当前位置: 仪器信息网 > 行业主题 > >

硝酸铀酰

仪器信息网硝酸铀酰专题为您提供2024年最新硝酸铀酰价格报价、厂家品牌的相关信息, 包括硝酸铀酰参数、型号等,不管是国产,还是进口品牌的硝酸铀酰您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硝酸铀酰相关的耗材配件、试剂标物,还有硝酸铀酰相关的最新资讯、资料,以及硝酸铀酰相关的解决方案。

硝酸铀酰相关的论坛

  • 【转帖】MSDS硝酸铀酰

    第一部分:化学品名称 回目录 化学品中文名称: 硝酸铀酰 化学品英文名称: uranyl nitrate hexahydrate 中文名称2: 硝酸铀 英文名称2: dinitratodioxouranium,hexahydrate 技术说明书编码: 2874 CAS No.: 10102-06-4 分子式: UO2(NO3)26H2O 分子量: 502.14 第二部分:成分/组成信息 回目录 有害物成分 含量 CAS No. 硝酸铀酰 ≥98% 10102-06-4 第三部分:危险性概述 回目录 危险性类别: 侵入途径: 健康危害: 对眼睛、皮肤和粘膜具腐蚀性和刺激性。有放射性元素的损伤作用。急性中毒可致肾损害,中毒性肝炎,甚至致死。慢性损害为造血系统损害。 环境危害: 燃爆危险: 本品助燃,有毒,具腐蚀性、刺激性,可致人体灼伤,具放射性。 第四部分:急救措施 回目录 皮肤接触: 立即脱去污染的衣着,用大量流动清水冲洗。就医。 眼睛接触: 立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入: 用水漱口,给饮牛奶或蛋清。就医。 第五部分:消防措施 回目录 危险特性: 强氧化剂。与有机物、还原剂、易燃物如硫、磷等接触或混合时有引起燃烧爆炸的危险。燃烧时产生大量放射性灰尘。具有放射性。 有害燃烧产物: 氮氧化物、氧化铀。 灭火方法: 消防人员必须穿全身防火防毒服,在上风向灭火。灭火时尽可能将容器从火场移至空旷处。然后根据着火原因选择适当灭火剂灭火。 第六部分:泄漏应急处理 回目录 应急处理: 隔离泄漏污染区,限制出入。建议应急处理人员戴防尘口罩,穿防辐射服。不要直接接触泄漏物。小量泄漏:用干燥的砂土、蛭石或其它惰性材料覆盖。用洁净的铲子收集于密闭容器中。大量泄漏:在专家指导下清除。 第七部分:操作处置与储存 回目录 操作注意事项: 严加密闭,防辐射。防止粉尘释放到车间空气中。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿抗辐射防护服,戴抗辐射手套。远离火种、热源,工作场所严禁吸烟。远离易燃、可燃物。避免产生粉尘。避免与还原剂接触。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。防止阳光直射。包装密封。应与还原剂、易(可)燃物、食用化学品分开存放,切忌混储。储区应备有合适的材料收容泄漏物。 第八部分:接触控制/个体防护 回目录 职业接触限值 中国MAC(mg/m3): 0.2(以U计) 前苏联MAC(mg/m3): 0.015(U) TLVTN: 0.2mg(U)/m3 TLVWN: 0.6mg(U)/m3 监测方法: 工程控制: 严加密闭,防辐射。 呼吸系统防护: 空气中粉尘浓度超标时,必须佩戴自吸过滤式防尘口罩。紧急事态抢救或撤离时,应该佩戴空气呼吸器。 眼睛防护: 戴化学安全防护眼镜。 身体防护: 穿抗辐射防护服。 手防护: 戴抗辐射手套。 其他防护: 工作场所禁止吸烟、进食和饮水,饭前要洗手。工作完毕,淋浴更衣。保持良好的卫生习惯。 第九部分:理化特性 回目录 主要成分: 含量:分析纯、化学纯≥98%。 外观与性状: 黄色略带萤光的结晶。 pH: 熔点(℃): 60.2 沸点(℃): 118(分解) 相对密度(水=1): 2.807(13℃ ) 相对蒸气密度(空气=1): 无资料 饱和蒸气压(kPa): 无资料 燃烧热(kJ/mol): 无意义 临界温度(℃): 无意义 临界压力(MPa): 无意义 辛醇/水分配系数的对数值: 无资料 闪点(℃): 无意义 引燃温度(℃): 无意义 爆炸上限%(V/V): 无意义 爆炸下限%(V/V): 无意义 溶解性: 溶于水、醇、醚,不溶于苯、甲苯、酸。 主要用途: 用作氧化剂、影片着色剂,并用于砷、矾、乙酸、过氧化氢和血钠的测定。 其它理化性质: 1.4967 第十部分:稳定性和反应活性 回目录 稳定性: 禁配物: 强还原剂、易燃或可燃物。 避免接触的条件: 聚合危害: 分解产物: 第十一部分:毒理学资料 回目录 急性毒性: LD50:135 mg/kg(大鼠腹腔)LC50:无资料 亚急性和慢性毒性: 刺激性: 致敏性: 致突变性: 致畸性: 致癌性: 第十二部分:生态学资料 回目录 生态毒理毒性: 生物降解性: 非生物降解性: 生物富集或生物积累性: 其它有害作用: 第十三部分:废弃处置 回目录 废弃物性质: 废弃处置方法: 在污水处理厂处理和中和。或用安全掩埋法处置。破损容器禁止重新使用,要在规定场所掩埋。 废弃注意事项: 第十四部分:运输信息 回目录 危险货物编号: 71004 UN编号: 2981 包装标志: 包装类别: 包装方法: 无资料。 运输注意事项: 铁路运输时,放射性物品按T71001~T71009的相应编号的规定运输。应有检查单位检查剂量后开具”放射性物品剂量检查证书“,根据放射剂量决定运输方法。包装须符合国际原子能机构规定要求。运输要专车专运,包装必须密封,并应有放射性专用标志。车皮托运,禁止溜放。车辆运输完毕应进行彻底清扫。运输前如检查出包装损坏,不予运输,必要时可派人押运。 第十五部分:法规信息 回目录 法规信息 化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定;常用危险化学品的分类及标志 (GB 13690-92)将该物质划为第7 类放射性物品。

  • 【求助】急,硝酸双氧铀怎么买?

    有机化工产品还原高锰酸钾物质的测定方法中,规定的的标准比色溶液中其中的一种化学品是硝酸双氧铀,但是如何购买? 现在除了百灵威都不卖阿,大家有没有做相关的检测的? 给点建议

  • 【求助】铀标准品的购买

    现在做实验要检测二氧化铀二价离子,需要标准品:二氧化铀水标或者醋酸铀酰,不知道那位能够提供购买的地方,谢谢!

  • 【原创大赛】ICP-MS法直接测定八氧化三铀中杂质元素的方法

    高纯金属中杂质元素(0.0001%量级含量)的含量测定是对分析中的一种挑战。而目前主要的分析方法有电感耦合等离子体质谱法(ICP-MS)和电感耦合等离子体发射光谱法(ICP-OES)等。本文就ICPMS分析八氧化三铀中杂质元素的方法进行介绍。1 前言核燃料铀是从天然含铀矿石中提取出来的,其间经过酸法(或碱法)浸出、湿法冶金、精制、同位素分离等一系列生产过程,最后制成核燃料元件或军用核产品。铀矿石中伴生着各种元素,而且从含铀矿物中提取铀到精制成核纯级铀需经过多次纯化富集,每经一个提取纯化过程,使产品纯度得到提高的同时,又由于每个工艺环节不同,加入试剂不纯而引入一些杂质。为了鉴定铀产品八氧化三铀的纯度,一般需要对产品中所含的各种微量杂质元素进行测定。目前较普遍的做法是将铀进行分离,利用分离之后得到的溶液进行杂质元素测量。但是经过树脂分离,增加了引入杂质元素的机会,使得分离过程中本底不容易控制,并且元素的回收率差别较大,对结果也有较大影响。而直接测定的方法基体较大,往往导致测量结果差别过大。本文讨论利用ICP-MS直接测定Cr、Mn、Ni、Cu、Mo等杂质元素,通过标准物质进行校正后,得到样品的测试结果,通过测试标准物质和实验室间比对认为ICPMS直接测定的方法是可行的。2 试验部分2.1 仪器和试剂NexION300D型电感耦合等离子体质谱仪,美国铂金埃尔默(PE)公司生产,仪器工作条件:发射功率1500W;等离子气流量:17.0L/min;辅助气流量:1.2L min;雾化气流量0.93 L min。精密电子天平:感量0.0001g,梅特勒-托利多仪器(上海)有限公司;自动控温电热板:常温至350℃,控制精密度±5℃。所用硝酸为MOS级;所有用水均为二次去离子水,电导率18.25MΩ/cm。标准溶液:混标溶液IV-ICP-MS71,浓度分别为10 ug/mL,稀释至0.5 ug/L、1 ug/L、5 ug/L、10ug/L;介质为1%的HNO3。2.2 试验方法实验步骤:称取0.05g八氧化三铀样品,加浓硝酸2mL放置在电热板上消解,蒸至近干后取下冷却至室温,加入1mL硝酸溶液样品完全溶解后移至100mL的容量瓶中进行定容。按照相同的方法制备GBW04242、GBW04243和 GBW04205的标准样品。同时按照上述步骤得到平行空白溶液。测量方法:使用10ug/L的Rh溶液为在线内标,通过一个Y形三通与样品溶液同时引入ICP仪器中进行测量。GBW04242、GBW04243当标准物质使用,而GBW04205当成未知样品进行方法验证。3 结果讨论3.1方法检出限在上述选定的样品前处理方法和仪器测试参数条件下,以样品平行空白连续测定11次,以3倍标准偏差计算方法检出限,见表1。表1 检测限 元素 分析质量数 空白浓度范围 ρ/(μg·L-1) 平均值 ρ/(μg·L-1) RSD /% 检出限 ρ/(μg·L-1) Cr 52 0.012~0.016 0.014 7.9 0.0035 Mn 55 0.011~0.027 0.023 9.1 0.0064 Ni 60 0.012~0.028 0.024 8.7 0.0049 Cu 65 0.007~0.032 0.029 7.9 0.0069 Mo 98 0.0005~0.0014 0.0012 9.7 0.0018 3.2加标回收和准确度将其按照实验条件将U3O8样品完全消解后稀释成10份溶液,取5份分别加入一定浓度和体积的单元素标准溶液,定容后上机测试溶液中元素浓度;另外5份加同体积的空白溶液做参照,来计算标准加入回收率,同时测定五次重测量的稳定性,结果显示Cr、Mn、Ni、Cu、Mo的回收率在86-112%之间。对国家标准物质GBW04205参考样品按照本方法实验条件进行分析测量进行计算,得到的结果与参考值接近。3.3样品测量结果对通过该方法测试得到如下结果。表2 样品测试结果 测量元素含量(μg/g)Cr24.5±1.8Mn13.1±1.1Ni44.5±3.8Cu18.1±1.6Mo8.35±1.24 ICP-MS直接测定法总结1 实验数据结果表明每个元素均可获得较低的检出限,回收率也在86%~112%之间,对照标准物质分析,结果表明本方法结果准确可靠。2 直接测定需要已经浓度的参考物质进行校正,如果没有合适的标准物质,不适合使用直接测定的方法。可采用基体匹配法,配制含有与样品相同基体的标准溶液进行分析测试。

  • 水中铀的测定,加酸和未加酸样品稀释后结果相差很大

    水中铀的测定,加酸和未加酸样品稀释后结果相差很大

    有个问题想向各位老师请教一下。就是我们采的测水铀的水样,同一个样品同时采了两份,一份做水铀(硝酸酸化),一份做水简(未加酸)。,现在是用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测水里铀含量。用原样测(硝酸酸化样和水简未加酸),两份结果差不多,450多ug/L,但内标40%左右,所以对样品进行了稀释了,稀释之后,水铀瓶子的稀释结果一个提高了一些,另一个基本没变化,但是水简的瓶子稀释后的结果却降到了200左右。一百多ug/L。难道同一个水样加酸与不加酸进行稀释后的结果会有这么大差别吗?(图片的选取了U的三个质量数)[img=,638,469]https://ng1.17img.cn/bbsfiles/images/2021/10/202110051519429341_7010_3315514_3.png!w638x469.jpg[/img]

  • 【科普分享】铀—最重的天然元素

    化学元素中的“天王星”德国南部出产一种矿物,从十八世纪上半叶起,就有许多矿物学家试图对它进行分类,但意见很不一致。有的认为它是锌矿,有的则把它归入铁矿。1781年发现了新元素钨以后,还有人认为这种矿物中含有钨。 1789年,德国化学家克拉普罗特对这种矿物进行了全分析。他用硝酸处理这种矿物,得到一种黄色溶液,向这种溶液中加入“钾碱”进行中和时,便析出一种黄色沉淀。沉淀物的性质与所有已知元素相应化合物的性质很不一样,所以克拉普罗特认为它是一种新元素的“氧化物”。 于是,克拉普罗特将这种“氧化物”与碳放在一起,加热到很高温度,企图把这种“氧化物”还原成金属。他确实得到了一种金属态的黑色物质,这种黑色物质的化学性质与所有已知元素的化学性质不同,因此克拉普罗特认为自己发现了一种新的元素。 1789年9月4日,克拉普罗特报告了自己的发现,题目是“乌拉尼特(Uranit)——一种新的半金属”。他之所以将“新元素”命名为“乌拉尼特”,是为了纪念八年前新行星——天王星(Uranus)的发现。 次年,克拉普罗特将“新元素”改称为铀(Uranium),他说:“我根据类推法将该新金属的名称由乌拉尼特改为铀”,于是铀的历史就这样开始了。 这种“新元素”的发现确实引起了许多化学家的兴趣,不少人对它进行了研究。但实际上,“新元素”不是元素而是化合物。在长达半个世纪的时间内,竟没有人认识到这一点。克拉普罗特本人一直到死,仍然深信自己发现并分离出了铀元素。 曾有少数人对克拉普罗特的结论表示过怀疑,认为“乌拉尼特”可能是一种化合物。例如瑞典著名化学家贝采利乌斯,就曾试图用纯钾来还原“乌拉尼特”,但末成功;同一时期,阿弗维特逊也曾用氢来还原“乌拉尼特”以及铀和钾的一种二元氯化物,但得到的最终产品依然是“乌拉尼特”。 直到1841年,法国化学家佩里戈特才揭开了“乌拉尼特”的秘密,证实“乌拉尼特”确是铀的化合物而不是元素铀。 佩里戈特将“乌拉尼特”同碳一起加热,并通入氯气,从而得到一种升华出来的氯化铀结晶体。奇怪的是,生成氯化铀所消耗的“乌拉尼特”和氯气的总量竟是化学计算量的110%,而且在气态产物中还含有二氧化碳。这说明,“乌拉尼特”原来是一种金属氧化物。 证实这一结论的实验有很多,例如使四氯化铀水解,得到的产物是“乌拉尼特”和氯化氢,这表示“乌拉尼特”是化合物而不是元素。 为了得到元素铀,佩里戈特采用的也是钾还原法。但他是还原四氯化铀,而不象贝采利乌斯那样还原“乌拉尼特”。 佩里戈特将四氯化铀同钾放一起,放在白金坩锅中加热。因为需要将反应物加热到白热状态,所以这是一个有危险的实验。为了谨慎起见,他把一只小白金坩锅放在一只大白金坩锅里,当小坩锅中的物质开始反应的时候,便立刻把火源熄灭,以免金属钾从白金坩锅中飞溅出来,发生事故。等到激烈的反应变得和缓了,再对白金坩锅加强热,以除去其中所剩余的钾,并使已被还原出来的铀聚结。待到冷却后,用水将其中所含的氯化钾溶解而除去。结果,在留下的黑色残渣中找到了银白色的金属铀颗粒。 至此,一种新的化学元素铀——化学元素中的“天王星”,经过半个多世纪的孕育,才真正诞生了。 1789年克拉普罗特发现含铀化合物“乌拉尼特”的时候,已知的化学元素还只有25种;但是到1841年佩里戈特制得真正的元素铀的时候,已知元素的数目已经增加到55种。这么多的元素,重量有轻有重,性质千差万别,真好似一团乱麻。但是化学家深信物质世界是秩序井然的,因此他们一直试图透过表面的混乱现象,从元素的特性中找出某种内在的规律性来。 1869年,已知化学元素的数目已经增加到62种,俄国化学家门捷列夫终于在前人工作的基础上,把当时象一团乱麻似的杂乱无章的元素理出了一个头绪。他发现,随着元素原子量的增加,元素的性质呈现出明显的周期性变化,这就是著名的元素周期律。两年后门捷列夫加以充实改进的周期表,已经达到了成熟的程度,与现代的周期表已相差无几了。 在编制周期表时,门捷列夫认为元素的性质比它的原子量更为重要,因此当某一元素的性质与它的根据原子量排列的顺序有冲突时时,他便不顾当时公认的原子量,大胆地把它的位置调换一下。例如碲和碘的原子量,当时测定的值分别是128和127,如果按原子量排列,碲应该排在碘的后面。但是门捷列夫把碲提到碘的前面,以便使它位于性质与它非常相似的硒的下面,并使碘位于性质与碘非常相似的溴的下面。 门捷列夫坚信自己已发现了一条最基本的自然规律。因此,为了使排列不违背既定的原则而又没有别的解决办法时,门捷列夫就毫不犹豫地在周期表中留出一些空位。门捷列夫指出,这些空位的元素将来一定会被发现,并预言了这些元素的性质。在轻元素中,他断定将来一定会发现原子量大约等于44、68和72的三种元素:类硼、类铝和类硅。 科学理论对实践有着巨大的推动作用。在随后的十五年中,在门捷列夫还活着的时候,这三个未知的元素——钪、嫁和锗就相继被发现了,它们的性质几乎与门捷列夫预言的完全一样,元素周期律取得了决定性的胜利。 门捷列夫在制订周期表时,还根据元素的性质,并考虑到周期表中的可能位置,校正了一些元素的原子量,其中就包括铀。 铀的原子量,佩里戈特等测得的数值是120。按照这一当时公认的数值,铀应该排在锡(原子量为118)和锑(原子量为122)之间。但是周期表中锡和梯是连续排列的,中间并没有空位,而且按照铀的性质,它也不应该排在这个位置上。 门捷列夫相当准确地将铀的原子量加大了一倍,即加大了为240,这样就使铀排在了比较正确的位置,同时也使铀成了最重的元素。 虽然后来随着新元素的不断发现,一直到锕系理论确立之后,铀才排到了更为合适的位置—锕系元素的第三个成员,但在当时,门捷列夫校正了铀的原子量,确立了铀的最重元素的地位,无疑是一个杰出的成就。 1886年,齐默尔曼测得铀的原子量约为240,从而证实了门捷列夫从理论上对铀原子量所作修改的正确性。 各种元素在周期表中按原子量依次排列,每种元素编有一个序号,称为原子序数。铀排在第92号位置,因此是第92号元素。1913年,莫斯莱应用X射线测定了原子核所带的正电荷的数目,进一步发展了元素周期律。这一工作指明了周期律的真正基础不是原子量,而是原子的核电荷数或核外电子数。同时证实了,原子的核电荷数或核外电子数在数值上正好等于原子序数,从而最终确定了铀是92号元素,并且是当时已知的最重的元素。 铀作为最重的元素,其地位是很特殊的。人们往往习惯于一般而敏感于特殊。早在1871年,门捷列夫就在一篇关于铀的文章中写道:“在所有已知的化学元素中,铀的原子量最大,……我深信,研究铀,从它的天然来源开始,一定会导致许多新的发现。我大胆地建议寻求新的研究课题的人,特别认真地去研究新的铀化合物。” 虽然,铀作为最重的天然元素的意义只有在人们深入到物质的更深层次时,即从分子、原子深入到原子核的时候才能显示出来。这是门捷列夫处在他那个时代时所无法预见的,但是门捷列夫还是首先注意到铀作为最重元素的特殊性,这无疑是有一定先见之明的。

  • 未加酸水样测定铀稀释后结果相差很大。

    各位老师,有个问题想要请教一下。就是我们采的水样测水铀的,同一点位同时采了两份,一份做水铀(硝酸酸化),一份做水简(未加酸)。用原样测,两份结果差不多,450ug/L左右,但内标只有40%左右,所以稀释了,稀释之后,水铀瓶子的结果一个提高了一些589,另一个降低了一些424,但是水简的瓶子却降到了180左右。现在就很奇怪的是,没加酸酸化的样品,稀释以后得结果从450左右变成了180左右(稀释倍数已换算),没发解释,加酸和不加酸对结果应该不会有这么大差别的啊!再说,水铀的那瓶子做稀释我用的是纯水稀释的并没有用酸化水稀释。第一张图片是信号强度,第二张图片是浓度。麻烦哪位老师能解答一下,不胜感激[img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110051556046085_6842_3315514_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110051556091281_9529_3315514_3.png[/img]

  • 【分享】GB 14883.7-94 食品中放射性物质检验 天然钍和铀的测定

    天然钍和铀的测定 中华人民共和国国家标准 食品中放射性物质检验 天然钍和铀的测定 GB 14883.7-94 Examination of radioactive materials for foods- Determination of natural thorium and uranium 1 主题内容与适用范围  本标准规定了各类食品中天然钍和铀的测定方法。  本标准适用于各类食品中天然钍和铀的测定。天然钍测定方法测定限为1×10**-8g/g 灰。天然铀测定限为乙酸乙酯萃取-荧光计法2×10**-8g/g灰;三烷基氧膦(TRPO)苯取-荧光计法1×10**-7g/g灰;N235萃取-分光光度法1.5×10**-8g/g灰 目视荧光法4×10**-7g/g灰;激光荧光法为2.5×10**-8g/g灰。 2 引用标准  GB 6768 水中微量铀分析方法  GB 14883.1 食品中放射性物质检验 总则 3 天然钍测定方法-三烷基(混合)胺(N235)萃取-分光光度法 3.1 原理  三烷基(混合)胺(N235)是一种混合三烷基(主要辛基)叔胺,其性质与三正辛胺相似。  食品灰用硝酸和高氯酸浸取,溶液经磷酸盐沉淀浓集铀和钍,在盐析剂硝酸铝存在下以N235从硝酸溶液中同时萃取钍和铀,首先用8mol/L盐酸溶液反萃取钍,再用水反萃取铀,分别以铀试剂III显色,进行分光光度测定。本法可用于食品中铀和钍联合或单独检验。 3.2 试剂和材料 3.2.1 钍标准溶液:取0.600g硝酸钍[Th(NO3)44H2O]溶于50mL 5mol/L硝酸溶液中,转入500mL容量瓶,用0.5mol/L硝酸稀释至刻度,此贮备液用重量法标定。按标定结果用lmol/L硝酸将一定量贮备液准确稀释成1.00μgTh/mL的钍标准溶液。  标定:准确吸取30.0mL贮备液于烧杯中,加70mL水,加热至80℃左右,以酚酞作指示剂,用氨水沉淀钍,沉淀用无灰滤纸过滤,0.1%氨水洗涤几次后,放入已恒量的坩埚中烘干,炭化,900℃灼烧成二氧化钍,恒量,计算出准确钍含量。 3.2.2 10%N235萃取剂:将50mLN235(工业纯),50mL乙酸乙酯、50ml丙酮混合后,或单用50mLN235,以环已烷稀释到500mL,再用2mol/L硝酸溶液萃洗平衡后待用。3.2.3 硝酸铝溶液:500g硝酸铝中加少量水和33ml,氨水,加热溶解后用水稀释到500ml。3.2.4 饱和硝酸铵溶液:用2mol/L硝酸溶液配制。3.2.5 0.03%铀试剂Ⅲ-草酸饱和溶液:称取0.3g铀试剂Ⅲ,溶解于水中(若溶解不完全,可加少量氢氧化钠),稀释至1000ml。使用前倒此溶液于小试剂瓶中,加入草酸至饱和。3.2.6 8mol/L盐酸溶液:取333mL盐酸(优级纯),用水稀释至500ml,加入约1g尿素。 3.3 仪器和器材 3.3.1 分光光度计: 72型或其他型号, 3cm比色杯。 3.4 钍工作曲线的绘制 在8个分液漏斗中各加入10mL1mol/L硝酸溶液, 分别吸入相当于0,0.3,0.5,0.7,1.0, 2.0,3.0,4.0μg钍的钍标准溶液, 按3.5.5~3.5.6条测定钍的吸光度作为纵坐标, 实标加入的钍量为横坐标作图。 3.5 测定 3.5.1 采样、预处理按GB14883.1规定进行。3.5.2 称取1~2g(精确至0.001g)样品灰于60mL瓷蒸发皿中(大米、玉米和肉类等含钙少的样品灰按50mgCa/g灰的比例加入钙载体溶液),加入10mL浓硝酸,在沙浴上缓慢蒸发至干。将蒸发皿转入高温炉500℃灼烧10min(样品灰灼烧后若呈黑色或灰色时,可重复酸浸取,再灼烧处理一次),取出冷却后加入10mL8mol/L硝酸,加热溶解后趁热过滤。用8mol/L 硝酸洗涤蒸发皿2~3次,再用热的稀硝酸洗涤蒸发皿和残渣2~3次。滤液和洗涤液合并于离心管中。3.5.3 搅拌下滴加氨水于上述浸取液中,调节溶液pH=9使生成白色沉淀,加热凝聚。冷却后离心,弃去上清液。沉淀用水洗涤一次,离心,弃去上清液。3.5.4 滴加浓硝酸入离心管,使沉淀刚好溶解。将溶液转移入60mL分液漏斗中,用15mL硝酸铝溶液分2次洗涤离心管,洗涤液合并入分液漏斗。 3.5.5 加15mL10%N235萃取剂入分液漏斗,萃取5min,静置分相后弃去水相。用5mL饱和硝酸铵溶液萃洗一次。 3.5.6 萃洗后的有机相依次用5.0mL和3.5mL8mol/L盐酸反萃取,每次反萃取5min。二次反萃取液合并于10mL比色管,加入1.00mL0.03%铀试剂Ⅲ-草酸饱和溶液,用8mol/L盐酸稀释到刻度。摇匀后在分光光度计(波长665nm,3cm比色皿)以8.5mL 8mol/L盐酸代替样品液加显色剂作为零值,进行比色,测定钍的吸光度。从工作曲线上查出钍含量。有机相可用于测定铀(下接7.5.7条)。3.5.7 化学回收率测定:准确称取1~2g样品灰(与样品分析的用灰量相等)于60mL瓷蒸发皿,加入钍标准溶液2.0mL和10mL硝酸,按3.5.2~3.5.6条与未加钍标准溶液的样品平行操作。根据测得的钍含量,按式(1)计算钍的化学回收率。 3.5.8 试剂空白值的测定:不用样品灰按以上测定程序,以8.5mL 8mol/L盐酸在比色管中加入显色剂后作为零值,在同样条件下测出吸光度作为试剂空白,应在计算结果中进行校正。 3.6 计算  A’-N R=━━━....................................(1)    Ao  NMA=━━━....................................(2)   WR 式中:A--食品中钍含量,μg/kg或μg/L;   A’--加入钍标准溶液的样品所测得的钍含量,μg;   Ao--加入钍的量,μg    M--灰样比,g/kg或g/L;   N--样品测定时从钍工作曲线上查得的钍含量,μg;   R-一钍的化学回收率;   W--分析样品灰质量,g。4 天然钍测定方法-PMBP萃取-分光光度法 4.1 原理 食品灰以王水浸取,草酸盐沉淀载带钍,1-苯基-3-甲基-4-苯甲酰基吡唑酮-5(简称 PMBP)萃取分离后,在6mol/L盐酸介质中,以铀试剂Ⅲ显色进行分光光度测定。 4.2 试剂和材料 4.2.1 钍标准溶液、铀试剂Ⅲ溶液同N235萃取-分光光度法(3.2)。 4.2.2 PMBP萃取剂:PMBP的0.3%二甲苯溶液。 4.2.3 草酸溶液:10%和0.8%两种溶液。4.2.4 10%磺基水杨酸溶液。 4.2.5 10%酒石酸溶液。 4.2.6 抗坏血酸。 4.2.7 盐酸溶液:0.1mol/L和6mol/L两种溶液。4.2.8 1:1氨水。 4.2.9 钙载体溶液:40mgCa/mL。4.2.10 高氯酸。 4.2.11 王水:1体积硝酸与3体积盐酸混合。4.3 仪器 4.3.1 分光光度计:72型或其他型号,3cm比色杯。4.4 工作曲线的绘制  分别吸取相当于0,0.3,0.5,0.7,1.0,3.0,5.0,7.0,9.0,10.0μg钍的钍标准溶液于十个250ml烧杯中,加20ml 6mol/L盐酸溶液、 2mL钙载体溶液,加水至250mL,按4.5.3~ 4.5.5条操作。绘制吸光度值对于钍含量的工作曲线。 4.5 测定 4.5.1 采样、预处理按GB 14883.1规定进行。4.5.2 浸取:称取0.5~2g(精确至0.001g)灰样于蒸发皿,用少量水将灰润湿,慢慢加入5ml王水,盖上表面皿,在电炉上缓缓蒸干,再放入高温炉中,于450℃灼烧0.5h,取出冷却。加入约20mL6mol/L盐酸溶液,加热至沸,使样品溶解。稍冷,以中速定性滤纸过滤,以热酸性水洗涤蒸发皿,再洗残渣至滤液无色。控制滤液体积在250mL左右。4.5.3 浓集:往滤液中加入2g草酸,微热使溶。以1:1氨水调节pH至1左右,使生成草酸盐沉淀。若未出现白色沉淀,则在搅拌下逐滴加入2mL钙载体溶液,加热,以促使生成白色沉淀。加热陈化,冷却0.5h以上,离心,弃去上清液。用250mL1%草酸溶液洗沉淀,离心,弃去上清液。沉淀以高氯酸和硝酸各5~10mL溶解并转移至小烧杯中,小火蒸干。4.5.4 萃取分离:蒸干物冷却后,加10mL水、5mL10%磺基水杨酸溶液、约0.1g固体抗坏血酸,用1:1氨水调节pH至1左右,倒入分液漏斗,用少许水洗烧杯并倒入同一漏斗。加15mL0.3%PMBP-二甲苯溶液,萃取2~3min,分层清晰后弃去水相。用10mL0.1mol/L盐酸溶液萃洗有机相,弃去水相。用15mL6mol/L盐酸溶液反萃取2~3min,静置分层清晰后,将水相放入25mL容量瓶中,再用2mL6mol/L盐酸溶液反萃取有机相一次,合并反萃取液。4.5.5 于上述容量瓶中依次加入约0.1g抗坏血酸、1mL10%草酸溶液、1mL10%酒石酸溶液和2.00mL0.05%铀试剂Ⅲ溶液,以6mol/L盐酸溶液稀释至刻度。摇匀,放置15min后,以17mL6mol/L盐酸溶液代替样品液加显色剂作为零值,在665nm波长下测定钍的吸光度。从工作曲线上查出相应的钍含量。 4.5.6 化学回收率测定:在分析样品等量灰样中加入钍标准溶液2.00mL,按测定程序操作,测定吸光度,计算回收率。4.5.7 试剂空白值测定:不用样品灰按以上测定程序,以17mL6mol/L盐酸溶液加入显色剂后作为零值,在同样条件下测出吸光度作为试剂空白,应在结果计算中进行校正。 4.6 计算   公式和符号同3.6条。5 天然铀测定方法--乙酸乙酯萃取-光电荧光光度法 5.1 原理   食品灰经硝酸浸取,以硝酸铝作盐析剂,经乙酸乙酯萃取分离铀,氟化钠熔融烧球后, 用光电荧光光度计测定铀的含量。 5.2 试剂 5.2.1 乙酸乙酯。5.2.2 硝酸。 5.2.3 过氧化氢。 5.2.4 4%氟化钠溶液:优级纯或分析纯。 5.2.5 80%硝酸铝溶液:称取400g硝酸铝[Al(NO3)39H2O],溶于水中,稀释至500mL。配制后用等体积乙酸乙酯(或乙醚)萃取洗涤一次。5.2.6 铀标准溶液:准确称取1.179g经850℃灼烧过的八氧化三铀(优级纯),用10mL盐酸和3mI过氧化氢加热溶解,蒸至近干。再加入20mL水,使完全溶解后转入10

  • 【讨论】“铀”的前世今生

    铀(英语:Uranium )是元素周期表中锕系的金属元素,原子序数为92,元素符号是U。铀原子有92个质子和92个电子,其中6个是价电子。它的中子数目介于141至146个之间,共有六个同位素,最普遍存在的是铀-238(146个中子)及铀-235(143个中子)。所有铀同位素皆不稳定,具有微弱放射性。铀是自然元素中质量次重、原子量次高的元素,仅次于钚-244。它的密度比铅高出约70%,但不如金、钨密实。铀在自然界中以数百万分率的低含量存在于土壤、矿石和水中,可借由开采沥青铀矿等含铀矿物并提炼之。在自然界中,铀以铀-238(99.2742%)、铀-235(0.7204%)以及极微量的铀-234(0.0054%)等同位素存在。铀衰变时释放出α粒子,过程缓慢,拥有很长的半衰期。铀-238的半衰期约为44.7亿年,铀-235则为7.04亿年,常用于测定地质年代。

  • 本人最近想用CE做铀的价态分析

    由于实验的要求,实验室最近采购了一台贝克曼的CE仪器,想用其对金属离子铀进行价态分析,查阅了相关文献没有多少资料,想请问下各位,能否采用其他金属离子价态的方法做我的实验,有没有有经验的朋友,能给点意见,再次谢谢各位

  • 【求助】对铀矿有了解的麻烦看看

    最近我发现了一处铀矿,但我一直怀疑还有什么其它的元素在里面,请教下各位我因该打什么光谱,长沙有什么比较权威的地方能打光谱。请留个联系方式之类的,急`。。。

  • 关于再次公开征求国家标准《铀矿冶放射性废物管理技术要求(二次征求意见稿)》意见的通知

    [b]关于再次公开征求国家标准《铀矿冶放射性废物管理技术要求(二次征求意见稿)》意见的通知[/b]  为贯彻落实《中华人民共和国环境保护法》《中华人民共和国放射性污染防治法》等法律法规,进一步加强铀矿冶放射性废物的辐射安全管理,我部在前期征求意见基础上,组织修改形成《铀矿冶放射性废物管理技术要求(二次征求意见稿)》,现再次公开征求意见。标准二次征求意见稿及编制说明可登陆我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。有关意见和建议请书面反馈我部,电子版材料请同时发至联系人邮箱。征求意见截止时间为2023年3月15日。  联系人:生态环境部辐射源安全监管司马立峰  电话:(010)65646144  传真:(010)65646164  邮箱:kuangye@mee.gov.cn  地址:北京市东城区东安门大街82号,100006  附件:1.征求意见单位名单     2.[url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/W020230216525760969856.pdf]铀矿冶放射性废物管理技术要求(二次征求意见稿)[/url]     3.[url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/W020230216525761171452.pdf]《铀矿冶放射性废物管理技术要求(二次征求意见稿)》编制说明[/url][align=right]  生态环境部办公厅[/align][align=right]  2023年2月10日[/align]  (此件社会公开)  抄送:生态环境部核与辐射安全中心,核工业北京化工冶金研究院,中核第四研究设计工程有限公司。  [b]附件1[/b][align=center]  [b]征求意见单位名单[/b][/align]  自然资源部办公厅  国家国防科技工业局综合司  生态环境部各地区核与辐射安全监督站  生态环境部辐射环境监测技术中心  各省、自治区、直辖市生态环境厅(局)  新疆生产建设兵团生态环境局  中国核工业集团有限公司  中国广核集团有限公司  中国铀业有限公司  中广核铀业发展有限公司  中国辐射防护研究院  中国原子能科学研究院  中国核电工程有限公司  核工业北京地质研究院  辽宁首钢硼铁有限责任公司  (部内征求法规司、生态司、水司、大气司、固体司、土壤司、核一司、核二司、监测司意见)

  • 测定铀和钍

    请教原吸可不可以测铀和钍,我们是耶拿Z700,如果可以测准备买灯

  • 关于公开征求国家标准《铀矿冶设施退役辐射环境保护规定(征求意见稿)》意见的通知

    [b]关于公开征求国家标准《铀矿冶设施退役辐射环境保护规定(征求意见稿)》意见的通知[/b]  为贯彻落实《中华人民共和国环境保护法》《中华人民共和国放射性污染防治法》等法律法规,规范铀矿冶设施退役辐射环境保护工作,我部组织编制了《铀矿冶设施退役辐射环境保护规定(征求意见稿)》,现公开征求意见。征求意见稿及其编制说明可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。有关意见和建议请书面反馈我部,电子版材料请同时发至联系人邮箱。征求意见截止时间为2023年3月15日。  联系人:生态环境部辐射源安全监管司 马立峰  电话:(010)65646144  传真:(010)65646164  邮箱:kuangye@mee.gov.cn  地址:北京市东城区东安门大街82号,100006 [b] [/b]附件:1.征求意见单位名单     2.[url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/W020230216522151000484.pdf]铀矿冶设施退役辐射环境保护规定(征求意见稿)[/url]     3.[url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/W020230216522151526503.pdf]《铀矿冶设施退役辐射环境保护规定(征求意见稿)》编制说明[/url][align=right]  生态环境部办公厅[/align][align=right]  2023年2月10日[/align]  (此件社会公开)  抄送:中核第四研究设计工程有限公司,核工业北京化工冶金研究院。  [b]附件1[/b][align=center]  [b]征求意见单位名单[/b][/align]  自然资源部办公厅  国家国防科技工业局综合司  生态环境部各地区核与辐射安全监督站  生态环境部核与辐射安全中心  生态环境部辐射环境监测技术中心  各省、自治区、直辖市生态环境厅(局)  新疆生产建设兵团生态环境局  中国核工业集团有限公司  中广核集团有限公司  中国铀业有限公司  中广核铀业发展有限公司  中国辐射防护研究院  中国原子能科学研究院  核工业北京地质研究院  辽宁首钢硼铁有限责任公司  (部内征求法规司、生态司、水司、大气司、土壤司、固体司、核一司、核二司、监测司意见)

  • 紧急求助:ICP做铀的灵敏度....

    刚定性了一个矿样,发现里面有大量的铀以及其他一些有放射性的有毒的元素!这可是人名关天的事情啊.....现在想确定一下大概含量,但没有标准,也不知道铀对ICP的灵敏度怎么样??请大家帮帮忙.....[em61] [em61] [em61]

  • 【求助】哪位版友有醋酸双氧铀?

    各位版友,我最近的实验要做生物样品的负染,需要用到2%的醋酸双氧铀(Uranyl Acetate)。由于我需要的量很少,大概0.02g就足矣了,但公司的包装都是25g的,所以求助版上的朋友,您如果有能否匀一点给我,可付费。先谢谢了!

  • 二氧化铀芯块检测

    [font=&][back=#f1f3fa][size=18px]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-25048.html[/url][/size][/back][/font]核地分析是以核能材料、放射性标准物质、地质矿产和环境分析测试技术研究与服务为主的综合性检测实验室技术机构,也是核工业地质行业的仲裁分析测试实验室,研制和保管着天然放射性成分分析国家最高标准物质,具有国家计量认证资质认定证书和国家实验室认可证书[font=&][back=#f1f3fa]为客户提供二氧化铀芯块的检测的检测,相关检测标准如下;[/back][/font][font=&][back=#f1f3fa][/back][/font][table=789][tr][td=1,1,209]二氧化铀粉末和芯块[/td][td=1,1,119]铀[/td][td=1,1,461]GB11841-1989《二氧化铀粉末和芯块中铀的测定硫酸亚铁还原-重铬酸钾氧化滴定法》[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]钨[/td][td]GB11845-1989《二氧化铀粉末和芯块中钨的测定分光光度法》[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]硅[/td][td]GB11846-1989《二氧化铀粉末和芯块中硅的测定分光光度法》[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]锂[/td][td]GB/T13370-1992《二氧化铀粉末和芯块中锂、钠、钾、铯的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法/火焰发射光[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]钠[/td][td]GB/T13370-1992《二氧化铀粉末和芯块中锂、钠、钾、铯的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法/火焰发射光[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]钾[/td][td]GB/T13370-1992《二氧化铀粉末和芯块中锂、钠、钾、铯的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法/火焰发射光[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]铯[/td][td]GB/T13370-1992《二氧化铀粉末和芯块中锂、钠、钾、铯的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法/火焰发射光[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]铜[/td][td]GB/T13371-1992《二氧化铀粉末和芯块中铜、铁、镍、镁、锰、锌、银的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]铁[/td][td]GB/T13371-1992《二氧化铀粉末和芯块中铜、铁、镍、镁、锰、锌、银的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]镍[/td][td]GB/T13371-1992《二氧化铀粉末和芯块中铜、铁、镍、镁、锰、锌、银的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]镁[/td][td]GB/T13371-1992《二氧化铀粉末和芯块中铜、铁、镍、镁、锰、锌、银的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]锰[/td][td]GB/T13371-1992《二氧化铀粉末和芯块中铜、铁、镍、镁、锰、锌、银的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]锌[/td][td]GB/T13371-1992《二氧化铀粉末和芯块中铜、铁、镍、镁、锰、锌、银的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]银[/td][td]GB/T13371-1992《二氧化铀粉末和芯块中铜、铁、镍、镁、锰、锌、银的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]钆[/td][td]DZ/T0064.80-1993《地下水质检验方法等离子体质谱法测定锂等39个元素》[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]钐[/td][td]DZ/T0064.80-1993《地下水质检验方法等离子体质谱法测定锂等39个元素》[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]镝[/td][td]DZ/T0064.80-1993《地下水质检验方法等离子体质谱法测定锂等39个元素》[/td][/tr][tr][td]二氧化铀粉末和芯块[/td][td]铕[/td][td]DZ/T0064.80-1993《地下水质检验方法等离子体质谱法测定锂等39个元素》[/td][/tr][tr][td]高纯八氧化三铀[/td][td]铀[/td][td]EJ277-1986《高纯八氧化三铀中铀的精密测定硫酸亚铁还原/重铬酸钾滴定法》[/td][/tr][tr][td]金属及合金微区成分[/td][td]11Na~92U[/td][td]GB/T15616-2008《金属及合金的电子探针定量分析方法》[/td][/tr][tr][td]金属及合金微区成分[/td][td]11Na~92U[/td][td]GB/T17359-2012《微束分析能谱法定量分析》[/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制