当前位置: 仪器信息网 > 行业主题 > >

磷酸胆碱

仪器信息网磷酸胆碱专题为您提供2024年最新磷酸胆碱价格报价、厂家品牌的相关信息, 包括磷酸胆碱参数、型号等,不管是国产,还是进口品牌的磷酸胆碱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磷酸胆碱相关的耗材配件、试剂标物,还有磷酸胆碱相关的最新资讯、资料,以及磷酸胆碱相关的解决方案。

磷酸胆碱相关的资讯

  • 婴幼儿乳粉中胆碱的测定等7项国家标准审查会召开
    12月20日,受全国食品安全管理技术标准化技术委员会(SAC/TC313)、全国乳制品标准化技术委员会SAC/TC433和全国食品工业标准化技术委员会食品通用检测技术分技术委员会(SAC/TC64/SC8)的委托,吉林省质量技术监督局在长春主持召开了婴幼儿乳粉中胆碱的测定等7项国家标准(送审稿)审查会。   会上,标准审查委员会听取了标准编制组国家标准送审报告和征求意见稿反馈意见的处理意见汇报,查看了送审资料,并对标准送审稿中重要内容的编制依据和成熟度进行了认真审查,经充分讨论和协商,专家一致认为这7项标准的编制工作符合国家标准编制程序,提供的审查资料齐全、内容翔实,试验验证数据准确,送审稿达到了科学性、先进性、协调性和可操作性的要求,并在诸多方面具有重要创新。   据专家介绍,这7项标准项目主要涉及婴幼儿乳粉、燕窝等食品主要营养成分测定、植物源性食品农残含量测定、植物毒素含量测定、动物源性食品药残含量测定等食品质量和食品安全检测方法国家标准的研究制定,具有技术含量高、采标率高、覆盖范围广等特点,部分标准技术指标达到甚至超过国际标准,达到了国际先进水平,填补了国内空白。这些标准的发布和实施将为提高我国食品检测效率,及时应对食品安全突发事件,维护广大消费者的利益,保护消费者身体健康,提供科学依据和技术支撑。同时,也将促进食品工业技术进步,为我国农产品、食品生产企业应对国外技术性贸易壁垒,提升出口产品质量,提高产品国内外市场竞争力提供强有力的技术保障。   同时,这7项国家标准的制定也对完善我国的食品检测标准体系具有积极意义。不仅填补了国内食品质量安全检测方法标准空白,而且部分标准技术指标达到甚至高于国际标准,达到了国际先进水平。   相关链接   《婴幼儿乳粉中胆碱的测定-离子色谱法》《食品中胆碱的检测-液相色谱法》《燕窝及其制品中唾液酸含量的测定-液相色谱法》《大豆和花生中稀禾定的测定液相色谱/液相色谱-质谱/质谱法》《粮食、水果中戊唑醇残留量的测定—气相色谱-质谱法》《动物源性食品中庆大霉素、链霉素的测定液相色谱柱后衍生荧光法》《豆类食品中胰蛋白酶抑制剂活性的测定》7项国家标准项目2007年列入了国家标准制修订项目计划。   根据国家计划,这7项标准的起草制定工作由国家农业深加工产品质量监督检验中心暨吉林省产品质量监督检验院承担。   项目承担单位经过充分的调研、试验论证等前期工作,起草并形成了国家标准征求意见稿,在相关归口的国家专业标准化技术委员会、分技术委员会的支持下,在全国范围内进行了广泛的征求意见,完成了这7项国家标准送审稿。   审查会后,编制组将依据审查会专家提出的意见和建议,作进一步修改后形成报批稿。
  • CAIA标准《乙酰胆碱酯酶 活性检测 分光光度法》将于12月1日实施
    10月25日,中国分析测试协会发布《乙酰胆碱酯酶 活性检测 分光光度法》CAIA标准,于12月1日实施。据悉,此标准由中国分析测试协会标准化委员会和中国材料与试验团体标准委员会科学试验领域委员会提出;由中国分析测试协会标准化委员会和中国材料与试验团体标准委员会科学试验领委员会科学试验创新方法技术委员会归口;由北京市科学技术研究院分析测试研究所、吉林大学、广东省科学院测试分析研究所、长春吉大小天鹅仪器有限公司、盘锦检验检测中心、广州市食品检验所六家单位为起草单位。文件规定了用分光光度法测定乙酰胆碱酯酶活性的方法,适用于有机磷与氨基甲酸酯类农药残留检测专用试剂中乙酰胆碱酯酶活性的测定。 具体内容详见附件:《乙酰胆碱酯酶 活性检测 分光光度法》.pdf更多内容:《中国分析测试协会标准》团体标准合集
  • 我国磷酸化蛋白质组分析技术获得新进展
    在国家自然科学基金的大力支持下(项目资助号:21021004),中国科学院大连化学物理研究所邹汉法研究员在磷酸化蛋白质组分析技术方面获得新进展,相关成果发表在最近一期的Nature Protocols上(2013,8,461-480)。(http://www.nature.com/nprot/journal/v8/n3/abs/ nprot.2013.010.html)。   固定化金属离子亲和色谱(IMAC) 是磷酸化蛋白质组学研究中最常用的磷酸化肽段富集技术之一,常规的IMAC使用的螯合基团有三羧甲基乙二胺、次氨基乙酸、亚氨基二乙酸等,在螯合铁、镓等金属离子后可用于磷酸肽的富集。其缺点是特异性不高,在富集磷酸肽的同时也富集了一些酸性肽。研究人员发现了磷酸酯锆或钛表面与磷酸肽之间的高特异性相互作用,并利用这一相互作用建立了以磷酸基团为螯合配体的新一代固定化金属离子亲和色谱技术。实验表明,该新型IMAC对磷酸肽富集的特异性优异,可以有效避免酸性肽段的非特异性吸附。与传统的IMAC相比较,其对磷酸肽的富集能力提高3-10倍,从而大大提高了蛋白质磷酸化分析的检测灵敏度和鉴定覆盖率。该新型IMAC方法自2006年发表首篇论文以来,已在Mol. Cell. Proteomics, J. Proteome Res., Anal. Chem.等蛋白质组学与分析化学权威期刊发表论文20余篇,其中2007年发表在Mol. Cell. Proteomics的一篇论文已经被引用110余次。采用该方法为核心技术进行了人类肝脏蛋白质磷酸化的规模化分离鉴定,建立了迄今为止国际上人类肝脏蛋白质磷酸化的最大数据集 (Mol. Cell. Proteomics,2012,11,1070-1083)。
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1. Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics ofGlycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2. Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3. Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 磷酸化蛋白,液体活检全新维度——访北美华人质谱学会主席陶纬国教授
    p    span style=" font-family: 楷体,楷体_GB2312, SimKai " 回顾2017年,基于质谱的临床研究有一项突破性发现。普渡大学陶纬国教授团队在2017年3月20日的《美国国家科学院院刊》(PNAS)杂志上发表文章称,他们从人体血液中发现2400多种磷酸化蛋白。该发现首次证明了磷酸化蛋白可以作为基于液体活检的疾病标志物,能用于对癌症等重大疾病更早、更精准的非侵入性诊断,为 “液体活检”提供了全新的检测维度。近日,仪器信息网专访了陶纬国。 /span /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/a21a903c-0479-4776-9e2a-5b5c719f76fc.jpg" / /p p style=" text-align: center " strong 普渡大学 陶纬国教授 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 磷酸化蛋白突破性发现 /strong /span /p p   通过液体活检来诊断肿瘤和癌症等疾病一直是临床科学家关注的焦点,研究对象多集中在循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA),但是二者都有局限性:由于CTC在血清中的浓度非常低,取少量血液对其检测难度很大 癌症有很多基因突变,而这些突变不一定会显现出来,因此基于ctDNA进行的液体活检的诊断结果只能预测患病的概率,并不能确诊。 /p p   蛋白质磷酸化是调节和控制蛋白质活力和功能的最基本,最普遍,也是最重要的机制,同时,与许多疾病的发生密切相关。在众多肿瘤致病机理中,当前学术界对蛋白质磷酸化机理的研究最为清楚,80%-90%的癌症都跟蛋白质磷酸化有关。因此,许多抗肿瘤药物的研制都着眼于磷酸化蛋白。理论上,磷酸化蛋白作为相关基因突变的表达,在临床上能够帮助医生做出更明确的诊断。但是,有关基于液体活检的磷酸化蛋白研究还很少。此前,有个别报道在血液中发现几十种磷酸化蛋白,均是高丰度蛋白,生物学意义不大。“原因就是磷酸化蛋白一旦从细胞进入血液中就被肝脏分泌的磷酸酶水解了。”陶纬国解释说,“所以虽然磷酸化蛋白跟癌症关系非常密切,但人们无法对其进行检测。” /p p   陶纬国团队是如何从人体血液中检测到大量磷酸化蛋白的呢?这要从三年前的一篇文献报道说起,当时陶纬国从这篇文章中了解到外泌体和微囊的结构,“当我看到类似于纳米微粒的外泌体、微囊结构时,我认为可能会有磷酸化蛋白被包裹在外泌体中,然后进入血液。如果真是这样,被外泌体包裹的磷酸化蛋白可能会避免被血液中的磷酸酶水解。”于是陶纬国团队对血液中的外泌体、微囊进行了超速离心分离、提取,然后用质谱进行检测。一周以后,实验结果让所有人都惊呆了,他们从中发现了几千个磷酸化蛋白。这个突破性的发现使得临床科学家们今后可以在1毫升血浆里找到几千个磷酸化的位点,并从中筛选出不同疾病的生物标志物。之后,陶纬国团队对乳腺癌病人血清中的磷酸化蛋白做了研究,发现乳腺癌病人体内的磷酸化蛋白与其病症密切相关。 /p p   那么,磷酸化蛋白液体活检何时能够应用临床呢?陶纬国回答说:“虽然现在还不好断言,但我认为3-5年内都有可能。”他进一步解释,随着质谱技术的显著提升,一些原来检测不到的生物标志物现在能够检测了,后面的工作主要是考察重复性有多好,假阳性有多低。 /p p   谈及未来的工作,陶纬国表示,一方面会继续做乳腺癌的磷酸化蛋白生物标志物确认的工作 另一方面也会做其他疾病磷酸化蛋白生物标志物找筛的工作,“还有很多其它疾病,比如阿尔茨海默病、帕金森综合征等,也都是蛋白磷酸化有关。” /p p    span style=" color: rgb(255, 0, 0) " strong 质谱用于生物大分子检测的思考 /strong /span /p p   陶纬国教授做蛋白组学研究至今已有十几年,用到的研究工具主要是质谱。在攻读博士期间,陶纬国师从普渡大学著名质谱专家Graham Cooks教授。博士毕业后,陶纬国加入了西雅图系统生物研究所,在Leroy Hood教授(自动DNA测序仪发明人)和Ruedi Aebersold教授(著名蛋白质组学专家)课题组继续博士后研究。从那时起,陶纬国就开始了他的磷酸化蛋白质组学检测的研究,“重回普渡教书以后,我的工作基本上是围绕着怎么去提高磷酸化蛋白分析手段来开展的。质谱在我的工作扮演着中心角色,包括方法开发,蛋白生物标志物早筛,全靠质谱来做。”首先是早筛,用质谱(Orbitrap)筛选出相关的生物标志物(磷酸化蛋白) 然后对病人的样本进行检测,用统计学的方法对检测结果进行分类 最后,分析统计学上有意义的、跟病人相关的磷酸化蛋白。 /p p   在过去二三十年里,质谱在生物大分子检测方面有几个重要的技术突破。首先,80年代末90年代初, ESI和MALDI的出现,使质谱能够用于分析生物样品 第二,近十几年来,高分辨质谱的飞跃发展,大大提升生物大分子的分析效率。“我读博士后时(2002年),很多仪器还是低分辨的,生物样品还是挺难做的,做完一个磷酸化的蛋白,单是数据库检索就要三天,而且,相对来说,得到的数据假阳性高。现在的高分辨质谱解谱很容易,差不多半个小时就够了,假阳性也降低很多。”此外,陶纬国还说到,“UPLC与质谱的结合在技术上是很大的进步,使色谱的分离效率赶上了质谱的速度,现在一个小时能检测到几千个蛋白,非常快。” /p p   同时,陶纬国也指出了目前利用质谱来检测生物大分子的难点。第一,生物样品基体复杂。“像我们实验室做磷酸化蛋白,它本身丰度就很低,假如样本不经过任何分离的话,谱图上将会只能看到高丰度蛋白。”第二,质谱检测假阳性比较高。“其实还是需要统计学算法方面的开发,来解决假阳性率高的问题,这也是现在很多质谱开发者在做的工作。” /p p   现如今质谱产品更新迭代非常快,对于质谱工作者来说,是好,也是坏。“新产品的确扫描速度更快了,精度更高。但是,也给质谱工作者带来了不小的压力。特别是像我们这种使用高分辨大仪器的,没有那么多钱换来换去。可是如果你想要紧跟前沿,这些新仪器又十分必要。”陶纬国说,这是目前质谱工作者普遍面临的两难境地。 /p p    span style=" color: rgb(255, 0, 0) " strong 整合临床大数据 /strong /span /p p   2017年,陶纬国作为海外高层次人才被东南大学引进回国。谈及回国的初衷,陶纬国表示,国内拥有更多、更丰富的病人样本,这是他选择回国的原因之一。此外,国内对于高分辨质谱等大型仪器的投入力度也更大,有助于前沿研究的开展。谈到选择东南大学的原因,陶纬国说到:“东南大学的生物医学工程学院有转化医学,有生物,然后又有工程,包括产业化,比较适合我。” /p p   现在国内,整合医学大数据来服务大健康的概念很热,“在全国,包括南京,都已经有相关工作在开展”。从临床检测这个角度来说,陶纬国希望找到办法来整合DNA检测,microRNA检测,磷酸化蛋白检测几个维度的数据,从而获得更为精准的临床诊断结果。“比如检测一个肿瘤,通过对DNA、mRNA、磷酸化蛋白、糖基检测多维度数据的不断积累,数据会越来越多,结合人工智能、计算机算法,检测结果会越来越精准。 我回来能赶上这个机会也是不容易。”陶纬国如是说到。 /p p   目前,医学大数据的采集方式主要为第二代、第三代测序。“但是,质谱也是很重要的一块儿。”陶纬国指出,“比如乳腺癌,基因突变仅仅代表一种患病的可能性,但是到底有没有癌症还是要通过蛋白检测来确定,所以用质谱来检测蛋白的存在、活性、功能,比基因层面更可靠。所以,质谱检测肯定会慢慢跟上来。” /p p   陶纬国在东南大学生物医学工程学院的新实验室是电子生物国家重点实验室。对于自己的工作重心,陶纬国表示,现在是过渡时期,未来会逐步将重心转至国内。“国内实验室刚刚开始,看起来前途光明。” /p p   span style=" color: rgb(255, 0, 0) " strong  热衷学界公益事务 出任CASMS主席 /strong /span /p p   作为质谱生物大分子检测方面的专家,陶纬国于2017年6月份当选北美华人质谱学会(CASMS)主席。该学会汇聚了众多顶尖的华人质谱学者,已经成为质谱学界重要的华人力量。在一年一度的“美国质谱年会(ASMS)”期间举行“北美华人质谱学术会议”已经成为CASMS的传统。据陶纬国介绍,CASMS已有二三十年的历史,目前注册人数在800人左右,覆盖了北美地区绝大部分优秀的华人质谱学者。ASMS每年参会人数6000-7000人,相当一部分是华人,中国面孔越来越多。“在美国,有很多华人学者做了非常出色的工作,但他们并没有获得相匹配的影响力和威望。” 陶纬国说,“我们学会的宗旨就是提升华人质谱学者在世界质谱领域的影响力。当然, 中国本身的国际地位的重要性是显而易见的。” /p p   CASMS的另一个宗旨是促进世界华人质谱界的互相交流。每两年召开一次的“世界华人质谱学术研讨会”是全世界华人的质谱盛会,汇聚了中国内地、台湾、香港、新加坡和北美地区的质谱学者,CASMS是该会议4个主办方之一。2016年,CASMS主办了第六届“世界华人质谱学术研讨会”,这是该会议首次在美国召开,恰逢该会议召开十周年。“我认为非常有意义,促进了两岸三地华人质谱学者的交流合作。我的亲身体会是通过这个会议结识了很多优秀学者,而在此前很多同仁相互间是不认识的。” /p p   未来,除了重要的线下会议组织工作,陶纬国希望通过加强线上日常交流,来使学会内部联系更为紧密。 /p p    span style=" font-family: 楷体,楷体_GB2312, SimKai " strong 后记: /strong 临床质谱技术被认为是医学诊断的下一个“基因测序”,应用前景被普遍看好。质谱用于临床检验具有灵敏度高、特异性高、重现性好的优点,可在临床多个领域对传统诊断方法学进行替代。陶纬国教授团队的磷酸化蛋白研究进一步提升了临床质谱应用的含金量。基于该研究,临床科学家们将会找到更多可靠的疾病标志物,从而实现癌症等重大疾病的早期发现和精准诊断。 /span /p p style=" text-align: right " 采访编辑:李博 /p
  • 遗传发育所在植物磷酸化蛋白质组学技术研发方面获进展
    蛋白质磷酸化是在激酶催化下将磷酸基团转移到底物蛋白质上的可逆过程,是能够调控蛋白质结构与功能且参与细胞内信号转导的重要翻译后修饰,在植物的生长、发育、环境适应以及作物的产量和品质调控中发挥着重要作用。深度解析磷酸化蛋白质组,是探讨磷酸化如何参与这些生物学过程以及筛选与作物重要农艺性状相关的关键磷酸化靶点的有效手段。然而,与动物相比,植物磷酸化蛋白质组的深度解析在技术上更具挑战性。这是由于植物细胞具有致密的细胞壁和大量的色素以及其他次生代谢物。前者增加了蛋白质提取的难度,而后者干扰了磷酸肽富集的效率和特异性。 中国科学院遗传与发育生物学研究所汪迎春研究组通过探索一系列的实验条件,研发出高效的植物磷酸化蛋白质组学新技术。该技术的主要特点是利用脱氧胆酸钠高效抽提植物蛋白,同时消除常规方法中导致样品损失和灵敏度降低的两个步骤,即在蛋白酶消化前的样品净化和在磷酸肽富集前的脱盐处理,在色素与其他干扰分子共存的情况下进行高特异性、高灵敏度地磷酸肽富集。 科研人员应用这一方法,在拟南芥、水稻、番茄和衣藻等绿色生物的组织中高效纯化磷酸化蛋白质组(单针质谱可鉴定约11,000个磷酸位点)。由于该技术主要面向高等植物及其他绿色生物(如衣藻),且操作简便,降低了实验所需的人力和试剂费用,因此命名为GreenPhos。GreenPhos可定量分析不同植物的磷酸化蛋白组,分析深度深、定量重复性高,有望成为植物磷酸化蛋白组学的通用技术。研究人员应用该技术,深度解析了拟南芥响应不同时长盐胁迫的差异磷酸化蛋白质组,发现了包括剪接体蛋白和一些激酶响应盐胁迫的磷酸化事件。 11月27日,相关研究成果在线发表在《分子植物》(Molecular Plant,DOI:10.1016/j.molp.2023.11.010)上。研究工作得到国家重点研发计划与中国科学院战略性先导科技专项的支持。中国科学院植物研究所的科研人员参与研究。GreenPhos工作流程及多种绿色生物磷酸化蛋白质组鉴定结果
  • 张玉奎院士、张丽华研究员团队蛋白质组学最新成果:N-磷酸化蛋白质组的深度覆盖分析新方法
    仪器信息网讯 近日,中国科学院大连物理研究所生物分子高效分离与表征研究组(1810组)张丽华研究员和张玉奎院士团队,蛋白组组学分析最新成果发表于《自然-通讯》(Nature Communications)上。团队发展了N-磷酸化肽段高选择性富集新方法,并结合肽段的高效分离和高灵敏度鉴定,实现了N-磷酸化蛋白质组的深度覆盖分析。  与研究相对深入的发生在丝氨酸、苏氨酸和酪氨酸侧链氨基上的蛋白质O-磷酸化修饰相比,发生在蛋白质组氨酸、精氨酸和赖氨酸上的N-磷酸化修饰,由于P-N酰胺键具有较高的吉布斯自由能,且易发生水解,目前仍缺乏有效的N-磷酸化蛋白质组分析方法,制约了人们对其生物学功能的认识。  团队研制了具有核壳结构的亚二微米硅球,并通过在硅球表面键合双二甲基吡啶胺双锌分子,在中性条件下实现了N-磷酸化肽段的高效、高选择性、快速富集 通过基于该材料的on-tip富集方法和液质联用分离鉴定的结合,不仅从HeLa细胞中鉴定到3384个N-磷酸化位点(目前最大的哺乳动物N-磷酸化数据集),而且还发现N-磷酸化位点附近亮氨酸高度表达 建立的N-磷酸化蛋白质组分析新方法不仅为深入研究其生物学功能提供了基础数据,而且也为推动精准医学、合成生物学等领域的发展提供了技术支撑。  上述工作得到国家自然科学基金、国家重点研发计划、中科院大连化物所创新基金等项目的资助。文章链接:《自然-通讯》(Nature Communications)。
  • 我国科学家研发新型传感器实现土壤磷酸盐现场连续监测
    中国科学院合肥物质科学研究院、中科合肥智慧农业协同创新研究院与安徽理工大学团队合作,研发了用于土壤磷酸盐现场连续监测的电化学微流体系统。相关研究成果日前发表于《IEEE传感器杂志》。磷是影响农作物生长和代谢的最重要营养物质之一。土壤中磷酸盐含量低会导致土壤肥力下降、作物生长缓慢且产量下降。磷酸盐含量过多时,未被吸收的磷元素会通过地表径流进入水体,导致水体富营养化。因此,对土壤中磷酸盐含量现场连续监测是农业生产中实时获取养分必不可少的一个环节,对调整当地施肥策略、提高农作物产量和质量具有现实意义。目前,土壤磷酸盐的传统实验室检测设备不仅操作复杂,而且因体积过大不易用于现场监测,难以实现连续监测。电化学分析因其高灵敏度、高特异性、快速响应、低成本和可集成性等优点,在磷酸盐测定中得到了广泛应用。但是传统电化学传感器仅能进行单次磷酸盐测定,难以满足现场连续土壤磷酸盐监测的要求。为实现土壤磷酸盐的现场监测,研究团队将电化学传感技术和微流控系统有机结合,成功研发出一种新型高灵敏、高稳定性、便携式及易于操作的土壤磷酸盐连续监测系统。该系统集成试剂现场流动反应,用于土壤磷酸盐的现场连续监测,具有成本低、操作简便、实时性强的优势。团队采用新型土壤磷酸盐传感系统进行了一系列检测验证实验,发现该传感系统具有良好的便携性、抗干扰性、可重复性,使用寿命长,磷酸盐回收率高达91.1%至110.48%,可成功应用于实际土壤环境中的磷酸盐连续测定,在田间精细化养分管理方面具有很大潜力。
  • 食药监局征求化妆品禁用组分修订意见
    各有关单位:   根据《化妆品卫生规范》(2007年版)规定,胆碱盐类及它们的酯类属于禁用组分,由于化妆品生产的需要,基于安全风险评估的原则,参照国外相关资料,经组织专家论证,拟对禁用组分“胆碱盐类及它们的酯类”作如下修订:   一、禁止使用的胆碱盐类及它们的酯类:氯化胆碱、菲诺贝特胆碱(choline fenofibrate)、胆碱水杨酸盐、胆碱葡萄糖酸盐、胆茶碱、硬脂酸等长链烷烃羧酸胆碱酯、甲基胆碱及其盐和酯等。   二、非禁止使用的胆碱盐类及它们的酯类:卵磷脂(Lecithin)、甘油磷酸胆碱(Glycerophosphocholine)、氢化溶血卵磷脂酰胆碱(Hydrogenated lysophosphatidylcholine)、氢化磷脂酰胆碱(Hydrogenated phosphatidylcholine)、磷脂酰胆碱(Phosphatidylcholine)。   三、其它胆碱盐类及它们的酯类原料需按《化妆品卫生规范》(2007年版)要求,经安全风险评估后,确定是否可以使用。申请人提交的有关安全性风险评估资料还应该包括原料规格、纯度、结构式、分子量范围、残余单体和杂质的种类及残留量。   现公开征求意见,请将修改意见于2009年12月28日前反馈国家食品药品监督管理局食品许可司。   联 系 人:曹蕊 陈少洲   联系地址:北京市西城区北礼士路甲38号,邮编:100810   联系电话:010-88330452/0405   传 真:010-88373268 电子邮件:caorui217@yahoo.com.cn;chensz@sfda.gov.cn
  • 《硅酸根在线监测仪》《磷酸根在线监测仪》两项团体 标准送审稿审查会顺利召开
    2022年3月14日,中国仪器仪表行业协会组织专家以视频会议形式召开了《硅酸根在线监测仪》《磷酸根在线监测仪》团体标准送审稿审查会,来自中国仪器仪表行业协会分析仪器分会、大唐东北电力试验研究院有限公司、北京理化分析测试中心、中电华创电力技术研究有限公司、华电电力科学研究院有限公司东北分公司、吉林大学、中电投东北能源科技有限公司、西安热工研究院有限公司、雪迪龙科技股份有限公司的九位专家组成评审组。中国仪器仪表行业协会分析仪器分会秘书长曾伟担任评审组组长,中国仪器仪表行业协会副秘书长程红主持会议。 项目牵头单位-北京华科仪科技股份有限公司对标准情况进行了汇报,专家组对标准内容逐条进行了审查,提出了宝贵的修改意见和建议。最后,专家组一致认为《硅酸根在线监测仪》《磷酸根在线监测仪》两项团体标准所确立的技术指标合理、功能要求适用、试验方法符合实际。专家组通过了《硅酸根在线监测仪》《磷酸根在线监测仪》送审稿审查,并希望起草工作组尽早完成修改,报批实施。
  • 2013食品国标制(修)订项目承担单位公布
    2013年5月2日,国家卫计委印发《2013年食品安全国家标准项目计划》的通知,通知中列出了所有2013年食品安全国家标准计划项目承担单位,全文如下:   国家卫计委关于印发《2013年食品安全国家标准项目计划》的通知   卫办监督函〔2013〕359号   各有关单位:   根据《食品安全法》和《食品安全国家标准管理办法》规定,我委在向社会公开征求意见的基础上制定了《2013年食品安全国家标准项目计划》,现印发给你们,请认真组织落实。有关工作要求如下:   一、填报项目委托协议书,及时落实食品安全国家标准项目计划   2013年食品安全国家标准计划项目承担单位应当填写《2013年食品安全国家标准制(修)订项目委托协议书》(可从卫生计生委网站http://www.moh.gov.cn下载),打印后由承担单位负责人签字并加盖单位公章(一式五份),于2013年5月20日前报送食品安全国家标准审评委员会秘书处(以下简称秘书处)。逾期未提交协议书的,视为自动放弃标准起草单位和起草人资格。秘书处对协议书进行审核后,于2013年5月31日前报送我委。   二、加强日常管理,确保食品安全国家标准项目及相关经费按时保质执行   (一)项目承担单位和项目负责人要加强食品安全国家标准制定、修订工作的管理,保证项目质量和进度,请于2013年12月30日前向秘书处提交工作中期进展报告和经费使用情况报告,于2014年6月30日前完成任务,向秘书处提交送审材料和经费决算报告。经费决算报告由财务负责人和单位负责人签字并加盖公章。   (二)未按期完成任务提交送审材料的,项目承担单位和项目负责人应当提交说明,并附经费使用情况报告,加盖单位公章后报秘书处。我委将视情况予以通报批评,并根据国家有关财经法规制度,对已拨付的项目经费采取追回等必要的处理措施。   (三)相关省(区、市)卫生厅(局、卫生计生委)、有关单位要支持并督促下属单位承担的项目工作,秘书处要督促检查项目执行情况,确保项 目计划整体进度。   2013050901.doc   2013年食品安全国家标准项目计划 序号 项目名称 制定/修订 建议承担单位 食品产品 1 藻类制品 修订 浙江省疾病预防控制中心 中国水产科学研究院 微生物检验方法 2 食品微生物检验采样与检样处理规程 修订 国家食品安全风险评估中心 理化检验方法 3 食品中B族和G族黄曲霉毒素的测定 修订 浙江省疾病预防控制中心 4 食品中M族黄曲霉毒素的测定 修订 浙江省疾病预防控制中心 食品添加剂质量规格 5 食品添加剂 4-己基间苯二酚 制定 中海油天津化工研究院 6 食品添加剂 冰结构蛋白 制定 中国食品添加剂和配料协会 7 食品添加剂 刺梧桐胶 制定 中国食品发酵工业研究院 上海市质量监督检验技术研究院 8 食品添加剂 甲基纤维素 制定 中国食品发酵工业研究院 9 食品添加剂 偏酒石酸 制定 天津科技大学 10 食品添加剂 植酸钠 制定 江西出入境检验检疫局 11 食品添加剂 羟基硬脂精 制定 中国食品发酵工业研究院 上海市食品添加剂行业协会 12 食品添加剂 海藻酸钠 修订 黄海水产研究所 中国海藻工业协会 13 食品添加剂 36项香料标准包括: 橙苷(柚皮甙提取物)、橙皮素、丁香花蕾油、根皮素、黄芥末提取物、可可酊、葡萄籽提取物、大蒜油、白兰花油、白兰叶油、红茶酊、玫瑰净油、杭白菊油、罗汉果酊、小花茉莉净油、树兰油、桂花净油、绿茶酊、椒样薄荷油、茶树油、香茅醛(合成)、香茅(精)油、麦芽酚、覆盆子酮(悬钩子酮)、丙酸苄酯、丁酸丁酯、异戊酸乙酯、苯甲酸乙酯、苯甲酸苄酯、2-甲基吡嗪、2,3-二甲基吡嗪、2,3,5-三甲基吡嗪、5-羟乙基-4-甲基噻唑、2-乙酰基噻唑、2,3,5,6-四甲基吡嗪、乙基香兰素 制定 国家食品安全风险评估中心 上海香料研究所 营养强化剂质量规格 14 维生素E琥珀酸钙 制定 广东出入境检验检疫局检验检疫技术中心 15 硝酸硫胺素 制定 景德镇出入境检验检疫局 16 维生素C磷酸酯镁 制定 中国食品添加剂和配料协会 17 生物素 制定 中国食品发酵工业研究院 18 氯化胆碱 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 19 葡萄糖酸亚铁 制定 江西省疾病预防控制中心 20 焦磷酸铁 制定 上海市质量监督检验技术研究院 21 柠檬酸亚铁 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 22 柠檬酸铁铵 制定 广西出入境检验检疫局检验检疫技术中心 23 柠檬酸苹果酸钙 制定 天津出入境检验检疫局动植物与食品检测中心 24 骨粉(超细鲜骨粉) 制定 江苏省疾病预防控制中心 天津科技大学 25 乳酸锌 制定江西省疾病预防控制中心 26 碳酸锌 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 27 亚硒酸钠 制定 张家港市产品质量监督检验所 28 硒蛋白 制定 湖北省疾病预防控制中心 29 富硒食用菌粉 制定 中国食品发酵工业研究院 中国食品添加剂和配料协会 30 L-硒-甲基硒代半胱氨酸 制定 江西省疾病预防控制中心 31 硒化卡拉胶 制定 中国食品添加剂和配料协会 32 富硒酵母 制定 中国食品发酵工业研究院 33 DHA(金枪鱼油) 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 34 葡萄糖酸锰制定 广东出入境检验检疫局检验检疫技术中心 35 葡萄糖酸铜 制定 广东出入境检验检疫局检验检疫技术中心 36 5’-单磷酸胞苷 制定 江苏省卫生监督所 37 乳铁蛋白 制定 中国食品发酵工业研究院 38 酪蛋白钙肽 制定 中国食品发酵工业研究院 中国食品添加剂和配料协会 39 海藻碘 制定 中国地方病协会 营养与特殊膳食食品 40 运动营养食品通则 修订 中国食品科学技术学会运动营养食品分会 41 孕产妇和乳母用营养补充品通用标准 制定 中国疾病预防控制中心营养与食品安全所 生产经营规范 42 食品用菌种生产卫生规范 制定国家食品安全风险评估中心 43 航空食品生产卫生规范 制定 中国航空运输协会航空食品委员会   国家卫生和计划生育委员会办公厅   2013年5月2日
  • 2023 Advanced Science吕宥蓉& 阙居振如何缓解准二维钙钛矿光电二极体效率衰减
    AdvancedScience(IF:20.7)吕宥蓉&阙居振_缓解准二维钙钛矿光电二极体效率衰减的新策略随着全球能源转型的迫切性不断增强,太阳能已成为一种重要的替代能源。在众多可用技术中,特别是钙钛矿光电二极体(PeLEDs)这类太阳能光伏技术已在科学界广受关注。值得注意的是,准二维钙钛矿材料作为PeLEDs的一个子类别,由于量子限制效应和不同n相之间的有效能量传递,展现出良好的光学特性。然而,这些有前途的材料常常受到导电性差、载流子注入不佳以及在高电流密度下效率衰减严重等问题的困扰,限制了它们在太阳能转换中的应用潜力。来自中研院副研究员吕宥蓉与中国台湾大学化工系副教授阙居振等研究学者所共组团队最近发表了一篇研究,该研究旨在改善准二维钙钛矿光电二极体(PeLEDs)的性能。此团队致力于提高亮度、减少陷阱密度以及减缓高电流密度下的效率衰减问题。研究团队提出了一种创新方法,以增强这些准二维PeLEDs的性能,主要集中在提高亮度、减少陷阱密度和降低效率衰减等方面。PeLEDs的概念理解及其限制这项技术的核心在于钙钛矿材料的特性。这些材料通常是混合有机无机铅或锡卤化物,对于光伏应用具有良好的光吸收、载流子迁移率和发射特性等诱人特性,然而当这些材料在PeLEDs的准二维配置中应用时,它们的性能却受到一系列限制因素的限制。然而准二维钙钛矿材料,尽管具有良好的稳定性、可调节能隙和较高的光致发光量子产率,但导电性降低且载流子注入减少,这些问题导致在增加的电流密度下出现显著的效率衰减,降低了亮度和整体器件性能。解决准二维PeLEDs效率衰减问题本研究探索了一种新方法,通过在钙钛矿和电子传输层之间的界面添加一层薄的导电胆碱氧化物来缓解这些缺点。这种创新方法出人意料地并未增强钙钛矿膜中不同准二维相之间的能量传输。相反,它显著改善了钙钛矿界面的电子特性,引入这一额外的层次解决了两个关键难关。首先,它对钙钛矿膜中的表面缺陷进行了去活化处理。其次,它促进了电子注入并限制了界面上的空穴泄漏。结果,经过优化的纯Cs基准二维器件展现出超过70,000cdm&minus 2的亮度、10%以上的最大外部量子效率(EQE)以及在高偏压下显著降低的效率衰减,这些数据与对照组器件相比呈现出明显的改善,显示了所提出技术的有效性。实验方法与材料研究中探索了在准二维钙钛矿中引入导电胆碱氧化物PPT和PPF以减少光电器件效率衰减的潜在优势,重点放在在沉积电子传输层(ETL)之前,在钙钛矿膜上添加PPT或PPF额外层次的应用上,这个过程被认为可以增强载流子注入并去活化表面缺陷,从而抑制非辐射复合。对修改过的钙钛矿膜进行初步研究时,未观察到结晶度或相分布的明显变化。X射线衍射(XRD)和紫外可见吸收光谱(UV-Vis)证实了修改对相分布和膜质量没有影响,此外,PPT和PPF的应用并未显著改变膜的形态,这一点得到了扫描电子显微镜(SEM)的确认。为了了解这些修改对载流子动力学的影响,使用稳态光致发光(PL)光谱和时间分辨光致发光(TRPL)测量。在修改后的两个膜中观察到明显的PL熄灭,表明钙钛矿层和PPT/PPF层之间发生了载流子传输。此外,修改后的两个膜中的平均载流子寿命增加,表明有效去活化。作为对这些修改与钙钛矿相互作用的补充,使用核磁共振(NMR)、静电势(ESP)图和X射线光电子能谱(XPS)检测了PPT/PPF和钙钛矿之间的相互作用。这些测试的数据确认了后处理过程中PPT/PPF层成功旋涂到钙钛矿膜上。结果表明,磷酸胆碱氧化物中的P=O基团成功地与表面缺陷和空位协同作用,形成优势的去活化效应。在令人期盼的发现之后,基于修改过的钙钛矿膜制作了PeLEDs并与对照器件进行了比较。PPT和PPF的修改都显著提高了性能,防止了从钙钛矿层向ETL的空穴泄漏,并促进了电子传输。修改后的器件亮度是对照器件的两倍以上,并在高电压下显著降低效率衰减。这些结果突显了在纯Cs基准二维钙钛矿PeLEDs中使用PPT和PPF磷酸胆碱氧化物的潜力。总之,引入导电胆碱氧化物以去活化准二维钙钛矿材料在提高光电器件性能方面提供了令人寄予厚望的策略,未来进一步的研究将有助于优化这些材料在未来器件结构中的应用。在这项研究中,研究团队使用了EnlitechLQ100X-PL光致发光和发光量子产率测试系统,光焱科技这一款PLQY量测设备具有紧凑设计和NIST可追踪性的优势,其设备仅有502.4毫米(长)x322.5毫米(宽)x352毫米(高)的尺寸,提供了一个节省空间的解决方案,与手套箱集成再也不是难题,这种手套箱集成能力对一就实验尤其重要,可以在避免水解或氧化的情况下进行精确测量,避免测试物品的效率因水氧而降低应有的效率。LQ-100X-PL的先进仪器控制软件使其能够进行原位时间光致发光光谱分析并同时生成2D和3D图形。这种能力加速了材料表征过程,快速获得对样品的洞察。此外,LQ-100X-PL的光学设计将光谱波长范围从1000纳米扩展到1700纳米,并且与多种样品类型兼容,包括粉末、溶液和薄膜。这些特点凸显了该系统的多功能性,并在成功完成本研究中发挥了关键作用。本研究总结性地证明了策略性界面工程能够显著提高准二维PeLEDs的性能。通过在钙钛矿/电子传输层界面处引入薄的导电胆碱氧化物层,能够减少表面缺陷并促进载流子动力学的改善。这种增强的电子注入和改善的空穴阻挡效应使得器件亮度提高并在高电流密度下减少效率衰减。这项研究揭示了界面特性在PeLEDs性能中的关键作用,为未来在该领域的研究和开发开辟了新的途径。a)PPT和PPF的化学结构,后处理过程的示意图以及界面工程的插图。b)原始、PPT处理和PPF处理的钙钛矿薄膜的PL发射光谱,c)PLQYs,d)TRPL曲线,其中PLQYs是通过368nm激光测量的。31PNMR谱图,包括a)PPT和b)PPF及其与不同钙钛矿前体成分的混合物。c)PPT分子的ESP图。d)Pb4f信号的XPS谱图,涵盖原始的、PPT修饰的和PPF修饰的钙钛矿薄膜。e)表示PPT在钙钛矿表面的钝化功能的示意图。a)制造的PeLEDs的结构和b)能级图。c)J&minus V&minus L特性,d)归一化EQE电压曲线,e)归一化EQE电流密度曲线和f)制造的器件的EQE亮度曲线。使用可见区域的瞬态吸收(TA)颜色图,分别展现a)原始的、b)PPT修改的和c)PPF修改的钙钛矿薄膜。原始的、PPT修改的和PPF修改的钙钛矿薄膜的超快时间分辨TA谱分别为d)、e)和f)。在505nm的探测波长下,展示了g)原始的、h)PPT修改的和i)PPF修改的钙钛矿薄膜的功率依赖载流子动力学。a)对控制、PPT修饰和PPF修饰器件进行的EIS分析和b)电容-电压曲线。c)原始、PPT修饰、PPF修饰钙钛矿薄膜和TPBi的能级。d)修饰器件中更好的载流子动力学的示意图。
  • 加拿大拟提出食品添加剂磷酸三钠用于相关食品建议
    近日,加拿大发出通报(G/SPS/N/CAN/636),加拿大卫生部公布关于准许食品添加剂磷酸三钠用于某些标准化肉类、家禽、海产和淡水产品及非标准化食品建议的信息咨询文件。加拿大卫生部收到一项提案,要求凡是已准许使用焦磷酸钠(四元磷酸钠)及/或酸式焦磷酸钠的情况下,合法批准磷酸三钠用于标准化肉类、家禽肉、海产和淡水产品及非标准化食品。磷酸三钠是一种具有不同技术功能的磷酸盐,它能代替其他已允许使用的磷酸盐产品。按磷酸二钠计算,标准化肉类、家禽及海产和淡水类动物产品内磷酸三钠的拟定最高使用标准占磷酸盐添加总量的0.5%。当磷酸三钠单独使用或与其他磷酸盐结合使用时,该最高使用标准适用于磷酸三钠。非标准化食品的使用标准拟作为一种符合良好制造规范(GMP)的使用标准。这些拟定最高使用标准与其他当前已准用于这些食品磷酸盐的法定使用标准相同。   加拿大卫生部完成了支持拟定使用食品添加剂提案所述磷酸三钠相关信息的安全评估,并确定不存在与规定使用相关的卫生或安全问题。卫生部确定申请人符合食品药品法规第B.16.002节概述的食品添加剂提案要求。因此,加拿大卫生部拟准许磷酸三钠按技术咨询文件所述合法使用。   目前该通报正在征求意见中。
  • 欧盟修订食品添加剂磷酸三钙的相关规定
    据欧盟网站消息,3月20日欧盟发布(EU)No 244/2013号法规,修订了(EC)No 1333/2008法规附件III中关于磷酸三钙用于婴儿以及儿童食品的规定。   最新规定如下: E341(iii) 磷酸三钙 作为P2O5的最大残留量150mg/kg,并在钙,磷与钙的限量内:氮磷比见2006/141/EC指令中的规定 所有营养物 婴儿奶粉以及较大婴儿奶粉见2006/141/EC指令中的规定 成品中以P2O5计的最大限量为1000 mg/kg见附件II中E部分13.1.3条规定 所有营养物 用于婴儿与儿童的加工类谷物食品以及儿童食品见2006/125/EC指令中的规定   新规定将自公布20天后生效。   原文链接:   http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:077:0003:0004:EN:PDF
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 得利特在线磷酸根分析仪软件成功升级
    对于不同类型的在线水质分析仪器,技术要求也是不同的,一般而言,监测型分析仪器对测量数据的准确度要求较高,数据可以作为有关部门进行管理的依据,对检测原理和方法的限制较多,要求是成熟的分析技术;而过程型分析仪器对仪器的可靠性和稳定性要求较高,要求仪器能够及时可靠地反应水质变化的趋势,以便为水处理过程控制提供依据。对仪器的响应时间要求较高,对仪器的检测方法和原理限制少,允许更多创新型的新原理、新方法的在线分析仪器应用。下面这款在线分析仪器是我公司新升级的产品,跟随小编来了解一下吧!B2050在线磷酸根分析仪是在消化吸收国外新技术、总结多年国内实践经验的基础上推出的新一代在线磷表。可以广泛地应用于火力发电厂、化工等部门,及时、准确地对水中的磷酸盐含量进行监测,保证机组安全、经济运行,尤其适合国内现场环境。仪器特点1、精巧结构、盘式安装、全铝框箱体,美观坚固、抗干扰能力强2、大屏幕点阵液晶,显示内容直观、丰富;3、抛弃蠕动泵和精密计量泵,采用恒压式加药原理,结构简单、计量精度高、免维护4、具有温度测量功能,可以根据温度进行测量数据补偿5、采用**光源和光电池,寿命长、漂移小、稳定、可靠6、具体黑匣子功能,可查询历史数据、运行记录、校准记录7、宽电压(85~265VAC)、宽频率(45~65 Hz),能够适应多条件需求技术参数测量范围:(0~5)mg/L或(0~20)mg/L或(0~50)mg/L(根据定货时的指定)仪器示值误差:±2%F.S重 复 性:不大于1%测量周期:可编程设置1-99分钟,最短5分钟稳 定 性:基线漂移:使用空白校准,空白漂移无影响。化学漂移:±1%F.S/24h(视试剂稳定性而异)样品条件:流量:(150~300)mL/min 温度:(5~50)℃ 压力:14 KPa水样允许固体成分:不大于5微米(不允许有胶状物出现)环境温度: (5~45)℃环境湿度: 不大于90%RH(无冷凝)试剂种类:1种试剂消耗:最多9升/30天(5分钟采样一次),测量周期越长试剂消耗越少。显 示:320×240点阵液晶,中文菜单隔离输出:(4~20)mA(隔离输出,每个通道一个)电 源:交流(85~265)V、频率(45~65)Hz功 率:60W外形尺寸:690×450×300(mm)高×长×深开孔尺寸:645mm×410mm重 量:22kg报 警:断样报警、上限报警、下限报警(各通道独立输出)升级点:1、先进的嵌入式单片机技术;2、可编程实现1~6通道切换;3、可编程修改通道测量周期,有效节省试剂。
  • 磷酸根分析仪测试方法指导
    磷酸根分析仪测试方法  离子在固定相和流动相之间有不同的分配系数,当流动相将样品带到分离柱时,由于各种离子对离子交换树脂的相对亲合力不同,样品中的各离子被分离,继而进入抑制器。抑制器的作用主要是降低洗脱液的本底电导,增加被测离子的电导响应值和除去样品中的阳离子,再流经电导池,由电导检测器检测并绘出各离子的色谱图,以保留时间定性,峰高或峰面积定量,测出离子含量。  下面讲讲仪器的操作使用步骤:  一、仪器的校准:仪器校准分为空白校准和曲线校准。  二、水样的测定方法。  1、待测水样的显色:取水样50mL注入塑料杯中,加入5mL试剂,混匀后放置3分钟即可。  2、水样的测量:  (1)做一次空白校准。  (2)在仪器处于测量画面状态下,倒入显色后的待测水样,仪器显示当前测量水样的磷酸盐含量。  (3)待该数值稳定且确认为有效后,用“+”或“–”键选择欲存入的通道数,按“存储”键,该值将自动存储到相应的通道中。  (4)如果认为该数值无效,可按“排液”键,将液体排空,做一次空白校准。在仪器处于测量画面状态下,倒入显色后的待测水样,仪器显示当前测量水样的磷酸盐含量。
  • 成果|利用氢氘交换质谱分析糖原磷酸化酶的瞬时态的结构动力学
    大家好,本周为大家介绍一篇发表在J. Am. Chem. Soc.上的文章,Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry,文章作者是英国埃克塞特大学的Jonathan J. Phillips。  变构调节指在蛋白质的正构位点上的变化通过蛋白质内部传递,最终影响到变构位点的结构,从而调整白质功能。理解蛋白质功能转换背后的特定结构动态变化对于分子生物学和药物发现领域至关重要。尽管变构现象自从提出以来已有广泛的研究,但是关于信号如何在蛋白质内部长距离传递的具体机制仍然不甚清楚。很大程度上是由于缺乏能够在时间和空间上高分辨率测量这些信号的生物物理方法。糖原磷酸化酶(glycogen phosphorylase,GlyP)是研究变构调节常用的标准蛋白,GlyP与II型糖尿病和转移性癌症的治疗密切相关。GlyP作为一种典型的变构酶,其活性受磷酸化修饰、多种天然配体和药物的调控。本文旨在通过开发和应用非平衡毫秒级氢/氘交换质谱(neHDX-MS)技术,来精确定位GlyP在变构激活和抑制期间的动态结构变化。这项技术能够提供蛋白质在毫秒时间尺度上的局部结构动态信息,有助于揭示变构调节过程中的瞬态结构特征,从而为理解蛋白质的动态行为和设计变构调节剂提供重要的结构信息。  作者首先确定了能够完全激活或抑制GlyP的条件。25 mM 的AMP能实现GlyPb的最大激活(图1A)。32 mM咖啡因足以完全抑制GlyPa(图1B)。并且观察到50ms内AMP和咖啡因能够达到最佳激活/抑制状态(图1C和1D)。  图1.糖原磷酸化酶b的变构激活和糖原磷酸化酶a的抑制。  随后作者通过neHDX-MS捕捉由AMP引起的GlyPb变构激活过程中的局部结构扰动。通过激活过渡态与未激活和激活状态之间的HDX差异,作者将这些肽段分成了七个类群。其中重点值得关注的类群是c、d(其他类群对应区域及趋势不在此详细介绍),因为他们的HDX行为与未激活和激活时的稳定态都有明显差异,这些局部区域的结构变化是过渡态的独特体现(图2A)。其中,c类群主要涵盖了tower helix区(图2B),说明该区域在从未激活到激活状态的过渡态中,表现出相较于前后二者皆较高的动态性。d类群涵盖活性位点,说明活性稳点结构在因结合发生了结构稳定化现象。为了从原子水平理解这些瞬态结构变化,研究人员使用了一种基于Energy Calculation and Dynamics(ENCAD)的方法,Climber,来模拟从非活性状态到活性状态转变过程中的过渡态内部作用变化。结果显示,tower helix在激活过程中经历了氢键先断裂后形成的变化,这与观察到的HDX增加相一致(图4A)。  图2.GlyPB中表现不同结构动力学行为的类群。  图3.局部区域HDX动力学。  图4.GlyP在活性和非活性状态之间的结构插值。  随后作者探讨了咖啡因如何通过变构抑制影响GlyPa的结构动态。同样作者也比较了抑制过渡态与未抑制和抑制状态之间的HDX差异,分成了七个类群。在这几组类群中,仅有m表现出较未抑制和抑制状态都较明显的氘代上升趋势(图2C、图3C&D)。m区域涵盖了tower helix区(图2D),说明该区域在未抑制状态到完全抑制状态的过渡阶段内,发生了局部去结构化现象。此外,在280s loop和250′ loop区域也表现出类似的瞬时去稳定化现象。结合AMP激活实验中的现象表明,尽管咖啡因和AMP作用于GlyP的不同位点,但它们都可能通过类似的变构路径(即tower helix的去稳定化)来引起GlyP的变构调节,从而实现对该蛋白功能的调控。同样在Climber分析中,可以观察到对应区域发生了氢键重排,与neHDX-MS结果呼应(图4B)。  本文讨论了GlyP的变构调节中间态涉及的局部结构动态变化,并通过毫秒级neHDX-MS揭示了这些变化。结果表明激活和抑制过渡态都涉及到tower helix的氢键断裂和局部结构重排,这是两个途径的共同特点。本研究的亮点在于开发了一种新的neHDX-MS方法,能够在毫秒时间尺度上观察蛋白质的变构结构动态。这种方法不仅对理解GlyP的变构机制具有重要意义,而且可以广泛应用于不同蛋白质的变构研究,为理解蛋白质的变构调节提供了新的视角和工具。  撰稿:罗宇翔  编辑:李惠琳  文章引用:Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry  参考文献  Kish, M. Ivory, D. P. Phillips, J. J., Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J. Am. Chem. Soc. 2023, 146 (1), 298-307.
  • 赛恩思碳硫仪助力紫金锂元磷酸铁锂项目
    近日,赛恩思HCS-808型高频红外碳硫仪在紫金锂元磷酸铁锂项目投入使用。紫金锂元是紫金矿业投产的磷酸铁锂生产线,项目一期规划产能为2万吨/年,建成后产品将主要用于新能源汽车和储能利电子电池的正极材料。磷酸铁锂中碳、硫含量的差异会对材料本身的性能造成巨大的影响。例如,当磷酸铁锂材料中碳含量低时,材料中Fe2+被氧化的比例大,会造成样品纯度降低,而且电子导电率低导致充电电阻过大;但当磷酸铁锂材料中碳含量太高时,影响材料的振实密度,致使材料的克容量低;当硫含量达到一定程度时,对磷酸铁锂的颗粒形貌、放电容量和循环性能的影响逐渐明显。因此磷酸铁锂中的碳、硫含量的测试是必须进行的。当前对磷酸铁锂材料碳硫含量测试的主要的方法就是采用碳硫分析仪。四川赛恩思高频红外碳硫分析仪能够准确、快速、简便地检测出磷酸铁锂材料中的碳、硫含量。公司设备在多家锂电材料企业服役,产品获得客户的好评。
  • 铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?
    -----铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?一、背景介绍蚀刻是将材料使用化学反应或物理撞击作用而移除的技术。最早可用来制造铜版、锌版等印刷凹凸版,也广泛地被使用于仪器镶板,铭牌等的加工;经过不断改良和工艺设备发展,亦可以用于航空、机械、化学工业中电子薄片零件精密蚀刻产品的加工,特别在半导体制程上,蚀刻更是不可或缺的技术。铝是半导体工艺中最主要的导体材料。它具有低电阻、易于淀积和刻蚀等优点。铝蚀刻液主要成分是磷酸、硝酸、醋酸及水,其中磷酸、硝酸、醋酸及水的组成比例会影响到蚀刻的速率,故需要对这种混酸溶液的成分进行分析。 二、测试原理1、硝酸:在样品中加入适量乙醇做溶剂,用四丁基氢氧化铵(TBAOH)滴定至终点,即可计算硝酸的含量。TBAOH+HNO3 → NO3-+TBN++H2O2、醋酸和磷酸:在样品中加入适量饱和氯化钠溶液做溶剂,用氢氧化钠溶液做滴定剂,出现两个滴定终点。第|一个终点是H3PO4和HNO3被耗尽时的终点,第二个终点是H2PO4-和HAc被耗尽时的终点,根据已知的硝酸含量,即可计算出磷酸及醋酸的含量。H3PO4+HNO3+2OH- → NO3-+ H2PO4-+ 2H2OH2PO4-+HAc+2 OH- → Ac-+ HPO42-+ 2H2O 三、混酸分析方法(1)硝酸含量测试:在滴定杯内加入50mL无水乙醇,准确称取一定质量的样品置于滴定杯内,用 0.01mol/L TBAOH溶液做滴定剂进行电位滴定,终点电位突跃设置为20mV/mL。图1 硝酸含量滴定曲线图2 醋酸和磷酸含量滴定曲线 (2)醋酸和磷酸含量测试:在滴定杯内加入50mL饱和氯化钠溶液。准确称取一定质量的样品置于滴定杯内,用0.5mol/L氢氧化钠溶液做滴定剂进行电位滴定,终点电位突跃设置为100mV/mL。 四、注意事项1、TBAOH标定时需要使用纯水做邻苯二钾酸氢钾的溶剂,而使用TBAOH测定硝酸时必须使用无水乙醇做溶剂,不要在滴定杯内加入水,否则不会出现显著的滴定终点。2、使用氢氧化钠测定醋酸和磷酸时,需使用饱和氯化钠溶液做溶剂,若使用纯水做溶剂会出现假终点。 五、仪器推荐ZDJ-5B型自动滴定仪 ● 7寸彩色触摸电容屏,导航式操作● 支持电位滴定● 实时显示测试方法、滴定曲线和测量结果● 可定义计算公式,直接显示计算结果● 支持滴定剂管理功能● 支持pH的标定、测量功能● 支持USB、RS232连接PC,双向通讯● 可直接连接自动进样器实现批量样品的自动测量
  • “渝”见中检葆泰|相约中国奶业展览会:助力行业创新发展
    “渝”见中检葆泰|相约中国奶业展览会:助力行业创新发展第十四届中国奶业大会、2023中国奶业D20峰会暨2023中国奶业展览会7月19—21日在重庆市隆重召开。作为奶业界一年一度最大的盛会,本届会展以“启航现代化建设新征程 点亮高质量发展新赛道”为主题,旨在充分展示奶业发展成就,深度挖掘奶业发展优势,创新谋划奶业发展战略,推进中国奶业现代化水平的提升和高质量发展的进程,推动中国奶业加速动力变革、质量变革和效率变革,实现高质量发展和全面振兴。中检葆泰受邀出席此次盛会。第十四届中国奶业大会暨2023中国奶业20强峰会中检葆泰是一家集食品安全快速检测试剂和仪器的研发、生产、销售及服务为一体的高新技术企业。公司自成立以来,一直致力于食品安全先进检测技术的研发和推广,公司拥有中检葆泰维生素公司拥有中检葆泰维生素、胆碱肉碱、乳果糖、非法添加物检测试剂盒等多个项目的主研发产品,同时与国际知名品牌美国Charm、Evergreen和agdia等有战略合作。在展会中产品也受到了众多同行和客户的认可。展会上,葆泰Charm EPIC商业无菌检测系统、葆泰Charm真菌毒素5分钟定量检测系统、葆泰Charm生物荧光农残检测系统和葆泰Charm碱性磷酸酶检测系统等吸引了众多行业观摩者的关注。 Charm EPIC-Plus 商业无菌检测系统葆泰Charm碱性磷酸酶检测系统中检葆泰维生素检测试剂盒葆泰Charm EZ抗生素检测系统葆泰Charm ROSA真菌毒素检测系统公司产品包括胶体金检测条、酶联免疫试剂盒、快速检测仪等多种形式,涉及兽药残留、真菌毒素、农药残留、食品成分、非法添加物、转基因、植物病毒病害、微生物检测等多个领域,公司拥有经验丰富的研发团队、服务团队和销售团队,可为政府监管部门、食品企业提供快速、准确、可靠的检测方案和服务。
  • 水质分析仪器--在线磷酸根分析仪器 新品上市
    水是人类生存之源:工厂停水,生产不能进行;家庭缺少水源,生活处处受到限制;土地干旱,更体现了水的重要性。总之,离开了水,人类的生活会受到限制,但是随着工业水平提高,工厂废水以及日常生活污水等等不同程度的排放,使我国的江,河,湖,海等受到不同程度的污染,要想进行水质的治理,必须要掌握水中各参数的情况。水质监测是指对水中的化学物质,悬浮物,底泥和水生态系统进行统一的定时或不定时的检测工作。水质检测在维护水环境健康方面具有重要作用。古语有句话叫:工欲善其事,必先利其器。同理我们想治理好水质,就必须先检测出水中各参数的含量,如果想达到更好的效果,还需在线实时检测,这样才能保障治理出来的水质达标。我们得利特打造精品工程,专注水质检测技术。最近技术部最近研发了在线磷酸根分析仪。B2050在线磷酸根分析仪是在消化吸收国外技术、总结多年国内实践经验的基础上推出的新一代在线磷表,是的电子技术和可靠磷酸盐分析方法的完美结合。可以广泛地应用于火力发电厂、化工等部门,及时、准确地对水中的磷酸盐含量进行监测,保证机组安全、经济运行,尤其适合国内现场环境。下面是产品的具体介绍:技术参数测量范围: (0~5)mg/L或(0~20)mg/L或(0~50)mg/L(根据定货时的指定)仪器示值误差: ±2%F.S重 复 性:不大于1%测量周期:可编程设置1-99分钟,最短5分钟稳 定 性: 基线漂移:使用空白校准,空白漂移无影响。化学漂移:±1%F.S/24h(视试剂稳定性而异)样品条件: 流量:(150~300)mL/min温度:(5~50)℃压力:14 KPa水样允许固体成分:不大于5微米(不允许有胶状物出现)环境温度: (5~45)℃环境湿度: 不大于90%RH(无冷凝)试剂种类:1种试剂消耗:最多9升/30天(5分钟采样一次),测量周期越长试剂消耗越少。显 示:320×240点阵液晶,中文菜单隔离输出:(4~20)mA(隔离输出,每个通道一个)电 源:交流(85~265)V、频率(45~65)Hz功 率:60W外形尺寸:690×450×300(mm)高×长×深开孔尺寸:645mm×410mm重 量:22kg报 警:断样报警、上限报警、下限报警(各通道独立输出)报 警:断样报警、上限报警产品升级特点:1、先进的嵌入式单片机技术2、精巧结构、盘式安装、全铝框箱体,美观坚固、抗干扰能力强3、大屏幕点阵液晶,显示内容直观、丰富;4、可编程实现1~6通道切换5、可编程修改通道测量周期,有效节省试剂;6、抛弃蠕动泵和精密计量泵,采用恒压式加药原理,结构简单、计量精度高、免维护7、具有温度测量功能,可以根据温度进行测量数据补偿8、采用**光源和光电池,寿命长、漂移小、稳定、可靠9、具体黑匣子功能,可查询历史数据、运行记录、校准记录10、宽电压(85~265VAC)、宽频率(45~65 Hz),能够适应多条件需求
  • 水质自动分析仪、硅酸根监测仪、磷酸根监测仪团体标准意见征集
    中国仪器仪表行业协会近日发布意见征询函,公开征集对水质自动分析仪、硅酸根在线监测仪及磷酸根在线监测仪三个团体标准的意见或建议。以下是通知意见函原文各有关单位、有关专家: 根据中国仪器仪表行业协会下发的中仪协[2019]017号及[2020]022号文件,《菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪》《硅酸根在线监测仪》及《磷酸根在线监测仪》已分别列入中国仪器仪表行业协会团体标准制定计划。现特向社会公开征求意见,欢迎社会各界对标准内容提出建议和修改意见。 请行业有关单位及各位专家于2021年8月12日前将《征求意见回执》填好后反馈至中国仪器仪表行业协会。回函请务必留下您的姓名、单位名称及联系方式,便于起草人与您联系。 联系人:马雅娟,电话:010-68584723,邮箱:mayj@cima.org.cn 文件下载: 1、团体标准征询意见的函 2、菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪 3、硅酸根在线监测仪 4、磷酸根在线监测仪 5、征求意见回执
  • 如海光电推出农药残留快速筛查解决方案
    近年来,随着人们对自身健康的关注,有机食品成了人们的宠儿,越来越多的人愿意付出更高的价格购买天然、环保、健康、安全的瓜果蔬菜。但曾在2018年,央视曝光“有机”蔬菜不有机,顶着10倍的身价,仍被检测出多种农药残留。高价购买的“放心蔬菜”却不能放心,可见农药残留之泛滥,针对此现象,如海光电基于表面增强技术,推出了食品中农药残留快速检测方案。蔬菜瓜果中农药残留最常见的是有机磷类农药,例如三唑磷、保棉磷、对硫磷,倍硫磷、乐果等,大部分是用做杀虫剂的,也有一些品种可做杀菌剂、除草剂、灭鼠剂等。目前有机磷农药也是农药工业的主体,在品种的数量、产量和市场占有率方面居于农药的首位。有机磷农药是含磷的有机物,有的还含硫、氮元素,大部分是磷酸酯类或酰胺类化合物。其通式如下:其中R1、R2多为甲氧基(CH3O-)或乙氧基(C2H5O-),X多为烷氧基、芳氧基或其他取代基团,如:有机磷农药进入靶标生物体内可与乙酰胆碱酯酶结合,产生抑制乙酰胆碱水解的作用,而乙酰胆碱作为神经递质大量积聚,可作用于乙酰胆碱受体,同时突触部位的正常神经冲动传导受阻,进一步产生严重的神经功能紊乱。有机磷农药与胆碱酯酶结合生成的磷酰化胆碱酯酶有两种形式。一种结合不稳定,如对硫磷、内吸磷、甲拌磷等,部分可以水解复能:另一种形式结合稳定,如三甲苯磷、敌百虫、对溴磷等,被抑制的胆碱酯酶不能再复能:综上,有机磷农药用作杀虫剂的生物活性作用机理主要是其对靶标生物体内的乙酰胆碱酯酶有强抑制作用,进而抑制乙酰胆碱的水解,引起神经调节功能紊乱,表现为神经异常兴奋,发生异常活动,最后强烈痉挛,致死。传统的食品中有机磷农药残留检测方法是液相色谱、气相色谱及其与其他设备联用等方法检测,由于其定位的使用场景,比如仪器昂贵、体积大、操作复杂,一次只能检测量少,费时费力,目前尚难以满足大批量样品检测的需求。而利用表面增强拉曼的方法,通过提取分离富集等操作步骤,可以对有机磷类农药做快速检出,整个检测过程在15分钟之内即可完成。方法操作简单快捷,并可对多种有机磷类农药进行检测。以下是苹果基质中加标检测谱图:除食品农药残留检测,如海光电还研发了包括减肥保健品西布曲明、保健品那非类药物、兽药残留等多达上百种常用科目快速检测方案,致力于分析与研究、服务与分享,为保健食品安全行业保驾护航!
  • 安徽客户实地参观得利特实验室台式磷酸根分析仪
    安徽几位客人来我公司主要是参观油品检测仪器的生产厂家。在参观完我们公司的生产车间和办公楼以后,给我们公司很高的评价,很希望能与我公司进行深一步的合作。通过我们面对面的交流,我公司发现安徽市场是比较成熟的市场,油品分析仪器目前在该地区应用的比较广泛,竞争也比较激烈。只有扎实的产品质里和良好的售后服务,才能在在上海市场取得—席之地。公司总经理为客户专业介绍了开口闪点测定仪和运动粘度测定仪。在友好的气氛中,会谈取得了很好的结果,我们双方都对将来的市场前景充满展望。 得利特公司整合石化科学研究院,中国计量科学研究院,北京铁道科学研究院,计量总站等油品方面、仪器方面、设备方的专家为技术班底,集思广益,推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等产品,得到用户的广泛赞誉。公司以雄厚的技术实力和客户就是上帝的宗旨为用户提供专业贴心的咨询培训服务,包括设备润滑咨询服务,设备润滑知识培训,润滑系统方案设计、实验室建设方案,第三方油品检测。确保客户解决设备润滑的相关问题!B1050磷酸根分析仪是一款智能型仪器,该仪器采用人性化设计,图形菜单,操作直观易懂,具有中英文可选,光源采用单色冷光源,测量准确可靠,可用于电厂、化工、冶金、环保、制药、生化、食品和自来水等溶液在实验室的测量与存储。仪器特点1、5.0寸彩色触摸屏,显示美观,控制简单2、图形化菜单简单易懂3、中英文语言可选,适应不同用户4、仪器可带自检功能,方便检测故障5、仪器有打印功能,可实时打印数据或打印存储数据6、仪器具备通讯功能,可将数据上传7、温度偏差提示功能,方便用户及时校准技术参数显 示: 480X272 彩色触摸屏;测量范围:0—20mg/L (大量程可选0-50)示值误差: ±2%F.S;分 辨 率: 0. 01 mg/L;重 复 性: ≤1%;水样温度:(5~60)℃;环境温度:(5~45)℃; 供电电源: AC220V 50Hz;功 率: <15W;外型尺寸:420×390mm×230mm;(主机)重 量:5kg;
  • 枣中糖类的测定 | 磷酸-苯肼柱后衍生法
    入秋了,又到了吃枣的季节。枣果不仅是滋补佳品,也是一味传统的中药,并且枣中含有多种糖类。糖类是自然界中广泛分布的一类重要的有机化合物,是一切生命体维持生命活动所需能量的主要来源。在高效液相色谱仪(HPLC)测试中,糖类的分子通常采用通用型检测器检测,如示差折光检测器(RI)进行检测。但采用RI检测器有两个明显的缺点:灵敏度低、不能梯度洗脱。采用磷酸-苯肼柱后衍生法测定糖类,可以克服RI检测器的以上两个缺点。下面我们使用日立Chromaster高效液相色谱仪,利用磷酸-苯肼柱后衍生法进行糖类的分析。色谱柱将糖类分离,再与磷酸-苯肼溶液在高温下反应,使用有选择性,高灵敏度的荧光检测器进行检测,梯度洗脱可以多种糖成分同时分析。此方法克服了示差折光检测器的灵敏度低和不能梯度洗脱的缺点。■ 流路图 仪器配置: Chromaster 5110 泵,5210 自动进样器,5310 柱温箱,5410 UV检测器,5510反应单元■ 标准品测定例■ 系统适用性(100 mg/L 糖标准混合液)聚合物基质色谱柱硅胶基质色谱柱分别对硅胶基质和聚合物基质色谱柱的系统适用性进行评价,理论塔板数按蔗糖峰计算,分离度以葡萄糖和半乳糖的分离度计算,结果得到色谱柱的理论塔板数和分离度如上表所示。聚合物基质色谱柱的测定,理论塔板数较低,但色谱柱的寿命较长;硅胶基质色谱柱的测定,色谱峰的峰形尖锐,分离度改善很多。后续实验均采用硅胶基质色谱柱。■线性以半乳糖和蔗糖为例,各种糖成分在10 ~ 500 mg/L标准混合液的浓度范围内,R2 ≥ 0.9995,线性关系良好。■ 重现性■ 枣样品的分析结果对大枣样品进行了糖成分的分析,结果在枣中检测到果糖、葡萄糖和蔗糖成分,并且均得到很好的分离效果。
  • 赛恩思与国轩系携手,共筑磷酸铁锂高品质未来
    随着新能源领域的持续繁荣,磷酸铁锂——这一核心产品的质量监测变得尤为重要。近日,赛恩思工程师在国轩新能源(庐江)有限公司成功完成了高频红外碳硫仪的安装与调试工作,值得注意的是,这已是继宜春国轩电池有限公司之后,赛恩思为国轩系新能源公司提供的第二台碳硫仪。国轩新能源(庐江)有限公司为合肥国轩高科动力能源有限公司全资子公司,主营产品为磷酸铁锂、镍钴锰三元正极材料,位于新能源汽车产业基地(集群)产业链的上游(为新能源汽车关键零部件-动力电池的关键组成部分),是国家级高新技术企业。赛恩思与国轩系能源的再次合作,不仅仅是一次技术与产业的结合,更是对新能源未来的共同追求与期许。两者携手,一方面彰显了赛恩思在碳硫检测领域的技术实力,另一方面也展示了国轩系能源对于产品质量的坚持与不懈追求。期待这次合作能够为新能源产业质量把关,共同打造一个绿色、高效、可持续的未来。
  • 上海光机所在研究铝磷酸盐玻璃的结构和性质方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究员团队采用了一种将实验、分子动力学模拟和定量结构性质关系分析(QSPR)相结合的方法研究磷酸铝玻璃,相关研究成果发表于《美国陶瓷》(Journal of the American Ceramic Society)。目前,磷酸铝玻璃在许多领域都有广泛的应用,包括生物医学材料、光学元件、密封材料和核废料固化等。通过实验技术手段对磷酸铝玻璃的短程结构已有较多的研究,但其性质与中程结构之间的关系尚不清楚。而分子动力学模拟已成为了研究的有效工具,在揭示玻璃性质的结构起源方面发挥着越来越重要的作用。   在本项研究中,研究人员结合了实验、分子动力学模拟方法研究Al2O3对磷酸铝玻璃的短程及中程结构的影响,并通过QSPR方法建立其结构性质模型。通过拉曼、同步辐射等实验结果验证了模拟的准确性。模拟结果表明,玻璃网络中存在的P-O-P键随Al2O3含量变化逐渐被P-O-Al键替代,对玻璃的性能变化起着重要的作用。同时,磷酸铝玻璃中的长链易形成环状结构,并集中在4~20元环。此外,利用三个不同的结构描述符来建立QSPR模型,并成功地将实验数据与模拟结果相关联,表现出良好的模型预测性。这一方法为预测玻璃性质及设计玻璃组分提供新思路。图1以磷酸铝玻璃的(a)配位数(CN)、(b) Qn、(c)环尺寸作为结构输入所建立的定量结构-性能关系模型。从左到右列为结构描述符Fnet分别与实验密度、硬度、玻璃化转变温度和热膨胀系数的关系。
  • 新品发布|微流路系列再添猛将:HQ-6200正磷酸盐在线分析仪震撼发布!
    新品发布泽铭明星系列HQ-6000微流路分析平台喜迎新成员:HQ-6200正磷酸盐在线分析仪在近日震撼发布!产品介绍泽铭HQ-6200正磷酸盐在线分析仪,依托于泽铭微流路平台,采用高性能比色技术,同时集:宽量程、高灵敏度、超低检出限、快速响应为一体。能做到试剂消耗量少,高效节约所需成本。和6000系列的产品相同,泽铭HQ-6200支持连续、周期、定点方式测定正磷酸盐的浓度,更灵活地满足不同测量需求。同时配备智能清洁系统,让仪器更易于保养,进一步降低运维成本的同时,更能减少仪器的学习成本,让仪器用起来更简单、便捷。应用领域- 电厂、化工、钢铁等行业的冷却水、锅炉系统等监测;- 污水处理厂脱磷工艺等监测;- 环境中的磷酸盐等监测;- 农业灌溉水排放监测/水产品养殖水体等监测;- 湖泊、河流等水体营养盐的科研监测等。产品特色- 泽铭HQ-6200正磷酸盐在线分析仪的测量周期极短:仅需短短5分钟即可完成从样品处理到结果输出的全过程。同时试剂消耗量极少,单次测量为微升级别,可显著减少整体运维成本,为用户带来更加经济高效的监测体验;- 宽量程(0.05-5mg/L PO4-P)(0.5-50mg/L PO4-P)及低检出限(0.02mg/L),可匹配应用于更多使用场景,无论是严格的水体环境监测、精细的工业工程控制、要求严苛的科研等领域都能轻松胜任;- 单次、连续、周期、定点四种测量模式,灵活可设(可编程设计);- 仪器结构合理,模块化设计理念,便于操作、维护和集成。产品参数结语泽铭科技将秉持“科技净化地球”的崇高使命,深耕于水质监测领域的科研阵地,为环保、水务、生态修复、工业、农业等多元领域注入科技力量。我们坚信,技术的力量能够引领未来,通过不断创新的技术解决方案,我们为守护绿水青山、构建美好生态环境筑起坚实的屏障,为地球的可持续未来贡献力量。
  • 新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。  cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。  为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。  在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。  研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。  为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。  研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。  该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。  研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制