当前位置: 仪器信息网 > 行业主题 > >

肌氨酸酶

仪器信息网肌氨酸酶专题为您提供2024年最新肌氨酸酶价格报价、厂家品牌的相关信息, 包括肌氨酸酶参数、型号等,不管是国产,还是进口品牌的肌氨酸酶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合肌氨酸酶相关的耗材配件、试剂标物,还有肌氨酸酶相关的最新资讯、资料,以及肌氨酸酶相关的解决方案。

肌氨酸酶相关的资讯

  • 关于公开征求丝氨酸蛋白酶等3种食品添加剂新品种意见
    根据《食品添加剂新品种管理办法》和《食品添加剂新品种申报与受理规定》,食品工业用酶制剂新品种丝氨酸蛋白酶、扩大使用范围的食品添加剂乳酸钙和三赞胶的申请,其安全性和工艺必要性已通过专家评审委员会技术审查(具体情况见附件),现公开征求意见。请于2023年5月22日前将相关意见反馈至我中心邮箱(zqyj@cfsa.net.cn),逾期将视为无意见。丝氨酸蛋白酶等3 种食品添加剂新品种相关材料.pdf
  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒   杂味的味精   小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。   小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。   小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。   小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。   “炒菜不用放盐了”   小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。   在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。   记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)   商户:这一个月我光在这个地方就十几吨吧。   商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。   商户:这个货就可以呀,一般酒店用都用这种。   商户:基本都是川菜馆。   商户:饭店都吃。   商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。   记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?   商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。   味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。   商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。   果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。   这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。   商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。   包装是一回事实际含量是另一回事   记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。   商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。   商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。   虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。   商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。   商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。   记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。   发苦的味精   其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?   记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。   小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。   这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?   这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。   村民:它家一直就是味精厂。   这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。   添加物不止是盐、淀粉、石膏   记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。   销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。   这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。   销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。   销售员说,别看只比标准低几个点,利润就是这样省出来的。   销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。   这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。   销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。   在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。   销售人员:还有厉害的。   除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。   销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。   据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?   打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。   五、六百元的硫酸镁不可能是食品级的   这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。   记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)   记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)   记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。   销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。   味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?   记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。   结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。   建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • Science重磅 | meteorin-like因子通过内皮KIT受体酪氨酸激酶促进心脏修复
    “世界心脏日今天9月29日是世界心脏日(World Heart Day),是由世界心脏联盟确定,旨在世界范围内宣传有关心脏健康的知识,并让公众认识到生命需要健康的心脏。在全世界范围内,心血管疾病是威胁人类健康的高危病种,其危害无年龄、身份、地域之分。在中国,每年大约有260万人死于心脑血管疾病,死亡人数位列世界第二。《中国心血管健康与疾病报告2021》指出,每5例死亡中就有2例死于心血管病。急性心肌梗死(MI)是一种常见的由突发冠状动脉血栓形成和闭塞引起的心脏急症。急性心肌梗死期间持续的缺血组织损伤导致疤痕形成,进而可能心力衰竭。心肌梗死后形成的新血管可减轻疤痕和心功能恶化。然而心肌梗塞后形成血管生成和功能适应的细胞间的相互作用仍不完全清楚。下面跟随小编来看一下德国汉诺威医学院的研究人员今年发表在《Science》上的“心脏知识”。德国汉诺威医学院Kai C. Wollert研究团队发表题为Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase的研究。通过对急性心肌梗死的小鼠进行生物信息学分泌组分析,发现细胞因子METRNL(Meteorin-like) 在梗死边界区内皮细胞高度表达,促进心肌梗死后的血管生成、组织修复和功能适应。使用化学交联质谱法发现,KIT(受体酪氨酸激酶)是内皮细胞中METRNL细胞表面受体。为了评估METRNL是否与KIT的细胞外结构域结合,通过微量热泳动(MST)技术,检测到KIT-ECD-Fc可结合METRNL和SCF(KIT已知配体),并且亲和力很高(Kd分别是87nM和175nM),而不与血管内皮生长因子A(VEGFA)结合。Pull Down实验获得相同的结果。图注:MST技术和Pull Down检测KIT的胞外结构域与METRNL,SCF和VEGFA结合随后,作者检测时发现METRNL的治疗会增强心肌梗死区域边缘的毛细血管化,限制瘢痕的形成并对心脏功能具有持续有益的影响。研究结果: 作者定义了一种基于METRNL的髓系细胞和内皮细胞之间的交叉信号,METRNL通过KIT依赖的信号通路介导内皮细胞的血管生成作用促进心肌梗死后组织修复,为急性心肌梗死的治疗提供了新的药物靶点。心脏是人体最重要的器官之一,无论工作或者科研再忙碌,一定要注意休息。马上就要国庆节了,让我们一起为劳苦功高的心脏放个假吧!文献参考:Reboll, Marc R., et al. "Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase." Science 376.6599 (2022): 1343-1347.*文内部分图片来源自百度,侵则删。
  • 因结果干扰 贝克曼库尔特召回1489盒试剂盒
    p   据贝克曼库尔特商贸(中国)有限公司报告,在高剂量治疗的患者血清中NAPQI(N-乙酰苯醌亚胺)可能会对肌酐(酶法)、高密度脂蛋白和尿酸这些项目检测造成错误偏低的结果干扰。 /p p   贝克曼库尔特商贸(中国)有限公司对尿酸检测试剂盒(酶促显色法)(注册证号:国械注进20142405730)、高密度脂蛋白胆固醇检测试剂盒(酶法)(注册证号:国械注进20152400582)、肌酐测定试剂盒(肌氨酸氧化酶法)(注册证号:国械注进20142405799)主动召回。召回级别为三级。涉及产品的型号、规格及批次等详细信息见《医疗器械召回事件报告表》。 /p p   附件:医疗器械召回事件报告表 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/eb0a1229-4501-46f7-a682-96e3dc002011.jpg" style=" " title=" gov_1537563970965.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/3314f84a-04c5-4961-9d0b-9355cc4c04d7.jpg" style=" " title=" gov_1537563971741.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/143af79f-940c-4938-b896-5c6438cd5975.jpg" title=" gov_1537563972373.jpg" alt=" gov_1537563972373.jpg" / /p p br/ /p
  • 应用 | 乳化剂对氨基酸洁面膏性能的影响
    研究背景皂基类产品有非常强的清洁力,但对皮肤刺激性较强,市场上逐渐兴起氨基酸型清洁产品。常见的氨基酸表面活性剂有甘氨酸型、肌氨酸型、谷氨酸型以及丙氨酸型,而其中甘氨酸型表面活性剂因其易于冲洗,洗后干爽柔滑的使用感被广泛应用于洁面产品中。在实际产品开发中,往往会利用甘氨酸型表面活性剂在pH 6~7时部分酸化形成结晶的特性来制备洁面膏,但是这类产品在研制过程中容易出现发泡能力弱、制备料体稀薄、长时间放置后料体出水或外观粗糙等问题,目前主要通过调整配方中多元醇的种类及添加量,调节产品pH值或者添加高分子来解决,而乳化剂对结晶型氨基酸洁面膏性能影响的研究报道较少。本文主要通过动态泡沫分析仪等,研究了4种不同乳化剂对结晶型氨基酸洁面膏性能的影响,以期为洁面膏中乳化剂的选择提供实践基础以及理论支持,为开发兼具使用性及稳定性的洁面产品提供新的解决思路。实验仪器1.1样品制备表1.洁面膏基础配方1.2 泡沫性能测试DFA100动态泡沫分析仪 泡沫测试采用KRÜ SS的动态泡沫分析仪DFA100完成,包括泡沫高度分析以及泡沫结构分析。首先,用去离子水将洁面膏配成质量分数为10%的溶液,然后用注射器移取50 mL溶液至组装好的量筒配件中。将固定量筒的底座支架插入仪器中,进行泡沫测试。设置参数:发泡方法:搅拌器;搅拌速度:3000 r/min;搅拌3s停止3s(便于记录泡沫高度),循环15次;测试时间:15 min;照相机高度:55 mm;测试温度:25 ℃。结论与讨论2.1 乳化剂对泡沫性能的影响根据表1配方,考察不同类型乳化剂对结晶型氨基酸洁面膏的泡沫性能影响,其中1#配方为不添加乳化剂的空白组,泡沫高度结果如图1。 图1.不同乳化剂制备的洁面膏泡沫高度由图1可知,加入乳化剂,洁面膏泡沫量有不同程度的减少。空白组稳定后的泡沫高度为127.1 mm,其次是泡沫高度与其接近的2#,3#和5#配方,高度分别为126.6 mm,126.1 mm和126.7 mm;4#配方对泡沫总量减少较为明显,泡沫高度为119.4 mm。泡沫结构可以分析泡沫的细密程度以及泡沫的稳定性。图2为稳泡阶段的平均气泡面积随时间的变化曲线,图3为测试结束时的泡沫结构照片。由结果可知,除Eumulgin® S21外,乳化剂的加入都能提高泡沫的细密程度以及稳定性,其中5#配方的泡沫最绵密,稳定性也最好,在测试时间内粒径变化最小,其次是3#与2#配方。定义每平方毫米内气泡个数衰减一半的时间为泡沫半衰期,则1#~4#配方的半衰期分别为615,626,637和553 s,而5#配方在测试周期内未观察到半衰期。这也说明用Hostacerin® DGSB,Hostaphat® KW340D 和Plantasens® Emulsifier HP 30作为乳化剂能使结晶型氨基酸洁面膏的泡沫更加细密稳定,同时又不影响泡沫量。而Eumulgin® S21使洁面膏的泡沫量减少,同时泡沫也更容易变大而破裂。乳化剂由于具有表面活性,在气泡中将被吸附在空气-水的界面,与表面活性剂共同稳定泡沫。结合泡沫的稳定性因素分析,乳化剂可能会增加气泡间液膜强度,减缓气体间的扩散导致泡沫增大,从而提高泡沫的稳定性。Eumulgin® S21为聚醚类乳化剂,但配方中存在较高含量的多元醇和盐,这使得聚醚类乳化剂的浊点降低,从而改变乳化剂的亲水亲油平衡,在体系中的溶解度有限,在气-液界面形成棱镜铺展,取代表面活性剂,从而起到消泡的作用。其中Plantasens® Emulsifier HP 30是一种液晶乳化剂,易于形成多层结构,这也可能是其泡沫稳定性最好的原因:多层液晶结构能赋予气泡间的液膜更高的粘度,可以防止或减慢排液的过程;而且液晶相的存在能增大气-液界面的曲率半径,从而减弱气泡间的Laplace压力;此外,液晶结构还能更大程度的增加液膜的力学强度和刚性,以抵御引起气泡破裂的热和机械扰动。 图2.不同乳化剂制备的洁面膏泡沫大小图3.不同乳化剂制备的洁面膏微观泡沫结构结论通过动态泡沫分析仪等研究了4种不同类型乳化剂对以椰油酰甘氨酸钠为主要表面活性剂的结晶型洁面膏的影响,包括泡沫高度和结构等,得出以下结论:磷酸酯类乳化剂Hostaphat® KW340D能提高洁面膏的泡沫稳定性;Eumulgin® S21作为聚醚类乳化剂,在多元醇与盐含量较高的体系中浊点降低,使得其与体系的兼容性变差,从而导致泡沫量明显减少,泡沫的稳定性也最差;液晶型乳化剂Plantasens® Emulsifier HP 30能显著提高泡沫的细密程度与稳定性,这可能是液晶乳化剂在体系中易于形成多层结构,从而使泡沫更加稳定。以上研究也为洁面膏中乳化剂的选择提供一定的实践结果与理论分析,因此在实际配方过程中,可挑选合适的乳化剂或乳化剂组合来达到改善洁面膏特定性能的目的。此文版权来自科莱恩化工(中国)有限公司,内容有所删减,全文请查看:张美龄,王晨茜,许明力,朱晨江.乳化剂对结晶型氨基酸洁面膏性能的影响[J]. 日用化学品科学, 2022,45(6): 43-47.
  • PμSL 微尺度3D打印技术在传感应用的进展
    中国微米纳米技术学会第二十五届学术年会暨第十四届国际会议(简称CSMNT2023),于2023年10月21-23日在深圳市圆满收官。重庆摩方精密科技股份有限公司(以下简称:摩方精密)携多款样件及终端应用参展,重点展示了在生物医疗、精密电子、科研及创新领域应用的超高精密打印技术,为精密制造行业带来系列定制化解决方案。在本次大会中,摩方精密产品应用工程师卢敏分享了《PμSL 微尺度3D打印技术及其在传感应用的进展》,其中详细介绍了两项极具创新性的传感应用研究。电化学生物传感芯片(检测肌氨酸)来自哈工大、华大基因、华东理工大学、斯威本科技大学等团队共研的《集成微柱阵列电极和声微流技术的新型微流控生物传感平台的研究》,阐述了一种创新型微流体电化学生物传感平台的构建。该平台通过在微柱阵列电极(μAE)上涂覆3D双金属 Pt-Pd 纳米树,实现了电化学传感灵敏度的提升。同时,该装置采用了基于气泡的声微流技术,增加了分析物分子与电极表面的接触,进一步优化了电化学性能。图1:PμSL打印微柱阵列模具+PDMS二次翻模制备微柱阵列电极、PμSL打印截断圆锥阵列模具+PDMS翻模制备截断圆锥空腔阵列微柱阵列电极的制造过程主要依赖于面投影微立体光刻(PμSL)技术和PDMS翻模技术,该团队利用摩方精密nanoArch® P140将光敏树脂打印在载玻片上,这样就形成了微柱阵列的阳模,然后以PDMS 翻模的阴模作为模板,采用二次翻模制造出 PDMS 微柱阵列,选用镀金微柱阵列作为电极层的工作电极,其中微柱阵列最小特征尺寸可达50μm。图2:微柱阵列面投影微立体光刻(PμSL)技术结合PDMS翻模技术可制备微流控电化学生物传感芯片,所制得的传感芯片线性范围宽, 灵敏度高,可广泛用于蛋白质分析及病毒检测中。图3:过氧化氢检测图4:肌氨酸检测原文:Biosensors and Bioelectronics. 223, 114703 (2023)仿生自供电传感器(易便携)来自湖南大学、阿卜杜拉国王科技大学的团队协作研发了一种便携式3D打印仿生传感装置,其光电响应能力得到了显著增强,可实现双酚 A (BPA) 的灵敏检测。该装置利用高反应性的双电极系统,在光辐射的作用下产生电输出,提供传感信号,解决了依赖外部电源的问题。图5:蕨类植物N/Ov/BiVO4光阳极的原位合成步骤图6:N/Ov/BiVO4光阳极表面修饰的bpa特异性适配体示意图这种独特的蕨类仿生结构提升了传感系统的传质效率,并为传感器提供了丰富的适体结合位点,实现了信号的放大。该团队将检测系统集成到了基于微纳 3D 打印技术的微模型中,利用摩方精密microArch® S240打印出微流道模型(宽约2.5mm),其内含多个孔道 ,可与电极集成生成小型易便携的传感器。图7:拟设计的三维传感装置的模型图面投影微立体光刻(PμSL)技术可高精度定制微流道模型 ,有助于制备自供电传感器 ,实现对双酚A(致癌致畸) 的特异性检测。图8:传感器性能表征—双酚A检测原文:Biosens Bioelectron. 220, 114817(2023)展会现场,摩方精密展出了系列自主研发的多领域应用样件,吸引众多来自生物医疗、学术科研、创新领域等业界专家学者前来参观,其中包括深圳市微米纳米技术学会会长、北京大学教授金玉丰,香港大学教授陆洋和武汉大学工业科学研究院执行院长刘胜等。摩方精密会继续秉持着深入钻研的精神,持续在微纳 3D 打印技术领域深耕,以技术和终端应用为突破口,为客户带来更多创新性的产品和解决方案,引领行业的新篇章。
  • 科华生物同型半胱氨酸(HCY)定量测定试剂盒取得医疗器械注册证
    2011年1月21日,科华生物研发的同型半胱氨酸(HCY)定量测定试剂盒(液体)(循环酶法)产品,取得了上海市食品药品监督管理局颁发的《医疗器械注册证》,准许准产注册。注册证编号为沪食药监械(准)字2011第2400060号。本产品是心脑血管疾病诊断的参考指标之一。   该项医疗器械注册证的取得,丰富了公司生化试剂产品线,对公司销售将产生一定的正面影响。
  • 蛋白质组测序也迈入千元时代?
    导读:自今年1月份Illumina让&ldquo 1000美元基因组&rdquo 成为现实,许多生物技术公司及科研机构纷纷购买其测序仪,而今美研究者指出DNA编码的蛋白质是几乎所有生命过程的主要执行者,可实现千元基因组测序的工具,也可以最终帮助人们完成千元蛋白质组测序。 人类生命的蓝图是三十亿碱基对组成的人类基因组。1000美元基因组测序,让人都觉得有些疯狂,然而有研究者认为千元测序蛋白质组也将成为现实。 今年初,全美最大最佳的五所&ldquo 大学城&rdquo 之一拥有近130年历史的Arizona State University(亚利桑纳州立大学)生物 设计学院( Biodesign Institute)的Stuart Lindsay及其团队同事,在纳米孔DNA测序技术的基础上,让单链肽段穿过纳米孔,纳米孔两边的电极可记录每个氨基酸通过时产生的电信号。他们使用一种机器学习算法,让电脑能够识别代表不同氨基酸的特征信号。这些信号可以作为可靠的指纹,帮助人们鉴别氨基酸的种类,以及氨基酸发生的微妙改变。因此开发了能够精确鉴定氨基酸的蛋白单分子测序技术。 这项研究于四月六日发表在Nature Nanotechnology杂志的网站上。 从基因组到蛋白组 蛋白对于细胞的生长、分化和修复至关重要,它们能够催化化学反应,抵御疾病,具有各种各样的重要功能。自今年1月份Illumina让&ldquo 1000美元基因组&rdquo 成为现实,研究者们将眼光转向了蛋白质组测序的研究。 与线虫等简单生物相比,人类的基因数相对较少,不过科学家们鉴定的人类蛋白已经超过了十万,而且不少人认为这些蛋白只是冰山一角。有限的基因数为何能形成如此大量的蛋白呢?这是因为蛋白能通过多种机制发生改变,选择性剪切和翻译后修饰就是其中两个关键的过程。 在这项研究中,研究人员将一对金属电极分隔在约两纳米的孔洞旁边,当线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个电回路,并发出相应的电信号。而这样的电信号可以帮助人们判断,通过纳米孔的是哪一个氨基酸。 这一技术称为recognition tunneling,原本是Lindsay等人开发的DNA单分子测序技术。&ldquo 大约两年前,我们的一次实验室会议提出,可以尝试将这一技术用于氨基酸测序,&rdquo Lindsay说。与DNA的A、G、C、T相比,用 recognition tunneling鉴定组成蛋白的二十种氨基酸实际上是一个更大的挑战。 蛋白质单分子测序技术具有巨大的应用价值,可以帮助人们检测被选择性剪切或翻译后修饰改变的微量蛋白。而这些蛋白往往是疾病研究所追寻的目标,用其他技术很难检测得到。 PCR能够将样品中微量的DNA快速扩增,但在蛋白研究领域还没有这样的技术,Lindsay强调。在这种情况下,能进行单分子水平上进行检测的recognition tunneling,&ldquo 将给蛋白质组学研究带来一场彻底的变革&rdquo 。 这项研究为人们展示了一个,快速测序单个蛋白分子的低成本方法。据Lindsay介绍,该技术通过大约50种不同的信号特征来鉴定氨基酸,不过绝大多数鉴别只需要不到10个信号特征。 值得注意的是,recognition tunneling不仅能够高度可信的鉴定氨基酸,区分翻译后修饰的蛋白(肌氨酸)及其前体(甘氨酸),还能够鉴别被称为对映体的镜像分子,以及质量相同但序列不同的分子。 千元蛋白组? Lindsay的研究指出,可实现千元基因组测序的工具,也可以最终帮助人们完成千元蛋白质组测序。事实上,Lindsay认为这一里程碑离我们并不遥远。 目前,这一技术还需要使用复杂的实验室仪器&mdash &mdash 扫描隧道显微镜STM。不过Lindsay和他的同事正在开发一个可以快速鉴定氨基酸和其他分析物的新设备,以便将低成本的蛋白质组测序真正推广到临床。 该技术不仅可以用来在临床上测序蛋白质和检测新生物指标,还有望给医疗领域带来彻底的改变,在单分子水平上精确监控患者对治疗的应答情况。
  • 科研人员利用红外和拉曼光谱识别赖氨酸乙酰化特征
    近期,中科院合肥研究院智能所黄青研究员课题组利用红外和拉曼光谱识别赖氨酸乙酰化特征,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。相关研究成果发表在国际光谱专业期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。 乙酰化是生物学中常见且极其重要的蛋白质修饰,在细胞代谢中都起着关键性的调节作用。蛋白质乙酰化有两种方式,一是赖氨酸残基特有的乙酰化,二是多种氨基酸残基都可发生的N-末端乙酰化。目前一般用N-末端乙酰转移酶来标记判断赖氨酸残基是否发生乙酰化,但该方法的准确性仍存在争议。在分子水平识别蛋白质乙酰化是目前研究挑战之一,其关键是对赖氨酸的乙酰化进行准确定位表征,由此获得清晰和系统的认识。 针对这种情况,研究团队通过红外和拉曼光谱实验以及密度函数理论(DFT)计算,系统地研究L-赖氨酸三种乙酰化类型(、和)的结构变化及相应的振动光谱特征,发现酰胺基、羧基等基团的红外和拉曼特征谱带能用于有效识别不同的乙酰化类型。换言之,从红外和拉曼光谱特征即可判断赖氨酸是否乙酰化,也可判断赖氨酸发生了 乙酰化,还是 乙酰化,或者同时乙酰化。同时,研究团队对乙酰化的振动光谱识别策略在多肽模型中也得到验证。基于此,该项研究工作提供乙酰化赖氨酸的振动模式解析,并提出赖氨酸乙酰化的光谱识别和新的表征方法,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。   该研究工作得到了国家自然科学基金和安徽省自然科学基金的资助。赖氨酸和三种乙酰化赖氨酸的分子结构Lys-G4多肽及其赖氨酸残基乙酰化的理论计算红外光谱(红色为乙酰基,蓝色为乙酰基)
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, μEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置论文信息:DOI: 10.1039/d0ra07694e.研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使μEDS备受学术界的关注。微小化的工作电极是μEDS的核心部件,其性能决定了整个μEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了μEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。μEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为μEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数论文信息:DOI:10.3390/mi11090858.上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, µEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使µEDS备受学术界的关注。微小化的工作电极是µEDS的核心部件,其性能决定了整个µEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了µEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。µEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为µEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140官网:https://www.bmftec.cn/links/10
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 国家市场监督管理总局批准发布《氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定》等431项推荐性国家标准和2项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《液压传动连接 金属管接头 第1部分:24°锥形》等431项推荐性国家标准和2项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2023-08-06附件相关标准如下:序号标准编号及标准名称代替标准号实施日期1GB/T 20706-2023 可可粉质量要求GB/T 20706-20062024-03-012GB/T 20705-2023 可可液块及可可饼块质量要求GB/T 20705-20062024-03-013GB/T 22427.7-2023 淀粉黏度测定GB/T 22427.7-20082024-03-014GB/T 26174-2023 厨房纸巾GB/T 26174-20102024-09-015GB/T 42957-2023氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定2024-03-016GB/T 42762-2023 杯壶类产品通用技术要求2024-03-017GB/T 42821-2023 贝类包纳米虫病诊断方法2024-03-018GB/T 15000.5-2023 标准样品工作导则 第5部分:质量控制样品的内部研制2023-08-069GB/Z 42962-2023 产业帮扶 猪产业项目运营管理指南2023-08-0610GB/Z 42963-2023 产业帮扶 竹产业项目运营管理指南2023-08-0611GB/T 42893-2023 电子商务交易产品质量监测实施指南2023-12-0112GB/T 41247-2023 电子商务直播售货质量管理规范2023-10-0113GB/T 42958-2023 肥料产品使用说明编写指南2024-03-0114GB/T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法2024-03-0115GB/T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法2024-03-0116GB/T 27021.12-2023 合格评定 管理体系审核认证机构要求第12部分:协作业务关系管理体系审核与认证能力要求2023-08-0617GB/T 27000-2023 合格评定 词汇和通用原则GB/T 27000-20062023-08-0618GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴)GB/T 1270-19962024-03-0119GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌)GB/T 667-19952024-03-0120GB/T 669-2023 化学试剂 硝酸锶GB/T 669-19942024-03-0121GB/T 686-2023 化学试剂 丙酮GB/T 686-20082024-03-0122GB/T 684-2023 化学试剂 甲苯GB/T 684-19992024-03-0123GB/T 9722-2023 化学试剂 气相色谱法通则GB/T 9722-20062024-03-0124GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备GB/T 603-20022024-03-0125GB/T 649-2023 化学试剂 溴化钾GB/T 649-19992024-03-0126GB/T 678-2023 化学试剂 乙醇(无水乙醇)GB/T 678-20022024-03-0127GB/T 26176-2023 家用和类似用途豆浆机GB/T 26176-20102024-03-0128GB/T 42812-2023 连作障碍土壤改良通用技术规范2024-03-0129GB/T 29344-2023 灵芝孢子粉采收及加工技术规范GB/T 29344-20122024-03-0130GB/T 22638.11-2023 铝箔试验方法 第11部分:力学性能的测试2024-03-0131GB/T 42916-2023 铝及铝合金产品标识2024-03-0132GB/T 22648-2023 铝塑复合软管、电池软包用铝箔GB/T 22648-20082024-03-0133GB/T 42817-2023 农产品产地土壤改良剂使用技术规范2024-03-0134GB/T 42819-2023 农产品产地重金属污染土壤钝化通用技术规程2024-03-0135GB/T 29490-2023 企业知识产权合规管理体系 要求GB/T 29490-20132024-01-0136GB/T 42936-2023 设施管理 过程管理指南2023-08-0637GB/T 42931-2023 设施管理 基准比较分析指南2023-08-0638GB/T 42935-2023 设施管理 信息化管理指南2023-08-0639GB/T 14699-2023 饲料 采样GB/T 14699.1-20052024-03-0140GB/T 42959-2023 饲料微生物检验 采样2024-03-0141GB/T 22260-2023 饲料中蛋白质同化激素的测定 液相色谱-串联质谱法GB/T 22260-20082024-03-0142GB/T 13882-2023 饲料中碘的测定GB/T 13882-20102024-03-0143GB/T 8381.3-2023 饲料中林可胺类药物的测定 液相色谱-串联质谱法GB/T 8381.3-20052024-03-0144GB/T 42956-2023饲料中泰乐菌素、泰万菌素、替米考星的测定 液相色谱-串联质谱法2024-03-0145GB/T 13883-2023 饲料中硒的测定GB/T 13883-20082024-03-0146GB/T 13093-2023 饲料中细菌总数的测定GB/T 13093-20062024-03-0147GB/T 12956-2023 卫生间配套设备要求GB/T 12956-20082024-03-0148GB/T 10510-2023 硝酸磷肥、硝酸磷钾肥GB/T 10510-20072024-03-0149GB/T 42828.1-2023 盐碱地改良通用技术 第1部分:铁尾砂改良2024-03-0150GB/T 42828.2-2023 盐碱地改良通用技术 第2部分:稻田池塘渔农改良2024-03-0151GB/T 42828.3-2023 盐碱地改良通用技术 第3部分:生物改良2024-03-0152GB/T 13217.7-2023 油墨附着力检验方法GB/T 13217.7-20092024-03-0153GB/T 42944-2023 纸、纸板和纸制品 有效回收组分的测定2024-03-0154GB/T 42945-2023 纸浆 细小纤维质量分数的测定2024-03-0155GB/T 42943-2023 纸浆模塑制品技术通则2024-03-0156GB/T 42748-2023 专利评估指引2023-09-0157GB/T 22461.1-2023 表面化学分析 词汇 第1部分:通用术语及谱学术语GB/T 22461-20082024-03-0158GB/T 27921-2023 风险管理 风险评估技术GB/T 27921-20112023-08-0659GB/T 27914-2023 风险管理 法律风险管理指南GB/T 27914-20112023-08-0660GB/T 7139-2023 塑料 氯乙烯均聚物和共聚物 氯含量的测定GB/T 7139-20022024-03-01
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
  • 从原料到包装:2024年1-8月化妆品执行标准盘点
    化妆品行业正面临消费者对安全、有效性和质量的日益关注,这带来了挑战也蕴藏着机遇。化妆品标准是保障产品质量和消费者安全的关键,涵盖原料、检测方法、功效测定、包装和口腔清洁等多个方面。本文将对2024年1-8月发布的化妆品执行标准进行盘点。化妆品标准化是保障产品质量和消费者安全的根本手段。中国现行的化妆品技术标准包括《化妆品安全技术规范》(以下简称“《技术规范》”)、国家标准、行业标准、地方标准、团体标准和其他标准。通过对2024年发布的标准盘点(见文末附录)发现,化妆品通则及检测方法类占据主导地位。化妆品检测方法是确保产品安全性和有效性的关键环节。标准化的检测方法不仅能够提供可靠的数据支持,并确保不同实验室之间数据的可比性。目前,化妆品检测方法标准涵盖了微生物检测、重金属含量检测、防腐剂效能测试等多个方面。随着检测技术的进步,新的检测方法如高效液相色谱(HPLC)、质谱(MS)等高灵敏度、高选择性的技术逐渐应用于化妆品检测中。在整理中有9条明确指出了高效液相色谱串联质谱法、高效液相色谱法用于对化妆品中功效组分虾青素、牙膏中丙烯酰胺的测定、化妆品中限用组分等的检测分析中。其次,对于化妆品原料的的安全性是保证化妆品产品质量的基础。全球各国和地区对化妆品原料的监管各有不同。在欧盟,《化妆品法规》明确规定了允许使用的化妆品原料清单,并对某些成分设定了使用限制。例如,某些防腐剂、染发剂和紫外线吸收剂在使用量上有严格的限制。中国的《化妆品监督管理条例》同样对化妆品原料有严格规定,尤其对新原料的安全性要求进行了详细描述。今年发布的标准中一共有23条标准对化妆品原料进行了要求,包括有表面活性剂、天然提取物等等,以确保源头的安全性。日常我们所说的具有抗皱、美白、保湿、祛斑等作为宣传的产品,其都需要依据化妆品功效测定标准进行功效检测。目前,欧盟、中国、美国等地区都有相关的化妆品功效测定指导原则。常见的测定方法包括有体外实验、人体试验、皮肤生理指标测试等等。今年发布的标准中多条对口服美容产品、特殊食品和化妆品的功效进行了标准化制定,以确保产品在使用过程中不会对消费者健康产生不良影响。口腔清洁护理用品如牙膏、漱口水等,作为化妆品的一个特殊类别,近年来在标准的发布上也相对来说较多,上半年在牙膏类标准就新增了12条。其标准制定既要考虑口腔健康安全,又要兼顾产品的清洁和护理效果。经了解在许多国家,口腔清洁产品的成分如氟化物、抗菌剂等有明确的使用限制,确保长期使用对人体健康无害。随着消费者对口腔健康的重视,未来口腔清洁产品的标准将更加细化和严格,特别是在功能性成分和产品安全性方面。除上述之外,对于化妆品包装的标准涉及包装材料的安全性、包装的密封性、防污染能力等方面。在欧盟,包装材料必须符合《欧盟食品接触材料法规》的要求,确保包装材料不释放有害物质。中国的《化妆品监督管理条例》也对化妆品包装提出了明确的要求,上半年共发布两条标准,分别为《T/BDCA 0001-2024 北京市国产普通化妆品包装和标签设计指南》和《T/GDCA 039-2024 化妆品包装相容性评估方法》,进一步规范了化妆品包装。化妆品标准化是保障产品质量和消费者安全的根本手段。无论是化妆品原料、检测方法、包装,还是口腔清洁产品的标准,都需要在保障安全和效果的基础上,更多地考虑可持续性和环境友好性。通过持续完善和更新标准,化妆品行业将能更好地满足消费者需求,推动整个行业的健康发展。附录:(以下“2024年1-8月发布的化妆品相关标准”的整理为编辑个人梳理,如有遗漏,欢迎大家留言补充。联系邮箱:wugq@instrument.com.cn)2024年1-8月发布的化妆品相关标准国家标准标准代号标准名称标准代号标准名称GB/T 43718-2024免洗洗手液GB/T 44365-2024牙膏中6-甲基香豆素、二氢香豆素、7-甲基香豆素、7-甲氧基香豆素、7-乙氧基-4-甲基香豆素的测定 高效液相色谱法GB/T 43777-2024化妆品中功效组分虾青素的测定 高效液相色谱法GB/T 44366-2024化妆品中限用组分月桂醇聚醚-9的测定 液相色谱-串联质谱法GB/T 43855-2024衣物洗涤质量要求GB/T 44367-2024化妆品中限用组分二氨基嘧啶氧化物的测定 高效液相色谱法GB/T 43954-2024重瓣红玫瑰精油GB/T 44428-2024化妆品中大麻二酚和四氢大麻酚的测定 液相色谱-串联质谱法GB/T 44364-2024牙膏中丙烯酰胺的测定 高效液相色谱串联质谱法行业标准标准代号标准名称标准代号标准名称QB/T 5994-2024除味喷雾剂QB/T 8056-2024氨基酸表面活性剂 谷氨酸型QB/T 5995-2024菊酯防蛀剂QB/T 8055-2024氨基酸表面活性剂甘氨酸型QB/T 5997-2024干湿两用纸巾QB/T 8057-2024氨基酸表面活性剂 肌氨酸型QB/T 2548-2024空气清新气雾剂QB/T 8058-2024非离子表面活性剂 椰油酰胺MEAQB/T 2761-2024室内空气净化产品净化效果测定方法地方标准标准代号标准名称标准代号标准名称DB31/T 1472-2024普通化妆品备案资料要求团体标准标准代号标准名称标准代号标准名称T/GDICST 003-2023化妆品舒缓功效评价 脂多糖诱导巨噬细胞炎症因子IL-6测定方法T/GDCA 040-2024化妆品原料 重组可溶性胶原蛋白T/GDICST 002-2023粉类防晒化妆品SPF值体外测试方法T/UNP 69-2024化妆品用原料 山茶籽油T/CAFFCI 73-2024化妆品用原料 铁皮石斛茎提取物T/GDC 9-2024洗脸扑T/CAFFCI 72-2024化妆品用原料 乙酰基二肽-1鲸蜡酯T/GDC 8-2024化妆棉T/CAFFCI 71-2024化妆品用原料 六肽-11T/GDC 7-2024化妆分装瓶T/CASME 1248-2024化妆品用原料 纤连蛋白T/QGCML 4196-2024化妆品用金属瓶盖T/GDICST 001-2023化妆品稳定性测试指南T/CIET 465-2024复合酸祛痘类化妆品质量要求T/SGLYCYX 001-2024化妆品用原料 茶油T/GDCA 041-2024防晒化妆品清水可洗测试评价方法T/ZHCA 032-2024驻留类化妆品温和性评价 重建表皮模型组织活力法T/ZJDAIR 009-2024化妆品用原料 酸橙(常山胡柚)果皮提取物T/ZHCA 031-2024淋洗类化妆品温和性评价 重建表皮模型组织活力法T/QGCML 4193-2024有效祛除牙斑牙垢的增白牙膏T/ZHCA 030-2024化妆品舒缓功效测试 重建表皮模型白介素-8生成抑制法T/GDCA 044-2024化妆品用原料 羟丙基四氢吡喃三醇 (β,S构型)T/ZHCA 029-2024化妆品舒缓功效测试 角质形成细胞白介素-8生成抑制法T/COCIA 31-2024数字化牙刷T/CIET 360-2024美白祛斑功效护肤品通用要求T/CGDF 00041-2024植物性化妆品标准T/CIET 361-2024适合中国人肤质的美白护肤品开发指南T/CHCIA 030-2024活氧泡洗粉T/QGCML 2951-2024海藻酸钠面膜T/CHCIA 027-2024鼠李糖脂表面活性剂含量的测定 蒽酮-硫酸法T/QGCML 3028-2024无胶环保口红管T/SHRH 60-2024精准养肤化妆品研发指南T/GDCA 035-2024极简配方化妆品通则T/SHRH 061-2024底妆持妆效果评价指南T/CIET 355-2024家用射频美容仪T/SHRH 062-2024纯净彩妆通用要求指南T/GDCA 011-2024化妆品 纯净美妆通则T/TIC 031-2024洁颜粉T/CITS 0006-2024实验室质量控制规范 化妆品理化检测T/WHHLW 138-2024化妆品用超氧化物歧化酶T/CITS 0005-2024实验室质量控制规范 化妆品功效评价T/CIET 544-2024化妆品行业绿色工厂评价规范T/CASME 1326-2024化妆品 保湿功效的测定 鱼胚法T/CIET 543-2024护肤品产品碳足迹评价导则T/GDCA 038-2024化妆品舒缓功效人体评价方法T/CITS 0117-2024化妆品中β-烟酰胺单核苷酸(NMN)含量测定高效液相色谱法T/QGCML 3906-2024全面均匀搅拌洗发水生产用匀质乳化机T/CHCIA 032-2024除菌型洗涤剂 通用技术要求T/QGCML 3905-2024混合均匀洗液加工装置T/WHHLW 143-2024婴幼儿用维E保湿霜T/PPZL 022-2024化妆品用羊尾油原料T/JSSKSLXH 02-2024可溶性微晶护理膜T/LNBHXH 004-2024化妆品舒缓功效评价 体外人皮肤模型测试方法T/JSSKSLXH 03-2024手持式可溶性微晶美容仪T/FCA 01-2024化妆品生产企业原料管理规范T/JSQA 184-2024化妆品用寡聚透明质酸钠T/GDCQMA 005-2024化妆品舒缓功效测试—体外皮肤角质形成细胞炎症因子测试法T/CASME 1563-2024美妆产品原料 文冠果油T/BDCA 0001-2024北京市国产普通化妆品包装和标签设计指南T/GDCQMA 006-2024化妆品生产工艺验证指南T/CIET 415-2024口服美容产品抗皱功效测试方法T/UNP 144-2024化妆品安全技术要求T/CIET 414-2024质量分级及“领跑者”评价要求 眼霜T/UNP 145-2024绿色低碳产品评价规范 化妆品T/CIET 411-2024口服美容产品保湿功效测试方法T/UNP 146-2024化妆品舒缓功效评价技术规范T/CIET 410-2024口服美容产品改善皮肤老化功效评价方法T/UNP 147-2024化妆品修复功效评价技术规范T/CIET 406-2024口服美容产品祛斑美白功效测试方法T/GDCA 045-2024儿童天然化妆品指南T/CIET 409-2024适老营养食品通用要求T/GDCA 046-2024化妆品用原料 牡丹枝/花/叶提取物T/FJCA 003-2024特殊食品和化妆品 减脂功效测试 秀丽隐杆线虫法T/GDCA 047-2024化妆品用原料 松口蘑提取物T/QLMZ 12-2024化妆品用原料 羟丙基四氢吡喃三醇T/GDCA 048-2024头皮修护功效人体评价方法T/QLMZ 13-2024化妆品用山东特色植物资源原料目录T/GDCA 049-2024浓缩型护肤产品评价指南T/QLMZ 14-2024化妆品用原料 聚谷氨酸钠T/HZGY 003-2024化妆品CMF设计与评价规范T/QLMZ 15-2024化妆品用原料 四氢甲基嘧啶羧酸T/COCIA 41-2024口腔用品(牙膏、漱口水、口喷等)纸质 包装盒产品评价方法T/SHRH 058-2024化妆品稳定性试验指南T/COCIA 39-2024口腔清洁护理用品 牙膏中黄连生物碱含量的测定方法 高效液相色谱法T/SHRH 057-2024化妆品修护功效评估方法T/COCIA 38-2024绿色生产质量管理规范 牙膏用复合管T/STHZP 0031-2024沐浴油T/COCIA 37-2024口腔清洁护理用品 牙膏用龙血竭T/STHZP 0033-2024眉毛定型液T/COCIA 36-2024口腔清洁护理用品 牙膏功效评价 清除牙菌斑功效实验室评价方法T/STHZP 0032-2024儿童沐浴慕斯T/COCIA 35-2024口腔清洁护理用品 牙膏用右旋糖酐酶T/CHCIA 029-2024化妆品风险物质调查和特定检出值安全评估指南T/CI 447-2024热塑性聚氨酯(TPU)薄膜日用品卫生安全等级评价T/BYXT 025.3-2024稀土抗菌日用品 第3部分:洗涤剂T/COCIA 32-2024口腔清洁护理用品 牙膏用凝血酸T/SHRH 059-2024护肤精华油T/COCIA 20-2024口腔清洁护理用品 牙擦T/GDCA 039-2024化妆品包装相容性评估方法T/ACCEM 024-2024透皮吸收类化妆品通用要求T/GDAQI 141-2024化妆品中椰油酰甘氨酸钾的测定 高效液相色谱法其他标准标准代号标准名称标准代号标准名称BJH 202402化妆品中双氟拉松丙酸酯的测定BJH 202401化妆品中非那雄胺等10种组分的测定
  • NAR | 许伟团队揭示BAF155蛋白的精氨酸甲基化修饰水平影响恶性肿瘤转移的新机制
    蛋白质精氨酸甲基化修饰是一类由精氨酸甲基转移酶(Arginine methyltransferases, PRMTs)介导的翻译后修饰作用。PRMTs不仅能够通过甲基化修饰组蛋白上特定位点的精氨酸来调控下游靶基因的转录活性,还参与修饰了多种非组蛋白类作用底物,以此来影响RNA剪接、蛋白质翻译、细胞周期等一系列细胞生物学行为。近年来,越来越多的证据表明蛋白质精氨酸甲基化水平的失调与恶性肿瘤的发生、发展密切相关。因此,PRMTs作为潜在的肿瘤治疗靶点,逐渐引起了全球科学家的关注。2021年11月19日,威斯康星大学麦迪逊分校医学院许伟教授团队在Nucleic Acid Research上发表题为BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity的研究成果。该研究发现,精氨酸甲基化修饰的BAF155蛋白可以通过操纵增强子、破坏机体的抗肿瘤免疫能力,从而促进恶性肿瘤的转移 。BAF155是染色质重组复合物SWI/SNF的重要亚单位之一。2014年,许伟课题组在Cancer Cell发文,首次证实了PRMT4(又称CARM1)能够通过甲基化修饰BAF155蛋白第1064位精氨酸,起到促进三阴性乳腺癌转移的作用【1】。近日,该课题组以基因编辑的乳腺癌细胞系与小鼠模型为基础,结合多组学技术揭示了me-BAF155促进乳腺癌转移的内在分子机制。超级增强子(Super-enhancers, SEs)是基因组中大量增强子富集的转录调控区域。在转录过程中,通过富集多种转录因子和辅因子(BRD4等)来大幅度激活下游靶基因的转录活性。本研究中,作者采用ChIP-seq技术对me-BAF155的基因组结合位点进行全局定位分析,发现me-BAF155和BRD4在SEs处共定位,以此调节关键癌基因的表达水平。CARM1抑制剂(CARM1i)的处理,能够使得me-BAF155和BRD4从SE上解离,减少SE数量,激活干扰素α/γ通路,增强宿主免疫反应,起到抑制肿瘤生长和转移的治疗效果。最后,作者采用VERSA技术分离循环肿瘤细胞,证实me-BAF155在高转移特性的三阴性乳腺癌患者的循环肿瘤细胞中呈稳定、持续的强阳性表达(图1)。该研究首次揭示了me-BAF155在促进恶性肿瘤转移中具有双重作用:通过招募BRD4激活增强子依赖的癌基因转录活性;通过抑制干扰素α/γ通路以削弱宿主免疫反应。尽管CARM1抑制剂具有较低的细胞毒性,但是在体外依然能够显著抑制三阴性乳腺癌细胞的迁移,在体内显著抑制肿瘤生长和转移。因此,作者提出CARM1抑制剂有望被开发成为单独使用的抗癌药物,或与其他治疗药物(如免疫治疗)联合使用,用于治疗转移性恶性肿瘤。另外,相较于现有的CARM1抑制剂,开发me-BAF155(R1064)靶点特异性的小分子抑制剂,有望产生抑癌效果更好、副作用更少的新型抗肿瘤药物。
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 果汁检测用试剂——钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸,抵制 “烂果门”
    果汁检测用试剂&mdash &mdash 钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸 &ldquo 烂果门&rdquo 事件,怎可坐以待毙! 近期有媒体暗访指多家内地果汁生产商涉嫌使用腐烂果汁。国产果汁巨头卷入&ldquo 烂果门&rdquo ,你是否忧心忡忡?大多果汁含量无据可依,你该如何选择?国家统计局的数据显示,2012年全国饮料行业总产量为13024.01万吨,比上年增长10.73%,其中,国内果汁和蔬菜汁饮料产量为2229.17万吨(最主要为果汁饮料),占到饮料总产量的17.16%,较2011年增长16.09%。这些果汁真的如消费者理解的哪样健康自然高品质吗? 上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。 自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。 上海甄准生物提供果汁检测的钾、总磷、氨基酸态氮、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸检测标准品和试剂。 产品信息: 货号 描述 规格 可溶性固形物检测ZZSRIBS07S 折光率标准液1.343253 (± 0.00004)@20C 15ml ZZSRIBS10S 折光率标准液1.347824 (± 0.00004)@20C 15ml ZZSRIBS112S 折光率标准液1.349682 (± 0.00004)@20C 15ml ZZSRIBS115S 折光率标准液1.350149 (± 0.00004)@20C 15ml ZZSRIBS12S 折光率标准液1.35093 (± 0.00004)@20C 15ml ZZSRIBS125S 折光率标准液1.35093 (± 0.00004)@20C 15ml ZZSRIBS15S 折光率标准液1.355679 (± 0.00004)@20C 15ml ZZSRIBS20S 折光率标准液1.363842 (± 0.00004)@20C 15ml ZZSRIBS25S 折光率标准液1.372328 (± 0.00004)@20C 15ml ZZSRIBS30S 折光率标准液1.381149 (± 0.00004)@20C 15ml ZZSRIBS35S 折光率标准液1.390322 (± 0.00004)@20C15ml ZZSRIBS40S 折光率标准液1.39986 (± 0.00004)@20C 15ml ZZSRIBS45S 折光率标准液1.409777 (± 0.00004)@20C 15ml ZZSRIBS50S 折光率标准液1.420087 (± 0.00004)@20C 15mlZZSRIBS55S 折光率标准液1.4308 (± 0.00004)@20C 15ml ZZSRIBS60S 折光率标准液1.441928 (± 0.00004)@20C 15ml 总D-异柠檬酸检测 ZZK-ISOC D-异柠檬酸检测试剂盒 100 test L-脯氨酸检测 ZZS1568506 L-脯氨酸标准品 200MG ZZR70501 茚三酮显色液 2L 钾检测 ICCS03 钾离子 K+ 1mg/ml 1000ppm 100ml ICCT03 钾离子 K+ 0.2mg/ml 200ppm 100ml 甄准,甄心倾听您每一个标准!
  • 黄超兰研究组发表精氨酸甲基化综述论文
    中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员黄超兰受邀在蛋白质组学国际期刊Expert Review of Proteomics上发表综述文章。黄超兰与博士彭超(该文第一作者)撰述的The Story of Protein Arginine Methylation: Characterization, Regulation, and Function 于1月5日在线发表在此杂志上。该论文系统地介绍了鉴定不同类型的精氨酸甲基化的技术方法及其发展历程,并对精氨酸甲基化不同类型的writers和erasers的最新进展、生物学功能以及与疾病的紧密联系进行了系统性的总结和展望。  精氨酸甲基化(Arginine methylation)是蛋白质后修饰中重要的一种,它参与了基因表达的调节、DNA的修复等重要的生命过程,与肿瘤、心血管疾病、病毒感染和自身免疫性疾病等多种疾病密切相关 甲基化水平异常的蛋白质可以作为潜在的生物标志物或药物研究靶点。该综述能使读者加深对精氨酸甲基化蛋白质、后修饰位点、表达水平以及其调控机制的了解,有利于人们进一步探索其在生命过程中的作用,特别是与疾病发生的关系,加快相关药物靶点的研究进程。  黄超兰研究组一直致力于质谱和基于质谱的蛋白质组学应用于蛋白质研究的难题技术研发,相关技术已经帮助广大科学家解决了众多的科学难题,大力促进了科学研究的发展。该项工作得到了中科院引进杰出技术人才、关键技术人才和国家基金委自然科学基金青年项目等的资助。
  • 蛋白质测序技术发展漫谈(续)——基于荧光、纳米孔的单分子蛋白质测序
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇);蛋白质测序技术发展漫谈(下篇)前面描述了目前成熟的蛋白质测序方法,并对最流行的基于质谱的蛋白质测序方法进行了综述。非质谱依赖的蛋白质测序手段,除了几十年前发展的基于Edman降解法通过气相或液相色谱测序的方法,最近热门领域的方法主要包括基于荧光或纳米孔的单分子蛋白质测序,代表了未来的发展方向。基于纳米孔单分子蛋白质测序方法纳米孔测序(nanopore sequencing)法是借助电泳驱动力使待测单个分子逐一通过纳米孔,通过检测纳米孔截面的电流变化来实现对序列的测定。纳米孔测序最初在1996年被提出,通过膜通道检测多核苷酸序列,也就是单分子DNA的测序[1]。随着使用纳米孔对单分子DNA测序技术的逐渐成熟[2-5],纳米孔技术也被应用在单分子蛋白质的鉴定上。对于DNA来说,其二级结构和电荷相对比较一致,它的聚合物比较容易处理,而且仅由四种碱基组成,单分子DNA测序比较简单。相比之下,蛋白质分子由20种氨基酸组成,并且蛋白的电荷和疏水性多变,还存在大量的二级和三级结构,因此基于纳米孔技术对蛋白质的鉴定要比DNA困难很多[6]。当前的基于纳米孔对蛋白质分析的主要探索方向是通过寡核苷酸适配子或抗体等亲和分子对纳米孔进行功能化,当蛋白质或肽段分子通过纳米孔时,由于不同氨基酸在纳米孔附近的结合或通过会引起不同幅度的电流变化,基于这些变化就可以确定氨基酸的种类,从而逐个得到所测蛋白质或肽段的序列信息(图1)。图 1 借助纳米孔的横向电流检测单分子蛋白质[2]牛津大学的Hagan Bayley[7]团队将单个α-血溶素蛋白孔插入两侧带有电极的膜中,磷酸化的蛋白质在DNA寡核苷酸的牵引下展开,并穿过纳米孔,通过记录纳米孔的电流变化区分出了202个磷酸化蛋白质的4种不同亚型,但无法鉴定蛋白质的一级结构。Francesco[8]团队将蛋白质或氨基酸吸附在金纳米星上,并施加电等离子体力将粒子推进并约束在金纳米孔内,利用金纳米星与金纳米孔壁之间的单个热点,实现了单分子表面增强拉曼散射(SERS)探测,用于检测氨基酸,并且可以分辨仅含有两个不同氨基酸的单个多肽分子抗利尿激素和催产素。Cao等[9]通过单个定点突变,在具有锥形识别位点的耻垢分枝杆菌孔蛋白A(MspA)的纳米孔内腔中引入了甲硫氨酸,从而将该反应有目的的移植到了MspA纳米孔最尖锐的识别位点,并观测到了相应的单分子反应信号。该纳米孔可以引入更多的离子电流,从而放大检测信号,其狭窄的识别位点则提供了更高的空间分辨率,大大削弱了周围氨基酸的干扰,从而拓宽生物纳米孔的单分子检测功能,有望推进基于孔道的单分子蛋白质测序研究。Ouldali[10]研究团队研发出了一种新型气溶素纳米孔,此纳米孔借助将氨基酸附着在聚阳离子载体上,使氨基酸在纳米孔上停留时间变长,并检测其通过纳米孔时电流的变化,最终可识别出组成蛋白质的15种氨基酸,也能检测到组成蛋白质的其余5种氨基酸的电流变化,但是无法对其进行区分。虽然只是对氨基酸进行识别,但作者设想通过对蛋白或者肽段末端氨基酸逐个降解,利用纳米孔技术鉴定从末端释放出来的氨基酸,从而对蛋白质或肽段序列进行测定。Zhao[11]等将一对金属电极分隔在约2nm的孔洞旁,当氨基酸线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个回路,并反馈出相应的电信号,常见的20种氨基酸在通过纳米孔时都可以产生电信号。有的氨基酸需通过大约50种不同信号特征被鉴定,但绝大多数的氨基酸仅需要不到10个信号特征被鉴别。这种方法不仅能够高可信度的鉴定氨基酸,还能区分翻译后修饰的氨基酸(肌氨酸)及其前体(甘氨酸)、区分同分异构体的亮氨酸与异亮氨酸、区分对应对映异构体的氨基酸镜像分子L-天冬酰胺和D-天冬酰胺。此技术被应用于对两条由四个氨基酸组成的短肽(GGGG 和GGLL)进行测序,单分子短肽穿过纳米孔,孔道两边电极记录每个氨基酸通过时产生的电信号,通过测序算法,识别代表不同氨基酸的特征信号,从而得到短肽的序列。基于纳米孔单分子蛋白测序目前还属于初步发展阶段,除了需要根据电信号准确区分组成蛋白质的氨基酸以外,另一个关键是设计可一次拉动一个蛋白质或氨基酸穿过纳米孔的“马达”。为了让蛋白质或肽段顺利穿过纳米孔,研究者们在蛋白质一端添加了一串带有负电的氨基酸或者一段短DNA,用氨基酸或DNA链拉动蛋白质,可以使一些蛋白质打开折叠并顺利穿过纳米孔,但另一些复杂折叠的蛋白需要更多拉力,于是研究者在引导序列上添加了可以打开折叠的ClpX的识别位点[12]。这个系统能够将简单折叠的目标蛋白牵引过纳米孔,但对于折叠非常紧密的蛋白质仍要使用变性剂来打开折叠。基于纳米孔技术对单分子肽段或蛋白质测序目前还停留在对氨基酸鉴定和对短肽的区分阶段,还不能实际应用于对蛋白质的测序。虽然纳米孔测序具有高通量、对样品需求量少的优点,但是现有的纳米孔过大,失去了对氨基酸的区分能力,同时蛋白质分子通过孔道过快,加大了对信号读取难度;其次由于需要将蛋白的三级和二级结构破坏掉,纳米孔道需要能够耐受非常苛刻的化学和力学条件;第三,由于蛋白带电不均匀,控制其穿孔的速率也非常困难。所以目前的方法还不能准确的测得蛋白质的序列,基于纳米孔的单分子蛋白质测序技术还有很大的发展空间。基于荧光的单分子蛋白质测序方法基于荧光的单分子蛋白质测序同纳米孔测序一样,都可以对极少量蛋白质样品进行检测,其原理是先将蛋白质酶解成肽段,对肽段中特定氨基酸选择性标记不同的荧光基团[13],对不同氨基酸上的荧光进行观察,从而确定肽段部分氨基酸序列,再将这些序列与蛋白质组序列比对,即可确定肽段的来源蛋白(图2)。图 2 基于荧光的单分子蛋白测序流程[14]。Ginkel[15] 和Yao [16]都利用ClpXP蛋白酶辅助对肽段进行选择性荧光标记,可对序列中的赖氨酸和半胱氨酸进行标记,通过Förster共振能量转移依次读出被标记的肽段的氨基酸的信号。Swaminathan[14] 将蛋白质酶解成肽段,再将肽段固载到玻璃片上[17],使用特定荧光基团分别对肽段中的赖氨酸和半胱氨酸选择性标记,通过Edman降解技术对固载的肽段进行降解,每次降解后都使用全内反射荧光(TIPF)显微镜进行观测。如果被标记的赖氨酸和半胱氨酸在Edman降解中从肽段N端释放出来,被标记的以上两种氨基酸的位置就会被检测到。同时还发展了用于监测单个肽荧光强度的图像处理算法,并对误差源进行分类和建模,可以测得序列中部分氨基酸的信息。将测得的部分序列与参考蛋白质组序列比对,即可确定肽段的来源蛋白,通过与蛋白质组序列比对,可以鉴定到在人源蛋白质组中的绝大多数蛋白质。基于荧光单分子蛋白测序技术主要有三方面难点,一方面在于目前仅能对赖氨酸和半胱氨酸等几种氨基酸进行特异性荧光基团的标记,无法对所有氨基酸都进行标记;第二个难点是Edman降解是在强酸或强碱的环境中进行,对这些荧光基团的稳定性要求很高;第三个难点是对后期图像处理有较高的要求,如果序列中每个氨基酸都标记上不同的荧光基团,且发光峰易交叠难分辨,这给荧光处理算法带来了难度。因此,基于荧光的单分子蛋白测序技术虽然可以对极微量蛋白质样品分析,但目前仅能测得部分氨基酸序列,对蛋白质全序列的测定目前尚不能实现。[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773.[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing [J]. Nanoscience and technology: A collection of reviews from Nature Journals, 2010: 261-268.[3] Laver T, Harrison J, O’neill P, et al. Assessing the performance of the oxford nanopore technologies minion [J]. Biomolecular detection and quantification, 2015, 3: 1-8.[4] Karlsson E, Lärkeryd A, Sjödin A, et al. Scaffolding of a bacterial genome using MinION nanopore sequencing [J]. Sci Rep, 2015, 5(1): 1-8.[5] Huang S, Romero-Ruiz M, Castell O K,et al. High-throughput optical sensing of nucleic acids in a nanopore array [J]. Nature nanotechnology, 2015, 10(11): 986-991.[6] Nivala J, Marks D B, Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J]. Nat Biotechnol, 2013, 31(3): 247-250.[7] Rosen C B, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore [J]. Nat Biotechnol, 2014, 32(2): 179.[8] Huang J, Mousavi M, Giovannini G, et al. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot [J]. Angewandte Chemie 2020, 59(28): 11423-11431.[9] Cao J, Jia W, Zhang J, et al. Giant single molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore [J]. Nature communications, 2019, 10(1): 1-11.[10] Ouldali H, Sarthak K, Ensslen T, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. Nat Biotechnol, 2020, 38(2): 176-181.[11] Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling [J]. Nature nanotechnology, 2014, 9(6): 466-473.[12] Nivala J, Mulroney L, Luan Q, et al. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP [M]. Nanopore Technology. Springer. 2021: 145-155.[13] Hernandez E T, Swaminathan J, Marcotte E M, et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing [J]. New J Chem, 2017: 462-469.[14] Swaminathan J, Boulgakov A, Hernandez E, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures [J]. Nat Biotechnol, 2018, 36(11): 1076-1082.[15] Ginkel J V, Filius M, Szczepaniak M, et al. Single-molecule peptide fingerprinting [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 3338-3343.[16] Yao Y, Docter M, Ginkel JV, et al. Single-molecule protein sequencing through fingerprinting: computational assessment [J]. Phys Biol, 2015, 12(5): 055033.[17] Howard C, Floyd B, Bardo A, et al. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics [J]. ACS Chem Biol, 2020, 15(6): 1401-1407.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn )。
  • 吉林省卫生健康委员会废止《食品安全地方标准 乳与乳制品中 L-羟脯氨酸的测定》等7项食品安全地方标准
    根据《中华人民共和国食品安全法》和《国家卫生健康委办公厅关于进一步加强食品安全地方标准管理工作的通知》(国卫办食品函〔2019〕556号)要求,现决定自2023年10月15日废止以下7项食品安全地方标准,其编号和名称如下:DBS22/010-2013 《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》DBS22/013-2013 《食品安全地方标准 植物源性食品中α-玉米赤霉烯醇和赤霉烯酮的测定 液相色谱-质谱/质谱法》DBS22/017-2013 《食品安全地方标准 柑橘类水果及其饮料中橘红 2 号的测定高效液相色谱法》DBS22/018-2013 《食品安全地方标准 鲜(冻)畜肉中鸭源性成分的定性检测PCR 方法》DBS22/003-2012《食品安全地方标准 生牛乳中雄激素的测定气相色谱-质谱法》DBS22/004-2012 《食品安全地方标准 植物油中胆固醇的测定气相色谱-质谱法》DBS22/008-2012 《食品安全地方标准 乳与乳制品中 L-羟脯氨酸的测定》吉林省卫生健康委员会2023年10月8日
  • Cell:无丝氨酸饮食,也许是对抗最致命胰腺癌的法宝
    一项研究发现,胰腺癌细胞通过向神经发出信号来避免饥饿,信号传递给神经,就会分泌营养,促进肿瘤生长。这是一项针对癌细胞,小鼠和人体组织样品进行的实验结果,相关论文发表在11月2日的Cell杂志上。胰腺导管腺癌(PDAC),也就是最致命的胰腺癌,五年生存率低于10%。此类肿瘤会促进压迫血管的致密组织的生长,从而减少诸如丝氨酸之类的血源性营养物质的供应。这种氨基酸是蛋白质的基本组成部分,也是癌细胞增殖所必需的。纽约大学格罗斯曼医学院等处的研究人员发现,饥饿的胰腺癌细胞会分泌一种叫做神经生长因子的蛋白质,该蛋白质向神经细胞发送信号,指导它们进入肿瘤,进一步发现这些轴突能分泌丝氨酸,帮助胰腺癌细胞避免,饥饿并恢复其生长。文章通讯作者,纽约大学Alec Kimmelman博士说,“神经将营养从血液中转移到胰腺肿瘤微环境中,这是一种一种令人着迷的适应能力,也许可以通过干扰这种特性来研发治疗方法。”研究发现,饥饿的丝氨酸胰腺癌细胞利用了将mRNA链(DNA指令的副本)翻译成蛋白质的过程。密码子将mRNA分子链的骨架解码为氨基酸,核糖体会读取每个密码子,让它们以正确的顺序将氨基酸连接在一起,但是如果缺少可用的氨基酸,核糖体就会失速。出乎意料的是,研究小组发现,丝氨酸饥饿的胰腺癌细胞显著降低了六个丝氨酸密码子中的两个(TCC和TCT)被翻译成氨基酸链的速度。在丝氨酸饥饿的情况下,这种变异性使癌细胞将某些蛋白质的产生减至最少(以保持饥饿时的能量储存),但继续建立诸如神经生长因子(NGF)之类的压力适应性蛋白质,而这种蛋白质恰好由少数TCC编码和TCT密码子。之前的研究NGF和其他因素会刺激神经生长成胰腺肿瘤,促进肿瘤生长。而最新研究是第一个表明轴突,即传递信号的神经元细胞的延伸,能通过在营养缺乏的区域分泌丝氨酸来为癌细胞提供代谢支持。一项2016年的研究表明,此类细胞向附近的星状细胞发送信号,导致它们将自己的细胞部分分解为可被肿瘤利用的构件。然后2019年12月进行的一项研究发现,胰腺癌细胞还劫持了一个称为巨胞饮作用的过程,正常细胞利用该过程通过其外膜吸收营养。有趣的是,这项新研究发现星状细胞和巨胞饮作用不能为这些癌细胞提供足够的丝氨酸生长,还是需要轴突递送。这项研究指出,喂食无丝氨酸饮食的PDAC肿瘤小鼠的肿瘤生长速度降低了50%。为了超越单纯饮食所能达到的效果,研究人员还使用美国FDA已经批准的一种名为LOXO-101的药物来阻止轴突进入PDAC肿瘤。该药物阻断与神经生长因子(也称为TRK-A)相互作用的神经元表面受体蛋白的活化,从而抑制神经元将其轴突送入肿瘤的能力。这组作者说,仅使用这种药物并不能减慢小鼠中PDAC肿瘤的生长,但是与单独使用饮食相比,与无丝氨酸饮食结合时,它可以使PDAC的生长速度进一步降低50%。研究人员说,这表明神经对于支持丝氨酸剥夺的肿瘤区域中的PDAC细胞生长是必要的。文章一作Robert Banh说:“由于TRK抑制剂已被批准用于某些癌症的治疗,因此在手术后大约40%不能产生丝氨酸的PDAC肿瘤患者中,它们可能与低丝氨酸饮食联合,这种方法是否可以通过限制营养供应来减少肿瘤复发,还需要在临床试验中证实。”
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》征求意见稿
    国家标准计划《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 四川威尔检测技术股份有限公司 、中国农业科学院农业质量标准与检测技术研究所[国家饲料质量监督检验中心(北京)] 、通威股份有限公司 。附件:国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》编制说明.pdf国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》征求意见稿.pdf
  • 岛津应用:应用蛋白质测序仪PPSQ-53A测定N-末端部分甲硫氨酸缺失的蛋白质类药物的N-末端氨基酸序列
    生物体在合成蛋白质时,N-末端首位的甲硫氨酸在蛋白质加工过程中可能被酶切除。本文以蛋白质类药物重组人粒细胞巨噬细胞刺激因子注射液原液为例,演示了应用蛋白质测序仪PPSQ-53A进行N-末端甲硫氨酸部分缺失的蛋白质分析的方法和结果。本应用蛋白质测序仪PPSQ-53A测定了发生N-末端部分甲硫氨酸切除的蛋白质类药物重组人粒细胞巨噬细胞刺激因子的-N未端前16个氨基酸的序列,结果与理论序列一致。除了氨基酸定性,根据信号峰强度,可以粗略估计样品N-末端甲硫氨酸的缺失比例。以上表明应用PPSQ-53A可以测定N-未端部分甲硫氨酸缺失的蛋白质的N-末端氨基酸序列。可作为此类生物药物样品分析时的参考。 ?了解详情,敬请点击《应用蛋白质测序仪PPSQ-53A测定N-末端部分甲硫氨酸缺失的蛋白质类药物的N-末端氨基酸序列》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • Agela Venusil AA HPLC法测定"皮革奶"中羟脯氨酸
    方法摘要: Venusil AA 氨基酸分析的原理为目前广泛使用的PITC(异硫氰酸苯酯)衍生法。经过简化后的衍生方法有很多优点:方便、快速;衍生物单一、稳定,-20℃可贮存数月;采用Venusil AA 柱分析时间短;结果准确;试剂、副产物、溶剂等多种干扰因素可通过快速萃取去除;紫外检测(254nm)灵敏度高。样品:取某品牌牛奶0.5g,按照博纳艾杰尔氨基酸分析方法包进行水解衍生,并取混合氨基酸标准溶液(准确量取氨基酸标准溶液1.0 mL,置于5mL容量瓶中,加0.1mol/L盐酸溶液定容至刻度)加内标正亮氨酸,然后进行衍生。(异硫氰酸苯酯为衍生剂)色谱柱:Agela Venusil AA,4.6×250mm,5µ m,100Å (订货号:VA952505-K)流动相:A:称取15.2g无水醋酸钠,加水1850mL,溶解后用冰醋酸调pH至6.5,然后加乙腈140mL,混匀,用0.45µ m滤膜过滤。B:80%(V/V)乙腈溶液 时间 流动相A 0 0 2 0 15 10 25 30 33 45 33.1 100 39 100 39.1 0 45 0 流速:1.0mL/min进样体积:10μL温度:40℃波长:254nm Agela Venusil AA HPLC法测定牛奶中羟脯氨酸混和标准品图谱 (6.50min为羟脯氨酸) Agela Venusil AA HPLC法测定牛奶中羟脯氨酸图谱(6.51min为羟脯氨酸) 技术咨询请拨打18622038116
  • 迪马科技发布乳制品中L-羟脯氨酸的测定方法
    皮革水解蛋白是由皮革废料或动物皮毛、脏器等水解生成的一种蛋白粉,将其掺入牛奶或奶粉中可提高蛋白质的含量。对于乳与乳制品中皮革水解蛋白的鉴定,主要是通过对L-羟脯氨酸含量的测定。L-羟脯氨酸是胶原蛋白(皮革水解蛋白)特有的氨基酸,在乳酷蛋白中则没有,所以一旦检出,则可认为含有皮革水解蛋白,即为&ldquo 皮革奶&rdquo 。迪马科技应用实验室提供两种L-羟脯氨酸衍生方法,利用氨基酸分析柱,对L-羟脯氨酸进行分析检测,可根据实际情况进行选择。 详细检测方法:乳制品中L-羟脯氨酸的测定 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 采用电位滴定法快速、准确地测定方便面酱包中的谷氨酸钠含量
    谷氨酸钠作为调味品在人类的饮食生活中是不可或缺的,通常对原料的检测,采用高氯酸非水溶液滴定法,即以a-萘酚苯基甲醇作为指示剂,滴定溶液至绿色为其终点。 此外,也有采用高氯酸指示剂滴定法测定鸡精中谷氨酸钠含量,但对于指示剂的选择使用有严格要求,并且不同的样品有可能会影响指示剂的终点判定。如果采用禾工CT-1Plus全自动电位滴定仪和PH值非水相电极对方便面酱包中的谷氨酸钠含量进行测试,就可以有效地排出了对指示剂的选择使用要求及用指示剂法进行滴定时基本产生的终点判定干扰。 CT-1PLUS多功能全自动滴定仪可以根据滴定过程中电极电位的变化来自动确定终点,对于电位变化不明显的反应,也可自动根据摄像头采集的颜色变化来自动判断滴定终点,大大简化和降低的认为的操作和判断误差,提高的测试的准确性。 利用电位滴定法能快速、准确地测定方便面酱包或其它调料包中的谷氨酸钠含量,对科研开发及方便面生产厂家在线监测具有较强的实际应用价值。
  • AKF-CH6卡尔费休水分仪在L-丙氨酸水分测定中的精确应用
    在生物化学与医药研究领域,L-丙氨酸作为构成人体蛋白质的重要氨基酸,其品质直接影响着其在营养补充、医药合成等应用中的效果。水分含量是评价L-丙氨酸纯度的关键指标之一,过高的水分不仅会影响其稳定性,还可能导致产品质量下降。因此,采用精确的水分测定技术对L-丙氨酸进行质量控制至关重要。本文介绍了一项应用AKF-CH6卡尔费休水分仪测定L-丙氨酸水分含量的实验,展示了该仪器在精细化学分析中的高效与精确性。 精密配置,确保测量准确实验采用的AKF-CH6卡尔费休水分仪,配备了全封闭安全滴定池组件、双铂针电极和隔膜电解电极,这一组合设计确保了在进行水分测定时的高精度与安全性。卡尔费休库仑法试剂的使用,进一步提升了检测的灵敏度,即使微量水分也能准确捕捉。 高效测定流程,优化操作体验实验过程中,通过选择固体样品测试方法,加热温度(150℃)和通气流量(25mL/min),确保样品在适宜条件下充分释放水分。自动电解档位与稳定的搅拌速度(5转/分钟)保证了滴定过程的平稳与高效。操作简便,仅需将称量好的样品放入进样瓶,放置于加热槽中,点击开始测量与穿刺按钮,系统即自动进行测定,大大节省了时间与人力。 数据准确,结果可靠在26.2℃的环境温度与51.1%的环境湿度条件下,测试时间仅为10分钟,显示了AKF-CH6卡尔费休水分仪的高效性。通过三次平行测试,得到了水质量分别为585.67ug、549.09ug和546.22ug,对应测试结果为335.2ppm、322.8ppm和328.4ppm。计算平均值,样品水分含量约为328.8ppm,显示了测定结果的稳定性和高重复性。序号样品量/g水质量/ug测试结果/ppm平均值/ppm10.5927585.67335.2 328.820.5021549.09322.830.4849546.22328.4AKF-CH6卡尔费休水分仪在L-丙氨酸水分含量测定中的应用,不仅展现了其在生物化学领域测定水分的高精度与快速响应能力,还凸显了仪器设计的实用性和操作的便捷性。通过该仪器的精确测定,能够有效控制L-丙氨酸的水分含量,确保其在后续应用中的稳定性和质量,对提升产品品质、促进医药及营养品行业发展具有重要意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制