当前位置: 仪器信息网 > 行业主题 > >

月见草素

仪器信息网月见草素专题为您提供2024年最新月见草素价格报价、厂家品牌的相关信息, 包括月见草素参数、型号等,不管是国产,还是进口品牌的月见草素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合月见草素相关的耗材配件、试剂标物,还有月见草素相关的最新资讯、资料,以及月见草素相关的解决方案。

月见草素相关的论坛

  • 【分享】月见草油只是传说

    【分享】月见草油只是传说

    http://ng1.17img.cn/bbsfiles/images/2011/04/201104151303_289017_2185349_3.jpg有位读者说他夫人迷恋上了月见草油,还托朋友特意从美国带回来,说是在美国也很受推崇。这位读者有点困惑:他夫人吃了大半年,也没见有什么“效果”,这个东西,到底好在哪里呢?

  • 【分享】保健功能食品的种类及主要素材

    1.增强免疫功能食品素材 主要有小球藻、螺旋藻等藻类;乳酸菌、双歧杆菌等细菌类;蘑菇多糖、担子菌等食用真菌类;黄绿色蔬菜和水果、大豆肽、芦荟等植物成分;甲壳素、蜂王浆、蜂蜡、牡蛎肉等动物成分;人参、灵芝、刺五加、虫草等传统中草药类;还有褪黑素、核酸等合成物质等。 以上这些成分按其作用机制大体可分为两大类:第一类是以p—蘑菇多糖为代表,有刺激白细胞表面膜的作用,使细胞活素生成能力增强;另一类以蔬菜中含硫化合物为代表,对白细胞内代谢有调节作用。 2.抗氧化草药及植物成分 氧化应激是癌、心脑血管病和衰老的主要原因。植物多酚是近年来国外研究最多的天然抗氧化功能食品素材。植物多酚种类繁多,主要有酚酸、原花色素、单宁、黄酮类等。目前,国外主要从以下植物成分提取多酚类物质:茶、紫苏籽和叶、芝麻、葡萄籽和叶、未熟苹果、月见草籽皮、越橘皮、大豆、桉树叶、生姜、桑叶等。 多酚类物质具有抗氧化、抗癌、抗过敏、消炎、降血脂、降血糖、抑制动脉硬化、抗衰老等多种功效。在欧洲,葡萄籽多酚早在30多年前就作为药物使用,它具有降血脂、抗氧化等多种功效,对动脉硬化、癌、糖尿病及其合并症、运动应激引起的肌肉疲劳和脂质过氧化反应均有预防效果,还可以改善肠内环境,减轻肠道排泄物的臭味。

  • 虫草浓缩液中虫草酸和虫草素测定方法

    虫草浓缩液中虫草酸和虫草素测定方法

    [align=center][b][font=宋体]虫草浓缩液中虫草酸和虫草素测定方法[/font][/b][/align][size=18px][font=宋体]虫草浓缩液由虫草水提物制得,用于化妆品原料。客户想测虫草浓缩液中虫草酸和虫草素,虫草酸又名甘露醇。[/font][font='Times New Roman','serif']1 [/font][font=宋体]试剂:乙腈(色谱级),超纯水,甲醇(分析纯),虫草酸和虫草素均购置北京索莱宝公司。[/font][font='Times New Roman','serif']2 [/font][font=宋体]标准品配制:称取一定量的虫草酸,用纯水溶解,定容,得到浓度为[/font][font='Times New Roman','serif']150 μg/mL[/font][font=宋体],待测;[/font][font=宋体]虫草素,用甲醇溶解,定容,得到浓度为[/font][font='Times New Roman','serif']220 μg/mL[/font][font=宋体],待测;[/font][font='Times New Roman','serif']3 [/font][font=宋体]样品制备:[/font][font='Times New Roman','serif']3.1 [/font][font=宋体]精密量取[/font][font='Times New Roman','serif']0.5 mL[/font][font=宋体]虫草浓缩液,分别用水定容至[/font][font='Times New Roman','serif']10 mL[/font][font=宋体]测定虫草酸,用甲醇定容至[/font][font='Times New Roman','serif']10 mL[/font][font=宋体]测定虫草素,过[/font][font='Times New Roman','serif']0.45 μm[/font][font=宋体]滤膜,待测。[/font][font='Times New Roman','serif']4 [/font][font=宋体]虫草素[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]条件:[/font][font='Times New Roman','serif']LC-20AT[/font][font=宋体]配制紫外检测器,[/font][font=宋体]波长:[/font][font='Times New Roman','serif']260 nm [/font][font=宋体];进样量:[/font][font='Times New Roman','serif']5μL[/font][font=宋体];色谱柱型号:[/font][font='Times New Roman','serif']Agilent Zorbax SB-C18(4.6 mm×250mm, 5 μm)[/font][font=宋体];柱温:[/font][font='Times New Roman','serif']30.0 [/font][font=宋体]℃;流速:[/font][font='Times New Roman','serif']0.8 mL/min[/font][font=宋体];流动相条件如表[/font][font='Times New Roman','serif']1[/font][font=宋体]:[/font][/size][align=center][img=,551,185]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311641477076_4077_1858223_3.jpg!w551x185.jpg[/img][/align][font='Times New Roman','serif'] [/font][size=18px][font=宋体]虫草酸[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]条件:[/font][font='Times New Roman','serif']Angilent infinit1260[/font][font=宋体]配制示差检测器,进样量:[/font][font='Times New Roman','serif']5[/font][font=宋体]μ[/font][font='Times New Roman','serif']L[/font][font=宋体];色谱柱型号:[/font][font='Times New Roman','serif']Agilent Zorbax SB-C18(4.6 mm[/font][font=宋体]×[/font][font='Times New Roman','serif']250 mm, 5 μm)[/font][font=宋体];[/font][font=宋体]柱温:[/font][font='Times New Roman','serif']30.0 [/font][font=宋体]℃,;流动相条件乙腈:纯水[/font][font='Times New Roman','serif']=80:20[/font][font=宋体];流速:[/font][font='Times New Roman','serif']0.5mL/min[/font][font=宋体]。[/font][/size][align=center][img=,690,265]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311642440362_8441_1858223_3.jpg!w690x265.jpg[/img][/align][align=center][b][font=宋体]虫草素标准品色谱图[/font][/b][/align][align=center][img=,683,269]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311642555977_2623_1858223_3.jpg!w683x269.jpg[/img][/align][align=center][b][font=宋体]虫草浓缩液中虫草素色谱图[/font][/b][/align][b][font=宋体]结果:虫草浓缩液中虫草酸含量([/font]7.65 mg/mL [font=宋体]),虫草素含量([/font]2.65[/b][font='Times New Roman','serif']μg/mL[/font][b][font=宋体])。[/font][font=宋体]小结:测定虫草素的过程中发现流动相梯度洗脱,回到起始梯度是需要平衡时间久一些,虫草素含量较低,虫草酸含量比较高。示差检测器也是进样前需要稳定[/font]2[font=宋体]小时左右,才能保证实验数据稳定性。[/font] [/b]

  • 极草5X冬虫夏草含片未检出虫草素 厂家称不便回复

    极草5X冬虫夏草含片未检出虫草素  厂家称不便回复

    http://ng1.17img.cn/bbsfiles/images/2014/12/201412051620_526021_2206495_3.jpg12月1日,一家检测机构内,打假人王海向记者展示“极草含片”的检测报告显示:未检出虫草素。新京报记者 王嘉宁 摄http://ng1.17img.cn/bbsfiles/images/2014/12/201412051621_526022_2206495_3.jpg打假人王海送检的青海春天药用资源科技有限公司生产的极草5X经典含片。 实习生 彭子洋 摄 极草含片未检出虫草素遭质疑  专家称冬虫夏草可以调节人体免疫力,但“抗癌”效果不明确,此前并未有明确证据显示其含虫草素  新京报讯 (记者侯润芳)极草5X冬虫夏草,一种宣称可以“含着吃”的冬虫夏草,以其价格昂贵为市民所熟知。近日,打假人士王海将一盒青海春天药用资源科技有限公司(以下简称“青海春天公司”)生产的极草5X经典含片送检,结果显示,该品牌冬虫夏草并不含有虫草素。  对此,青海春天公司回应记者称,“不方便回复”。  从事真菌学研究的中科院一研究机构也表示,此前研究中也并未在采集的野外冬虫夏草中检测出虫草素。负责检测的专家表示,冬虫夏草确实可以调节人体免疫力,但是否有抗癌效果并不明确,公众应理性看待冬虫夏草。  11月17日,打假人士王海携带一盒青海春天公司生产的极草5X经典含片到北京某检测中心检测是否含有虫草素,“冬虫夏草宣传的神奇功效让我产生了质疑。”  “冬虫夏草有效成分中,只有虫草素是冬虫夏草独有,其他成分在别的物质上也有。”王海称,“检测虫草素含量就能知道冬虫夏草的真实功效。”  王海介绍,他送检的结果是“未检出虫草素。”但该检测中心工作人员介绍,检测仪器的检出限是5.63μ克/克,“未检测出极草含有虫草素(不等于完全没有),也可能有,但因为极其微量,无法检测出。”  记者现场看到,王海所选择的这家检测中心属中国合格评定国家认可委员会实验室认可中心,具有食品验证机构资质认定证书和资质认定计量认证证书等认证。

  • 【讨论】如何鉴别激素草莓?

    【讨论】如何鉴别激素草莓?

    http://ng1.17img.cn/bbsfiles/images/2011/03/201103170850_283382_1641058_3.jpg过量使用激素的草莓(左侧两颗)形状不规则,果面凹凸不平,果形不整。 自然生长的草莓(右侧两颗)呈圆锥形或长圆锥形。http://ng1.17img.cn/bbsfiles/images/2011/03/201103170851_283383_1641058_3.jpg过量使用激素的草莓(左侧两颗)上色不均匀,光泽度差,特别是底部果柄处,颜色发青、发白。 自然生长的草莓(右侧两颗)颜色均匀、红艳,光洁度好。http://ng1.17img.cn/bbsfiles/images/2011/03/201103170852_283384_1641058_3.jpg过量使用激素的草莓(左侧四块)空腔现象比较多、空腔大,果肉颜色发白,上色较差。 自然生长的草莓(右侧四块)果肉饱满,较少出现空腔现象,内部果肉呈鲜红色。 http://ng1.17img.cn/bbsfiles/images/2011/03/201103100848_281745_1641058_3.jpg 眼下最惹眼的水果莫过于草莓。然而,草莓的个头过大却让部分消费者打了个问号:个头这么大,该不会是打了激素膨胀吧? 网上质疑大个草莓的帖子也铺天盖地,有许多人都说这种激素就叫做膨大剂。带着市民的疑惑,近日,记者采访了我市草莓专家。据专家介绍,其实,按照现在的种植技术和引进的优质草莓品种,完全可以让草莓在正常栽培的条件下长出大个来。  “空心”、“畸形”的不要买  鞍山市农产品监测中心副主任、教授级高级农艺师唐鹏介绍说,膨大剂是一种生长激素,作用不是增加细胞数,而是增加细胞的体积,使用膨大剂种植的草莓,生长快,营养往往会被破坏,切开后里面往往是空心的,吃起来口感没有正常草莓那么结实,储存起来更容易烂掉。

  • 70.8 RP-HPLC测定注射用复方荭草冻干粉针中异荭草素、荭草素的含量

    70.8 RP-HPLC测定注射用复方荭草冻干粉针中异荭草素、荭草素的含量

    【作者】 兰燕宇; 王爱民; 何迅; 李勇军; 刘丽娜; 王永林; 【Author】 LAN Yan-yu, WANG Ai-min, HE Xun, LI Yong-jun, LIU Li-na, WANG Yong-lin(School of Pharmacy, Guiyang Medical College, Guiyang 550004, China) 【机构】 贵阳医学院药学院; 贵阳医学院药学院 贵州 贵阳 550004; 贵州 贵阳 550004; 贵州 贵阳 550004; 【摘要】 目的建立注射用复方荭草冻干粉针中异荭草素、荭草素含量的RP—HPLC测定方法。方法色谱柱:Diamonsil ODS(4.6 mm×250 mm,5 μm);流动相:乙腈-0.1%磷酸溶液(18:82),流速:1 mI·min-1,柱温:40℃;检测波长350 nm。结果被测定峰与其他组分峰可达到基线分离,异荭草素、荭草素线性范围分别为0.049 6~0.794 0μg(r=0.999 9),0.031 6~0.506 0 μg(r= 0.999 9),回收率分别为98.4%,99.9%,RSD分别为2.2%,1.3%(n=9)。结论该法简便、准确、重现性好,适用于该制剂的质量控制。 【关键词】 反相高效液相色谱法; 复方荭草冻干粉针; 异荭草素; 荭草素; http://ng1.17img.cn/bbsfiles/images/2012/09/201209022122_388015_1838299_3.jpg

  • 14.4 HPLC测定地锦草中槲皮素、山柰素的含量

    14.4 HPLC测定地锦草中槲皮素、山柰素的含量

    HPLC测定地锦草中槲皮素、山柰素的含量 雷 鹏 刘 韶 李新中 徐平声 (中南大学湘雅医院药剂科, 长沙410008)摘要 采用高效液相法测定地锦草中槲皮素、山柰素含量, 色谱柱: D iamonsil C18 ( 4. 6 @ 250 mm ); 流动相: 甲醇-01 025%磷酸( 60B40); 流速: 1 m l/m in; 柱温: 35e ; 检测波长: 360 nm。槲皮素在01 147~ 0. 735 Lg范围内线性关系良好, 平均回收率为981 15%; 出柰素在01042~ 0. 210 Lg 范围内线性关系良好, 平均回收率为971 24%。该方法简便可行、重复性好, 可作为地锦草质量评价的方法。关键词 地锦草; 高效液相色谱法; 槲皮素; 山柰素http://ng1.17img.cn/bbsfiles/images/2012/07/201207242110_379513_2432394_3.jpg

  • 【原创大赛】HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分

    【原创大赛】HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分

    HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分酸浆(拉丁文名:Physali alkekengi L.)又名红菇娘、挂金灯、戈力、灯笼草、灯笼果、洛神珠、泡泡草、鬼灯等北方称为菇蔫儿、姑娘儿,以果实供食用。化学成分含酸浆苦素A(Physalin A)、酸浆苦素B、酸浆苦素C、木犀草素(Luteolin)及木犀草素-7-β-D-葡萄糖甙。果实含枸橼酸、草酸、维生素C、酸浆红色素(physalien)、酸浆醇(physanol)A,B。花萼含α胡萝卜素、酸浆黄质(physoxanthin)及叶黄素等,种子油的不皂化物中分得多种4α-甲基甾醇,主要为禾本甾醇(gramisterol)和钝叶醇(obtusifoliol)及4种新甾体。此外尚含多种4-脱甲基甾醇,如胆甾醇和24-乙基胆甾醇等。还含有多种三萜3β-一元醇,其中环木菠萝烷醇(cycloartanol)35%,环木菠萝烯醇(cycloartenol)27%、羊毛脂-8-烯-3β-醇(lanost-8-en-3β-ol)。木犀草素(luteolin)是一种天然黄酮类化合物,存在于多种植物中,具有抗炎、抗肿瘤、抗过敏等方面的作用。化学是如下:http://ng1.17img.cn/bbsfiles/images/2016/08/201608311303_607620_2217446_3.jpg目前,国内传统中药有效成分的提取方法普遍存在提取率低、杂质清除率不高、生产周期过长、能耗高、溶剂用量大等缺点。随着中药现代化进程的不断深入,许多现代高新技术不断地被应用到中药有效成分的提取和分离,使得中药有效成分的提取更高效和简便。超声-微波协同萃取技术直接将超声振动与开放式微波两种作用方式相结合,充分利用超声波振动的空化作用以及微波的高能作用,实现了低温常压条件环境下,对固体样品进行快速、高效、可靠的预处理,与常规提取方法相比,超声-微波协同萃取技术具有快速、节能、节省溶剂、污染小等优点。本实验应用超声-微波协同萃取法提取酸浆中的木犀草素及木犀草素-7-β-D-葡萄糖甙,采用高效液相-二极管阵列检测法(HPLC-DAD)测定提取物中木犀草素及木犀草素-7-β-D-葡萄糖甙的含量,药材中二者成分的含量分别为:1.200mg/g 和0.43mg/g,二个峰,木犀草素-7-β-D-葡萄糖甙峰位置分别为:221nm,270nm,木犀草素峰位置分别为:226nm,276nm,由于木犀草素-7-β-D-葡萄糖甙比木犀草素多了一个 β-D-吡喃葡萄糖基团,天麻素二个峰位置都发生了蓝移,样品中二个峰的光谱图与标准品二个峰的光谱图相同,可以进一步确定酸浆中含有木犀草素及木犀草素-7-β-D-葡萄糖甙。主要仪器与试剂主要仪器Agilent1100型四元梯度高效液相色谱仪(美国 Agilent 公司)Agilent TC-C18(ODS)色谱柱(5μm,4.6×250mm,美国 Agilent 公司)CW-2000 超声-微波协同萃取仪(新拓微波溶样测试技术有限公司)DJ-10A 型倾倒式粉碎机(上海隆拓仪器设备有限公司)RE-52AA 型旋转蒸发仪(河南巩义仪器厂)LXJ-IIB 型低速大容量多管离心机(上海安亭科学仪器厂)试剂木犀草素(中检所,含量98%;)木犀草素-7-β-D-葡萄糖甙(中检所,含量98%;)酸浆全草(采于黑龙江)除甲醇、乙腈为色谱纯(国药集团化学试剂有限公司),其余试剂除专门提到外,均为分析醇,实验用水为二次蒸馏水。实验方法供试品溶液的制备 精密称取酸浆粉末1.0g,置于超声-微波萃取仪玻璃容器中,加入50mL70%甲醇,开启超声微波,控制在恒温50℃下提取40min,萃取3次,合并提取液,浓缩至近干,残渣加入甲醇溶解,转移至10mL 量瓶中,加甲醇稀释至刻度,摇匀,过0.45μm 的微孔滤膜,取续滤液,即得。提取条件的考察溶剂的选择:精密称取酸浆粉末1.0g,置于超声-微波萃取仪玻璃容器中,分别用水、70%甲醇、70%乙醇溶液超声-微波协同萃取40min(n=3),萃取3次,合并提取液,浓缩至近干,残渣加入甲醇溶解,转移至10mL 量瓶中,加甲醇稀释至刻度,摇匀,过0.45μm的微孔滤膜,取续滤液,HPLC 测定萃取率。溶剂体积分数的选择:分别用体积分数为40%、50%、60%、70%、80%、90%和纯甲醇溶液超声-微波协同萃取30min(n=3),方法同上。溶剂用量的选择:分别用10mL、20mL、50mL、80mL、100mL70%甲醇提取,方法同上。提取时间的选择:分别用70%甲醇超声-微波协同萃取20min、30min、40min、50min、60min(n=3),方法同上。提取温度的选择:分别在40、45、50、55、60℃下用70%甲醇超声-微波协同萃取40min,方法同上。对照品溶液的制备 分别精密称取常温减压干燥12h 的木犀草素及木犀草素-7-β-D-葡萄糖甙对照品适量,加甲醇配制成木犀草素-7-β-D-葡萄糖甙为200μg/mL、木犀草素为100μg/mL 的混合对照品溶液,冷藏备用。色谱条件 色谱柱:Agilent TC-C18柱(5μm,4.6×250mm);流动相:A-0.1%乙酸水溶液;B-甲醇,线性梯度洗脱:0~30 min,3%~5% B;30~35 min,5%~20%B;35~40min,20%~20%B;检测波长:270nm;流速:1mL/min;柱温:30℃;进样量:20μL。结果与讨论提取条件的优化结果溶剂的优化结果:分别用水、70%甲醇、70%乙醇溶液超声-微波协同萃取30min(n=3),结果表明70%甲醇提取木犀草素-7-β-D-葡萄糖甙的量较高,而木犀草素的量差异不明显,因此选择70%甲醇提取。溶剂体积分数的优化结果:分别用体积分数为40%、50%、60%、70%、80%、90%和纯甲醇溶液超声-微波协同萃取30min(n=3),结果表明,在甲醇体积分数70%时,木犀草素-7-β-D-葡萄糖甙和木犀草素的提取率随着甲醇浓度的增加而增加;但当甲醇体积分数在70%以上时,木犀草素葡萄糖甙的提取率呈现下降趋势,木犀草素没有明显的变化。木犀草素葡萄糖甙属于一种苷,分子量小,极性较大,当甲醇体积分数过高时,溶液极性降低,使得极性较强的木犀草素葡萄糖甙不易溶出,而木犀草素极性相对木犀草素葡萄糖甙小,影响不明显,因此实验选择70%甲醇作为提取溶剂。溶剂用量的优化结果:分别用10mL、20mL、50mL、80mL、100mL70%甲醇提取,结果表明溶剂体积在50mL时木犀草素葡萄糖甙和木犀草素的提取率最高,之后随着溶剂用量的增加,木犀草素葡萄糖甙和木犀草素的提取率趋于稳定,因此溶剂用量选用50mL 进行提取 。提取时间的优化结果:分别用70%甲醇超声-微波协同萃取20min、30min、40min、50min、60min(n=3),结果表明超声-微波协同萃取时间从20~40min的过程中木犀草素葡萄糖甙和木犀草素的提取率逐渐增加;而提取时间超过40min之后,提取率反而逐渐下降。超声-微波协同萃取时间太长,植物中大量细胞细胞破碎,使得大量粘性物质等进入提取液,溶剂杂质增多、粘度增大,影响了有效成分的溶出,有效成分含量反而减少,因此选择提取时间为40min。提取温度的优化结果:分别在40、45、50、55、60℃下用70%甲醇超声-微波协同萃取40min,实验表明,提取温度在50~60℃的范围内,木犀草素葡萄糖甙和木犀草素的提取率没有明显差异,考虑到温度太高容易破坏活性成分,因此选择提取温度为50℃。流动相的考察在实验过程中,流动相首先考察了甲醇-水、乙腈-水等度洗脱对酸浆超声-微波协同萃取样品溶液进行分离,乙腈-水作为流动相时,出峰较快,不能较好地把木犀草素葡萄糖甙和木犀草素与其他杂质成分分离;甲醇-水作为流动相时,出现峰形拖尾现象,分离效果不理想。为改善上述现象,改用0.1%乙酸代替水并采用梯度洗脱,经过反复筛选之后,最终确定流动相组成为 A -0.1%乙酸水溶液, B -甲醇,洗脱程序为0~30 min , 3%~5% B;30~35 min ,5%~20% B ;35~40 min 20%~3% B,木犀草素葡萄糖甙和木犀草素和其他杂质成分能够很好的分离,得到较理想的色谱图。对照品溶液和酸浆萃取样品的HPLC-DAD 分析下图分别显示了在上述的色谱条件下,采用 DAD 进行检测得到的两种混合对照品及酸浆萃取样品的 HPLC 分离色谱图。图1色谱图中木犀草素葡萄糖甙和木犀草素的保留时间分别为18.74min, 26.87min,根据保留时间判断,图2中的 a、b 色谱峰分别初步鉴定为木犀草素葡萄糖甙和木犀草素。图3、4分别显示了混合对照品和酸浆萃取物中保留时间18.74min, 26.87min 的色谱峰进行 DAD 检测后得到的光谱图,木犀草素葡萄糖甙和木犀草素 UV 光谱图形状相似,出现 二个峰,木犀草素葡萄糖甙峰位置分别为:221nm,270nm,木犀草素峰位置分别为:226nm,276nm,由于木犀草素葡萄糖甙比木犀草素多了一个 β-D-吡喃葡萄糖基团,木犀草素葡萄糖甙二个峰位置都发生了蓝移,样品中二个峰的光谱图与

  • 59.6 高效液相色谱法测定冬凌草糖浆中冬凌草甲素含量

    59.6 高效液相色谱法测定冬凌草糖浆中冬凌草甲素含量

    【作者】 蔡俊安(河南百年康鑫药业有限公司)【摘要】 目的建立测定冬凌草糖浆的冬凌草甲素含量的高效液相色谱法。方法采用Diamonsil C18色谱柱(250 mm×4.6 mm,5μm),以甲醇-水(50∶50)为流动相,流速为1.0 mL/min,检测波长为239 nm。结果冬凌草甲素进样量在0.093~0.746μg范围内与峰面积积分值线性关系良好,回归方程为Y=413 933.35-63 428.66 X,r=0.999 7(n=5);平均加样回收率为99.0%,RSD为1.06%(n=5)。结论该法简便、准确、专属性和重复性好,为冬凌草糖浆中冬凌草甲素的定量分析提供了科学有效的方法。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208211753_385117_1609970_3.jpg

  • 草酸是形成含钙结石的重要因素之一

    草酸是形成含钙结石的重要因素之一。一般来说,有点涩味的蔬菜草酸含量相对较高,比如菠菜、苋菜、茭白、竹笋、芦笋、马齿苋等,吃前用沸水焯一下,有助于去除大部分草酸。

  • 组织卤素测试的草根比对

    看到有很多人要求组织卤素测试的草根比对,不知道大家有没有愿意合作的?我这可以帮你们做样品,但是由于我们没有IC,所以需要有人帮忙验证一下。然后发给大家做比对,当然样品是免费提供的,只不过是要到付快递费。

  • 影响中草药成分积累的其它因素

    中草药的采收,受多种因素的制约,除了如耕作制度等社会因素外,对于有效成分的积累尚受一些自然因素的影响,因此在采收中草药时,也应加以考虑。如兴安杜鹃(Rhododendron dauricum L.)在同一时期采收,由于产地不同,挥发油的含量有很大差异,含量可相差3~6倍。  从经纬度来看,中草药中挥发油的含量越向南越高,而蛋白质的含量越向北越高。金鸡纳树皮中的生物碱含量随温度增高而增高,而亚麻中的不饱和酸则气温越低,含量越高。茄科某些植物,当寒潮来到时,其中晶形生物碱会变成非晶形没有疗效的生物碱。  薄荷即使栽培在同一地块,如阳光充沛,挥发油含量高,且油中薄荷脑的含量也高,若阴雨连绵,或久雨初晴2~3日内来收,含油量下降至正常量的3/4。  曼陀罗在碱性土壤中生长,生物碱含量高,薄荷在砂质土壤中生长,挥发油含量高。

  • 草莓的空心和畸形现象是由激素引起的吗?

    草莓空心是由多方面原因造成的,品种是最主要的因素。一些草莓品种如阿玛奥、阿尔比、八四莓一号、赛娃等本身具有果实中间空心的特点。其他草莓品种如在果实膨大期遇到肥水管理不当或土壤太干时也会产生果实空心现象,使用膨大剂等植物外源激素也有可能造成草莓果实空心。所以,草莓空心主要是由品种特性和栽培管理引起的,使用膨大剂等植物外源激素可能是原因之一,但不是主要的。  草莓畸形与天气条件和品种相关。如天气太冷,蜜蜂不肯出来干活;或者光照不好,花粉囊无法打开,花粉颗粒不能充分的散开,蜜蜂不能正常授粉极易产生畸形草莓果。我们平时看到的“大草莓”是怎么一回事呢?有些草莓品种天生大个儿,比如从日本引进的品种,红颜、章姬等都是大个头。事实上无论什么品种,只要适当进行疏花疏果,就可以获得更大的果实。道理很简单,只要草莓的果实和叶片数量基本确定,光合作用产出和分配到果实的营养物质总量也就确定了。显然,草莓大小完全是由植株营养和果实成熟度决定。  另外,草莓“白屁股”和使用植物激素也没有必然关系。因为草莓的转色过程通常是从尖端向后面的果柄逐渐进行,易受到光照的一侧更先变红,越靠近果柄基部着色越慢。在实际生产中,尤其是早春大棚内生产的草莓,由于受光照较弱等影响,转色过程偏慢,加上品种原因,使得果实基部转色就会推迟。如果等到整个草莓完全变红时采摘,草莓顶端会因为过熟而容易损伤,因此,一般果农会在草莓完全变红之前采摘,就出现了所谓的 “白屁股”草莓。

  • 69.4 大鼠口服菊花提取物后血浆中木犀草素及芹菜素测定方法的研究

    69.4 大鼠口服菊花提取物后血浆中木犀草素及芹菜素测定方法的研究

    【作者中文名】潘兰英; 李丽萍; 蒋惠娣;【作者英文名】PAN Lan-ying; LI Li-ping; JIANG Hui-di*(Department of Pharmaceutical Analysis and Drug Metabolism; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310031; China);【作者单位】浙江大学药学院药物分析与药物代谢研究室; 浙江大学药学院药物分析与药物代谢研究室 杭州;【摘要】目的建立大鼠血浆中木犀草素和芹菜素总浓度的HPLC测定方法,并研究大鼠口服菊花提取物(CME)后其效应成分——木犀草素、芹菜素的药动学参数。方法大鼠血浆在2 mol.L-1盐酸酸性条件下于80℃水浴水解1.5 h,水解液经乙酸乙酯萃取,萃取液减压抽干后溶解,经HPLC分析。采用Diamonsil ODS C18色谱柱,以甲醇-0.2%磷酸(55∶45)为流动相,流速1.0 mL.min-1,检测波长350 nm,柱温30℃。应用建立的方法测定大鼠口服200 mg.kg-1菊花提取物后血浆中木犀草素及芹菜素质量浓度,并以3P87软件计算其药动学参数。结果本法木犀草素和芹菜素的定量下限(LOQ)分别为0.045 5和0.145 mg.L-1;两者分别在0.045 5~8.09和0.145~25.7 mg.L-1内呈良好线性关系,r分别为0.995 7及0.997 4;两者低、中、高质量浓度的绝对回收率及方法回收率均在89%~107%内。日间及日内精密度RSD均小于11%。大鼠口服CME后木犀草素与芹菜素的Ka分别为1.72和0.237 h;t1/2(Ka)分别为0.440和3.21 h;t1/2α分别为0.77...http://ng1.17img.cn/bbsfiles/images/2012/08/201208271745_386602_2379123_3.jpg

  • 【转帖】部分草莓使用激素过量 业内揭秘教您选好水果

    转自《食品伙伴网》食品安全常识在生态农业园采摘了一份自然生长的草莓,又从市场上选购了一份使用激素过量的草莓,做了一个对比试验,教您选购自然生长的草莓。http://www.foodmate.net/file/upload/201103/10/11-20-48-95-564860.jpg 过量使用激素的草莓(左侧两颗)形状不规则,果面凹凸不平,果形不整。 自然生长的草莓(右侧两颗)呈圆锥形或长圆锥形。http://www.foodmate.net/file/upload/201103/10/11-21-08-73-564860.jpg 过量使用激素的草莓(左侧两颗)上色不均匀,光泽度差,特别是底部果柄处,颜色发青、发白。 自然生长的草莓(右侧两颗)颜色均匀、红艳,光洁度好。http://www.foodmate.net/file/upload/201103/10/11-21-27-20-564860.jpg 过量使用激素的草莓(左侧四块)空腔现象比较多、空腔大,果肉颜色发白,上色较差。 自然生长的草莓(右侧四块)果肉饱满,较少出现空腔现象,内部果肉呈鲜红色。

  • 【原创大赛】CNW Athena C18-WP色谱柱测定人工蛹虫草中虫草素和腺苷含量

    【原创大赛】CNW Athena C18-WP色谱柱测定人工蛹虫草中虫草素和腺苷含量

    1 前言 蛹虫草也叫北冬虫草,俗名不老草,是虫,菌结合的药用真菌,现代珍稀中草药。北虫草不仅含有丰富的蛋白质和氨基酸,而且含有30多种人体所需的微量元素,是上等的滋补佳品。蛹虫草中富含虫草素和腺苷,对调节人体内分泌和增强免疫功能等显著作用. 腺苷是一种遍布人体细胞的内源性核苷,可直接进入心肌经磷酸化生成腺苷酸,参与心肌能量代谢,同时还参与扩张冠脉血管,增加血流量。腺苷对心血管系统和肌体的许多其它系统及组织均有生理作用。腺苷是用于合成三磷酸腺苷(ATP)、腺嘌呤、腺苷酸、阿糖腺苷的重要中间体。 虫草素是一种天然来源的药物,具有中医医理中冬虫夏草一样的阴阳同补和双向调节人体平衡的功能;它在护肝、保肾、润肺方面由于成分更纯效果更好,而且大补气血,能消除现在不能治愈的痛经、偏头痛、颈椎增生等疾病。从西医医理角度看虫草素具有抗肿瘤、抗衰老、抗菌、抗病毒、免疫调节、改善新陈代谢、清除自由基等多种药理作用,有良好的临床应用前景。 天然虫草资源已日益匮乏,然而蛹虫草更容易人工栽培 , 因此蛹虫草目前被选为冬虫夏草的最佳替代品 , 已进行了规模化的人工栽培和应用现多用人工虫草来满足市场的需求。注:以上部分内容摘自“百度百科”http://ng1.17img.cn/bbsfiles/images/2014/10/201410311605_521149_1669358_3.jpg 本文采用CNW Athena C18-WP色谱柱测定人工蛹虫草中的腺苷和虫草素,并对检测方法进行简单优化,该方法具有简单、快速、重复性好等优点,对人工蛹虫草以及该类保健品的质量控制极为重要。2 实验方法2.1 仪器与试剂Waters e2695液相色谱仪(主要包括2998光电二极管矩阵检测器,柱温箱,自动进样器);超声波清洗机实验中乙腈为色谱纯;水为超纯水系统制得, 18MΩ•cm,25 ℃虫草素和腺苷标准品,美国Sigma公司2.2 色谱条件色谱柱:CNW Athena C18-WP(250mm×4.6mm,5μm);流动相:乙腈:水=10:90;流速:1.0mL/min;柱温:30℃;进样量:10μL检测波长:260nm。2.3 样品预处理 称取粉碎均匀的人工蛹虫草样品0.50g于150mL烧杯中,加入约30mL50℃左右的温水,在50℃下超声提取30min,过滤,收集滤液于100mL容量瓶中。用水将滤纸上的样品小心地转移至烧杯中,再重复提取2次,合并提取液,并用水定容至刻度,冷却至室温。吸取少量提取液,用0.45μm滤膜过滤后进样分析。2.4 标准溶液的配制 分别准确称取10.0mg腺苷和虫草素标准品,用水配制成浓度为100μg/mL的标准储备液。临用前,再吸取一定体积的上述标准储备液,配成相应浓度的混合标准溶液。3 结果和讨论3.1 检测波长的确定 利用2998光电二极管矩阵检测器的3D通道扫描的功能,在200~600nm波长范围内对混合标准溶液进行3D光谱扫描。从图中可以看出,腺苷和虫草素在此波长范围内均有吸收,而且都有两个较强的特征吸收波长。在相应的出峰时间提取光谱,从提取的光谱图中可以看到,腺苷的最大吸收波长为205.3nm,次级吸收波长为259.6nm;虫草素的最大吸收波长为206.5nm,次级吸收波长为259.6nm。对比206nm和260nm吸收波长处的色谱图,当检测波长为206nm时,腺苷和虫草素的响应值最大,然而对样品的检测过程中发现,样品中干扰物质在此波长也有很好的吸收,从而影响腺苷和虫草素的定性和定量分析;当检测波长为260nm时,干扰组分少,定性和定量更为准确,综合考虑,选择260nm为腺苷和虫草素的检测波长。http://ng1.17img.cn/bbsfiles/images/2014/10/201410311609_521156_1669358_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410311610_521157_1669358_3.jpg3.2 流动相条件的优化 流动相中有机相种类和含量对待测组分的分离以及检测时间具有重要的影响。实验中发现,当流动相中乙腈含量为20%时,腺苷和虫草素的出峰时间较早,且未完全分离,不利于样品的检测;当流动相中乙腈含量为10%时,腺苷和虫草素的出峰时间和分离度都比较合适;当流动相中乙腈含量为5%时,虽然腺苷和虫草素也得到了很好的分离,但是大大延长了样品的检测时间,同时响应值也大幅下降,影响待测物质的检出限。结合对样品的检测,最终选择乙腈和水比例为10:90http://ng1.17img.cn/bbsfiles/images/2014/10/201410311612_521158_1669358_3.jpg3.3标准曲线的测定 吸取适量体积上述混合标准溶液,用水稀释配成浓度为4.0、[/

  • 农民在草莓种植过程中到底用不用植物激素?市场上销售的草莓检测结果如何?使用植物激素安全吗?会造成儿童早熟吗?

    在一线从事生产研究指导已经15年的中国园艺学会草莓分会常务理事齐长红表示,理论上讲,施用了“膨大剂”氯吡脲确实会生产出个体肥大的草莓,但是稍有常识和经验的种植户基本不会使用,因为这样做会“损人又害己”。试验表明,施用了氯吡脲的草莓不仅颜色和正常草莓不一样,而且很软,果皮变薄,手轻轻触碰就会落上指纹印,很难摘下来。如果超量使用,不但不能促进生长,反而会抑制作物生长甚至出现药害。  根据农业部农产品质量安全环境因子风险评估实验室(北京)2014、2015连续两年草莓监测结果,采自生产基地和市场的253个草莓样本中氯吡脲检出率均为零。农业部农产品质量安全风险评估实验室(杭州)2012-2015年对浙江部分产区草莓进行监测结果显示,2015年仅检出芸苔素内酯,氯吡脲等其他6种植物外源激素均未检出。2012-2014年均未检出氯吡脲等4种植物外源激素,检出的多效唑等3种植物外源激素其平均残留量仅在0.0016-0.0055mg/kg范围内,最高0.08mg/kg,膳食风险也仅在0.001-0.287%范围内,远远小于100%。可见,草莓种植者基本不使用植物激素,即使使用也不会危害消费者健康,完全不必担心,国内外从来没有发生过因为吃了使用植物外源激素的农产品而引起食物中毒的事例。  2015年“乙草胺草莓”的乌龙事件刚刚过去,“空心激素草莓”又以各种版本出现在网络媒体,在各类信息纷繁复杂、充斥网络的今天,每个消费者面对流言时要多一些辨别力,多一些谨慎的求证,相信科学终将拨开迷雾,还原事件真相。

  • 鼠尾草提取物及其活性成分木犀草素靶向破坏p16-CDK6互作延缓衰老

    [size=16px][size=14px] [/size] [size=14px] [/size] [size=14px]1、HK可延长小鼠的健康寿命和寿命,改善多种组织中的衰老表型[/size] [size=14px] [/size] [size=14px]作者首先探究HK对小鼠寿命的影响,发现饲喂HK显著改善小鼠的毛发、骨骼、握力以及肾脏功能等,且HK小鼠存活率的提高并不是由于对照动物存活率低、饮食或居住条件的差异造成的。为了更好地描述HK对治疗小鼠健康寿命的影响,开发了一个多参数评分,包括在体内评估实验小鼠的皮毛状态,后凸,眼白内障和可触摸肿瘤的存在,结果显示HK增加了小鼠的健康寿命和寿命,并且没有观察到毒性。此外,在老年小鼠中,HK治疗可以减轻一些与年龄相关的体内表型,如毛发脱落,肌肉骨骼脆弱和肾纤维化[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]2、HK 对衰老相关分子通路的影响[/size] [size=14px] [/size] [size=14px]为了评估HK通过影响细胞功能来延长体内寿命的机制,对治疗小鼠的腓肠肌进行RNA-seq。首先在老年和年轻动物的肌肉特异性转录组之间进行了差异表达分析,以获得衰老特征,随后用这一衰老特征研究了HK处理小鼠肌肉中发生的转录扰动,发现在HK处理的小鼠中,这些上调的基因在衰老小鼠中表达下调,反之则表达下调。此外,衰老过程中上调的基因簇在与炎症、免疫激活和衰老或SASP相关的通路标签中过度表达,且与未处理的小鼠相比,HK处理显著降低了小鼠的衰老特征。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]3、HK治疗抑制衰老[/size] [size=14px] [/size] [size=14px]作者通过对肌肉样本进行RT-qPCR,证实了研究结果,HK处理降低了Cdkn1a和Tp53的mRNA表达。鉴于HK下调了肌肉中的衰老相关基因和基因集,探索了HK处理可改善其他器官衰老的特征。通过免疫组化分析发现不同衰老标志物p16, p27,γH2AX,发现这些标记物在衰老过程中上调,而HK处理逆转了这一表型。在肾脏(另一个受衰老影响的组织)中,衰老标记物p16, p27和53BP1在衰老过程中显著上调,而被HK处理减弱。此外,由于SH在体外已显示出对肺成纤维细胞的衰老抑制作用,作者发现hk处理减弱小鼠肺中p27的表达。综上所述,这些结果表明HK处理降低了体内不同组织中由衰老驱动的几种衰老标志物的水平[/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]4、HK 可预防阿霉素引起的衰老和心脏毒性[/size] [size=14px] [/size] [size=14px]Doxo诱导的心脏组织衰老之前已被描述为doxo诱导的心功能障碍的关键病理机制。作者使用亚致死浓度的Doxo处理心肌细胞(iCM)诱导衰老。SA-β-Gal染色显示HK显著阻止iCM衰老,并降低p21 mRNA水平,与未处理细胞相当。此外,HK处理几乎完全恢复了doxo处理的衰老iCM中的QT间期(QTcB)的延长,且单独的HK并不影响对照iCM的电生理特性[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]5、HK活性成分木犀草素可防止应激诱导的衰老[/size] [size=14px] [/size] [size=14px]由于HK是一种含有多种植物成分的植物提取物,作者利用UPLC-QTOF-MS对其主成分进行了鉴定,提取物中的三个主要的分子类别是酚/木脂素,黄酮类和萜烯。作者重点评估了黄酮类化合物—在许多植物性食物中发现的天然化合物,已被证明通过调节细胞衰老和氧化应激具有抗衰老特性。[/size] [size=14px] [/size] [size=14px]首先作者检测了六种最具代表的黄酮类化合物(异槲皮素,山奈酚,川陈皮素,异鼠李素,木犀草素和木犀草素-7-o-葡萄糖醛酸)和两种酚酸(3,4-二咖啡酰奎宁酸和迷香酸),SA-β-Gal染色发现只有木犀草素(Lut)、木犀草素-7-o-葡萄糖醛酸、3,4-二咖啡酰奎宁酸显著减弱UV-B辐射诱导的IMR90成纤维细胞衰老,达到与HK处理相似的水平。因此,作者进一步探索Lut及其衍生物的影响,发现Lut处理以剂量依赖性方式阻止辐射和doxo诱导的衰老,并且在某种程度上类似于HK。综上所述,木犀草素是HK植物复合体中的一种有效成分,改善不同类型的细胞中由不同外部应激源诱导的SA-β-Gal的阳性表达。药代动力学数据证实了Lut在体内的存在。最后在体内细胞衰老的急性模型中同样发现Lut对衰老特征的改善作用[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]6、木犀草素破坏 p16–CDK6 复合物[/size] [size=14px] [/size] [size=14px]鉴于Lut 能够抑制细胞衰老,作者希望描述这种影响背后的分子机制。通过分子对接发现木犀草素可以与CDK6结合,具有很强的亲和力。CDK6调控细胞周期由G1期向S期进展。在损伤细胞条件下和衰老过程中,CDK6的活性被p16的相互作用阻止。鉴于HK提取物及其成分木犀草素延缓衰老的发生,作者推测它与CDK6的结合可能会阻碍CDK6与p16的相互作用。首先,作者生成了一个包含CDK6, p16和木犀草素的复合体的计算机三维模型,预测木犀草素与两种蛋白的界面结合,提示木犀草素与CDK6的存在可能会破坏与p16的相互作用。然后,通过SPR和PLA实验证实木犀草素的存在显著破坏了CDK6与p16的相互作用。总之,这些数据表明木犀草素可以在衰老诱导条件下改变 p16 和 CDK6 之间的相互作用,从而可能改变衰老表型的发展[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]总结[/size] [size=14px] [/size] [size=14px]该研究发现HK可显著延长寿命,改善与年龄相关的组织功能障碍,并调节衰老表型。此外, HK 富含木犀草素,木犀草素通过破坏 p16–CDK6 相互作用从而起到延缓衰老的作用。这些数据为未来研究和开发 HK 作为医疗食品或治疗与年龄相关疾病的药物提供了良好的基础。[/size] [/size]

  • 【金秋计划】木犀草素纳米混悬剂的制备及其体外肠吸收研究

    木犀草素(luteolin),别称草木犀、黄示灵等,大多以糖苷的形式广泛存在于多种中药材、天然药用植物[1]及蔬菜[2]中的一种黄酮类化合物,是一种天然色素成分,可以作为食用色素添加于食品中。木犀草素的化学名为3′,4′,5,7-四羟基黄酮(3′,4′,5,7-tetrahydroxyflavone),物理状态为淡黄色结晶状粉末,熔点为330 ℃,包含4个酚羟基,具有弱酸性,可溶于碱性溶液中,因脂溶性高而难溶于水,从而阻碍了其在体内的吸收与利用[3]。木犀草素具有抗炎和抗菌[4-5]、抗氧化[6]、抗肿瘤[7]、神经保护[8]、抑制肺纤维化[9]及肺癌[10-11]和心血管疾病[12]等多种药理作用。由于水溶性差(仅为6.0 mg/L)、生物利用度率低等原因限制了其成药性和临床应用。针对这一问题,近年来许多学者开展了增加木犀草素溶解度的研究,如微球[13]、纳米胶束[14]、金属配合物[15]、自微乳[16]、脂质体[17]等,并明显提高了其生物利用度,这表明木犀草素的肠道渗透性不是限制其生物利用度的关键因素,其属于生物药剂学系统II类药物。因此,采用制剂技术提高木犀草素的溶解性是可以改善其成药性和生物利用度的,将有利于推广其临床应用。然而上述开发的剂型仍存在诸多的缺点,如工艺复杂、载药量低、生物安全性差、成本高等,难以大范围推广应用。近年来,逐步发展成熟的纳米混悬剂[18]作为一种新剂型,与传统纳米制剂相比,它具有载药量高、溶出度高、添加剂用量少、易于放大生产等优点。因此,本实验尝试将难溶性木犀草素制备成纳米混悬剂以提高其水溶性和生物利用度,改善其成药性和临床优势。 为此,本实验首先采用微沉淀-高压匀质法制备口服木犀草素纳米混悬剂(luteolin nano-suspension,LNS),并以纳米粒的粒径、稳定性、多分散性指数(polydispersity index,PDI)、ζ电位等为考察指标,采用单因素考察法筛选LNS的稳定剂和最优药物-稳定剂比;接着,对LNS的理化性质进行考察,并分析其物理状态和体外溶出行为;最后通过大鼠外翻肠模型考察药物在肠道不同部位的吸收转运情况,探索药物在肠道内的吸收速率和最佳部位,预测纳米混悬剂可能存在的体内吸收行为,既可以用于木犀草素口服给药的潜在剂型,也为其进一步加工成其他剂型研究提供基础。 1 仪器与材料 1.1 仪器 ZNCL-BS180型恒温磁力搅拌器,北京市永光明医疗仪器有限公司;AL104-1C型精密分析天平,上海鼎科科学仪器有限公司;NS1001L型高压匀质机,意大利GEA [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]o Soavi公司;Nanotrac wave II型激光粒度仪型激光粒度仪,美国麦奇克有限公司;LC3100型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],安徽皖仪科技股份有限公司;ZWY-103D型恒温振荡仪,上海智诚分析仪器制造有限公司;H1650-W型医用离心机,湖南湘仪实验室仪器开发公司;DZF-6030型真空干燥箱,上海精宏实验设备有限公司。JEOL 2010型透射电子显微镜(TEM),日本JEOL公司。 1.2 试剂 木犀草素原料药,批号JZ19021403,质量分数97.0%,南京狄格尔医药科技有限公司;木犀草素对照品,批号ps1032-0025,HPLC质量分数≥98%,成都普思生物科技有限公司;十二烷基磺酸钠(sodium dodecyl sulfonate,SDS),医药级,河南圣拓实业有限公司;泊洛沙姆188(Poloxamer 188,Pluronic,F68),医药级,西安天正药用辅料有限公司;维生素E聚乙二醇琥珀酸酯(D-α-tocopherol polyethylene glycol 1000 succinate,TPGS),医药级,上海惠诚生物科技有限公司;二甲基亚砜(dimethyl sulfoxide,DMSO),分析纯,天津市德恩试剂有限公司。 1.3 动物 SD大鼠购买于河南省实验动物中心,体质量(200±20)g,合格证号:SCXK(豫)2017-0001。所有动物实验均经过河南大学动物伦理委员会审核批准(HUSOM2019-216)。 2 方法与结果 2.1 LNS的制备 2.1.1 LNS中稳定剂的选择 将40 mg木犀草素原料药超声溶解于1 mL的DMSO中作为有机相,再取等量的稳定剂(SDS、F68、TPGS)溶解于纯水中(作为水相,或称反溶剂相);在室温下,将有机相通过注射器快速注入转速为1 800 r/min的反溶剂相中,继续搅拌10 min,得到预混悬剂;将预混悬剂转移至高压匀质机中,分别以20.0、50.0、80.0 MPa的压力循环匀质5、5、25次,得到LNS。 利用动态光散射仪分别考察LNS的粒径、多分散系数(polydispersity index,PDI)、表面电荷(ζ电位)和稳定性。本实验以不同稳定剂(SDS、F68、TPGS)制备的LNS粒径大小、PDI、ζ电位结果如表1所示。3种稳定剂所制备的粒径均在100~500 nm。以SDS为稳定剂制备的纳米混悬剂粒径最大,以F68为稳定剂制备的纳米混悬剂PDI最大,以TPGS为稳定剂制备的纳米混悬剂ζ电位最大,但是3者没有较大的差异,因此对于预测稳定性来说,上述结果难以判断哪个稳定剂制备的LNS会有良好的贮存稳定性。 因此,本实验又对各种条件的贮存稳定性进行了研究,结果见图1。以SDS、F68为稳定剂制备的纳米混悬剂在1周内粒径呈现持续增长的趋势,而以TPGS为稳定剂制备的LNS粒径未出现明显变动,由此可知,本实验中以TPGS为稳定剂制备的LNS具有较好的物理稳定性。 2.1.2 LNS中药物-稳定剂质量比的筛选 将40 mg的木犀草素原料药超声溶解于1 mL的DMSO中作为有机相,再分别按照木犀草素与TPGS的质量比为1∶2、1∶1、2∶1称取TPGS,溶解于水中,得到反溶剂相;再按上述工艺制备LNS,得到不同药物-稳定剂质量比的LNS。利用动态光散射仪分别考察纳米混悬剂的粒径、分布、ζ电位和稳定性。不同药物-稳定剂比制备的LNS的理化性质研究结果见表2和图2。如表2所示,3种不同药物-稳定剂比制备的LNS的粒径分别为(289.3±6.6)、(210.7±2.0)、(34.6±3.7)nm,3种LNS的PDI接近,1∶2时ζ电位最大,2∶1时ζ电位没测到。虽然药物与稳定剂的质量比为2∶1时,其粒径与1∶2、1∶1时相差较大,但是粒径难以反映稳定性情况。因此,接下来考察了1∶2、1∶1、2∶1 3种不同比例下制备的LNS的稳定性,结果如图2所示。当药物-稳定剂比为2∶1和1∶2时,在2周内粒径变化幅度都较为明显,说明其稳定性表现均极差;而当药物-稳定剂比为1∶1时,制备的纳米混悬剂的粒径基本保持稳定,表明其稳定性较好。因此,本实验最终选用药物-稳定剂比为1∶1。 2.1.3 最优制备处方和方法的确定 依照LNS的稳定剂及药物-稳定剂比的筛选结果,初步确定LNS的最优制备处方与方法如下:将精密称取40 mg的木犀草素原料药超声溶解于1 mL的DMSO中作为有机相;将40 mg TPGS搅动溶解于40 mL纯水中作为水相,将有机相快速注入转速为1 800 r/min的水相中,搅动10 min,得到预混悬剂;将制备的预混悬剂倒入高压匀质机的导入槽中,分别以20.0、50.0、80.0 MPa的压力,分别循环匀质5、5、25次,得到LNS。重复制备3批,以粒径、PDI和ζ电位考察制剂处方和制备工艺的稳定性。 2.2 LNS的表征 2.2.1 粒径、ζ电位及形态分析 将最优处方制备的3批LNS分别通过激光粒度分析仪测定其粒径、PDI、ζ电位,结果LNS的粒径为(209.00±3.24)nm(n=3),PDI都低于0.228±0.013(n=3),粒径分布图见图3;ζ电位值为(?16.80±0.27)mV (n=3),较小的PDI和绝对值较大的ζ电位,意味着LNS可能具有较好的长期稳定性[19]。 再取适量的LNS加蒸馏水稀释到适当倍数后,滴在覆有支持膜的铜网上,自然环境下干燥后,通过TEM观察其形态特征及大小,并成像,结果见图4。LNS呈现均匀分散的球形或椭圆形颗粒,粒径约为180 nm,比动态光散射测定结果较小,这可能是由于TEM样品为干燥品,导致粒子外层亲水部分失水而收缩[20]。 2.2.2 储存稳定性 将制备的LNS分别放在4 ℃和室温环境中,在预定的时间点取样,通过激光粒度分析仪测定其粒径和PDI,连续考察14 d,每个样品平行操作3份,结果见表3。LNS在4 ℃和室温下储存2周后,粒径和PDI稍有增加,但变化范围都较小,说明该LNS的储存稳定性较好。 2.2.3 体外胃肠环境中的稳定性 以pH 1.2和pH 6.8的缓冲溶液模拟胃液和肠液,将制备的LNS分别以1∶1与上述2种缓冲溶液混合,并于37 ℃水浴中放置,在预定的时间点0、2、4、6、8、12、24 h时取样,通过激光粒度分析仪测定其粒径,连续考察24 h,每个样品平行操作3份,结果见表4。在2种37 ℃的缓冲溶液中孵育24 h内,LNS的粒径和PDI几乎无变化,表明LNS在2种环境中能保持稳定,这表示LNS口服给药后,在经胃肠道给药时能保持良好的稳定性,这有利于木犀草素到达肠道后仍以纳米晶存在,从而有利于木犀草素的快速释放而获得较高的生物利用度。 2.2.4 纳米混悬剂的物理状态研究 本实验选用DSC来确定LNS中的木犀草素晶型是否发生了改变,测试样品有木犀草素、TPGS、木犀草素与TPGS的物理混合物和LNS。以空铝盘作为空白对照,分别精密称取3~5 mg的木犀草素、TPGS、物理混合物(木犀草素+TPGS)、LNS干粉放于差式扫描量热分析(differential scanning calorimetry,DSC)仪中,N2流(40 mL/min)保护下,以10 ℃/min升温速度持续升温,升温范围设置为40~600 ℃,记录差式扫描量热分析图谱,所有测试样品重复分析3批,结果见图5。木犀草素和LNS、物理混合物均是结晶,其熔融温度为339.38 ℃,稳定剂对木犀草素的熔融温度基本无影响。这表明LNS中的木犀草素仍处于结晶状态,稳定剂的存在不会改变木犀草素的晶型。在木犀草素和LNS中,在50~150 ℃出现了1个宽峰,这可能是由于药物吸收了水分造成的。 再分别称取适量的木犀草素、TPGS、物理混合物(木犀草素+TPGS)、LNS置于X射线粉末衍射(X-ray powder diffraction,XRPD)仪中,以步进测定方式,散射角扫描范围设为5°~60°,电压设为40 kV,电流为30 mA,结果见图6。由图6可知,木犀草素在19.12、23.20、26.32 ℃有3个衍射峰,衍射峰的峰形较为尖锐,峰值较高,表明木犀草素的晶型为结晶型。稳定剂TPGS在15.72、17.48、22.86、25.60、29.26 ℃有衍射特征峰。制备成纳米混悬剂后,虽然LNS图谱中木犀草素的特征峰有所减弱,但与木犀草素相比,在相应位置特征峰均存在,进一步证实制备成LNS后木犀草素并未显著改变晶型,说明稳定剂的加入不会影响木犀草素的晶型,这与DSC分析的结果一致。 2.3 平衡溶解度与过饱和溶出度测试 为了测定木犀草素的平衡溶解度与木犀草素纳米混悬剂的过饱和溶出度,本实验参考文献方法[21]建立了HPLC法。 2.3.1色谱条件 色谱柱为Sino Chrom ODS-BP色谱柱(250 mm×4.6 mm,5 μm);流动相为甲醇-0.3%磷酸水溶液(60∶40);柱温30 ℃;检测波长350 nm;体积流量1 mL/min;进样量10 μL。 2.3.2对照品溶液的配制 精密称取木犀草素对照品2.50 mg,放入100 mL棕色量瓶中,以适量色谱甲醇使之完全溶解,并定容至刻度线,摇匀得到质量浓度为25 μg/mL的木犀草素对照品储备液。 2.3.3 线性关系考察 采用色谱甲醇稀释成质量浓度分别为0.5、1.0、2.0、5.0、7.0、10.0 μg/mL系列的木犀草素对照品溶液,按“2.3.1”项下色谱条件进行分析,以对照品质量浓度为横坐标(X)、峰面积为纵坐标(Y)进行线性回归,得线性回归方程为Y=44 670 X-2 498.3,R2=0.999 8,结果表明木犀草素在0.5~10.0 μg/mL线性关系良好。 2.3.4 专属性、精密度和准确度考察 在建立的HPLC色谱条件下,木犀草素色谱峰不会受pH 1.2和pH 6.8的溶出介质、稳定剂TPGS、Tyrode液以及肠吸收液中所有成分的干扰(图7),表明本实验所建立的含量测定方法具有较好的专属性,能够满足体外溶出和肠吸收试验中木犀草素的含量测定要求。另外,其精密度实验的RSD为1.2%,高、中、低3个质量浓度的样品加样回收率在99.67%~101.47%,RSD均小2%,符合《中国药典》2020年版的规定。 2.3.5 平衡溶解度的测定 为了测定木犀草素在pH值为1.2、6.8缓冲溶液中的平衡溶解度,取5 mL 2种缓冲溶液各3份于西林瓶中,加入过量的木犀草素,将西林瓶置于恒温振荡箱中,在温度为37℃,转速为75 r/min条件下振荡24 h。取出各样品,3 000 r/min下离心10 min后取上清液,然后用0.2 μm滤膜滤过,取续滤液于进样瓶中,按照“2.3.1”项下色谱条件进样测定,并计算木犀草素的平衡溶解度,结果可知,木犀草素在pH值为1.2、6.8的缓冲溶液中的平衡溶解度分别为(3.83±0.23)、(7.81±0.13)μg/mL。 2.3.6 过饱和溶出度的测定 为了考察LNS体外溶出行为,参照《中国药典》2020年版中桨法进行。具体操作如下:在智能溶出仪中,以500 mL模拟胃液为溶出介质,温度为37℃,桨旋转速度为75 r/min,将30 mL LNS加入溶出介质中,以相同质量浓度的木犀草素乙醇溶液作为对照,二者均平行操作3份。以药物刚接触溶出介质开始计时,分别于5、15、30、60、120、130、150、180、240、360、480 min时取样4 mL,取完样后立即补充4 mL相应的新鲜溶出介质。另外,于120 min取样后,每个溶出杯中分别加入适量的Na3PO4溶液,调节pH值为6.8,以模拟肠液。将所取样品溶液经0.2 μm微孔滤膜滤过,取续滤液置于进样瓶中,照“2.3.1”项下色谱条件测定,计算累积溶出度,结果见图8。为了测定过饱和溶出水平,在整个实验过程中,介质中药物的质量浓度都应保持远远大于药物的饱和溶解度[22]。结果如图8所示,在pH 1.2和pH 6.8时,木犀草素-原料药的过饱和溶出始终低于对应的平衡溶解度,LNS的过饱和溶出始终高于对应的平衡溶解度,说明制剂的过饱和度高;在溶出介质的pH值调为6.8后,过饱和溶出水平明显下降,在150 min后过饱和溶出水平逐渐稳定,说明LNS能维持较高的过饱和溶出水平。 结果表明,LNS较木犀草素原料药具有明显优势,其饱和溶出度约是木犀草素原料药的15倍,过饱和度高并能维持较长时间,可以延缓药物在体内因析出晶体而沉淀的过程,从而使稳定剂在较小用量下也能保证药物分子成溶解态,提高了原料药的溶解度,有利于增加其生物利用度[23]。 2.4 小肠吸收实验 为了探索LNS对木犀草素在胃肠道的吸收部位和吸收速率的影响,采用外翻肠囊法[24]研究LNS在肠道不同肠段的吸收特征,以探究药物在肠道内的最佳吸收部位。 2.4.1 对照品溶液的制备 精密量取“2.3.1”项下相应体积的储备液,置于50 mL棕色量瓶中,用Tyrode液定容至刻度,摇匀,配制出质量浓度为1、2、4、8、16、32、40 μg/mL木犀草素对照品溶液。 2.4.2 线性关系考察 按照“2.3.1”项下色谱条件测定,以木犀草素对照品质量浓度为横坐标(X),峰面积为纵坐标(Y)进行线性回归,得到回归方程为Y=45 475 X-19 575,R2=0.999 6,结果表明木犀草素在1~40 μg/mL线性关系良好。 2.4.3 供试品溶液的制备 大鼠按实验质量浓度随机分为3组,每组4只,实验前12 h禁食,自由饮水。颈椎脱臼处死,打开腹腔,小心分离出小肠,分别截取十二指肠、空肠、回肠、结肠相应肠段各10 cm,用生理盐水冲洗至无内容物流出。将肠段放入37 ℃ Tyrode液中,冲洗,在不损伤肠管的情况下,小心剥离肠表面的脂肪及血管,取出,用滤纸吸干表面水分。 将肠管一端结扎,用光滑的玻璃棒外翻,用Tyrode液冲洗过后,向不同肠段中注入3 mL的空白Tyrode液后将另一端也进行结扎形成囊状的肠管。将肠管放入盛有Tyrode液的烧杯中,实验中始终保持37 ℃的恒温,并不断通入95% O2/5% CO2的混合气体。平衡5 min后,将烧杯中的液体倒出,分别加入不同质量浓度(0.15、0.30、0.60 mg/mL)的木犀草素及LNS药液。以肠囊和药液接触时开始计时,取样时间点分别为15、30、45、60、75、90、105、120 min,每个时间点从肠囊内取样500 μL,同时补充同温同体积的空白Tyrode液。待试验结束后,将各段肠囊置于空白Tyrode液中孵育1 h,以清除掉肠囊及肠组织中残留的药物;随后将上述用于木犀草素和LNS吸收实验的各肠段互换,再按上述操作同法重复试验,以进行自身对照交叉试验的后段实验。取上述肠吸收液,加入甲醇500 μL,超声混匀,15 898×g离心(离心半径6.32 cm)2次,每次15 min,取上清液用0.2 μm滤膜滤过,取续滤液适量即得。 按照“2.3.1”项下色谱条件测定,并计算药物在各时间点的累积吸收量(Q,μg)和药物吸收速率常数[Ka,μg/(mincm2)],结果见图9。 由公式计算不同质量浓度下木犀草素在各个时间点的累积吸收量(Q)。 Q是每个时间点木犀草素的累积吸收量,Ci是每个时间点的实际检测质量浓度,V1是加入肠囊内的空白Tyrode液,V2是每次取样的体积 由图9可知,通过对比2种制剂在各肠段中不同质量浓度的药物吸收情况,可以发现药物的同一时间点的吸收量表现出质量浓度相关性。相同质量浓度下,在各肠段中2制剂组吸收量相比,LNS组的药物累积吸收量显著大于木犀草素溶液组,表明LNS相比于木犀草素溶液能够促进药物在肠道的吸收。 根据小肠内(4个肠段)的Q值,通过线性拟合,由公式Ka=L(斜率)/A(肠管平铺面积)求得吸收速率常数(Ka)和相关系数(R2),结果见表5。2种制剂中木犀草素在肠道的不同部位中的吸收速率大小顺序均为十二指肠>空肠>回肠>结肠,这可能归因于十二指肠和空肠肠段的吸收面积较大;这一结果还表明LNS并没有改变木犀草素在肠道内的主要吸收部位和机制。对比相同质量浓度、相同肠段中2种制剂的吸收情况可以发现,LNS中木犀草素的吸收速率显著高于木犀草素溶液的情况,尤其是十二指肠和空肠中LNS和木犀草素溶液的木犀草素吸收速率差异更加明显,这表明LNS可以增加木犀草素的肠吸收,且十二指肠和空肠是主要吸收部位。 另外,还可以发现2种制剂在每一肠段中的吸收速率都存在显著的质量浓度相关性(P<0.01),但是2种制剂在同一肠段中的吸收速率随质量浓度增加而提高的程度有明显差异,即木犀草素溶液随质量浓度的增加,各肠段中吸收速率增幅增大,而LNS随质量浓度的增加,各肠段中吸收速率增幅减小,这些结果表明2种制剂在各肠段中的吸收均有质量浓度相关性,但其吸收速率与质量浓度之间均存在非线性关系,且仅在Ka<0.052时,木犀草素的肠吸收过程可能只受木犀草素溶解度限制,而不受吸收速度限制。然而,木犀草素的实际口服吸收情况是否符合上述规律以及其具体吸收机制如何,将有待于后期开展体内外吸收途径探索和体内药动学研究来进一步证实。 3 讨论 3.1 稳定剂的选择及药物-稳定剂比的确定 由于不同的稳定剂中化学基团的差异,导致稳定剂与药物微粒之间的分子间作用力以及胶粒间的作用力都有明显差异,所以稳定剂种类会影响到纳米混悬剂的稳定性[25]。因此,本实验首先以粒径和稳定性为考察指标,通过单因素筛选法优化了LNS的稳定剂种类,并确定了以TPGS作为稳定剂能达到较好的预期效果;考虑到稳定剂用量对稳定效果的影响[26],随后本实验又考察了药物-稳定剂比对纳米混悬剂的粒径、稳定性、PDI、ζ电位的影响,最终确定最佳药物-稳定剂比为1∶1。 3.2 LNS体外分析方法的建立及研究 3.2.1 波长的选择 木犀草素对照品与稳定剂TPGS在紫外波长200~800 nm扫描,结果显示木犀草素在207、254、350 nm 3处波长处有强吸收;而TPGS在219、286 nm显示出强吸收,350 nm处没有显示出强吸收。为了排除稳定剂TPGS对木犀草素测定的干扰,选用350 nm作为木犀草素的测定波长。 3.2.2 Tyrode溶液的配制 在木犀草素的肠吸收情况研究中,虽有文献报道了外翻肠囊模型和在体单向肠灌流模型[27-29],但关于木犀草素及其制剂在大鼠不同肠段中的吸收情况鲜有报道,且大多数文献对其吸收情况所提甚少。 本实验采用离体外翻肠囊法,可操作性强、重复性好;能够保留较为完整的肠道组织和黏膜特性,其实验结果与机体药物吸收水平比较接近,具有说服力;但肠外翻肠囊法也存在缺点,如长时间暴露在体外,肠管没有血管和神经的控制,肠黏膜功能和形态会失去作用。因此,本研究为解决这一问题,利用Tyrode培养液改善肠管的存在环境,具体配制方法如下:将NaCl(8.0 g/L)、KCl(0.2 g/L)、CaCl2(0.2 g/L)、NaHCO3(1 g/L)、NaH2PO4(0.05 g/L)、MgCl2(0.1 g/L)、葡萄糖(1.0 g/L),用蒸馏水定容至1 000 mL,稀盐酸调pH值为7.2~7.4,由于CaCl2不好溶解,应在其他无机盐溶解完全后再加入,葡萄糖于临用前再加入。并且在实验过程中连续通入95% O2/5% CO2,保证了在实验期间肠管上肠黏膜的活性。实验证明用该模型了解药物的离体吸收,其结果可靠。 3.3 LNS的过饱和溶出 药物在纳米混悬剂中所处的物理状态关系着其粒径和溶出稳定性,通常无定形药物微粒具有较高的饱和溶出度,但其属于热力学不稳定状态,因此物理稳定性差,容易引起纳米混悬剂粒径分布发生变化,同时溶出速率和溶出度下降;而结晶型药物具有较好的热力学稳定性,随着其粒径的减小,其饱和溶出度会明显提高[30]。根据本实验对LNS中木犀草素物理状态的研究结果可知,本实验制备的LNS中木犀草素以结晶形式存在,这表明LNS可能存在稳定的粒径和溶出度。 在过饱和溶出实验中发现,相比于木犀草素原料药,LNS具有显著的长期高过饱和溶出水平,这可归因于LNS中药物以粒径远小于原料药的状态存在,正如开尔文定律所描述的小粒径药物具有高溶解度一样[31]。药物的长期高过饱和溶出水平将有助于避免或减少口服给药后因胃肠道pH变化而引起的析晶沉淀现象,从而增加药物的吸收速度和时间,提高药物的口服生物利用度。 综上所述,本实验制备的LNS,分散性和储存稳定性良好,方法也简单易行,本实验建立的木犀草素体外分析方法,经方法学验证可知,该方法快速、可靠、准确度高,适合LNS的体外溶出和外翻肠囊吸收实验研究。 同时,外翻肠实验表面,LNS能促进药物在肠道的吸收,可作为木犀草素口服给药的潜在剂型,也为其进一步加工成其他剂型研究提供坚实基础。同时,在木犀草素肠道吸收的具体机制方面还有很大的研究空间。

  • 【转帖】无公害饲料添加剂-“苜草素”生产及应用技术(2005年)

    该技术以我国大量栽培的紫花苜蓿为原料,通过动物营养学、药理学和植物化学等研究,明确了紫花苜蓿中促进畜禽生长及增强免疫的活性成分,研制出具有自主知识产权的无公害饲料添加剂产品—“苜草素”,并组织了规模化生产。该项研究所形成的产品“苜草素”,能够有效克服同类产品的功能不确切、效果不显著、质量不稳定等弊端,为饲料添加剂更新换代和生产技术升级改造奠定了基础,有效解决了畜产品的药物残留问题,在促进畜牧业向健康、安全、高效、环保的方向发展上,具有非常重要的作用。该技术建立的热水浸提“苜草素”生产工艺,具有简便易行、安全和高效等特点,对苜蓿中的多糖、黄酮、皂苷等主要有效成分不造成破坏,可以确保产品质量的稳定性。“苜草素”具有增强动物免疫机能的作用。

  • 28.2 HPLC法测定草豆蔻中山姜素、小豆蔻明的含量

    【作者】 梁嘉敏; 何敬愉; 彭维; 王永刚; 李沛波; 苏薇薇;【机构】 中山大学生命科学学院; 中山大学生命科学学院 广东广州510275; 广东广州510275;【摘要】 目的:建立同时测定草豆蔻中山姜素、小豆蔻明含量的方法。方法:采用HPLC法,色谱柱为DiamonsilC18柱(250×4.6 mm,5μm);流动相为甲醇-4.5%四氢呋喃溶液(用冰醋酸调节pH至3.0),采用线性梯度洗脱,流速1 ml/min;检测波长为300 nm。结果:山姜素、小豆蔻明平均回收率分别为100.3%、99.20%,RSD分别为1.25%、2.14%。结论:本法为评价草豆蔻的质量提供了依据。 更多还原【关键词】 草豆蔻; 山姜素; 小豆蔻明; HPLC法; 本文献没有图谱

  • 【求助】-寻求检测方法:检测茶叶中的苄嘧磺隆、禾草丹、阿维菌素

    各位大虾:经我们调查发现,以上三种农药在茶叶、花草中给滥用,现在面对日本肯定列表制度,需要检测茶叶中的苄嘧磺隆(Bensulfuron-methyl)、禾草丹(Thiobencarb)、阿维菌素(Abamectin)。哪位大虾有相应的检验方法,请提供。最好有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的方法,我们目前只有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](已经准备购入液相)。另外,禾草丹(Thiobencarb)、阿维菌素(Abamectin)的标准品在哪里可以买到?

  • 【已应助】求助中文文献5篇,请帮帮忙,谢谢啦!

    【篇 号】:1【题 名】:高纯度γ-亚麻酸包合工艺研究Ⅰ——皂化值及皂化反应【作 者】:刘凤霞; 薛刚; 高秋华; 高伟霞; 张立华; 【期刊名全称】: 中国中药杂志, China Journal of Chinese Materia Medica, 【文献页码】: 编辑部邮箱 2005年 05期 【全文链接】: http://dlib.cnki.net/kns50/detail.aspx?QueryID=26&CurRec=1【篇 号】:2【题 名】:γ-亚麻酸分析方法研究【作 者】:鲁红军; 【期刊名全称】: 粮油食品科技, SCIENCE AND TECHNOLOGY OF CEREALS,OILS AND FOODS,【文献页码】: 编辑部邮箱 1998年 05期 【全文链接】:http://dlib.cnki.net/kns50/detail.aspx?QueryID=26&CurRec=2【篇 号】:3【题 名】:月见草油的超临界流体萃取及质量研究【作 者】:崔刚; 李春光; 郑云花; 【期刊名全称】:中草药, Chinese Traditional and Herbal Drugs, 【文献页码】:编辑部邮箱 1996年 01期 , 【全文链接】:http://dlib.cnki.net/kns50/detail.aspx?QueryID=26&CurRec=3【篇 号】:4【题 名】:用化学法从月见草油中提取γ—亚麻酸【作 者】:张恒弼; 储文功; 王冶信; 余元祥;; 【期刊名全称】: 药学实践杂志, Journal of Pharmaceutical Practice, 编辑部邮箱 , 【文献页码】: 1990年 03期 【全文链接】:http://dlib.cnki.net/kns50/detail.aspx?QueryID=26&CurRec=4【篇 号】:5【题 名】:用化学法从月见草油中提取γ—亚麻酸【作 者】:张恒弼; 储文功; 王冶信; 余元祥;; 【期刊名全称】: 药学实践杂志, Journal of Pharmaceutical Practice, 编辑部邮箱 , 【文献页码】: 1990年 03期 【全文链接】:http://dlib.cnki.net/kns50/detail.aspx?QueryID=26&CurRec=5

  • 包被复合微量元素与常规微量元素对生长中期草鱼生产性能

    [font=&]【序号】:1[/font][font=&]【作者】:胡凯 陈康 周小秋 [/font][font=&]【题名】: 包被复合微量元素与常规微量元素对生长中期草鱼生产性能、消化吸收能力和肠道生长发育的比较研究[/font][font=&]【期刊】:《四川农业大学学报》 [/font][font=&]【年、卷、期、起止页码】:2019年04期[/font][font=&]【全文链接】:http://www.cnki.com.cn/Article/CJFDTotal-SCND201904018.htm[/font]

  • 如果进行高锰钢SI P MN CR CU等元素的草根比对你想参加吗?

    如果进行高锰钢SI P MN CR CU等元素的草根比对你想参加吗?【草根比对】简要介绍:把盲样邮寄到多家实验室后,由各个实验室测出结果,最后对结果进行比对。这个过程不仅可以验证实验室检测的能力,大家还可以相互交流试验方法,为实验室之间的交流提供一个很好的平台。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制