当前位置: 仪器信息网 > 行业主题 > >

荧光素钠

仪器信息网荧光素钠专题为您提供2024年最新荧光素钠价格报价、厂家品牌的相关信息, 包括荧光素钠参数、型号等,不管是国产,还是进口品牌的荧光素钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荧光素钠相关的耗材配件、试剂标物,还有荧光素钠相关的最新资讯、资料,以及荧光素钠相关的解决方案。

荧光素钠相关的仪器

  • 仪器简介:特纳 现场荧光测定仪 10-AU是一款坚固耐用的现场便携式仪器,可进行连续流动监测和离散样品分析。防水机箱、内置数据记录、自动范围设定、快速替换光学滤片和超强的稳定性使10-AU成为现场监测仪器的首选,通过使用特定的光学滤片可测定多种化合物组分。应用包括:海洋研究叶绿素分析湖泊水库,叶绿素a监测。荧光示踪原油泄漏应急检测技术参数:灵敏度:10 ppt (若丹明WT);0.025 ug/L(萃取叶绿素a);10 ppb(原油)。 双束光:对灯强度和光电倍增管的漂移进行补偿。防水滤片室:易于取出光学滤片,使更换激发和发射滤片快速方便。 自动范围:根据浓度水平,人工或自动选择浓度范围(用户选择)。 范围:3个量程档,每个档位之间灵敏度相差10倍,0-9999.999荧光信号单位。主要特点:防水光学滤片室:可方便地更换激发和发射滤片,位于仪器的前面板。稳定的测量:特纳 现场荧光测定仪 10-AU使长期监测工作成为可能,即使在外界温度剧烈变化或电源波动情况下。稳定的连续测量可持续数周数月。宽动态范围:测量最多显示4位数量级,在通常最简单的单点校准下,采用自动范围设置,即可自动读出高和低浓度值。自动修正:特纳 现场荧光测定仪 10-AU可对每个样品自动匹配适当的灵敏度范围,无须用户调节,也不会影响校准。多种样品适配器:提供25 mm、10 mm、3 mm和1 mm连续流动式进样系统。离散式样品进样装置包含25 x 150 mm、13 x 100 mm试管,和10 x 10 mm比色皿。防浓缩样品室:独特的密封式样品舱消除了因流动室内浓缩造成的异常读数。超强防水设计:安装防水外壳后,特纳 现场荧光测定仪 10-AU可带到任何自然环境中使用。特纳 现场荧光仪 10-AU 适应各自恶劣环境
    留言咨询
  • 仪器简介:特纳 叶绿素a/藻类分析荧光探头 C7即可单独使用也可与多参数平台集成到一起进行使用,具有高精度、低价格和体积小等特点,使得它在海洋、淡水及染料示踪等方面具有广泛的应用价值。尽管体积小巧,但它的灵敏度及动态监测范围并未受到影响。它可避免浊度的干扰,保证了在多种环境条件下都具有很好的监测效果。不同种类的Cyclops-7荧光计可用于在线监测,叶绿素a、若丹明WT、荧光素、原油(苯及苯的同系物)、精炼油,CDOM、藻蓝蛋白和藻红蛋白等多种物质。 Cyclops-7需要一个外置电源,可对外接的显示记录仪进行0~5V的标准输出。三种设置功能提供了较宽的测量范围,对于叶绿素为0.03~500 μg/L,对蓝绿藻为150~2万个细胞/mL,对若丹明WT为0.04~1000 ppb。技术参数: 线性:0.99R2应用最小检出限线性范围活体叶绿素0.025 μg/L0-500 μg/L蓝绿藻150 cells/m0-150,000 cells/mLCDOM0.15 ppb(硫酸奎宁)0.5 ppb(焦油脑四磺酸钠)0-1250 ppb(硫酸奎宁)0-5000 ppb(焦油脑四磺酸钠)水中原油0.2 ppb(焦油脑四磺酸钠)0-2700 ppb(焦油脑四磺酸钠)水中精炼油2 ppb(1,5-萘二磺酸二钠盐)0-10,000 ppb(1,5-萘二磺酸二钠盐)荧光增白剂0.6 ppb(硫酸奎宁)0-15,000 ppb(硫酸奎宁)荧光素染剂0.01 ppb0-500 ppb若丹明染剂0.01 ppb0-1000 ppb硫酸奎宁染剂0.01 ppb0-650 ppb浊度0.05 NTU0-3000 NTU物理参数长×宽14.48 x 2.23 cm 重量160g 工作环境温度范围环境温度 0-5-℃水温-2—50℃深度600米信号输出0-5VDC工作电压3-15VDC功率< 300mW主要特点:Cyclops-7荧光仪特点:体积高度集成可作为传感器方便的安装到多参数装置上比传统的荧光仪耗能较低; 300 mW实时模拟信号输出优越的性价比
    留言咨询
  • M4 TORNADOPLUS - 微区X射线荧光成像的新纪元M4 TORNADO微区X射线荧光成像光谱仪PLUS能够检测出C(6)-Am(95)间元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的新产品,M4 TORNADOPLUS又增添了功能,例如孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。更轻、更快、更深M4 TORNADOPLUS采用轻元素窗口的大面积硅漂移探测器(SDD)实现对轻元素碳的检测,高通量脉冲采样,BRUKER孔径管理系统(AMS)可以获取大景深,对表面不平整样品分析具有优势。轻元素检测M4 TORNADOPLUS能够检测分析轻质元素碳的微区X射线荧光成像光谱仪,具备两个具有轻元素窗口的大面积硅漂移探测器和一个优化的Rh靶X射线光管。与普通微区X射线荧光成像光谱仪不同,M4 TORNADOPLUS在不影响较高能量范围内元素灵敏度的前提下,还可以检测原子数小于11的元素(Z<11),例如氟(F)、氧(O)、氮(N)和碳(C)。随着功能性的增强,M4 TORNADOPLUS应用也正在开发和拓展中,例如地质学、矿物学、生物学、聚合物研究或半导体行业等方向。应用实例-萤石和方解石的区分萤石(CaF2)和方解石(CaCO3)都是以钙为主要成分的矿物。它们的区别在于分别存在轻质元素氟(F),氧(O),碳(C);由于普通微区X射线荧光成像光谱仪检测不到Z<11(Na)的元素,无法区分这两种矿物,所以萤石和方解石的光谱图上都只会显示Ca元素谱线。利用轻元素探测器,M4 TORNADOPLUS可以检测氟(F)、氧(O)和碳(C),从而鉴别这两种矿物。图:鉴别萤石与方解石 左:方解石(红)和萤石(蓝)的元素分布图;图像尺寸:20×12mm2;扫描分辨率:800×460pixels 右:萤石(蓝)和方解石(红)的轻质元素光谱图。应用实例-电路板由于AMS的场深度深,如图所示电路板的X射线图像获得更多的细节。此外,由于激发X射线光子的入口和出口角度减小,光束能量依赖性变得不那么明显。图:具备AMS与不具备AMS的电路板元素分布图左图: 标准多导毛细管聚焦在电路板上,元件的高点失焦,显得模糊。右图: AMS系统加载下图像显示高景深,组件聚焦在更大的景深范围内。
    留言咨询
  • 【适用范围】本产品用于定量检测玉米、小麦、麦麸、豆粕、花生粕、米糠粕、玉米蛋白粉、玉米胚芽粕、膨化玉米、DDGS、喷浆玉米皮及成品饲料中黄曲霉毒素B1的含量。【检验原理】本产品应用荧光定量免疫层析技术。在检测卡的反应区预先包被C线和T线,T线与C线的荧光信号比值和待测样本中的目标物含量成反比。通过与配套荧光免疫分析仪内置的标准曲线对比,定量检测目标物含量。【产品性能指标】1.定量检测范围:黄曲霉毒素B1:0~80μg/kg2.准确度:80%~120%3.精密度:CV≤15%
    留言咨询
  • 特纳实验室荧光仪Trilogy简介:Turner Designs 特纳公司近期推出了Trilogy实验室荧光仪,它是一款高紧凑型并具有多种功能的实验室设备,可通过使用snap-in应用模块来进行荧光度、吸光度和浊度三种指标的测量。特纳 Trilogy实验室荧光仪具备触摸式显示界面,使得操作和校准过程更为直观,同时它还可以存储18条命名的校准曲线,为以后的测量节省出时间。通过snap-in模块的使用,未来可在Trilogy上轻松增设更多的应用。荧光模块可适应于叶绿素a(萃取酸化,非酸化和活体)、若丹明、荧光素染料、蓝绿藻(藻红蛋白和藻蓝蛋白)、CDOM和铵的测定。对于通过EPA 445 法得到的萃取叶绿素测定,特纳 Trilogy 实验室荧光仪可根据体积自动计算出样品浓度值。浊度模块采用了860nm波长的IR LED光源,可满足水体浊度测量的要求(ISO7027)。Spreadsheet Interface Software可支持实时显示功能和将存储的数据转换成Excel表格形式。技术参数:光模块性能最小检测浓度:0.02 ug/L 叶绿素a,0.02 ppb 若丹明WT测量范围:0-1,000 ppb RWT直线性:0.99R2浊度模块性能最小检测浓度:0.05 NTU测量范围:0-1,000 NTU直线性:0.99R2吸光度模块性能测量范围:0.0-4.0A准确性:+/- 0.7%精度:<0.5% at 1A主要特点:特纳 Trilogy 实验室荧光仪是一款紧凑的、多功能的设备,它在荧光度、浊度和吸光度测定方面可以带给我们更高的灵活性和精确度。彩色的触摸屏配合简单的菜单选择为用户提供了一个直观的操作界面。荧光模块可适应于叶绿素a(萃取酸化,非酸化和活体),若丹明,荧光素染料,藻青菌(藻红蛋白和藻蓝蛋白),CDOM和组胺。对于通过EPA 445方法得到的萃取叶绿素测定,Trilogy可自动计算出其浓度值。 Trilogy实验室荧光仪的触摸屏界面特纳实验室荧光仪 Trilogy 嵌入式模块选择:特纳实验室荧光仪 Trilogy配件选择:特纳实验室荧光仪 Trilogy 标液和示踪剂:
    留言咨询
  • SystemSURE plus ATP荧光检测仪是采用荧光素酶反应检测 ATP,用 Ultrasnap ATP 拭子采集标本。Ultrasnap ATP 拭子被缓冲液预湿, 这样有助于从干燥或湿润的表面提取 ATP;拭子也含有一种可以冲破生物膜的 试剂,使其下可能存在的生物体暴露出来。标本采集的 ATP 再和 Ultrasnap 独 特的荧光素和荧光素酶液体试剂一起反应并发光。发出的光可由EnSURE 进行检测。检测的发光量与 ATP 的总量成正比。数值越高,表 明 ATP 的量越多,也就意味着表面的残留物越多。检测内容:表面洁净度,水质检测常规: 仪器尺寸 (W x H x D) 72 毫米 x 191 毫米 x 32 毫米 仪器重量 (含电池) 约重 260 克 操作温度范围 5°C - 40°C 相对湿度范围 20% - 85% 非浓缩 存放温度范围 -10°C 到 40°C 相对湿度范围 20% - 95% 非浓缩 仪器详情: 检测范围 0 到 9999 RLUs 检测精度 1 RLU 检测时间 15 秒 检测误差 ±5% 或 ±5 RLUs 用户 ID 200 个用户 ID,每个 25 个字符以内 可设定的限制范围值 5001 个 可设定的程序名称 5001 个名称,每个 20 个字符以内 检测方案 100 个方案,每个包含 5001 个检测程序 内存大小 2000 个检测结果 串行接口 EIA-232 兼容 电池: 电池大小 (2 节) AA, LR6 或 E91 电池类型 碱性 nom. 1.5V 碱性 充电 (外部充电) nom. 1.2V NiMH 或 NiCD 电池容量 ( 2600mAh) 待机状态 (at 20°C) 最少 6 月 连续工作 最少 2000 个检测
    留言咨询
  • 全球唯一一款满足水泥行业检测精度的桌上型X射线荧光光谱仪 水泥全元素分析仪 MERAK-CEMI MERAK-CEMI 型X射线荧光光谱仪是采用全新设计理念开发的高精度X射线荧光光谱仪,特别适合硅酸盐行业对Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn进行准确快速分析。检测精度和重复性完全满足《GBT176-2008水泥化学分析方法》的要求。设计理念: 最先进技术的融合:集成高通量双曲面弯晶(HF DCCS)专利技术与二次靶技术,保证全元素(Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn)分析计数率与灵敏度。 简约而不简单:全球唯一 一款满足水泥行业元素检测精度的桌上型X射线荧光光谱仪,轻松满足《GB/T176-2008》标准要求符合标准:《GB/T 176-2008水泥化学分析方法》仪器特点:稳定性:开机3分钟即可测试样品,连续测试样品、日间测试样品、长期测试样品都具有极佳的重复性集成性:集成了率值配料算法,可方便地与DCS系统连接,向DCS提供分析数据和原料配比 低成本:整机无需抽真空、无需充氦气、无精密运动部件、无需液氮制冷,低故障率保证长期稳定运行小型化:采用小功率X射线管、小型高压电源模块、高集成电路系统,维护与维修成本低性能指标: 仪器重复性指标(单位wt%)成分Na2OMgOAl2O3SiO2SO3Cl-K2OCaOTiO2Fe2O3Sn-10.020.020.0120.0250.0020.0010.0150.040.010.15 应用范围: 水泥生料、熟料、水泥产品中全元素含量分析; 陶瓷、耐火材料、玻璃等建材产品中全元素含量分析;
    留言咨询
  • 特纳Aquafluor手持荧光仪仪器简介:特纳 手持式荧光仪 Aquafluor是一款轻便、经济的手持荧光仪/浊度仪,是实验室外实现快速测定的理想工具。双通道的设计可对某一样品同时进行荧光和浊度值的测定。 特纳 手持式荧光仪 Aquafluor 有双通道可选:活体叶绿素a;蓝绿藻(藻红蛋白或藻蓝蛋白);浊度;若丹明WT;荧光素;铵;和萃取叶绿素a。体积虽小,但特纳Aquafluor手持荧光仪在性能上毫不逊色,是Turner Designs特纳公司经济型荧光仪产品的代表。产品应用:现场快速测量水体浊度、藻类、荧光素、活体叶绿素-a、水中油,铵 等参数。 手持式叶绿素测定仪Aquafluor耐用且便携 尺寸规格:重量: 0.4kg体积: 4.45 cm x 8.9 cm x 18.4 cm密封等级: IP 67工作温度: 5-40°C技术参数: 通道名称最小检出限量程活体叶绿素a0.3 微克/升0-300 微克/升萃取叶绿素a0.5 微克/升0-300 微克/升铵0.1微摩尔/升0-100 微摩尔/升CDOM0.1 ppb0-100 ppb蓝绿藻150 cells/mL0-150,000 cells/mL荧光增白剂0.5 ppm0-30,000 ppm荧光素0.4 ppb0-400 ppb若丹明0.4 ppb0-400 ppb浊度0.5 NTU0-1000 NTU手持式叶绿素测定仪主要特点: ● 专用双通道:单键方便地切换两种应用模式。 ● 紧凑:小巧轻便,可放入衣袋中,收藏时也很方便。 ● 防水设计:完全适合现场使用环境,即使浸入水中也无妨。 ● 方便性:使用自带的AAA型电池,5秒预热即可使用。 ● 三位数动态范围。● 12位分辨率● 价格实惠
    留言咨询
  • FluorPen FP110手持式叶绿素荧光仪用于实验室、温室和野外快速测量植物叶绿素荧光参数,具有便携性强、精确度高、性价比高等特点;双键操作,具图形显示屏,内置锂电和数据存储,广泛应用于研究植物的光合作用、胁迫监测、除草剂检测或突变体筛选,还可用于生态毒理的生物检测,如通过不同植物对土壤或水质污染的叶绿素荧光响应,找出敏感植物作为生物传感器用于生物检测。FP110配备多种叶夹型号,用于不同的样品与研究。应用领域 适用于光合作用研究和教学,植物及分子生物学研究,农业、林业,生物技术领域等。研究内容涉及光合活性、胁迫响应、农药药效测试、突变筛选等。 植物光合特性研究 光合突变体筛选与表型研究 生物和非生物胁迫的检测 植物抗胁迫能力或者易感性研究 农业和林业育种、病害检测、长势与产量评估 除草剂检测 教学功能特点:§ 结构紧凑、便携性强,LED光源、检测器、控制单元集成于仅手机大小的仪器内,重量仅188g§ 功能强大,是叶绿素荧光技术的高端结晶产品,具备了大型荧光仪的所有功能,可以测量所有叶绿素荧光参数§ 内置了所有通用叶绿素荧光分析实验程序,包括3套荧光淬灭分析程序、3套光响应曲线程序、OJIP快速荧光动力学曲线等§ 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP–test参数§ FluorPen专业软件功能强大,可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量§ 具备无人值守自动监测功能§ 内置蓝牙与USB双通讯模块,GPS模块,输出带时间戳和地理位置的叶绿素荧光参数图表§ 配备多种叶夹型号:固定叶夹式(适于实验室内暗适应或夜间快速测量)、分离叶夹式(适用于野外暗适应测量)、探头式(透明光纤探头,具备叶片固定装置,用于非接触性测量监测或光适应条件下的叶绿素荧光监测)、用户定制式等§ 可选配野外自动监测式荧光仪,防水防尘设计测量程序与功能 Ft:瞬时叶绿素荧光,暗适应完成后Ft=F0 QY:量子产额,表示光系统II 的效率,等于Fv/Fm(暗适应状态)或ΦPSII (光适应状态)。 OJIP:快速荧光动力学曲线,用于研究植物暗适应后的快速荧光动态变化 NPQ:荧光淬灭动力学曲线,用于研究植物从暗适应到光适应状态的荧光淬灭变化过程。 LC:光响应曲线,用于研究植物对不同光强的荧光淬灭反应。 PAR:光合有效辐射,测量环境中植物生长可以利用的400-700nm实际光强(限PAR型号)。技术参数 测量参数包括F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、PAR(限PAR型号)、Area、Mo、Sm、PI、ABS/RC等50多个叶绿素荧光参数,及3种给光程序的光响应曲线、3种荧光淬灭曲线、OJIP曲线等 OJIP–test时间分辨率为10μs(每秒10万次),给出OJIP曲线和26个参数,包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、Mo、Area、Fix Area、Sm、Ss、N、Phi_Po、Psi_o、Phi_Eo、Phi–Do、Phi_Pav、PI_Abs、ABS/RC、TRo/RC、ETo/RC、DIo/RC等 测量程序:Ft、QY、OJIP、NPQ1、NPQ2、NPQ3、LC1、LC2、LC3、PAR(限PAR型号)、Multi无人值守自动监测 叶夹类型:FP110/S固定叶夹式、FP110/D分离叶夹式、FP110/P探头式、FP110/X用户定制式 PAR传感器(限PAR型号):80o入射角余弦校正,读数单位μmol(photons)/m2.s,可显示读数,检测范围400-700 nm 测量光:每测量脉冲最高0.09μmol(photons)/m2.s,10-100%可调 光化学光:10-1000μmol(photons)/m2.s可调 饱和光:最高3000μmol(photons)/m2.s,10-100%可调 光源:标准配置蓝光470nm,可根据需求配备不同波长的LED光源 检测器:PIN光电二极管,667–750nm滤波器 尺寸大小:超便携,手机大小,134×65×33mm,重量仅188g 存贮:容量16Mb,可存储149000数据点 显示与操作:图形化显示,双键操作,待机8分钟自动关闭 供电:可充电锂电池,USB充电,连续工作48小时,低电报警 工作条件:0–55℃,0–95%相对湿度(无凝结水) 存贮条件:-10–60℃,0–95%相对湿度(无凝结水) 通讯方式:蓝牙+USB双通讯模式 GPS模块:内置 软件:FluorPen1.1专用软件,用于数据下载、分析和图表显示,输出Excel数据文件及荧光动力学曲线图,适用于Windows 7及更高操作系统操作软件与实验结果产地:捷克应用案例: 2017年4月,美国国家航空航天局(NASA)新一代先进植物培养器(Advanced Plant Habitat,APH)搭载联盟号MS-04货运飞船抵达国际空间站。宇航员使用FluorPen手持仪叶绿素荧光仪在其中开展植物生理学及太空食物种植(growth of fresh food in space)的研究。参考文献1. F Dang, et al. 2019. Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique. Environmental Science & Technology 53(7): 3802-38102. N Moghimi, et al. 2019. New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum. Journal of Experimental Botany 70(12): 3357–33713. M Rafique, et al. 2019. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. Journal of Environmental Management 247: 672-6804. P Soudek, et al. 2019. Thorium as an environment stressor for growth of Nicotiana glutinosa plants. Environmental and Experimental Botany 164: 84-1005. JA Pérez-Romero, et al. 2019. Investigating the physiological mechanisms underlying Salicornia ramosissima response to atmospheric CO2 enrichment under coexistence of prolonged soil flooding and saline excess. Plant Physiology and Biochemistry 135: 149-1596. D Shao, et al. 2019. Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure. Annals of Botany, DOI: 10.1093/aob/mcz0677. C Cirillo, et al. 2019. Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 Salinization. Front. Plant Sci. 10:7428. T Savchenko, et al. 2019. Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming in Arabidopsis. Journal of Experimental Botany 70(10): 2919–29329. M Liu, et al. 2019. Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms. Science of The Total Environment 670: 613-62210. PK Tiwari, et al. 2019. Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicology and Environmental Safety 176: 321-32911. JA Pérez-Romero, et al. 2018. Atmospheric CO2 enrichment effect on the Cu-tolerance of the C4 cordgrass Spartina densiflora. Journal of Plant Physiology 220: 155-16612. SK Yadav, et al. 2018. Physiological and Biochemical Basis of Extended and Sudden Heat Stress Tolerance in Maize. Proceedings of the National Academy of Sciences 88(1): 249-26313. D Balfagón, et al. 2018. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Plant Physiology and Biochemistry 127: 194-19914. JI Vílchez, et al. 2018. Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant' s Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach. Front. Microbiol. 9: 28415. MC Sorrentino, et al. 2018. Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: Effects on morphology, cytology and photosynthesis. Journal of Hazardous Materials 351: 131-13716. E Niewiadomska, et al. 2018. Lack of tocopherols influences the PSII antenna and the functioning of photosystems under low light. Journal of Plant Physiology 223: 57-6417. S Singh, et al. 2018. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. Journal of Photochemistry and Photobiology B: Biology 178: 76-8418. EL Fry, et al. 2018. Drought neutralises plant–soil feedback of two mesic grassland forbs. Oecologia 186(4): 1113–-125附:OJIP参数及计算公式Bckg = background Fo: = F50μs fluorescence intensity at 50 μs Fj: = fluorescence intensity at j-step (at 2 ms) Fi: = fluorescence intensity at i-step (at 60 ms) Fm: = maximal fluorescence intensity Fv: = Fm - Fo (maximal variable fluorescence) Vj = (Fj - Fo) / (Fm - Fo) Fm / Fo = Fm / Fo Fv / Fo = Fv / Fo Fv / Fm = Fv / Fm Mo = TRo / RC - ETo / RC Area = area between fluorescence curve and Fm Sm = area / Fm - Fo (multiple turn-over) Ss = the smallest Sm turn-over (single turn-over) N = Sm . Mo . (I / Vj) turn-over number QA Phi_Po = (I - Fo) / Fm (or Fv / Fm) Phi_o = I - Vj Phi_Eo = (I - Fo / Fm) . Phi_o Phi_Do = 1 - Phi_Po - (Fo / Fm) Phi_Pav = Phi_Po - (Sm / tFM) tFM = time to reach Fm (in ms) ABS / RC = Mo . (I / Vj) . (I / Phi_Po) TRo / RC = Mo . (I / Vj) ETo / RC = Mo . (I / Vj) . Phi_o) DIo / RC = (ABS / RC) - (TRo / RC)
    留言咨询
  • Aquation叶绿素荧光仪 400-860-5168转4713
    产品介绍 Aquation经典叶绿素荧光仪可作为台式使用,也可用于田间,防水设计传感器测量质包括水生植物和珊瑚等也非常方便,同时备选USB以及无线连接。此系列经典叶绿素荧光仪坚固耐用、操作简便、配置灵活多样,使之成为实验室、温室、田间、水下研究和教学实验的理想工具。本系列叶绿素荧光仪可实现全防水野外测量(乃至水下测量)甚至实现无线连接,将测量变的简单便捷。 Aquation经典叶绿素荧光仪使用PAM 测量技术来测量光合系统II的不同荧光,测量值为F,Fo,Fm′,Fm,Fv/Fm, ΦPSII以及其它计算值 (如ΦNO, ΦNPQ)。此类易于使用的PAM荧光仪用在陆生植物、海藻、珊瑚、大型海藻和小型海藻的生理研究,叶绿素浓度通过从获取的相对叶绿素指数进行估计。无线备选允许在无线范围内使计算机远离水;全防水荧光传感器可用于水下研究,可提供台式工作平台基座或将电缆从基座接入。所有命令均通过PC来实现。Aquation公司的经典叶绿素荧光仪使调制叶绿素荧光测量变得非常简单。它们采用饱和脉冲技术来测量较大光合效率和实际光合效率,并提供光化光和远红光。用户可以使用预置程序进行测量,也可编辑自己的程序进行测量。所有的程序测量过程都可以在软件中设置好进行自动重复。 技术参数 测量参数:F, Fo, Fo′, Fm, Fm′,rETR,PAR,T 计算参数:ΦII, Fv/Fm, NPQ,ΦNO, ΦNPQ, qP, qL,qN 光化光 (白 LED) :4500 Φmol.m-2.s-1 饱和光 (白LED):10500 Φmol.m-2.s-1 测量光 (470 nm LED) :0.1W 远红光 (735 nm LED) :40 Φmol.m-2.s-1 电压:110~240 VAC或 12 V DC 通讯:USB 或2.4 GHz 控制:Windows PC (或 Windows emulator) 温度范围:0~45°C (操作);-5~ 60°C (储存) 尺寸 (传感器):45mm (2.4”) 直径x 55mm (2.4”) 尺寸(接口盒):长127 x 63 x 30 mm (5” x 2.5” x 1.2”) 重量:传感器和电缆 250g/8.8oz 外壳材质:Acetal 塑料和316不锈钢 电池:可充电锂电池 内存:2GB产品特点 使用PAM方法测量叶绿素荧光 配置采用远红光 自动调量程以及自动归零 田间防水设计 无线或USB连接电脑 传感器采用平基座或从基座延伸的电缆 连接到电脑或数据采集仪可实现重复测量 易用软件、界面简洁 预编程光曲线产品应用 植物光合作用 植物生理、生态研究 监控叶绿素含量 各种生物和非生物逆境胁迫 水生植物、藻类、珊瑚研究Aquation经典在线叶绿素荧光仪参考文献 1.Nayar, S. and Bott, K. (2015). Uptake and translocation of ammonium and nitrate by temperate seagrass Zostera nigricaulis in Port Phillip Bay. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2014/000665-1. SARDI Research Report Series No. 819. 51pp.Procaccini, G., Ruocco, M., Marín-Guirao, L., et al. 2017. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica. Scientific Reports 2.Cui, Y., Tian, Z., Zhang, X. et al. 2015. Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiol Plant. 37:196.Dudley, B.D., Hughes, R.F. and Ostertag, R. 2014. Groundwater availability mediates the ecosystem effects of an invasion of Prosopis pallida. Ecological Applications 24(8): 1954–1971
    留言咨询
  • 美国Hygiena ATP荧光仪 400-860-5168转1544
    仪器简介:美国Hygiena SystemSURE PLUS&trade ATP荧光仪是新一代的ATP卫生监控系统。这款创新型的手持式检测仪采用了高灵敏的光电二极管技术和简洁易用的操作设计,是一款灵敏、精确、价格合理的卫生监控系统。2008北京奥运会为北京、上海、天津、沈阳、秦皇岛、青岛等各赛区提供食品安全保障。技术参数:常规 仪器尺寸(W× H× D) 72mm× 191mm× 32mm 仪器重量(含电池) 大约269g 操作温度范围 5℃到40℃ 相对湿度范围 20-85%,非浓缩 储存温度范围 -10℃到40℃ 相对湿度范围 20-95%,非浓缩 仪器详情 检测范围 0到9999 RLUs 检测精确到 1 RLU 检测时间15秒 检测干扰 ± 5%或± 5 RLUs 可设定的结果限值 251个 存储大小 2000个检测结果 串行接口 EIA-232兼容 电池 电池大小(2节)AA,LR6或E91 电池类型 非充电电池 nom.1.5V 碱性 可充电电池 nom.1.2V NiMH或NiCD 电池容量 2600mAh碱性 可用状态(在20℃) 最少6个月 连续读数 最少2000个检测结果主要特点:取样装置 ---- ltrasnap ATP 一体化ATP检测拭子(详情见产品介绍) Key Features 特点 独特一体化液体试剂,集采集反应于一体,操作极为简便。 保质期12个月(2-8℃);常温6周(25℃以下), 无须冷冻保存,比传统干冷荧光酶有很大优势。良好的准确性和重复性,稳定性,不易收环境温度影响。 拭子预先湿润,减少了操作环节的污染。价格便宜,可通用于现有的不同品牌的ATP仪。 优势 真正的便携式 &mdash &mdash &mdash &mdash 手掌大小,轻便、小巧(重260克 体积19*7*3cm)。 良好的性价比 &mdash &mdash &mdash &mdash 比同类品牌便宜, 新一代便携式ATP荧光仪,经济、可靠。 操作简单易学 &mdash &mdash &mdash &mdash 简单按键操作,无须专业培训,快速完成检测,结果精确 性能可靠,受广泛认可 &mdash &mdash &mdash &mdash 国内:上海市FDA大批量采购。 北京、宁波、杭州等地卫生监督部门。 上海金茂君悦大酒店、可口可乐等生产厂商。 产品特色 1. 可储存2000个检测结果。 2. 可设置20个程序组分类方案。 3. 可设定用户ID。 4. 新增SURE Tend数据分析软件。 5. 更先进光电检测管。 6. 新增管理菜单设置。 7. 用户可自定251个检测程序。 仪器配备 1. Hygiena SystemSURE PlusTM ATP荧光仪 &mdash &mdash 1 2. AA5号碱性电池 &mdash &mdash 2 3. 荧光仪工作包 &mdash &mdash 1 4. 使用说明书 中/英文 &mdash &mdash 1 5. SureTrend数据处理软件&说明书(英) &mdash &mdash 1 6. 用户反馈卡 &mdash &mdash 1 7. RS-232 数据连接线 &mdash &mdash 1 8. 挂绳 &mdash &mdash 1 9. 产品出厂合格证 &mdash &mdash 1 10. 中文资料光盘 &mdash &mdash 1 11. 售后服务协议 &mdash &mdash 1
    留言咨询
  • 产品说明、技术参数及配置 在石油钻井施工中,准确获取岩性资料是录井的重要任务,是及时建立地层剖面准确评价油气层性质和正确预测下部地层岩性的前提,也是指导钻井生产正常运行的最基础的工作。传统录井对岩性的识别主要是通过人的肉眼观察或借助光学仪器观察,获取的资料为定性的描述性资料。由于存在较多人为因素,对同一个样品的岩性判定和特征描述,很可能是千差万别的。这些非标准的、定性的、描述性的资料,既不利于进行横向或区域上对比分析,且精确性和可靠性也有限,已经越来越不能满足对复杂油气藏勘探开发工作发展的需要。同时,许多钻井新技术新工艺的发展,常常造成岩屑细小,甚至呈粉尘状,以观察为手段的岩性识别方法更加难以满足现场需求。随着钻井工艺的发展,需要一种能够准确、定量地解决细碎岩屑岩性识别问题的方法。X射线荧光(X-Ray Fluorescence,简称XRF)分析技术采用X射线照射样品产生特征X射线荧光,通过荧光光谱图定量分析岩屑元素的含量,可以满足地质录井的定量化需求,同时能够有效地解决细碎岩屑的识别问题。鉴于此,四川新先达测控技术有限公司根据石油地质录井生产的实际情况,依据JC/1085-2008标准、《Q/SY1862-2016元素录井技术规范》、《Q/SY 128—2015录井资料采集处理解释规范》生产的CIT-3000SY型石油X荧光元素录井仪,是集当今最新电子技术、计算机技术和核分析方法于一体,具有微机化程度高、人机界面友好、分析精度高、采用多项专利技术,是目前石油地质录井解决以上难题的新技术设备。分析元素:Na、Mg、Al、Si、P、S、Cl、K、Ca、Ba、Ti、Mn、Fe、Pb、As、Sr等。并能在测量完成后直接计算含量显示出对应测量样品的岩性。技术指标 仪器功能综述:实现岩屑元素含量的准确、快速分析和数据处理。具体技术指标如下:l 输入电压:电压 AC220V±10V,频率:50Hz±5Hz。l 环境温度:0℃-40℃、环境湿度:35%-70%l 采用美国航天技术的SDD半导体探测器计数,配合专门的数字脉冲处理技术,能 量分辨率优于100eV(55Fe);l 测量对象状态:粉末、固体、液体,同时分析元素:一次性可测几十种元素;l 能量测量范围:1-40KeV;l 测量元素范围:钠(Na)到铀(U)之间的88种元素l 元素含量分析范围:1ppm-99.99%l 检测限:Na≤0.5%;Mg、Al、Si≤0.05%;P、S、Cl、K、Ca、Ti、V、Cr、Mn、Fe≤0.001%。l 分析精度:0.03% (含量高于95%以上的样品、21次测试稳定性);l 重复性:同一样 品在同一条件下连续5次测得的主元素含量值与5次测量的平均值的相对标准偏差不大于5%;l 稳定性:同一样品每间隔30分钟测量一次,5次测得的主元素含量值与5次测量的平均值的相对标准偏差不大于5%l 辐射剂量:25μsV/h。l 高压:0V-50kV;l 管流:1μA-1000μA;l 测量时间:30秒-200秒(时间随样品而调整)l 真空泵:抽气速度>4L/s;最大真空度>1×10ˉ2 Pa。真空系统(可防止返油,可稳定高真空,高强度样品腔可维持高真空。)10秒真空度达10ˉ2 Pa,30分钟不漏气,稳定性好。l 仪器额定功率:200W仪器主要特色1)核心价值通过岩屑元素组成的分析识别岩性,通过岩性的组成特征判断层位。2)分析的主要元素Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Rb、Sr、Y、Zr、Nb、Mo、Ag、Cd、In、Sn、W、Pb、Th、U、Ba等3)极高的真空度完美的真空系统,10秒抽气真空度高达10-2Pa,30分钟不漏气,轻元素探测效果提高了70%,保证了Na、Mg、Al、Si极佳的分析效果和理想的重现性能;4)仪器高分辨率FAST-SDD探测器,配合专利技术的数字多道分析技术,仪器的分辨率高达100ev,最大限度的降低了元素之间的干扰,分析更加准确。5)软件操作方便出厂标定好后,长期使用,自带校准曲线样,无需用户标定。性能特点 l 采用X光管激发样品,自动选择激发条件,更能获得最佳的分析结果l 仪器结构:适合粉末样品检测的上照式结构。此结构可避免:粉末样品落灰或垮样污染探测器和光管,导致不便维护、容易损坏,计数率降低。样品可旋转测量,消除样品不均匀得影响。l 真空环境测量,提高了轻元素的激发效率和测量范围;l 系统可自动识别谱线,方便地了解样品的组成;l 2048道多道谱仪实时测量显示,对样品X光谱进行精细分析;l 可一次性实现元素的快速、无损、准确分析;l 自动校准,确保仪器长期稳定;l 视频图像实时监控,可随时观察测量状态;l 粉末样品检测,制样简单;l 整体设计合理,性能稳定,运行可靠;l 全中文Windows应用软件,操作简单;l 在软件上可以通过计算测量谱线得到该测量样品与标准岩性的相似度。仪器配置 l 仪器主机一台 l 品牌计算机一台 l 激光打印机一台 l 真空泵一台 l 压片机一台 l 制样模具一套 l 稳压电源一台 l 测试软件一套
    留言咨询
  • LONZA荧光内毒素检测系统(重组C因子法) 配置清单:荧光读数仪、电脑及软件、重组C因子试剂盒 重组C因子内毒素检测历程:2012年6月,FDA将重组C因子法纳入可替代方法;2015年7月,欧洲药典将重组C因子法纳入可替代方法;2018年9月,FDA批准了首个以重组C因子检测内毒素的单抗药;2018年12月,欧洲药典征求意见稿将重组C因子纳入欧洲药典;2019年1月,中国药典征求意见稿将重组C因子纳入2020版中国药典;2019年12月,欧洲药典将重组C因子纳入到新一版的欧洲药典中,预计2021年生效。 什么是细菌内毒素?1、是革兰氏阴性菌的细胞壁的产物。细菌在生活状态时不释放出来,只有当细菌死亡自溶或粘附在其它细胞时,才表现其毒性,内毒素的主要化学成分是脂多糖中的类脂A成分。 2、经消化道进入无危害,大量进入血液就会引起发热反应-“热原反应”,会激活多种炎症信号通路。因此对于所有的注射用品,植入式医疗器械均需要进行内毒素检测。3、理化性质:内毒素不是蛋白质,因此非常耐热。只有在160℃的温度下加热2到4个小时,或用强碱、强酸或强氧化剂加温煮沸30分钟才能破坏它的生物活性。4、生物制品(细胞制剂,药品,疫苗)无法通过这些方法去除热源 → 必须在整个生产过程中保证所有物料内毒素的含量,以满足终产品的内毒素含量符合放行标准 → 内毒素检测 Lonza内毒素检测 ※ Lonza内毒素检测始于1976年,44年为全球客户提供可靠的内毒素产品和服务※ 第一家上市动态检测法※ 第一家上市重组C因子※ Lonza提供专业的内毒素解决方案,服务对象覆盖全球70%的制药100强企业,市场上大量的药物是通过lonza内毒素产品放行上市的※ 市场领先的技术:ü 鲎试剂+无动物源的重组C因子试剂检测内毒素ü 全自动高通量内毒素工作站PyroTec技术ü 符合21CFR part 11和EU GMP 附录11的内毒素检测分析软件WinKQCL Fluorescent Endpoint Test – PyroGene ™ 重组C因子法 ※ PyroGene™ Recombinant Factor C Assay 是无动物源性组分的 LAL 替代方法。已经被 FDA 接受。此方法使用重组的 C 因子来代替鲎试剂级联反应的第一个组分。与内毒素结合后激活并切割一个合成底物,释放出荧光分子。反应在 96 孔板中进行。在实验开始和经一小时孵育后用荧光检测仪(380Ex/440Em)进行检测。※ 灵敏度:0.005-5EU/ml※ 优势:ü 通过消除假阳性反应葡聚糖,达到更高的内毒素特异性ü 批次变化更小ü 不使用动物制品ü 确保供应安全ü FDA 认可的 LAL 替代方案※ 所需的其他材料:ü 带孵育功能的荧光检测仪ü WinKQCL™ 软件- WinKQCL 5.3.3/6.0ü LAL 检测用水(大包装的试剂盒需要单独购买)ü 无致热源检测管ü LAL 检测级别多孔板 软件-WinKQCL software• 一流的内毒素检测和分析数据管理平台-24年基于用户体验持续改进(1996年version 1.0本发布)• 完全符合21CFR Part 11数据完整性要求• 全面的检测分析,数据管理,和报告需求的完整解决方案• 支持企业在全球内为各个工厂提供管理和协作• 对接第三方系统(MODA,LIMS,LIS)• 兼容自动化工作站 目前提供两个版本软件 WinKQCL 5.3.3/6.0更多产品参数请登录查询客服QQ:; TEL:;
    留言咨询
  • C6P 水下荧光仪传感器平台 美国特纳公司最新推出了特纳 荧光多参数传感器平台 C6p,它采用聚甲醛塑料外壳,更加耐腐蚀耐用,使用深度可达水下600米。仪器可以集成1-6个光学传感器,从紫外到近红外均可。 C6P前段配置防污染铜片及机械清洁刷可有效减少生物污染,出厂时安装温度传感器,并可选配深度传感器。C6P低功率、配置大容量内存及高性能锂电池,满足野外长期监测需要,专门的固件及软件可实现7*24小时在线数据采集。仪器常用光学测量参数均有校准试剂,并可根据客户测量需要定制特殊波长传感器。 特征参数最小检测浓度:叶绿素a 0.03 ug/L若丹明WT或荧光素 0.04 ppb蓝绿藻 150个细胞/mL水中原油 0.2 ppb(焦油脑四磺酸钠)精炼油 2 ppb(1,5-萘二磺酸二钠盐)浊度 0.05NTU测量范围:叶绿素a低灵敏度 0-500 ug/L中灵敏度 0-50 ug/L高灵敏度 0-5 ug/L若丹明WT或荧光素低灵敏度 0-1000 ug/L中灵敏度 0-100 ug/L高灵敏度 0-10 ug/L蓝绿藻低灵敏度 0-2,000,000 个细胞/mL中灵敏度 0-200,000 个细胞/mL高灵敏度 0-20,000 个细胞/mL水中原油 0-2700 ppb(焦油脑四磺酸钠)精炼油 0-10,000 ppb(1,5-萘二磺酸二钠盐)浊度 0-3000NTUC6P水下荧光仪特点l 可集成到CTD或第三方系统上使用 l 本身自带的温度传感器,可选配深度传感器。l 基于Windows的数据管理软件,快速数据采集频率l 超大存储——超过480,000个数据l 机械清理刷l 深度级别最大600米C6P水下荧光仪规格参数重量(空气中) 2.54kg长度 685.75px直径 346px材质 乙缩醛树脂温度 -2~50℃深度 600 m外接电源 8-30 VDC输出 数字信号ASCII接口 RS232防护等级 IP68最小数据采集间隔 1秒功耗 8-30V,5W
    留言咨询
  • 1、 FluorCam叶绿素荧光成像技术功能特点由于叶绿素荧光技术本身在科学研究中有一系列的局限性。因此从上世纪八十年代末开始,随着Charge-Coupled Device(CCD)成像技术、LED光源板技术、图像分析技术的成熟,不断有科学家和工程师合作探索将这三项技术与PAM脉冲调制技术结合,进而将叶绿素荧光技术升级为叶绿素荧光成像技术(Daley et al. 1989 Raschke et al. 1990 Mott et al. 1993 Genty and Meyer 1994 Bro et al. 1995 Siebke and Weis 1995 Meyer and Genty 1998 Balachandran et al. 1994 Oxborough and Baker 1997)。20世纪90年代末,PSI首席科学家Nedbal和PSI总裁Trtilek等合作,成功研制了与PAM脉冲调制技术结合的FluorCam叶绿素荧光成像技术(Nedbal et al., 2000),并推出第一台商业化叶绿素荧光成像设备FluorCam。这一发明正式开启了叶绿素荧光研究的二维时代。FluorCam叶绿素荧光成像技术成为上世纪90年代叶绿素荧光技术的重要突破,使科学家们对光合作用与叶绿素荧光的研究一下子进入二维世界,并得到了国际科学界的一致认可。FluorCam叶绿素荧光成像系统已成为世界上最权威、使用最广、种类最全面、发表论文最多的叶绿素荧光成像仪器。与之前的叶绿素荧光技术相比,FluorCam叶绿素荧光成像技术的主要优势有:• 能够全面反映整株植物、叶片、藻类群体等的不同位置荧光强度变化与分布。• 可测量叶片、果实、麦穗、大型藻/微藻、整株植物乃至植物冠层等各种样品。• 可同时测定几十、甚至上百株个样品。• 能够在显微水平研究叶绿体或藻类细胞。• 尤其适用于环境胁迫早期植物不同部位光合活性的变化规律、突变体不同部位的光合功能差异等研究。同时,FluorCam叶绿素荧光成像技术与同类技术相比具备以下国际领先优势:• 由真正的生物学家、数学家、电子工程师和光学工程师组成的研发团队所开发• FluorCam是脉冲调试式叶绿素荧光成像技术的最早实用化成果• 国际最权威的叶绿素荧光成像技术,仅2019-2021.3可查阅全文的SCI文献就有300篇以上• 可实现高通量植物表型分析、抗性筛选、种质资源检测等科研应用• 激发荧光的LED光源板和获取荧光数据的成像传感器不但技术国际领先,而且为PSI自行开发,具备完全自主知识产权• 测量及成像参数最多,具备叶绿素荧光显微成像、OJIP快速荧光动力学曲线、QA再氧化动力学、荧光蛋白活体成像、多光谱荧光成像、无人值守自动监测、图像阈值分割等世界独有的成像测量功能• 以FluorCam叶绿素荧光成像技术为核心的PlantScreen植物表型成像分析系统为目前国际最先进、安装最多的植物表型组学研究系统• 软件由PSI开发,为客户提供终身免费升级• PSI表型科研中心可进行科研合作并提供实验指导• 系统型号全面,适用于各种实验需求• 几乎无维护费用技术功能特点:1) 仪器型号和配置灵活多样,测量样品涵盖了从叶片、藻类、果实、花朵、整株植物、植物群体/冠层乃至单个微藻/植物细胞、叶绿体等几乎所有不同类型的宏观和微观植物样品,甚至还包括含有叶绿素的细菌和海洋生物;同时满足了从实验室光合机理精细研究到野外大田实地研究,从自然环境到精确可控环境等不同实验条件和尺度的要求。2) 高灵敏度CCD,时间分辨率可达50帧/秒,分辨率720×560像素;可选配高分辨率CCD,最高分辨率1360×1024像素,在最高图像分辨率下时间分辨率可达20帧/秒,用于稳态荧光如GFP荧光测量等;超高灵敏度成像传感器,最高分辨率1280×1024像素,最高时间分辨率高达16000帧/秒,真正实现了OJIP快速荧光诱导动力学曲线的成像测量3) 具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑a) Fv/Fm:测量参数包括Fo,Fm,Fv,QY等b) Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等荧光参数c) 荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个参数d) 光响应曲线:Fo,Fm,QY,QY_Ln,ETR等荧光参数e) PAR吸收率、NDVI成像测量(选配)f) GFP、YFP、EBFP、CFP、DsRed等荧光蛋白与DAPI等荧光染料的荧光定量测量(选配)g) 多光谱荧光测量(选配):F440、F520、F690、F740h) QA再氧化动力学曲线(选配)i) OJIP快速荧光诱导动力学曲线(选配):Fo,Fj,Fi,P或Fm,Mo(OJIP曲线初始斜率)、OJIP固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI等参数4) 自动重复实验功能,可无人值守自动循环完成选定的实验程序,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机5) 标配4个LED光源板,采用大型预封装LED光源,红/蓝或红/白双色光化光源,可选配其他不同颜色(波长)、不同光强LED光源6) 功能强大的FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单:7) 数据分析具备“信号计算再平均”模式(算数平均值)和“信号平均再计算模式”两种功能模式,在高信噪比的情况下选用“信号计算再平均”模式,在低信噪比的情况下选择“信号平均再计算”模式以过滤掉噪音带来的误差8) 输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等2、 FluorCam叶绿素荧光成像系统型号1. FluorCam便携式叶绿素荧光成像仪• 可测量叶绿素荧光成像,可选配GFP荧光蛋白成像功能• 成像面积:便携式FluorCam 31.5mm×41.5 mm、便携式GFPCam 35mm×46 mm• 配备专用支架和电池包,便携性强,实验室、野外均可使用• 可编辑测量实验程序(protocol)• 具备自动重复测量功能• 配备专用暗适应叶夹,便于在野外对样品进行暗适应无损测量2. FluorCam封闭式叶绿素荧光成像系统• FluorCam系列中功能最全面,使用最便捷的型号• 系统集成于暗适应操作箱内,操作简便、便于移动,既可在实验室内也可在室外进行暗适应成像测量分析 • 高灵敏度CCD镜头,时间分辨率达50张每秒,快速捕捉叶绿素荧光瞬变;可选配高分辨率CCD用于稳态荧光如GFP荧光测量;也可选配超高灵敏度成像传感器,实现真正的OJIP快速荧光诱导动力学曲线成像测量• 成像面积达13×13cm,可对植物叶片、植物组织、藻类、苔藓、地衣、整株植物或多株植物、96孔板、384孔板等进行成像分析• 饱和光光强最高达6000 µmol(photons)/m².s,进行QA再氧化分析使用的单周转饱和光闪STF可达120000µmol(photons)/m².s• 世界上唯一可进行OJIP快速荧光动力学成像分析的高端叶绿素荧光技术设备• 世界上唯一可进行QA再氧化动力学成像分析的高端叶绿素荧光技术设备• 具备功能最全的、可编辑的叶绿素荧光实验程序(Protocols),包括快照模式、Fv/Fm、Kautsky诱导效应、叶绿素荧光淬灭分析、LC光响应曲线、PAR吸收与NDVI成像分析、QA再氧化动力学分析、OJIP快速荧光动力学分析及GFP绿色荧光蛋白成像等• 可选配GFP、YFP、BFP、RFP、CFP、DAPI等荧光蛋白与荧光染料成像• 可进行自动重复成像测量分析• 4块大型高强度封装LED光源板,具备双色光化光,标配为2红光+2白光,可选配2红光+2蓝光或其它波长光源组合3. FluorCam开放式叶绿素荧光成像系统• 模块化设计,配置灵活,可自由安装更换光源板、自由调整光源角度和高度、自由调整CCD镜头高度,方便被测植物的处理、操作等• 4块大型高强度封装LED光源板,具备双色光化光,标配为2红光+2白光,可选配2红光+2蓝光或其它波长光源组合• 可自由选配多种备用不同波长LEDs光源板,用户可简便自行更换,如选配青色光源板用于气孔功能研究、选配紫外光源板用于多光谱荧光成像测量等• 可进行GFP、YFP、BFP、RFP、CFP、DAPI等荧光蛋白与荧光染料成像• 标准版成像面积13×13cm,大型版成像面积达20×20cm,可对整株植物甚至多株植物(如拟南芥等小型植物)进行实验成像分析• 高灵敏度CCD镜头,时间分辨率达50张每秒,快速捕捉叶绿素荧光瞬变,可选配高分辨率CCD用于稳态荧光如GFP荧光测量4. FluorCam多光谱荧光成像系统FluorCam多光谱成像系统是将稳态荧光成像技术与脉冲调制式叶绿素荧光成像技术完美融于一体,能够在一台仪器上实现GFP、BFP、CFP、YFP、RFP等荧光蛋白成像、DAPI等荧光染料成像、荧光素酶、脉冲调制式叶绿素荧光成像以及NDVI反射光谱成像分析功能,是真正功能全面的植物荧光活体成像系统。同时,除了植物样品外,植物荧光活体成像系统也可以进行藻类、珊瑚共生体、菌落乃至动物的荧光成像分析。• 1360×1024像素高分辨率CCD,可对样品荧光标记的分布进行精准成像分析• 标准版成像面积13×13cm,大型版成像面积达20×20cm,可对整株植物甚至多株植物(如拟南芥等小型植物)进行实验成像分析• 专用荧光激发光源组与滤波器组合,精确测量不同荧光蛋白标记• 软件配置多种用户自定义调色板,可生成真实色彩成像图或对比增强彩色成像图• 可选配新型FluorCam-Pro植物多光谱荧光成像系统,一体化完成各种荧光成像测量5. FKM多光谱荧光动态显微成像系统• 目前唯一用于植物/藻类显微叶绿素荧光成像研究的成熟商用仪器• 内置现今叶绿素荧光研究的全部程序,如Fv/Fm、Kautsky诱导效应、荧光淬灭、OJIP快速荧光响应曲线、QA再氧化等,可获得70余项参数• 配备10倍、20倍、40倍、63倍和100倍专用生物荧光物镜,可以清晰观测到叶绿体及其发出的荧光• 激发光源组中包括红外光、红光、蓝光、绿光、白光、紫外光和远红光等,通过红蓝绿三色光还可以调出可见光谱中的任何一种色光,能够研究植物/藻类中任何一种色素分子或发色团。• 可进行GFP、DAPI、DiBAC4、SYTOX、CTC等荧光蛋白、荧光染料的成像分析• 高分辨率光谱仪能够深入解析各种荧光的光谱图• 控温系统可以保证实验样品在同等温度条件下进行测量,提高实验精度,也可以进行高温/低温胁迫研究6. FluorCam大型叶绿素荧光成像平台• 世界上单幅成像面积最大的脉冲调制式(PAM)叶绿素荧光成像系统,成像光源板面积70×70cm,成像面积达35×35cm,可对整株植物及多株植物同时进行非损伤性叶绿素荧光成像分析• LED激发光源、CCD叶绿素荧光成像镜头及滤波轮等集成于一个高度可自由移动的成像平台上,成像平台高度可调,以适应于不同高度的植物成像分析• 可选配PAR吸收/NDVI成像分析模块,对植物PAR吸收及光谱反射指数NDVI进行成像分析• 可选配RGB成像分析模块,用于植物形态测量分析等• 可选配GFP绿色荧光蛋白成像分析功能,用于植物转基因研究三、FluorCam叶绿素荧光成像系统应用案例1. 拟南芥叶绿体R-loop调控机制2017年清华大学生命学院孙前文课题组通过分析获得一个新的定位于叶绿体中的核糖核酸酶H蛋白(AtRNH1C),发现该蛋白可以调节叶绿体中R-loop水平的变化,从而维持基因组的稳定性和发育。他们使用FluorCam封闭式叶绿素荧光成像系统,发现AtRNH1C对叶绿体的发育有重要作用。在使用喹诺酮类药物环丙沙星(CIP)处理后,通过FluorCam叶绿素荧光成像图可以直观发现野生型的生长被抑制,同时叶片变色。而atrnh1c突变体则加强了CIP的毒害效应。这更加证实了AtRNH1C的功能。本实验的荧光成像检测是在易科泰Ecolab实验室完成的。2020年,孙前文课题组又使用FluorCam封闭式叶绿素荧光成像系统结合分子实验结果,证实了R-loop解旋酶过表达能够拯救由于异常累积HO-TRC触发R-loop共同表达造成的缺陷,从而维持拟南芥叶绿体基因组完整性。参考文献:1. Yang Z, et al. 2017. RNase H1 Cooperates with DNA Gyrases to Restrict R-loops and Maintain Genome Integrity in Arabidopsis Chloroplasts. The Plant Cell, doi:10.1105/tpc.17.003052. Yang Z, et al. 2020. RHON1 Co-transcriptionally Resolves R-Loops for Arabidopsis Chloroplast Genome Maintenance. Cell Reports 30: 243–2562. 构建耐盐生菜品种表型鉴定体系目前,全球农业都受到土壤和灌溉水盐分升高的威胁。大约50%的灌溉农田都受到了盐分的影响。2013年的经济分析指出由于盐分诱发的土壤退化和作物产量损失在全球造成了273亿美元的损失。作为一种重要的蔬菜作物,生菜(Lactuca sativa L.)在世界范围内都进行了广泛的种植。生菜产量最高的国家为美国、欧盟和中国。而生菜对盐分胁迫非常敏感的。盐分胁迫会造成生菜生物量减少、诱发叶烧病和早衰等。美国农业部(USDA)的科学家尝试确定生菜盐胁迫的关键生理表型性状,用于筛选高耐盐的生菜品种,希望从这些数据中筛选出最灵敏的指标构建耐盐生菜品种表型鉴定体系。与传统作物表型测量相比,一方面光系统对各种生物和非生物胁迫因素都非常敏感,而叶绿素荧光成像分析可以无损地直接测量胁迫对光系统的损伤程度和机理,在胁迫初期乃至症状出现前即可检测到胁迫的发生;另一方面,叶绿素荧光成像分析技术与自动传送系统集合,能够实现对大量样品的高通量无损快速检测,非常适用于作物品种的筛选。他们使用的PlantScreen XYZ植物表型成像分析系统就能够将这两方面的优势完美地结合起来。其样带式FluorCam叶绿素荧光成像单元是目前唯一使用脉冲调制式叶绿素荧光成像技术实现大型整株植物测量的商用化仪器。自动传送系统可以自动调整成像单元的位置与高度,结合专用软件可以对几十株乃至上百株样品进行自动叶绿素荧光成像分析。实验中使用了球生菜、奶油生菜、直立生菜、叶生菜等不同的栽培品种和生菜的野生亲缘种L. serriola L,共240株样品。这些品种中既有耐盐品种,也有盐胁迫敏感品种。所有样品在同样盐胁迫处理下进行了叶绿素荧光成像分析。研究者重点分析了QY_max(Fv/Fm)最大光化学效率、Fv/Fm_L(Fv’/Fm’)光适应最大光化学效率、NPQ非光化学淬灭(最大荧光)、qN非光化学淬灭(可变荧光)、qP光化学淬灭、QY实际光化学效率(量子产额)、Rfd荧光衰减比率等荧光参数。值得一提的是,叶绿素荧光成像图经过校准后,还可以直接获得整株植物具备光合活性的叶面积。结合荧光参数还可以对叶面积进行不同胁迫程度的定量分级和图像分割。本研究中直接使用叶绿素荧光成像获得的光合活性叶面积取代了传统测量的叶面积。荧光数据与鲜重等传统表型数据进行了相关性分析和主成分分析,结果表明敏感栽培种的叶绿素荧光特征是低QY,qN,NPQ和Rfd,而耐受栽培种的特征是高QY_max,Fv/Fm_L和QY_D。与叶绿素荧光参数的高灵敏度相比,大多数样品的叶绿素指数和CO2同化速率在盐胁迫处理前后都没有表现出显著的差异。因此,研究者建议在筛选高耐受品系时以较高的叶面积配合较高的Fv/Fm和QY作为初筛指标。后续,美国农业部又使用加装了高光谱成像单元的PlantScreen表型成像系统与FluorCam结合,通过叶绿素荧光成像数据与高光谱成像数据绘制了生菜水分胁迫响应基因位点的分子图谱。参考文献:1. Adhikari N D, et al. 2019. Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Sensors, 19: 48142. Kumar P, et al. 2021. Molecular Mapping of Water-Stress Responsive Genomic Loci in Lettuce (Lactuca spp.) Using Kinetics Chlorophyll Fluorescence, Hyperspectral Imaging and Machine Learning. Front. Genet. 12: 634554
    留言咨询
  • 聚合酶链反应(PCR)常应用于医学,和生物学研究,实现定性和定量核酸分析。应用范围包括:DNA克隆测序基因的功能分析、DNA为基础的系统发育、遗传性疾病的诊断、遗传指纹鉴定(法医科学和亲子鉴定使用)和检测传染病诊断等。工作原理实时PCR技术是一项最新的核酸定量技术,该技术在常规PCR基础上运用荧光能量传递技术,加入荧光标记探针,巧妙地把核酸扩增、杂交、光谱分析和实时检测技术结合在一起;借助于荧光信号来检测PCR产物,一方面提高了灵敏度,另一方面还可以做到PCR每循环一次就收集一个数据,建立实时扩增曲线,准确地确定CT值,从而根据CT值确定起始DNA的拷贝数,做到真正意义上的DNA定量;另外由于CT值是一个完全客观的参数,CT值越小,模版DNA的起始拷贝数越小;因此,利用CT值确定DNA拷贝数的实时PCR方法比普通终点定量方法更加准确。应用领域生物医疗:肝炎、艾滋病、禽流感、性病等传染病诊断;分子诊断;遗传基因检测、基因治疗药物等畜牧养殖:禽流感、新城疫、口蹄疫、猪瘟、布鲁氏菌属等牛病、法氏囊病毒 (IBDV)等禽病、病毒性出血败血症病毒(VHS等鱼病,沙门菌、大肠埃希菌、胸膜肺炎放线杆菌、寄生虫病等;食品安全:沙门氏菌、志贺氏菌、单增李斯特氏菌等食源性微生物;食品过敏源快速检测、GMO转基因检定及定量分析、动物源性分析;微生物菌落:菌落总数、总大肠菌群、耐热大肠菌群、大肠埃希氏菌、贾地鞭毛虫和隐孢子虫马铃薯种薯:马铃薯环腐病菌、晚疫病黑胫病等DNA病原体 ; 马铃薯卷叶病毒等 RNA病原体;马铃薯金线虫,银线虫等土传病。 科学研究:医学、农牧、生物相关分子生物学定量研究。优势特点采用微芯片和荧光反应系统进行样品实时快速定量检测,完成实时定量PCR实验时间0.5-1小时升温速率快升降温速率7 ℃/s、温度范围0-99℃、控温精度±0.1℃微芯片的样品通量可达48个、微孔所需的样品体积仅为1-1.2 μl,较大的降低了样品和试剂的消耗。低样品量和试剂消耗,1-2μL样品只需要0.5-1μL PCR预混液低检测限,1-5DNA(RNA)副本/微反应器带固化PCR试剂的即用型微芯片48个微型反应器中可同时放置4个检测器通道检测系统不易受到污染,检测芯片完全与外界隔离实时数据监测,实时程序设置(温度、PCR循环周期);分析时间;预期的完成时间;PCR曲线参数;加/减DNA分析结果用户友好的图形界面,报表自动生成技术参数样品温控系统 加热速度:7℃/s冷却速度 7℃/s单次肥腻样品体积 1-2微升微反应器中DNA最小含量 1 DNA拷贝PCR分析时间 45次循环20-30分钟单个基因芯片中微反应器个数 48孔温控范围 0-99℃ 检测通道1 染料 FAM,SYBR-Green检测通道2 染料 HEX,VIC 检测通道3 染料 ROX检测通道4 染料 Cy5 ROX软件控制 外部PC控制专用PCR分析软件和数据库维护电源要求n 100W外观规格: 185x260x285mm
    留言咨询
  • 产品简介: 美国Hygiena Pi-102 水质/食品检测ATP荧光仪可检测大肠杆菌,大肠菌群。 Pi-102 食品细菌快速测定仪利用ATP生物发光法,配合高灵敏光电倍增管和专用试剂,可在10分钟内对食品样品(经前处理)中所含微生物总数做出快速估算,将结果数值与国家相应标准对应,可初步判断食品样品中微生物情况,如是否超标。但此方法所得结果仅供参考,因ATP生物发光反应受各类因素(温度、酸碱、稀释浓度等)影响,结果与常规培养计数所得的CFU(colony formine unit,菌落形成单位)存在一定偏差,所以该检测建议客户设定临界值做参考用。 相比常规培养计数法,该检测快速、灵敏,尤其是检测水样等微生物含量较低的样品时。 技术参数: 检测精度 1 X 10-18 mol/ATP/assay 检测时间 默认5秒 (0.2-100秒可调) 检测模式 RLU 、 fg (细菌细胞ATP含量) 资料储存 结果可分类储存,800个记忆存储 屏幕显示 LCD 尺寸/重量 208 *105 * 57 (长*宽*高mm) / 1.5 kg 测量值 0 &ndash 3,000,000 RLU 精确误差 + / - 5 % 与PC连接 可实时检测并传输结果 电力 内置 Ni/Cd 充电电池,外接电源 应用范围: 食品工业、化妆品制造业、医疗单位卫生监测。 配合专用试剂,可对测液体、固体食品、表面等微生物总数做快速评估。注意,结果为参考用。 原理: ATP是三磷酸腺酐的简称,是细胞内供能分子。Pi-102 食品细菌快速测定仪通过检测样品中ATP与荧光素酶的发光反应,得出光单位读数,经换算可估算出样品中ATP总数水平,进一步间接判断样品中微生物总数,为食品卫生监督现场检测提供参考。 首先使用相关试剂对细菌外ATP进行降解、消除。再使用提取液释放细菌内的ATP并通过酶阻止ATP的降解,最后加入荧光素酶与ATP进行发光反应。 通过高灵敏度光电倍增管所测量的发光值与实际存在的ATP成正比。再通过与标准品比对,就可能计算出被测样品的ATP含量并以fg或RLU形式表示。 相关证书: 美国MPC(Medical Packaging Corporation)总公司出具: 美国公共健康与社会福利部(卫生与公众服务部) 食品及药物管理局 许可证 No :2023790 美国加利福尼亚州 公众卫生部 食品及药物管理局 生产许可证No :61193 *注:本产品不属于医疗器械 Pi-102 细菌快速测定仪 与SystemSURE Plus ATP 荧光仪对比 Pi-102 食品细菌快速测定仪 SystemSURE Plus ATP 荧光仪 比较 反应原理 ATP生物发光检测 ATP生物发光检测 相同 仪器体积 小型台式 手持 灵敏度 10 -17 &ndash 10 -18 mol ATP 10 -15 mol ATP Pi-102 高出近1000倍 配套光电管 高灵敏度光电倍增管 普通光电倍增管 检测项目 可检测液体、固体食品、表面 表面 Pi-102范围更广泛 使用试剂 食品微生物总数快速检测盒 水质ATP检测试剂盒 Ultrasnap TM 一体化标准试剂 Aquasnap TM 一体化水样试剂 Aquasnap TM 一体化水样试剂 Ultrasnap TM 一体化标准试剂 Aquasnap TM 一体化水样试剂 升级拓展性 可配合免疫磁珠等,近一步对致病菌等做定性检测 临界值设定 高风险控制 5000-18000 RLU 常规 控制 18000 RLU 以上 高风险控制 10-30 RLU 常规 控制 30-100 RLU 综述 Pi-102 食品细菌快速测定仪与SystemSUREⅡ ATP 荧光仪 同Hygiena公司旗下产品。两者分别设计为检测不同项目,SystemSUREⅡ ATP 荧光仪小型,便携,但检测灵敏度低,适合于现场对表面做快速检测。 Pi-102 食品细菌快速测定仪相对更精密和复杂,配有高灵敏度光电倍增管,和反应试剂盒,不仅能检测表面,还能对液体、固体食品(经前处理)中微生物水平进行检测。 品牌介绍: Hygiena 是一家有着30年历史的微生物与生命科学产品生产公司,主要为食品、餐饮、卫生保健与生命科学等行业提供快速检测产品。Hygiena的产品已被世界多家知名企业和许多中小型企业广泛采用。Hygiena旨在为客户提供简便、易用和可靠的新科技产品。所有Hygiena产品均有GMP标准,确保优异的质量。Hygiena总部位于美国加州Camarillo,在英国设有分公司,在全世界已有80个以上的区域代理商。
    留言咨询
  • DY-7200产品介绍: 荧光定量免疫层析技术 荧光定量免疫层析技术可认为是食品安全检测技术里最xin的,也是相对较成熟的POCT(现场即时检测技术)检测技术。光定量层析技术结合了免疫学技术、色谱层析技术、生物探针技术和微光探测技术等,是食品安全检测中的新型检测技术。荧光定量层析技术具有灵敏度高、可定量、操作便捷、检测快速等优点。 技术优势:高灵敏度、定量检测、检测速度快、操作简便、检测结果准确稳定。 抗生素荧光定量检测仪 1、基于光电检测原理的免疫荧光检测系统,利用色谱层析技术、高分子纳米材料技术和免疫学原理研制而成;结合了Elisa法的高灵敏度和胶体金法的快速的优点,具有检测精度高、稳定性强、检测速度快、成本低廉的特点 2、操作屏幕图形化设计,界面简单直观,让人一目了然。无需专业人员亦可进行现场快速检测。 3、体积小,重量轻,携带方便,能满足不同环境的检测需求。 4、快速检测,测试读卡时间<5秒,可以大大提高测试效率。 DY-7200荧光定量免疫层析快检试剂:
    留言咨询
  • 产品介绍 Aquation经典叶绿素荧光仪可作为台式使用,也可用于田间,防水设计传感器测量质包括水生植物和珊瑚等也非常方便,同时备选USB以及无线连接。此系列经典叶绿素荧光仪坚固耐用、操作简便、配置灵活多样,使之成为实验室、温室、田间、水下研究和教学实验的理想工具。本系列叶绿素荧光仪可实现全防水野外测量(乃至水下测量)甚至实现无线连接,将测量变的简单便捷。 Aquation经典叶绿素荧光仪使用PAM 测量技术来测量光合系统II的不同荧光,测量值为F,Fo,Fm′,Fm,Fv/Fm, ΦPSII以及其它计算值 (如ΦNO, ΦNPQ)。此类易于使用的PAM荧光仪用在陆生植物、海藻、珊瑚、大型海藻和小型海藻的生理研究,叶绿素浓度通过从获取的相对叶绿素指数进行估计。无线备选允许在无线范围内使计算机远离水;全防水荧光传感器可用于水下研究,可提供台式工作平台基座或将电缆从基座接入。所有命令均通过PC来实现。Aquation公司的经典叶绿素荧光仪使调制叶绿素荧光测量变得非常简单。它们采用饱和脉冲技术来测量较大光合效率和实际光合效率,并提供光化光和远红光。用户可以使用预置程序进行测量,也可编辑自己的程序进行测量。所有的程序测量过程都可以在软件中设置好进行自动重复。 技术参数 测量参数:F, Fo, Fo′, Fm, Fm′,rETR,PAR,T 计算参数:ΦII, Fv/Fm, NPQ,ΦNO, ΦNPQ, qP, qL,qN 光化光 (白 LED) :4500 Φmol.m-2.s-1 饱和光 (白LED):10500 Φmol.m-2.s-1 测量光 (470 nm LED) :0.1W 远红光 (735 nm LED) :40 Φmol.m-2.s-1 电压:110~240 VAC或 12 V DC 通讯:USB 或2.4 GHz 控制:Windows PC (或 Windows emulator) 温度范围:0~45°C (操作);-5~ 60°C (储存) 尺寸 (传感器):45mm (2.4”) 直径x 55mm (2.4”) 尺寸(接口盒):长127 x 63 x 30 mm (5” x 2.5” x 1.2”) 重量:传感器和电缆 250g/8.8oz 外壳材质:Acetal 塑料和316不锈钢 电池:可充电锂电池 内存:2GB产品特点 使用PAM方法测量叶绿素荧光 配置采用远红光 自动调量程以及自动归零 田间防水设计 无线或USB连接电脑 传感器采用平基座或从基座延伸的电缆 连接到电脑或数据采集仪可实现重复测量 易用软件、界面简洁 预编程光曲线产品应用 植物光合作用 植物生理、生态研究 监控叶绿素含量 各种生物和非生物逆境胁迫 水生植物、藻类、珊瑚研究参考文献 1.Nayar, S. and Bott, K. (2015). Uptake and translocation of ammonium and nitrate by temperate seagrass Zostera nigricaulis in Port Phillip Bay. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2014/000665-1. SARDI Research Report Series No. 819. 51pp.Procaccini, G., Ruocco, M., Marín-Guirao, L., et al. 2017. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica. Scientific Reports 2.Cui, Y., Tian, Z., Zhang, X. et al. 2015. Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiol Plant. 37:196.Dudley, B.D., Hughes, R.F. and Ostertag, R. 2014. Groundwater availability mediates the ecosystem effects of an invasion of Prosopis pallida. Ecological Applications 24(8): 1954–1971
    留言咨询
  • Kautsky 与 Hirsch 于1931年首次发表论文“CO2同化新实验”,报道了用肉眼发现叶绿素荧光现象,荧光强度的变化与CO2同化速率呈负相关。Ladislav Nedbal教授与Martin Trtilek博士等基于脉冲调制技术(PAM,Pulse Amplitude Modulated technique)与CCD技术,于1996年研制成功FluorCam叶绿素荧光成像技术(Nedbal etc, 2000),使叶绿素荧光得以在二维和显微(细胞与亚细胞水平)水平上进行成像分析。PAM技术基于人工激发光(脉冲调制测量光、光化学光、饱和光脉冲)Protocols诱导成像,如何在自然光(太阳光)条件下对叶绿素荧光进行成像测量,从而实现对植物光合作用成像作图(mapping),成为科学家特别是生态观测、农业遥感等领域科学家的梦想。 AisaIBIS叶绿素荧光高光谱成像仪由芬兰Specim公司与德国Juelich研究中心为欧洲太空局(ESA)地球探测项目(SIFLEX)研制的Hyplant传感器,是世界上第一款商业化高光谱叶绿素荧光成像仪,采用夫琅和费线深度法,可以检测太阳辐射诱导叶绿素荧光(Sun-induced Fluorescence),用于陆空双基植物叶绿素荧光高光谱成像测量分析,可得到NDVI、EVI、F760(植物叶绿素荧光)等参数。 作为一款功能强大的超高光谱分辨率空陆双基成像系统,适用于地面及航空遥感SIF叶绿素荧光高光谱成像测量,AisaIBIS采用“夫琅和费线深度法”,该方法在670 - 780nm的特定光谱区域内,可对两条吸氧谱线底部的微弱荧光信号进行检测和定量。结合高光通量成像光谱仪和先进的sCMOS成像技术,可在飞行条件下以较高的成像速率和优异的光谱采样间隔(0.11nm)采集高质量、低噪声、高动态范围和信噪比的叶绿素荧光高光谱数据,可以安装在易科泰光谱成像与无人机遥感研究中心提供的近地面遥感平台、通量塔或者航空遥感平台,得到不同尺度的NDVI、EVI、F760(植物叶绿素荧光)等参数。适用于农业、林业、草原、湿地生态系统观测,如光合作用与植被胁迫(如病虫害、干旱等)研究、大田作物表型与种质资源检测、生态系统生产力与作物产量评估等。功能特点1.推扫式高光谱成像技术,采用“夫琅和费线深度法”获取SIF叶绿素荧光成像数据,使太阳光诱导叶绿素荧光测量提高到高空间分辨率水平2.科研级超高性能,光谱采样率达到0.11/0.22nm,高透光率F/1.7,高信噪比680:1 3.陆空双基,既可用于航空遥感,也可以安装于近地面遥感平台、通量塔,以获取不同尺度日光诱导叶绿素荧光高光谱成像数据4.结合易科泰生态技术公司提供的便携式叶片水平叶绿素荧光测量设备,可以满足不同尺度水平的观测研究5.可配置易科泰生态技术公司提供的全波段高光谱成像技术、Thermo-RGB红外热成像与RGB融合成像分析技术等 技术指标:1. SIF叶绿素荧光高光谱成像传感器CMOS科研级检测器,快照模式,珀尔贴制冷 波段范围:670-780nm光谱采样:0.11/0.22nm空间分辨率:384/768像素 透光率F/1.7、信噪比680:1、帧频65fps视野:32.3度,0.5m至无穷远 积分时间:在帧像周期内可调 数据接口:CameraLink 16-bit功耗:一般135W,最大200W成像系统重量(含DPU):<25kg支电机械快门,光温稳定功能2. Thermo-RGB红外热成像与RGB真彩成像融合分析技术,可区分阳光照射叶片或冠层、阴影叶片或冠层以及土壤的温度和覆盖度等,以精确反映作物/植物气孔导度动态,使作物冠层温度测量精准区分阳光照射叶片、阴影叶片及土壤背景,并可进行ROI选区分析、频率直方图分析显示及颜色分析等,适宜于高空间解析度冠层温度检测、物候观测、气孔导度观测、高通量作物表型分析等 3. AisaFENIX双镜头全波段高光谱成像:包括VNIR(380-970nm)和SWIR(970-2500nm)双镜头高光谱成像,高信噪比(1000:1)、分辨率,空间分辨率可达1024x像素4. 遥感平台:可选配航空遥感平台、通量塔、或易科泰生态技术公司提供的近地遥感平台5. 光谱成像近地遥感:可选配扫描式或机器人近地遥感光谱成像,包括叶绿素荧光成像(基于PAM技术)、高光谱成像、红外热成像等应用案例1:ESA(欧洲航天局)与NASA(美国国家航空航天局)合作开展生态健康与碳循环动态研究 ESA与NASA合作,采用基于AisaIBIS的HyPlant SIF航空遥感系统、美国NASA研发的基于LiDAR-高光谱-红外热成像航空遥感系统,同步获取森林的太阳光诱导叶绿素荧光成像、冠层结构信息、可见光至短波红外(400-2500nm)光谱反射成像信息、及冠层温度信息,以观测研究生态系统健康与碳循环动态(Middleton etc. The 2013 FLEX-US airborne campaign at the parker tract loblolly pine plantation in North Carolina, USA. Remote Sensing, 2013)应用案例2:AisaIBIS用于监测农作物长势-德国波恩大学农业试验站 德国Julich研究所、西班牙Valencia大学、意大利Milano-Bicocca大学、芬兰Specim公司等科学家,对基予AisaIBIS的HyPlant航空遥感系统(包括AisaIBIS和AisaFENIX)观测冠层(Top-of-Canopy, TOC)光谱反射与SIF叶绿素荧光技术,进行了全面解读,并采用该系统对农田作物进行了遥感作图分析(参见下图),该系统采用AisaIBIS、AisaFENIX全波段空陆双基高光谱成像(400-2500nm)等(Basbian Siegmann etc. The high-performance airborne imaging spectrometer HyPlant-from raw images to Top-of-Canopy reflectance and fluorescence products: Introduction of an Automatized Processing China. Remote Sensing, 2019)应用案例3:AisaIBIS用于估算不同时间作物初级生产力-德国科隆大学 德国科隆大学等科学家采用HyPlant航空遥感系统(基于AisaIBIS SIF叶绿素荧光高光谱成像和AisaFENIX高光谱成像技术),结合地面光合作用(采用Li6400或LCPro T光合仪)和土壤呼吸测量(采用Li8100或SRS2000土壤呼吸测量系统),对植被初级生产力及胁迫进行了观测研究(参见下图),结果表明,F760对现有GPP评估方法可以起到很好的改善和补充,SIF红色叶绿素荧光与远红波段叶绿素荧光比率可以灵敏地反映环境胁迫(S. Wieneke etc. Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. Remote Sensing of Environment, 2016)其它参考文献:Rascher, U., et al.(2015), Sun-induced fluorescenc – a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Global Change Biology.Rossini, M., et al.(2015), Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis, Geophys. Res. Lett.Wieneke, S., et al.(2016), Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. Remote Sensing of Environment.Colombo, R., et al.(2018), Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest. Global Change Biology.Gerhards, M., et al.(2018), Analysis of airborne optical and thermal imagery for detection of water stress symptoms. Remote Sensing.Max Gerhards, et al.(2018), Analysis of airborne optical and thermal imagery for detection of water stress symptom. Remote Sensing.Bandopadhyay, S., et al. (2018), Examination of Sun-induced Fluorescence (SIF) Signal on Heterogeneous Ecosystem Platforms using ‘HyPlant’. Geophysical Research Abstracts.Giulia Tagliabue, et al. (2019), Exploring the spatial relationship between airborne-derived red and far-red sun-induced fluorescence and process-based GPP estimates in a forest ecosystem. Remote Sensing of Environment.
    留言咨询
  • 产品名称:高精度能量色散X荧光总硫及多元素分析仪型 号:NEX DE适用产品:柴油、船用燃料油、蜡油、渣油、原油分析标准:GB/T 17040、ASTM D4294、ASTM D8252、ASTM D6481元素检测范围:钠Na~铀U样 品 量:5ml软 件:QuantEZ分析软件,支持中文分析时间:标准分析时间300秒, 可根据应用在30-900秒自由选择入射光净化:多层复合滤光片环境温度:10 ~ 35°C 相对湿度:小于80%,仪器外表及内部无凝结水其他要求:人类感受不到的振动,无腐蚀性气体、粉尘和颗粒物数据输出:USB及以太Ethernet网线输出 油品分析经典元素检测(ppm):
    留言咨询
  • 产品名称:CIT-3000SYB能量色散X荧光分析仪 产品说明、技术参数及配置 CIT-3000SYB 能量色散X荧光分析仪,是公司专门应对欧盟ROHS、WEEE指令和卤素测试要求而量身定做的一款高灵敏度、高精度的分析测试设备。 适用范围 适用于电子产品、工具、玩具等RoHS/WEEE有害元素(Pb、Hg、Br、Cd、Cr)和卤素检测; 型号:CIT-3000SYB 性能特点 采用数字化谱分析技术,计数率高,无漏计,稳定性好; 采用美国航天技术的Si (PIN)半导体探测器计数,配合专利的数字脉冲处理技术,能量分辨率优于150eV; 40KV-钨靶微型X射线管; 采用2048道多道分析器,分析精度更高; 一体化设计,性能稳定,运行可靠,性价比高;操作简单,测量时间短,同时配备PC机; 测量物质状态:固体、粉末、液体均可测,制样简单; 校正方式:采用欧盟RoHS标样校准数据。 技术指标 分析元素范围:Na-U 元素含量分析范围:1ppm -99.99% 探测器能量分辨率优于150eV 最低检出限:Cd/Cr/Hg/Br≤1ppm, Pb≤2ppm,Cl≤20PPm 校正方式:采用欧盟RoHS标样校准数据 测量范围:1-40KeV 高压:0kV-40kV 管流:0μA-100μA 专业的稳定电源:AC 220V±1%,50HZ(采用国内最先进的高品质稳压电源1000VA) 检测时间:120S~600S(时间随样品而调整) 圆形样品真空腔:直径14cm,高5cm; 工作环境温度:温度0-35℃;样品温度<70℃ 工作环境相对湿度:≤99%(不结露) 额定功率:50W 仪器重量:25Kg 仪器尺寸:500(W)X500(D)X450(H)mm 仪器配置 仪器主机一台 进口电制冷半导体探测器 X光管(0-40KV) 高压电源 品牌计算机一台 激光打印机一台 真空泵一台 压片机一台 制样模具一套 稳压电源一台 测试软件一套
    留言咨询
  • PAM-2500&mdash &mdash PAM-2100的升级版野外光合作用研究的首选仪器Schreiber教授因发明PAM系列调制叶绿素荧光仪而获得首届国际光合作用协会(ISPR)创新奖1983年,WALZ公司首席科学家、德国乌兹堡大学的UlrichSchreiber教授设计制造了全世界第一台调制荧光仪&mdash &mdash PAM-101/102/103,使在自然光下测量叶绿素荧光成为现实,解决了科学界近50年的技术瓶颈。PAM-101/102/103迅速在植物生理、生态、农学、林学、水生生物学等领域得到广泛应用,出版了大量高水平研究文献。但该仪器比较笨重,不易带到野外。1992年,WALZ公司首席科学家、调制荧光仪发明人、德国乌兹堡大学的UlrichSchreiber教授设计制造了全世界第一台便携式调制荧光仪&mdash &mdash PAM-2000,并且在植物生理生态学等科研领域得到广泛应用,此后十几年中成为全球最畅销的调制荧光仪。2003年,WALZ公司在保留PAM-2000所有功能和优点的基础上,结合最新技术,将PAM-2000升级到了PAM-2100。2008年,WALZ公司在保留PAM-2100所有功能和优点的基础上,结合最新的超便携个人电脑(UMPC)技术,将PAM-2100升级到了完全基于UMPC电脑Windows系统的PAM-2500。系统描述PAM-2500采用了独特的调制技术和饱和脉冲技术,从而可以通过选择性的原位测量叶绿素荧光来检测植物光合作用的变化。PAM-2500的调制测量光足够低,可以只激发色素的本底荧光而不引起任何的光合作用,从而可以真实的记录基础荧光Fo。PAM-2500具有很强的灵敏度和选择性,使其即使在很强的、未经滤光片处理的环境下(如全日照甚至是10000&mu molm-2s-1的饱和光强下)也可测定荧光产量而不受到干扰。因此,PAM-2500不但适合在实验室人工控制的环境下测量,还可以在自然环境中甚至是强烈的全光照条件下开展野外科学研究。PAM-2500不仅可以连接电脑通过WindowsXPSP2系统或Vista系统操作,还可连接UMPC通过WindowsXPTabletPCEdition来操作。UMPC带60G硬盘,1G内存,功能堪比笔记本电脑。PAM-2500除了标准的叶绿素荧光测量所需配置外,还额外增加了单周转饱和闪光(ST)和多周转饱和闪光(MT),为将来升级P700测量功能埋下了伏笔。特点*声誉卓著的PAM-2100的升级版 *精巧、准确、迅速、操作简便的高级光合作用检测设备 *利用强大的UMPC电脑进行操作,完全基于Windows操作系统,界面友好 *利用超强发光二极管(LED)提供光化光和饱和脉冲,不再使用散热量大的卤素灯 *强大的数据收集、分析和存贮功能 *内置锂电池可满足长时间野外工作需要,并可连接外置12V电池 *多种叶夹可供选择,专利设计的光适应叶夹2030-B可同时记录PAR和温度变化 *60G硬盘,无限量存储功能 *可测荧光诱导曲线的快速上升动力学O-I-D-P相和O-J-I-P相 *可测荧光诱导曲线的慢速下降动力学并进行淬灭分析(Fo、Fm、F、Fo&rsquo 、Fm&rsquo 、Fv/Fm、Y(II)=&Delta F/Fm&rsquo 、qL、qP、qN、NPQ、Y(NPQ)、Y(NO)、ETR、C/Fo、PAR和叶温等) *可测光响应曲线和快速光曲线(RLC) *可在线检测植物、微藻、地衣、苔藓等的光合作用变化 *操作功能强大,特别适合野外操作,野外操作也使用Windows系统应用领域仪器设计特别适合野外使用,可用于研究光合作用机理、各种环境因子(光、温、营养等)对植物生理状态的影响、植物抗逆性(干旱、冷、热、涝、UV、病毒、污染、重金属等)、植物的长期生态学变化等。在植物生理学、植物生态学、植物病理学、农学、林学、园艺学、水生生物学、环境科学、毒理学、微藻生物技术、极地植物光合作用研究等领域有着广泛应用。主要技术参数*测量光:红色LED,630cnm,FWHM20nm;调制频率测量Fo时5-5000Hz可选,打开光化光时1-100kHz可选,测量荧光诱导动力学的快相时200kHz;20级可调。*光化光源:蓝色光化光:LED,455nm,FWHM20nm,光强范围0-800&mu molm-2s-1PAR,20级可调。红色光化光:LED,630nm,FWHM15nm,光强范围0-5000&mu molm-2s-1PAR,20级可调。*饱和脉冲:红色LED,630nm,FWHM15nm,最大PAR25000&mu molm-2s-1,持续时间0.1-0.8s可调,光强20级可调。*远红光:LED,750nm,FWHM25nm,20级可调。*单周转饱和闪光:红色LED,630nm,FWHM15nm,最大PAR125000&mu molm-2s-1,持续时间5-50 s可调。*多周转饱和闪光:红色LED,630nm,FWHM15nm,最大PAR25000&mu molm-2s-1,持续时间1-300ms可调,光强20级可调。*信号检测:PIN-光电二极管,带长通滤光片(T(50%)=715nm),带选择性锁相放大器。*测量参数:Fo、Fm、F、Fo&rsquo 、Fm&rsquo 、Fv/Fm、Y(II)=&Delta F/Fm&rsquo 、qL、qP、qN、NPQ、Y(NPQ)、Y(NO)、ETR、C/Fo、PAR和叶温等。*耗电:基础操作1.6W,内置光源(测量光、红色和蓝色光化光、远红光)为最大输出时8W,饱和脉冲最大输出时37W。*充电时间:关机状态下约需6h。*微型光量子传感器:测量光合有效辐射(PAR),测量范围0~20000&mu molm-2s-1PAR*热电耦(温度传感器):Ni-CrNi,直径0.1mm,测量范围 20~+60℃*数据通讯:USB;蓝牙v2.0+EDRClass2*操作系统:WindowsXPTabletPCEdition,WindowsXPSP2或Vista*超移动个人电脑(UMPC)参数型号:三星Q1Ultra触摸屏UMPC处理器:IntelA110800MHzULV缓存:512Kb内存:1G的DDRII内存硬盘:60G,4200rpm显示器:7英寸WSVGA触摸屏显示器,1024x600像素图形卡:IntelGMA950,最大128M共享内存通讯方式:USB2.0(两个);有线LAN;无线LAN(802.11b/g);蓝牙2.0+EDR读卡插槽:SD/MMC电池:两块锂电池,一块为7.4V/4Ah,可工作3.5h,另一块为7.4V/7.8Ah,可工作6h供电:100-240VAC,50-60Hz部分文献(PAM-2000/PAM-2100/PAM-2500)1.AhmedH,Hä derD-P:RapidecotoxicologicalbioassayofnickelandcadmiumusingmotilityandphotosyntheticparametersofEuglenagracilisEnvironmentalandExperimentalBotany2010,69(1):68-75.[PAM-2000]2.delaPeñ aTC,RedondoFJ,ManriqueE,LucasMM,PueyoJJ:NitrogenfixationpersistsunderconditionsofsaltstressintransgenicMedicagotruncatulaplantsexpressingacyanobacterialflavodoxin.PlantBiotechnologyJournal2010:inpress.[PAM-2000]3.deOliveiraVC,JolyCA:FloodingtoleranceofCalophyllumbrasilienseCamb.(Clusiaceae):morphological,physiologicalandgrowthresponsesTrees-StructureandFunction2010,24(1):185-193.[PAM-2100]4.GladisF,KarstenEU,SchumannR:Preventionofbiofilmgrowthonman-madesurfaces:evaluationofantialgalactivityoftwobiocidesandphotocatalyticnanoparticlesBiofouling2010,26(1):89-101.[PAM-2000]5.GouldKS,DudleDA,NeufeldHS:Whysomestemsarered:caulineanthocyaninsshieldphotosystemIIagainsthighlightstress.JournalofExperimentalBotany2010:inpress.[IMAGING-PAM,PAM-2500,PAM-2000]6.GuadagnoCR,DeSantoAV,D' AmbrosioN:Arevisedenergypartitioningapproachtoassesstheyieldsofnon-photochemicalquenchingcomponentsBiochimicaetBiophysicaActa2010,1797(5):525-530.[PAM-2000]7.Iglesias-BaenaI,Barranco-MedinaS,Lá zaro-PayoA,Ló pez-JaramilloFJ,SevillaF,Lá zaroJ-J:Characterizationofplantsulfiredoxinandroleofsulphinicformof2-Cysperoxiredoxin.JournalofExperimentalBotany2010:inpress.[PAM-2000]8.Ilí kP,Kotabová E,&Scaron pundová M,Nová kO,KaňaR,Strzał kaK:Low-light-inducedViolaxanthinDe-epoxidationinShortlyPreheatedLeaves:Uncou
    留言咨询
  • FP-leaf叶夹式植物光谱与叶绿素荧光测量包用于测量叶片水平的植物叶绿素荧光、叶片反射光谱及光谱指数等,包括手持式叶绿素荧光测量仪和植物反射光谱测量仪。适于野外大量样品的快速检测,广泛应用于植物胁迫响应、除草剂检测,生态毒理生物检测、植物反射光谱测量、色素组成变化、氮素含量变化、产量估测、生态学、分子生物学等。 测得的数据以图形或数据表的形式实时显示在仪器的显示屏上。这些数据都可以储存在仪器的内存里并传输到电脑里。测量仪由可充电锂电池供电,不需要使用电脑即可独立进行测量。测量仪配备全彩色触屏显示器、内置光源、内置GPS和用于固定样品的无损叶夹。应用领域: 适用于光合作用研究和教学,植物及分子生物学研究,农业、林业,生物技术领域等。研究内容涉及光合活性、胁迫响应、农药药效测试、突变筛选、色素含量评估等。 1.植物光合特性研究 2.光合突变体筛选与表型研究 3.生物和非生物胁迫的检测 4.植物抗胁迫能力或者易感性研究 5.农业和林业育种、病害检测、长势与产量评估 6.除草剂检测 7.色素组成变化 8.氮素含量变化 9.产量估测 10.教学 功能特点 :结构紧凑、便携性强,光源、检测器、控制单元集成于仅手机大小的仪器内功能强大,具备了大型叶绿素荧光仪和反射光谱仪的所有功能,可以测量所有叶绿素荧光参数和自动计算常用的植物反射光谱指数,同时提供荧光动力学曲线图和高精度反射光谱图叶绿素荧光检测内置了所有通用实验程序,包括3套荧光淬灭分析程序、3套光响应曲线程序、OJIP快速荧光动力学曲线等叶绿素荧光检测具备高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP–test参数专业软件功能强大:叶绿素荧光分析软件可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量;植物光谱分析软件可以自动计算内置植被指数、计算用户自定义植被指数、实时显示数据图和数据表叶绿素荧光检测具备无人值守自动监测功能具备GPS模块,输出带时间戳和地理位置的叶绿素荧光参数图表和反射光谱数据 应用案例 1: 欧盟委员会联合研究中心通过无人机遥测技术研究叶缘焦枯病菌在橄榄树中的感染。同时通过FluorPen叶绿素荧光仪和RP400光谱仪直接检测叶片的叶绿素荧光和反射光谱植被指数,用于对照修正无人机遥测数据。研究结果发表在《Nature Plants》(Zarco-Tejada,2018)。 应用案例 2: 水稻灌浆期的夜间高温会显著影响水稻的产量。捷克科学院全球变化研究中心与国际水稻研究所合作研究夜间高温对成熟水稻穗光学特性的变化追踪。研究者使用FluorPen手持式叶绿素荧光仪测量了光合系统有效光化学效率ΦII(也称为有效量子产额QY或ΦPSII)和稳态荧光Fs。同时使用PolyPen手持式植物反射光谱测量仪的前期型号WinePen测量了反射光谱曲线,并计算了PRI、mSR705、mND705、R470/R570、R520/R675等9项植被指数。这些植被指数与水稻叶片/穗的光合能力、稳态荧光、叶绿素浓度等紧密相关(Gil-Ortiz R et al. 2020)。 参考文献: Singh, S., Mohan Prasad, S. & Pratap Singh, V. Additional calcium and sulfur manages hexavalent chromium toxicity in Solanum lycopersicum L. and Solanum melongena L. seedlings by involving nitric oxide. Journal of Hazardous Materials 398, 122607 (2020).Ariyarathna, R. a. I. S., Weerasena, S. L. & Beneragama, C. K. Application of Polyphasic OJIP Chlorophyll Fluorescent Transient Analysis as an Indicator for Testing of Seedling Vigour of Common Bean (Phaseolus vulgaris L.). Tropical Agricultural Research 31, 106–115 (2020).Prity, S. A. et al. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status. Protoplasma (2020) doi:10.1007/s00709-020-01517-w.Rahman, M. A. et al. Arbuscular Mycorrhizal Symbiosis Mitigates Iron (Fe)-Deficiency Retardation in Alfalfa (Medicago sativa L.) Through the Enhancement of Fe Accumulation and Sulfur-Assisted Antioxidant Defense. International Journal of Molecular Sciences 21, 2219 (2020).Vitorino, L. C. et al. Biocontrol Potential of Sclerotinia sclerotiorum and Physiological Changes in Soybean in Response to Butia archeri Palm Rhizobacteria. Plants 9, 64 (2020).Kasampalis, D. S., Tsouvaltzis, P. & Siomos, A. S. Chlorophyll fluorescence, non-photochemical quenching and light harvesting complex as alternatives to color measurement, in classifying tomato fruit according to their maturity stage at harvest and in monitoring postharvest ripening during storage. Postharvest Biology and Technology 161, 111036 (2020).Soares, J. S., Santiago, E. F. & Sorgato, J. C. Conservation of Schomburgkia crispa Lindl. (Orchidaceae) by reintroduction into a fragment of the Brazilian Cerrado. Journal for Nature Conservation 53, 125754 (2020).Poblete, T. et al. Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis. ISPRS Journal of Photogrammetry and Remote Sensing 162, 27–40 (2020).Chiluwal, A. et al. Deterioration of ovary plays a key role in heat stress-induced spikelet sterility in sorghum. Plant, Cell & Environment 43, 448–462 (2020).Maai, E., Nishimura, K., Takisawa, R. & Nakazaki, T. Diurnal changes in chloroplast positioning and photosynthetic traits of C4 grass finger millet. Plant Production Science 0, 1–13 (2020).De Micco, V. et al. Dust accumulation due to anthropogenic impact induces anatomical and photochemical changes in leaves of Centranthus ruber growing on the slope of the Vesuvius volcano. Plant Biol J 22, 93–102 (2020).Gil-Ortiz R et al. 2020. New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy 10: 438Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., et al. 2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4(7), 4 ts, 4(7), 432–439.Poblete, T., Camino, C., Beck, P. S. A.,A., Hornero, A., et al. 2020. Detection of Xylella fastidiosa in fastidiosa infection symptoms with airborne multispectr tral and thermal imagery: Assessing bandset redu eduction performance from hyperspectral analysis. ISPRS Journal of urnal of Photogrammetry and Remote Sensing, 162, 27–40.Junker L. V., Rascher U., Jaenicke H., et al. 2019. Detection of plant stress responses in aphid-infested lettuce using non-invasive detection methods. Integrated Protection in Field Vegetables IOBC OBC-WPRS Bulletin Vol.142, 2019 . 8-16 8Wu, L.B., Holtkamp, F., Wairich, A., & Frei, M. 2019. Potassium Ion Channel Gene OsAKT1 Affects Iron Translocation in Rice Plants Exposed to Iron Toxicity. Frontiers in Plant Science, 10.Bartak, M., Hajek, J., Morkusova, J., et al. 2018. Dehydration-induced changes in spec pectral reflectance indices and chlorophyll fluorescence of Antarctic e of Antarctic lichens with different thallus color, and intrathall intrathalline photobiont. Acta Physiologiae Plantarum, 40(10 10).Bartak, M., Mishra, K.B., Mareckova A, M. 2018. Spectral reflectance indices sense desiccation induced changes in the thalli of Antarctic lichen Dermatocarpon polyphyllizum. Czech Polar Reports 8 (2): 249-259.Gálvez, S., Mérida-García, R., Camino Ino, C. et al. 2018. Hotspots in the genomic architectu hitecture of field droughtresponses in wheat as breeding targets. Functional & Integrative Genomics.Nuttall, J. G., Perry, E. M., Delahunt Ty, A. J. et al. 2018. Frost response in wheat and early detection using proximal sensors. Journal of Agrono f Agronomy and Crop Science, 205(2), 220–234.Sytar O., Zivcak M., Olsovska K., Breststic M. 2018 Perspectives in High-Throughput Phenotyping of Qualitative Traits at the Whole-Plant Level. In: Sengar R., Singh A. (eds) Eco-friendly Agro-biolog logical Techniques for Enhancing Crop Productivity. Springer, Singapore.
    留言咨询
  • 仪器简介: 专门针对RoHS/ELV/玩具/包装/首饰等中有害元素及无卤化中卤素的测量 能同时测量Cl/Cr/As/Se/Br/Cd/Sb/Ba/Hg/Pb等元素 DM2300型X荧光分析仪(或称X荧光光谱仪)(英文名为DM2300 EDXRF Analyzer)是由上海爱斯特电子有限公司集数十年X荧光分析仪的研究经验,在公司原有的DM系列X荧光钙铁分析仪、测硫仪、铝硅分析仪、多元素分析仪等的基础上研制推出的一种达到国际先进水平的分析仪器。仪器采用了能量色散X射线荧光(Energy Disperse X Ray Fluorescence)(EDXRF)分析技术,能分析从铝(原子序数13)到铀(原子序数92)的所有元素,对大多数元素分析的含量可低至1ppm高至100%,还能进行镀层厚度测量。具有分析速度快、精度高、人为误差小、操作简便、只需一次性投资、无污染等特点,故广泛应用于电子电气、建材、冶金、石油、化工、地质、矿山等各行各业。 对于RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素的测量,目前有多种方法,但绝大部分的测量方法都非常烦琐,特别是制样那更是复杂,且时间很长,又污染环境。而X荧光分析法虽然准确度较差,但它分析速度快、操作简单、无污染、制样方便或根本无需制样,能对绝大部分产品作出正确判定,而少量不能判定的产品再用其他方法,从而达到先筛选的目的,使测量方便了许多。所以X荧光分析法作为RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素测量的筛选法,得到全世界所有国家的确认。如我国国家质量监督检验检疫总局最近颁布了六个有关RoHS的检测方法标准,其第一个标准就是:SN/T 2003.1-2005 《电子电气产品中铅、汞、镉、铬、溴的测定 第一部分:X射线荧光光谱定性筛选法》。对每一个需要测量RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素的单位,X荧光分析仪是不可缺少的。 DM2300型X荧光分析仪是本公司诸多X荧光分析仪中一款专门针对RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素的测量而设计开发的产品。它采用X光管激发,光管高压的电压和电流连续可调,具有多个滤色片和准直器并可自动转换,能使仪器达到最高的激发效率、最佳的计数率和最高的峰背比,从而有极高的精度和很小的检出限;它采用高分辨率的PIN半导体探测器,有效避免元素的相互干扰;它采用内标方法及具有自主知识产权的分谱技术,在无标准样品时亦可准确分析样品;它的样品室体积达480 mm×350 mm×125mm,能测量大件物品;它的设计对屏蔽防护极好,无三废公害;其测量准确度及检出限达到进口同类仪器的水平,而价格只是进口同类仪器的几分之一,特别适合我国国情。凭借着本公司数十年X荧光分析仪的研究经验,凭借着本公司数十年在X荧光分析领域的良好口碑和重要地位,我们相信:DM2300型X荧光分析仪定将得到广大需要测量RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素的单位的认可,成为国外同类产品的替代品,为我国的检测事业和环境保护作出一定的贡献。技术参数: (1) 分析元素种类:Cl氯、铬Cr、砷As、硒Se、溴Br、镉Cd、锑Sb、钡Ba、汞Hg、铅Pb等。(2) 有害元素及卤素含量分析范围: 5~3000ppm。(3) 系统分析时间: 300s (典型值)。(4) 分析精度: 理想状态下,测量绝对精度为2~3ppm; 一般状态下,测量相对误差为10%。(5) 检出限: ≤2 ppm。(6) X射线光管: 高压:≤50kV, 电流:≤1mA,均连续可调。(7) 准直器: Ф1mm、Ф3mm、Ф5mm、Ф7mm共4个可自动切换。(8) 系统能量分辩率: 对于MnK5.9keV的X射线,其半高宽:≤155 eV。(9) 长时间稳定性: 开机1小时后,整机8小时稳定性:峰位和峰面积相对标准偏差均小于0.1%。(10) 样品室体积: 长×宽×高:480 mm×350 mm×125mm。(11) 使用条件: 环境湿度:5~30℃,相对湿度≤80%(25℃),供电电源:220±20V,50Hz。(12) 整机功耗: ≤150W。(13) 尺寸与重量: 长×宽×高:503 mm×412 mm×478mm;重量:45Kg。主要特点: (1) 采用EDXRF物理分析方法,分析中不接触、不破坏样品,无需化学试剂等其他辅助材料。(2) 多元素同时快速分析,一般几分钟给出Cl氯、铬Cr、砷As、硒Se、溴Br、镉Cd、锑Sb、钡Ba、汞Hg、铅Pb等元素的ppm含量结果。(3) 采用X光管激发,光管高压的电压和电流可调,使仪器达到最高的激发效率和最佳的计数率。。(4) 具有4个滤色片和4个准直器,可任意自动转换组合,使仪器达到最佳的计数率和最高的峰背比,从而有极高的精度和很小的检出限。(5) 采用高分辨率的PIN半导体探测器,有效避免元素的相互干扰。(6) 采用高分辨率的CCD摄像头,样品平台可移动,从而保证测量目标位置的准确。(7) 由计算机进行显示、操作和数据处理,从而使操作简便,分析快速准确。(8) 仪器集成化程度高,可靠性好,维修方便。环境适应能力强,长期稳定性好。(9) 采用内标方法及具有自主知识产权的分谱技术,在无标准样品时亦可准确分析样品。(10) 样品室体积大,能测量大件物品。(11) 价格功能比低,适合我国国情。(12) 设计对屏蔽防护极好,无三废公害,射线防护安全可靠。
    留言咨询
  • 仪器简介:专门针对RoHS/ELV/玩具/包装/首饰等中有害元素及无卤化中卤素的测量能同时测量Cl/Cr/As/Se/Br/Cd/Sb/Ba/Hg/Pb等元素 DM2300型X荧光分析仪(或称X荧光光谱仪)(英文名为DM2300 EDXRF Analyzer)是由上海爱斯特电子有限公司集数十年X荧光分析仪的研究经验,在公司原有的DM系列X荧光钙铁分析仪、测硫仪、铝硅分析仪、多元素分析仪等的基础上研制推出的一种达到国际先进水平的分析仪器。仪器采用了能量色散X射线荧光(Energy Disperse X Ray Fluorescence)(EDXRF)分析技术,能分析从铝(原子序数13)到铀(原子序数92)的所有元素,对大多数元素分析的含量可低至1ppm高至100%,还能进行镀层厚度测量。具有分析速度快、精度高、人为误差小、操作简便、只需一次性投资、无污染等特点,故广泛应用于电子电气、建材、冶金、石油、化工、地质、矿山等各行各业。对于RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素的测量,目前有多种方法,但绝大部分的测量方法都非常烦琐,特别是制样那更是复杂,且时间很长,又污染环境。而X荧光分析法虽然准确度较差,但它分析速度快、操作简单、无污染、制样方便或根本无需制样,能对绝大部分产品作出正确判定,而少量不能判定的产品再用其他方法,从而达到先筛选的目的,使测量方便了许多。所以X荧光分析法作为RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素测量的筛选法,得到全世界所有国家的确认。如我国国家质量监督检验检疫总局最近颁布了六个有关RoHS的检测方法标准,其第一个标准就是:SN/T 2003.1-2005 《电子电气产品中铅、汞、镉、铬、溴的测定 第一部分:X射线荧光光谱定性筛选法》。对每一个需要测量RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素的单位,X荧光分析仪是不可缺少的。DM2300型X荧光分析仪是本公司诸多X荧光分析仪中一款专门针对RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素的测量而设计开发的产品。它采用X光管激发,光管高压的电压和电流连续可调,具有多个滤色片和准直器并可自动转换,能使仪器达到最高的激发效率、最佳的计数率和最高的峰背比,从而有极高的精度和很小的检出限;它采用高分辨率的PIN半导体探测器,有效避免元素的相互干扰;它采用内标方法及具有自主知识产权的分谱技术,在无标准样品时亦可准确分析样品;它的样品室体积达480 mm× 350 mm× 125mm,能测量大件物品;它的设计对屏蔽防护极好,无三废公害;其测量准确度及检出限达到进口同类仪器的水平,而价格只是进口同类仪器的几分之一,特别适合我国国情。凭借着本公司数十年X荧光分析仪的研究经验,凭借着本公司数十年在X荧光分析领域的良好口碑和重要地位,我们相信:DM2300型X荧光分析仪定将得到广大需要测量RoHS指令、ELV指令、玩具、包装、首饰等中有害元素及无卤化中卤素的单位的认可,成为国外同类产品的替代品,为我国的检测事业和环境保护作出一定的贡献。技术参数:(1) 分析元素种类:Cl氯、铬Cr、砷As、硒Se、溴Br、镉Cd、锑Sb、钡Ba、汞Hg、铅Pb等。(2) 有害元素及卤素含量分析范围: 5~3000ppm。(3) 系统分析时间: 300s (典型值)。(4) 分析精度: 理想状态下,测量绝对精度为2~3ppm; 一般状态下,测量相对误差为10%。(5) 检出限: &le 2 ppm。(6) X射线光管: 高压:&le 50kV, 电流:&le 1mA,均连续可调。(7) 准直器: Ф1mm、Ф3mm、Ф5mm、Ф7mm共4个可自动切换。(8) 系统能量分辩率: 对于MnK5.9keV的X射线,其半高宽:&le 155 eV。(9) 长时间稳定性: 开机1小时后,整机8小时稳定性:峰位和峰面积相对标准偏差均小于0.1%。(10) 样品室体积: 长× 宽× 高:480 mm× 350 mm× 125mm。(11) 使用条件: 环境湿度:5~30℃,相对湿度&le 80%(25℃),供电电源:220± 20V,50Hz。(12) 整机功耗: &le 150W。(13) 尺寸与重量: 长× 宽× 高:503 mm× 412 mm× 478mm;重量:45Kg。主要特点:(1) 采用EDXRF物理分析方法,分析中不接触、不破坏样品,无需化学试剂等其他辅助材料。(2) 多元素同时快速分析,一般几分钟给出Cl氯、铬Cr、砷As、硒Se、溴Br、镉Cd、锑Sb、钡Ba、汞Hg、铅Pb等元素的ppm含量结果。(3) 采用X光管激发,光管高压的电压和电流可调,使仪器达到最高的激发效率和最佳的计数率。。(4) 具有4个滤色片和4个准直器,可任意自动转换组合,使仪器达到最佳的计数率和最高的峰背比,从而有极高的精度和很小的检出限。(5) 采用高分辨率的PIN半导体探测器,有效避免元素的相互干扰。(6) 采用高分辨率的CCD摄像头,样品平台可移动,从而保证测量目标位置的准确。(7) 由计算机进行显示、操作和数据处理,从而使操作简便,分析快速准确。(8) 仪器集成化程度高,可靠性好,维修方便。环境适应能力强,长期稳定性好。(9) 采用内标方法及具有自主知识产权的分谱技术,在无标准样品时亦可准确分析样品。(10) 样品室体积大,能测量大件物品。(11) 价格功能比低,适合我国国情。(12) 设计对屏蔽防护极好,无三废公害,射线防护安全可靠。
    留言咨询
  • 聚创 EDXRF技术金属元素X荧光分析仪JC-350X一、产品介绍 能量色散X荧光分析仪利用EDXRF技术,采用X光管产生X射线激发样品,先进的SDD探测器探测元素特征X射线,2048道数字化全谱分析,可以分析包括轻元素在内几十种元素,具有分析速度快、分析精度高、分析范围广、稳定性好、操作简单等特点。 在铜合金等金属制造行业中,材料、半成品、成品的质量保证与质量控制(QA/QC,该仪器是质量体系中材料确认、半成品检验、成品复检的常备仪器。生产者可以控制合金中的元素各成分含量,提高产品性能、减少次品和废品,提高经济效益。 二、主要用途主要用于铜合金、铝合金、锌合金、铸铁等原材料检验,冶炼生产过程成分控制,成品元素成分定值,炉前合金的快速分析和成品分析。三、性能特点☆.采用了美国新型的电致冷硅漂移SDD半导体探测器,具有高分辨率(125eV)和高探测效率 ☆.采用高真空度测样装置,消除了空气对低能X射线的阻挡,满足RoHS或合金检测时对轻元素的准确分析;☆.采用大功率的正高压X光管和高压发生器,提高了对轻重元素的检测下限,实现了对多种元素的同时快速检测分析;☆.自动开盖,无限平台的设计适应多种不同大小规格样品的检测,可以测量固体、 液体、粉末样品;☆.内置彩色CCD摄像头,使用户可以精确定位检测区域及时记录所测样品图像信息;☆.一体化的设计,使得仪器的性能稳定可靠、故障率低;☆.采用USB-CAN适配器与计算机进行通信,使用方便;☆.自动切换的滤片装置有效的降低了光管的散射本底,提高了仪器测量的峰谷比和分辨率,使得重元素和微量元素的测量更准确;☆.先进的全数字化多道谱仪让仪器测量时的数据采集和处理更加快速准确,极大的提高了仪器的稳定性和抗干扰的能力;☆.自带数据库管理系统的全中文测量软件让仪器的测量更加方便,操作更加简单;☆.多重安全的防护设计,使仪器的整机辐射符合国家辐射防护标准,让用户用的放心。 四、技术指标1.分析元素范围:Na-U铜合金:Cu、Ag、Sn、Ni、Fe、Si、Zn、S、Cd、Pb、Cr、Zr、Mg、Co、Mn、Sb、Al、As 、P、Se、Te等;铸铁:Ti、As、Si、P、Al、Cu、Sb、Nb、Ni、Mo、Mn、Cr、V、Mg等;不锈钢:Mn、Mo、Ni、Cu、Cr、P、S、Si、V、W、Ti、Pb、Alt、Co、Nb、Sn、As、Sb、Bi、Zn等;2.元素含量分析范围:0.07ppm~99.9%;3.探测器:电致冷硅漂移SDD半导体探测器(分辨率优于139eV) 4.测量范围:1~45KeV;6.高压:5kV~50kV;7.管流:5μA~1000μA;8.整机额定功率:50W;9.CDD摄像头分辨率:500万像素;10.真空泵额定功率:550W;11.10秒钟真空度可达10-2Pa (高真空区域10-1~10-5Pa) 12.检测时间:120s~300s(时间随样品不同可调整) 13.仪器重量:65Kg;14.仪器尺寸:720(W)X440(D)X435(H)mm 聚创 EDXRF技术金属元素X荧光分析仪JC-350X
    留言咨询
  • FluorPen叶绿素荧光仪 400-860-5168转4470
    用途: FluorPen FP 110叶绿素荧光仪可在实验室、温室或野外快速测量植物受生物或非生物胁迫后的光合活性状态,具有携带方便、精确度高、性价比高等特点;测量参数包括Fo、Ft、Fm、Fm’、QY、NPQ等,还可以进行OJIP分析和光响应曲线动力学研究。 PAR-FluorPen FP 110是FP 110的升级版,可以直接测量400-700nm范围内光合有效辐射PAR(umol/m2/s),光量子传感器对400-700nm波段的光具有均匀的响应,实时读数为20个测量值的平均值。 测量的数据存储于仪器内部,通过蓝牙或USB与计算机连接,采用专业的软件进行数据传输和分析,数据可视化。 测量原理:利用调制-饱和-脉冲荧光技术,测量并计算叶绿素荧光参数。 应用领域: 适用于光合作用研究和教学,植物及分子生物学研究,农业、林业,生物技术领域等。研究内容涉及光合活性、胁迫响应、农药药效测试、突变体筛选等。 植物光合特性和代谢筛选 生物和非生物胁迫的检测 植物抗胁迫能力或者易感性研究 代谢紊乱研究 生长长势与产量评估 植物——微生物交互作用研究 植物——原生动物交互作用研究 软件: FluorPen 1.1版本,支持windows 7及更高版本 实时及远程控制功能 蓝牙和USB通讯 可视化数据,可转换成Excel格式 GPS地图 参数介绍 Ft——非光化光下的实时荧光,暗适应后Ft = Fo; QY——PSII量子产量。暗适应QY = Fv/Fm,光适应QY = Fv’/Fm’ Fv/Fm是使用频繁的荧光参数。 OJIP——叶绿素荧光快速瞬态分析是一种简单、非侵入性测量叶绿体功能的方法。OJIP分析可以灵敏、准确的分析光化学系统的功能和活性。 NPQ——仪器提供2组测量程序,每组程序均有持续照光和黑暗恢复阶段。NPQ测量是一种典型的量化暗适应后样品光化学和非光化学淬灭的工具。 LC——仪器内置3组光曲线测量程序,每组程序的脉冲数量、持续时间以及光强均不同。LC光曲线程序对连续光照下不同光强照射的样品光合作用进行连续测量,将光合作用速率与光强联系起来。 PAR——光合有效辐射(PAR-FluorPen FP 110版本具有此功能) 技术规格:FP 110/SFo、Ft、Fm、Fm’、QY、OJIP、NPQ和Light Curve;标准叶夹FP 110/DFo、Ft、Fm、Fm’、QY、OJIP、NPQ和Light Curve;可拆卸叶夹,叶夹单独出售FP 110/PFo、Ft、Fm、Fm’、QY、OJIP、NPQ和Light Curve;室内长期测量FP 110/XFo、Ft、Fm、Fm’、QY、OJIP、NPQ和Light Curve;定制型开放叶夹,可在环境光下测量PAR-FP 110/SFo、Ft、Fm、Fm’、QY、OJIP、NPQ、Light Curve和PAR(400-700nm);标准叶夹PAR-FP 110/DFo、Ft、Fm、Fm’、QY、OJIP、NPQ、Light Curve和PAR(400-700nm);可拆卸叶夹,叶夹单独出售PAR-FP 110/XFo、Ft、Fm、Fm’、QY、OJIP、NPQ、Light Curve和PAR(400-700nm);定制型开放叶夹,可在环境光下测量光化光0-100%可调,最大1000µ mol(photon)/m2/s饱和光0-100%可调,最大3000µ mol(photon)/m2/s调制测量光0-100%可调,最大0.09µ mol(photon)/m2/脉冲PAR测量精度 1%,最大3000µ mol(photon)/m2/s(PAR-FP 110版本具有)余弦校准80°入射角(PAR-FP 110版本具有)发射光源蓝色LED光源,470nm探测波长范围PIN光电二极管带667~750nm滤光器光学检测光圈直径5mm(标准和开放叶夹),6.5mm(可拆卸叶夹)NPQ1光环境60s,5个脉冲;暗适应恢复88s,3个脉冲。NPQ2光环境200s,10个脉冲;按适应恢复390s,7个脉冲。GPS内置GPS模块,输出带时间戳和地理位置的叶绿素荧光参数图表FluorPen 软件1.1版本,Windows 7或更高内存16Mb,可存储149000个数据显示2×8字符LCD显示屏按键密封2键自动关机无操作8分钟后自动关机电源可充电锂电池;2600mAh电池电量典型情况下可连续操作48个小时,低电量LCD显示通讯方式蓝牙和USB尺寸134mm×65 mm×33 mm重量188克样品固定器机械式叶夹——标准叶夹,可拆卸叶夹工作环境温度0~+55℃,相对湿度0~95%(非冷凝)存储环境温度-10~+60℃,相对湿度0~95%(非冷凝) 叶绿素荧光反射比OD680/720PAR光谱吸收/透射/反射光谱叶面积指数GPSFluorPenllPAR FluorPenlllMonitoring PenlllAquaPen-ClllAquaPen-PllPlantPen NDVI&PRIllN-PenllPolyPenlllPolyPen-AqualllSpectraPen LMlSpectraPen LMlllSpectraPen SPllLaiPenlll 案例介绍:案例1:正常浇水与干旱胁迫下接种固氮螺菌属及丛枝菌对水稻光合活性(Fv/Fm)的影响WW:正常浇水 D:干旱胁迫M:Glomus intraradicesA:Azospirillum brasilense无论是正常浇水会干旱胁迫,接种两种菌后水稻的光合效率均显著增加,而两种菌都接种的样品,光合效率增加较多,水分条件对水稻的光合效率没有显著影响。 案列2:盐胁迫对接种丛枝菌的莴苣光合活性(Fv/Fm)的影响无论接种丛枝菌与否,随着盐度的增加,莴苣光合活性菌降低,80mM时的显著低于0和40mM,表明高浓度盐迫降低莴苣光合效率;无论什么盐浓度下,接种丛枝菌的莴苣光合活性菌显著高于未接种的,表明丛枝菌对莴苣的光合效率有显著促进作用,增加了莴苣的耐盐性。 近期发表文献:AJIGBOYE O. O., LU CH., MURCHIE E. H., ET AL. (2017). Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. Pesticide Biochemistry and Physiology. Volume 137. Pages 49-61. DOI: 10.1016/j.pestbp.2016.09.008CHEKANOV К., SCHASTNAYA E., SOLOVCHENKO A., ET AL. (2017). Effects of CO2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis. Journal of Photochemistry and Photobiology B: Biology. Volume 171. DOI 10.1016/j.jphotobiol.2017.04.028DUARTE B., PEDRO S., MARQUES J. C., ET AL. (2017). Zostera noltii development probing using chlorophyll a transient analysis (JIP-test) under field conditions: Integrating physiological insights into a photochemical stress index. Ecological Indicators. Volume 76. DOI: 10.1016/j.ecolind.2017.01.023HERNÁ NDEZ-CLEMENTE R., NORTH P.R.J., HORNERO A., ET AL. (2017). Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure, Remote Sensing of Environment,. Volume 193. Pages 165-179. DOI: 10.1016/j.rse.2017.02.012LEE M. W., HUFFAKER A., CRIPPEN D., ET AL. (2017). Plant Elicitor Peptides Promote Plant Defenses against Nematodes in Soybean. Molecular Plant Pathology. DOI: 10.1111/mpp.12570MARTEL A. B. AND QADERI M. M. (2017). Light quality and quantity regulate aerobic methane emissions from plants. Physiol Plantarum. Volume 159. DOI:10.1111/ppl.12514
    留言咨询
  • 叶绿素荧光光谱包含了植物丰富的光合作用的信息,一直是光合生理研究的热点课题,且被成为研究植物光合作用快速无损的敏感探针。结合荧光光谱的特征和叶绿素等生化生理参数的测定,可为不同水、肥、病胁迫下荧光光谱指标与其他生化参数间的关系,为精准农业和林业研究等提供优化调控和精准管理的理论依据和技术支持。 由于仪器硬件的限制,长久以来,对植物叶绿素荧光的限制光谱的研究大都限制在实验室研究或者卫星高光谱数据的分析,而无法通过有人机载平台进行大面积高精度的高光谱成像遥感探测。作为全球高光谱成像仪领军的制造商之一,Headwall公司推出的 Hyperspec Fluorescence叶绿素高光谱成像仪,专门针对日光诱导叶绿素荧光(Solar-Induced chlorophyll Fluorescence, SIF)的光谱范围(670-780nm),以0.1~0.2nm的光谱分辨率为用户提供叶绿素a和叶绿素b科研级的高光谱立方体数据。 Hyperspec Fluorescence基于Headwall公司独占的像差校正型凸面全息反射光栅专利技术,并选用TE制冷型sCMOS感光器件,以峰值120:1的信噪比(SNR,unbinned),为用户提供高质量的荧光高光谱数据基础。 Hyperspec Fluorescence结构紧凑,尺寸 30 x 30 x 20cm,重量仅为6.3kg左右,可满足众多有人机平台的挂载要求。主要特点:亚纳米级分辨率,具有分辨日光诱导叶绿素荧光的能力制冷型科学级CMOS探测器,在弱光下也有极高的灵敏度在670-780nm范围内,具有2160个光谱通道,光谱采样率约为0.05nm可选配Trimble APX-15 高精度IMU/GNSS模块和紧凑型高速数据处理单元组成机载高光谱系统
    留言咨询
  • FC 00-C/1010GFP封闭式多光谱植物荧光成像系统是一个高度创新的,世界范围内广泛应用的多光谱动力学荧光成像系统。这个系统高度紧凑且可以实现测量样品的暗适应。它由一个CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像。LED发光板的均一性照明面积为13× 13 cm。适用对象为小植物,离体叶片,海藻稀释物等。系统结构紧凑且易于实现样品的暗适应,功能强大的软件可以控制整个系统,获取数据和处理图像。应用领域植物光合特性和代谢紊乱筛选生物与非生物胁迫检测植物抗胁迫能力或者易感性研究气孔非均一性研究代谢混乱研究长势与产量评估植物&mdash &mdash 微生物交互作用研究植物&mdash &mdash 原生动物交互作用研究基因标记检测转基因表达研究功能特点:实验过程和测量参数荧光诱导过程(Kausky效应)分析叶绿素荧光淬灭过程(NPQ过程)分析PAR吸收系数测定QA再氧化过程分析OJIP曲线测定高达1µ s时间分辨率的快速荧光诱导分析可测量与计算多达50个参数: F0, FM, FV, F0' , FM' , FV' , QY(II),NPQ, &Phi PSII, FV/FM, FV' /FM' , RFd, qN, qP, PAR-吸光系数, 电子传递速率(ETR), 及其它.实验过程和测量参数稳态荧光测定GFP,EGFP、wtGFP、BFP、YFP或者其它荧光蛋白及荧光素荧光诱导过程(Kausky效应)分析叶绿素荧光淬灭过程(NPQ过程)分析PAR吸收系数测定QA再氧化过程分析OJIP曲线测定高达1µ s时间分辨率的快速荧光诱导分析可测量与计算多达50个参数: F0, FM, FV, F0' , FM' , FV' , QY(II),NPQ, &Phi PSII, FV/FM, FV' /FM' , RFd, qN, qP, PAR-吸光系数, 电子传递速率(ETR), 及其它典型样品叶片,整株植物,小树苗,果实,蔬菜,苔藓,地衣,藻青菌,绿藻,各种转基因植物,适用于不同植物样品的支架,培养皿与多孔板蒙版 操作软件与实验结果内置常用测量程序用户可自定义实验程序,界面友好可自动重复测量视野内单个植物或样品的自动识别与标记视野内所有样品数据的动力学分析多图像处理工具条形码读卡器支持,便于批量处理样品数据可导出为excelWindows 2000, XP, Vista,Win7兼容稳态荧光测定荧光蛋白和荧光素家族具有巨大的光谱多样性,它们通常具有不同的激发光谱和释放光谱。封闭式荧光成像系统上安装了完全由软件控制和电动驱动的滤波轮,以及一系列的滤光片组,可以来对GFP,EGFP、wtGFP、BFP、YFP或者其它波段荧光蛋白进行检测和成像。高分辨率相机1392 x 1040 像素 可选 640 x 480 像素或512 x 512 像素;低像素模式适用于快速荧光过程的捕获;高像素模式适用于叶绿素荧光和需要长时间曝光的弱稳态荧光测量或者需要高空间分辨率的情景(显微视野)7位滤波轮多色激发光源wtGFP 主激发峰 395 - 397 nm,发射峰 504 nm. 滤波器建议设置: 激发光420 nm短通,532/28 或 530/25 nm检测.EGFP 主激发峰中心波长488 nm,发射峰 507 - 509 nm. 滤波器建议设置:激发光480 nm短通,532/28 或 530/25 nm检测.BFP 主激发峰 384 nm,发射峰近 448 nm.滤波器建议设置: 激发光400 nm短通,469/35 nm检测. 配置型号指南:标准版1&mdash &mdash 超高速成像版:512 x 512 像素,50幅/秒超快CCD,适用于荧光参数的精细再现标准版2&mdash &mdash 超高分辨率版:1392 x 1040 像素分辨率,适用于高空间分辨率的应用,如气孔动态标准版3&mdash &mdash PAR吸收修正版:可测植物真实F0&rsquo 与PAR吸收系数,用于修正荧光参数和ETR 标准版4&mdash &mdash 功能增强版:超强STF,强度可达120,000 µ mol(photons)/m² .s,可实现100µ s脉冲,用于QA瞬间饱和与再氧化研究;可同时进行荧光蛋白与荧光素成像,包括GFP、wGFP、eGFP、YFP、BFP、CY3, CY5等,用于转基因研究。 1.FC 1000-H便携式叶绿素荧光成像系统 FC 1000-H便携式叶绿素荧光成像系统被设计用来在田间和实验室内对叶片和小植物的荧光参数成像进行动力学解析,典型的研究区域为3.5× 3.5 cm。在所有应用中,系统可以对光化光和饱和光诱导的荧光瞬变过程进行成像,光化光照射的时间和强度可以由用户自定义的程序来决定。软件包中包含了最常用的实验程序和简单实用且功能强大的程序设计语言,熟练的研究人员可以设计自己的闪光序列和测量过程。 FC 1000-H便携式叶绿素荧光成像系统是一个轻巧的便携系统,尤其适用于野外实验。系统可以通过肩背便携包中的密封铅酸电池在野外进行供电,稳固轻巧的三脚架使得野外测量变得简单易行。 2.FC 1000-LC便携式光合联用型叶绿素荧光成像系统FC 1000-LC便携式光合联用型叶绿素荧光成像系统专门设计来与光合仪的气体交换叶室安装在一起使用,是一个高度创新的,世界范围内广泛应用的多广谱动力学荧光成像系统。它具备其他荧光成像系统的所有特征。这个系统高度紧凑,且可以实现测量样品的暗适应。叶绿素荧光测量与成像可以与气体交换测量同步进行,获取更丰富准确的信息。而且精确的样品所处环境控制功能,例如影响光合和蒸腾速率的温度、相对湿度和氧气和CO2的分压,远优于普通叶绿素荧光成像系统。系统可与目前市场上绝大多数厂家的光合仪联用,如Licor,ADC,PPS等。3. FC800-O开放式植物荧光成像系统 FC 800-O开放式荧光成像系统是一款高度模块化的设备,具体配置可以定制。其LED发光板和饱和光源可以任意角度和到样品的距离排列,也可以通过调整CCD的位置来增加精度。标准配置的最大成像面积为13× 13 cm ,通过选择光源的尺寸,可调整最大成像面积为20× 20 cm 。测量参数与技术指标请参考FC-800-C封闭式植物荧光成像系统。4. FC 900-TR开放式植物样带叶绿素荧光扫描成像系统FC 900-TR开放式植物样带叶绿素荧光扫描成像系统高度紧凑,主要由一个扫描控制系统,CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像。测量区域为200× 100 cm。该系统适用于实验室或样地中样带植株的原位快速测量,尤其适用于监测多因子实验中植物对各种处理的响应。测量参数与技术指标请参考FC-800-C封闭式植物荧光成像系统。尤其适用于高通量筛查和监测胁迫梯度对植物影响;适合户外与温室使用;结构坚固耐用,光源与相机位置可移动;无需取下或者移动样品;标准成像尺寸为20× 200 cm,其它尺寸可调整。5. FC 900-R野外移动式植物叶绿素荧光成像系统 FC 900-R野外移动式植物荧光成像系统主要由一个可移动支架,CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像。LED发光板的均一性照明面积为20× 20 cm,适用于野外较大植物(如大豆、小麦)的原位无损测量。成像高度20 到 150 cm可调,可配真彩镜头。测量参数与技术指标请参考FC-800-C封闭式植物荧光成像系统。适用于野外大尺寸扫描测量面积20× 20 cm.移动系统极其坚固稳定可在粗糙地表轻松移动配置样品暗适应箱从 20 to 150 cm高度可调无需样品分离与破坏6. FC 900-A拱形三维立体植物叶绿素荧光扫描成像系统 FC 900-A拱形三维立体植物叶绿素荧光扫描成像系统是一个高度创新的多广谱动力学荧光成像系统。这个系统高度紧凑且可以实现对测量样品的3D成像,它由一个CCD相机,LED发光板,拱形支架,高性能PC和兼容软件包组成。FC 900-A拱形三维立体植物叶绿素荧光扫描成像系统通过自动程序获取样品台上整株植物的3D图像,适用于对植物进行3D空间异质性研究以及荧光蛋白与荧光素等荧光标记在植株上表达的空间异质性。专用于三维荧光成像独特耐用的结构支架光源位置可自动调整可移动的相机使得可以从任意角度测量无需分离与移动样品软件可生成3D图像7. XY-Plane多广谱大型植物叶绿素荧光扫描成像系统XY-Plane多广谱大型植物叶绿素荧光扫描成像系统是一个高度创新的多广谱动力学荧光成像系统。该系统可以实现测量样品的暗适应,它由一个CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像,成像面积为80× 40 cm。适用对象为整株植物,离体叶片,海藻稀释物等。XY-Plane系统用于自动进行大型植物生长室中植物样品的大量筛选,FC 900-XY/8040植物荧光成像系统安装在一个坚固耐用的柜式结构中,所有部件可被安全存放,人性化的设计使得放置样品非常便捷。柜式结构内是一个光源和成像CCD位置可自由移动的自动控制框架。测量面积80× 40 cm.适用于高通量筛选尤其适合大培养盘中样品的多谱段分析适用于生物和非生物胁迫研究和转基因植物筛查光源与相机的高度和位置可调整无需分离与破坏样品8. FC 2000显微叶绿素荧光成像系统1. Micro-FluorCam FC 2000-ST内含: CCD 相机 简单显微镜架 光学组件 控制单元 高性能PC 激发光源 软件包 使用手册.2. Micro-FluorCam FC 2000-EN内含: CCD 相机 带可更换可扩展组件的机械强化显微镜架(Olympus BX40) 机械强化光学组件 控制单元 高性能PC 激发光源 软件包 使用手册.3. Micro-FluorCam FC 2000-MFW内含: 6位滤波轮 CCD相机 带可更换可扩展组件的机械强化显微镜架(Olympus BX40) 机械强化光学组件 控制单元 PC高性能PC 激发光源 软件包 使用手册.4. Micro-FluorCam FC 2000-EFW内含:6位完全软件控制的滤波轮 CCD相机 带可更换可扩展组件的机械强化显微镜架(Olympus BX40) 机械强化光学组件 控制单元 高性能PC 激发光源 软件包 使用手册.Micro-FluorCam FC2000-EFW: 6-位滤波器 (插入式)5. Kinetic Fluorescence Microscope FC 2000-Z 详见FKM多功能荧光动态显微监测系统 产地:欧洲 典型应用:1. CLAIRE M. M. GACHON etc. Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). Eur. J. Phycol., (2006), 41(4): 395&ndash 403Fig. 2. UV激发荧光(壶菌属感染的褐藻过程)。A、C为亮视野图片;B、D为UV激发荧光情况;A、B为单细胞感染对照;C、D为严重感染对照。 Fig. 1.叶绿素荧光动力学(壶菌属感染的褐藻).A为典型Kautsky诱导曲线(实线)与实测曲线比较;B为亮视野图片;C为 Fm值假彩图片;D为NPQ值假彩图片 请致电索取参考文献列表
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制