,发现EB 显著改善了两种黑色素瘤细胞和人类原代黑素细胞中单苯宗诱导的黑色素生成功能障碍,EB治疗可有效防止培养皮肤组织中单苯宗诱导的TYR和黑素体减少。此外,经单苯宗处理后,TYR、TYRP1、DCT和Melan-A的蛋白表达降低,而在用单苯宗和EB共同处理期间,TYR和Melan-A的表达显著上调。值得注意的是,单苯酮诱导的黑素生成抑制和TYR表达减少并不依赖于TYR活性抑制或MITF、TYR、TYRP1和DCT mRNA 表达水平的下降(图7)。[/size] [size=14px]图片[/size] [size=14px]图7 EB对抗莫诺苯宗诱导的色素脱失[/size] [size=14px]6、EB提高TYR和TYRP1稳定性[/size] [size=14px]莫诺苯宗会导致TYR降解,但不影响TYR转录水平。为了研究EB是否对TYR稳定性有影响,作者使用CHX抑制蛋白质合成,以排除EB本身,诱导新的合成TYR。WB发现莫诺苯宗显著降低了TYRs的稳定性,而EB处理可以有效防止这种情况,这表明EB改善了莫诺苯宗诱导的TYRs稳定性。进一步机制研究发现EB通过防止莫诺苯宗诱导的异常 TYR、TYRP1 形成、在内质网中的保留以及泛素-蛋白酶体降解系统的增强来提高 TYR、TYRP1 稳定性(图8)。[/size] [size=14px]图片[/size] [size=14px]图8 EB提高TYR和TYRP1稳定性[/size] [size=14px]7、EB 改善小鼠单苯酮诱导的色素脱失[/size] [size=14px]最后,作者建立了40%莫诺苯宗诱导的色素脱失模型,并同时用EB处理小鼠,探讨EB是否对单苯酮处理的小鼠体内具有再色素沉着功能,结果发现用单苯酮和EB共同治疗的小鼠在不同程度上明显改善了脱色的背毛形成,此外,单苯宗对皮肤TYR活性具有抑制作用,而与EB联合治疗可以促进皮肤TYR活性,此外,TYR、TYRP1、DCT和PMEL的mRNA水平被证实不受单苯宗影响,强调单苯宗诱导的脱色与转录调控无关。同时,EB增加了皮肤TYR、TYRP1、DCT和PMEL的mRNA表达。因此,EB可以改善经单苯酮处理的C57BL/6小鼠的TYR降解和色素脱失(图9)。[/size] [size=14px]图片[/size] [size=14px]图9 EB改善小鼠单苯酮诱导的色素脱失[/size] [size=14px]总结[/size] [size=14px]研究发现EB在体内外表现出良好的色素合成效果,其机制研究为:1)EB通过调节GSK3β/β-catenin、p-p70S6激酶、MAPK等信号通路增加TYR的表达,并增加黑素体数量和促进黑素体成熟;2)EB促进TYR的活性;3)EB抑制泛素-蛋白酶体途径增强TYR和TYRP1的稳定性。这表明EB可靶向TYRs发挥色素合成作用(图10)。[/size]

  • 广州科学家破解细胞“返老还童”障碍 维生素C打开多能干细胞治病之门

    近70年来,服用维生素C成为人们补充营养最普遍的做法。这种吃上去酸酸的药片似乎是万能的:女士用它美容养颜,男士用它保持精力,医生们用它来帮助患者缓解感冒症状、增强抵抗力,国外研究甚至发现它还可以改善心情。然而,维生素C的作用还远不止于此,日前,它的又一项功效被揭示。 12月2日,中国科学院广州生物医药与健康研究院院长裴端卿等科学家的一篇论文,以封面文章形式发表在国际权威学术期刊《细胞·干细胞》上。研究发现维生素C能够促进体细胞"变身"为诱导多能干细胞(IPS),从而扫除体细胞"变身"为诱导多能干细胞的分子障碍。 维生素C成为诱导多能干细胞这门最新科研领域的一把新钥匙。 ◎多能干细胞技术能够将任何一个阶段的细胞,恢复到只有受精卵胞才具备的多潜能阶段。这就好比让已经成熟的体细胞"变身",让衰老的细胞重新活一次 ◎在适当的诱导条件下,体细胞能变成具有胚胎干细胞一样分化潜能的多能干细胞,可以神奇地分化成特定组织的细胞,具有再生各种组织器官的潜在功能 ◎诱导多能干细胞技术这扇门并不是一推就开,原来其诱导有效率仅有万分之一,维生素C通过一种特殊酶降低分子障碍影响,提升细胞"变身"效率100倍

  • 细胞分析仪最新功能介绍

    用途: 流式细胞仪是对细胞进行自动分析和分选的装置。它可以快速测量、存贮、显示悬浮在液体中的分散细胞的一系列重要的生物物理、生物化学方面的特征参量,并可以根据预选的参量范围把指定的细胞亚群从中分选出来。多数流式细胞计是一种零分辨率的仪器,它只能测量一个细胞的诸如总核酸量,总蛋白量等指标,而不能鉴别和测出某一特定部位的核酸或蛋白的多少。也就是说,它的细节 分辨率为零。 流式细胞仪主要由四部分组成。它们是:流动室和液流系统;激光源和光学系统;光电管和检测系统;计算机和分析系统 参数测量原理荧光信号主要包括两部分:①自发荧光,即不经荧光染色细胞内部的荧光分子经光照射后所发出的荧光;②特征荧光,即由细胞经染色结合上的荧光染料受光照而发出的荧光,其荧光强度较弱,波长也与照射激光不同。自发荧光信号为噪声信号,在多数情况下会干扰对特异荧光信号的分辨和测量。在免疫细胞化学等测量中,对于结合水平不高的荧光抗体来说,如何提高信噪比是个关键。一般说来,细胞成分中能够产生的自发荧光的分子(例核黄素、细胞色素等)的含量越高,自发荧光越强;培养细胞中死细胞/活细胞比例越高,自发荧光越强;细胞样品中所含亮细胞的比例越高,自发荧光越强。  减少自发荧光干扰、提高信噪比的主要措施是:①尽量选用较亮的荧光染料;②选用适宜的激光和滤片光学系统;③采用电子补偿电路,将自发荧光的本底贡献予以补偿。仪器的操作和使用  ①打开电源,对系统进行预热;  ②打开气体阈,调节 压力,获得适宜的液流速度;开启光源冷却系统;  ③在样品管中加入去离子水,冲洗液流的喷嘴系统;  ④利用校准标准样品,调整仪器,使在激光功率、光电倍增管电压、放大器电路增益调定的基础上,0和90散射的荧光强度最强,并要求变异系数为最小;  ⑤选定流速、测量细胞数、测量参数等,在同样的工作条件下测量样品和对照样品;同时选择计算机屏上数据的显示方式,从而能直观掌握测量进程;  ⑥样品测量完毕后,再用去离子水冲洗液流系统;  ⑦因为实验数据已存入计算机硬盘(有的机器还备有光盘系统,存贮量更大),因此可关闭气体、测量装置,而单独使用计算机进行数据处理;  ⑧将所需结果打印出来。热销细胞网是采用Accuri 型2号流式细胞仪,指示符®软件和工作站电脑供应在对市场价格领先的系统的一小部分的功能齐全的流式细胞仪的所有功能。在C6系统包括蓝色和红色激光,四色探测器和正向和侧向散射检测器加上软件,非常直观,你通常将和内收到您的Accuri小时运行的系统。

  • 汉防己甲素靶向SIRT5调控内质网应激和自噬发挥抗黑色素瘤作用

    [size=15px][font=宋体]传统中药粉防己([/font][font=&]Stephaniatetrandra S. Moore[/font][font=宋体])是防己科千金藤属草质藤本植物,汉防己甲素([/font][font=&]Tetrandrine[/font][font=宋体],[/font][font=&]TET[/font][font=宋体])是一种从粉防己中提取的天然双苄基异喹啉生物碱,具有多种药理作用,包括对多种癌症具有抑制活性,然而它对黑色素瘤的影响仍不清楚。[/font][font=&][/font][/size] [size=15px][font=宋体]通过体内和体外测定发现[/font][font=&]TET [/font][font=宋体]对黑色素瘤具有抑制作用,机制上,[/font][font=&]SIRT5[/font][font=宋体]是[/font][font=&]TET[/font][font=宋体]的直接靶标,[/font][font=&]TET [/font][font=宋体]通过泛素[/font][font=&]-[/font][font=宋体]蛋白酶体系统导致[/font][font=&]SIRT5[/font][font=宋体]降解,导致随后的[/font][font=&]ROS[/font][font=宋体]积累,进而导致过度的内质网应激和自噬阻断,而过表达[/font][font=&]SIRT5[/font][font=宋体]减弱[/font][font=&]TET[/font][font=宋体]诱导的[/font][font=&]ROS[/font][font=宋体]积累。[/font][font=&][/font][/size] [size=15px][b][font=&][color=#0070c0]1[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]TET[/color][/font][font=宋体][color=#0070c0]抑制黑色素瘤细胞的增殖和活力[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体]作者首先使用多种黑色素瘤细胞系评估了[/font][font=&]TET [/font][font=宋体]的抗黑色素瘤作用,发现[/font][font=&]TET[/font][font=宋体]对黑色素瘤细胞具有显著的抗增殖、周期阻滞、促凋亡作用 [/font][/size] [size=15px][b][font=&][color=#0070c0]2[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]TET[/color][/font][font=宋体][color=#0070c0]通过诱导细胞骨架解聚诱导阻断的自噬通量[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=&]TET[/font][font=宋体]处理后,在细胞内观察到可辨别的不规则液泡,表明其可能具有诱导细胞自噬的潜力。进一步免疫荧光和[/font][font=&]WB[/font][font=宋体]验证发现[/font][font=&]TET[/font][font=宋体]处理后,自噬通量受损。考虑到到微管和微丝系统在协调自噬体与溶酶体的形成、运输和融合中的关键作用,作者研究了[/font][font=&]TET[/font][font=宋体]是否扰乱了它们的正常结构。结果表明,[/font][font=&] TET[/font][font=宋体]破坏了它们在黑色素瘤细胞内的结构完整性。这些发现表明[/font][font=&]TET[/font][font=宋体]诱导的细胞骨架解聚有助于阻断自噬通量 [/font][/size] [size=15px][b][font=&][color=#0070c0]3[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]TET[/color][/font][font=宋体][color=#0070c0]通过触发[/color][/font][font=&][color=#0070c0]ER[/color][/font][font=宋体][color=#0070c0]应激诱导自噬[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体]基于[/font][font=&]RNA-seq[/font][font=宋体]信号通路富集分析,作者发现[/font][font=&]TET[/font][font=宋体]促进了未折叠蛋白反应([/font][font=&]UPR[/font][font=宋体])。鉴于在大量文献中已经确定了自噬与内质网应激之间的关联,作者验证发现[/font][font=&]ATF6[/font][font=宋体]介导的[/font][font=&]ER[/font][font=宋体]应激激活了[/font][font=&]TET[/font][font=宋体]处理的黑色素瘤细胞的自噬 [/font][/size] [size=15px][b][font=&][color=#0070c0]4[/color][/font][font=宋体][color=#0070c0]、[/color][/font][/b][/size][size=15px][b][font=&][color=#0070c0]TET[/color][/font][/b][/size][size=15px][b][font=宋体][color=#0070c0]导致大量[/color][/font][font=&][color=#0070c0]ROS[/color][/font][font=宋体][color=#0070c0]积累[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=&]RNA-seq [/font][font=宋体]结果中[/font][font=&]ROS[/font][font=宋体]响应途径显著富集,为了揭示[/font][font=&]TET[/font][font=宋体]诱导的[/font][font=&]ER[/font][font=宋体]应激和随之而来的自噬阻断的机制,作者研究了其对[/font][font=&]ROS[/font][font=宋体]的影响,发现[/font][font=&]TET [/font][font=宋体]治疗后线粒体自噬的激活,[/font][font=&]ROS[/font][font=宋体]信号激增。且伴随着[/font][font=&] ROS [/font][font=宋体]水平的激增,[/font][font=&]TET[/font][font=宋体]诱导的细胞死亡、细胞增殖和细胞骨架解聚的抑制以及自噬通量的阻断,都通过用[/font][font=&]ROS[/font][font=宋体]清除剂[/font][font=&]NAC[/font][font=宋体]得到有效挽救[/font][font=宋体] [/font][/size] [size=15px][b][font=&][color=#0070c0]5[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]SIRT5 [/color][/font][font=宋体][color=#0070c0]被确定为[/color][/font][font=&][color=#0070c0]TET[/color][/font][font=宋体][color=#0070c0]的直接靶标[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体]接着作者采用[/font][font=&]Pulldown+MS[/font][font=宋体]方法确定了[/font][font=&]TET[/font][font=宋体]的直接靶点,通过整合蛋白质亚细胞定位(线粒体)和[/font][font=&]GO[/font][font=宋体]富集分析,[/font][font=&]SIRT5[/font][font=宋体]成为潜在靶标。进一步作者通过竞争性结合实验、[/font][font=&]CETSA[/font][font=宋体]、[/font][font=&]ITC[/font][font=宋体]实验证实[/font][font=&]SIRT5[/font][font=宋体]与[/font][font=&] TET[/font][font=宋体]的直接结合,分子动力学模拟[/font][font=&]1[/font][font=宋体]揭示了[/font][font=&]SIRT5 [/font][font=宋体]和[/font][font=&] TET [/font][font=宋体]之间的结合模式。此外,作者发现[/font][font=&]SIRT5 [/font][font=宋体]在黑色素瘤组织中表现出表达增加,与患者预后不良相关,且[/font][font=&]TET [/font][font=宋体]通过泛素蛋白酶体系统下调了黑色素瘤细胞中[/font][font=&]SIRT5[/font][font=宋体]的表达。 [/font][/size] [size=15px][b][font=&][color=#0070c0]6[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]TET [/color][/font][font=宋体][color=#0070c0]以[/color][/font][font=&][color=#0070c0] SIRT5 [/color][/font][font=宋体][color=#0070c0]依赖性方式阻碍体内黑色素瘤的生长[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体]为了验证[/font][font=&] SIRT5 [/font][font=宋体]在[/font][font=&] TET [/font][font=宋体]诱导的黑色素瘤细胞死亡中的作用,作者构建了[/font][font=&] SIRT5 [/font][font=宋体]敲低和过表达细胞,发现[/font][font=&]SIRT5[/font][font=宋体]过表达逆转了[/font][font=&]TET[/font][font=宋体]诱导的黑色素瘤细胞线粒体损伤。最后通过动物模型发现,[/font][font=&]TET[/font][font=宋体]治疗抑制了肿瘤体积和重量,并抑制了[/font][font=&]SIRT5[/font][font=宋体]水平,而在黑色素瘤细胞中过表达[/font][font=&]SIRT5 [/font][font=宋体]后[/font][font=&]TET [/font][font=宋体]未能抑制增殖和致瘤能力[/font][font=宋体] [/font][/size] [size=15px][b][font=宋体][color=#0070c0]总结[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体]研究表明[/font][font=&]TET[/font][font=宋体]有效地靶向[/font][font=&]SIRT5[/font][font=宋体],诱导[/font][font=&]SIRT5[/font][font=宋体]蛋白降解,进而导致线粒体功能障碍,表现为线粒体肿胀、线粒体自噬和[/font][font=&]ROS[/font][font=宋体]生成。研究表明[/font][font=&]TET [/font][font=宋体]是一种很有前途的治疗黑色素瘤的治疗剂[/font][/size]

  • 美研究发现姜黄素可阻止病毒在细胞中复制

    美国乔治梅森大学研究人员最近发现,最为流行的香料姜黄不只是充满气味,而且它还有望抵抗破坏性的病毒。相关研究论文发表在《生物化学杂志》上。论文第一作者、乔治梅森大学国家生物防御与传染病中心研究助理教授阿瑟·纳拉亚南说,在姜黄中发现的姜黄素阻止潜在致命性的裂谷热病毒(Rift Valley Fever virus, RVFV)在被它感染的细胞中增殖。蚊子传播的裂谷热病毒(RVFV)是一种急性的导致发热的病毒,能够影响诸如牛、绵羊和山羊之类家畜和人。究其本质而言,姜黄素是一种广谱的阻止一系列病毒感染健康细胞的抑制剂。但是在这篇论文中,研究人员证实姜黄素可能干扰RVFV操纵人细胞从而阻止细胞对感染作出反应。他们发现姜黄素不仅在体外细胞培养物中显著性地抑制RVFV复制,而且也在小鼠模式动物中证实它能够有效地对抗RVFV感染。纳拉亚南正在将这种知识运用到对抗布尼亚病毒、委内瑞拉马脑炎病毒和包括HIV在内的逆转录病毒中。

  • 【原创】宿主细胞DNA残留问题

    现在国家药典对宿主细胞DNA残留要求 要小于100P克,儿童用疫苗更是要求严格限制在几十P克。现在国内对宿主细胞DNA残留去除技术似乎成为一个企业存亡的关键点啦。很多企业用凝胶4FF或者6FF柱子 ,单是都不能达到药典要求。个人认为:先通过离子交换柱,然后再通过凝胶柱可以去除大部分宿主细胞DNA。请从事这方面的同行讨论一下。

  • 细胞色素c

    这个蛋白质在国内外已经研究的非常详细了,可是我查到的蛋白质结构却很多种,我想这个东西是不是只应该有一种结构呢?这种图形结构应该是什么样子呢?请大家赐教,先谢了[em61]

  • 【资料】解廷《细胞》子刊解析干细胞重要发现

    来自著名的美国密苏里州斯托瓦斯医学研究所(Stowers Institute for Medical Research),中科院生物物理研究所传染病与免疫学中心,堪萨斯大学医学院,中西大学(Midwestern University)的研究人员揭示了干细胞衰老的奥秘,这一发表在昨天刚刚出版的《Cell Stem Cell》杂志上的文章由中科院海外评审专家解廷(斯托瓦斯医学研究所)领导完成,第一作者是斯托瓦斯医学研究所与中科院生物物理研究所联合培养的博士生潘磊(Lei Pan,音译)。目前普遍认为人类组织衰老与干细胞活性下降和数目减少有关,这些变化在许多譬如皮肤皱纹和器官功能下降等的衰老表现中起着重要的作用。至今为止对于干细胞衰老调控的理解还比较少,但是解廷实验室已经证明了干细胞功能中年龄依赖性得下降有关的特殊因素,以及这些因素的微环境:niche。潘表示,“在这项研究中,我们利用果蝇卵巢生殖干细胞(germline stem cells,GSCs)作为研究模型,证明干细胞功能中年龄依赖性的下降和其niche在干细胞整个衰老过程中扮演着十分重要的角色”,“我们检测了干细胞衰老调控的三个因素,发现并证明衰老过程是受到外在和内在因素调控的”。研究小组首先聚焦在一个称为骨形态发生蛋白(bone morphogenic protein, BMP)的蛋白家族——其在许多组织的发育过程中扮演着重要的角色,他们发现当niche微环境的BMP信号活性随着年龄下降的时候,干细胞增值的能力也会随之降低,干细胞数量也减少了。相反当BMP信号增加,干细胞的寿命以及增值能力也都有所提升。其次研究人员也发现干细胞与niche之间的关联也起到一定作用:强的关联可以延长干细胞的寿命,而降低关联则会增加干细胞衰老。这篇研究报告最后强调了GSCs或者niche中的一个酶(减少自由氧)的过量表达如何延长干细胞的寿命,以及增加干细胞增值的能力。解廷认为,“对成人组织中由于干细胞功能下降导致细胞损耗的长期无效替换也许是人类衰老的一个主要原因”,“如果我们能了解如何通过操纵干细胞和/或niche的功能,来减缓干细胞衰老,我们也许就能够减缓人类衰老,治疗年龄相关性的推行性疾病”。

  • 比较不同细胞冻存方案:厂家差异及其对细胞质量的影响

    细胞冻存是长期保存、运输和共享生物材料的重要手段,对于各种生物医学研究领域具有重要的作用。然而,不同的细胞冻存方法可能会影响细胞的质量和存活率。本文将探讨不同厂家提供的细胞冻存方法,并分析它们对细胞质量的影响。  厂家差异及其对细胞质量的影响  目前,市面上有许多细胞冻存试剂盒供应商,其中一些主要的厂家包括Thermo Fisher Scientific、Sigma-Aldrich、Qiagen和Promega等。这些厂家提供的细胞冻存试剂盒都有其独特的优点和缺点。  以细胞存活率为例,Thermo Fisher Scientific公司提供的CryoStor冻存剂的细胞存活率达到了98.5%,而Sigma-Aldrich公司提供的CryoSure-DMSO冻存剂的细胞存活率仅为85%。这表明,不同厂家提供的细胞冻存试剂盒对细胞存活率的影响存在差异。  此外,不同的冻存方法也可能影响细胞的质量。例如,在使用Thermo Fisher Scientific公司的CryoStor 冻存剂时,冷冻速率、先冷冻后复温的步骤和使用的液氮均对细胞的冻存质量产生影响。另外,Sigma-Aldrich公司的CryoSure-DMSO冻存剂需要在冷冻过程中将细胞悬浮于冻存剂中,并使用20%的DMSO作为保护剂,以确保细胞质量。  因此,选择细胞冻存试剂盒时,需要注意不同厂家提供的细胞冻存试剂盒的差异,以及冷冻的方法是否适合特定类型的细胞。 关注:[url=http://www.yedanguan365.com/]液氮罐[/url] [url=http://www.mvecryoge.com/]金凤液氮罐[/url] [url=http://www.mvecryo.com/]mve液氮罐[/url]

  • 维生素C可以杀死一类顽固癌细胞

    有研究说足够浓度的维生素C可以杀死一类顽固癌细胞,对治疗胰腺癌、结肠癌和卵巢癌有疗效。所以多吃富含维生素C的蔬菜对健康很有帮助。

  • 细胞自噬 细胞自噬

    细胞自噬是机体一种重要的防御和保护机制。但是这种自噬“信号”如何传递给细胞从而使其“执行”自噬过程,则一直是科学界的难题。近期,我校生命科学学院林圣彩教授课题组成功找到高等动物细胞在生长因子缺失条件下,启动自噬的部分“密码”,从而在细胞自噬机制研究方面取得重大突破。  4月27日,最新一期的美国《科学》杂志以研究文章的形式刊发了这项研究成果,并配发专门评述。这也是近三年来,我校生命科学学院第二篇发表在这一世界顶级学术刊物上的论文。2009年6月,该院韩家淮教授的一篇有关细胞选择死亡方式机制的研究文章曾“登上”该杂志。  所谓自噬,是指细胞消化自身蛋白质或细胞内的结构(细胞器)的一种自食现象。通过这种现象,细胞可以降解、消除和消化受损、变性、衰老和失去功能的细胞器和变性蛋白质等生物大分子,为细胞的生存和修复提供必须的能量。  科学家们认为,自噬与细胞凋亡、细胞衰老一样,是一种十分重要的生物学现象。有关实验表明,包括肥胖症、糖尿病、神经退行性疾病、免疫失调及癌症在内的人类许多重大疾病的发生都与该过程的异常有关。为此,自噬也是当前生命科学中最热门的研究领域之一。  据林圣彩介绍,对自噬进行分子机制的研究始于上世纪90年代的以单细胞生物酿酒酵母为模型的研究,目前,一系列构成单细胞生物自噬核心机器的基因已被发现并命名。  然而,对自噬在多细胞生物特别是哺乳动物中的调控机制的研究,科学界至今仍在不断探索中。摆在科学家面前的一个根源性的问题是:在多细胞生物中,诱导自噬的各种信号是如何被传递到细胞内自噬“核心机器”从而启动自噬过程的?  研究表明,与单细胞生物不同,在多细胞生物内,外界营养元素要依赖于生长因子的调控才能被转运到细胞内。一旦细胞外的生长因子匮乏,细胞便能启动自噬以维持能量平衡。那么,生长因子缺失这一信号又是如何“传达”的呢?  这也成为长期致力于细胞信号转导研究的林圣彩教授课题组近年来的研究目标之一。经过多年研究,课题组终于成功“**”这一自噬启动“密码”——即通过一种名为GSK3的激酶活性增高后磷酸化并随之激活乙酰转移酶TIP60,进而导致自噬核心机器中的蛋白激酶ULK1的乙酰化水平增强而启动细胞自噬。简言之,这一发现揭示了多细胞生物在生长因子缺失条件下的细胞自噬过程的新的介导分子及其通路。  林圣彩认为,弄清楚了细胞内到底有哪些蛋白分子“参与”了自噬和它们如何串联在一起,将有益于科学界从“源头”上认识相关疾病,并为这些疾病的诊断和治疗提供新的靶点。

  • 【转帖】科学家揭秘病毒如何感染宿主细胞

    据美国物理学家组织网报道,研究人员发现,在酸度出现变化的环境下,蛋白分子的结构将在原子水平上发生改变,引发病毒入侵并与宿主细胞发生融合。美国普渡大学和巴斯德研究所的研究小组分别研究了酸性环境和中性环境中的蛋白结构。结合两个小组的研究成果,能够说明病毒在进入宿主细胞并准备与之融合时蛋白质结构所发生的变化,而这恰恰是病毒感染的关键步骤。研究人员借助电子显微镜清楚观测到这种病毒表面蛋白质的3D结构,他们发现,蛋白质E1、E2、p62等在病毒入侵机制中发挥着关键作用。此前研究人员已经知道了包膜蛋白1(E1)的结构,仅知道包膜蛋白2(E2)的一般特征,如它在蛋白质复合体的位置,但还不了解它的结构。普渡大学研究人员现在已确定了E2的结构,以及E1、E2蛋白质复合体在原子水平上的精确结构。他们已经了解了E2的三种结构域,以及在酸性环境中,E2如何与细胞膜融合。E2是一种受体结合蛋白,病毒可附着其上进入宿主细胞。病毒在宿主细胞的酸性环境中引发蛋白复合物结构发生变化,从而可使病毒与细胞膜融合,形成一个“融合孔”,病毒可通过“融合孔”将遗传物质转移到宿主细胞,宿主细胞在感染病毒后会产生新的病毒粒子。普渡大学著名生物科学教授迈克尔·罗斯曼认为,这一发现具有里程碑意义,有助于人们掌握病毒如何感染人类和其他生物的相关知识,也有助于人们生产更好的疫苗和抗病毒药物。

  • 【“仪”起享奥运】红曲红色素在产品中的应用

    [align=center][font=Arial, 宋体, sans-serif][size=16px][/size][/font][/align][align=center][b][font=Arial, 宋体, sans-serif][size=16px][/size][/font][/b][/align][b][font=Arial, 宋体, sans-serif][size=16px]在肉制品中的应用[/size][/font][/b][font=Arial, 宋体, sans-serif][size=16px]发酵香肠是通过接种乳酸菌进行发酵而制成的肉制品,在传统加工方法中,加入亚硝酸盐[i][/i]发色,但考虑到亚硝酸盐的潜在危害,有研究人员改用红曲色素作发酵香肠的发色剂[i][/i],结果显示:以1600ppm红曲色素为着色剂制作的发酵香肠颜色接近于150ppm亚硝酸钠为发色剂制作的发酵香肠;以红曲色素制作的发酵香肠在4℃条件下贮存,一个月内不变色。虽然用量较亚硝酸钠多,但安全性高。[/size][/font][font=Arial, 宋体, sans-serif][size=16px][/size][/font][font=Arial, 宋体, sans-serif][size=16px]同时采用1600mg/kg红曲色素与乳酸链球菌[i][/i]或山梨酸钾混合,发现对肉毒梭状芽孢杆菌有明显“毒害”作用,使营养细胞破裂。也就是说,利用红曲色素做发色剂,可代替部分亚硝酸盐的用量,还能抑制肉毒梭菌芽孢杆菌。[/size][/font][font=Arial, 宋体, sans-serif][size=16px][/size][/font][b][font=Arial, 宋体, sans-serif][size=16px]在豆腐乳中的应用[/size][/font][/b][font=Arial, 宋体, sans-serif][size=16px]豆腐乳是我国传统的发酵食品,豆腐经发酵后,蛋白质水解成多种氨基酸以及醇类、酯类、有机酸、芳香呈味物质,形成豆腐乳特有的色香味风格,且营养丰富,以吸收。[/size][/font][font=Arial, 宋体, sans-serif][size=16px][/size][/font][font=Arial, 宋体, sans-serif][size=16px]红腐乳利用红曲色素使产品表面形成诱人的红色,内部形成多种香气和香味成分。其制作工艺如下:[/size][/font][font=Arial, 宋体, sans-serif][size=16px][/size][/font][font=Arial, 宋体, sans-serif][size=16px]大豆→水浸泡→磨浆→滤浆→煮浆→点浆(加凝结剂)→养花→压榨→划块→腐乳坯→接种(毛霉或根霉)培菌→腌坯(加食盐)→装坛【加配料(黄酒或米酒+面曲+红曲红粉+调味剂)】→成熟→成品[/size][/font][font=Arial, 宋体, sans-serif][size=16px][/size][/font][b][font=Arial, 宋体, sans-serif][size=16px]在酱油中的应用[/size][/font][/b][font=Arial, 宋体, sans-serif][size=16px]将红曲色素粉直接加到酱醅中发酵,可提高酱油呈现的红色指数,并改善酱油的风味。[/size][/font][font=Arial, 宋体, sans-serif][size=16px][/size][/font][b][font=Arial, 宋体, sans-serif][size=16px]在糕点中的应用[/size][/font][/b][font=Arial, 宋体, sans-serif][size=16px]在糕点生产中,添加红曲水浸提液时,其添加量的不同对红曲面包的香、味及口感影响不是很大,仅仅是随添加量的增加,其颜色有所加深变红。与直接添加红曲粉相比,各方面均有较大改观,尤其在香味方面,与不加红曲提取液制成的糕点相比,更加清新独特。[/size][/font]

  • Science:三类抗生素潜在杀伤力可损伤细胞DNA

    4月20日,国际著名杂志《科学》Science上刊登了来自麻省理工学院和波士顿大学的研究人员的最新研究成果“Oxidation of the Guanine Nucleotide Pool Underlies Cell Death by Bactericidal Antibiotics,”,文章中,研究者揭开了三类主要的抗生素潜在的杀伤机制:药物生成了一些破坏性分子,通过一连串细胞事件对细胞DNA造成了致命性的损伤。青霉素和其他抗生素的出现使医药发生了革命性的改变,将曾经是致死性的疾病转变为了容易治愈的疾病。然而,尽管抗生素在临床上应用已有70多年,其杀死细菌的确切机制却仍是一个待解之谜。研究人员表示详细了解这一机制可以帮助科学家们改进现有的药物。在过去40年只有少数的新抗生素被开发出来,而大量的细菌株却对当前可用的药物产生耐受。波士顿大学生物医药工程学教授James Collins说:“这有可能提高我们当前‘武器库’的杀伤效应,减少所需剂量,或使细菌株对现有的抗生素重新敏感。破坏性的自由基2007年,Collins证明三类主要的抗生素——喹诺酮类、β-内酰胺类和氨基糖苷类——可通过生成高度破坏性的分子羟基自由基(hydroxyl radicals)来杀伤细菌细胞。当时,他和其他的研究人员就猜测自由基对它们遭遇的所有细胞成分发动了全面的攻击。麻省理工学院生物学教授Graham Walker 说:“它们几乎对一切都产生反应。它们会追击脂质、它们能氧化蛋白,它们能氧化DNA。”然而在新研究中,研究人员发现这种损伤大部分并非是致命性的,研究人员证明能对细菌造成致死性损伤的是羟基诱导的鸟嘌呤损伤,鸟嘌呤(G)是组成DNA的四个基本核苷酸碱基之一。当这种损伤的鸟嘌呤插入到DNA中时,细菌会致力修复这种损伤,但最终加速了自身的死亡。“这并非是导致所有杀伤效应的原因,但事实它却占据了相当重要的比重,”Walker说。最初,Walker对于DNA修复酶的研究令到研究人员怀疑这种氧化鸟嘌呤有可能在抗生素介导的细胞死亡中发挥了作用。在第一个研究阶段,他们发现了一种特异的DNA聚合酶DinB非常善于利用氧化鸟嘌呤元件来合成DNA。然而,DinB不仅在DNA复制过程中将氧化鸟嘌呤插入到了其正确碱基对胞嘧啶(C)的对面,还将其插入到了腺嘌呤(A)的对面。研究人员发现当太多氧化鸟嘌呤被掺入到新的DNA链中时,细胞将无法成功去除这些损害,因此导致了死亡。基于这些基础的DNA修复研究,Walker和他的同事们于是猜测抗生素生成的羟基自由基是否有可能引发了相同的一连串的DNA损伤。事实证明果然如此。一旦抗生素处理导致的氧化鸟嘌呤插入到DNA中,一个旨在修复DNA的细胞系统就会采取行动。一些称之为MutY 和 MutM的特异性酶通过剪断DNA来启动胞修复过程,正常情况下这一修复机制可以帮助细胞应对DNA中存在的氧化鸟嘌呤。 然而这种修复也是具有高风险的,因为它需要打开DNA双螺旋,在错误碱基被替换时切断DNA链。如果两种这样的修复在DNA反向链附近的位置同时发生,那么DNA就会发生双链断裂,这通常对细胞具有致命效应。“原本应该保护你,确保准确性的系统变成了刽子手。”Walker说。哈佛医学院微生物和免疫生物学教授Deborah Hung说:“新研究代表随着我们重新了解抗生素的作用机制会开启下一个重要的篇章。我们过去思考我们所知的,现在我们意识到所有的简单假设都是错误的,它其实更为的复杂。”

  • 重组细胞因子分类及应用概述

    一、细胞因子的概念细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有 非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢 等。二、细胞因子的命名细胞因子按其来源可分为:由单个核吞噬细胞产生的细胞因子称为单核因子(monokine);由淋巴细胞产生的细胞因子称为淋巴因子 (lymphokine)等。按其作用可分为干扰素、集落刺激因子、肿瘤坏死因子、生长因子和趋化因子等。部分由不同细胞分泌的细胞因子,其基因及编码蛋 白与结构清楚者,在免疫调节、造血和炎症中发挥重要作用,又称为白细胞介素(interleukin,IL)。也可以依据结构或者其受体结构分类,我们的 趋化因子目前没有受体产品。三、细胞因子的特征1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。四、细胞因子的分类1、白细胞介素(interleukin,IL-s)最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。2、干扰素(interferon,IFN)最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。3、肿瘤坏死因子超家族(tumor necrosis factor,TNF)1975年发现的一种能使肿瘤发生出血坏死的物质。4、集落刺激因子(colony-stimulating factor,CSF)指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、 GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素 (TPO)等。5、趋化因子(chemokine)主要功能是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入特定的淋巴器官和组织以及感染发生的部位。根据趋化因子近N端半胱氨酸(Cys)的位置、排列方式和数量,可分为CC、CXC、C、CX3C四个亚家族。6生长因子(growth factor,GF)生长因子(GF)是具有刺激细胞生长作用的细胞因子。五、细胞因子的生物学活性1.介导自然免疫、参与抗肿瘤和抗感染2.调节T、B细胞活化、生长和分化,介导细胞免疫和体液免疫3.刺激造血生成、刺激骨髓祖细胞生长和分化为各种成熟血细胞4.在炎症、感染和内毒素血症中的作用5.在超敏反应和自身免疫病中的作用6.细胞因子通过激活其相应受体(CKR),导致细胞的增殖与分化或分泌某种蛋白质。六、四种蛋白表达体系比较表达细胞优点缺点原核E. coli繁殖快、成本低、产量高遗传背景及基因表达调控机制清楚易于大规模培养,成本低廉蛋白常为包涵体,纯化困难无糖基化(分泌蛋白,细胞膜上蛋白不可用),生物活性不定无翻译后修饰,内毒素含量高酵母Pichia使用简单,表达量高,His-tag便于纯化,一定的翻译后加工可进行糖基化修饰,操作简单,适合大规模生产可诱导表达,也可分泌表达,产物便于纯化有时会出现蛋白切割问题糖基化不能满足要求昆虫High-5产量高 ,翻译后加工与哺乳动物相似对于部分有毒性或较难表达蛋白有优势无内毒素污染蛋白活性不如哺乳动物适合表达激酶等定位于细胞内的真核蛋白哺乳CHO HEK293完善的翻译后加工,活性接近天然蛋白周期长、技术要求高表达产量低

  • 流式细胞仪检测细胞增殖方法有哪些?

    [font=宋体][font=宋体]在生物学和医学研究中,细胞增殖是一个关键过程,对于理解生命活动的基本规律以及疾病的发病机理具有重要意义。随着科技的发展,流式细胞仪作为一种高效、灵敏的分析工具,广泛应用于细胞增殖的检测。流式细胞仪通过快速分析单个细胞,可以对细胞周期、细胞增殖活性、细胞凋亡等多个方面进行研究。本文将探讨流式细胞仪在检测细胞增殖方面的主要方法,包括但不限于溴脱氧尿苷([/font][font=Calibri]BrdU[/font][font=宋体])掺入法、细胞周期蛋白检测法以及细胞大小分析法等,以期为读者提供全面的技术应用概览。流式细胞仪检测细胞增殖方法:[/font][/font][b][font=宋体][font=Calibri]1[/font][font=宋体]、[/font][font=Calibri]3H[/font][font=宋体](氚离子)掺入法[/font][/font][/b][font=宋体][font=宋体]原理:是在细胞[/font][font=Calibri]DNA[/font][font=宋体]合成时,用[/font][font=Calibri]3H[/font][font=宋体]脱氧胸腺嘧啶核苷代替普通的脱氧胸腺嘧啶核苷掺入新合成的[/font][font=Calibri]DNA[/font][font=宋体]中,增殖的细胞因为掺入[/font][font=Calibri]3H[/font][font=宋体]而具有放射性,通过定量检测样品细胞的放射性大小而反映细胞的增值活性[/font][/font][font=宋体][font=宋体]缺点:[/font][font=Calibri]1[/font][font=宋体])使用的是具有放射性的同位素,操作较为复杂,同时需要采取放射性保护措施 [/font][font=Calibri]2[/font][font=宋体])低比例高活跃增殖和高比例低活跃增殖可能得到的是相同的结果,用此方法无法进行鉴别 [/font][font=Calibri]3[/font][font=宋体])此方法无法进一步得到具有活性的增值细胞用于下一步的研究 [/font][font=Calibri]4[/font][font=宋体]) 此方法时间较短,无法检测加入前细胞的增殖情况,而且检测到放射性只能说明细胞[/font][font=Calibri]DNA[/font][font=宋体]合成,而不能提供合成[/font][font=Calibri]DNA[/font][font=宋体]的细胞是否进入增殖阶段的信息[/font][/font][b][font=宋体][font=Calibri]2[/font][font=宋体]、相对计数法[/font][/font][/b][font=宋体]原理:将对照组和各实验组控制在相同条件下直接计数然后比较计数结果得到增殖结论[/font][font=宋体]注意点:[/font][font=宋体][font=宋体]对照组与实验组每种细胞所加浓度必须相同,每组至少设置[/font][font=Calibri]3[/font][font=宋体]个复孔,这样每个孔可以得到[/font][font=Calibri]1[/font][font=宋体]个细胞数,将[/font][font=Calibri]3[/font][font=宋体]个复孔取平均值后就是这个组的结果。如果同时需要得到每孔目标细胞增殖后的绝对参数,在每孔细胞中加入[/font][font=Calibri]1*105PE[/font][font=宋体]标记的人工微球作为内参[/font][/font][font=宋体] [/font][font=宋体][font=宋体]收集各组的细胞于[/font][font=Calibri]EP[/font][font=宋体]管中,注意必须尽量将各组的所有细胞都收集起来。标记需要计数细胞的标志表型的荧光素偶联抗体,[/font][font=Calibri]4[/font][font=宋体]℃静置[/font][font=Calibri]30min[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]PBS[/font][font=宋体]洗涤一次,洗去游离的抗体[/font][/font][b][font=宋体][font=Calibri]3[/font][font=宋体]、示踪染料标记法[/font][/font][/b][font=宋体][font=宋体]示踪染料与细胞结合的方式:[/font][font=Calibri]1[/font][font=宋体])能够与细胞内的蛋白质上的氨基发生非特异性的共价结合 [/font][font=Calibri]2[/font][font=宋体])能够非特异性地嵌入细胞膜的脂质双分子层中与细胞发生非共价性结合[/font][/font][font=宋体] [/font][font=宋体][font=宋体]原理:示踪染料的荧光信号都很强,当细胞分裂时,母细胞内的染料会被平均分配到子细胞中,细胞荧光信号会被减弱一半,所以通过检测减弱的、发射示踪染料荧光信号的细胞比例就可以判断细胞增殖的强弱。当荧光强度减弱到标记时的[/font][font=Calibri]1/2[/font][font=宋体]以及以下的细胞都是增殖后的细胞,这些细胞所占比例越高则代表细胞增殖越活跃[/font][/font][font=宋体] [/font][font=宋体]标记方法:[/font][font=宋体][font=宋体]①纯化增殖反应的目标细胞,将细胞的浓度调整为[/font][font=Calibri]1*106/ml[/font][font=宋体],加入[/font][font=Calibri]CFSE[/font][font=宋体],其标记浓度为[/font][font=Calibri]5[/font][font=宋体]微摩尔[/font][font=Calibri]/[/font][font=宋体]升。置于[/font][font=Calibri]37[/font][font=宋体]℃水浴中标记[/font][font=Calibri]15min[/font][font=宋体],在标记过程中每隔一段时间混匀细胞一次[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②加入预冷、含有血清的培养基终止标记,在[/font][font=Calibri]4[/font][font=宋体]℃冰箱中静置[/font][font=Calibri]5min[/font][font=宋体],离心沉淀[/font][/font][font=宋体] [/font][font=宋体][font=宋体]③用培养基再洗涤一次,尽量洗净未结合的游离的[/font][font=Calibri]CFSE[/font][font=宋体],然后将目标细胞静置在增殖体系中[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]4[/font][font=宋体]、[/font][font=Calibri]BrdU[/font][font=宋体]和[/font][font=Calibri]EdU[/font][font=宋体]掺入法[/font][/font][/b][font=宋体][font=Calibri]BrdU[/font][font=宋体]:[/font][font=Calibri]5-[/font][font=宋体]溴脱氧尿嘧啶核苷是胸腺嘧啶核苷的类似物,其特点是胸腺嘧啶环上[/font][font=Calibri]5[/font][font=宋体]位[/font][font=Calibri]C[/font][font=宋体]连接的甲基被溴取代,在细胞增殖[/font][font=Calibri]DNA[/font][font=宋体]合成时可以与内源性的胸腺嘧啶核苷竞争掺入到新合成的[/font][font=Calibri]DNA[/font][font=宋体]中,而[/font][font=Calibri]BrdU[/font][font=宋体]抗体可以特异性的识别[/font][font=Calibri]BrdU[/font][font=宋体],不与胸腺嘧啶核苷结合,所以可以用于检测细胞增殖[/font][/font][font=宋体][font=宋体]适用范围:适用于体内检测目标细胞的增殖,一般将[/font][font=Calibri]BrdU[/font][font=宋体]掺入小鼠的应用水中或经腹腔注射,经过一段时间后,取出目标细胞制成单细胞悬液然后用多聚甲醛固定细胞,后用打孔剂皂苷在细胞膜上打孔,最后标记荧光素偶联抗[/font][font=Calibri]BrdU[/font][font=宋体]抗体,目标细胞的[/font][font=Calibri]BrdU[/font][font=宋体]阳性细胞就是增殖的细胞,阳性比例越高,增殖越活跃。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]5[/font][font=宋体]、其他方法[/font][/font][/b][font=宋体][font=宋体]细胞周期法检测细胞增殖:流式细胞术能够检测细胞内[/font][font=Calibri]DNA[/font][font=宋体]的含量,所以可以检测细胞周期。处于[/font][font=Calibri]S[/font][font=宋体]期的细胞,[/font][font=Calibri]DNA[/font][font=宋体]的量处于二倍体和四倍体之间[/font][font=Calibri] [/font][font=宋体]处于[/font][font=Calibri]G2/M[/font][font=宋体]期时,[/font][font=Calibri]DNA[/font][font=宋体]量为四倍体。处于[/font][font=Calibri]S[/font][font=宋体]期和[/font][font=Calibri]G2/M[/font][font=宋体]期的细胞比例越高说明细胞增殖越活跃[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]PCNA[/font][font=宋体]检测细胞增殖:[/font][font=Calibri]PCNA[/font][font=宋体](增殖细胞核抗原),在细胞核合成且只存在于细胞核内,是[/font][font=Calibri]DNA[/font][font=宋体]聚合酶的辅助蛋白,所以与细胞[/font][font=Calibri]DNA[/font][font=宋体]的合成关系密切,是反映细胞增殖状态的良好指标[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Ki-67[/font][font=宋体]检测细胞增殖:是一种与细胞增殖特异相关的核抗原[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]CD71[/font][font=宋体]检测细胞增殖:是转铁蛋白受体,表达于细胞的表面,该受体广泛表达于各种恶性肿瘤细胞表面,正常细胞表达较少,与肿瘤细胞的增殖密切相关[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测技术服务[/b][/url],更多关于流式细胞仪检测细胞增殖详情欢迎咨询,详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    维权声明:本文为gl19860312原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。 本实验室主要工作就是:微生物发酵与代谢调控 、蛋白的分离纯化 、生物材料的研发与生产( 化妆品 、面膜、人工血管 、人工骨................)http://ng1.17img.cn/bbsfiles/images/2010/12/201012061858_264950_2019107_3.jpg啤酒酵母细胞自溶技术破壁研究摘要:研究了PH、温度、食盐浓度三个因素对啤酒酵母细胞破壁的影响,确定出最佳的自溶法破壁条件 。进而为分离啤酒废酵母中的有效活性成分奠定了基础。关键词:啤酒酵母;破壁;自溶The Research of Autolysis on the Beer Yeast Cells wallAbstract:This paper researched the condition of autolysis on the waste yeast cells wall with three factors (pH 、Temperature 、Salt density) and determined the best condition based on autolysis. And build basis for separating the activity forms from beer waste yeasts.Key words: The beer yeast; Breaking Cells wall; Autolysis引言啤酒酵母(S.csrsviside)属于真菌门酵母属,多数为单细胞微生物,细胞呈圆形或卵圆形,革兰氏染色呈阳性G+。啤酒酵母细胞是由细胞壁、细胞膜、液泡、颗粒和线粒体等部分组成,细胞年幼的时候细胞壁很薄,所以不明显;细胞年老时,细胞壁较厚。啤酒酵母细胞内不但含有丰富的蛋白质、维生素、葡聚糖及甘露聚糖等营养及保健成分,可作为食用单细胞蛋白,此外还含有辅酶I、细胞色素,卵磷脂、RNA,,这些物质或其降解产物及衍生物如氨基酸制剂和核苷酸及核酸制剂等在生物化学、医药及保健食品中最有重要的作用。由于啤酒废酵母价格便宜,因此可利用啤酒废酵母来提取、制备这些物质。啤酒废酵母(waste brewer's yeast)是啤酒生产的副产物,是指啤酒酿造后沉降的酵母泥,主要是由大量的弱细胞和死细胞组成。在啤酒生产过程中,每生产 100吨啤酒大约有1-1.5吨废酵母 (以干重计)产生。传统的处理方法,是弃置不用或作为饲料处理,直接排放到河流湖泊中,将造成环境污染,同时也是对财富的浪费;因其具有坚韧的细胞壁和特有的酵母臭,适口性差,不易消化和吸收,故烘干作为饲料用的经济效益不高。充分利用啤酒废酵母可以有效地减轻污染,实现资源的二次转化,也可产生巨大的经济效益,如开发酵母抽提物。 为了增加酵母抽提物产量国内外同行做出不同努力,开展了有些研究。目前关于啤酒酵母破壁的研究很多,大体可归纳为:化学破壁(酸解、碱解)、物理破壁(液体剪 切、固体剪切等)、生物破壁(酶解、自溶)。其中,化学破壁不仅会造成一些营养成分的破坏,而且为有效成分的提取增加困难;物理破壁虽然方法简单、成本低,能完好保存营养成分,但其破壁效果较差;生物破壁中的酶解法会增加提取成本,故均不能大规模广泛的应用。而采用自溶法进行细胞破壁是一种简便易行的操作过程,通过确定啤酒酵母细胞最适合的自溶条件,可以建立一套利用酵母细胞生产酵母抽提物的工艺和方法,旨在为啤酒酵母的综合利用寻求一种新的方法,为工业化生产提供理论基础和实践指导。1.4实验方法 工艺流程 啤酒废酵母(保藏)—— 活化、两次斜面培养—— 接种、平板划线——摇瓶培养——取对数期的酵母细胞——做稀释梯度——做影响因素(温度、食盐浓度、pH并固定时间60分钟)的实验-——做正交试验——镜检(血球计数法)——计算啤酒酵母细胞的破碎率——得到自溶的最佳工艺参数1.5啤酒废酵母自溶条件的确定酵母自溶的实质是酵母细胞内的蛋白质在自身蛋白酶的作用下,降解为游离的氨基酸,那么,一切影响酶促反应的因素均影响酵母细胞的自溶,如自溶温度、食盐浓度、pH值、自溶时间等。自溶法是以存在酶活性的新鲜活酵母为原料,利用酵母细胞本身的酶系,在一定条件下,将酵母体内的糖类物质、蛋白质和核酸分解为还原糖、氨基酸、肤类、核昔酸等小分子物质并从酵母细胞内抽提出来的一种方法。利用自溶法生产的酵母抽提物,蛋白质分解率高,游离氨基酸含量高,风味好,成本较低,但呈味核昔酸含量低.目前,欧美及我国所生产的酵母抽提物绝大部分都是采用这种方法。[font=仿宋_GB2

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制