当前位置: 仪器信息网 > 行业主题 > >

邻溴氰苄

仪器信息网邻溴氰苄专题为您提供2024年最新邻溴氰苄价格报价、厂家品牌的相关信息, 包括邻溴氰苄参数、型号等,不管是国产,还是进口品牌的邻溴氰苄您都可以在这里找到。 除此之外,仪器信息网还免费为您整合邻溴氰苄相关的耗材配件、试剂标物,还有邻溴氰苄相关的最新资讯、资料,以及邻溴氰苄相关的解决方案。

邻溴氰苄相关的资讯

  • 专家解读|GB/T 39560.12-2024 电子电气产品中某些物质的测定 第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯
    多溴联苯、多溴二苯醚是一种新型持久性有机污染物,在环境及生物体内普遍存在且污染呈增长趋势,并对动物及人类健康造成潜在的危害,已对其进行严格管控。而邻苯二甲酸酯作为塑料产品中的增塑剂,被广泛应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品等产品中,因其给环境和健康带来严重危害同样已被社会广泛关注,并加以限制。电子电气产品作为人们日常生活必不可少的一部分,产品中所含有害物质对环境和人体健康的影响备受关注,国内外均出台了相关政策对其加以管控,比较典型的就是欧盟RoHS法规,其2.0版本中对多溴联苯、多溴二苯醚以及四种邻苯二甲酸酯物质进行了规定,要求出口到欧盟地区的电子电气产品均应执行法规要求。此外,为贯彻落实我国《“十四五”工业绿色发展规划》中有关推动生产过程清洁化转型,减少有害物质源头使用的重要工作,2024年6月29日GB/T 26572-2011《电子电气产品中限用物质的限量要求》国家标准第1号修改单正式发布,其规定的有害物质限量要求与欧盟RoHS法规管控物质完成一致,这也标志着中国RoHS正式与国际接轨。该修改单中明确规定,电子电气产品有害物质检测方法标准全部更新为GB/T 39560系列,而本标准作为GB/T 39560系列标准的第12部分,同样适用,并将于2024年10月1日开始实施,以此确保我国RoHS检测技术及结果与国际一致。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf一、制定背景 电子电气产品生产和销售企业,为应对欧盟RoHS法规以及我国《电器电子产品有害物质限制使用管理办法》要求,对产品中的限用物质进行检测,以确保符合性。由于法规要求不断更新,且所测试的有机类化合物相对复杂,导致目前所用的检测方法较多,出现同一样品按照不同项目多次处理和测定的情况,花费大量的检测时间和成本。根据有机物萃取和GC-MS检测技术原理,将不同类型的有机化合物通过方法优化,取得同时萃取和检测的方法,从而减少检测时间和技术成本,在确保满足法规要求的同时,为企业及第三方检测机构提供一套更科学、可靠的技术方法,对于保障电子电气产品的安全性和环保性具有重要意义。二、制定过程本标准等同采用IEC62321-12的标准,该国际标准同样为工业和信息化部电子第五研究所牵头制订,本标准在采纳该标准的同时,依托行业发展的战略背景,集合了国内电子电气行业一批权威的科研院所、检测平台、仪器生产厂家以及生产企业代表等22家单位,积极投身标准的制定当中。编制组历时3年对标准技术内容进行了充分而详实的论证,解决了多个技术难点,最终确保标准的实用性,并在相关领域得到推广应用。三、主要内容本标准详细规定了电子电气产品聚合物中PBB、PBDE以及四种邻苯的测试方法,包括适用范围、测定原理、样品制备、仪器参数、校准、质量控制以及附录参考文件等。1. 适用范围:本标准适用于电子电气产品聚合物中多溴联苯(PBB)、多溴二苯醚(PBDE)和四种邻苯二甲酸酯(邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二正丁酯(DBP)、邻苯二甲酸丁基苄酯(BBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP))的测定。并已经通过测试聚丙烯(PP)、聚氯乙烯(PVC)、丙烯腈-丁二烯-苯乙烯(ABS)、丙烯酸橡胶(ACM)、聚苯乙烯(PS)、聚氨酯(PU)和聚乙烯(PE)等材料的评估。测定范围为25 mg/kg至2000 mg/kg。2. 测定原理本标准采用超声波辅助萃取方法,将聚合物样品中的PBB、PBDE和邻苯二甲酸酯萃取出来,然后采用GC-MS进行定性和定量分析。GC-MS可以同时进行多种化合物的分析,灵敏度高,准确性好,是测定PBB、PBDE和邻苯二甲酸酯的理想方法。3. 样品制备本标准在储备溶液准备中,给出了建议使用的标记物、内标物、储备液浓度以及储存条件等信息。在分析的一般说明中将可能影响分析过程的空白值以及外界环境影响因素等进行了阐述说明。样品制备是分析过程中至关重要的一步。本标准规定了样品的研磨、筛分和萃取等步骤。样品应研磨并通过500μm的筛子,或者切成小于1x1 mm的碎片。样品制备的粒径对于萃取效果影响较大,因此标准中对于样品的粒径大小进行了限值,以确保达到最佳的萃取效果。称取100 mg ± 10 mg样品,用预先清洗过的滤纸包裹后置于离心管中,用4mL丙酮/正己烷浸没样品,加入25μL标记物(1000μg/mL),使用超声波辅助萃取方法,将PBB、PBDE和邻苯二甲酸酯从样品中萃取出来。萃取完成的样品进行离心,转移上清液于25mL容量瓶中,重复两次以上萃取步骤,最终将三次萃取离心的上清液全部转移至25mL容量瓶中,定容至标记处,加入内标物后完成样品制备。标记物主要用于指示样品回收率效果,因此在样品制备的前端就应加入,伴随样品处理的全过程,以此进行监控。标准中同样规定了超声的萃取时间以及水浴温度等条件,试剂的选取以及萃取时间和温度的设置对于样品提取效果极为重要,能以最短的时间达到最佳的效果。需要注意的是,萃取过程中,超声浴中的水位应高于管内的萃取液位,并且由于有机溶剂在密封管中的挥发,水浴温度过高可能会造成危险。在操作过程中应关注温度变化,确保试验安全。4. 仪器参数GC-MS的仪器参数对分析结果的准确性和可靠性至关重要。本标准给出了GC-MS的仪器的推荐参数,包括色谱柱类型、进样方式、载气流速、柱温箱温度、传输线温度、离子源温度、电离方法和驻留时间等。这些参数可以根据不同的仪器和分析要求进行调整,同时给出对应目标物的定性与定量离子参考。5. 校准校准是定量分析的基础。本标准规定了使用标准物质溶液进行校准的方法。通过绘制校准曲线,可以建立分析物浓度和仪器响应之间的关系,从而进行定量分析。本标准对校准曲线的具体绘制方法以及推荐选择的浓度点进行了规定,包括标记物以及内标物溶液的配制方法,同时给出校准曲线的线性回归方程以及各参数的意义。需要注意,样品和标准溶液使用的溶剂应该相同,以避免任何潜在的溶剂影响。所有校准溶液在使用前应储存在低于-10℃的温度下。每个校准曲线的线性回归拟合的相对标准偏差(RSD)应小于或等于线性校准函数的 15%。校准曲线绘制过程中应尽可能采用线性回归校准。在不能达到线性回归符合的要求(小于或等于15%的相对标准偏差(RSD)),如果其它统计处理方式(例如相关系数或曲线达到 0.995 或更好)证明可接受,也可使用多项式拟合。此外,在建立十溴二苯醚的校准曲线时,标准中给出校准范围的建议调整要求。6. 计算根据拟合的线性方程进行样品浓度计算,当使用线性回归不能满足曲线的相对标准偏差要求时,可以使用多项式(例如二次)回归,但要满足所有的质量控制要求。如果样品中每种同系物的浓度超出各自的曲线线性范围,需对样品进行稀释,应尽量使其浓度在校准范围的中间部分。样品中的多溴二苯醚总量和多溴联苯总量不仅局限于校准溶液中的标准物质,除此之外的其他可经过确证的多溴二苯醚和多溴联苯物质也应算入总量。7. 质量控制本标准规定了严格的质量控制措施,通过分辨率对仪器进行监控,通过空白试验、基体加标、分析连续校准核查标准物(CCC)、标记物回收率、检出限以及定量限等指标对整个分析方法的过程进行质量监控,并详细阐述了实施过程,当上述所述质控内容不能满足标准中规定的要求时,所得的结果是不可信的,需要对各个环节进行逐一排查确认后,重新进行测试,从而确保分析结果的可靠性和准确性。8. 附录附录中对不同萃取剂的萃取效率实例、不同循环次数的萃取效率实例、气相色谱质谱图、各目标化合物的质谱图、国际实验室间比对12(IIS12)的统计结果进行了展示,对过程操作给予指导。以上为本标准的所有解读内容,通过本次标准解读,对标准的内涵和实施要求有了更深入的了解。这一标准的实施将极大提高检测技术的准确性和可靠性,促进相关行业的持续发展。本标准的制定和实施不仅符合国内市场的需求,更是我们接轨国际标准、参与国际竞争的重要步骤。其有助于提升我国产品在国际市场上的信誉度和竞争力,促进国际贸易的便利化。(作者:工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长/高级工程师 丑天姝)丑天姝,高级工程师,现任工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长。主要从事毒害物质检测、绿色供应链管理、环境地球化学、环境分析等相关研究。主要承担工信部高质量发展专项“高效液相色谱-高分辨离子淌度质谱联用仪”项目、“第二次全国污染源普查工业污染源产排污系数核算项目”、肇庆市科技项目“典型工业污泥低温干化关键技术研发与应用示范”、增城区科技项目“田螺废弃物中芳香基硫酸酯酶的提取及其应用研究”以及“增城市基本农田(菜地)土壤环境质量调查研究”等各类课题项目14项,参与制修订国际标准2项、国家及行业标准8项;发表论文6篇,获得专利3件;出版著作1部。
  • 北京有群“嗅辨员” 鼻子辨臭能力超仪器数倍
    从透明的玻璃气瓶中,用玻璃针管缓缓抽出一管从垃圾场采集到的“臭气”,然后注入密封的袋子中,打开出气口,一边用手轻轻捏着袋体,一边将鼻子凑近仔细嗅辨。作为北京市环境卫生监测站的一名“闻臭员”,张超每天的工作就是到各大垃圾场去采集排放出来的“臭气”,带回实验室通过“闻臭”来判断垃圾场的排放是否达标。这样特殊的工作,张超一干就是11年。不过,张超可不愿意别人管他叫“闻臭员”,他们的专业名称叫做嗅辨员。像他一样具有专业资质的嗅辨员,全市共有约300名。  每天至少去3个垃圾场采样  又到了张超最怕的夏天。气温攀升到30多摄氏度之后,不少人都尽量避免高温作业,但对于张超和他的同事们来说,几乎每天都要进行的固定检测却不能因为高温而停止。  天气炎热,气体更易扩散,虽然焚烧厂的垃圾已经经过严格处理,并没有传统垃圾场扑鼻的恶臭,但空气中依然会夹杂着一些特殊气味。为了更加全面地监测,除了能够产生气味的焚烧炉,废水池以及厂区边界,也都需要进行采样。相比于在臭不可闻的垃圾堆放站收集气体,张超认为这已经算是比较好的工作环境。  采样的气瓶在带离实验室前,要提前对其进行抽真空处理。随后,嗅辨员需要亲赴垃圾场的厂界位置采集一些环境空气,取样带回实验室,对臭气浓度进行检测,以此来衡量垃圾场的排污情况是否达标。  张超说,全市目前共有50个垃圾处理设施,有19个垃圾填埋场、综合处理厂、焚烧厂和转运站,必须保证每个月都得去一次。而像是粪便消纳站和一些区的垃圾处理场,则要保证每季度去一次。这样算下来,嗅辨员每天至少要去3个垃圾处理设施,才能够保证完成任务。  采集回来的样品,当天就必须进行嗅辨,以防采集回来的气体飘散或是变质。  鼻子辨臭能力超仪器数倍  在北京市环境卫生监测站内,张超的脸上滚满了豆大的汗珠。回到实验室后,采集的气体将会被高度稀释,并放入气袋中,以便嗅辨员来嗅。  一个嗅辨小组由6名嗅辨员和一名判定师组成。一边忙着操作,张超一边解释说,每个嗅辨员会发给3个密封的袋子,3个袋子中只有1个里面打入了从垃圾场采集回来的样品空气,而其他两个袋子中则只有干净的空气。嗅辨员用鼻子闻了袋中的气体后,觉得哪个袋子中有味道,就在相应的表格中打对钩,如果觉得没有味道,则在表格中打叉,无法确定就画圆圈。最后通过公式,算出样本的臭味是否达到国家标准。只要闻着臭,就说明排放肯定不达标。之后,再由城管委来决定对垃圾场的处罚或是整改措施。  在科技如此发达的今天,为何还需要用人的鼻子来判别空气质量?张超说,科学检测仪器虽然越来越先进,但机器只能显示数值,无法分辨臭味。光数据显示还不够,如果依然有股怪味儿,对周边的居民肯定还有影响。臭味本身就是一种污染源。“人的鼻子,比仪器能够检测到的味道要多得多。比如仪器可能只能检测到十几种或是二十几种指标,但是人的鼻子却能够闻到几十种甚至上百种味道。”  数据虽然安全,但是闻起来却依然有臭味,嗅辨员既专业又接地气的检测方式,无疑给越来越多的垃圾处理设施提出了更高要求。  男不许抽烟喝酒 女必须素面朝天  一只富有经验的鼻子显然至关重要,但是想要成为一名嗅辨员,光靠鼻子灵还远远不够,必须先经过国家恶臭重点实验室的审核,并通过专门的笔试和嗅觉测试才能拿到资质,资格证每三年就需要重新考核。目前,整个北京拿到嗅辨资格审核的一共有约300名嗅辨员。  回忆起考核时的场景,张超说,每个参加考核的嗅辨员会发给5个纸条,其中两个纸条上蘸一些嗅液,闻几轮,来进行嗅觉考核。  在日常的生活中,嗅辨员还有不少额外的要求。比如不能抽烟、喝酒,避免吃辛辣刺激的食物,遇到感冒也不能进行嗅辨。在这工作的女性全部素面朝天,绝对不能化妆,指甲油不能涂,连防晒霜都不能抹,风油精、花露水都不能喷。“比如说下午要检测,中午饭肯定不能吃包子一类有味道的东西。”  硫化氢的味道特别难闻,闻起来是一股臭鸡蛋的味儿。张超说,刚开始做嗅辨员时,偶尔还会因为闻到恶臭变得头晕恶心,食欲不振。但是做的时间长了,慢慢就习惯了。“我已经做这行11年了,早习惯了。”
  • 比仪器更管用 嘉兴"嗅辨员"守护好空气
    p   拧开真空采样瓶阀门,高高举过头顶,进气声嘶嘶作响……日前,嘉兴市环境保护监测站工作人员王宝印来到嘉兴韩泰轮胎有限公司厂区,熟练地采集空气样本。“别看装满3升的采样瓶只需几分钟,但这里边大有学问。要考虑风向和居民区位置,在厂界找到臭味最浓区域采样。”王宝印说。 /p p   一家排污企业会不会被处罚,跟王宝印的鼻子息息相关。原来,他有一个特别的身份:“闻臭师”。每个月,王宝印至少要执行一次执法监测和两次调查监测,用鼻子鉴定臭气浓度,其嗅辨结果作为环境行政处罚的依据。 /p p   鼻子有时比仪器更管用。“仪器只能检测单一气体,对于混合气味却无能为力。”王宝印解释道,对于气味是否属于国家规定的恶臭范畴,得靠“闻臭师”的鼻子来判定。为此,国家环境保护恶臭污染控制重点实验室办了培训班,嘉兴市环境保护监测站有32人拿到了“嗅辨员”上岗证。 /p p   在韩泰轮胎有限公司厂区采集了5个样本后,王宝印回到监测站,此时,6名“闻臭师”已准备就绪。但见“闻臭师”杨丹青用针筒从采样瓶中分别抽取30毫升气体,注入已存一定量空气的6个嗅袋中。随后,她将每个嗅袋混入两个装有清洁气体的嗅袋,送入全封闭的实验室内。 /p p   “闻臭”开始。每个“嗅辨员”依次闻过3个嗅袋,选出几号嗅袋里有臭气。杨丹青说,每组3个嗅袋,分别标记,气体样品通过数轮稀释和嗅辨,直到6名“嗅辨员”全部判断准确后,才能计算样品的臭气浓度值。 /p p   经过6轮近两小时嗅辨后,此次5个样本全部判定为达标。收到监测结果通知后,“韩泰”环保负责人如释重负。 /p p   今年以来,“闻臭师”在嘉兴整治臭气废气行动中大展身手。“只有我们多闻臭气,才能让居民少闻。”嘉兴市环境监测支队副支队长羊燕春说,今年他们就臭气和废气监测已出具121份大气污染监督报告,据此对相应排污企业作出行政处罚113件。据悉,今年1月至7月,嘉兴市区空气污染指数AQI优良率达71.7%,同比提高2.4个百分点。 /p
  • 空气检测:科学仪器代替不了“嗅辨师”
    采集空气样本。 从采样瓶中抽出气体样本,注入气袋中后再进行嗅辨工作。 辽宁省环境监测实验中心的嗅辨师正在对采集到的空气样本进行嗅辨。   新闻背景   多年前,曾有一部经典电影《闻香识女人》感动了无数影迷,剧中让人难忘的不单是那一支华美的探戈舞,更让人记忆深刻的是,阿尔帕西诺扮演的双目失明的主人公靠着超众的嗅觉来感知生活中的美好事物。   在观看影片时,也许很多人认为这只不过是一个浪漫的故事,“闻香识人”不过是个传说。但是,人们有所不知的是,今天就在我们身边也有这样的人,他们的职业就是用鼻子为我们的生活环境打分,来时刻监察环境质量。只是,与阿尔帕西诺闻香不同,他们的鼻子在工作中主要用来“闻臭”,专业上称他们为“嗅辨师”,也有一种通俗的叫法是“闻臭师”。   应该说直到今天,“嗅辨师”这个职业对大众来说依然是神秘和陌生的。近日,记者走进辽宁省环境监测实验中心,对“嗅辨师”的工作性质和任务进行了细致的了解,为读者揭开其神秘面纱。   科学仪器代替不了人鼻   “嗅辨师的任务就是与环境中的恶臭污染物战斗。”在省环境监测实验中心工作多年的嗅辨师东明这样告诉记者。   恶臭污染物是指一切刺激嗅觉器官、引起人们不愉快以及损害生活环境的气体物质。当然,这里的恶臭污染物并非单指有臭味的气体。   “哪怕是香气,如果过于浓烈,影响到周围人们的生产、生活,也要算进恶臭污染物。 ”东明说。   恶臭物质会使闻到的人出现恶心、呕吐、头痛等症状,严重者可发生呼吸道疾病,危害人体健康。近年来,人们的生活观念在转变和提升,对环境更加关心,要求也更高了。恶臭污染物是一种公共污染,被列入世界七大公害。   然而,也许很多人都想不到,在科技如此发达的今天,现代化的仪器设备仍难以完成对臭气浓度的检测。   根据 《恶臭污染物排放标准》,恶臭污染物控制指标有氨、三甲胺、硫化氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳、苯乙烯、臭气浓度等九项。如利用仪器、设备,一般只能测量出前八项单一气体的浓度指标,第九项综合性异味的浓度很难通过仪器来判断。   “这就需要嗅辨师利用嗅觉实验的方法来进行测试了,以判定恶臭污染的程度。”东明说,“其实人的嗅觉在某种程度上比仪器还要灵敏,对于微量的臭气,有时候即使是高精密的仪器也测不出来,但训练有素的专业人士却可以闻出来。 ”   恶臭是一种感觉性公害,会给人们带来不愉快的感觉和心理反应,主观因素很强。恶臭污染不仅要靠分析仪器来拿出数据,同时还要靠人的感知思维来进行评价和判断。   因此,嗅辨师是再先进的机器都无可取代的一种职业,嗅辨法是目前国际上通用的一种评判恶臭污染的方法。   嗅辨师如何工作   说到这里,你也许会认为,那么嗅辨师一定是每天在城市里走来走去,用鼻子来寻找城市臭源的一种职业了。   东明说:“其实嗅辨师并不是总要到现场的,很多情况是将臭气采集回来,在实验室内进行辨别和分析。 ”   为了了解完整的嗅辨过程,8月4日,记者随省环境监测实验中心人员到沈水湾污水处理厂采集臭气,开始了一次“嗅辨之旅”。   在沈水湾污水处理厂外缘,省环境监测实验中心的工作人员张一平拿出采样瓶采集空气。之所以要在污水处理厂的外缘采集气体,是因为这样可以更加有效地判断污水处理厂是否对周边环境产生了不良影响。   随后工作人员将采集到的气体样本送回了省环境监测实验中心。在实验室内,工作人员使用样品注射器从采样瓶里抽出气体,并按一定稀释比例注入到6个气袋中,同时又向12个气袋中注入清洁的空气,编号之后给6位嗅辨师每人发3个气袋,开始了嗅辨工作。   嗅辨师要判断哪个气袋内含有臭气,在嗅辨结束后,再进行下一级稀释倍数实验,嗅辨错误的嗅辨师将被“淘汰出局”。如此反复几轮,直到所有嗅辨师都闻不到臭气,便结束整个嗅辨过程。最后,嗅辨师将结果汇总,根据检测标准规定的公式,计算出样品的臭气浓度。   东明介绍说:“为保证嗅辨结果更客观、精准,6位嗅辨师中的最高值和最低值将被扣除,其余的进行加权计算,然后将计算结果与国家恶臭标准相对比,如果高于国家恶臭标准,就说明气体采集地点空气中恶臭超标,环境监管部门会据此责令有关单位对臭源进行治理。 ”   在实验过程中是有些特别要求的,比如嗅辨师不能使用任何化妆品,甚至在实验前不能用香皂等带有气味的日化用品洗手。   根据规定,如有工作任务,嗅辨师要保证未患有感冒等影响嗅觉功能的疾病,平日在饮食方面也有诸多禁忌,如不吃辛辣的、油炸的食品,忌用葱、姜、蒜、辣椒等调味品等等。   嗅辨师是怎样练成的   据了解,嗅辨师的选拔有着十分严格的程序,绝不是任何人都能当上嗅辨师的。   嗅辨工作当然是由鼻子来唱主角,因此,嗅觉如何就成为了一个人能否胜任嗅辨师工作的决定因素。   那么,要拥有怎样的鼻子才能做一位嗅辨师呢?答案也许会令你感到吃惊,那就是你必须有一个非常“普通”的鼻子。   “因为嗅辨师的嗅觉必须要能代表普通大众的感知,所以太灵敏和太不灵敏都不行,要取中间值。”嗅辨师东明解释说,“嗅辨师的鼻子不但要足够普通、足够"平民化",而且要足够健康,嗅觉器官有一点点毛病都不适合做嗅辨师工作,比如鼻炎患者就一定与这项工作无缘了。 ”   嗅觉检测合格之后,还要经过一系列特殊的培训,在考试合格之后才能获得从业资格。   位于天津的国家环境保护恶臭污染控制重点实验室是国家的嗅辨师培训大本营,国内大部分嗅辨师都出自这里。   东明和她的几位同事都是辽宁省第一批参加培训并取得资格证书的嗅辨师。东明告诉记者,在培训中要通过理论考试,更关键的还是现场考试环节。在一个通风良好、空气清洁的房间内,考官给考生发几张白纸条,其中有浸过干净液体的纸条,也有浸过臭液的,考生要给出正确判断,并说出是何种气味。如果回答正确,才有资格到下一个房间里继续接受测试。   考试内容也很有趣,就是要求考生分辨出五种物质的味道,分别是花香、汗臭气味、甜锅巴味、成熟水果味和粪臭气味。   “在鼻试闯关中,如果闻错了一张纸条,那就要被刷掉了。”东明说,“嗅辨师资格的获取要过很多关,而且嗅辨师资格跟大学毕业证终身有用不一样,它是有有效期的,一般来说有效期是3年。 ”另外,从事嗅辨师工作还有年龄方面的限制,原则上是不超过45岁,因为人的嗅觉会随着年龄的增长而减退。   原先,辽宁省只有省环境监测实验中心有几名嗅辨师,现在环境保护越来越受重视,嗅辨师的队伍也在不断扩大,沈阳、大连、抚顺、锦州等市的环境监测站都派人参加了嗅辨师培训。现在,辽宁省获取嗅辨师资格的人员已增至近50人。   从全国情况看,这两年嗅辨师的人数也是在不断增加的,但即使这样,嗅辨师目前仍然是极为 “小众”的一个人群,甚至社会上多数人还不知道存在着这样一种职业。   其实,多数嗅辨师都还不是专职做这项工作,他们在环境监测部门同时承担着其他方面的工作。   延伸阅读   各国“闻臭师”任务有不同   目前在世界上,美国、英国、荷兰、比利时、日本等国家都有“闻臭师”这个职业。   美国“闻臭师”的任务是,每天穿行在熙熙攘攘的人群中,闻嗅行人身体上散发出来的异味,为人体体味研究实验提供资料。   荷兰的“闻臭师”则住在工业区和居民区边缘的小屋内,不时将头伸出窗外嗅闻,监控大气污染。   日本的“闻臭师”有项工作是专门闻公共厕所的气味,一旦发现臭味超标,就要通知管理人员限时除臭。东京环保当局招募的“闻臭师”,如果在地铁、车站、公厕等处发现异味,要立即向环保当局报告,责成有关方面限时除臭。
  • 邻家“女孩”王秀杰:从事科研这行真好
    p   记中国科学院遗传与发育生物学研究所研究员王秀杰 /p p style=" text-align: center " img title=" 1.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/df3ad8f0-56d0-48f4-89dd-2ef30bd5cae6.jpg" / /p p style=" text-align: center " img title=" 2.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/baba1f89-718c-4a50-849e-6dc156819ad3.jpg" / /p p   王秀杰是典型的“别人家孩子”。 /p p   她18岁加入中国共产党 27岁博士毕业加入中国科学院遗传与发育生物学研究所,成为当时中科院最年轻的研究员 30岁生日前成为我国生命科学领域最年轻的“国家杰出青年科学基金”获得者 36岁成为国家重大科学研究计划首席科学家 40岁这一年又当选了党的十九大代表。 /p p   在外人看来顺风顺水的人生,只有王秀杰自己知道经历过哪些压力和挫折,尤其是2010年的一场大病,使她更明确人生的目标:“人一生中能用来工作的时间并不多,能把智慧和努力换成对国家和人民有意义的成果,是我最大的追求。” /p p   如今,王秀杰正带领着自己的团队,向着这个目标加速冲刺。 /p p    strong 揭秘“暗物质” /strong /p p   2015年3月《细胞—干细胞》杂志的封面颇有中国风——被设计成单链的RNA “长城”上布满了一个个“烽火台”,它们显示的是甲基化修饰所在的位置。 /p p   这是来自3个中国研究组的工作,也是科学家第一次揭示miRNA在调控mRNA 甲基化修饰方面的全新功能与作用。RNA甲基化是修饰生物体表观遗传特征的途径之一,会影响基因表达,调控生物的生长发育、疾病等生理功能。 /p p   王秀杰是文章的通讯作者之一,她告诉《中国科学报》记者,该成果揭示了RNA甲基化形成的选择性机制,在拓展miRNA的新功能和发现新的细胞重编程调控因素方面具有引领作用。miRNA是目前研究最深入,也是功能最广泛的一类非编码RNA。 /p p   由于不翻译成蛋白质,许多非编码RNA过去被认为无用,直到最近十几年才被认识到其重要调控功能,但具体功能尚未探明,因此也被称为生命调控的“暗物质”。对这类“暗物质”的研究最近几年入选了《科学 》杂志十大科技进展,是生命科学领域的热门方向。 /p p   科学发现只有第一没有第二,在《细胞—干细胞》这篇文章发表之前的两年,王秀杰与合作者们带领学生艰苦攻关,几乎全年无休。文章发表的当天,王秀杰在朋友圈写到:“终于把中国的长城符号带到干细胞领域最顶级杂志的封面了!这应该是个开辟新领域的成果,两年多的辛苦与煎熬,终于有了回报!” /p p   王秀杰从事的是生物信息学研究,即用计算机来处理生命科学中的大数据,并从中挖掘出调控规律。她说:“生命科学已经进入到了用高通量的方法来解析生命调控规律的时代。” /p p   十多年来,王秀杰的团队主要致力于非编码RNA 的发现与功能研究,已经两次与合作团队共同获得国家自然科学二等奖。对于这些成绩,王秀杰有些意外,她很感谢自己的合作伙伴:“科学研究具有不可预见性,我一般不会对项目设定硬性指标,但会尽力做到最好。” /p p    strong 使命的召唤 /strong /p p   “最近我正在自学《本草纲目》、《神农百草经》。”王秀杰笑着告诉记者。 /p p   一位生物信息学学者开始研究中药,这源于王秀杰同中国中医科学院的一项合作——用现代生物学和生物信息学的方法解析中药有效成分和作用机理,将中药现代化,将来进行成分和功效明确的新药开发。 /p p   2016年,中医药发展被确定为国家战略,但国际上很多发达国家已经抢先布局,有些中药配方甚至已被外国申请专利。“不让祖先流传下来的瑰宝被外企抢走”是王秀杰和合作者的共同心愿。 /p p   长期以来,传统中药配方复杂、药效不清,其有效成分和作用机理也如同“暗物质”一样,制约中医药发扬光大。 /p p   研究组通过初步研究证实,中医药确实有其智慧。如普遍被认为有利于心血管的山楂,经分析发现,确实含有多个能够与抗氧化、保护血管相关蛋白质结合的化合物。该研究阐明了山楂的有效成分及其分子机制。 /p p   “我们的工作刚刚开始,目标是去糟粕、存精华。”王秀杰说。 /p p   实际上,在2010年之前,王秀杰的研究领域仅限于植物,向人类疾病研究的转变发生在2010年。那一年,她大病一场,令她反思人类对健康的迫切需求,也使她更加明确科学研究争分夺秒的紧迫性。 /p p   根据习近平总书记2015年8月的批示,中国科学院将办院方针调整为“面向世界科技前沿、面向国家重大需求、面向国民经济主战场”,这更坚定了王秀杰的决心,也加强了其团队的使命感。 /p p   “有趣的问题很多,但是在一个人最宝贵的年纪,把大把的青春放在科研上,那么一定要思考课题的创新性与重要性是否值得投入。”王秀杰这样引导学生和团队。 /p p   王秀杰透露,其团队在生物细胞3D打印方面的研究也有很好的进展,目标是5年之内获得可用于临床的人造器官。 /p p   “从事科研这行真好。”王秀杰感叹道:“能发挥自己的智慧,做有意义的事情,让更多人受益,也算不负韶华,不负国家和家人的支持。” /p p    strong 一生的朋友 /strong /p p   面对人才流动的各种诱惑,王秀杰坦言从未动过念头。 /p p   2004年她作为中科院“百人计划”引进人才回国时,被称为“27岁的女科学家”、“最年轻的博士生导师”,伴随而来的是各种质疑。回顾当初的巨大压力,王秀杰对中科院、对研究所,对领导和同事都心存感激。“没有他们对我的认可和支持,就不会有我的今天。”时至今日,王秀杰最看重的仍是这份情谊。 /p p   对团队、对集体、对党和国家的大爱支撑王秀杰不断前进。 /p p   大学二年级,王秀杰刚满18岁就加入了中国共产党。多年来她坚持严于律己,坚持党性原则,被同事们评价为“正能量的典范”。她不仅自己是“中国青年五四奖章”、“全国五一巾帼标兵”获得者,她的研究组也获得“中国科学院巾帼建功先进集体”、“全国三八红旗集体”等荣誉。 /p p   王秀杰看着文静柔弱,对待工作有时却异常严格。她的学生在提交重要报告前,都会主动请别人帮忙检查,因为即使资料中有微小错误,老师都能敏锐地发现。这种严谨的工作态度,使实验室日益和谐、奋进。 /p p   在学生看来,夜里3点收到王老师的邮件是件稀松平常的事。2010年她因病手术,医生要求休息两个月,但因为科研任务急迫,半个月后她就回到了实验室,以至于伤口断断续续疼了一年多。 /p p   “我特别看中公平,老师要以身作则,努力工作的人要得到应有的尊重和推崇,这样的团队才会越来越有凝聚力和创造力。”王秀杰说。 /p p   作为研究所的党委委员和所在研究中心的党支部书记,她不断创新党建工作,以党建促科研。在对入党积极分子的党课上,王秀杰说:“党员的身份就像陪伴一生的正直朋友,是漫漫人生中帮我们抵制诱惑避免犯错的约束,也是使我们超越自我不断进步的鞭策”。 /p p   在当选为党的十九大代表之后,她说:“我会更加努力,做对得起国家科研投入的工作,不负党的信任。” /p p /p
  • 西安7名嗅辨员上岗 弥补检测仪器不足
    7月30日,7名嗅辨员在西安市环境监测站正式上岗,他们将用鼻子帮助环保部门寻找臭源,并判定臭源的污染程度,以帮助环境监管部门对臭源进行治理。   据了解,嗅辨员将反复嗅辨从臭气采集点采集到的气体样品,同时根据嗅辨员的判断,结合专业公式,计算出该气体样品的臭气浓度。嗅辨员对一个恶臭气味气体样品的嗅辨、判断时间,一般需3-10秒,相当于普通人2-4次吸气的时间。   据介绍,根据《恶臭污染物排放标准》,恶臭污染物控制指标有氨、三甲胺、硫化氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳、苯乙烯、臭气浓度等九项。仪器、设备一般只能测量出前八项单一气体的浓度指标,第九项综合性异味的浓度往往无法判断,因此,就需要嗅辨员进行测试,判定恶臭污染的程度。   嗅辨员的选拔非常严格,年龄要在18-45岁之间,不能有呼吸道疾病。男士不能抽烟喝酒,女士不能化妆,由于嗅觉会随着年龄增长减退,嗅辨员每3年就要重审一次上岗资格。   据了解,嗅辨员作出的判定具备法律效力,一旦确定臭味超标,环境监管部门会据此责令有关单位对臭源进行治理。
  • 解读|GB/T 39560.12-2024 《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》
    2024年6月29日,《电子电气产品中限用物质的限量要求》(GB/T 26572-2011)的《第1号修改单》获得正式批准。这一修改单扩大了中国RoHS限用物质的范围,新增了四种邻苯二甲酸酯类物质。受管控的限用物质总数增至10项,标志着中国在电子电气产品环保管理方面迈出了重要一步。该修改单预计将于2026年1月1日起正式实施。同时,第14号公告还批准发布了标准GB/T 39560.12-2024《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。这项标准作为中国RoHS检测邻苯类物质的方法,将于2024年10月1日开始实施。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf近日,GB/T 39560.12-2024全文也已公布,该标准规定了气相色谱-质谱法同时测定聚合物中多溴联苯、多溴二苯醚和邻苯二甲酸酯。目的在于确定一种适应于同时测定电子电气产品中多溴联苯、多溴二苯醚和邻苯二甲酸酯的技术方法。制定背景此次GB/T39560系列标准是为了适应产业对新种类有害物质限制的要求和新型检测技术发展,保持我国RoHS检测技术及结果国际一致。在推动实现中国RoHS与国际的对接互认,努力成为全球电器电子行业绿色发展的参与者、引领者的过程中起到了重要的作用。制定过程本文件等同采用IEC 62321-12:2023《电工产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。本文件还做了下列编辑性修改:-为了与我国现有标准系列一致,将标准名称改为《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多澳二苯醚和邻苯二甲酸酷》:更改了IEC原文的两误,将11.2e)中的“用5个校准点的结果(根据表5)”更改为“用5个校准点的结果(根据表6)”标准GB/T 39560.12-2024主要内容原理:聚合物中不同种类的化合物,如PBB、PBDE、BBP、DBP、DEHP和DIBP等,通过超声辅助同时萃取,然后采用气相色谱-质谱仪(GC-MS)的全扫描模式和(或)单(或“选择”)离子监测(SIM)模式进行定性和定量分析。仪器设备:分析天平、容量瓶、超声波清洗器、带有聚四氟乙烯螺帽的离心管、离心机、去活进样口衬管、铝箔、微升注射器或者自动移液管、巴斯德吸管、带100μL玻璃衬管和PTFE衬垫的1.5mL样品小瓶或根据分析系统选择合适的样品瓶(带棕色或琥珀色)、微型振荡器(已知的如漩涡器或漩涡混合器)、使用带毛细管柱连接质谱检测器(电子电离,EI)的气相色谱、对PBB、PBDE和邻苯二甲酸酷化合物有足够分离效率的约15m长的色谱柱、0.45m聚四氧乙滤膜、预清洗过的滤纸。试验过程:1、 制样:推荐使用液氮冷却的低温研磨,并通过500μm的筛子。否则样品切成小于1mm✖ 1mm。2、 制备储备液:PBB、PBDE、邻苯二甲酸酯、内标。3、 萃取:称取100mg±10mg样品加入4mL丙酮/正己烷于离心管中,再加入标记物(分析回收率),超声水浴提前15min,水浴温度不超过40℃。超声结束后5000r/min离心5mim,取上清液于25mL容量瓶,再次加入萃取重复2次后定容。4、加入内标,将内标储备液稀释后加入萃取液中测定。5、 GC-MS检测:优化特定的GC-MS系统可能需要不同的条件,以实现所有校准同系物的有效分离,并满足质量控制(QC)和检测限(LOD)的要求。 色谱柱:非极性(苯基亚芳基聚合物,相当于5%苯基-甲基聚硅氧烷)长度15m;内径0.25mm;膜厚度0.1μm。应尽量使用高温色谱柱。 进样系统:程序升温、冷柱、分流/不分流进样器或类似的进样系统。 进样衬管:4mm在底部带玻璃棉(去活)的单底锥形玻璃衬管。 载气:氦气 1.0mL/min,恒定流量。 柱温箱:100℃保持2min,20℃/min升至320℃保持3 min。 传输线温度:300℃。 离子源温度:230℃。 电离方法:电子电离(EI),70eV 驻留时间:在SIM模式下为50ms.6、标准曲线制定(难点)7、 分析物浓度计算。我们将陆续邀请多位权威标准制定专家深入阐释“中国RoHS升级解读”相关内容,敬请持续关注本话题的最新动态。
  • 中国科协关于开展2022年度优秀科研仪器案例征集遴选活动的通知
    关于开展2022年度优秀科研仪器案例征集遴选活动的通知各有关全国学会、协会、研究会秘书处(办公室),各省、自治区、直辖市科协及新疆生产建设兵团科协学会工作负责部门,各有关单位:为贯彻习近平总书记在两院院士大会和中国科协第十次全国代表大会上的重要讲话精神,积极构建以创新价值、能力、贡献为导向的科技人才评价体系,中国科协以推动实验技术人员评价改革为目标,开发建设了中国科研仪器案例成果数据库(https://ash.nrii.org.cn/#/Header),提供科研仪器案例报告免费发表和开放获取服务。现面向全国实验技术人员开展2022年度优秀科研仪器案例征集遴选活动,具体事宜通知如下。一、组织机构主办单位:中国科学技术协会承办单位:中国仪器仪表学会、北京航空航天大学二、征集内容本次征集的案例须能够对仪器操作和改进、实验室改造、实验流程标准制定等具有指导和借鉴意义,充分体现实验技术人员解决专业问题的实绩、贡献、能力。主要征集但不限于以下类型的案例:(一)科研仪器设备案例1. 科研仪器应用;2. 实验技术和方法开发;3. 标准规范研制;4. 科研仪器维修维护;5. 科研仪器升级改造;6. 科研仪器整机研发、关键零部件研发;7. 科研仪器验证评价、可靠性评价;8. 专业技术培训。(二)实验室建设与管理案例1. 专业化实验室建设和改造;2. 科研仪器设备管理研究;3. 实验室安全与质量控制体系。三、征稿要求1. 未在期刊、图书等正式出版物发表的案例均可投稿。2. 作者应保证所提交的案例材料的原创性、真实性、科学性,不得抄袭、剽窃他人成果,如产生侵权行为或涉及知识产权纠纷,由作者自行承担相应责任;如发现造假,取消参评资格。3. 以WORD和PDF文档格式提交,文字控制在4000字以内,需附200字左右的中文摘要。写作的具体要求可参照案例库写作模板(https://astcaibian.nrii.org.cn/Editor30/PromptPageInfo.aspx?t=v&c=3)。4. 报告中可配有相应的图片和表格,照片和图片要求具有良好的清晰度和对比度。5. 报告中可提供相关视频,要求视频声音、图像清晰,视频时长控制在3分钟以内,大小控制在150MB以内,视频请提交MP4格式文件,注意保护视频中人员和单位隐私。6. 作者应按照要求提供版权声明等相关证明材料,享有报告的著作权,将报告上传至案例库官网即视为其同意将该作品的修改权、信息网络传播权、复制权、发行权、开发制作成数字产品并复制发行的权利,免费授予中国科学技术协会专有行使,该授权无期限及地域限制。关于撰写要求本通知未尽事宜,请参照《科研仪器案例库投稿须知》(https://astcaibian.nrii.org.cn/Editor30/PromptPageInfo.aspx?t=v&c=1)。四、投稿方式征集活动面向个人、团队或单位。全国与科研仪器相关的实验技术人员及实验室管理人员均可参加。五、组织实施自通知发布日起,请通过“科创中国”科研仪器案例库案例采集系统(https://ash.nrii.org.cn/#/Header)进行案例投稿(点击首页上面的“我要投稿”按钮,打开作者投稿登录页面,点击登录页面中的“注册”按钮完成注册后,登录系统按要求完成投稿)。中国科协将委托承办单位组织专家对稿件进行同行评议,通过审核的文章将在案例库平台以开放获取方式(CC-BY-NC-ND4.0协议)公开展示。中国科协将从通过审核的案例中择优遴选一定数量的优秀案例授予证书。本次活动不收取任何费用。六、时间安排案例征集时间:通知发布之日至2022年10月15日结果公布时间:2022年11月下旬七、联系方式中国科协科学技术创新部:联系人:王寅秋 王素联系电话:010-68571884 010-68581259中国仪器仪表学会(活动组织):联系人:杨娟 张丽娜联系电话:010-82800700 010-82105825北京航空航天大学(技术支持):联系人:朱明皓联系电话:010-82319733中国科协科学技术创新部2022年6月21日
  • 吉大一院错检“溴敌隆” 涉事实验室被停止临床检验
    3月24日,吉林省卫生和计划生育委员会网站发布情况通报称,经国家专家组调查,认为吉林市中东春芽幼儿园“溴敌隆阳性”事件为吉大一院毒物检测实验室检测错误所致。  3月9日,吉林市中东春芽幼儿园发生一起疑似食源性疾病事件,经吉林市食药监部门认定为大肠菌群污染导致的一起食源性疾病。经积极治疗,3月14日,住院儿童全部出院。同日,有一名涉事儿童在家长陪同下到吉林大学第一医院(以下简称吉大一院)进行毒物检测,结果显示为“溴敌隆阳性”,事件演变为“鼠药中毒事件”,引起涉事儿童家长恐慌。  通报认为,四点原因确定吉大一院毒物检测实验室检测错误:一是3月9日发生在吉林市中东春芽幼儿园的事件儿童病情及食物鉴定结果符合细菌性食物中毒事件特征,吉林省、市前期处理得当 二是就诊儿童临床表现、化验检查结果均不符合抗凝血灭鼠剂中毒特征 三是吉大一院毒物检测实验室出具的10例儿童血液样本从检测方法、程序及谱图均不能做出“溴敌隆阳性”的报告 四是经省级两个实验室同时复核检测,结果均为“溴敌隆未检出”。  事情经过  3月9日23时,省卫生计生委接吉林市卫生计生委报告:当晚18时40分,吉林市中心医院、吉林市儿童医院门诊急诊儿科陆续有中东春芽幼儿园儿童前来就诊,就诊儿童呈现发热、腹痛、呕吐、无力等症状,初步诊断:急性胃炎,呕吐待查。到21时50分,全市两家医院共收治儿童53人,经抗炎、补液等对症治疗后,所有儿童生命体征平稳、病情稳定。省卫生计生委连夜派出吉大一院有关专家赶往吉林市,指导开展治疗工作。到3月10日1时20分,除3名儿童住院外,其余儿童均经门诊治疗后离院。  3月10日上午,省、市专家组会诊后认为,患者来自同一幼儿园,群体发病,急性起病,以呕吐、腹痛为主要症状,个别伴有发热,呕吐为非喷射性少量胃内容物,发热为中等热,生命体征平稳,个别患者有轻度脱水征象,心肺无异常,腹部无阳性体征,无神经系统阳性体征,血象白细胞普遍增高,经抗炎对症治疗,患者病情均明显好转。根据病例特点,初步临床诊断为呕吐待查。吉林市、船营区两级疾控中心配合船营区食药监局开展流行病学调查和实验室检测,羊肉冬瓜汤和蔬菜粥大肠菌群超标,经船营区食安办组织专家论证,初步考虑为大肠菌群污染导致的一起食源性疾病事件。3月14日,住院儿童全部出院。  3月14日,该园患儿王某某(男,3岁)在家长陪同下,自行到吉大一院进行了“毒物检测”,项目包括百草枯、毒蘑菇、农药、溴敌隆,结果显示为“溴敌隆阳性”。之后,陆续有涉事儿童到吉大一院进行毒物检测。3月16日,吉林市船营区政府组织有要求进行毒物检测的涉事儿童到吉大一院“毒物检测”实验室进行检测。截止2017年3月18日16时,到吉大一院就诊儿童147名,其中10例报告结果为“溴敌隆阳性”。  3月18日,国家卫生计生委派出由中毒控制、实验室检测及中毒临床救治方面三位专家组成的国家专家组,于当日18时抵达长春,连夜开展调查工作。专家组集中听取了吉大一院关于儿童接诊治疗及毒物检测情况的汇报,特别就事件发生、病人表现、临床检验结果、患者救治等有关情况进行了充分了解,并对吉大一院“毒物检测”实验室进行了实地考察,详细了解事件中涉及的患者血液样本前处理、检测方法、操作步骤、方法确认、检测结果等环节的情况,调看并获取了相关谱图。  3月19日,由国家专家组指定两家检验机构并在现场指导下,同时对吉大一院提供的两份峰值最高的“溴敌隆阳性”血液样本进行复核检测,检测结果均为“溴敌隆未检出”。  吉大一院“毒物检测”存在的问题  依据《医疗机构临床实验室管理办法》(卫医发〔2006〕73号)及国家卫生计生委办公厅《关于临床检验项目管理有关问题的通知》(国卫办医函〔2016〕167号)规定,经国家卫生计生委专家组会同省卫生计生委初步调查了解,吉大一院的“毒物检测”存在以下问题:  (一)吉大一院开展“毒物检测”的实验室不具备临床检测资质。该实验室未按照《医疗机构临床实验室管理办法》规定,进行核准登记,为非临床实验室,不具备出具临床检验报告的资质,但借用吉大一院临床检验科报告单向患者出具检测报告。  (二)吉大一院开展的“毒物检测”项目未列入国家《医疗机构临床检验项目目录》。自行开展的“毒物检测”项目,没有进行充分论证,其临床意义、特异性、敏感性尚不明确。  (三)吉大一院开展“毒物检测”的实验室在检测方法、程序及管理上均存在问题。国家专家组在对吉大一院毒物检测实验室进行现场调查后指出:  1.实验室未提供规范的标准检验方法,采用的操作规程不规范   2.部分标准对照实验与血液样品实验不是同时进行,不符合实验室出具准确报告的要求。  3.用市售鼠药作为标准对照品,不能得出准确的检验结果。  4.原始记录及报告单不规范。该院出具的“毒物检测”报告单只有审核者姓名,无检验者姓名。  对吉大一院处理意见  通报显示,根据初步调查了解的情况,经研究决定:一是由卫生监督机构对吉大一院进一步调查,依法依规做出处理 二是对吉大一院处理意见:  1.对吉大一院进行通报批评。  2.责令吉大一院立即停止非临床实验室开展临床检验。  3.责令吉大一院立即做出整改,对相关责任人作出处理,并针对全院医疗质量、医疗安全开展全面自查,查找安全隐患,形成自查整改报告,报送省卫生计生委及上级主管部门。  4.责令吉大一院做好对涉事儿童家属的解释、安抚工作,承认错误,尽快消除不良影响。
  • 揭秘臭气嗅辨师:用鼻子监控环境(图)
    [提要] 一年要尝试闻上千遍臭气样品,闻的臭气能装下180个2.5升可乐瓶子,他们就是靠鼻子来“吃饭”的嗅辨师,也被通俗称为“闻臭师”。”温丰功给记者算了一下,他们一年多则做200次恶臭测定实验,少则做100次,按照每年100次实验计算,每人每次要轮流闻9个3升装气袋子,一年折算下来,闻的气体能装下180个2.5升可乐瓶子。   一年要尝试闻上千遍臭气样品,闻的臭气能装下180个2.5升可乐瓶子,他们就是靠鼻子来“吃饭”的嗅辨师,也被通俗称为“闻臭师”。近日,记者走近这些用鼻子监控岛城生活环境的群体。   ■难忘事   第一次闻的是汗臭味   2003年8月份,烟台小伙子温丰功大学毕业后到青岛市环境监测中心站工作。两个月后,从不喜欢抽烟的他被单位选派到省环境监测中心站培训考试,那时候他才知道“嗅辨师”这个新名词。   “我们要分清楚5种标准臭味,分别是花香、汗臭、甜锅巴、成熟水果、粪臭气味。”温丰功还记得当时考试的情景,主考人把5条无臭纸中的3条一端浸入无臭液1厘米,另外两条浸入标准臭液1厘米,然后将5条浸液纸间隔一定距离平行放置,同时让被测者嗅辨。“我还记得,我当时闻出来的第一种气味是汗臭味,后来是花香味,最后这些气味全都闻出来后,考试才算合格。”温丰功说,这些无臭液和标准臭液是用液体石蜡来当溶剂,短时间闻出5种气味不算容易,不过自己从不抽烟,鼻子比较灵敏从而轻松过关,成为青岛第一个“闻臭师”。   “现在仪器有很多,怎么还需要靠鼻子来分析臭气呢?”记者提出这个问题,温丰功笑着说,现在的嗅辨仪只能测到硫化氢、甲硫醇、甲硫醚、氨等8种典型的恶臭污染物,而大家闻到的恶臭经常是多种气味混合在一起的,这个就需要更为灵敏的人鼻来判定。温丰功介绍,恶臭是个综合性的概念,一切刺激嗅觉器官,引起人们不愉快的损害生活环境的气体物质都称为恶臭,甚至香过头了的气体也属于恶臭。   ■细小事   每次测定他先闻原气   作为市环境监测中心站资格最老的“闻臭师”,温丰功每次做恶臭测定时都要第一个闻采集来的原气,不管臭到什么程度,然后再经过稀释后让其他同事一起来闻气做分析。“我干了9年了,闻的臭气也有很多,应该稀释到什么倍数,多少清楚一些,所以每次让我先来闻原气。”我国的实验室恶臭测定使用的是三点比较式闻臭法,每次闻气必须有6人来闻气袋里的臭气,每个人要闻3组气袋,每次稀释程度不同,直到闻不出来臭味为止。   记者在市环境监测中心站实验室里见到了这种3升装气袋,18个气袋子要分成6组,每个袋子上都带有A、B、C编号,每组中有两袋子充的是用活性炭净化的空气,另外一袋子是稀释后的臭气。温丰功和两名同事给记者演示了闻气的方法,3名“闻臭师”分别取下气袋上通气管的塞子,右手轻拍气袋,每个闻了 10秒钟。对气袋里的气体比较,他们要各自独立挑出有味气袋,全体嗅辨结束后,再进行下一级稀释倍数实验,每一次分析要进行三次闻气。“我们一个样品实验下来,至少需要一个小时时间,然后对这些数据进行统计分析,最终计算出臭味是否超标。”   温丰功给记者算了一下,他们一年多则做200次恶臭测定实验,少则做100次,按照每年100次实验计算,每人每次要轮流闻9个3升装气袋子,一年折算下来,闻的气体能装下180个2.5升可乐瓶子。   ■难受事   闻到恶臭头晕目眩   温丰功说,现在“闻臭师”的工作范围很广,除了工厂治污验收,还要测定一些固定污染源。“经常闻一些臭气,会不会损害自己的身体呢?”记者问。温丰功说,除了原气外,其他测定的都是稀释之后的臭气,每次只是轻轻闻一下,因此对闻臭师的身体影响不大。“嗅辨只是我们的一种工作,我们平常还要做其他大量的检测工作,并不是每天要闻很多臭气。”此外,闻臭时他们会采取一些保护措施,不能直接凑到气袋上闻,要跟鼻子有点距离,然后轻轻扇动让臭味飞到鼻子里。   记者了解到,即便这样,前几年有一次在给一家垃圾场的臭气做恶臭测定时,还是让温丰功难受得吃不下饭。“那个垃圾场渗沥液散发的原气掺有海产品腐败、蔬菜腐烂等多种臭味,特别熏人,我闻了一点后就感觉头晕恶心,后来稀释了100倍才好一些,不过当天的午饭我没有吃下去。”   温丰功告诉记者,他们做出来的恶臭测定结果是具有法律效力的,环保部门要根据结果来责令有关企业作出整改措施。温丰功告诉记者,恶臭已经是我国主要污染之一,农贸市场、垃圾场、厕所、下水道等也是产生源。   ■有趣事   臭味也能变成香味   “有时候,我们也能闻到香味,那是臭气稀释后散发出来的。”温丰功说,一些恶臭在稀释到一定程度会变成香味。前两年,在给一家工厂的废气做恶臭测定时,刚开始还是臭味,到后来稀释到1000倍时,这种臭味就变成了一种淡淡的香味了,可能是应了哪句 “物极必反”的说法吧。   温丰功告诉记者,严格意义上的“臭”包括日常生活中的臭气和香气。通常情况下,不管是什么气体,超过正常值的20倍就是污染。有些香气浓度超高后,气味会比一般的臭气还难闻。   ■禁忌事   不能抽烟不能化妆   闻臭师不是件好差事,工作禁忌也不少。温丰功说,由于工作的特殊性,“闻臭师”这种职业并不是所有人都能胜任,从2003年以来参加考试的人群中,只有不到六成人过关。男的不能抽烟,女的不能化妆,还不能有呼吸道疾病,年龄要在18岁到45岁之间。   “要是有鼻炎的话,就不能担任这个工作,还有感冒期间也不能参加分析工作。”温丰功还告诉记者,根据规定,在需要监测的前一天以及监测过程中,闻臭师不能感冒,不能使用带有香味的物品,如化妆品、洗发水、沐浴液、香皂等,饮食也需要注意,不吃辛辣的、油炸的食品,葱、姜、蒜、辣椒等调味品更不能沾边。“工作时不能抽烟喝酒,是不是有些痛苦呢?”记者问。温丰功说,平常自己不抽烟,也不怎么喝酒,连吃火锅时都不吃香辣锅。“这是工作,我们做的工作跟岛城千家万户密切相关,这点小付出是值得的。”   温丰功说,站里的环境监测有很多项任务,恶臭测定只是其中一项监测,他的工资在3000元以上。9年来,市环境监测中心站的“闻臭师”已经发展到了近20人,其中六成是女性。记者了解到,由于人的嗅觉会随着年龄的增长减退,闻臭师拿到证书后,并不是终身制,还需要每隔三年重新检测一次,合格后方能在下一个三年周期内担任“闻臭师”。记者 陈勇 摄影报道   ■相关链接   靠鼻子“吃饭”的人   除中国之外,美国、英国、荷兰、比利时、日本等国家也设有“闻臭师”职业。美国“闻臭师”每天穿行在熙熙攘攘的人群中,闻他人身体散发出的异味,为人体体味研究实验提供详细的资料。荷兰“闻臭师”分布在工业区及居民区边缘的小屋,不时将头伸出窗外,嗅闻空气中是否有令人讨厌的气味,以便及时控制大气污染。日本“闻臭师”大多专门闻公共厕所,一旦臭味超标,就责成厕所管理员限时除臭。据了解,东京环保当局招募的“闻臭师”在地铁、车站、公厕等发现异味,可立即向环保当局报告,以责成专人限时除臭。从事这项工作的人员月薪可高达50多万日元,约合人民币3.8万元。
  • 首台应用于临床检验领域的高分辨质谱系统登陆中国
    赛默飞Thermo Scientific Q Exactive系统助力中国医院特种检测服务 中国上海,2012年6月7日 &mdash &mdash 全球科学服务领域的领导者赛默飞世尔科技公司(以下简称:赛默飞)近日宣布,武汉康圣达医学检验所有限公司选择与赛默飞合作,采购Thermo Scientific Q Exactive系统,用于为全国的医院提供特种检测服务。这是目前在中国临床检验领域运用的首台高分辨质谱系统,同时也是中国整个临床检验系统第一台高分辨质谱仪器。此前在蛋白质组学、环境分析、食品安全等应用领域广受好评的Thermo Scientific Q Exactive系统,将在临床检测领域大展拳脚,助力中国医院特种检测服务! 武汉康圣达医学检验所有限公司是中国首家也是最大的综合性临床医学检验机构,已成为中国医院在包括血液、肿瘤、遗传、感染以及心血管等高端医学专科特验领域首选的合作伙伴。此次康圣达与赛默飞的合作充分显示了赛默飞在高分辨质谱领域的领导地位,以及业界对Thermo Scientific Q Exactive系统性能的一致肯定。Thermo Scientific Q Exactive系统将用于为全国的医院提供新生儿筛查、疾病标志物筛查、维生素D水平检测、内分泌水平检测等特种检测服务。 Thermo Scientific Q Exactive系统是首台将四极杆的母离子选择性和高分辨率精确质量(HR/AM) OrbitrapTM质量分析相结合的商业化仪器,旨在提供高度可靠的定量和定性(quan/qual)工作流程。Q ExactiveTM质谱仪具有创新的HR/AM Quanfirmation&trade 功能,能够在单次分析中鉴定、定量和确认生物样本中更多痕量级的药物和代谢物、肽类和蛋白质以及其它内源性成分。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 完美平衡质谱分析的“不可能三角”——记优秀新品赛默飞Orbitrap Astral高分辨质谱仪
    2023年度,共有269家国内外仪器厂商申报了526台仪器新品。经仪器信息网专业编辑初审后,网络评审团对申报的仪器新品依据创新点、市场前景、用户评价等进行评审,确定106台产品获得提名。经“技术评审委员会”终审,确定12台仪器荣获2023年度科学仪器行业优秀新品奖(点击查看获奖详情)。仪器信息网特别策划话题专栏#用新回顾|直击优秀新品奖 将陆续回顾一览最新一届获奖新品仪器风采。7月5日,由仪器信息网主办的3i奖“科学仪器行业优秀新品和绿色仪器”2024技术交流会成功在线举办,近万人在线观看了本次直播(点击查看)共有11家优秀新品和3家绿色仪器获奖企业派出“新”推官在线分享。本期我们一起来回顾获奖新品——赛默飞Orbitrap Astral 高分辨质谱仪。上市一年以来,应用Orbitrap Astral高分辨质谱仪发表的SCI论文多达44篇,这归功于独立运行的Orbitrap高分辨Full Scan和Astral快速扫描的MS/MS,且互不干扰,完美平衡了质谱分析的“不可能三角”(灵敏度、分辨率和扫描速度),为代谢组学基础研究实现了同时定性和定量分析的功能,以期进一步助力加速大队列代谢组学研究的脚步!赛默飞Orbitrap Astral 高分辨质谱仪品牌:赛默飞型号:Orbitrap 创新点 1.具有最新的离子源,以提高灵敏度 EASY-IC实时质量校准,以提高质量精度通过主动离子导向的预过滤器降低噪音,提高仪器耐用性, 先进的四极杆技术,提高传输,使隔离宽度降低到0.4 Th,更快的隔离切换时间仅为1 ms,并能实现自动,切换以提高耐用性。2.Orbitrap质量分析器——在超高分辨率水平上提供高质量精度,高动态范围的测量结果。3.新型的Astral质量分析器 Orbitrap Astral 高分辨质谱仪并不止于此。我们已经开发了一种全新的非对称轨道无损质量分析器,简称Astral,与Orbitrap质量分析器相辅相成。Astral质量分析器是赛默飞15年的研发成果,每个组件都经过协同优化,以更快的扫描速度和更高的灵敏度提供前所未有的性能水平。 评新而论赛默飞特别分享来自美国华盛顿大学和丹麦技术大学的两家用户对Orbitrap Astral 高分辨质谱仪评价反馈,详情见VCR:用户单位1:美国华盛顿大学用户单位2:丹麦技术大学看过来!!!2024年度科学仪器新品申报火热进行中,猛戳开启申报入口!!!关于 3i奖“仪器及检测3i奖”,简称“3i奖”(创新Innovative、互动Interactive、整合Integrative),始于2006年,是由信立方旗下网站——仪器信息网和我要测网联合举办,随着科学仪器及检验检测行业的发展需求,应运而生。截至目前已设有12类奖项,记录了行业发展路上的熠熠星光。3i奖作为行业公益奖项,始终秉承着“公正、公平、公开 ”的原则,依托信立方长期合作的业内权威专家和数千万用户进行评审,遴选出代表技术发展趋势的创新产品、表彰科学仪器及检测行业表现卓越的企业、企业家和具有特殊贡献的研发人物等,弘扬正能量,促进行业高速发展。了解更多3i奖详情:https://www.instrument.com.cn/event/prize
  • 优秀青年科学基金项目申请指南
    为进一步贯彻落实国家中长期人才发展规划纲要的部署,加强对创新型青年人才的培养,完善国家自然科学基金人才资助体系,国家自然科学基金委决定自2012年起设立优秀青年科学基金项目。   作为人才项目系列中的一个项目类型,优秀青年科学基金项目与青年科学基金项目和国家杰出青年科学基金项目之间形成有效衔接,促进创新型青年人才的快速成长,主要支持具备5~10年的科研经历并取得一定科研成就的青年科学技术人员,在科研第一线锐意进取、开拓创新,自主选择研究方向开展基础研究。   一、申请条件   1.优秀青年科学基金项目申请人应当具备以下条件。   (1)具有中华人民共和国国籍。   (2)申请当年1月1日男性未满38周岁[1974年1月1日(含)以后出生],女性未满40周岁[1972年1月1日(含)以后出生]。   (3)具有高级专业技术职务(职称)和博士学位。   (4)与境外单位没有正式聘用关系。   (5)保证资助期内每年在依托单位从事研究工作的时间在9个月以上。   不具有中华人民共和国国籍的华人青年科学技术人员,符合上述2~5条件的,可以申请。   2.以下人员不得申请优秀青年科学基金项目。   (1)无工作单位或者所在单位不是依托单位的。   (2)正在承担或者承担过国家杰出青年科学基金项目的。   二、评审与批准   1.评审重点   优秀青年科学基金项目评审重点包括申请人的工作基础和创新潜力。其中工作基础方面,重点考察申请人所取得的研究成果的创新性和科学价值 创新潜力方面,重点考察申请人在前期研究工作中所展现的创新能力及拟开展的研究工作的创新性。   2.评审程序   优秀青年科学基金项目评审程序包括同行专家通讯评审和会议评审。   (1)通讯评审:由5名以上同行专家进行评审,每份申请的有效评审意见不少于5份。   (2)会议评审:会议评审专家为9人以上,参加会议评审的项目申请人应当到会答辩。会议评审专家以无记名投票的方式表决,赞成票过半数的为建议资助项目。   3.批准程序   优秀青年科学基金项目由自然科学基金委委务会议审议批准。   三、注意事项   1.优秀青年科学基金项目申请计入高级专业技术职务(职称)人员申请和承担项目总数的限制范围。   2.申请书资助类别选择“优秀青年科学基金” 项目名称栏目填写“研究领域”,而不是具体的研究课题名称。   3.优秀青年科学基金项目强调申请人本人的科研能力及创新潜力,申请书不填写“主要参与者”。   4.申请人如获得中组部青年拔尖人才计划或中央、地方人才计划资助,应当在申请书中注明。   5.同一申请人只能获得1次优秀青年科学基金项目资助。   6.申请人不得同时申请优秀青年科学基金项目和国家杰出青年科学基金项目 正在承担优秀青年科学基金项目的负责人不得申请国家杰出青年科学基金项目,但结题当年可以提出申请。   7.优秀青年科学基金项目实施过程中,项目负责人不得变更。   四、申请与报送   申请人应当严格按照优秀青年科学基金项目申请书撰写提纲的要求,输入准确信息、撰写申请书并提交相关附件材料 依托单位应当对申请书认真审核并对申请人条件进行核实,按照相关要求报送自然科学基金委。   2012年度优秀青年科学基金项目计划资助400项,资助期限为3年,资助强度为100万元每项。
  • 基因测序普遍应用仍待临床准入
    只需几毫升外周血,少量体液,甚至是唾液或漱口水,就可以捕捉、测量人体中某些特定的基因片段,预知疾病风险或早期诊断疾病,甚至,发现癌症滋生的蛛丝马迹。作为生物科技前沿,基因测序技术尚未广泛临床应用,就因为安吉丽娜.朱莉、乔布斯等明星的追捧而赚足眼球。   在中国,基因测序技术的投资与应用,今年如同坐上&ldquo 过山车&rdquo ,2月被国家食药总局和国家卫计委以&ldquo 未经审批滥用&rdquo 为由,全面&ldquo 叫停&rdquo 临床使用 其后,国家食药总局又将酝酿多年刚刚出炉&ldquo 创新医疗器械的优先审评审批&rdquo 政策,优先用于基因测序诊断产品,并于7月初宣布,批准华大基因两款基因测序仪及其检测试剂盒注册为医疗器械,允许上市。   就在上个月,国家食药总局明确表示,已与国家卫生计生委达成共识,&ldquo 用于临床基本诊断的基因测序产品,需经食品药品监管部门审批注册,并经卫生计生行政部门批准技术准入后方可使用&rdquo 。   纵观市场,供给一方,已有多家基因测序企业整合优势技术与融资,希望效仿华大基因,快速通过国家创新医疗器械优先审评审批的&ldquo 绿色通道&rdquo ,以抢占医疗服务市场先机 需求一方,仅 &ldquo 无创产前基因检测&rdquo (俗称&ldquo 无创产筛&rdquo )一项,&ldquo 单独二孩&rdquo 政策每年多带来的百余万高龄孕妇,已扩生出数以亿计的市场空间,更遑论公众对患癌风险的恐惧渴望。   但是,在基因与疾病的复杂关系中,基因测序技术如何能更规范地应用于临床,诊断、监测、辅助治疗某种特定疾病,而不会变成忽悠骗钱、甚至挑战伦理的&ldquo 神术&rdquo ?无论是监管部门、行业,还是普通公众,似乎还有很长一段路要走。   7月2日,国家食品药品监督管理总局宣布,已于6月30日批准华大基因两款基因测序仪及其检测试剂盒作为医疗器械注册。这距今年2月4日,国家食药总局和国家卫生计生委联合发文叫停基因测序技术临床应用,还不到5个月。   即使在基因测序技术已因CLIA(临床试验室改进法案)制度已较普遍应用于临床的美国,基因测序诊断产品要获得FDA(美国食品药品管理局)的医疗器械认证,也并不容易,用时一般在两年左右甚至更长。   对此,国家食药总局的官方解释是,基因测序诊断产品,适用于今年3月起试行的《创新医疗器械特别审批程序》。国家食药总局将继续对申请医疗器械注册的其他基因测序仪产品,实施优先审评审批。   然而,利好政策,虽激活了曾因&ldquo 叫停令&rdquo 一度陷入停顿的中国基因测序业界,却也引发一些质疑声音。   7月15日,中科院北京基因组研究所DNA序列测定技术研究开发中心副主任任鲁风教授,在科学网上质疑国家食药总局的审批过于仓促。   此前两天,任鲁风还以公民身份,向国家食药总局提起政务信息公开申请,希望该局详解对二代基因测序诊断产品审批的具体流程。   就在同时,国家食药总局也回复了新京报记者的采访问题,指出获得医疗器械注册只是一个开始,基因测序技术要想正式应用于临床,还须经过卫生计生部门的临床技术准入。   新京报记者了解到,国家卫生计生委将分类审批基因测序技术的临床研究试点。临床研究项目不仅包括此次获批的医疗器械适用征:无创产前基因检测,也包括之前有效性颇受争议的癌症早期风险检测。   释疑1   获医疗器械审批临床即可使用?   国家卫计委   仍将分类评估、准入测序技术临床应用   虽然已有两款二代基因测序仪作为医疗器械审批,但新京报记者获悉,国家卫计委仍将分类审批基因测序技术的临床研究试点。临床研究包括之前有效性颇受争议的癌症早期风险检测。   国家卫生计生委医政医管局7月给新京报的书面采访答复称,3月以来开展的基因测序临床研究试点仍在审批中,正在对各地申报机构进行核实、分类,随后将组织专家进行评估,以确定试点单位,规范、有序开展二代基因测序技术的临床应用。   华大基因技术负责人赵立见向新京报记者介绍,基因测序临床研究试点将分四类审批,包括产前筛查和产前诊断 单基因病检测 此前被夸大宣传、市场滥用的肿瘤早期风险检测和个体化用药 还有试管婴儿前,对胚胎进行遗传病检测。   目前,华大基因、贝瑞和康相关负责人已先后向新京报记者表示,正在协助一些三甲医院,积极接受基因测序技术临床应用或研究的试点审批。   释疑2   基因测序如何规避伦理等风险?   国家食药总局   基因测序仪将作为高风险医疗器械监管   今年2月,两部委在基因测序技术临床应用的&ldquo 叫停令&rdquo 中称,基因测序技术未经审批即广泛应用,缺乏安全性、有效性、伦理风险的评估和监管。   任鲁风等业内人士也曾公开发声,担忧在没有完善技术监管的现状下,&ldquo 无创产前基因检测&rdquo 很容易被应用于胎儿性别鉴定 而随着基因测序技术的临床推广,存放于第三方检测机构的大量基因测序数据一旦泄露,不仅暴露公民个人隐私,也可能造成基因歧视。   国家食药总局医疗器械监管司司长童敏表示,刚刚获批的医疗测序诊断产品,属于《医疗器械管理条例》中的三类医疗器械,即安全风险性较高的医疗器械。国家食药总局将据此对未来基因测序技术及相关诊断产品的临床使用开展监管。   童敏说,针对新获批作为医疗器械临床使用的基因测序诊断产品,国家食药总局正在组织相关的省级食药监管部门,对这种新产品的生产及临床使用情况,进行摸底和例行监督检测。   深圳拟聚拢基因测序企业   7月初,坐落于深圳国际生物谷的华大基因拿到我国首个针对基因测序诊断产品的官方批准文号后,深圳市市长许勤立即召开华大基因发展专题研究会议,部署充分发挥华大基因在全球基因测试分析领域的领军作用,加快新技术、新成果的转化和应用,以深圳国际生物谷为平台,聚集更多的优质创新资源和产业链上下游的优秀企业,打造生物产业高地。   实际上,去年年底公示实施的《深圳国际生物谷总体发展规范(2013-2020)》,即明确要探索有利于生物科技发展的政策法规,争取将生物谷上升为国家战略。   7月8日,深圳市市场与质量监管委员会巡视员王夏娜在北京向媒体介绍,深圳国际生物谷将建立以华大基因为依托的生物聚集地,将成为全球最大的基因诊断平台,生物样品和细胞库。聚集10家以上高水平的医学机构,1到2家以上的特色学院,新建三家以上的国家级研究平台,探索建立中国生物科技联合高等研究院。   &ldquo 毫无疑问,生物技术是继信息技术之后发展潜力和空间最大的,对经济社会影响最深刻的高技术领域,未来深圳将不断完善生物产业,生命健康产业发展规划及政策体系,在各方面提供更具针对性、有效性的服务,支持包括华大基因在内的生物技术企业加快发展,让世界及国内有意落户深圳的生物技术企业,在深圳有长足的发展。&rdquo 王夏娜的一番话,足以显示深圳市聚拢基因测序企业的愿景。   现状   多家基因测序企业&ldquo 追赶&rdquo 申报   7月初,拿到医疗器械&ldquo 准生证&rdquo 的华大基因在京启动&ldquo 千万家庭远离遗传出生缺陷&rdquo 计划,宣布两款获得国家食品药品监管总局注册的基因测序仪BGISEQ-1000和BGISEQ-100,将通过与医院共建联合实验室、第三方检测等形式,在临床大规模推广无创产前基因测序服务。   此前,和华大基因比肩竞争的国内其他基因测序企业也不甘落后,纷纷拿出自家的技术核心款基因测序仪,&ldquo 追赶&rdquo 向国家食药总局申报医疗器械注册。   7月22日,贝瑞和康与美国Illumina公司正式宣布合作,选择使用Illumina新一代基因测序技术作为贝瑞和康向国家食品药品监督管理局(CFDA)提交临床检测项目的注册申请的核心技术平台,在中国提供以高通量测序技术为基础的临床检测业务。&ldquo 叫停令&rdquo 前,在&ldquo 无创产前基因检测&rdquo 临床服务领域,贝瑞和康的市场份额,紧随华大基因。同期,贝瑞和康还高调宣布其自主研发的&ldquo 无创单基因疾病检测&rdquo 技术,称利用特定的引物和独特的扩增方法,能够将血浆中游离的碎片化目标DNA悉数捕捉、富集,对其进行高通量测序,实现单基因病的定性和定量检测。   7月底,另一家成立只有两年的基因测序企业&mdash &mdash 安诺优达CEO梁峻彬也向媒体表示,已就公司拥有的基因测序测序仪、试剂盒及配套软件向国家食药总局申报医疗器械注册 同时,也在携核心技术申请由国家卫计委审批的临床研究试点。   安诺优达和贝瑞和康都位于北京,也是基因组技术出身的三家公司之一。   经过两年的发展,向来低调的安诺优达已获得两轮融资,目前占据国内市场份额10%。在日渐激烈的市场竞争下,安诺优达的定位,除无创产前外,还力图在试管婴儿、不孕不育等生育服务以及肿瘤个体化治疗等领域进行差异化竞争。   上个月,国家食药总局向新京报记者介绍,深圳华因康基因科技公司也已就其生产的基因测序仪产品提出了注册申请。   对于合规申报医疗器械注册的其他基因测序仪产品,国家食药总局也将按照《创新医疗器械特别审批程序(试行)》的要求予以优先审评审批。   前景   基因技术或引发个性化医学革命   从PCR,到基因芯片,到近10年来崛起的高通量基因测序技术,基因检测技术的发展,可谓一边探索性地建立规则,一边又飞跃崛起式地打破规则。   生物医学界已经达成共识,由于基因与人体生老病死之间的密切关系,随着研究的不断深入,在未来10-20年,可能会出现一场个性化医学的革命。&ldquo 这种革命不仅包括疾病的风险监测、早期诊断、干预和治疗,还有助于更多靶向药物的开发,患者可以根据自身状况选择最合适的那种药&rdquo ,基因检测业内人士吴彬介绍,基因技术很早就被寄予厚望,从2003年人类基因组序列图绘制成功至今已经有十余年,但人们对于这项技术的应用仍然处于早期。   &ldquo 基因测序只是健康服务的第一个环节,更重要的是解读与针对性治疗。&rdquo 安诺优达CEO梁峻彬如是理解基因测序带给医疗界的颠覆作用。   深圳市市长许勤还曾公开提出,基因科技不仅是大科学、大数据、大产业,还要有大健康,要让科学发展能够惠及民生,深圳将利用基因检测诊断技术,在未来几年内有效地控制21三体、18三体综合征等一系列致残、致疾等重大的遗传性疾病,就像当年消灭天花和血吸虫病一样。   无创产筛   个人体验   价格没变速度快了   记者采访到一位曾经进行过产前无创筛查的准妈妈,她告诉记者,自己在今年5月份,即孕周16周时进行了基因产前无创产前检查,这位准妈妈介绍,自己在位于顺义的某家医院进行了相关检测,&ldquo 过程很简单,医院的妇产科会代采血,现场完成采血后,与相应的检测机构签订合同并交款,收费为2500元。而且现场只接受POS机刷卡,不接受现金交易。7-10个工作日即可出结果,检测结果出来后,一般会先发短信通知我们,然后会将检测结果快递给我们。如果检测结果发现有问题,检测机构会补偿做羊水穿刺的花费&rdquo 。   至于为何选择产前无创的筛查方式,该女士介绍,&ldquo 我是通过做医生的朋友了解到羊水穿刺有一定的流产率,基因检测的准确率与羊水穿刺相当,而且是一种无创手段。我在两年前生育第一个孩子时也选用了同样的方式,当时是在一家私立医院做的,程序基本是类似的,但当时出结果比较慢,要15个工作日左右,价格与现在差不多,这次生二胎医生建议进行羊水穿刺,而且当时医生也告诉我基因检测已经被叫停了,后来我在一些妈妈群里看到有人讨论说还可以做,就找了相应机构。&rdquo   普及后价格能否更亲民   有望降至1000元以下   北大人民医院产科主任张晓红介绍,使用二代基因测序技术的&ldquo 无创产前基因检测&rdquo ,是准确率较高的产前筛查技术,可以避免多数孕妇接受风险较高的产前诊断(俗称&ldquo 羊水穿刺&rdquo )。但从成本和可及性考虑,医院不推荐每个孕妇直接接受&ldquo 无创产筛&rdquo ,&ldquo 毕竟价格不菲,也不是医保报销项目&rdquo 。张晓红表示,羊水穿刺对孕周有所限制,由于所提取的为胎儿细胞,不宜太晚进行,经验非常丰富的医生每天8个工作小时最多可分析3例,目前北京仅有6家医院可以进行,供需矛盾比较集中。   新京报记者了解到,&ldquo 叫停令&rdquo 前,无创产前基因检测服务的价格由提供底三方检测的测序企业与医院或地方卫生行政部门协定,一般在2000-3000人民币之间。华大基因总裁汪健表示,作为国家批准的医疗器械,二代基因测序诊断产品将广泛应用于临床的无创产前基因检测服务,随着技术的普及,未来两三年内,&ldquo 无创产筛&rdquo 服务的价格,有望降至1000元以内。王夏娜此间表示,产前无创基因检测服务,在深圳已正式纳入生育保险报销范围,以减轻孕产妇家庭的负担。   &ldquo 无创产筛&rdquo ,只是基因测序技术的一个小应用。随着二代基因测序技术的成熟和普及,个人全基因组测序的成本,已从2001年的9500万美元,降至2011年初的2万美元以下。目前,全球多家基因测序研究机构和企业,已加入&ldquo 1000美元一个人类基因组&rdquo 的目标竞赛。业界称,1000美元,接近于做一次核磁共振的费用,是可以被各国医疗保障体系接受的价格。
  • 唐敖庆、王大珩当选“吉林骄傲”人物
    吉林省为庆祝新中国成立60周年开展的“吉林骄傲”人物评选结果日前在长春揭晓,清华大学两位老学长唐敖庆和王大珩荣获“吉林骄傲”人物称号。   唐敖庆(1915-2008),汉族,江苏省宜兴县人,中共党员。著名化学家、卓越的教育家,享誉国际的具有特色的中国理论化学派的创建人及主要代表者。唐敖庆1940年毕业于西南联大化学系,1949年获美国哥伦比亚大学博士学位。1952年调任吉林大学教授,参加领导吉林大学化学系创建工作 1978年至1986年任吉林大学校长 1986年2月主持组建国家自然科学基金委员会,出任主任。上世纪60年代初,唐敖庆以化学键理论的重要分支——配位场理论这一科学前沿课题研究,创造性地发展完善了配位场理论及其研究方法。此项成果被1966年北京国际暑期物理讨论会评为十项优秀成果之一,并于1982年获国家自然科学一等奖。上世纪70年代以来,他与江元生共同着手分子轨道图形理论的系统研究,不论就计算还是对有关实验现象的解释,均表达为概括性高、含义直观、简便易行的分子图形的推理形式 1987年,该成果获得国家自然科学一等奖。   王大珩,1915年生,汉族,江苏吴县(今苏州市)人,中共党员,中国科学院和中国工程院资深院士,著名应用光学家,我国光学界公认的学术奠基人、开拓者和组织领导者。王大珩1936年毕业于清华大学物理系。1951年受邀筹建中国科学院仪器馆(中科院长春光机所前身),他被任命为代理馆长、所长。在他的主持领导下,该所发展成为我国应用光学研究及光学仪器研制的重要科研开发基地,被誉为“中国光学的摇篮”。他同时也是一位战略科学家,参与提出了“863计划”、激光核聚变研究与装置研制,以及重视工程技术的整体作用等建议,对国家科技决策产生了深远影响。   “吉林骄傲”人物评选活动,是由吉林省委宣传部、省纪委、省委组织部、省委统战部、省文明办、省总工会、团省委、省妇联、省委党史研究室、省民政厅、省人力资源和社会保障厅、省广电局、省政府新闻办、省军区政治部等部门主办,吉林日报、吉林人民广播电台、吉林电视台、中国吉林网等省直主要新闻媒体协办。评选出的60位“吉林骄傲”人物,是新中国成立60年来,全省各行各业涌现出来的先进典型以及在域外工作的吉林省籍知名人士的代表,他们是公民的榜样、时代的先锋、吉林的骄傲,也是爱国主义教育最生动、最直接的教材。
  • 吉林:幼儿血液检出“溴敌隆”系实验室检测错误
    近日,吉林市船营区春芽中东幼儿园暴发集体腹泻事件,多名幼儿及幼儿园的工作人员出现低热、恶心、呕吐等症状。有家长带孩子到医院做血液毒物筛查时,检出疑似鼠药“溴敌隆”成分。23日凌晨,吉林市船营区政府通报,该幼儿园幼儿发生低热、恶心、呕吐等症状系当日食物中大肠菌群超标引起。患儿的毒物检测结果显示“溴敌隆”呈阳性系实验室检测错误。  幼儿园集体上吐下泻  春芽中东幼儿园的集体上吐下泻暴发于3月9日。之后陆续有家长自行带孩子去吉林大学第一医院检查,在血液毒物筛查中,有孩子的结果显示为“溴敌隆”呈阳性,而“溴敌隆”是鼠药的成分。这个消息在家长中传开后,更多的家长带着孩子去吉林大学第一医院检测,患儿小俊的母亲对北青报记者表示,从家长晒出的检测报告统计,至少有13个孩子拿到了“溴敌隆”呈阳性的血液检测结果。  另一名患儿家长告诉北青报记者,此次出现中毒现象的不只有幼儿,还有数位在该幼儿园任职的幼师和保育员。有一位保育员的孩子也在这个幼儿园,事发后大人孩子都去了吉林大学第一医院做血液毒物检测,大人没检测出“溴敌隆”,但孩子检测出了。  区政府称系大肠菌群超标  23日凌晨,吉林市船营区政府对春芽中东幼儿园事件发布了情况通报,通报称,3月9日下午,船营区春芽中东幼儿园幼儿出现低热、恶心、呕吐等症状。截至3月9日晚10点,共有53名幼儿到医院检查治疗(当日该园共有153名幼儿入园)。至10日1时15分,有3名幼儿留院观察,其余幼儿离院回家。之后,仍有该园幼儿去医院检查复诊。  3月14日,市、区两级疾控中心检测结果显示,送检食物中有部分食物大肠菌群超标,当日食物中羊肉冬瓜汤和蔬菜粥大肠菌群超标,引起食源性疾病。  根据调查结论,吉林市食药监局船营分局对船营区春芽中东幼儿园依法作出查处决定:决定给予五万元罚款的行政处罚。同时,责令船营区春芽中东幼儿园立即进行整改。  专家组认为医院实验室检测错误  由于有家长拿到了“溴敌隆”呈阳性的检测报告,3月18日,国家卫计委派出专家组到长春调查。  3月19日,国家专家组专家,对吉林大学第一医院提供的两份峰值最高的“溴敌隆阳性”血液样本进行平行复核检测。检测“溴敌隆”呈阳性儿童临床表现、化验检查结果,均不符合抗凝血灭鼠剂中毒特征。  吉林大学第一医院检测中心出具的10例幼儿血液样本,从检测方法、程序及谱图均不能做出“溴敌隆阳性”的报告。经对吉林大学第一医院提供的两份峰值最高的“溴敌隆阳性”血液样本进行平行复核检测,结果均为:未检出“溴敌隆”成分。  基于以上情况,专家组认为“溴敌隆”阳性的检测结果,系吉林大学第一医院实验室检测错误所致。
  • 赛默飞与英盛生物达成战略合作,宣布双方共建的临床质谱维修服务中心正式成立
    2019年8月12日,山东济南——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日与山东英盛生物技术有限公司(以下简称:英盛生物)正式签署战略合作协议,并宣布英盛赛默飞临床质谱维修服务中心正式成立。根据战略合作协议,双方将致力于共同探索质谱技术在临床检测的新应用,并着力提高临床质谱检测数据的准确性和有效性,为一线检验人员提供切实有效的循证依据,进一步推动精准医学的普及与应用。随着质谱分析技术的日臻成熟和精准医疗需求的日益增长,赛默飞通过本地的技术合作和转化,加速推动科研领域成熟的分析技术在临床领域的运用。作为国内临床质谱的领航者,英盛生物在在临床检测行业深耕多年,具有很好的本土化优势。此次合作借助了赛默飞的硬件技术优势,结合英盛生物种类丰富的检测试剂盒,全力打造生产、销售和服务一体化的服务体系,期待通过合作能更好地服务于中国临床检测市场。赛默飞与英盛生物战略合作签约仪式赛默飞与英盛生物服务协议签约仪式8月12日,双方联合济南高新区生命科学城同期举办了“新旧动能转化--中美精准医疗高峰论坛”。此次高峰论坛集合了众多行业大咖、专家学者,围绕“质谱平台在临床中的应用、维生素流行病学调研与精准测评、遗传代谢病现状及防治对策以及基于高分辨质谱技术的中毒毒物快速鉴定与临床实践”等议题,共同探讨了质谱在临床的热点应用方向与最新研究成果。新旧动能转换 - 中美精准医疗高峰论坛此次论坛还展示了赛默飞在今年ASMS会议上发布的新品- VeriSpray™ 纸喷雾离子源,推动快速便捷的进样技术在临床产生更多的应用方向。赛默飞中国区总裁艾礼德(Tony Acciarito)先生表示:“很高兴在济南市政府的支持下,赛默飞与英盛生物的合作得以进一步开花结果。我坚信本次战略合作以及新落成的临床质谱维修服务中心将进一步助力中国临床质谱应用的新升级,同时助力济南生物制药以及精准医学产业的蓬勃发展。”英盛生物董事长冯振先生指出:“此次非常荣幸与赛默飞再次达成战略合作,双方在临床质谱领域有着共同的愿景和一致的合作愿望。我们将进一步深化合作,把新一代高端质谱推向市场的同时,共同建立中国最大的临床质谱维修服务中心,构建立体式服务,即时服务各地用户。双方高高联合,共同应对挑战,开启质谱临床应用新篇章!”本次战略合作得到了济南市高新区的积极关注,也吸引到了150多位业界同行莅临,会场进行了热烈的探讨,会后还前往赛默飞与英盛生物的合作实验室进行了参观,对实验室的研发实力和发展寄予了期待。 赛默飞世尔科技简介赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额超过240亿美元,在全球拥有约70,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、加速药物上市进程、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们领先结合创新技术、便捷采购方案和全方位服务。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com关于英盛生物山东英盛生物技术有限公司(简称英盛)是国内临床质谱领域技术开发、质量控制及技术服务的领航者,专注临床质谱领域十余年,也是集研发、生产、销售及第三方医学检测服务于一体的高新技术企业。英盛围绕代谢组学和遗传组学,搭建了国内领先的基因检测平台和质谱检测平台,涵盖了出生缺陷筛查,疾病预防,人类健康服务领域,荣获10项国家专利、2个软件著作权,参与3个行业标准和1个国家标准的建设,通过ISO13485和ISO9001质量管理体系认证,是省山东省“十三五”科技创新规划中,重点生物医学工程产业集群的骨干企业。英盛的产品线包括超高效液相色谱串联质谱检测系统、质谱全自动智能处理平台、新生儿48项遗传代谢病筛查试剂、维生素14项测定试剂,耳聋基因检测试剂、 HLA-B27检测试剂盒等,并研发支持软件,产品和软件皆为国内首创,国际领先。产品已成功通过临床试验,获得国家食品药品监督管理总局(CFDA)颁发的行业许可及相关注册证件。
  • 清晰度与辨析度——安徽大学林中清33载经验谈(14)
    p style=" text-align: justify text-indent: 2em " strong 【作者按】 /strong 日常评价一张图片质量的好坏,清晰不清晰往往排在第一位,大部分的图片没有了清晰度基本都被放入废片的篓子里面。这一评判标准也被许多杂志引入对科学图片的基本要求之中,即便是面对扫描电镜的图片,要求也是如此。许多科研论文被杂志社打回的原因有很多,图片的清晰与否正是常常被提及的重要原因之一。 /p p style=" text-align: justify text-indent: 2em " 随着对扫描电镜成像原理的了解越深入、分析的越充分,越觉得以是否清晰做为扫描电镜图像最重要的评判标准,显得过于偏颇。特别是以图像清晰度不足为理由来否定图片中所反映出的形貌信息,这就充满了无理的偏见。 /p p style=" text-align: justify text-indent: 2em " 在进行扫描电镜测试时常常发现,图像的清晰度会随着放大倍率的提升而逐渐变差。如果用场发射扫描电镜进行测试,大部分样品的图像在放大到十万倍时还能保持较好的清晰度;超过十万倍,随着倍率的提高,图像清晰度将逐渐变差;放大倍数一旦超过三十万倍,大部分图像的细节清晰度都会下降的极其迅猛,很难获取所谓绝对清晰的结果。电子枪本征亮度和样品密度越低这种清晰度的下降速度就越大。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/5f73e72c-41a7-440c-ba2b-2c9e13fd51ee.jpg" title=" 1.PNG" alt=" 1.PNG" / /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/a5bec6d3-f243-4453-8202-13f9953d80fe.jpg" title=" 2.PNG" alt=" 2.PNG" / /p p style=" text-align: justify text-indent: 2em " 钨灯丝扫描电镜,电子枪本征亮度低,该变化趋势要低一个数量级。一万倍以下清晰度优异,一万到五万倍清晰度尚可,五万倍以上下降明显,十万倍以上难以获得清晰图片。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/70af04d1-4e69-42ed-8477-c9bae441f0f1.jpg" title=" 3.PNG" alt=" 3.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/b403297c-5ded-4555-a4b2-432dda8dbe42.jpg" title=" 4.PNG" alt=" 4.PNG" / /p p style=" text-align: justify text-indent: 2em " 为什么会出现这种图像高分辨与高清晰互相脱节的现象,即图像的高分辨却无法保证图像的高清晰? /p p style=" text-align: justify text-indent: 2em " & nbsp 下面将从图像的清晰度与辨析度谈起。 /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center margin: 10px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top box-sizing: border-box " section style=" text-align: right transform: translate3d(10px, 0px, 0px) -webkit-transform: translate3d(10px, 0px, 0px) -moz-transform: translate3d(10px, 0px, 0px) -o-transform: translate3d(10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top background-color: rgba(255, 255, 255, 0) padding: 10px 10px 2px 30px border-width: 0px 0px 2px border-radius: 0px 0px 2px border-style: none none solid border-color: rgb(80, 65, 158) overflow: hidden box-sizing: border-box " section style=" margin: 0px 0% transform: translate3d(1px, 0px, 0px) -webkit-transform: translate3d(1px, 0px, 0px) -moz-transform: translate3d(1px, 0px, 0px) -o-transform: translate3d(1px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" text-align: justify font-size: 17px color: rgb(80, 65, 158) letter-spacing: 2px line-height: 1 box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" background-color: rgba(254, 255, 255, 0) box-sizing: border-box " strong 一、图像的清晰度和辨析度 /strong /span /p /section /section /section /section section style=" text-align: left margin: -21px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: 61px height: 25px vertical-align: top overflow: hidden line-height: 0 letter-spacing: 0px box-sizing: border-box " section style=" text-align: center margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" max-width: 100% vertical-align: middle display: inline-block line-height: 0 width: 100% box-sizing: border-box " img class=" raw-image" style=" vertical-align: middle max-width: 100% width: 100% box-sizing: border-box " data-ratio=" 0.3472222" data-w=" 1080" _width=" 100%" src=" http://statics.xiumi.us/stc/images/templates-assets/tpl-paper/image/14875fe29250c262c93674c03a33bba9-sz_5875.png" / /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " strong 1.1 图像的清晰度 /strong /p p style=" text-align: justify text-indent: 2em " strong 影像上各细部纹理及其边界的清晰程度 /strong /p p style=" text-align: justify text-indent: 2em " 要保证图像细部纹理能被清晰分辨,纹理边界的明暗差异,也就是衬度,必须达到一定值。纹理边界的衬度差异越大,边界的区分就越明析,清晰度也就越高。& nbsp /p p style=" text-align: justify text-indent: 2em " strong 1.2 图像的辨析度 /strong /p p style=" text-align: justify text-indent: 2em " strong 影像上各细部纹理及其边界的分辨程度 /strong /p p style=" text-align: justify text-indent: 2em " 图像辨析度是对图像纹理细节分辨能力的概括性表述。图像的辨析度越高所能分辨的纹理细节就越细小、越丰富。 /p p style=" text-align: justify text-indent: 2em " strong 1.3 图像辨析度的要求 /strong /p p style=" text-align: justify text-indent: 2em " 对于相邻两点能被分辨的极限 strong 值 /strong ,也就是所谓的分辨率,被认为最具权威性的诠释是“瑞利判据”的概念。& nbsp /p p style=" text-align: justify text-indent: 2em " 当两个物点的像斑重叠在一起,就有可能无法分辨这两个物点,到底重叠成怎样的程度刚好能分辨这两个物点?这就是一个分辨极限的问题。对这个问题,国际学术界通常都以瑞利提出的判据为准。 /p p style=" text-align: justify text-indent: 2em " 瑞利判据:当一个爱里斑的中心与另一个爱里斑的第一级暗环重合时,刚好能分辨出是两个像。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/5de19146-9ddf-4a51-b264-d25a1e1e18ce.jpg" title=" 5.PNG" alt=" 5.PNG" / /p p style=" text-align: justify text-indent: 2em " 依据瑞利判据的规定,我们对事物的分辨极限并不是处于清晰分辨,而是处于刚好分辨。此时图像的清晰度也不是要求绝对的清晰,而是足够的清晰,以至能刚好分辨细节。 /p p style=" text-align: justify text-indent: 2em " & nbsp strong 1.4 图像的衬度和清晰度 /strong /p p style=" text-align: justify text-indent: 2em " 前文有介绍,图像衬度指的是图像上的明暗差异。正是存在明暗差异,才能形成图像,否则就是单纯的灰度或色度板。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 图像上细节边界的衬度差异越大,边界越容易被分辨,图像清晰度也就越高。细节衬度的影响因素有两个层次。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/88923449-2325-4edc-87fe-4dcb67bbdadb.jpg" title=" 6.PNG" alt=" 6.PNG" / /span /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/a758f67a-0d34-49d8-8ca3-6ac3d8f00b4a.jpg" title=" 7.PNG" alt=" 7.PNG" / /span /p p style=" text-indent: 0em " span style=" text-indent: 2em " /span /p p style=" text-align: justify text-indent: 2em " 从以上实例可见,细节边界的衬度值决定着图像清晰度,衬度越大清晰度越高。对这个衬度的影响来自两个方面: /p p style=" text-align: justify text-indent: 2em " a.& nbsp 图像整体对比度调整较差引发细节衬度弱,清晰度不足。 /p p style=" text-align: justify text-indent: 2em " b.& nbsp 图像细节部位的信息差异较小造成图像的清晰度不足。 /p p style=" text-align: justify text-indent: 2em " 无论细节衬度不足来自哪方面的原因,要提升图像清晰度,增加细节的衬度是关键。通过提升图像的对比度来改善图像的清晰度,常常会丢失一部分样品细节。 /p p style=" text-align: justify text-indent: 2em " 清晰度和辨析度经常以一种矛盾的态式而存在。提升清晰度是以损失辨析度为基础。清晰度高而辨析度不足、辨析度强但清晰度弱,两者往往很难兼得。该现象在扫面电镜中经常出现,特别在高、低倍率的图像对比中更是普遍现象。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/7338256e-bcb7-4425-8e91-207a23e8223f.jpg" title=" 8.PNG" alt=" 8.PNG" / /p p style=" text-align: justify text-indent: 2em " 为什么扫面电镜高倍率图像清晰度往往较差,而且倍率越高清晰度越差?下面将从SEM的成像方式说起。 /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " /span /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center margin: 10px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top box-sizing: border-box " section style=" text-align: right transform: translate3d(10px, 0px, 0px) -webkit-transform: translate3d(10px, 0px, 0px) -moz-transform: translate3d(10px, 0px, 0px) -o-transform: translate3d(10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top background-color: rgba(255, 255, 255, 0) padding: 10px 10px 2px 30px border-width: 0px 0px 2px border-radius: 0px 0px 2px border-style: none none solid border-color: rgb(80, 65, 158) overflow: hidden box-sizing: border-box " section style=" margin: 0px 0% transform: translate3d(1px, 0px, 0px) -webkit-transform: translate3d(1px, 0px, 0px) -moz-transform: translate3d(1px, 0px, 0px) -o-transform: translate3d(1px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" text-align: justify font-size: 17px color: rgb(80, 65, 158) letter-spacing: 2px line-height: 1 box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" background-color: rgba(254, 255, 255, 0) box-sizing: border-box " 二、扫描电镜图像的清晰度与辨析度 /span /strong span style=" background-color: rgba(254, 255, 255, 0) box-sizing: border-box " /span /p /section /section /section /section section style=" text-align: left margin: -21px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: 61px height: 25px vertical-align: top overflow: hidden line-height: 0 letter-spacing: 0px box-sizing: border-box " section style=" text-align: center margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" max-width: 100% vertical-align: middle display: inline-block line-height: 0 width: 100% box-sizing: border-box " img class=" raw-image" style=" vertical-align: middle max-width: 100% width: 100% box-sizing: border-box " data-ratio=" 0.3472222" data-w=" 1080" _width=" 100%" src=" http://statics.xiumi.us/stc/images/templates-assets/tpl-paper/image/14875fe29250c262c93674c03a33bba9-sz_5875.png" / /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " 扫描电镜的成像方式类似电视,用一束高能电子在样品表面扫描,如同用电子束将样品分割成一个个小单元。各单元的面积影响着扫描电镜图像的像素单元面积大小,而图像像素单元的面积被认为是图像分辨力的决定因素之一。理论上来说:像素单元的面积越小,图像的分辨能力越强。图像的分辨能力越强,其细节的辨析度也越高。 br/ /p p style=" text-align: justify text-indent: 2em " 要提高扫描电镜图像的分辨能力,就要尽可能的将划分出来的像素单元面积降下来。但是当该单元面积降到一定程度时,必然会受到样品中电子信息溢出范围的影响,由此形成了扫描电镜表面形貌像的清晰度与辨析度之间的矛盾关系。如何认识这一矛盾的关系?30万倍以上图像为什么不清晰?是不是这种矛盾的关系只存在高倍率的图像中? /p p style=" text-align: justify text-indent: 2em " strong 2.1 扫描电镜图像中辨析度与放大倍数的关系 /strong /p p style=" text-align: justify text-indent: 2em " 扫描电镜是人类将视力往微观世界中去延伸的工具。 /p p style=" text-align: justify text-indent: 2em " 一直以来的主流观点认为,人眼的视力极限为明视距离(25cm)下,最小能分辨相距0.1mm的两个小点,实际上人眼能轻松分辨的最小距离往往大于1mm。 /p p style=" text-align: justify text-indent: 2em " 扫描电镜的作用就是将样品上两个小点的最小间距至少放大到人眼所能分辨的最小距离。假如人眼能分辨的最小间距定义为0.1mm,那么仪器要分辨1nm的细节就需要将该细节放大到0.1mm。此时扫描电镜的放大倍率是10万倍,该倍率也被称为1纳米细节的 strong 有效放大倍率 /strong 。现实中人眼能轻松分辨的是1mm左右;对应为30万倍放大3纳米的细节。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8d3a9f8f-ac3c-4a2d-952b-612e357b8435.jpg" title=" 9.PNG" alt=" 9.PNG" / /p p style=" text-align: justify text-indent: 2em " strong 2.2 扫描电镜图像细节清晰度与放大倍数的关系 /strong /p p style=" text-align: justify text-indent: 2em " 图像清晰度与细部纹理边缘的衬度有关。细部纹理边缘的衬度越大,细节越容易被清晰分辨,图像也就越清晰。扫描电镜图像的细节衬度主要取决于两个因素的比较: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 样品上所需区分的细节大小。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 形成图像的电子信息集中溢出的单元面积。 /p p style=" text-align: justify text-indent: 2em " 这两个面积之间的比值将会对扫描电镜图像的清晰度产生极大的影响。当样品上所需区分的细节面积远大于电子信息的溢出范围时,此时该溢出区的信息可以看成一个均匀的斑点,溢出区的电子信息不均匀分布就不会对细部纹理产生影响,细部纹理边缘的衬度也较大,图像将较为清晰。但是当这两个面积之间比值接近1:1时,甚至细节面积小于信息主体溢出区面积时,电子信息溢出时的不均匀分布就会对细部纹理的衬度产生影响,从而影响图像的整体清晰度。 /p p style=" text-align: justify text-indent: 2em " 扫描电镜的细节分辨与放大倍数有很大的关联,放大倍数越大所能分辨的细节面积也就越小,也就越接近信息的扩散面积,对图像清晰度产生的影响也就越大。那么图像清晰度受到影响的放大倍数,即倍率阈值,最大能达到多少? /p p style=" text-align: justify text-indent: 2em " 下面将从扫描电镜放大倍数与样品细节分辨以及电子束斑大小与信息溢出区面积的关系,这两个方面来切入探讨。 & nbsp /p p style=" text-align: justify text-indent: 2em " strong 2.2.1 扫描电镜放大倍数与样品的细节分辨 /strong /p p style=" text-align: justify text-indent: 2em " 日立扫描电镜图像的采集按照电子束在样品表面的扫描点阵,通常区分为:640× 480,1280× 960,2560× 1920,5120× 3840这几种模式,其中1280× 960用的最多。该模式表示电子束将样品的扫描区域划分为长1280份、宽960份。 /p p style=" text-align: justify text-indent: 2em " 按照传统理念:同等面积,分割份数越多;同等分割份数,分割的总面积越小则分割出来的单元面积越小。单元面积越小获取的细节信息也越多,图像分辨率也越高。 /p p style=" text-align: justify text-indent: 2em " 早期的扫描电镜图像尺寸,宽各厂家不一定相同,但是“长”都固定为5吋照片的尺寸,为127mm。因此这个值被称为“照片放大”尺寸,放大倍数也被称为:照片放大倍数。 /p p style=" text-align: justify text-indent: 2em " “照片放大”是目前唯一被各电镜厂家在计算放大倍数时所共同认可并采用的图像尺寸。故以下探讨都以“照片放大”的“长”,也就是127mm为标准来展开。 /p p style=" text-align: justify text-indent: 2em " strong A.& nbsp 扫面电镜的放大倍数(M) /strong /p p style=" text-align: justify text-indent: 2em " 扫描电镜的放大倍数(M)被定义为: /p p style=" text-align: justify text-indent: 2em " 图像尺寸(L1)除以电子束在样品上的扫描范围(L2) /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/aa93b653-ea57-4fd9-907c-f692b414ccb8.jpg" title=" 10.PNG" alt=" 10.PNG" / /p p style=" text-align: justify text-indent: 2em " strong B.& nbsp 电子束在样品表面的扫描范围 /strong /p p style=" text-align: justify text-indent: 2em " 依据公式可得出电子束在样品上的扫描范围L2 = L1/M。如果是“照片放大”,L1为定值127mm,那么L2=127mm/M。当M为10万倍时,L2为1270nm。也就是说放大倍数为10万倍时,电子束在样品上的扫描范围的长为1270纳米。 /p p style=" text-align: justify text-indent: 2em " strong C.& nbsp 电子束切割样品的单元面积 /strong /p p style=" text-align: justify text-indent: 2em " 如果图像采集以1280× 960的扫描模式进行,那么电子束在样品上切割的单元面积边长L sub 2 /sub & #39 & nbsp 就是1270 ÷ & nbsp 1280 ?1nm。 /p p style=" text-align: justify text-indent: 2em " 一切都十分理想的话,10万倍在理论上应该能区分1纳米的细节,这也是该倍率被认为是有效放大倍数的缘由。 /p p style=" text-align: justify text-indent: 2em " 但扫描电镜分辨率并不是由电子束在样品上切割的单元面积,这个单一因素来决定。人眼的分辨力、样品电子信息溢出区的面积,将叠加在这个因素之上,共同对图像分辨率产生影响。最终结果,取决于这三方面单元面积之间的最短板,也就是取决于单元面积最大的那个因素。 /p p style=" text-align: justify text-indent: 2em " 在现实中,人眼在图像上能轻松分辨的是1mm距离,也就是在10万倍分辨10nm或30万倍分辨3nm细节。那么电子信息溢出区的面积,最小是多大呢? /p p style=" text-align: justify text-indent: 2em " strong 2.2.2& nbsp 电子束斑大小与信息溢出区面积 /strong /p p style=" text-align: justify text-indent: 2em " 电子束轰击样品,将激发出样品的各种信息。二次电子和背散射电子是形成样品表面形貌像各种衬度的两个主要信息源。其在样品表面的溢出区面积影响着样品表面形貌像的细节分辨力,溢出区面积越小,分辨力也就越强。 /p p style=" text-align: justify text-indent: 2em " 那么这个溢出区有何特性?与电子束斑的大小有何关联?最小的溢出区有多大呢?下面将一一做详细的讨论。 /p p style=" text-align: justify text-indent: 2em " strong A.& nbsp 信息溢出区的特性 /strong /p p style=" text-align: justify text-indent: 2em " 在经验谈(1)、(5)中有详细的介绍,在高能电子束轰击样品时,样品电子信息的溢出区将拥有以下两个特点: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 随着加速电压增加,电子束在极表层直接产生的二次电子(SE1)会减少,由内部散射电子引发的表层二次电子(SE2)会增多,并逐渐成为电子信息的主体。此时信息溢出区将扩大,样品表面细节随之被大量掩盖,图像辨析度也大大下降。这是低加速电压有更好的细节分辨的缘由。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 溢出样品表面的电子信息分布并不均衡。二次电子多集中在中心,形成内强外弱的形态。背散射电子的溢出特性则相反。信息源能量越大,溢出区面积越大、均匀性越差。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/da080f83-61de-4c0b-b942-242d51711297.jpg" title=" 11.PNG" alt=" 11.PNG" / /p p style=" text-align: justify text-indent: 2em " strong B.& nbsp 电子束斑的大小与信息溢出区面积的计算 /strong /p p style=" text-align: justify text-indent: 2em " 以下是SEM三张经典的电子束束流与直径关系图 。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/e6a4c73b-b860-4a7c-8fca-6fb19f6104b7.jpg" title=" 12.PNG" alt=" 12.PNG" / /p p style=" text-align: justify text-indent: 2em " 从图中可见,同等条件下,加速电压越小、束流越大,束斑直径越大。直径最小的是冷场电子枪,加速电压30KV、束流1pA,直径1.3nm左右;1kv、1pA,是2.6nm左右。 /p p style=" text-align: justify text-indent: 2em " strong 实测时,电子束流不可能低至1pA,大于3KV的加速电压,对极表层信息抑制过大,不利于呈现5纳米以下细节信息。 span style=" text-indent: 2em " 故该尺度的表面信息常用 /span span style=" text-indent: 2em " 1KV /span span style=" text-indent: 2em " 甚至更低的加速电压来观察。此时束斑直径为 /span span style=" text-indent: 2em " 2.6nm /span span style=" text-indent: 2em " 左右,仅考虑能量最弱的二次电子在样品中的自由扩散,溢出区直径最小也不会小于 /span span style=" text-indent: 2em " 2.6nm /span span style=" text-indent: 2em " 。 /span /strong /p p style=" text-align: justify text-indent: 2em " 下面以1KV加速电压为参考来推断仪器的分辨率。 /p p style=" text-align: justify text-indent: 2em " strong 2.2.3 扫描电镜的信息扩散范围与细节的分辨率 /strong /p p style=" text-align: justify text-indent: 2em " 依据瑞利判据,理想状态下,假如两个点的半径相同,分辨率可认为等于信息扩散范围的半径。以1KV时束斑直径来计算,扫描电镜的细节分辨应该不优于1.3纳米。 /p p style=" text-align: justify text-indent: 2em " 本人的SEM实测经历:从没有测试到被验证确实存在的1纳米细节。所能检测到,被氮气吸附脱附法验证存在的最小细节是:MOF材料中的ZIF-8,孔径为1.3 - 1.5纳米左右。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/90bbef0d-b5e8-48cf-afa5-378eb20cb052.jpg" title=" 13.PNG" alt=" 13.PNG" / /p p style=" text-align: justify text-indent: 2em " strong 2.2.3 图像清晰度与溢出区半径的关系 /strong /p p style=" text-align: justify text-indent: 2em " 对于扫描电镜来说要想清晰分辨半径为R1和R2的两点,这两点的中心至少应当间隔R1+R2的距离。否则两点之间将部分重合而使得清晰度下降,图像趋向模糊。如果两个斑点大小一致,这个距离就是直径。斑点的均匀性越好,边界衬度就越大,图像的清晰度也越高。 /p p style=" text-align: justify text-indent: 2em " strong 2.2.4 扫描电镜放大倍数与图像清晰度 /strong /p p style=" text-align: justify text-indent: 2em " 前面介绍,10万倍,采用1280× 960点阵,电子束在样品上分割的单元是边长为1纳米的区域,这完全满足细节分辨的需求,因此讨论图像细节清晰度时不需考虑它的影响。只需对比人眼所轻松分辨的最小距离和信息的扩散范围。 /p p style=" text-align: justify text-indent: 2em " strong 加速电压过高(≥3KV)激发深度过大,极表层信息损失严重,不利于5纳米以下细节信息的呈现。1KV左右加速电压对这些细节的呈现影响小,是探讨分辨率和清晰度的基石。此时信息溢出区直径:≥2.6nm,契合30万倍区分3nm细节。因此保持图像清晰度的最大倍率阈值常为:30万倍。超过30万倍图像清晰度都不可避免的会受到一定程度的影响。 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ee81ecb9-cdd4-4629-ac36-ff5471cfbac3.jpg" title=" 14.PNG" alt=" 14.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/d8b95d77-719d-4d7b-afd0-4ab6bfda6b2c.jpg" title=" 15.PNG" alt=" 15.PNG" / /p p style=" text-align: justify text-indent: 2em " strong 2.3 扫描电镜图像辨析度与清晰度的辩证关系 /strong /p p style=" text-align: justify text-indent: 2em " 前面探讨了扫描电镜图像的清晰度和辨析度与放大倍数之间的联系,以及为什么放大倍数到30万倍就必然对图像清晰度产生影响。下面将深入探讨它们之间的辩证关系。 /p p style=" text-align: justify text-indent: 2em " 所谓辩证关系是指:对立统一、否定之否定、量变到质变。 /p p style=" text-align: justify text-indent: 2em " 图像清晰度和辨析度之间即有相互统一的一面,清晰度好辨析度也优异;但也存在相互对立的一面,辨析度越好清晰度却越差,转换点与放大倍数这个量的改变有关。引发清晰度和辨析度相互对立的放大倍率,可称为:倍率阈值,该值与样品电子信息的溢出范围有关。溢出范围越大,这个倍率阈值就越低,也就是说获取清晰图像的放大倍率越低。 /p p style=" text-align: justify text-indent: 2em " 信息溢出范围受以下因素影响:样品特性、电子枪本征亮度、加速电压及束斑大小、信号源能量。 /p p style=" text-align: justify text-indent: 2em " 样品结构越松散、电子枪本征亮度越低、束斑越粗、加速电压过高或过低、信号源能量大则信息扩散范围大。引起清晰度变差的放大倍率阈值也低。 /p p style=" text-align: justify text-indent: 2em " A)样品结构越松散,同等条件下SE1就越少,SE2会增多,在样品中形成的电子信息扩散对图像清晰度和表面细节影响也加大,不容易形成清晰的高分辨图像。 /p p style=" text-align: justify text-indent: 2em " B)电子束束斑面积增大,样品电子信息溢出的单元面积也随之增加且均匀性随面积的增加将变差,造成的结果是图像清晰度与辨析度俱佳的倍率阈值降低。 /p p style=" text-align: justify text-indent: 2em " 电子枪本征亮度的不足、束流及工作距离的增加、加速电压的减少都会使得电子束束斑面积得到增加。 /p p style=" text-align: justify text-indent: 2em " B1)电子枪本征亮度是表述电子枪性能的最重要指标。该值越小,同等条件下束流密度也就越小、会聚角越大。结果是信息的溢出范围随之增大,而信息量却随之减弱,图像清晰度及辨析度相一致的放大倍率阈值也低。 /p p style=" text-align: justify text-indent: 2em " & nbsp 由于场发射电子枪和热发射电子枪亮度值相差极大,达三个数量级,因此成像质量如同本文开头所展示的,只要超过五万倍就将出现质的巨大区别。 /p p style=" text-align: justify text-indent: 2em " B2)束流及工作距离的加大都将增加电子束的离散性,同等条件下对图像的清晰度必然会产生影响。而对样品细节辨析度的影响因素不仅包含清晰度,探头对信息的接收角度对较大细节分辨的影响往往更为关键,起的作用也更大。这就引发了清晰度和辨析度偏离点的倍率阈值降低。 /p p style=" text-align: justify text-indent: 2em " B3)降低加速电压,会使得发射亮度减弱,电子束斑的面积及离散度增加,这将降低图像清晰度的倍率阈值。过高的加速电压也会使得间接二次电子(SE2)增多,当其成为形貌像的主要信息时,也会对图像的清晰度产生影响。加速电压越低对样品信息的激发越集中在表面,有利于表面信息的再现。以上特性都会对清晰度与辨析度的偏离程度产生影响。 /p p style=" text-align: justify text-indent: 2em " C)二次电子能量要远低于背散射电子,以它为主形成的表面形貌像在清晰度上拥有优势。但形貌细节是由探头接收样品信息的角度所形成,以背散射电子为主形成的形貌像往往拥有更好的信息接收角度,更擅长表现较大的样品细节。 /p p style=" text-align: justify text-indent: 2em " 需要强调的是,任何因素的改变对结果的影响都有一个量变的积累过程,少量的变动对结果影响不大。多种因素的叠加或者单个因素的大范围变化才会带来的明显质变。 /p p style=" text-align: justify text-indent: 2em " D)实例的展示及探讨 /p p style=" text-align: justify text-indent: 2em " D1)样品结构松散,保证图像清晰度的倍率阈值小。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/4695ef59-b688-4972-8a25-ca54b36dce8d.jpg" title=" 16.PNG" alt=" 16.PNG" / /p p style=" text-align: justify text-indent: 2em " D2)电子枪亮度对图像清晰度的影响 /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/754cdb8b-504f-48f9-b43b-fc04407be30d.jpg" title=" 17.PNG" alt=" 17.PNG" / /p p style=" text-align: justify text-indent: 2em " D3)改变加速电压对图像清晰度倍率阈值的影响 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/f96265e8-2454-461e-8530-ce59c3220aca.jpg" title=" 18.PNG" alt=" 18.PNG" / /p p style=" text-align: justify text-indent: 2em " 增加加速电压,电子束发射亮度随之增大,这有利于扫描电镜图像的高分辨和高清晰。从信息的激发上来看,SE2的增加不利于表面细节的高分辨,当该信息增加为图像的主导因素时,对图像的清晰度也会产生不利的影响。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/179b2277-a816-4954-9bff-0693def43976.jpg" title=" 19.PNG" alt=" 19.PNG" / /p p style=" text-align: justify text-indent: 2em " 低加速电压(1KV及以下),如500V。图像清晰度的倍率阈值随工作距离的加大,降低极为迅猛,辨析度也同步下降。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/3737d280-f42b-4115-9697-ec5c92a1b135.jpg" title=" 20.PNG" alt=" 20.PNG" / /p p style=" text-align: justify text-indent: 2em " 以上三组图片为同一个样品在加速电压为500V时采用5mm、8mm以及15mm工作距离拍的三个不同倍率的图片。 /p p style=" text-align: justify text-indent: 2em " 图中可以看到:WD=5mm时在十万倍还能保证足够的清晰度和细节辨析度;WD=8mm时,只能在5万倍保持较好的清晰度;当WD达到15mm时,2万倍都无法保持图像的清晰度。 /p p style=" text-align: justify text-indent: 2em " strong 1KV以下加速电压有利于呈现样品的极表层信息,对结构松散、细节细小的样品影响较小。但要降低该加速电压下的电子束离散现象,必须采用极小的工作距离(WD≦3 mm)。 /strong /p p style=" text-align: justify text-indent: 2em " strong 小于5纳米的样品细节,体积过小,属于样品的极表层信息,大于3KV的加速电压往往对表面信息的激发过深,很容易掩盖掉这些信息。故对于这类信息的呈现常采用小工作距离、低加速电压(1KV及以下)的测试条件,如介孔材料。讨论高加速电压下的分辨率指标,个人经验是无稽之谈。 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/fc72eb28-6703-4797-950e-168f2c117c03.jpg" title=" 21.PNG" alt=" 21.PNG" / /p p style=" text-align: justify text-indent: 2em " D4)信息能量对保证图像清晰度倍率阈值的影响 /p p style=" text-align: justify text-indent: 2em " & nbsp 背散射电子能量较大,在样品中扩散范围大。溢出范围及均匀性都较差,保持图像清晰度的倍率阈值也较低。对极小的样品细节(小于10nm)辨析度影响也较大。但低倍观察较大细节(200纳米),清晰度不受影响,辨析度优势明显。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/433116f1-934f-4c3d-bab6-a636b841ec1b.jpg" title=" 22.PNG" alt=" 22.PNG" / /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/9e089ceb-63d5-4f04-b04e-8264bb9b9324.jpg" title=" 23.PNG" alt=" 23.PNG" / /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center margin: 10px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top box-sizing: border-box " section style=" text-align: right transform: translate3d(10px, 0px, 0px) -webkit-transform: translate3d(10px, 0px, 0px) -moz-transform: translate3d(10px, 0px, 0px) -o-transform: translate3d(10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top background-color: rgba(255, 255, 255, 0) padding: 10px 10px 2px 30px border-width: 0px 0px 2px border-radius: 0px 0px 2px border-style: none none solid border-color: rgb(80, 65, 158) overflow: hidden box-sizing: border-box " section style=" margin: 0px 0% transform: translate3d(1px, 0px, 0px) -webkit-transform: translate3d(1px, 0px, 0px) -moz-transform: translate3d(1px, 0px, 0px) -o-transform: translate3d(1px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" text-align: justify font-size: 17px color: rgb(80, 65, 158) letter-spacing: 2px line-height: 1 box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" background-color: rgba(254, 255, 255, 0) box-sizing: border-box " 三、结束语 /span /strong span style=" background-color: rgba(254, 255, 255, 0) box-sizing: border-box " /span /p /section /section /section /section section style=" text-align: left margin: -21px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: 61px height: 25px vertical-align: top overflow: hidden line-height: 0 letter-spacing: 0px box-sizing: border-box " section style=" text-align: center margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" max-width: 100% vertical-align: middle display: inline-block line-height: 0 width: 100% box-sizing: border-box " img class=" raw-image" style=" vertical-align: middle max-width: 100% width: 100% box-sizing: border-box " data-ratio=" 0.3472222" data-w=" 1080" _width=" 100%" src=" http://statics.xiumi.us/stc/images/templates-assets/tpl-paper/image/14875fe29250c262c93674c03a33bba9-sz_5875.png" / /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " 图像清晰度是指图像细部纹理的清晰程度。细部纹理边界的衬度大小将影响着图像的清晰程度。 /p p style=" text-align: justify text-indent: 2em " 图像辨析度指的是图像细部纹理的分辨程度。细部纹理被分辨的越充分,其辨析度也就越高。依据瑞利判据:对图像细部纹理的辨析,只需要有足够的清晰度即可。 /p p style=" text-align: justify text-indent: 2em " 扫描电镜图像清晰度取决于信息溢出单元的均匀性及面积大小与图像所呈现的细节面积之间的比值。细节面积越大于信息溢出单元,图像的清晰度越好。辨析度与仪器的放大倍率有关,倍率越高,电子束划分的单元面积越小,图像越能呈现更小的细节,也越接近信息溢出单元的面积大小。当两者面积相当,图像清晰度必然会受到信息溢出区均匀度的影响而变差。进一步的是,辨析度也会受到信息溢出单元面积的限制,分辨率不会优于信息溢出单元的半径。 /p p style=" text-align: justify text-indent: 2em " 扫描电镜图像的清晰度和辨析度之间存在着既对立又统一的辨证关系。保持图像清晰度和辨析度的统一,存在一个倍率阈值。一旦越过这个倍率阈值清晰度和辨析度就相互背离,即图像辨析度高而清晰度变差。该倍率阈值与样品的特性、电子枪的亮度、加速电压、束流大小、工作距离、信息源的能量等因素有关。 /p p style=" text-align: justify text-indent: 2em " 紧密的样品结构、较大的电子枪本征亮度、较低的信息源能量、较小的工作距离和电子束束流以及合适的加速电压都有利于提升保证图像清晰度和辨析度相统一的倍率阈值。 /p p style=" text-align: justify text-indent: 2em " 样品的结构和电子枪本征亮度是扫描电镜测试过程中的固有条件无法更改,但它们却是决定测试结果能获取多大倍率阈值的根基。冷场电子枪本征亮度最大,因此它保证高倍率图像清晰度和辨析度的能力最强。 /p p style=" text-align: justify text-indent: 2em " 信息源、工作距离、加速电压以及束流的选择是扫描电镜测试过程中的变量,它们的正确选择对你获取足够充分且清晰的形貌像极为关键。这些条件的选择对最终结果的影响都具有两面性, strong 辨证的思维模式对正确的条件选择极为关键 /strong 。 /p p style=" text-align: justify text-indent: 2em " 采用能量较小的二次电子,有利于缩减信息的扩散范围。较小的工作距离会减少电子束的离散度、促进镜筒内探头获取更充分的二次电子、压缩能量较高的背散射电子对图像细节和清晰度的影响。结果:保证图像清晰度的倍率阈值较高,有利于展现较小的样品细节(& lt 10nm)信息。但缺点在于探头接收样品信息的角度不佳,对充分展现较大的样品细节信息(& gt 20nm)不利,使得该类样品信息的图像清晰度足够,表面细节却缺失严重,清晰度和辨析度形成较大的偏离。 !--10nm)信息。但缺点在于探头接收样品信息的角度不佳,对充分展现较大的样品细节信息(-- !--10nm)信息。但缺点在于探头接收样品信息的角度不佳,对充分展现较大的样品细节信息(-- !--10nm)信息。但缺点在于探头接收样品信息的角度不佳,对充分展现较大的样品细节信息(-- !--10nm)信息。但缺点在于探头接收样品信息的角度不佳,对充分展现较大的样品细节信息(-- /p p style=" text-align: justify text-indent: 2em " 束流较低,束斑的尺寸也相应的较小。信号溢出区面积也会较小且均匀,这有利于提升图像清晰度的倍率阈值,但却会引起图像信号量的缺失,不利图像的信噪比和细节辨析。 /p p style=" text-align: justify text-indent: 2em " 改变加速电压对图像的清晰度和辨析度同样也会带来正反两个方面影响。提升加速电压会增加电子束的发射亮度,使得电子束的密度增加、会聚角减小,有利于缩小电子束直径同时增加电子束的强度和收敛性,但不利之处在于电子束激发样品内部信息(SE2)增多而直接激发的极表层信息减弱,对极表层信息的呈现不利。依据实际测试经验,大于3KV的加速电压不利于小于5纳米表面形貌细节的呈现,如介孔类样品。这类样品信息需要采用1KV甚至更低的加速电压在极小的工作距离(3mm以下),选用极为充足的二次电子来予以呈现。该加速电压下采用大工作距离,虽然形貌信息更充分但是电子束的离散度及探头接收信息的量都会严重不足,使得保持图像清晰度的倍率阈值也下降的较为明显,超过一定程度也会对细节信息的分辨产生影响。 /p p style=" text-align: justify text-indent: 2em " 以上结果的演化都遵循着量变到质变的原理。最终结果取决于各个变量的 strong 负面量 /strong 的积累是否会引发质变的产生。 /p p style=" text-align: justify text-indent: 2em " 综合以上分析我们可以推断:扫描电镜表面形貌像的极限分辨率应该出现在1KV加速电压,而此时电子束斑引起的信息扩散范围应该在2.6纳米左右,依据瑞利判据仪器的分辨率应该在半径范围,即1.3纳米左右。即便样品密度极高,引发的信息扩散极少,也很难出现低于1纳米的细节分辨。 /p p style=" text-align: justify text-indent: 2em " 人眼在图像上能轻松分辨1mm的细节,对应着图像放大30万倍后轻松分辨3纳米的细节,与1KV加速电压下的信息溢出范围(3纳米左右)相契合,因此在进行扫描电镜测试时往往发现放大30万倍以上的图像,清晰度很难得到保证。 /p p style=" text-align: justify text-indent: 2em " 30万倍可被认为是保持图像清晰度的最高倍率阈值。超过30万倍,图像清晰度都会有不同程度的下降,冷场扫描电镜由于电子枪亮度最大,因此下降幅度最小。 /p p style=" text-align: justify text-indent: 2em " 随着以上对图像清晰度的不利因素叠加,保持图像清晰度的倍率阈值会有不同程度的下降。对于冷场扫描电镜(regulus82系列)来说:500V加速电压、15毫米工作距离这个极差的测试条件下,保证扫描电镜图像清晰度的倍率阈值还是能保持在1万倍左右。 /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日& nbsp span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等 2009年1月& nbsp span style=" text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》 恩格斯 于光远等译 1984年10月& nbsp span style=" text-indent: 2em " 人民出版社 /span span style=" text-indent: 2em " & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 《显微传》 章效峰 2015年10月 清华大学出版社 /p p style=" text-align: justify text-indent: 2em " strong 作者简介: /strong /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 68px height: 103px float: left " src=" https://img1.17img.cn/17img/images/202010/uepic/97fabfc9-e32f-4731-9623-40143ec93450.jpg" width=" 68" height=" 103" / 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zt/LZQ" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 【系列专题:安徽大学林中清33载扫描电镜经验谈】 /span /strong /a /p p style=" text-align: justify text-indent: 2em " 林中清系列约稿互动贴链接(点击留言,与林老师留言互动): /p p style=" text-align: justify text-indent: 2em " a href=" https://bbs.instrument.com.cn/topic/7656289_1" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " https://bbs.instrument.com.cn/topic/7656289_1 /span /strong /a /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " strong 【专家约稿招募】 /strong /p p style=" text-align: justify text-indent: 2em " 为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。 /p p style=" text-align: justify text-indent: 2em " 若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。 /p p style=" text-align: justify text-indent: 2em " 本期分享的是林中清老师为大家整理的33载扫描电镜经验谈之清晰度与辨析度 span style=" text-indent: 2em " ,以飨读者。 span style=" text-indent: 2em color: rgb(127, 127, 127) " (本文经授权发布,分享内容为作者个人观点,仅供读者学习参考,不代表本网观点。) /span /span /p p style=" text-align: center " br/ /p
  • 廿五载岛津杯 十三届药分情 全国药物分析优秀论文征文中
    自1992年起,《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会迄今已连续成功举办了十二届。会议紧扣学科热点和焦点问题,突出学术交流功能,吸引了来自包括澳门在内全国各地的业界学者积极参加。对促进药学学科的发展发挥了重要作用,业已形成精品系列会议和药物分析学科的重要学术交流平台。 前四届会议由《中国药学杂志》编辑部主办。为了进一步扩展学术交流的能力,自第五届起,会议转由中国药学会药物分析专业委员会主办、《中国药学杂志》编辑部(社)承办。作为大会冠名的协办方,岛津公司一路陪伴,共同走过二十五载春秋。在这浓情岁月里,承载的是岛津对药物分析事业的鼎力支持之情。历届岛津杯都吸引了数百位药物分析领域的专家学者参加。大家济济一堂,新老朋友相聚,交流最新检测技术、讨论药分学术进展,成为药学届的一大盛会。第十二届岛津杯大会合影岛津杯的成功举办,离不开业界专家学者的大力支持。我们来听听老中青三代药物分析工作者是怎么说的。(视频链接地址:https://v.qq.com/x/page/x05269mhruy.html)每一张奖状,浓缩一段历史;每一座奖杯,讲述一份情谊。 翻阅历届岛津杯奖状和奖杯的照片,岛津杯药物分析优秀论文颁奖的现场仿佛历历在目,令药分人为之自豪!第十三届《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会,将于金秋九月在美丽的天府之国蓉城举办。立即投稿,加入这一药物分析届的盛会!《中国药学杂志》岛津杯第十三届全国药物分析优秀论文评选交流会征文通知(第一轮) 各有关单位及科研人员: 为推动我国药物分析事业的发展,促进药物分析技术的交流, 由中国药学会药物分析专业委员会主办,《中国药学杂志》社承办, 岛津企业管理(中国)有限公司协办的《中国药学杂志》岛津杯第十三届全国药物分析优秀论文评选交流会拟定于 2017 年 9 月14-16 日在四川省成都市举行。本次会议的主题为“创新驱动精准药物分析、保驾护航药品质量安全”。 《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会自 1992 年创办起,至今已成功举办了十二届。会议对促进我国药学学科发展发挥了重要作用,已成为中国药学会精品系列会议和国内药物分析学科最为重要的学术交流活动之一。本次会议将邀请中国药学会、中国药学会药物分析专业委员会部分领导、药物分析专业委员会全体委员及国内知名药物分析专家参会。 会议将设主会场专题报告、优秀论文分会场报告交流和在校学生优秀论文交流论坛。征文通知如下。 1 征文内容 1.1 生物医药研发和质量分析的新理论、新技术、新方法; 1.2 药物一致性评价研究; 1.3 中药质量检验控制的现代化分析新手段和新技术; 1.4 化学药物、抗生素药品等的质量分析研究; 1.5 药用辅料、包装材料与药品质量; 1.6 药物血药浓度监测、生物利用度、溶出度和药代动力学等方面研究; 1.7 基因、蛋白、代谢、细胞组学等分析检测方法研究; 1.8 在校学生在药物分析领域研究中的新思路、新成果。 2 征文要求 2.1 未公开发表及未在全国性会议上交流过,有一定的创新性; 2.2 论文体例、格式请参见《中国药学杂志》2017 年第 1 期稿约; 2.3 论文被录用后,将通知作者;论文录用与否,一律不退稿,请自留底稿; 2.4 征文截止时间:2017 年 8 月 10 日(以邮戳为准)。纸质稿件及信封上请注明“ 岛津杯征文” 字样, 电子稿件请发至daojinbei@126.com (邮件标题请注明岛津杯征文)。如希望在“在校学生优秀论文交流论坛”上交流,也请注明,并附在校就读证明。 3 会议时间及地点 时间:2017 年 9 月 15-16 日,14 日报到。 地点:成都(具体详见第二轮通知)。 4 论文评奖 对到会交流的论文将组织专家进行评奖,评选出优秀论文一等奖 3 名(3000 元/名)、二等奖 6 名(2000 元/名)、三等奖 10 名(1000 元/名)。 在校学生优秀论文交流论坛,一等奖 1 名(2000 元/名)、二等奖 2 名(1000 元/名)、三等奖 5 名(500 元/名)。获得一、二等奖的论文在征得作者同意后将在《中国药学杂志》上发表。 5 联系地址及联系方式 地址:北京市朝阳区建外大街 4 号建外 SOHO 九号楼 1805 室 (邮编:100022)。联系人:田菁; 电话:010-58698009 转 813。 关于中国药学会药物分析专业委员会:中国药学会药物分析专业委员会成立于1981年,长期致力于推动我国药品研发创新、检验检测技术转型升级,为确保广大人民用药安全有效做了大量学术与技术保障支撑工作。在促进我国药物分析学科战略发展、提升学科科研、药物分析新技术、新方法研究、药物分析人才队伍建设以及支撑药物开发、临床评价及临床合理用药监测等方面发挥着重要的作用。关于《中国药学杂志》:《中国药学杂志》是中国科学技术协会主管、中国药学会主办的综合性药学学术期刊,前身为《药学通报》,于1953年1月创刊,是新中国成立后我国第一本药学领域的专业性学术期刊,是一本反映我国药学各学科进展和动态的专业性学术期刊,以药学科研工作者及其他医药卫生行业人员为读者对象,内容涵盖药学研究与实践全领域。现任主编为中国药学会名誉理事长桑国卫院士。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 欧洲食品安全局拟修订溴氰菊酯等三种农药残留限量
    11月9日,欧洲食品安全局通过了由葡萄牙就Sapec Agro SA公司递交的土豆中溴氰菊酯残留限量申请所做的评估报告,建议修订土豆中溴氰菊酯的残留限量。 品种 现行残留量(mg/kg) 建议残留量(mg/kg) 土豆 0.05 0.2   11月10日,欧洲食品安全局通过了由德国就植物保护处递交的草药茶(叶和花)中乙氧呋草黄残留限量调整申请所做的评估报告,建议修订草药茶(叶和花)中乙氧呋草黄的残留限量。 商品代码 品种 现行残留量(mg/kg) 建议残留量(mg/kg) 0631000 草药茶(干)花 0.5 15 0632000 草药茶(干)叶 0.5 15 0256070 百里香属植物,包括墨角兰 1 1.5 0256080 罗勒属植物,包括薄荷 1 1   11月15日,欧洲食品安全局通过了英国和匈牙利鳄梨和李子三种水果的甲氧虫酰肼残留量的评估报告,建议修订该3种水果中的甲氧虫酰肼(Methoxyfenozide)残留限量。 商品代码 品种 现行残留量(mg/kg) 建议残留量(mg/kg) 0140040 李子 0.02 0.1 0163010 鳄梨 0.02 0.6 0163050 石榴 0.02 0.02或0.6
  • 安捷伦科技公司授予在普林斯顿大学从事研究的 Joshua Rabinowitz 博士“安捷伦思想领袖奖”
    安捷伦科技公司授予在普林斯顿大学从事研究的 Joshua Rabinowitz 博士“安捷伦思想领袖奖”团队正在开发用于发现代谢调节机制的液质联用方法和生物信息学工具 2014 年 4 月 17 日,北京 — 安捷伦科技公司(纽约证交所:A) 今日宣布授予普林斯顿大学化学系和 Lewis Sigler 整合基因组学研究所 Joshua Rabinowitz(医学/理学双博士)教授“安捷伦思想领袖奖”,该奖项为其在细胞代谢定量分析中提供支持。 Rabinowitz 博士是世界著名的科学家,他为代谢组学领域的开创性概念和方法学作出了重要贡献。这些贡献包括同位素标记、样品前处理、数据分析和适用于液相色谱/质谱数据的信息可视化技术的开发。研究者可通过这些技术将液质联用提供的代谢物水平静态结果与生命系统中动态代谢活动的知识进行完美结合。Rabinowitz 博士使用这些工具对传染性疾病和癌症发病机制中的代谢重构进行鉴定。此研究带来了进行治疗干预的新靶标。 安捷伦质谱研发部主管 John Fjeldsted 表示:“我们非常高兴能扩大与 Rabinowitz 博士和他的团队的合作,以支持他们在开发定量蛋白组学方法和代谢的多组学研究领域的工作。我们坚信这次合作将对许多基础研究领域产生重大影响。” 此安捷伦奖项将支持 Rabinowitz 博士在球形细胞代谢及其调节方面的研究。他将利用 Agilent 6550 MS-QTOF 的定量功能获得蛋白质稳定性信息,以补充转录组学、蛋白组学、代谢组学和代谢通量数据集。他能够从蛋白质丰度和稳定性推测蛋白质通量,因此可综合了解蛋白质水平的调节方式以及蛋白质水平调节与总体细胞代谢活动如何联系在一起。 Rabinowitz 博士说:“很荣幸能与安捷伦合作,安捷伦在湿法化学、仪器和软件方面具有专业技术,是我实验室的优秀合作伙伴。我们有着共同目标,即实现所有关键生物分子的定量测量,以及创建可集成此类数据以揭示生命系统新原理的计算工具。此类工具拥有彻底变革生物医学研究的潜力。” “安捷伦思想领袖奖”为生命科学和化学分析的权威思想领袖的研究提供科研经费、产品和专业技术方面的支持,无疑将推动基础科学的长足进步。如需了解有关此前获奖者的信息,请访问安捷伦的思想领袖计划网站。 Lewis Sigler 整合基因组学研究所 Lewis Sigler 整合基因组学研究所,位于普林斯顿大学 Carl Icahn 实验室,为革新现代生物学和更多定量科学领域的研究和教学而建立。该研究所是定量生物学中心的中心,该定量生物学中心由美国国立综合医学研究所资助,是美国国立卫生研究院的下属机构。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com/go/news。
  • 15周年庆|不服来战!“优秀论文评选”活动正式启动!
    15周年庆|不服来战!“优秀论文评选”活动正式启动!2018年正值纽迈分析成立15周年,15年的时间,纽迈实现了从0到1,从1到n的突破和发展:从最初的上海纽迈电子科技有限公司,到现如今的苏州纽迈分析仪器股份有限公司(简称:纽迈分析),15年的时间,纽迈分析与低场核磁共振技术共同成长,真正做到了“共振” 2018年纽迈分析特推出一系列感恩回馈活动 点击上图,了解更多回馈活动 都说实验猿的日子苦逼而孤独,更为关键的是纵使试验虐我千百遍,我待试验如初恋。科研的生活不是做实验,就是看文献,每一个熬过的通宵,每一个被否定而又被修改的试验方案,每一个记录实验数据的笔记本,才换来那些久经探索后而来之不易的结论,每一次实验,都值得记录,记录的方式不只是发论文,还有...................... 参加我们的"优秀论文评选” 2017年我们的第一届优秀案例大赛得到大家的积极参与,i Pad 、华为手机 、移动硬盘让大家拿的手软,直呼So easy!于是在千呼万唤中,本届“优秀论文评选”活动正式启动!每个投稿的作者均会获得精美礼品一份,入围和获奖的作品还能参加10月27日纽迈15周年庆晚会现场的墙报展示。备注:活动规则和内容与第一届“优秀案例大赛”无异。一、参与方法参与方式之简单,奖品之丰厚,简直就是送分题。使用纽迈的核磁共振仪器整理并发表的科技文献,按照模板样式发送到2880622895@qq.com或hy_lu@niumag.com投稿,发送时请注明“姓名、单位、电话、仪器型号”。纽迈分析将进行内评和匿名外审,根据评分规则计算得分排名。模板下载地址:核磁共振仪优秀论文模版 二、参与对象 使用纽迈仪器发表论文的所有作者三、活动时间 参赛时间:2018年7月16日-8月19日评审时间:2018年8月22日-9月12日奖项公布:2018年9月17日四、活动奖品 一等奖(1名):Apple iPad 平板电脑 2018年新款 Wifi版 二等奖(2名): 华为荣耀9i 4GB+64GB 全网4G全面屏手机 三等奖(3名): 希捷(Seagate)Backup Plus睿品1TB 入围奖(若干): 纽迈分析专属定制吉祥物迈宝抱枕1个 参与奖(若干): 纽迈分析15周年专属定制笔记本1本五、参赛须知 1.参赛作品必须是使用纽迈仪器整理并发表的文献。2.实验结果和图片必须真实可信,涉及到的案例图片务必使用高清原图(不清晰的图片可能影响分数评定)。3.请使用模板投稿,直接发送论文投稿者视为无效。4.投稿的内容来源的文章如果已经发表在刊物上的,必须是2016年1月1日之后的文章,并附带论文原文一起发送。5.参加本次活动,需同意该论文中的实验案例等在纽迈后续的宣传资料中采纳或引用,不牵涉版权问题。6.评选结果公布之后,入围和获奖作品的作者请在9月30日之前按照模板制作成墙报(用于15周年庆晚会现场的墙报展示),逾期未提交者视为放弃该获奖资格。7.活动最终解释权归苏州纽迈分析仪器股份有限公司所有。发论文,得奖励!赶紧告诉你身边的人!I Pad 华为手机等你拿!纽迈15周年推出系列庆祝活动,详情参见纽迈15周年专题
  • 哈希多举措为您提供疫情下的仪器维修保养服务
    这场席卷全球的新冠病毒疫情改变了我们生活的方方面面。对于水质检测行业来说,在疫情期间更加自动化、无人化的检测方式就显得尤为重要,对于长期在线运转的水质分析仪器定期的预防性保养会使您的仪器更好的保持高效运转。在关键时刻减少停机风险,提高仪器利用率。为了使用户在特殊时期也能高效的使用哈希产品,所有哈希人和广大用户将并肩作战,共渡难关。现阶段如果您的仪器有突发故障,哈希服务为您提供:飞行箱+快修服务。同时,我们更可为您提供以下众多主动预防类维护保养服务,将故障扼杀在萌芽。让您的仪器在特殊时期有更出色的表现!仪器年度体检操作培训实验室仪器翻新对于奋战在一线的水质守护者们,希望能通过我们的工作为您减少工作量、提升运行效率。我们的水质有您守护您的仪器有哈希服务来守护 现在起订购哈希服务合同都将享七五折优惠让我们通过真实的用户案例来了解哈希主动预防性保养的价值所在。用户背景• 客户A是哈希流动注射仪的使用用户,每月上中下旬均需做挥发酚和总氰化物样品测试,每次要求24小时内测量水样50个左右。在没有采用哈希主动预防性保养服务前• 仪器全年应急性维修:2-3次 • 单次维修时间成本:半个月到一个月(其中维修方案的确定,双方合同条款确认,合同签订时间一般在半个月左右)• 单次维修费用成本:比服务合同贵一倍在采用哈希主动预防性保养服务后• 仪器全年应急性维修:一次偶发故障 • 单次维修时间成本:48小时到场维护好• 单次维修费用成本:比单次维修费用节省一半附加价值√ 每季度均可享受哈希原厂服务工程师主动上门维护保养√ 管理费用可控。固定预算助您服务合同期内精准有效的控制费用,不用担心无法重复申请维修经费等问题√ 降低运营成本,减免备件投资,降低物流和行政成本√ 稳定准确的数据,确保仪器运行高质高效目前针对以下仪器:IL500N、IL500P、QC8500S2(挥发酚、阴离子、总磷、总氮,氰化物)DR5000\DR6000\DRB200 (COD、氨氮)、HQD(PH\ORP\溶氧)
  • 第五届中国科协优秀科技论文遴选征集承担单位
    p style=" text-align: justify text-indent: 2em " 2020年3月16日,中国科学技术协会发布关于开展第五届中国科协优秀科技论文遴选计划并征集承担单位的通知。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/91c58758-c45b-4b1c-abb3-fe27aa7fc049.jpg" title=" 1.PNG" alt=" 1.PNG" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 一、遴选名额 /strong /span /p p style=" text-align: justify text-indent: 2em " 分10个学科集群进行(见附件2),每个学科集群遴选10篇优秀论文,共遴选不超过100篇优秀论文。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 二、承担单位主要工作 /strong /span /p p style=" text-align: justify text-indent: 2em " (一)学科集群牵头单位 /p p style=" text-align: justify text-indent: 2em " 每个学科集群由1家牵头单位负责组织集群内论文遴选工作, strong 中国科协将为每个牵头单位提供工作经费10万元 /strong ,并对论文遴选组织工作进行考核验收。具体工作内容如下: /p p style=" text-align: justify text-indent: 2em " 1. 更新论文推荐专家库,广泛邀请学科领域高水平专家通过遴选工作线上平台(http://www.cast-bestworks.cn/)以“背对背”方式按照要求推荐优秀论文。 /p p style=" text-align: justify text-indent: 2em " 2. 制定科学、明晰的论文参评条件、遴选标准和指标体系(参考附件3),邀请本学科领域权威专家, strong 组建不少于15人的论文评审专家委员会,评审选出本学科集群领域的10篇优秀论文 /strong ,经公示5个工作日无异议后,上报中国科协。同时鼓励牵头单位结合中国科协优秀科技论文遴选计划,自行开展本学科领域优秀论文遴选活动。 /p p style=" text-align: justify text-indent: 2em " 3. 各学科集群牵头单位需向中国科协组织的优秀论文终审专家委员会汇报集群10篇优秀论文的产生过程,并对论文进行简要介绍。 /p p style=" text-align: justify text-indent: 2em " 4. 待遴选结果正式公布后,向入选论文作者、编辑发放中国科协颁发的入选证书。 /p p style=" text-align: justify text-indent: 2em " 5. 开展遴选工作相关宣传。 /p p style=" text-align: justify text-indent: 2em " strong (二)技术咨询服务单位 /strong /p p style=" text-align: justify text-indent: 2em " 按照实施方案总体部署,对论文推荐、遴选、终审、发布等环节提供文献计量学数据咨询和线上遴选平台技术支撑服务, strong 中国科协将为技术咨询服务单位提供工作经费25万元 /strong ,并对工作成效进行考核验收。具体工作内容如下: /p p style=" text-align: justify text-indent: 2em " 1. 协助中国科协推动牵头单位组织完成论文推荐工作,提供推荐论文的定量文献计量学指标,实时监测遴选过程。 /p p style=" text-align: justify text-indent: 2em " 2. 组织“第五届中国科协优秀科技论文遴选计划”终审会议,并承担会议材料准备、会场组织和人员接待等事务性工作。 /p p style=" text-align: justify text-indent: 2em " 3. 印制入选论文获奖证书,并对入选论文进行宣传推介。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 三、进度安排 /strong /span /p p style=" text-align: justify text-indent: 2em " 2020年4月15日前,有意向承担遴选工作的单位向中国科协提交申报书。 /p p style=" text-align: justify text-indent: 2em " 2020年4月30日前,中国科协选定牵头单位,签订委托协议,拨付工作经费。 /p p style=" text-align: justify text-indent: 2em " 2020年5月25日前,牵头单位向中国科协备案论文推荐专家信息登记表、论文评审专家信息登记表、学科集群内部遴选方案、评审指标体系及其他评审相关文件。 /p p style=" text-align: justify text-indent: 2em " 2020年7月底前,牵头单位将经公示后的优秀论文遴选结果报送中国科协。 /p p style=" text-align: justify text-indent: 2em " 2020年8月底前,中国科协组织终审专家委员会对牵头单位报送的推荐结果进行认定,并向社会公示。 /p p style=" text-align: justify text-indent: 2em " 2020年9月,中国科协正式公布遴选结果,并通过牵头单位向入选论文作者、编辑发放证书。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 四、申报要求 /strong /span /p p style=" text-align: justify text-indent: 2em " 申报单位须具备以下条件: /p p style=" text-align: justify text-indent: 2em " 1. 具有较高的学术/期刊研究能力,具有能够承担论文遴选所必须的文献计量学和专家资源。 /p p style=" text-align: justify text-indent: 2em " 2. 有专门的工作团队,建立能负责、可问责的工作体系,有条件和能力组织本学科集群论文遴选活动的宣传工作。 /p p style=" text-align: justify text-indent: 2em " 同等条件下,承担过2019年度论文遴选工作且完成情况较好的单位优先入选。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 五、申报材料报送 /strong /span /p p style=" text-align: justify text-indent: 2em " (一)有意承担论文遴选工作的单位,请按要求填写《第五届中国科协优秀科技论文遴选计划项目申报书》(附件4),填写要求要素齐全、主题鲜明、目标合理、结构清晰、形式和内容规范,并在封面页顶右侧注明要申报的项目编号。 /p p style=" text-align: justify text-indent: 2em " (二)申报材料包括申报书一式5份,请用文件袋密封,并注明申报单位及申请项目名称,按要求报送至中国科协学会学术部期刊出版处。纸质申报材料一经收取,恕不退还。 /p p style=" text-align: justify text-indent: 2em " (三)接受申报时间:通知发布之日起至2020年4月15日,逾期不再受理。以快递寄送的,以快递发出日期为准。 /p p style=" text-align: justify text-indent: 2em " (四)请于申报截止日期前将申报单位情况简介及联系方式发送至电子信箱:qkzz@cast.org.cn(邮件主题请注明:2020优秀论文遴选-申报单位名称),中国科协学会学术部将对申报单位进行资格审查 /p p style=" text-align: justify text-indent: 2em " 联系人:顾洺玮 /p p style=" text-align: justify text-indent: 2em " 联系电话:010-68571884& nbsp 68581259 /p p style=" text-align: justify text-indent: 2em " 附件: /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202003/attachment/4593e920-d7e5-4bc9-a300-f67eef55d337.docx" title=" 附件1:第五届中国科协优秀科技论文遴选计划实施方案.docx" 附件1:第五届中国科协优秀科技论文遴选计划实施方案.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202003/attachment/7e1c2ee5-2295-4661-9dce-3cf9e32fffe8.docx" title=" 附件2:第五届中国科协优秀科技论文遴选计划学科集群划分及名额分配表.docx" 附件2:第五届中国科协优秀科技论文遴选计划学科集群划分及名额分配表.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202003/attachment/447e10c4-c8fd-4455-9724-1546e8ef862d.docx" title=" 附件3:第五届中国科协优秀科技论文遴选计划论文遴选参考标准和指标体系.docx" 附件3:第五届中国科协优秀科技论文遴选计划论文遴选参考标准和指标体系.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202003/attachment/91207f81-83cf-4249-8088-51c3ae13c9b5.docx" title=" 附件4:第五届中国科协优秀科技论文遴选计划项目申报书.docx" 附件4:第五届中国科协优秀科技论文遴选计划项目申报书.docx /a /p p br/ /p
  • ACCSI 2012优秀新品发布及技术论坛邀请函
    2011年度科学仪器优秀新产品发布及技术发展趋势论坛 邀请函   尊敬的 先生/女士:   由中国仪器仪表行业协会、中国仪器仪表学会分析仪器分会、仪器信息网联合主办,中国分析测试协会、我要测网协办的“2012中国科学仪器发展年会(ACCSI 2012)”将于2012年3月22日-23日在北京武青会议中心举行。   作为ACCSI 2012的重要组成部分,“2011年度科学仪器优秀新产品发布及技术发展趋势论坛”将重点介绍2011年度科学仪器新产品整体情况,发布“2011年度科学仪器优秀新产品”及“年度绿色仪器” 并特别邀请多位业内资深专家对分析仪器技术现状与发展趋势进行探讨。   具体日程安排如下: 时间 主要内容 2012年3月23日(周五)13:30-16:00;武青会议中心三层报告厅 13:30-13:50 特邀报告:太赫兹技术的应用前景及其对科学仪器发展的影响 演讲人:上海理工大学 朱亦鸣博士 13:50-14:40 科学仪器技术发展趋势论坛: 拟讨论议题: (1)近年来,科学仪器技术的发展主要体现在哪些方面? (2)科学仪器技术的进步对促进食品安全、环境监测、人类健康等问题有哪些影响? (3)国产科学仪器技术如何才能获得更快的发展与进步? …… 论坛主持人: 魏开华研究员 北京蛋白质组研究中心多肽组实验室负责人 出席嘉宾(按姓氏拼音首字母排列): 陈江韩研究员 中国广州分析测试中心 主任 董亮研究员 国家环境分析测试中心POPs研究室 主任 林金明教授 清华大学分析中心 主任 刘春胜博士 华质泰科生物技术有限公司 总裁兼首席技术官 刘明钟高工 北京吉天仪器有限公司 董事长 袁洪福教授 北京化工大学材料分析与评价中心 主任 14:40-15:00 主题报告:2011年度科学仪器新产品概述 演讲人:仪器信息网资深编辑 刘向东 15:00-16:30 “2011年度科学仪器优秀新产品”及“2011年度绿色仪器”获奖名单发布、颁奖及现场互动 优秀新品、绿色仪器获奖厂商代表现场回答参会人员提问 备注:参会人员就获奖产品提出问题,主办方对提问观众进行现场抽奖、颁发幸运奖 16:30 会议结束   谨此,诚挚邀请您莅临本届年会优秀新产品发布及技术发展趋势论坛,一起见证与推动中国科学仪器技术与市场健康快速发展。   技术论坛联系人:仪器信息网 刘丰秋(13146263841 010-51654077-8027)    传真:010-82051730 电子邮件:fqliu@instrument.com.cn   参会报名   注册费:800元/人   报名方式:网上注册(www.instrument.com.cn/activity/year2012/Application.aspx)   报名流程:报名——审核——缴费、确认——参会   报名注册联系人:010-51654077-8030 魏晖浩 Email:accsi@instrument.com.cn   会议赞助:400-007-4077 13811989330 石水华   ACCSI 2012组委会   2012年3月2日
  • 院士退休第一人:评上院士前就有退休想法
    据中国之声《新闻纵横》报道,今天(9日),两院院士大会即将召开。而最近一段时间以来,跟院士有关的话题中,最热的一个不是遴选,而是退出。   一方面,《中共中央关于全面深化改革若干重大问题的决定》提出,改革院士遴选和管理体制,优化学科布局,提高中青年人才比例,实行院士退休和退出制度。而另一方面,去年,中国工程院院士沈国舫向他任职多年的北京林业大学提出了退休要求,却被拒绝。   确实,&ldquo 院士退休&rdquo 已经不是个陌生的词汇。然而迄今为止,全国两院院士中,获准退休的,仅药理学家、从中国工程院&ldquo 退休&rdquo 的秦伯益一人。在&ldquo 院士退休第一人&rdquo 看来,院士到底能不能退?怎么退?   2005年,70多岁的秦伯益坚持卸下军事医学科学院的职务,保留了院士头衔。随后一人独游全国。当谈到当年为什么要坚持退休时,秦老说,其时对于退休的想法在评上院士之前就有了,是否退休和当不当院士没有关系,只是他没有因为当上了院士而改变自己的初衷罢了。   秦伯益:如果我不是院士,按照原来的职务65岁退休,我62岁1994年工程院成立的时候,第一批批准了当院士,当时就不好马上就退,因为很多老先生都刚当上院士的,但是我思想上一直是准备能及早交班,所以我也比较早的培养了接班人,我觉得他们能够干的很好,我晚年想过自己的生活   秦伯益说,坚持退休只是为了在人生当中,有一段时间,可以自由地去过自己想过的生活,到处走走看看,不枉此生。   去年11月,年过8旬的院士沈国舫想退休,其所在的中国林业大学却死活不放,让老院士很是无奈。他说自己最羡慕的人就是我国第一个也是唯一一个获准退休的院士秦伯益。   秦伯益退休的态度非常坚决,2002年他曾在《光明日报》发表了一篇文章。   秦伯益:在《光明日报》上发表了一篇散文《院士不是花瓶》,那篇文章是在我告别科技界,从此在科技界的工作结束,谢幕,要做自己的事了。   其时,秦伯益当年申请退休之路并不如想象中顺利。2004年,72岁的秦老正式向组织呈报想法,因为此前没有先例,查遍所有文件,既没说院士什么年龄能从单位退休,也没说院士不能退。程序怎么处理?谁来批?第二年才批了下来。   十八届三中全会提出了院士应该有退休和退出机制,对于院士退休是否应该退休,是否要规定退休年龄等问题,各方均有不同声音。   秦伯益:按农工民主党的建议,他们建议院士75岁退休,建议院士是5年,5年以后可以农工民主党延期一届,还要重新再评审,顶多两届。   十八届三中全会通过的《中共中央关于全面深化改革若干重大问题的决定》,提出要对院士制度改革:&ldquo 改革院士遴选和管理体制,优化学科布局,提高中青年人才比例,实行院士退休和退出制度。&rdquo 但院士怎么退?有哪些条件和程序?截至目前,尚未有过具体规定。   除了院士的退休问题,院士的选拔制度也备受关注,对于院士遴选,秦伯益说目前主要有两大问题。   秦伯益:院士遴选中主要是两大问题。一是各个单位的公关问题,一个是投诉中的问题。不投诉本人就是尽量把自己拔高,一投诉就有各种恶意的投诉,所谓恶意的投诉有的是匿名的、有的是假名的、有的是冒名的,材料都是瞎编的。不投诉,自己瞎吹,投诉人家瞎投,带有个人色彩在里头。工程院去调查很费劲,工程院不像中纪委、巡视组到人家核心部门去调查。单位就是保护,因为都是单位推荐出去的人,回来向我们院士们汇报说都是查无实据。   最合适的院士遴选制度是什么样的呢?秦老引用了中国科协主席韩启德院士的话:科学家成绩的评审,要靠学术共同体。秦老认为,本单位同事认可,专业领域认可,就行了,兴师动众到全国关注没必要。另外,评选的人也必须要有自己独立的人格、真正的见识,不能带着私心。
  • 721万!安捷伦中标重庆大学“高分辨气质联用仪”采购项目
    一、项目编号:CQU-SS-HW-2022-141(招标文件编号:CQU-SS-HW-2022-141)二、项目名称:重庆大学“高分辨气质联用仪”采购项目三、中标(成交)信息供应商名称:广东省中科进出口有限公司供应商地址:广东省广州市越秀区先烈中路100号大院9号102房自编A一楼中标(成交)金额:721.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 广东省中科进出口有限公司 气相色谱-高分辨质谱联用仪;气体预浓缩仪;气相色谱气体检测系统(含三台气相色谱仪);三重四极杆气质联用仪;质谱成像离子源 Agilent;MARKES;Agilent;Agilent;维科托 8890-7250;UNITY-CIA Advantage-xr;8890;8890-7000E;AFAI-MSI 1;1;1;1;1 2610000;920000;1530000;1350000;800000
  • 奥林巴斯社长高山修一上任两月即辞职
    自2011年10月以来,日本奥林巴斯“假账门”事件持续发酵。据当地媒体8日报道,就该事件的相关责任调查目前已经有了具体结果,该公司刚刚上任两个多月的新任社长高山修一将因此辞去社长一职。   8日,负责调查有关奥林巴斯公司隐瞒巨额亏损问题的“董事责任调查委员会”汇总出了调查报告,认定包括社长高山修一在内的十几名现任董事应在该问题上负有责任,奥林巴斯应该向这些责任人索赔超过900亿日元(约合人民币72亿元)。据报道,高山最快可能于本月9日召开记者会宣布辞去社长职务。   高山此番辞职,是“假账门”事件拉下马的第二位社长。前任董事长兼社长菊川刚去年10月在“假账门”事件曝光后辞职,高山正是从菊川刚手中接过社长职务的。其上任之初曾强烈否认自己参与过“假账门”事件,并承诺今后将着力于恢复企业信誉。但在此次调查报告公布后,他也不得不选择辞职。舆论指出,奥林巴斯公司原计划在今年3月召开临时董事大会对公司高层进行“大换血”,但高山的提前辞职势必将对奥林巴斯的新体制调整以及经营重组带来影响。
  • 第六批优秀国产医疗设备遴选数据公示 涉及这些仪器及厂商
    p   3月11日,中国医学装备协会发布关于第六批优秀国产医疗设备遴选数据(技术参数、企业情况)公示的函,公示时间2020年3月11日—2019年3月18日。 /p p   第六批遴选品目包括:心肺复苏机、SPECT、医用制氧机、超声光散射乳腺诊断系统、数字胃肠X线机、低温冷冻消融设备、康复设备、口腔CT、主动脉心脏瓣膜、主动脉支架、眼底照相机、质谱仪、荧光定量扩增分析仪、全自动血型分析仪、超声骨刀 /p p   动态调整品目有:心电图机、清洗消毒设备、数字减影血管造影机、医用直线加速器、γ-射线立体定向治疗系统、高强度聚焦超声肿瘤治疗系统、冠脉支架、化学发光免疫分析仪、全自动酶免仪 /p p   从目前上报的情况来看, strong 质谱仪品目共有4家公司 /strong :郑州安图生物工程股份有限公司、北京毅新博创生物科技有限公司、珠海美华医疗科技有限公司、江苏天瑞仪器股份有限公司福建分公司。 /p p    strong 荧光定量扩增分析仪品目共有8家企业: /strong 上海小海龟科技有限公司、圣湘生物科技股份有限公司、西安天隆科技有限公司、苏州雅睿生物技术有限公司、力新仪器、中山大学达安基因股份有限公司、安徽同科生物科技有限公司、卡尤迪生物科技(北京)有限公司。 /p p    strong 化学发光免疫分析仪品目企业达31家: /strong 四川沃文特生物技术有限公司、上海科华生物工程股份有限公司、博奥赛斯(天津)生物科技有限公司、北京康思润业生物技术有限公司、烟台艾德康生物科技有限公司、泰州泽成生物技术有限公司、深圳市新产业生物医学工程股份有限公司、成都斯马特科技有限公司、深圳迈瑞生物医疗电子股份有限公司、威高生物科技有限公司、深圳普门科技股份有限公司、上海奥普生物医药有限公司、武汉明德生物科技股份有限公司、北京热景生物技术股份有限公司、江苏三联生物工程有限公司、深圳雷杜生命科学股份有限公司、深圳华迈兴微医疗科技有限公司、深圳市爱康生物科技有限公司、苏州鼎实医疗科技有限公司、基蛋生物科技有限公司、重庆科斯迈生物科技有限公司、深圳市亚辉龙生物科技股份有限公司、潍坊市康华生物技术有限公司、中国医学装备协会、厦门优迈科医学仪器有限公司、迈克生物股份有限公司、广州万孚生物技术股份有限公司、北京联众泰克科技有限公司、迪瑞医疗科技股份有限公司、郑州安图生物工程股份有限公司、深圳迈瑞生物医疗电子股份有限公司。 /p p    strong 全自动酶免仪品目有6家企业: /strong 烟台艾德康生物科技有限公司、石家庄禾柏生物技术股份有限公司、劲涛测试、深圳市爱康生物科技有限公司、深圳市亚辉龙生物科技股份有限公司、山东博科生物产业有限公司。 /p p   详细的企业及申报产品情况请点击查看: /p p    a href=" http://www.yxzb.org.cn/fileServer/filePath/06fcf9ba-969e-4cc3-b499-be304a215372.zip" target=" _blank" 第六批优秀国产医疗设备遴选数据(技术参数)公示 下载 /a /p p    a href=" http://www.yxzb.org.cn/fileServer/filePath/61c4597e-8e50-4b75-b079-9f51f8af2665.zip" target=" _blank" 第六批优秀国产医疗设备遴选数据(企业情况)公示 下载 /a /p p br/ /p
  • 揭开仪器替代不了的嗅辨员神秘面纱 不能喷香水、不能情绪不稳
    广东省环境监测中心实验室邱祖楠说:“社会上有闻酒师、闻香师这些职业,我们则有‘闻臭师’,专业的名字是嗅辨员。”嗅辨员是由空气中来历不明的臭气催生的一种新职业,有严格的要求,不是随随便便就可以当。抽烟的、喝酒的、有鼻炎的都不行,“嗅辨员不能有嗅觉器官疾病,经嗅觉检测合格的,可连续三年承担嗅辨员的工作。”邱祖楠透露。  “闻臭师”在人们印象中是一种颇为神秘的工作,这些被称为“空气小护士”的嗅辨员究竟是如何工作的呢?日前,记者跟随广东省环境监测中心的嗅辨员们进行了现场采样、实验室嗅辨的全过程体验。  现今的环境监测中各类仪器众多,但对于臭气,检测主要还是靠鼻子。因为臭与不臭,用仪器很难确切判断。业内人士告诉记者,臭气的味道不仅取决于它的种类和性质,也取决于它的浓度。浓度不同,同一物质的气味也会改变。例如将极臭的吲哚稀释成极低的浓度时就会变成茉莉的香味,低浓度的丁醇则会发出苹果酒的芳香。相反,高浓度的香水也会给人不愉快的感觉。因此,在评价臭气时,是以感受到的浓度强弱为准,而不是以“香”和“臭”来划分。  据中心实验室主任肖文透露,现在实验室正式的嗅辨员有十来个人,臭气浓度监测相对其他污染物检测分析来说比较少做,因此很多嗅辨员都兼其他污染物的检测。嗅觉测定法如今已被世界各国普遍认同,我国也早在1994年实施国标法——《空气质量恶臭的测定三点比较式臭袋法》。“三点比较式臭袋法测定是目前我们实验室用来检测臭气的方法,通俗地说,就是将三只无臭袋中的一只充入一定稀释比例的被测样品,剩下的两只充入清洁空气,让嗅辨员识别、记录有臭气袋,若需要则再逐级进行稀释、嗅辨,直到实验终止。”邱祖楠解释说。  据悉,嗅辨员用鼻子鉴定的结果具有法律效应。按照规定,某地一旦被判异味超标,有关部门将按相关的法规进行处理,违法、违规单位有可能受到相应的处罚。  垃圾场蹲点采样 每个点采集3次  那么,看似有趣的嗅辨,实操是怎样的体验呢?日前,记者随同省环境监测中心应急科的8人浩浩荡荡地奔赴深圳,准备进行臭气现场采样。采样瓶、真空泵、真空表、硅橡胶塞̷̷采样人员早早地就在进行准备工作了。“我们采样前要对采样瓶采用空气吹洗,再用真空排气处理系统抽真空。”省监测中心应急科周智解释说。据了解,这些处理好的真空采样瓶要在24小时内使用。  另外,对采样地点(臭气环境)的污染调查也要提前做好。“这次的采样有10个点,围绕着这个垃圾处理厂,从上风口到下风口都有点。”实际上,臭气采样过程是枯燥的,每个点都要采集三次,每次间隔一个小时,采样人员顶着大太阳在路边窝着,每次垃圾车经过还不时飘来异味̷̷  每次收集完,再写好标签贴上,每个点重复这个步骤三次。采集完的样品编号、采样记录都要核实无误放入玻璃仪器采样箱内,在24小时内完成测定,保证结果的有效性。  臭气不断稀释 6名嗅辨员“闻臭”  完成采样后,下一步进行的就是实验室嗅辨。按照规定,臭气样品要稀释后才能进行嗅辨。由实验人员首先在3L无臭袋内按稀释梯度配制几个不同稀释倍数的样品,进行嗅辨尝试,从中选择能嗅出气味又不强烈刺激的样品,以此为初始稀释倍数。  实验员将18只3L无臭袋分为6组,每组的三只袋分别标上A、B、C号,其中一只注入稀释样品,另外两只注入清洁空气,清洁空气是怎么得到的呢?当然不是。据邱祖楠介绍,清洁空气是没有受到臭气污染的自然空气经过活性炭的过滤,由嗅辨员嗅辨确认无异味的气体。接着将准备好的这6组18只气袋分别发给六名嗅辨员进行嗅辨,挑出有味气袋。  嗅辨室要保证远离散发臭味的场所,室内能通风换气并保持温度在17~25℃。“为了保证结果的准确性,嗅辨当天是不能喷香水或者擦有味道的化妆品的,有刺激性气味的食物也不能吃,要是嗅辨员有情绪不稳定的也不能参加测定。”  他表示:“很多时候严格测试结果是达标的,但是投诉人觉得结果不对。可能因为其他原因,比如天气,或者采样人员在采样时刚好处在它浓度较低的时候。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制