当前位置: 仪器信息网 > 行业主题 > >

西布特罗

仪器信息网西布特罗专题为您提供2024年最新西布特罗价格报价、厂家品牌的相关信息, 包括西布特罗参数、型号等,不管是国产,还是进口品牌的西布特罗您都可以在这里找到。 除此之外,仪器信息网还免费为您整合西布特罗相关的耗材配件、试剂标物,还有西布特罗相关的最新资讯、资料,以及西布特罗相关的解决方案。

西布特罗相关的资讯

  • JGR-Atmospheres: 中国典型燃煤城市的大气颗粒物中发色团的粒径分布特征
    作者:陈庆彩通讯作者:章炎麟通讯单位:陕西科技大学环境科学与工程学院、南京信息工程大学耶鲁大学-南京信息工程大学大气环境中心doi: 10.1029/2019JD031149成果简介近日,陕西科技大学陈庆彩研究团队与南京信息工程大学章炎麟研究团队联合研究并在Journal of Geophysical Research-Atmospheres上发表了题为“Size-resolved characterization of the chromophores in atmospheric particulate matter from a typical coal-burning city in China”的研究论文,报道了大气颗粒物中发色团的粒径分布特征。研究人员利用激发发射矩阵(EEM)光谱和平行因子(PARAFAC)分析了大气颗粒物中水溶性和水不溶性发色团的光学性质,描述了大气颗粒物中发色团种类和含量的粒径分布特征,增加了对气溶胶中发色团物质理化特征及其来源的认知。全文速览研究分析了山西临汾地区2017年夏、冬季不同粒径的气溶胶颗粒中发色团的吸光特征(UV-Vis光谱)以及荧光特征(EEM光谱)分别与颗粒物粒径之间的关系。不同粒径颗粒物的萃取液的总吸光度(Abs)和荧光体积(FV)随颗粒物粒径增大而减小,表明小粒径颗粒物对光吸收和光化学反应具有更大贡献。同时,相较于水溶性发色团,水不溶性发色团的总吸光度(Abs)和荧光体积(FV)达到了水溶性发色团的2-8倍。研究过程引言棕色碳(BrC)是气溶胶中具有吸收可见光能力的典型有机物质,其对地球温室效应具有潜在贡献,同时对光化学反应具有潜在的驱动效应。因此,了解这些发色团的来源和形成机制,并定量评估它们对地球大气中辐射强迫和大气中非均匀化学反应的影响,是表征这些发色团物理化学特征的必要条件。已经有研究指出了不同粒径的发色团物质的来源与吸光特性的差异,然而目前并未有通过EEM方法研究不同粒径大气颗粒中发色团的光学特性。本研究研究了大气颗粒物中水溶性和水不溶性发色团的粒径分布特征,比较了冬夏样品的光学性质(光吸收和荧光)的差异,同时探讨了光吸收与荧光性质的关系,以及光学性质与多环芳烃、有机碳和EC的相关性。图文导读通过不同性的溶剂萃取,获得不同粒径颗粒物的波长依赖指数(MAE365)、标准荧光体积(NFV)等变化趋势。Figure 1.Particle size and seasonal distributions of mass absorption efficiency at 365 nm (MAE365) and the NFV for WSM (a, c, e) and MSM (b, d, f). Panels (e) and (f) represents the average value of MAE and NFV in summer and winter respectively for WSM and MSM extracts.研究发现,夏季以及冬季的颗粒物中,水溶性以及水不溶性发色团的波长依赖指数(MAE365)、标准荧光体积(NFV)与粒径的关系特征均表现出相同趋势,即波长依赖指数(MAE365)以及标准荧光体积(NFV)均随粒径增大而减小。 由于多环芳烃可能是水不溶性组分中重要的光吸收和荧光物质,因此,本研究定量了7种多环芳烃对水不溶性组分的光吸收贡献。Figure 2. The average UV?visible absorbance spectra of MSM and the calculated UV?visible absorbance spectra of the selected PAHs (a and b), and the relative contributions of the selected PAHs to the total light absorption by MSM (c and d).结果表明,在280-550 nm范围内,多环芳烃对光吸收的贡献不超过7%,说明水不溶性发色团的成分复杂,在UV-Vis波段,多环芳烃并不是对光吸收的主要贡献物质。同时,在430 nm处,多环芳烃对光吸收贡献大,该物质可能是苯并芘。 通过PARAFAC模型得到了5种发色团的三维荧光光谱截面图。Figure 3. The PARAFAC model-resolved EEM components (C1, C2, C3, C4 and C5) for all of the aerosol extracts (n = 396) with the solvents water and methanol and extracted from different particle size samples.对获得的三维荧光光谱图通过平行因子矩阵分析(PARAFAC)得到5种不同发色团图谱,推测C1-C5发色团依次可能为HULIS-1物质、类色氨酸物质、HULIS-2物质、类络氨酸物质以及其它类氨基酸组分。 同时,研究了不同季节、不同粒径以及不同性溶剂萃取的条件下,不同发色团组分的相对贡献。Figure 4. Size-resolved distributions of the EEM components for winter samples (a and e) and summer samples (b and f) of WSM and for winter samples (c and g) and summer samples (d and h) of MSM.HULIS-1和类氨基酸组分在所有样品中占比高,相对含量分别为38%和31%。类酪氨酸组分占比低,平均含量仅4%;并且发色团含量特征随季节变化显著。小结该工作重点揭示了大气颗粒物中发色团的粒径分布特征,解释了小粒径颗粒物往往伴随更大的光吸收和光化学反应性贡献。这项工作从粒径分布角度阐述了气溶胶中的发色团特征,建议在未来的大气模型中,发色团的粒径分布以及性特征是光吸收以及光化学反应的重要考虑因素。课题组介绍 陈庆彩陈庆彩,男,山东人,博士,副教授,博士生导师。毕业于日本名古屋大学,取得理学博士学位。陕西省“百人计划”,陕西科技大学大气污染控制团队负责人,名古屋大学特邀教员,日本大气化学学会会员,ES&T等环境领域权威期刊审稿人。主要研究方向为气溶胶化学,包括大气棕碳(BrC)、长寿命自由基(EPFRs)等。参与和主持中国国家自然科学基金等十余项科研项目;已在ES&T等自然指数期刊一作发表9篇,其它学术论文20余篇;获得国家和软件注册权10余项。ORCID:http://orcid.org/0000-0001-7450-0073??个人主页:https://hj.sust.edu.cn/info/1015/1394.htm章炎麟,男,浙江杭州人,博士,教授,博士生导师。耶鲁大学-南信大大气环境中心大气化学与同位素研究团队负责人,入选“国家海外引才计划”青年学者,江苏省特聘教授,曾任日本学术振兴会(JSPS)外国人特别研究员。主要研究方向为大气化学、环境地球化学等。在国际著名期刊(包括Nature、ACP、EST、JGR和AE等)共发表SCI论文64篇(一作/通讯作者论文35篇),4篇学术论文入选ESI高被引论文。主持或作为科研骨干参加科技部和自然科学基金委等多项科研项目。同时担任环境科学、大气科学和地球化学等领域30余种SCI期刊(包括Nature)审稿人。??个人主页:https://www.researchgate.net/profile/Yanlin_Zhan HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。点击阅读原文,了解更多论文信息。
  • JGR-Atmospheres: 中国典型燃煤城市的大气颗粒物中发色团的粒径分布特征
    作者:陈庆彩通讯作者:章炎麟通讯单位:陕西科技大学环境科学与工程学院、南京信息工程大学耶鲁大学-南京信息工程大学大气环境中心doi: 10.1029/2019JD031149近日,陕西科技大学陈庆彩研究团队与南京信息工程大学章炎麟研究团队联合研究并在Journal of Geophysical Research-Atmospheres上发表了题为“Size-resolved characterization of the chromophores in atmospheric particulate matter from a typical coal-burning city in China”的研究论文,报道了大气颗粒物中发色团的粒径分布特征。研究人员利用激发发射矩阵(EEM)光谱和平行因子(PARAFAC)分析了大气颗粒物中水溶性和水不溶性发色团的光学性质,描述了大气颗粒物中发色团种类和含量的粒径分布特征,增加了对气溶胶中发色团物质理化特征及其来源的认知。研究分析了山西临汾地区2017年夏、冬季不同粒径的气溶胶颗粒中发色团的吸光特征(UV-Vis光谱)以及荧光特征(EEM光谱)分别与颗粒物粒径之间的关系。不同粒径颗粒物的萃取液的总吸光度(Abs)和荧光体积(FV)随颗粒物粒径增大而减小,表明小粒径颗粒物对光吸收和光化学反应具有更大贡献。同时,相较于水溶性发色团,水不溶性发色团的总吸光度(Abs)和荧光体积(FV)达到了水溶性发色团的2-8倍。棕色碳(BrC)是气溶胶中具有吸收可见光能力的典型有机物质,其对地球温室效应具有潜在贡献,同时对光化学反应具有潜在的驱动效应。因此,了解这些发色团的来源和形成机制,并定量评估它们对地球大气中辐射强迫和大气中非均匀化学反应的影响,是表征这些发色团物理化学特征的必要条件。已经有研究指出了不同粒径的发色团物质的来源与吸光特性的差异,然而目前并未有通过EEM方法研究不同粒径大气颗粒中发色团的光学特性。本研究研究了大气颗粒物中水溶性和水不溶性发色团的粒径分布特征,比较了冬夏样品的光学性质(光吸收和荧光)的差异,同时探讨了光吸收与荧光性质的关系,以及光学性质与多环芳烃、有机碳和EC的相关性。通过不同性的溶剂萃取,获得不同粒径颗粒物的波长依赖指数(MAE365)、标准荧光体积(NFV)等变化趋势。Figure 1.Particle size and seasonal distributions of mass absorption efficiency at 365 nm (MAE365) and the NFV for WSM (a, c, e) and MSM (b, d, f). Panels (e) and (f) represents the average value of MAE and NFV in summer and winter respectively for WSM and MSM extracts.研究发现,夏季以及冬季的颗粒物中,水溶性以及水不溶性发色团的波长依赖指数(MAE365)、标准荧光体积(NFV)与粒径的关系特征均表现出相同趋势,即波长依赖指数(MAE365)以及标准荧光体积(NFV)均随粒径增大而减小。由于多环芳烃可能是水不溶性组分中重要的光吸收和荧光物质,因此,本研究定量了7种多环芳烃对水不溶性组分的光吸收贡献。Figure 2. The average UV?visible absorbance spectra of MSM and the calculated UV?visible absorbance spectra of the selected PAHs (a and b), and the relative contributions of the selected PAHs to the total light absorption by MSM (c and d).结果表明,在280-550 nm范围内,多环芳烃对光吸收的贡献不超过7%,说明水不溶性发色团的成分复杂,在UV-Vis波段,多环芳烃并不是对光吸收的主要贡献物质。同时,在430 nm处,多环芳烃对光吸收贡献大,该物质可能是苯并芘。通过PARAFAC模型得到了5种发色团的三维荧光光谱截面图。Figure 3. The PARAFAC model-resolved EEM components (C1, C2, C3, C4 and C5) for all of the aerosol extracts(n = 396) with the solvents water and methanol and extracted from different particle size samples.对获得的三维荧光光谱图通过平行因子矩阵分析(PARAFAC)得到5种不同发色团图谱,推测C1-C5发色团依次可能为HULIS-1物质、类色氨酸物质、HULIS-2物质、类络氨酸物质以及其它类氨基酸组分。同时,研究了不同季节、不同粒径以及不同性溶剂萃取的条件下,不同发色团组分的相对贡献。Figure 4. Size-resolved distributions of the EEM components for winter samples (a and e) and summer samples (b and f) of WSM and for winter samples (c and g) and summer samples (d and h) of MSM.HULIS-1和类氨基酸组分在所有样品中占比高,相对含量分别为38%和31%。类酪氨酸组分占比低,平均含量仅4%;并且发色团含量特征随季节变化显著。该工作重点揭示了大气颗粒物中发色团的粒径分布特征,解释了小粒径颗粒物往往伴随更大的光吸收和光化学反应性贡献。这项工作从粒径分布角度阐述了气溶胶中的发色团特征,建议在未来的大气模型中,发色团的粒径分布以及性特征是光吸收以及光化学反应的重要考虑因素。 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 特尔诺发布特尔诺全钢通风柜T-TF001新品
    创新点:特尔诺全钢通风柜T-TF001,具有内衬抗倍特板,内无裸漏金属,也可根据客户需要定制。 特尔诺全钢通风柜T-TF001
  • 特尔诺发布特尔诺全木药品柜/器皿柜T-YP001新品
    创新点:特尔诺全木药品柜/器皿柜T-YP001与上一代产品相比,在技术创新上加强改革,采用优质木材,采用高压蒸汽热熔粘贴技术,不起皱、不脱落,全部截面PVC热熔胶防水封边处理,具有更好的防腐、防火、防水、防蛀等性能。牢固优质,且美观耐用,提供安全,舒适的工作环境。 特尔诺全木药品柜/器皿柜T-YP001
  • 特尔诺发布特尔诺天平台T-TP001新品
    材质说明:柜体采用钢板折边焊接而成,整个柜体纯环氧树脂静电喷涂高温固化,具有较高耐蚀性能。内置减震装置。台面:采用12.7实芯理化板+60mm厚花岗岩台面。电源:1套铝合金电源盒,配1个10A透明多功能防溅插座。特点介绍:此款天平台为十万分之一级天平设计,具有三级避震装置,更广泛的吸收环境中绝大部分震动。避震装置之一,采用85度避震橡胶压制成型的调节垫;能消去环境中18-32赫兹震动;避震装置之二,采用60mm厚花岗岩台面,能消去环境中3-10赫兹震动。避震装置之三,80度橡胶避震地脚垫,能消去环境中10-18赫兹震动;创新点:特尔诺天平台T-TP001实芯理化板台台面,冷轧钢板柜体,尺寸可定制,本产品与上一代产品相比耐酸碱、耐腐蚀、防火阻燃、承重性、防滑减震效果更要明显,多种样式款式可选,可根据客户要求定制。 天平台针对高精度要求的分析天平等实验室设备,特质的实验室基础配套家具,可控制各种设备震动时对使用中的干扰,双重水平调节,稳定性良好,其特殊的沉稳结构可以防止或降低外来振动的影响,达到较佳防震效果。 特尔诺天平台T-TP001
  • 特尔诺发布特尔诺集中气路系统T-JQ001新品
    实验室集中供气系统涉及气体管路的设计、材质选择、工程安装和验收等方面的工作,它主要是由气源,切换装置,调压装置,终端用气点,监控及报警装置组成。简而言之,集中供气系统将中央储气设备中的气体经切换装置并调压后通过管路系统输送到各个分散的终端用气点。创新点:特尔诺集中气路系统T-JQ001与本公司上一代产品相比,气路系统主要由气源切换系统、管道系统、调压系统、用气点、监控及报警系统组成。在现代化的实验室中,为了完成实验,需要用到多种分析仪器,如气相色谱仪,原子吸收等,其中这些仪器需要用到高纯气体,传统的做法是采用独立钢瓶分散供气的模式,这种供气模式每台仪器设备单独配置气体钢瓶,分别满足每台仪器设备的使用,但随着近年来实验室投资的不断加大,仪器设备的不断增加,用气量也逐年增加,传统的供气模式已经难以满足仪器设备增加的需求,同时分散供气模式带来的实验室布局混乱,钢瓶的频繁更换也对实验室的管理和维护造成困难,为了解决以上两个方面的问题,就需要一套安全性高且能实现集中分配供气的系统完成从气源想仪器的供气,这就是实验室高纯气体管道系统的功能所在。 特尔诺集中气路系统T-JQ001
  • 特尔诺发布特尔诺实验室净化系统工程T-JH001新品
    特尔诺实验室净化系统工程T-JH001实验室净化初步设计说明一、设计内容 :本实验室初步设计内容为:净化送风系统、空调、排风系统、彩钢板吊顶、围护、隔墙、净化密封门、送风机组、电器、照明控制等。二、设计依据:1、客户提供的设计图及有关技术要求。2、洁净厂房设计规范(GB50073) 一2002)3、通风与空调工程施工质量验收规范(GB50243-2002)4、当地室外计算气象参数。三、室内设计参数(静态)无菌室1、温度: 20-25°C+1°C2、相对湿度: 50%-65%+5%3、换气次数: 30- -35次/n4、洁净度:十万级5、压差: 5-20Pa6、噪声:≤65dB (A)7、工作照度: 300Lx四、气流组织及送、回、排风本工程空调、净化分为单元式独立控制各系统。1、设计送风量为(3000m*/n) 送风机、机箱采用EPS夹芯彩钢板制作,排风量为300m3/n、机箱同样采用彩钢板制作。2、送风、空调系统为初、中效、高效三级过滤。五、冷、热源及空调1、实验室区域采用壹台风冷、热泵管道式空调机组。六、结构部分1、吊顶--部分全部采用EPS彩钢夹芯板。厚度为: L=0.426mm,韩国钢板,泡沫容量为L=14kg/立方,双面贴膜,吊顶、吊筋采用平行直吊。吊顶高度为2. 4米。2、隔断维护采用EPS彩钢夹芯板、厚度为: L=50mm, 钢板为L=0.426mm, 韩国钢板,泡沫容量为L=14kg/立方,单面贴膜,所有明处的铝合金型材为常熟喷塑型材。3、门]采用新型双密封型材、门框型材为型材制作,锁为不锈钢执手门]锁,便于开门。4、采光固定窗采用铝合金框架。压线为圆弧型,单层浮法平板玻璃,厚度为L=5mm,铝合金框架为喷塑材料。5、吊顶、维护、地面之间的直角,均用.R=50铝合金圆角作装饰过渡、维护转角采用铝合金竖柱圆弧过度,铝型材为银白色材料。七、净化产品部分1、高效送风口静压箱为钢制喷塑,高效过滤器边框为铝合金制。2、散流器为铝合金。八、风管部分1、镀锌板采用优质武钢同类产品,按图纸要求制作安装。2、保温材料采用PEF橡塑隔热板、厚度L =20mm。九、风量调节部分1、防火阀均采用国内优质名牌产品。密闭对开多叶调节阀采用L=1.2 mm,优质钢板制作。:2、单层铝合金百叶风口可调节。3、防雨百叶风口为铝合金制加强型。十、电器、照明部分1、净化区--采用吸顶式净化荧光灯及国标电线、穿线管、开关、插座等按相关要求选用优质产品。2、普通区--采用吸顶式荧光灯。3、电器控制柜、照明控制箱等均采用国内优质名牌产品。 创新点:特尔诺实验室净化系统工程T-JH001最新净化方案,与上一代产品相比,在材料选用上更加精细,门采用新型双密封型材、门框型材为型材制作,锁为不锈钢执手门]锁,便于开门。吊顶、维护、地面之间的直角,均用.R=50铝合金圆角作装饰过渡、维护转角采用铝合金竖柱圆弧过度,在使用上更加方便。 特尔诺实验室净化系统工程T-JH001
  • 特尔诺发布特尔诺PP通风柜T-PP001新品
    创新点:特尔诺PP通风柜T-PP001具有可拆装结构,模具成型PP轨道。液晶控制面板,台面可根据客户需要选择不同材质。在工艺上对产品进行改造与创新,以呈现产品性能和外观上的不同点。通过集成现有技术,进行应用创新,同时提高新技术的实用化。 特尔诺PP通风柜T-PP001
  • 特尔诺发布特尔诺PP药品柜/器皿柜T-PP002新品
    创新点:特尔诺PP药品柜/器皿柜T-PP002,PP是抗腐蚀性的一种材料,专业储存腐蚀性的化学品物质。其密度小,易焊接和加工,具有优越的耐化性,耐热性及耐冲击性、无味是目前符合环保要求之工程塑料之一。相比上一代产品,整体设计为活动式,可随意抽取放在合适的隔层,自由组成各层空间,层板正反均可放置,反方向放置,四周立边可获得一定程度防溢效果。 特尔诺PP药品柜/器皿柜T-PP002
  • 观测到胶体量子点的激子型布洛赫—西格特位移
    近日,中国科学院大连化学物理研究所研究员吴凯丰与副研究员朱井义团队在胶体量子点超快光物理研究中再获新进展。团队观测到CsPbI3量子点在红外飞秒脉冲作用下的布洛赫—西格特位移,并揭示了激子效应对相干光学位移的调制作用。上述工作发表在《自然—通讯》上。  强光场能够对物质的光学跃迁产生调制,例如旋波近似下的光学斯塔克效应和反旋波近似下的布洛赫—西格特位移。由于二者通常同时出现,且前者往往远强于后者,在实验中观测较为纯净的布洛赫—西格特位移颇具挑战。近期,有研究人员报道了单层过渡金属硫化物二维材料中的谷极化布洛赫—西格特位移。然而,低维材料中一般存在着较强的多体相互作用,带来显著的激子效应,这些效应如何影响布洛赫—西格特位移仍然未知。  研究团队选定铅卤钙钛矿量子点作为观测布洛赫—西格特位移,并研究其中激子效应的模型体系。一方面,旋轨耦合和量子限域效应的结合使得该体系可被近似为具有自旋极化选律的二能级系统;另一方面,相比于衬底敏感的二维材料,胶体量子点能够均匀地分散在低折射率的溶剂中,从而避免了介电无序对激子效应造成的干扰。  基于此,研究团队以CsPbI3量子点为研究对象,利用圆偏振飞秒瞬态吸收光谱,在室温下成功观测到了其布洛赫—西格特位移。在红外飞秒脉冲作用下,该位移可以高达4毫电子伏特。布洛赫—西格特位移与光学斯塔克位移的比值随着失谐量的增大而增大,定性符合(反)旋波近似的图像。然而,该比值总是大于忽略多体相互作用的准粒子模型所预测的数值。  为了解释实验和理论值的偏离,研究团队在激子图像下建立了描述布洛赫—西格特位移的新模型,精确再现了实验测量结果。该模型还深刻指出,光学斯塔克效应、双激子光学斯塔克效应以及布洛赫—西格特位移在激子图像下是彼此混合和相互影响的。考虑到量子限域材料普遍具有较强的激子效应,该模型对于正确处理其中的相干光学现象,以及将这些现象应用于光学调制、信息处理和量子材料Floquet工程具有重要启示意义。
  • 报告回放发布!“第五届环境新污染物分析检测”网络会议圆满落幕
    新污染物治理列为全面推进美丽中国建设的重要内容,是当前生态环境工作新热点。2024年7月29日-8月1日,仪器信息网举办了“第五届环境新污染物分析检测”网络会议,就大家密切关注的新污染物的最新监测技术方法与应用进展等展开交流,吸引了1000余人报名参会。会议设置了“新污染物研究与进展-安捷伦环境领域整体解决方案”、“新污染物的监测现状与标准解读”、“新污染物的筛查与识别”、“全氟和多氟烷基物质(PFAS)监测”、“微塑料监测”、“抗生素与耐药基因监测”等六大专场,共邀请了27位来自科研院所、检测机构、高校及仪器厂商等新污染物领域中权威、专业、资深的专家分享最新标准体系建设解读、最新检测技术成果及行业动态进展等,专家老师们在直播间答疑解惑,互动十分热烈。“新污染物研究与进展-安捷伦环境领域整体解决方案”专场中,安捷伦科技(中国)有限公司的应用工程师团队——孔晔、刘东静、张晓丹、郭伟,深入剖析了公司在新污染物检测领域的最新进展。他们详细介绍了GC-MS分析方法的革新、LC-MS技术的优化、红外成像技术在微塑料监测中的应用,以及ICP-MS的应用解决方案。“新污染物的监测现状与标准解读”专场中,《新污染物生态 环境监测标准体系表》牵头单位中国环境监测总站的邢冠华老师全面介绍了当前监测技术与标准的发展状况,杨文龙、王荟、刘金林等标准起草专家深入解读了即将执行的针对空气、水质和土壤中新污染物的检测标准。未来,新污染物监测将通过多元化的标准体系——包括国家标准、行业标准、团体标准和技术文件——实现规范化,并促进高通量筛查、现场快速监测、在线监测和实验室自动化分析等技术的革新,逐步构建起完善的新污染物环境监测技术体系。“新污染物的筛查与识别”专场中,5位专家分别分享了新污染物筛查的准确度评定技术指南,重点探讨了大气中硝基有机物的非靶向识别方法。他们还展示了基于气相色谱-质谱、气相色谱-飞行时间质谱和全二维气相色谱-高分辨多反射飞行时间质谱等前沿技术的高效新污染物筛查策略。“全氟和多氟烷基物质(PFAS)监测”专场中,国家杰青、上海交通特聘教授戴家银老师领衔开讲,分享新型PFAS识别、环境行为、毒理效应及机制研究,讨论了其对公众健康的潜在影响。此外,该专场还涵盖了PFAS的质谱分析技术、区域环境PFAS的检测以及其在动物性食品和生物体内的富集研究。“微塑料监测”专场汇集了多位专家,他们从微塑料的形态、特征入手,深入探讨了不同来源微塑料的测试分析方法,同时分析了微塑料领域的研究趋势和当前仪器检测能力的科研需求,为这一复杂问题提供了多角度的见解。“抗生素与耐药基因监测”专场中,宋洲教授分享了抗生素绿色分析方法以及它们在典型环境介质中的分布特征;王雪梅教授则聚焦于黄河上游的新污染物分析技术;李伟英和张国晟两位专家则分别讲解了供水系统全流程、水中微塑料-生物膜相关的抗生素监测方法,为控制抗生素污染和耐药性传播提供了重要洞见。为了回馈大家对会议的支持,以及方便相关从事者能够不断学习,根据报告嘉宾的要求,部分报告视频将设置回放,会议日程及相关回放见下表:相关报告信息如下:7月29日专场一:新污染物研究与进展-安捷伦环境领域整体解决方案14:00--14:30【 点击观看 】 安捷伦新污染物GCMS分析进展孔晔 安捷伦科技(中国)有限公司 应用工程师14:30--15:00【 点击观看 】 安捷伦液质联用系统新污染物分析解决方案刘东静 安捷伦科技(中国)有限公司 LC-MS应用工程师15:00--15:30【 点击观看 】安捷伦环境基质中微塑料自动定性定量测试整体解决方案张晓丹 安捷伦科技(中国)有限公司 应用工程师15:30--16:00【 点击观看 】 Agilent ICP-MS助力环境科研发展郭伟 安捷伦科技(中国)有限公司 原子光谱应用工程师7月30日上午专场二:新污染物的监测现状与标准解读09:30--10:00新污染物环境监测技术与标准现状邢冠华 中国环境监测总站 正高级工程师10:00--10:30土壤和沉积物中全氟辛基磺酸和全氟辛酸及其盐类测定标准解读杨文龙 国家环境分析测试中心 高级工程师10:30--11:00【 点击观看 】 环境空气中挥发性新污染物监测标准解析王荟 江苏省环境监测中心 室主任/正高11:00--11:30【 点击观看 】水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法标准解读刘金林 国家环境分析测试中心 副研究员7月30日下午专场三:新污染物的筛查与识别14:00--14:30【 点击观看 】 大气中硝基有机组分的非靶向识别:基于取代特征的生成机制推测邱兴华 北京大学环境科学与工程学院 教授14:30--15:00【 点击观看 】赛默飞气质联用技术助力新污染物筛查分析朱薇 赛默飞世尔科技(中国)有限公司GCMS产线应用工程师15:00--15:30基于气相色谱-飞行时间质谱的大气中新污染物的非靶向筛查高丽荣 中国科学院生态环境研究中心 研究员15:30--16:00【 点击观看 】全二维气相色谱-高分辨多反射飞行时间质谱的非靶向筛查新污染物案例张志杰 LECO力可公司 质谱部总监16:00--16:30新污染物筛查准确度评定技术指南解读徐驰 中国环境监测总站 工程师7月31日上午专场四:全氟和多氟烷基物质(PFAS)监测09:00--09:30全氟烷基化合物识别、环境行为及健康效应戴家银 上海交通大学 教授09:30--10:00全氟化合物质谱分析技术研究马强 中国检验检疫科学研究院 首席专家10:00--10:30【 点击观看 】 全氟化合物在卵生生物中的富集、组织分配及代际传递罗孝俊 中国科学院广州地球化学研究所 研究员10:30--11:00区域环境PFAS污染、识别和风险史亚利 中国科学院生态环境研究中心 研究员11:00--11:30【 点击观看 】环境影响下,全氟与多氟烷基化合物在动物性食品中的分析研究范赛 北京市疾病预防控制中心 研究员7月31日下午专场五:微塑料监测14:00--14:30【 点击观看 】 环境多介质中微塑料赋存、残留与风险分析冯成洪 北京师范大学 教授14:30--15:00【 点击观看 】环境微塑料介导的复合污染与防控刘宪华 天津大学 教授15:00--15:30【 点击观看 】 岛津微塑料分析解决方案王娟娟 岛津企业管理(中国)有限公司 应用工程师15:30--16:00【 点击观看 】被忽视的微纳塑料来源:实验试剂和溶剂中的污染王艳华 陕西师范大学 副教授16:00--16:30【 点击观看 】 高分子材料全生命周期老化降解产物分析关键技术及设备张裕祥 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 副研究员8月1日专场六:抗生素与耐药基因监测09:30--10:00供水全流程系统中抗生素与耐药基因的监测方法与应用李伟英 同济大学环境科学与工程学院 教授10:00--10:30【点击观看】黄河上游复杂基质中新污染物的分离、分析方法研究王雪梅 西北师范大学 教授/博士生导师10:30--11:00抗生素绿色分析方法与典型环境介质分布特征研究宋洲 湖北省地质实验测试中心 高级工程师11:00--11:30【点击观看】水中微塑料-生物膜内耐药基因的监测及微塑料对耐药基因水平转移的作用机制张国晟 同济大学 博士后
  • 全日程公布!“第五届环境新污染物分析检测”网络会议下周一召开
    点击免费报名新污染物治理列为全面推进美丽中国建设的重要内容,是当前生态环境工作新热点。自2022年国务院办公厅印发《新污染物治理行动方案》后,截至2023年底,31个省份已制定新污染物治理行动方案。在进行新污染物治理的过程中,监测技术是不可或缺的核心环节。为了了解新污染物关键核心技术进展,促进环境新污染物监测技术的交流探讨,仪器信息网于2024年7月29日-8月1日召开“第五届环境新污染物分析检测”网络会议,就大家密切关注的新污染物的最新监测技术方法与应用进展等展开交流,为广大从事新污染物监测领域的相关工作者提供一个即时、高效的交流和学习的平台。会议共设置“新污染物研究与进展-安捷伦环境领域整体解决方案”、“新污染物的监测现状与标准解读”、“新污染物的筛查与识别”、“全氟和多氟烷基物质(PFAS)监测”、“微塑料监测”、“抗生素与耐药基因监测”6个专场,将邀请国家环境分析测试中心、中国环境监测总站、中科院生态环境研究中心、北京大学、北京师范大学、天津大学、同济大学、上海交通大学等在新污染物领域研究最专业、最活跃的单位资深专家分享新污染物监测技术成果及应用进展。具体会议信息如下:1、会议名称:“第五届环境新污染物分析检测”网络会议2、主办单位:仪器信息网3、会议时间:2024年7月29日-8月1日4、会议全日程:7月29日下午专场一:新污染物研究与进展-安捷伦环境领域整体解决方案(点击报名)14:00--14:30安捷伦新污染物GCMS分析进展孔晔 安捷伦科技(中国)有限公司 应用工程师14:30--15:00安捷伦液质联用系统新污染物分析解决方案刘东静 安捷伦科技(中国)有限公司 LC-MS应用工程师15:00--15:30安捷伦环境基质中微塑料自动定性定量测试整体解决方案张晓丹 安捷伦科技(中国)有限公司 应用工程师15:30--16:00Agilent原子光谱在水质土壤等环境中的分析解决方案郭伟 安捷伦科技(中国)有限公司 原子光谱应用工程师7月30日上午专场二:新污染物的监测现状与标准解读(点击报名)09:30--10:00新污染物环境监测技术与标准现状邢冠华 中国环境监测总站 正高级工程师10:00--10:30土壤和沉积物中全氟辛基磺酸和全氟辛酸及其盐类测定标准解读杨文龙 国家环境分析测试中心 高级工程师10:30--11:00环境空气中挥发性新污染物监测标准解析王荟 江苏省环境监测中心 室主任/正高11:00--11:30水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法标准解读刘金林 国家环境分析测试中心 副研究员7月30日下午专场三:新污染物的筛查与识别(点击报名)14:00--14:30大气中硝基有机组分的非靶向识别:基于取代特征的生成机制推测邱兴华 北京大学环境科学与工程学院 教授14:30--15:00赛默飞气质联用技术助力新污染物筛查分析朱薇 赛默飞世尔科技(中国)有限公司GCMS产线应用工程师15:00--15:30基于气相色谱-飞行时间质谱的大气中新污染物的非靶向筛查高丽荣 中国科学院生态环境研究中心 研究员15:30--16:00全二维气相色谱-高分辨多反射飞行时间质谱的非靶向筛查新污染物案例张志杰 LECO力可公司 质谱部总监16:00--16:30新污染物筛查准确度评定技术指南解读 徐驰 中国环境监测总站 工程师7月31日上午专场四:全氟和多氟烷基物质(PFAS)监测(点击报名)09:00--09:30全氟烷基化合物识别、环境行为及健康效应戴家银 上海交通大学 教授09:30--10:00全氟化合物质谱分析技术研究马强 中国检验检疫科学研究院 首席专家10:00--10:30全氟化合物在卵生生物中的富集、组织分配及代际传递罗孝俊 中国科学院广州地球化学研究所 研究员10:30--11:00区域环境PFAS污染、识别和风险史亚利 中国科学院生态环境研究中心 研究员11:00--11:30环境影响下,全氟与多氟烷基化合物在动物性食品中的分析研究范赛 北京市疾病预防控制中心 研究员7月31日下午专场五:微塑料监测(点击报名)14:00--14:30环境多介质中微塑料赋存、残留与风险分析冯成洪 北京师范大学 教授14:30--15:00环境微塑料介导的复合污染与防控刘宪华 天津大学 教授15:00--15:30岛津微塑料分析解决方案王娟娟 岛津企业管理(中国)有限公司 应用工程师15:30--16:00被忽视的微纳塑料来源:实验试剂和溶剂中的污染王艳华 陕西师范大学 副教授16:00--16:30高分子材料全生命周期老化降解产物分析关键技术及设备张裕祥 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 副研究员8月1日上午专场六:抗生素与耐药基因监测(点击报名)09:30--10:00供水全流程系统中抗生素与耐药基因的监测方法与应用李伟英 同济大学环境科学与工程学院 教授10:00--10:30黄河上游复杂基质中新污染物的分离、分析方法研究王雪梅 西北师范大学 教授/博士生导师10:30--11:00抗生素绿色分析方法与典型环境介质分布特征研究宋洲 湖北省地质实验测试中心 高级工程师11:00--11:30水中微塑料-生物膜内耐药基因的监测及微塑料对耐药基因水平转移的作用机制张国晟 同济大学 博士后5、会议报名链接:https://www.instrument.com.cn/webinar/meetings/newpollutant2024/目前,本次会议赞助厂商如下:
  • 市场监管总局发布特殊医学用途配方食品新公告!
    特殊医学用途配方食品,是指为满足进食受限、消化吸收障碍、代谢紊乱或者特定疾病状态人群对营养素或者膳食的特殊需要,专门加工配制而成的配方食品,包括适用于0月龄至12月龄的特殊医学用途婴儿配方食品和适用于1岁以上人群的特殊医学用途配方食品。特殊医学用途配方食品是食品,不是药品,但不是正常人吃的普通食品。该类食品必需在医生或临床营养师指导下使用,可以单独使用,也可以与普通食品或其他特殊膳食食品共同使用。近日,市场监管总局发布了《特殊医学用途电解质配方食品注册指南》《特殊医学用途碳水化合物组件配方食品注册指南》和《特殊医学用途蛋白质组件配方食品注册指南》(以下简称《指南》)。根据特殊医学用途电解质配方食品、特殊医学用途碳水化合物组件配方食品、特殊医学用途蛋白质组件配方食品的配方研发、生产实际、临床应用和注册实践等情况,为优化上述三类产品注册申请材料、现场核查等要求,按照《特殊医学用途配方食品注册管理办法》及有关规定,市场监管总局制定了《特殊医学用途电解质配方食品注册指南》《特殊医学用途碳水化合物组件配方食品注册指南》和《特殊医学用途蛋白质组件配方食品注册指南》,现予公告。市场监管总局2024年7月1日市场监管总局关于发布《特殊医学用途电解质配方食品注册指南》等文件的公告.pdf一、《指南》的制定背景是什么?2023年11月,市场监管总局修订发布了《特殊医学用途配方食品注册管理办法》(以下简称《办法》)。为进一步落实《办法》关于优化注册流程、满足特殊人群临床营养使用的要求,基于对特殊医学用途电解质配方食品、特殊医学用途碳水化合物组件配方食品、特殊医学用途蛋白质组件配方食品(以下简称“三类产品”)的科学认知、注册实践、产品研发及生产实际的情况,在充分落实企业食品安全主体责任、保障特医食品安全营养的基础上,市场监管总局对三类产品的注册管理要求进行了优化。二、《指南》的适用范围是什么?申请三类产品注册的,应严格根据《办法》及其有关规定开展相关研发工作,并按照《特殊医学用途配方食品注册申请材料项目与要求》等有关规定提交申请,对于符合《指南》中所列情形的,可优化提交相应的申请材料,一般不再进行注册现场核查和抽样检验。三、《指南》优化了哪些注册申请材料?一是优化了产品配方设计依据相关材料。《指南》明确了三类产品的使用目的、适用人群、配方设计参考依据、食品原料及食品添加剂的使用要求等内容,对于符合《指南》相应情形的产品,申请注册时仅需提交产品配方的符合性说明,可不提交产品配方设计依据。二是优化了生产工艺设计材料。对于符合《指南》相应情形的,申请注册时仅需提交关于工艺设计、形态选择、工艺过程等情况的一致性说明,可不提交生产工艺设计依据、文献资料等,根据申请材料项目与要求相关规定提交工艺验证等材料即可。三是优化了稳定性研究材料。申请三类产品注册的,应按照《特殊医学用途配方食品稳定性研究要求》组织开展稳定性研究,并保留记录备查,申请注册时仅需提交稳定性研究的开展时间及相关情况说明,可不提交研究报告。四是优化了研发能力和生产能力材料。对于符合《指南》相应情形的,申请注册时仅需提交关于研发机构、生产场所主要设施设备、生产质量管理体系等情况的一致性说明,可不提交研发能力和生产能力材料的原始文件及证明材料。五是明确了产品标签、说明书样稿中产品名称、配方特点/营养学特征、警示说明和注意事项等内容的标示要求和规范表述。四、《指南》明确哪些情形需要进行生产现场核查和抽样检验?《办法》第十四条规定,“审评机构根据食品安全风险组织对申请人进行生产现场核查和抽样检验。”《指南》根据上述规定明确了需要进行生产现场核查和抽样检验的具体情形,包括:申请人首次申请注册特殊医学用途配方食品;生产线首次用于申请注册特殊医学用途配方食品;其他需要进行生产现场核查和抽样检验的情况,包括既往注册申请存在隐瞒真实情况或提供虚假材料的、相关举报问题或监督管理部门认为需进行核查的、技术审评过程中认为需要进行现场确认的等。除上述情形外,对三类产品的注册审评一般不再进行生产现场核查和抽样检验。五、《指南》与《办法》及其配套文件的关系是什么?市场监管总局依据《办法》规定的程序和要求,对申请注册的特医食品进行审查,并决定是否准予注册。申请人应按照《特殊医学用途配方食品注册申请材料项目与要求》提交注册申请材料、按照《特殊医学用途配方食品稳定性研究要求》组织开展稳定性研究、按照《特殊医学用途配方食品临床试验质量管理规范》开展临床试验研究、按照《特殊医学用途配方食品标签、说明书样稿要求》规范标示内容等。申请人应严格根据《特殊医学用途配方食品注册管理办法》及其有关规定开展研发注册相关工作,对于符合《指南》所列情形的,可优化提交相应的申请材料。六、其他类别特医食品将来是否会有注册指南?特殊医学用途电解质配方食品、特殊医学用途碳水化合物组件配方食品和特殊医学用途蛋白质组件配方食品的配方组成共识度较高,临床应用比较成熟。基于对三类产品的科学认知、注册实践、配方研发及生产实际情况等,先行优化注册管理要求,有利于降低研发成本、缩短注册时间、提升审评审批效能,进一步激发特医食品市场活力、满足临床使用需求。对于其他类别的特医食品,市场监管总局将结合产品特点、针对研发共性问题、参考业界需求等继续研究特医食品分类注册指南,成熟一个、发布一个,为特医食品的研发、生产及审评提供更加明确和规范的指导,保障产品的安全性、营养充足性和特殊医学用途临床效果。
  • 植物重金属创新科研平台成果:曼陀罗镉胁迫研究
    2005年~2020年,NMT已扎根中国15年。2020年,中国NMT销往瑞士苏黎世大学,正式打开欧洲市场。国内科研人员基于自主底层核心技术——NMT非损伤微测技术,建立的“植物重金属独有创新科研平台”,已经取得了近百项研究成果,联盟将持续为您展示此平台成果案例。联盟已开始提供“植物重金属独有创新科研平台”的建立服务,咨询请联系中关村NMT联盟期刊:农业资源与环境学报标题:曼陀罗对镉的吸收及其亚细胞分布研究样品:曼陀罗检测指标:Cd2+作者:河南农业大学资源与环境学院杨素勤、张彪摘 要为研究曼陀罗对重金属镉的耐性机制,以前期筛选的曼陀罗(Datura stramonium L.)为试验材料,通过水培方式探究镉(Cd)胁迫下曼陀罗对Cd的吸收累积特性及其在植株体内的亚细胞分布特征。结果表明:介质中Cd无论低浓度还是高浓度,曼陀罗各部位的Cd含量都表现为根茎叶,但迁移系数差异不显著。曼陀罗根系Cd2+ 流速在不同位置具有显著差异,其中分生区和伸长区的Cd2+ 流速显著大于根冠区和成熟区。当介质中Cd浓度由0.1 mgL-1增至2.5 mgL-1时,细胞壁和细胞液中Cd含量之和所占比例显著增大。研究表明,曼陀罗根系对Cd2+ 的吸收主要集中在分生区和伸长区,当介质中Cd浓度较低时,根系中细胞壁对Cd向上运输的限制及茎叶中细胞液对Cd的区室化起重要的作用 当Cd浓度较高时,根部细胞各组分中细胞液所占比重增加,Cd由根系向上迁移,此时茎叶中细胞壁对Cd的固定作用增强,其可能是曼陀罗耐受高Cd胁迫的机制之一。
  • 农业农村部办公厅关于印发2021年国家屠宰环节质量安全风险监测计划的通知
    各省、自治区、直辖市农业农村(农牧、畜牧兽医)厅(局、委),新疆生产建设兵团农业农村局,中国动物疫病预防控制中心(农业农村部屠宰技术中心),中国动物卫生与流行病学中心,中国农业科学院农产品加工研究所:字体:[大 中 小]  为保证畜产品质量安全,强化屠宰环节风险物质监测,我部组织制定了2021年国家屠宰环节质量安全风险监测计划。现印发你们,请认真组织开展工作。   农业农村部办公厅   2021年3月15日2021年国家屠宰环节质量安全风险监测计划  一、监测目的  动态了解我国屠宰环节中主要污染物及有害因素的污染情况和趋势,确定影响动物产品质量安全的潜在风险隐患和危害来源,掌握我国屠宰企业动物产品质量安全状况,为开展有针对性的监督检查和监管决策提供科学依据。  二、职责分工  2021年国家屠宰环节质量安全风险监测计划包括部级监测和省级监测两部分。  (一)部级监测  针对跨省流通的生猪屠宰企业开展微生物风险监测,重点监测菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌和单核增生李斯特氏菌。针对跨省流通的牛、羊屠宰企业开展违法添加风险监测,重点监测9种β-受体激动剂(克伦特罗、莱克多巴胺、沙丁胺醇、特布他林、西马特罗、非诺特罗、氯丙那林、妥布特罗和喷布特罗)、2种糖皮质激素(地塞米松、倍他米松)、6种类固醇激素(醋酸美仑孕酮、甲基睾丸酮、17α-群勃龙、17β-群勃龙、α-玉米赤霉醇、β-玉米赤霉醇)。监测任务由农业农村部屠宰技术中心、中国动物卫生与流行病学中心、中国农业科学院农产品加工研究所共同承担。监测样品采取监测任务承担单位现场采集和各省(自治区、直辖市)农业农村部门采集邮递相结合的方式采集。具体任务分工见附件1。  (二)省级监测  主要对猪肉(2号或4号肉)、牛肉(黄瓜条或外脊)、羊肉(后腿或里脊)中水分开展品质监测。对猪肝中9种β-受体激动剂(克伦特罗、莱克多巴胺、沙丁胺醇、特布他林、西马特罗、非诺特罗、氯丙那林、妥布特罗和喷布特罗)、2种糖皮质激素(地塞米松、倍他米松)、6种类固醇激素(醋酸美仑孕酮、甲基睾丸酮、17α-群勃龙、17β-群勃龙、α-玉米赤霉醇、β-玉米赤霉醇)等药物开展违法添加实验室检测。重点对省内流通屠宰企业的产品进行监测,样品采集按照《屠宰企业畜禽及其产品抽样操作规范》(NY/T3227-2018)执行,确保监测的科学性和代表性。每个省份监测2个以上地市,猪、牛、羊屠宰企业监测数量原则上每种不少于8家,各省具体监测样品数量见附件2,其中水分监测猪牛羊肉样品合计400份。  (三)数据汇总与分析  农业农村部屠宰技术中心负责部级和省级屠宰环节质量安全风险监测数据的汇总与分析工作。  三、检测方法及判定依据  猪肉、牛肉、羊肉水分含量检测及判定参照《畜禽肉水分限量》(GB 18394-2020);肝脏中9种β-受体激动剂、2种糖皮质激素、6种类固醇激素检测方法及判定依据由农业农村部屠宰技术中心统一提供。  四、时间安排及相关要求  (一)屠宰环节质量安全风险监测在上、下半年各开展一次,可结合飞行检查等工作任务一并开展。各省级农业农村部门要按照本计划要求,结合实际情况,制定本辖区屠宰环节质量安全风险监测方案并报我部备案,自行保障经费并组织实施。  (二)请各省级农业农村部门于3月30日前将监测方案、抽样单位、承检单位及汇总分析单位、联系人及联系方式(附件3)报农业农村部屠宰技术中心备案。承担省级监测工作的机构,由省级农业农村部门确定;各承担检测任务机构原则上需通过国家检验检测机构中国计量认证(CMA),具备按照规范进行检验的能力。  (三)请各风险监测承担单位分别于6月25日、11月25日前将风险监测汇总数据表(附件4)和监测总结分析报告,以电子邮件形式报农业农村部屠宰技术中心。  请农业农村部屠宰技术中心分别于7月底和12月底前将部级和省级屠宰环节质量安全风险监测分析报告报我部畜牧兽医局。  (四)未经我部同意,任何单位和个人不得以任何形式发布风险监测结果、报告和相关信息。  联系人及联系方式:  1.农业农村部畜牧兽医局:徐亭,电话:010-59191530  2.农业农村部屠宰技术中心:雷春娟,电话:010-59198970,监测汇总上报邮箱:xqjiance@aliyun.com  3.中国动物卫生与流行病学中心:王淑婷,电话:0532-85632052  4.中国农业科学院农产品加工研究所:单吉浩,电话:010-62815881  附件: 1.2021年部级屠宰环节质量安全风险监测任务表  2.2021年省级屠宰环节质量安全风险监测任务表   3.省(自治区/直辖市)2021年屠宰环节风险监测承担单位备案表   4.屠宰环节质量安全风险监测结果汇总表及填报说明
  • 大昌华嘉材料线再添新成员 | 普罗美特Porometer孔径分析仪
    2024新年伊始,大昌华嘉科学仪器部材料线迎来新成员普罗美特Porometer—专业的通孔孔径分析仪供应商。自成立以来,普罗美特 Porometer一直在改变通孔分析研究的世界,致力于制造市场上优质的通孔分析仪,并帮助客户设计和生产优质的过滤介质,成为孔隙测定技术与专业知识相结合的领导者。普罗美特Porometer POROLUX通孔孔径分析系列产品专注于快速测量多孔材料通孔孔径及其分布,快速、简单,具有良好的重复性,并符合ASTM,GB/T,DIN等各类标准,使普罗美特Porometer POROLUX通孔孔径分析系列非常适合多孔材料的研发和质检工作。DKSH大昌华嘉科学仪器部旗下已有粒度粒形分析,Zeta电位,纳米粒度,表面张力,接触角测量,比表面分析,压汞测试等成熟的产品系列,普罗美特Porometer的加入丰富了材料线旗下产品在电池隔膜,纺织,中空纤维,陶瓷膜,金属膜板等膜过滤方向的应用,协助DKSH大昌华嘉科学仪器部扩大在多孔材料行业的市场占有率。普罗美特Porometer拥有丰富的多孔材料毛细流孔分析技术的实践经验和专业知识,POROLUX系列仪器得到普遍的认可和采用。普罗美特Porometer品牌由Aptco Technologies拥有,Aptco集团是一家国际技术集团,活跃于工业,医疗和学术实验室的科学仪器和设备的分销,制造,服务和校准。
  • 北京协和医学院药物研究所靳洪涛、贺玖明团队成果:空间代谢组整合网络毒理学和质谱成像探究何首乌D组分肝毒性机制
    何首乌(PM)作为传统中药具有广泛的药理活性且临床应用广泛,其肝毒性一直备受关注,但由于其多成分、多靶点的特性,其毒性物质和机制尚未阐明。前期研究发现PM 70%乙醇提取物中,D组分(95%EtOH洗脱,PM-D的肝毒性最高,然而PM-D的肝毒性机制尚不清楚。  2022年8月,北京协和医学院药物研究所靳洪涛、贺玖明团队在Journal of Ethnopharmacology发表了题为“Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb”,提出系统整体的中药毒理研究策略,整合网络毒理学和空间质谱成像技术探究何首乌D组分肝毒性的潜在靶点及代谢机制,为何首乌肝毒性机制发现及中草药的相关组分药理毒理机制研究提供了新的方法和技术支持。  研究背景  前期基于斑马鱼胚胎模型对何首乌不同组分及单体成分进行肝毒性评估,发现何首乌D组分的急性毒性和肝毒性明显高于其他提取物,并分离鉴定了PM-D中27个化学成分,主要包含蒽醌类、多酚类、蒽酮类、二蒽酮类等,进一步以斑马鱼胚胎模型的表型终点(肝脏大小、肝脏灰度值和卵黄囊面积)评价何首乌D组分中主要化学成分的毒性,发现蒽醌和二蒽酮类与其他成分相比具有显著的肝毒性。前期的毒性筛选确定潜在毒性物质基础有助于进一步阐明其肝毒性分子机制。  本研究首次整合了网络毒理学和质谱成像技术应用于中药毒理机制研究,网络毒理学基于系统和整体的角度衡量复杂的“成分-靶点-疾病”网络关系为中药毒性机制探索提供了新的思路。基于质谱成像技术衍生的空间分辨代谢组学技术可在保留空间位置信息的基础上揭示生物组织中代谢物的时空分布特征,有助于理解代谢活动时空变化与组织病理和生理功能之间的关联和作用机制。以何首乌D组分的肝毒性机制研究为例,两种方法的整合应用为中药药理毒理机制研究提供新的研究策略。  技术流程    研究结果  1、病理及生化指标  急性毒性实验中,14 d内所有剂量均未观察到小鼠死亡或异常毒性症状且大体解剖未见明显病理改变。2g/kg剂量反复给药7天后,组织病理学检查发现给药组肝细胞肿胀,肝窦轻度扩张,少量微肉芽肿,肝细胞轻度变性/坏死等改变,血清生化分析显示,血清AST活性和TBIL含量显著升高,ALT和ALP活性水平呈上升趋势(图1)。  图1 | PM-D给药后小鼠病理及生化指标变化  2、毒性物质的定量检测  PM-D中蒽醌类化合物大黄素和大黄素-8-β-D-葡萄糖苷的含量分别为3,989.820 μg/g和12,677.423 μg/g (图2)。反式-大黄素-大黄素二蒽酮和顺式-大黄素-大黄素二蒽酮含量分别为1,847.708 μg/g和1,455.940 μg/g(图3)。    图2 | HPLC谱图  标准溶液(A)和样品溶液(B), 大黄素-8-β-D-葡萄糖苷(1)和大黄素(2)    图3 | MS谱图  标准溶液(A)和样品溶液(B), 反式-大黄素-大黄素二蒽酮(1)和顺式-大黄素-大黄素二蒽酮(2)。  3、网络毒理学分析  3.1PM-D肝毒性靶点和网络构建  经药物靶点预测和疾病靶点收集共获得了30个目标靶点网络构建结果显示mTOR、PIK3CA、AKT1、EGFR、ERBB2、ESR1、RPS6KB1、CTNNB1是核心的相关靶点(图4)。    图4 | 网络构建及靶点分析  (A)共同靶标集合  (B)药物-靶点-疾病网络  (C)PPI网络。  3.2 GO和KEGG富集结果分析  GO富集结果主要集中在生物过程中,涉及细胞内信号转导的正调控、TOR信号、对外来生物刺激的响应、细胞对内源性刺激的反应、激酶活性的正向调节、MAPK级联调控、凋亡过程的调控、活性氧代谢过程的调控等(图5A)。KEGG的富集信号通路主要包括PI3K-Akt信号通路、ERBB信号通路、AMPK信号通路、mTOR信号通路、肝细胞癌、HIF-1信号通路、Ras信号通路及MAPK信号通路等(图5B)。  图5 | GO富集分析(A)和KEGG富集分析(B)  3.3分子对接  分子对接结果显示大部分核心毒性成分都能与靶点紧密结合,二蒽酮类化合物顺式-大黄素-大黄素二蒽酮(Cis-emodin-emodin dianthrones),反式-大黄素-大黄素二蒽酮(Trans-emodin-emodin dianthrones),Polygonumnolide C4相较于其他成分结合能更低。 图6 | PM-D中成分与核心靶点的分子对接分析  (A)结合能热图分析 (B-D)结合构象可视化:  (B)反式-大黄素-大黄素二蒽酮- mTOR   (C)反式-大黄素-大黄素二蒽酮- EGFR   (D)Polygonumnolide C4- mTOR。  4.质谱成像分析  4.1高分辨、高覆盖、高灵敏的代谢物成像  质谱成像在单个像素点提取的代谢物峰可达数万种,覆盖了丰富的代谢物。作者发现两种含量较高的药物成分大黄素和大黄酸相关代谢产物仅在药物组的肝脏中高度富集。内源性代谢物精氨酸和牛磺胆酸等分布具有区域特异性(图7)。  图7 |AFADESI-MSI可视化PM-D给药后代谢物变化 (A)负离子模式下平均质谱  (B-E)内外源性化合物的空间可视化:大黄素(B), 大黄酚(C),精氨酸(D),牛磺胆酸及牛磺去氧胆酸(E)。  4.2代谢轮廓分析及差异代谢物鉴定  差异代谢物经过MS/MS鉴定,并采用MassImager软件可视化其空间分布特征,代表性差异代谢物的质谱图像如图8所示, 可观察到精氨酸、鸟氨酸、脯氨酸、牛磺酸类和肉碱类代谢物显著上调,部分脂质类代谢物显著下调。  图8 | 代表性差异代谢物质谱成像图  4.3通路富集分析  基于通路富集的结果,构建了包括已鉴定的关键生物标志物在内的代谢网络,揭示了胆汁酸合成、嘌呤代谢、脂肪酸氧化、三羧酸(TCA)循环和脂质代谢等参与了PM-D致肝毒性过程的代谢变化(图9)。图9 | 代谢网络分析  研究讨论  本研究首次应用质谱成像技术可视化PM-D中关键代谢物在肝脏中的分布并首次对PM中毒性成分二蒽酮类化合物进行定量检测及网络药理学分析预测潜在毒性靶标为何首乌毒性物质基础研究及潜在肝毒性靶点发现奠定了新的基础。  空间分辨代谢组学进一步挖掘出何首乌D组分的肝毒性生物标志物,包括氨基酸、酰基肉碱、胆汁酸、脂类等。基因富集和代谢网络综合分析表明,何首乌D组分的毒性机制可能涉及氧化应激、线粒体损伤和AMPK通路等导致的胆汁酸代谢、能量循环、嘌呤代谢和脂质代谢的紊乱相关,该研究有望为临床诊断和监测何首乌肝毒性的发生发展提供参考,并作为代谢适应和重编程的资源,以指导未来临床预后研究,为探索中药毒性机制提供新思路。
  • 中国认证认可协会发布《食品中克仑特罗、克仑丙罗、莱克多巴胺等24种食源性兴奋剂的测定 液相色谱-质谱质谱法》等3项团体标准
    根据《中国认证认可协会团体标准管理办法》相关规定,经专家审查,中国认证认可协会批准《食品中克仑特罗、克仑丙罗、莱克多巴胺等24种食源性兴奋剂的测定 液相色谱-质谱/质谱法》等3项团体标准。现予以发布。特此公告。附件:团体标准名单2023年10月26日中国认证认可协会附件团体标准名单序号标准编号标准名称代替标准号1T/CCAA 71-2023食品中克仑特罗、克仑丙罗、莱克多巴胺等24种食源性兴奋剂的测定 液相色谱-质谱/质谱法无2T/CCAA 72-2023食品中氯米芬、曲美他嗪和美度铵3种代谢调节剂的测定 液相色谱-质谱/质谱法无3T/CCAA 73-2023食品中泼尼松、泼尼松龙、甲基泼尼松龙等34种食源性兴奋剂的测定 液相色谱-质谱/质谱法无
  • 卡博莱特盖罗德国专家回访武汉科技大学省部共建耐火材料与冶金国家重点实验室
    耐火材料广泛用于冶金、化工、石油、机械制造、硅酸盐、动力等工业领域,在冶金工业中用量最大,占总产量的50%~60%。自2001年以来,在钢铁、有色、石化、建材等高温工业高速发展的强力拉动下,耐火材料行业保持着良好的增长态势,已成为世界耐火材料的生产和出口大国。2011年中国耐火材料产量约占全球的65%,产销量稳居世界耐火材料第一。武汉科技大学省部共建耐火材料与冶金国家重点实验室是在耐火材料与高温陶瓷省部共建国家重点实验室培育基地(2003年)和钢铁冶金及资源利用省部共建教育部重点实验室(2005年)基础上建设发展起来的。实验室以高温工业为背景,以耐火材料与冶金为特色,围绕国家节能减排、可持续发展要求,形成了耐火材料设计理论与制备技术、耐火材料高温服役行为及功能化、冶金过程理论与高性能钢铁材料、耐火材料与特色冶金资源高效利用等研究方向。该重点实验室师资力量雄厚,在全国乃至全球范围享有声誉!卡博莱特盖罗与武汉科技大学省部共建耐火材料与冶金国家重点实验室一直有着良好的合作关系,卡博莱特盖罗供应的1800℃管式炉、底载炉、箱式炉均已于2016年投入使用,2017年卡博莱特盖罗凭借较高的性价比中标一台2600℃高温石墨炉来为武汉科技大学的科研服务。 上图为CARBOLITE GERO 1800度标准炉 近日德国卡博莱特盖罗技术总监Dr. Timm Ohnweiler、弗尔德(上海)仪器设备有限公司总经理董亮先生、华中区销售经理雷康晟先生回访了武汉科技大学省部共建耐火材料与冶金国家重点实验室,得到了实验室副主任邓承继教授和高温炉专家葛山教授的热情接待,双方就先进陶瓷烧结、高温炉的使用和维护进行了深入交流。两位教授给卡博莱特盖罗工厂提出了许多非常宝贵的意见和建议,希望德国工厂能够设计制造出更符合中国客户需求的价廉物美的产品,同时也希望中国分公司提供高水平的的技术服务。技术总监Timm先生随后也实地考察了即将放置高温石墨炉的实验室,对场地的大小、电力和水力的需求、气路及通风的设计,给出了明确清晰的要求和建议。 上图为CARBOLITE GERO 2600度定制石墨炉2017年,弗尔德(上海)仪器设备有限公司开展了“VIP俱乐部”计划,武汉科技大学作为华中地区第一个VIP客户,接受了董亮总经理的VIP奖牌馈赠,董总也表示,武汉办事处一定要服务好华中地区的每一个客户,尽全力满足VIP客户的需求,要有长期合作的理念,并能达到双赢。 合影左一:卡博莱特盖罗技术总监Dr. Timm Ohnweiler,左二:弗尔德科学仪器事业部总经理董亮先生,中:葛山教授,右二:华中区销售经理雷康晟先生,右一:实验室副主任邓承继教授 最后,德国卡博莱特盖罗技术总监Timm先生也深表感概,他认为武汉回访客户绝对不虚此行,通过和中国高校教授专家的交流,让他能深刻感受到中国客户对高端产品的需求和期待,中国高校持续在科学研究上的投入让他叹为观止,有些研究领域甚至也达到并超过了德国水平,同时Timm先生也意识到中国客户对产品质量、使用寿命、交货期、售后服务反应速度都有很高的要求,这也是他作为卡博莱特盖罗技术负责人责无旁贷的职责和义务! 备注: CARBOLITE GERO 隶属于弗尔德科学仪器事业部,在英国和德国分别有生产基地,中国分公司为弗尔德(上海)仪器设备有限公司,总部在上海,并且在北京、武汉、广州设有办事处和技术服务中心。
  • 五月特惠 广州菲罗门美国SBP移液器促销 冰点来袭 !
    为庆祝广州菲罗门于今年3月拿到美国SBP中国区总代理,以及庆祝“五一”国际劳动节的到来,我司特推出移液器促销优惠活动。 优惠类别:移液器及其相关耗材类 时间:2016.4.25-2016.5.31 机不可失,时不再来,更多优惠信息可咨询当地SBP经销商,或者致电020-28098123 注:此次促销活动的最终解释权归SBP中国总代理广州菲罗门科学仪器有限公司所有。
  • “瘦肉精”再现,做好准备了吗?
    前情提要近日,据报道,某市食药监局发布今年第4期全市食品安全监督抽检信息通告,检出不合格产品达50批次。多家餐饮企业生产及销售的牛羊肉被检出禁用的瘦肉精,主,角,又,是,克伦特罗和沙丁胺醇,水产品检出孔雀石绿。什么是“瘦肉精”?在中国,通常所说的“瘦肉精”是指克伦特罗(Clenbuterol),本身是一种能够增强心脏收缩、扩张骨骼肌血管和支气管平滑肌的药物,在兽医和临床上用于治疗休克和支气管痉挛。当超过治疗剂量5~10倍使用时,对牛、羊、猪、家禽等多种动物具有提高饲料转化率和增加瘦肉率的作用。然而,“瘦肉精”的副作用对心血管和神经系统产生影响,表现为肌肉震颤、剧烈腹痛、心跳和呼吸加快,严重者甚至死亡。除克伦特罗外,这样的药物还有沙丁胺醇、西马特罗、特布他林等,都属于β-受体激动剂类,同样能起到“瘦肉”作用,却对人体健康危害过大,因而造成安全隐患。因此,中国农业部于2001年12月27日、2002年2月9日、4月9日,分别下发文件明确禁止食用动物使用β-受体激动剂类药物作为饲料添加剂(农业部176号、193号公告、1519号条例)如何让“瘦肉精”无所遁形?在经济利益的驱使下,不法商家铤而走险,“瘦肉精”一再“重出江湖”。作为食品安全检测利器的岛津三重四极杆质谱仪自然不能闲着。应对克伦特罗和沙丁胺醇检测,我们早有准备。除克伦特罗和沙丁胺醇外,还建立了25种β-受体激动剂类药物同时快速测定的检测方法。LC-MS/MS条件:流动相A: 2 mM醋酸铵水溶液流动相B: 乙腈色谱柱: Shim-packXR-ODS III (2.0 mm I.D.×75 mm L., 1.6 μm)MRM条件25种β-受体激动剂色谱图25种β-受体激动剂:特布他林、西马特罗、沙丁胺醇、吡布特罗、齐帕特罗、西布特罗、非诺特罗、克伦塞罗、莱克多巴胺、羟甲基克伦特罗、克伦普罗、氯丙那林、克伦特罗、溴代克伦特罗、妥布特罗、溴布特罗、班布特罗、马布特罗、丙卡特罗、克伦异磅特罗、克伦潘特、马喷特罗、福马特罗、Clenhexerol、喷布特罗未完继续保卫舌尖上的安全,只管好“瘦肉精”是不够的。岛津针对食品安全检测中常见的兽药种类,重磅推出《LC-MS/MS兽药残留数据库》。其中包含247种适合LC-MS/MS检测的兽药的MRM参数信息,支持兽药残留多组分同时分析方法的建立,使得方法建立的过程变得简便。
  • Memmert团队建设之2016 罗特挑战赛
    如同网球运动有温布尔登圣地一样,铁人三项也有自己的朝圣之地——罗特。15年来,罗特挑战赛已经成为全世界规模最大最受运动员和观众欢迎的年度赛事。对Memmert的体育及铁人三项爱好者而言,这更是跟家人生日和圣诞节同等重要的大日子。 该项铁人三项赛事的独特氛围每年都会吸引超过五千人参赛。今年尤其如此,与环法自行车大赛相仿,所有运动员都渴望运动生涯中能够听到几回Solar Hill起跑线上的发令枪。今年的冠军归属Jan Frodeno,他在欢呼声中率先撞线后他感慨道“我终于感受到这一最棒赛事的真谛了”,这并不是指他刷新的7小时35分钟39秒新世界纪录,更多是对沿途热情的观众与超过四千名辛勤志愿者的赞誉。Suddeutsche Zeitung持相同看法,并用“罗特激情派对”来形容由3.8千米游泳,180千米骑行跟42.2千米的马拉松所组成的超级赛程。当战胜不期而遇的伤痛完成226千米全程,成功达到“Center Court”后,所有的一切都是值得的。每个冲过终点线的运动员都受到了英雄般的欢迎,即便是深夜完赛的运动员也不例外,当晚还有烟火表演。Memmert参赛风采 今年由来自71个国家和地区的选手参赛,其中还有埃塞俄比亚,是我们工业电气方向的实习生Engles Shekutie Mekonnen。他首次参赛就取得了优异成绩,在我们的跨洲混合接力赛中担纲最后一棒,并跑出了3小时12分39秒,他的队友分别是游泳搭档Peter Krieger,及来自合作伙伴AISATEC玻利维亚的自行车搭档Laszlo Abendroth。挑战赛的魅力难以抵挡,Laszlo表示来年还将参赛,届时或许会单独参赛。运动增进了友谊,强化了超越合作的纽带联系。Laszlo,我们相约明年见! 前Memmert队成员Lukas Storath今年首次单独参赛,在坚强意志与抱负支撑下,表现极佳,跑进9小时,以8:58:47成绩跑过终点,位列38!Matthias Grosser的完赛成绩是9:25:30,同样值得祝贺。 Memmert的其他参赛队虽然国际协作意味略减,但成绩却毫不逊色。新手与老将携手同心,奋力拼博。Hanno Dietrich和Mark Fischer是游泳赛段的老将了,Marina Sauer则是第一回参加180千米自行车赛段。尽管如此,她还是出色完成任务,成绩是5:38:40.Matthias Roser 跟Stephan Gersching 的对决还在续写,Gersching以4:49:45的成绩再胜一局。Sven Ehrhardt跑出了当日最好的马拉松成绩之一(2:41:15),并将Memmert队带到了总成绩榜的第四位。Memmert 女队表现更是惊艳,Sophia Ramsauer,Maria Paulig 跟Andrea Diethers排名第三,登上了让人羡慕不已的领奖台。赛事趣闻冲过终点仅仅是狂欢的开始,孩子们在快乐大篷车上尽情嬉戏,运动员跟观众欣赏乐队的现场演奏,赛道12.5千米处的“Memmert加油站”备有饮料,热情的观众在赛道两侧为运动员加油助威。Memmert参赛队的集合地点位于终点附近,家人、粉丝以及完赛的选手一起享用法兰克香肠、品尝冷饮,并热烈议论着“温馨一天”的赛事花絮。Memmert 加油站Memmert 参赛队游泳健将马拉松驰骋的自行车轮
  • 卡博莱特· 盖罗在MIM上首次研讨会大受欢迎
    p   卡博莱特· 盖罗在德国诺伊豪森的金属注射成型展览会(MIM)上,举行了为期一天的研讨会。它面向有长期MIM/添加剂制造(AM)经验,以及对新制造可能性感兴趣的部件制造商。一篇关于MIM& amp AM主题的技术论文,和关于各种跨学科制造领域现存挑战的内容丰富的报告,共同为参与者提供了流程优化的新思路。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b75650ee-a4ed-4bb6-b65c-24b690809475.jpg" title=" 卡博莱特· 盖罗研讨会.jpg" / /p p   MIM和AM都是快速增长的市场,前景非常好。这些制造工艺有一个明确的跨学科方向,从粉末生产的准备和成形到后处理。卡博莱特· 盖罗的MIM研讨会为促进这一领域的跨学科交流做出了成功的贡献。 /p p   德国普福尔茨海姆大学战略技术和贵金属研究所所长Carlo Burkhardt教授博士,提供了MIM& amp AM的基本知识,并描述了这些领域中存在的挑战。莱驰科技的Gerhard Raatz用动态图像分析法阐明了金属粉末粒径和粒型分析的可能性。Mike Lucka在关于元素分析的报告中,解释了如何用埃尔特的元素分析仪测定成品MIM部分的碳含量。来自卡尔斯鲁厄技术研究所(KIT)的Elisa Gotze对在wbk生产技术研究所的陶瓷添加剂制造领域的研究活动提供了一些见解。 /p p   对于脱脂和烧结的生产步骤,确保高温炉内理想的气路是保证温度均匀分布的关键。正是由于这个原因,必须进行模拟,使不可见的变为可见,并改善不可见的细节。因此,卡博莱特· 盖罗与普福尔茨海姆大学和Merkle & amp Partner GbR公司密切合作,通过模拟改进脱脂和烧结炉。模拟的基本和可能性由普福尔茨海姆大学的硕士工程师Nelson Brito和Merkle & amp Partner GbR公司的科技博士Christian Mielke在本次研讨会上提出。最后,卡博莱特· 盖罗公司介绍了其整个用于MIM/CIM和AM的产品线。这包括催化剂 (EBO)和热脱脂(GLO)设备,金属熔炉的脱脂和烧结温度高达1450℃(PDS,HTK),应力消除热处理设备的温度高达800℃(GPCMA)。 /p
  • CARBOLITE(卡博莱特)与GERO(盖罗)在高温炉市场强强联手
    2013年10月弗尔德集团收购德国著名的真空和可控气氛高温炉制造商GERO(盖罗),2014年1月将GERO(盖罗)并入同属弗尔德集团科学仪器事业部的CARBOLITE(卡博莱特)品牌下。 两大品牌强强联手,产品范围包括烘箱、箱式炉、管式炉、工业炉,温度从20°C至3000°C。除此之外,还能提供工业定制炉解决方案,包括真空应用、可控气氛的应用如惰性气体或化学活性气体环境下的热处理和先进材料制备。 丰富的产品种类和可靠的德国品质,远销全球80多个国家,弗尔德科学仪器事业部逐渐成为高温热处理领域的佼佼者! 关于GERO(盖罗)德国真空和可控气氛高温炉制造商GERO(盖罗)拥有超过30年的专业热处理经验。从标准产品到客户定制的系统解决方案。GERO(盖罗)基于广泛的标准工业炉,对复杂的热处理工艺提供完全定制解决方案,研发制造高达3000°C的高温炉,是真空、惰性气体或反应性气氛(如氢)的高温应用领域的专用炉领头羊,应用主要领域是高校和工业研究,以及产品的中小型生产。 关于CARBOLITE(卡博莱特)英国CARBOLITE(卡博莱特)公司创建于1938年,几十年来,一直致力于实验室箱式马弗炉、管式炉、灰分炉、工业定制马弗炉及其他箱体设备(高温烘箱、培养箱)的制造和研发,在全球享有很高的知名度,已经成为高温热处理设备领域中的佼佼者。广泛应用在航空航天,陶瓷,金属加工,矿山,医药,电子和材料研究等领域。除了标准产品,CARBOLITE(卡博莱特)还生产一系列特殊应用的马弗炉,例如无尘室的烘箱,旋转管式炉;煤炭和焦炭标准分析测试炉、铁矿石(球团矿)还原性测试炉、贵金属灰吹炉、沥青粘结剂分析用炉、有机氚碳氧化炉等。 弗尔德莱驰(上海)贸易有限公司(Verder Retsch Shanghai Trading Co., Ltd.)是弗尔德集团(Verder Group)在华设立的全资分公司,总部在上海,在北京、广州等地设有办事处。 随着新品牌CARBOLITE(卡博莱特)马弗炉,ELTRA(埃尔特)元素分析仪,GERO(盖罗)高温炉的加入,便于客户管理成立了弗尔德科学仪器事业部Scientific Division,联系方式统一变更为电话021-33932950及传真021-33932955,原电话021-61506045,021-61506046及传真021-61506047仍然可以用。 欲了解更多产品,可联系我们:弗尔德莱驰(上海)贸易有限公司上海张江高科技园区毕升路299弄富海商务苑(一期)8栋邮编:201204电话:+86 21 33932950传真:+86 21 33932955邮箱:info@verder-group.cn弗尔德莱驰北京办事处北京海淀区苏州街29号院18号楼维亚大厦608室邮编:100080电话:+86 10 82608745传真:+86 10 82608766弗尔德莱驰广州办事处广州市天河区华庭路4号富力天河商务大厦905室邮编:510610电话:+86 20 85507317传真:+86 20 85507503
  • 315瘦肉精事件再现,为何餐桌美食成毒药?
    自2017年央视3.15曝光瘦肉精事件后,时隔4年之久,瘦肉精问题又再度登上315晚会。据315晚会报道,沧州青县是河北省的重要养殖基地,每年大约产出70万只羊,养殖户为了增加羊的出肉率,在饲料中偷偷混入“瘦肉精”,喂羊吃下,吃了瘦肉精的羊“一只可以多卖五六十元”。为了逃避监管,当地人一般会在运羊车上装上几只没有喂过瘦肉精的“绿色羊”应付检查。一肉联厂的负责人称:“无锡有客户,天津也有客户,河南也有客户。”目前,相关涉事企业负责人已被控制,郑州连夜突查流入市内的问题羊肉。什么是瘦肉精?瘦肉精的学名叫做「β2 肾上腺素受体激动剂」,它是一类物质的总称,而不是代表一种物质,任何能够促进瘦肉生长、抑制肥肉生长的物质都可以叫做“瘦肉精”,如一代瘦肉精:克伦特罗(clenbuterol)、沙丁胺醇(Salbutamol)和二代瘦肉精莱克多巴胺(Ractopamine)等等,这些药物都可以使动物体产生较多的瘦肉。使用“瘦肉精”后会在动物组织内形成残留,消费者食用后直接危害人体健康。国务院食品安全委员会办公室《“瘦肉精”专项整治方案》(食安办〔2011〕14号)规定的“瘦肉精”品种目录:盐酸克伦特罗、莱克多巴胺、沙丁胺醇、硫酸沙丁胺醇、盐酸多巴胺、西马特罗、硫酸特布他林、苯乙醇胺A、班布特、盐酸齐帕特罗、盐酸氯丙那林、马布特罗、西布特罗、溴布特罗、酒石酸阿福特罗、富马酸福莫特罗。民以食为天,为了保障广大群众餐桌上的安全,支持国家和各地瘦肉精相关药物残留监测工作的开展,坛墨质检多年以来持续进行瘦肉精相关兽药残留的标准物质研制工作,为食品安全保驾护航。
  • 对话“磁王”——晶界缠绕铽的钕铁硼磁性材料
    导 • 读 近年来由于新能源汽车、风能发电及电子产品等领域对节能电机小型化、轻量化的需求,被誉为“磁王”的稀土钕铁硼永磁材料得到飞速发展。添加铽(Tb)和镝(Dy)等稀土元素进行合金化处理,并使合金化元素主要分布于主相晶界位置,是提高钕铁硼磁性性能的有效方法。岛津电子探针具有高分辨率和高灵敏度的特征,对于晶界改性钕铁硼磁性材料主相晶界中富集的铽(Tb)可以予以直观地表征。 磁王 • 钕铁硼 钕铁硼(NdFeB)是所有稀土类磁体中磁性特征最强的,可在同样的磁场强度下大幅减小产品的体积,用于制造的各种永磁电机马达具有体积小、比功率高、有助于节省能源等优点,故而在电动自行车、风力发动机、汽车发动电机等凡是涉及到电能和动能转化的领域,均有着广泛应用。 钕铁硼微区 • 测试难点 一、分辨率 稀土元素之间的特征X射线波长(能量)非常接近,这需要仪器能把波长非常邻近的特征峰区分开来(能量分辨率)。尤其当添加Tb时,在能谱上Tb与Fe、Co和Nd元素互相重叠,无法分析(如图1)。 二、超轻元素 硼(B)为超轻元素,因基体对超轻元素特征X射线的吸收效应很大,含有超轻元素的微区定量测试一直是电子探针分析领域的一大难题,而在含有稀土元素的重基体中问题更甚。 图1 掺杂Tb的钕铁硼样品能谱图 图2 掺杂Tb的钕铁硼样品EPMA波谱图 针对钕铁硼 • 岛津方案 一、全聚焦分光晶体兼顾稀土元素测试的分辨率和灵敏度问题;能完美地分辨Tb与Fe、Co等元素的谱峰。(如图2) 二、特征X射线52.5°高取出角,很好地解决超轻元素的测试问题。(如图3) 图3 超轻元素分析例——钕铁硼中B元素分布分析岛津EPMA-8050G场发射型电子探针 钕铁硼晶界改性 • 直观表达 添加铽(Tb)和镝(Dy)等稀土元素进行合金化处理,是提高钕铁硼磁性性能的有效方法,但传统的直接烧结对矫顽力的提升有限且会大幅降低剩磁,只有使合金化元素主要分布于主相晶界位置,降低反磁畴形核的可能,才能提高矫顽力又不致过多降低剩磁性能。 图4为某烧结钕铁硼磁体的元素面分析结果,从中可以看出有助于提高矫顽力的Tb缠绕分布于主相晶界处,而元素Co、Cu、Ga分布在富Nd相附近,磁体中烧结残余的O主要以Nd2O3形式存在于富Nd相晶粒,元素Pr总是和Nd对应共存。 图4 晶界改性的钕铁硼磁体主要元素分布特征 将Tb晶界扩散处理后的钕铁硼磁体的表面区域、距表面1/2处的中间区域以及心部放大后进行面分析,如图5~图7所示,结果显示Nd2Fe14B主相晶粒呈多边形,晶粒直径为5μm左右,Tb集中在主相晶粒附近,形成了薄而均匀且连续的富Tb壳层。研究表明,获得这样的微结构,可以提高磁性材料的矫顽力,同时不会降低其他磁学性能。 图5 Tb晶界扩散处理后表面区域元素面分布图图6 Tb晶界扩散处理后距表面1/2处元素面分布图图7 Tb晶界扩散处理后心部的分布特征 小 • 结 岛津电子探针可以便捷、直观地钕铁硼磁性材料晶界改性情况进行表征,测试结果可为磁性材料开发专家提供稀土元素渗透情况、晶界富集微结构等关键指导信息。
  • Supelco Supelclean LC-SCX 固相萃取小柱为瘦肉精检测护航
    Sigma-Aldrich 旗下著名品牌Supelco,专注于分析及色谱业务。其开发的Supelclean&trade 固相萃取小柱应用于诸多食品安全检测。   Supelclean&trade Supelclean LC-SCX、LC-WCX 小柱在瘦肉精的检测的标准中发挥了重要作用,为瘦肉精检测提供有力支持。   适用于标准有:《GB/T 5009.192-2003 动物性食品中克仑特罗残留量的测定》、《SN/T 1924-2007 进出口动物源性食品中克伦特罗,莱克多巴胺,沙丁胺醇,特布他林残留量的检测-液相色谱-质谱法》、《NY/T 468-2006 动物组织中盐酸克伦特罗的测定气相色谱-质谱法》等   Sigma-Aldrich 还提供标准品、溶剂、衍生化试剂、色谱柱等瘦肉精检测用产品。产品列表如下:   欢迎您致电咨询,800-819-3336,400-620-3333。 Beta-受体兴奋剂的测定         标准品 英文名 货号 包装 单价 盐酸克伦特罗 Clenbuterol hydrochloride *C5423-10MG 10mg 395.46 盐酸克伦特罗 -d9 Clenbuterol-d9 hydrochloride 54969-10mg 10mg 9909.90 羟甲基克伦特罗 Hydroxymethylclenbuterol 32826-10MG 10mg 2034.63 莱克多巴胺 Ractopamine hydrochloride 34198-100MG 100mg 797.94 克伦丙罗 Clenproperol 32827-10MG 10mg 2055.69 克伦丙罗-d7 Clenproperol-d7 32828-10MG 10mg 7277.40 溴布特罗 Brombuterol hydrochloride 94972-10MG 10mg 3748.68 妥布特罗 Tulobuterol hydrochloride 53541-10MG 10mg 3748.68 克仑潘特 Clenpenterol hydrochloride 32825-10MG 10mg 2012.40 特布他林半硫酸盐 Terbutaline hemisulfate salt,&ge 98% *T2528-1G 1g 735.93 西马特罗 Cimaterol 32568-10MG 10mg 2055.69 西马特罗-d7 Cimaterol-d7 32569-10MG 10mg 8207.55 塞布特罗 Cimbuterol 32576-10MG 10mg 2055.69 非诺特罗 Fenoterol hydrobromide,&ge 98% *F1016-1G 1g 1914.12 氯丙那林 Clorprenaline 32571-10MG 10mg 2055.69 喷布特罗盐酸盐 Penbutolol hydrochloride 32838-10MG 10mg 4497.48 马布特罗 Mabuterol hydrochloride 32573-10MG 10mg 2055.69 美托洛尔 (+-)Metoprolol-(+)Tartrate *M5391-5G 5g 946.53 溴布特罗盐酸盐 Brombuterol hydrochloride 94972-10MG 10mg 3748.68 福莫特罗富马酸盐 Formoterol fumarate dihydrate,98% *F9552-10MG 10mg 1950.39   Clenhexerol 32580-10MG 10mg 2055.69           色谱溶剂         乙腈 残留级 34481-2.5L 2.5L 1123.20 甲醇 残留级 34485-2.5L2.5L 279.63 正已烷 残留级 34484-2.5L 2.5L 418.86 乙酸乙酯 残留级 31063-2.5L 2.5L 418.86 甲酸 LC-MS 94318-50ML-F 50mL 450.45 甲酸 LC-MS 94318-20ML-F 250mL 671.58 乙酸铵 LC-MS 73594-25G-F 25G 1159.47 乙酸铵 LC-MS 73594-100G-F 100G 4169.88           试剂         BSTFA 衍生化试剂 33027 25mL 1155.96 BSTFA 衍生化试剂 33024 20 × 1 mL 1357.20 BSTFA + TMCS 衍生化试剂 33155-U 1 × 25 mL 1206.27 BSTFA + TMCS 衍生化试剂 33149-U 1 × 50 mL 1630.98 BSTFA + TMCS 衍生化试剂 33154-U 144 × 0.1 mL 1898.91 BSTFA + TMCS 衍生化试剂 33148 20 × 1 mL 1663.74           SPE小柱         Supelclean&trade LC-SCX 500 mg/3 mL 57018 54个/盒 1381.77 Supelclean&trade LC-18 500 mg/3 mL 57012 54个/盒 680.94 Supelclean&trade LC-WCX 500 mg/3 mL 57061 54个/盒 1381.77           气相柱         SLB&trade -5ms Capillary GC 30 m × 0.25 mm× 0.25 &mu m 28471-U 1个 4699.89           液相柱         Ascentis® C18 HPLC Column 25 cm × 4.6 mm × 5 &mu m 581325-U 1个 3239.73 Ascentis® C18 HPLC Column 15 cm × 2.1 mm × 5 &mu m 581304-U 1个 3037.32
  • 基于Cytek光谱流式,罗氏公布21色20混1的复杂混样检测技术最新进展
    随着全光谱流式的成功商业化以及染料技术的更新与发展,多色流式细胞术在近年来取得长足进展。众多复杂(超过20色)免疫表型分析方案已在流式方法学、新冠感染免疫、肿瘤微环境等领域研究工作中得到充分的设计与验证,并在血液病检测、免疫监控、细胞治疗等方面展现出独特优势。为了进一步提升多色流式细胞术的检测通量,罗氏公司研发团队开发了基于Cytek® ️全光谱流式的荧光编码混样技术,报道了一管样本中同时检测20个21色PBMC样本的研究进展,除效率提升外,该技术能够在批量分析中大幅降低试剂用量,有效避免人为因素引起的实验误差,并可用于混样多路分选。相关研究工作与2022年发表于Cytometry Part A。图1. CD45多色编码混样技术示意图该方法通过对CD45的多色标记实现多个样本的荧光编码,例如“5选2”的编码方案中(图2上),从5种标记不同染料的CD45单抗库中选取2种进行标记样本,最多可产生10种编码组合。数据分析时,仅通过简单的散点图圈门即可快速解码(图2下)。经实验对比,研究人员验证了“5选2”编码混样方案检测与常规单管检测结果具有较强的可比性,并证实了Anti-CD45编码混样方案不会为实验引入明显的批次效应(实验数据请参考文献原文)。图2. 5选2型编码模式(多至10样本混样)及解码圈门策略方案可靠性验证后,研究人员进一步将编码方案扩展为“6选3”模式,并开发了可用于免疫调节剂作用模式研究的21色表型分析方案,以区分T、B、M、NK细胞丰度以及不同发育阶段T细胞亚群的活化状态,该方案使用20混1的高容量混样模式评估PBMC在葡萄球菌肠毒素B(SEB)刺激下的免疫应答。Anti-CD45编码方式与多色方案如图3所示。图3. SEB刺激实验21色方案及编码混样模式解码后的流式检测数据经FlowSOM聚类区分为17个类群,并通过optSNE降维展示。结果显示,SEB刺激下,样本中各免疫细胞亚群丰度发生显著变化:活化T细胞比例大幅上升;CD4+与CD8+效应记忆T细胞(Tem)、CD4+中央记忆T细胞(Tcm)丰度发生不同程度的下降;CD14hi单核细胞几乎消失。此外,在SEB刺激样本中,研究人员通过CD279、CD134、CD137即CD154的表达区分出两种特有的活化CD4+T细胞亚群,而在对照组中并不存在。相关结果符合实验预期,进一步验证了编码混样方案的可靠性。图4. SEB刺激试验结果展示基于Anti-CD45的编码混样技术因向实验体系引入更多染料,无疑提升了多色方案的复杂性。得益于Cytek® ️全光谱流式强大的多色分析性能,荧光溢漏带来的扩散误差(SE)被有效控制,即便在21色20混1的复杂混样方案中依然得到可靠的数据表现。该编码技术在高容量混样的同时可维持细胞活性,为后续的混样流式分选创造了可能。Cytek® ️ Aurora CS新一代全光谱流式分选平台,最高支持64荧光通道6路光谱分选。Cytek® ️ Aurora CS全光谱流式分选平台(点击查看)参考文献:Junker F, Camillo Teixeira P. Barcoding of live PBMCs to assess immune cell phenotypes using full spectrum flow cytometry[J]. Cytometry Part A, 2022.关于CytekCytek® Biosciences, Inc.(Nasdaq: CTKB)作为一家全球技术领先的生命科学技术公司,通过其受专利保护的全光谱分析(Full Spectrum Profiling,FSP™ )技术,提供高分辨率、高参数和高灵敏度的新一代细胞分析工具。Cytek的创新技术通过检测荧光信号的完整光谱信息,以实现更高水平更高灵敏度的多参数检测。Cytek的FSP™ 平台包括其核心仪器—Aurora和Northern Lights™ 分析系统、Aurora CS分选系统、试剂、软件和服务,为客户提供全面和完整的解决方案。Cytek总部位于美国加利福尼亚州Fremont,在全球设有分部和分销渠道。注:Cytek® , Tonbo Biosciences, cFluor® , Full Spectrum Profiling™ , FSP™ 和Northern Lights™ 是Cytek Biosciences, Inc. 的商标或注册商标。Cytek® 全光谱检测技术相关专利包括但不限于:US10739245B2,US11169076B2,US10788411B2。
  • 罗姆发布罗姆胶粘及复合材料分析仪LUMiFrac新品
    关于德国LUM德国LUM公司是一家生产分散体系分析及表征仪器的行业领先者。基于常年在流体力学,流变学及胶体化学领域的知识与经验,Lerche 教授于1994年创立了LUM公司并研发了STEP-Technology® 工艺,为不同产品的分析表征提供了技术平台。我们的测试仪器用于高速,可靠和全面表征分散体系的分离行为以及用于测试复合材料内聚强度和粘结强度。这些新型仪器已成为化工,食品,化妆品,涂料及制药等工业领域国际领先公司实验室里的标准配置。最近我们扩大了应用领域,给您一个创新的方法来衡量材料的粘着性和粘结性能。在对研发费用的不断投资下,LUM提供了新方法来提升您的知识和目标的。我们的总部设在德国柏林。我们的美国分公司负责加拿大的北美市场、美国和墨西哥,地址就位于Boulder,科罗拉多。中国分公司[罗姆(常州)仪器有限公司]负责中国市场以及整个亚太地区,位于中国常州市。此外,还有在法国巴黎、法国的分支机构和应用实验室,支持我们的地区客户。请联系我们,看看我们如何能帮助你达到你的宗旨和目标。谢谢您的考虑,我们期待与您的合作。关于LUMiFracLUMiFrac是测定胶粘剂拉伸强度的新基准(获得柏林勃兰登堡2012创新奖)。它利用离心力在同一时间对样品施加多倍重力,从而获得粘结强度、拉伸强度,同时还有剪切强度的绝对物理值(N/mm2).LUMiFrac通过一个递增的离心力直接施加到被测试的试样。它在高转速下测试样品断裂瞬间的力,所有的数据被发送到知名的SEPView® 操作软件,该软件可自动计算并显示实时临界力/断裂失效力。此外,它可以同时分析多达8个样品,比较和计算统计,并得出结论。而作为断裂测试的相关数据,也会考虑在内。测试样品定位,像标记1-2-3一样简单,但是对样品进行特殊的预防措施是必要的。只需将8个样本放到标记的转子位置,然后就可以开始了。采用多重采样法同时分析这8个样品而得到的测试结果的准确性是独特、无可比拟的,并且还减少了85%的测量时间。整个发展从一个简单省时的粘合性能的测定想法开始,到取得了多项测试技术专利,到现在附着力测试、复合材料分析的新技术(甚至可以使用多层膜来测试),一系列过程使它在很多领域具有很好的发展前景。LUMiFrac是研究和质量控制工具,专为胶粘剂配方和表面处理行业而准备;漆涂料,联合木制品,汽车和飞机工业,胶带复合材料、多层铝箔包装或金属薄膜塑料光学基板,如眼镜、镜子等。不同的测试基座可覆盖足够多的材料组合,应用范围广泛。为方便样品制备而专门设计的工具已经完善,结合您所了解的东西,把它放在一个功能中,它能得出准确而重复性好的数据。LUMiFrac – 粘接力[和]内构强度的测试标准。应用领域为质量控制而设置的标准化的快速测量粘结接头拉伸剪切强度测试:- 氰基丙烯酸酯、环氧胶粘剂、聚氨酯、胶带、密封… 涂料粘合强度的测定:- 防腐蚀涂料、装饰涂料、金属化聚合物、光学涂层… 复合材料:- 多种物质化合物,相互关联,轻质结构… 表面处理长期疲劳试验:- 交变载荷,不同温度产品优势. 待测样品准备简单. 可同时测8个样品 . 无需固定样品 - 放入仪器即可开始. 测试速度可调节. 可变实验负荷力. 宽负荷力范围(0.1N 到 6500N). 测定试验样品的拉伸强度和剪切强度. 各种温度下的测试. 可多次使用的实验基座,节约成本. 符合ISO 4624和DIN EN 15870产品规格转子转速/负载范围100–13,000 rpm 0.1 N – 6.5 kN抗拉强度高达80 MPa测量时间1分钟到99小时;或根据任务和目标符合标准ISO 4624 JIS K 5600-5-7 DIN EN 15870 DIN EN 14869-2样品数最多同时8个样品最大样品尺寸30 x 30 x 1 mm3 粘接面积直径7毫米,10毫米或定制测试粘结面材料金属和非金属测试粘结面重量4.1克- 38.7克(瓦特/铜约58克)重量56 kg温度控制-11°C 到 + 40°C数据接口USB尺寸 (WxHxD)380 x 296 x 640 mm3电源100 V / 120 V / 230 V, 50/60 Hz功率max. 1050 W详细信息请电话咨询或到我公司网站了解创新点:UMiFrac通过一个递增的离心力直接施加到被测试的试样。它在高转速下测试样品断裂瞬间的力,所有的数据被发送到知名的SEPView® 操作软件,该软件可自动计算并显示实时临界力/断裂失效力。 罗姆胶粘及复合材料分析仪LUMiFrac
  • 莱克多巴胺和克伦特罗标准品促销
    CDCT-C16805000 莱克多巴胺(盐酸盐)(标准品) Ractopamine hydrochloride 纯品型,有证书,0.1g 价格:846.00 促销价:677.80 CDDM-R071402-1MG 氘代莱克多巴胺(d6) Ractopamine-d6 Hydrochloride 1mg 价格:2660.00 促销价:2128.00 CDCT-C11668550 盐酸克伦特罗 标准品 Clenbuterol hydrochloride 纯品型,有证书,0.1g 价格:1512.00 促销价:1209.60 CDCT-XA11668561AC 克伦特罗-D9 标准品 (± )-Clenbuterol D9 (trimethyl D9) 100 ng/ul于丙酮,1ml 价格:2664.00 促销价:2131.20 CDEO-BA008-25MG 盐酸克伦特罗-D9 标准品 clenbuterol-D9 Hydrochloride 25mg 价格:7297.50 促销价:6568.00 促销时间:2011年4月25日 至2011年5月8日 了解更多产品请进入安谱公司网站 http://www.anpel.com.cn/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制