当前位置: 仪器信息网 > 行业主题 > >

甲基丙烷

仪器信息网甲基丙烷专题为您提供2024年最新甲基丙烷价格报价、厂家品牌的相关信息, 包括甲基丙烷参数、型号等,不管是国产,还是进口品牌的甲基丙烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基丙烷相关的耗材配件、试剂标物,还有甲基丙烷相关的最新资讯、资料,以及甲基丙烷相关的解决方案。

甲基丙烷相关的资讯

  • 华东师大吴鹏团队成功创制高效丙烷脱氢催化新材料
    近日,华东师范大学化学与分子工程学院吴鹏教授团队在分子筛孔道限域金属催化剂高效催化丙烷脱氢领域取得重要进展。面向丙烷脱氢制丙烯这一重要工业反应对高活性、高选择性和高稳定性贵金属催化剂的实际需求,课题组创制了超大微孔硅锗沸石孔道内限域锚定铂(Pt)团簇催化剂,利用沸石骨架金属与Pt的强相互作用,实现了丙烷脱氢高选择性制丙烯反应的长周期运行。2023年6月12日,研究成果以《Germanium-enriched double-four membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation》为题在线发表于Nature Catalysis上。丙烯是化学工业中最重要的烯烃之一,用于生产多种大宗化学品,包括聚丙烯、丙烯腈、丙烯酸、丙酮和环氧丙烷等。广泛用于丙烷脱氢制丙烯的铂基催化剂面临着制造成本高、容易团聚烧结和高温下催化性能快速失活等诸多问题。因此开发兼具理想催化活性、高选择性及长期耐久性的新型催化剂具有重要的学术和应用价值。吴鹏教授团队开发了一种UTL型硅锗沸石孔道限域的Pt亚纳米团簇型金属催化剂,巧妙利用UTL型分子筛中特殊的富锗双四元环结构(d4r)诱导锚定客体Pt,形成特异性限域于14元环孔道内的亚纳米Pt团簇,构建的主客体双金属结构Pt4-Ge2-d4r@UTL催化剂极大地提升了丙烷脱氢的催化性能,并具有高活性、高丙烯选择性和高耐久性,极具工业应用前景。Pt4-Ge2-d4r@UTL催化丙烷脱氢反应的性能课题组以热/水热结构稳定的Ge-UTL为载体,H2PtCl6为Pt源,采用湿法浸渍制备得到催化剂Pt@Ge-UTL。该催化剂在500oC的反应温度下获得了超过54%的丙烷稳定转化率,99%以上的丙烯选择性。催化剂在不同的丙烷分压,空速以及反应温度下持续稳定催化4200小时。为了满足工业应用需要,课题组还评价了纯丙烷进料、580oC/600oC高温条件下长时间的丙烷脱氢性能,结果表明催化剂具有工业应用前景。亚纳米Pt团簇在UTL孔道内的落位课题组利用积分差分相位衬度成像扫描透射电子显微镜,证实了亚纳米级的Pt团簇特异性地落位在UTL的14元环孔道内,表明Pt在UTL孔道中占据了特定位置,这与14元环孔道具有较大孔尺寸以及骨架Ge在双四元环结构单元的局部富集有关。Pt和Ge的化学状态和配位环境的表征原位XAFS研究表明,最优催化剂Pt-A-2h(31)-R中的Pt物种价态介于0-1之间,线性组合拟合给出了Pt的平均价态为0.576。该催化剂拥有几乎可以忽略的Pt-Pt键散射路径贡献,说明高Ge含量的样品中Pt的尺寸极小(Pt-Pt键配位数大约为3)。重要的是,可以明显观察到位于2.93 Å位置的Ge-O-Pt键的散射路径,且强度很高,证明了Pt是通过Pt-O-Ge键的形式锚定在Ge-UTL沸石上。此外,没有观察到Ge-Ge键的散射路径信号,表明骨架Ge未被还原,仍为原子分散的骨架Ge位点。Ge原子在载体和催化剂中的位置采用19F MAS NMR技术对双四元环结构中的元素组成进行了表征,确认了各种组成的双四元环所占比例并计算出了双四元环结构中Ge含量占整个UTL晶体中Ge含量的95 %左右,表明经酸处理稳固后,样品中的Ge主要位于双四元环结构单元。确定了Pt的定向锚定和落位是通过与双四元环结构中的骨架Ge的化学相互作用来实现的。证明了一种全新的活性位点Pt4-Ge2-d4r@UTL的形成,其可以高效催化丙烷脱氢制取丙烯。丙烷脱氢过程的理论计算结果DFT理论计算和微观动力学模拟结果表明Pt4-Ge2-d4r@UTL结构的计算活化能接近实验值,且远低于Pt(111)的活化能。这归因于Pt4-Ge2-d4r@UTL结构可以有效降低第一步脱氢的能垒,这是整个PDH反应的速率决定步骤,从而提高丙烷脱氢反应速率。吴鹏教授课题组长期聚焦于新型沸石分子筛催化材料的设计及环境友好石油化学化工过程的研究。华东师大化学与分子工程学院博士后马跃为论文的第一作者,华东师大化学与分子工程学院吴鹏教授、徐浩教授、关业军教授,以及中国石油大学(北京)宋卫余教授、内蒙古大学张江威研究员、阿卜杜拉国王科技大学韩宇教授为共同通讯作者。合作单位包括石油科学研究院、崇明生态研究院、重庆大学、中国石油大学(北京)、内蒙古大学、华南理工大学以及阿卜杜拉国王科技大学。
  • 江苏常州检验检疫局成功开发环氧氯丙烷检测技术
    近日,江苏常州检验检疫局危包检测中心技术人员利用先进的高精密仪器GC/MS/MS,成功开发出了环氧氯丙烷的检测技术,其检测低限可达0.1mg/L,能够充分满足相关企业的检测需求,帮助其控制产品质量,应对国外技术壁垒,保障产品顺利出口。   环氧氯丙烷(又称表氯醇)是一种重要的有机化工原料和精细化工产品,用途十分广泛。以它为原料制得的环氧树脂具有黏结性强、耐化学介质腐蚀、化学稳定性好、抗冲击强度高以及介质电性能优异等特点,在涂料、胶黏剂、增强材料和食品接触材料等行业具有广泛的应用。环氧氯丙烷是一种毒性很强的有害物质,其蒸气对眼睛以及呼吸道有强烈刺激性,反复和长时间吸入能引起肺、肝和肾损害 皮肤直接接触液体可致灼伤,如果高浓度吸入还会导致中枢神经系统抑制甚至死亡。   针对环氧氯丙烷的健康危害性,众多国家均对食品接触材料中环氧氯丙烷的含量及迁移量有严格规定,日本和韩国食品接触材料法规明确规定食品模拟物中环氧氯丙烷迁移量不得超过0.5mg/L,欧盟塑料法规(EU)No.10/2011规定相关产品成品中环氧氯丙烷残留量不得超过1mg/Kg。此次常州局开发的新技术,将检测限度精确至0.1mg/L,有效地解决了企业的后顾之忧。
  • 我公司在美国泰科国际公司进行七氟丙烷气体的水分检测工作
    近日,我公司和位于浦东外高桥的国际消防安全知名企业——泰科国际公司合作,对该公司生产中用到的七氟丙烷气体水分进行检测工作。七氟丙烷(HFC-227ea/FM200)是一种以化学灭火为主,兼有物理灭火作用的洁净气体灭火剂,国标对七氟丙烷水分的检测有严格要求。泰科公司是国际领先的消防器材生产商,服务于国内众多的灭火器生产企业。气体中微量水分的检测一直是水分检测的难点,难度在于样品含水量低,取样困难,早在2013年,我公司实验室就按照国标要求,用库伦法的卡式水分测定仪,外加辅助进样称量装置,对工业用氟代甲烷类中微量水分进行试验性摸索,总结了一套可在几个PPM样品水分含量标准的情况下保证良好重新性的实验方法,并逐步在上海,江苏,广东部分地区消防器材生产企业进行推广。目前,该方法已经非常成熟,完全满足企业生产认证的需要。
  • 核磁共振技术结合色谱-质谱方法助力沸石分子筛催化丙烷芳构化反应机制研究取得突破
    近日,中国科学院精密测量科学与技术创新研究院研究员徐君、邓风科研团队, 在沸石分子筛催化丙烷芳构化反应机制研究方面取得重要进展。该团队利用原位固体核磁共振技术,探索镓(Ga)修饰ZSM-5分子筛(Ga/ZSM-5)催化丙烷转化制芳烃过程,发现环戊烯碳正离子中间体,并实验证实该碳正离子可作为活性“烃池”物种催化丙烷生成轻质芳烃(苯、甲苯、二甲苯)的转化机制。相关研究成果以Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSM-5 Zeolite by Solid-State Nuclear Magnetic Resonance Spectroscopy为题,发表在《德国应用化学》上,并被遴选为Hot Paper。  甲烷、乙烷和丙烷等低碳烷烃在地球上储量丰富,直接将低碳烷烃催化转化为附加值较高的烯烃、芳烃等化工产品,可替代目前依赖于石油的化工生产路线,具有重要的应用价值。Ga修饰的分子筛在丙烷芳构化反应中表现出较高反应活性,丙烷在催化剂上的转化涉及复杂的反应网络,尽管已有较多研究,而对丙烷芳构化反应机理目前尚未有明确认识,在一定程度上阻碍了此反应过程的工业化应用。  研究团队采用原位固体核磁共振技术结合色谱-质谱方法,剖析了Ga/ZSM-5分子筛催化丙烷芳构化反应过程,在间歇与流动反应条件下观察到重要中间体环戊烯碳正离子的生成及转化过程。研究表明,在间歇反应过程中,丙烷芳构化反应为自催化反应,包括初始期、诱导期及结束期三个阶段。反应过程中生成的环戊烯碳正离子可作为“烃池”物种,促进丙烷的转化,从而加速反应进行。在流动反应过程中,12C/13C同位素交换的固体NMR实验进一步揭示了环戊烯碳正离子是高活性的“烃池”物种,可促进丙烷的转化。科研人员基于实验结果构建了Ga/ZSM-5分子筛上丙烷芳构化反应机制,丙烷在分子筛上脱氢形成初始烯烃物种,该过程反应速度较慢。初始烯烃进一步生成环戊烯碳正离子,在接下来的过程中,环戊烯碳正离子自身可以转化为芳烃产物,环戊烯碳正离子能够通过夺取丙烷分子上的氢负离子(hydride)而加速其脱氢过程,进而促进芳烃的生成。该研究揭示了分子筛上丙烷芳构化机制,将为丙烷芳构化反应的工业化应用提供重要指导。  研究工作得到国家自然科学基金、中科院、湖北省科技厅及中科院青年创新促进会的支持。
  • 辽宁省城镇供水排水协会立项《水质 环氧氯丙烷的测定 吹扫捕集/气相色谱-质谱法》等二项团体标准
    各团体会员、相关单位和企业:根据《中华人民共和国标准化法》、《团体标准管理规定》(国标委联[2019]1号)及《辽宁省城镇供水排水协会团体标准管理办法》要求,协会标准化管理办公室审议通过了《水质 环氧氯丙烷的测定 吹扫捕集/气相色谱-质谱法》、《食品载冷剂中缓蚀剂的缓蚀效率评价方法》、二项团体标准立项,经协会秘书处审定,通过立项,现予公告。请起草单位按照协会标准管理办法,尽快组织相关单位进行标准编写,确保按期完成标准编制任务。辽宁省城镇供水排水协会2023年8月9日关于二项团体标准制定项目立项的通知.pdf相关标准如下:水质 环氧氯丙烷的测定 吹扫捕集/气相色谱-质谱法食品载冷剂中缓蚀剂的缓蚀效率评价方法
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 全自动乌氏黏度计在PPC(聚碳酸亚丙酯)材料中的应用
    聚碳酸亚丙酯(PPC),又称为聚甲基乙撑碳酸酯,它是以二氧化碳和环氧丙烷为原料合成的一种无定形聚合物,被广泛应用于弹性体、涂料、合成革等领域,是一种完全可降解的环保型塑料。聚碳酸亚丙酯(PPC)材料性能优异,分子链段柔软、易分解、生物相容性好、气体的透过性低,可很好的应用于包装材料,阻水材料和阻氧材料等领域之中,例如一次性食品包装材料、一次性餐具材料、可降解发泡材料等。同时聚碳酸亚丙酯(PPC)材料以工业废气二氧化碳作为原料,避免了传统塑料行业产品对环境的二次污染,在一定程度上也是对日益枯竭石油资源的一种补充。全自动乌氏黏度计是聚碳酸亚丙酯(PPC)材料质量检测中的常用仪器,常用于检测聚碳酸亚丙酯(PPC)材料的特性粘度值。IV2000系列全自动乌氏黏度计具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚碳酸亚丙酯(PPC)材料等高分子材料化验分析中的常用实验仪器,为聚碳酸亚丙酯(PPC)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV2000系列自动乌氏黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV2000系列全自动特性粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动特性粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • 安捷伦科技公司推出首款针适用于疾病研究的 DNA 甲基化靶向序列捕获产品
    安捷伦科技公司推出首款针适用于疾病研究的DNA甲基化靶向序列捕获产品 2012 年 2 月 14 日,佛罗里达州马科岛(基因组生物学和技术,AGBT)- 安捷伦科技公司(纽约证交所:A)推出其靶向序列捕获平台的新成员,SureSelect XT 人甲基化测序系统,适用于表观遗传学研究中 DNA 甲基化位点检测。这是市场上第一款采用靶向序列捕获技术的全面 DNA 甲基化发现系统。安捷伦将于明日在基因组生物学技术进展年会上揭晓该产品的技术细节。 Agilent SureSelect XT 甲基化测序系统基于液相杂交,是可以分析人类基因组中低甲基化与过度甲基化的胞嘧啶位点的独特研究工具。亚硫酸盐测序技术是 DNA 甲基化研究的黄金标准,也是第一种可以全面研究DNA 甲基化的发现系统。Agilent SureSelect XT 甲基化测序系统将市场领先的靶向序列捕获平台 SureSelect 与亚硫酸盐测序结合在一起,挑选了与表观遗传学研究最相关的基因组序列,包含了与多种疾病(例如,癌症、基因组印记疾病、行为和精神障碍等等)相关的区域,实现了前所未有的序列覆盖范围。 &ldquo DNA 甲基化是重要的表观遗传学特征之一。&rdquo 华盛顿大学西北参考表观基因组图谱中心主任 John Stamatoyannopoulos 说,&ldquo 如果拥有一种经济实惠的可以在亚硫酸盐测序过程中智能地检测数百万 CpG 的平台,那么将大大降低成本并大幅扩展基因组规模 DNA 甲基化分析的范围和适用性。&rdquo &ldquo Agilent SureSelect XT 甲基化测序系统涵盖了所有基因组中癌症研究领域关注的甲基化胞嘧啶位点,投入产出比相当好。&rdquo 马克斯普朗克分子遗传学研究所 Michal-Ruth Schweider 医学博士说道。 &ldquo 我们很高兴能为用户提供这种新工具来满足医学界日益增加的需求。&rdquo 安捷伦副总裁基因组学总经理 Robert Schueren 说道。&ldquo 由于异常甲基化是可逆的,因此这种分析方法非常有利于开发新的治疗方法。&rdquo Agilent SureSelect XT 甲基化测序系统使研究人员能够分析超过 370 万个CpG 核苷酸序列位点,研究它们的甲基化状态。该系统针对启动子、经典 的CpG 岛以及最近被关注的位于CpG 岛上下游 2kb范围内的&ldquo shores&rdquo 和&ldquo shelves&rdquo 区域设计。研究表明,许多甲基化变化并不发生在启动子或 CpG 岛,而是发生在 CpG 岛上下游2kb 范围内,也就是 CpG 岛shores区域。除上述区域外,Agilent SureSelect XT 甲基化测序系统的设计还包含了已知的差异性甲基化区域。 与全基因组亚硫酸盐测序相比,Agilent SureSelect XT 甲基化测序系统具有更高的通量和更低的成本。它可以识别限制性内切酶或免疫沉淀法不能检测的区域。因为该产品也属于SureSelect XT 产品系列,安捷伦为用户提供全套工作流程解决方案。并配有适用于文库构建和靶序列捕获的所有必备试剂。 要了解更多信息,请访问 www.agilent.com/genomics/ngs。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn
  • 珀金埃尔默Torion助力新国标《水中挥发性有机物的测定便携式顶空/气相色谱质谱法》
    近期,生态环境部办公厅发布了《水质挥发性有机物的测定 便携式顶空/气相色谱质谱法(征求意见稿)》,该标准规定了地表水、地下水、生活污水、工业废水和海水中挥发性有机物的现场快速定性和56种目标化合物的定量分析。珀金埃尔默Torion T-9仅需80秒即可完成标准中56种VOCs的定性定量分析,可从容应对环境突发事件的应急监测需求。减少了样品运输和保存过程中待测物质的变化,具有实验室分析方法不可替代的优势。随着我国经济的增长,工业发展迅猛,在化工品生产、运输和储存过程中导致的挥发性有机物(VOCs)污染事故频发,严重影响了当地的人民生活、社会稳定和经济发展。VOCs并非单一的化合物种类众多,具有迁移性、持久性和毒性是一类重要的环境污染物。VOCs会对空气、水、土壤等造成严重伤害和污染,其中水与我们的生活息息相关。目前,国内外针对水中VOCs的检测标准主要是顶空气相色谱法、顶空气相色谱质谱法、吹扫捕集气相色谱质谱法等均为实验室检测标准。珀金埃尔默Torion T-9便携式气质配合SPS-3顶空工作站可以在突发应急现场分析水中VOCs,样品分析速度快,检测56种VOCs仅需80秒,同时峰形尖锐分离效果好。在满足新标准的同时可在突发性环境应急事件中快速提供检测结果,指导应急策略。Torion T-9便携式气质技术优势:SPME/CME/顶空/热脱附等多种样品前处理方式创新的环状离子阱比常规离子阱离子容量高400倍开机5分钟做样3分钟升温速率高达2.5℃/s无基础用户一天培训可独立操作隔膜泵/涡轮分子泵的真空系统非耗材省心省成本图1 56种VOCs与2种内标总离子流图1-氯乙烯;2-1,1-二氯乙烯;3-二氯甲烷;4-反-1,2-二氯乙烯;5-1,1-二氯乙烷;6-氯丁二烯;7-顺-1,2-二氯乙烯;8-2,2-二氯丙烷;9-溴氯甲烷;10-氯仿;11-1,1,1-三氯乙烷;12-1,2-二氯乙烷;13-1,1-二氯丙烯;14-苯;15-四氯化碳;16-1,2-二氯丙烷;IS1-氟苯(内标);17-三氯乙烯;18-二溴甲烷;19-一溴二氯甲烷;20-顺-1,3-二氯丙烯;21-反-1,3-二氯丙烯;22-1,1,2-三氯乙烷;23-甲苯;24-1,3-二氯丙烷;25-二溴氯甲烷;26-1,2-二溴乙烷;27-四氯乙烯;28-氯苯;29-1,1,1,2-四氯乙烷;30-乙苯;31/32-对/间-二甲苯;33-溴仿;34-苯乙烯;35-邻-二甲苯;36-1,1,2,2-四氯乙烷;37-1,2,3-三氯丙烷;38-异丙苯;39-溴苯;40-正丙苯;41-2-氯甲苯;42-4-氯甲苯;43-1,3,5-三甲基苯;44-叔丁基苯;45-1,2,4-三甲基苯;46-1,4-二氯苯;IS2-1,4-二氯苯-d4(内标);47-仲丁基苯;48-1,3-二氯苯;49-4-异丙基甲苯;50-1,2-二氯苯;51-正丁基苯;52-1,2-二溴-3-氯丙烷;53-1,2,4-三氯苯;54-萘;55-六氯丁二烯;56-1,2,3-三氯苯;图2 1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出解卷积谱图在突发应急事件中,由于便携质谱检测结果是制定应急决策的重要依据,不但要快而且要准。Torion T-9内置强大的谱库的同时还具备独特的解卷积功能,可以轻松鉴定极为复杂的化合物,即使有化合物共流出也可以实现准确定性和定量。如图2所示1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出通过Torion T-9的内置谱库和解卷积功能可以准确识别出这4种物质。Torion T-9便携式气质为突发应急保障而设计,总重量仅14.5公斤,仪器从启动到样品分析仅需5分钟,样品分析时间3分钟以内,在福建泉港C9泄露、江苏海安工业园泄露、青岛上合峰会、武汉军运会等突发事件和重大会议保障上起到了关键的作用。
  • 标准解读|迎接新版生活饮用水标准,东西分析准备好了!
    饮用水安全是人们健康的基本保障,关系国计民生,是需要重点关注的公共卫生问题之一。新年伊始,水行业就迎来了重磅消息,作为《生活饮用水卫生标准》GB/T5749的配套检测标准《生活饮用水标准检验方法》GB/T5750征求意见稿在全国标准信息公共服务平台发布。东西分析作为国内较早成立的科学分析仪器生产厂商之一,在生活饮用水安全方面拥有丰富的经验,面对即将执行的《生活饮用水卫生标准》及其配套的新版《生活饮用水标准检验方法》,东西分析可提供包括售前咨询、检测设备、应用方法、售后服务等在内的整体解决方案,助您一臂之力!内容变化新版的《生活饮用水卫生标准》GB/T 5749已进入发布阶段,其水质指标由原来的106项改为97项,包括常规指标43项和扩展指标54项:增加了高氯酸盐、乙草胺、2-甲基异莰醇、土臭素4项指标;删除了耐热大肠菌群、三氯乙醛、硫化物、氯化氰(以CN-计)、六六六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、甲醛、1,1,1-三氯乙烷、1,2-二氯苯、乙苯共计13项指标。水质参考指标也由原来的28项调整为55项。 作为与新版GB/T5749《生活饮用水卫生标准》配套检测标准GB/T5750《生活饮用水标准检验方法》意见稿在保持原来的13项内容基础上做了针对性的修订总结:感官性状和物理指标:1项指标,2个方法无机非金属指标:2项指标,3个方法有机物指标:55项指标,7个方法农药指标:30项指标,9个方法消毒副产物指标:14项指标,1个方法消毒剂指标:2项指标,2个方法涉及24个方法,104项指标应对方案在生活饮用水卫生标准中,金属、类金属、无机非金属、挥发性有机物、半挥发性有机物、农药残留、卤代烃等指标是主要的检测项目,仪器涉及原子吸收、原子荧光、液相-荧光形态分析仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪、气质联用仪、气相色谱仪、液相色谱仪等。金属、类金属、无机非金属检测金属和类金属指标修订内容删除了铁、锰、铜的火焰原子吸收分光光度法-萃取法、火焰原子吸收分光光度法-共沉淀法、火焰原子吸收分光光度法-巯基棉富集法;锌的火焰原子吸收分光光度法-萃取法、火焰原子吸收分光光度法-共沉淀法、火焰原子吸收分光光度法-巯基棉富集法;镉和铅的火焰原子吸收分光光度法-萃取法、火焰原子吸收分光光度法-共沉淀法、火焰原子吸收分光光度法-巯基棉富集法。 增加了砷:液相色谱-电感耦合等离子体质谱法、液相色谱-原子荧光法;氯化乙基汞:液相色谱-原子荧光光谱联用法。无机非金属指标修订内容删除了:碘化物气相色谱法;增加了:碘化物电感耦合等离子体质谱法;高氯酸盐离子色谱法-氢氧根系统淋洗液、离子色谱法-碳酸盐系统淋洗液检测方法。AA-7090型原子吸收分光光度计AA-7050原子吸收分光光度计SavantAA原子吸收分光光度计AF-7550型双道氢化物-原子荧光光度计LC-AF 7590液相色谱-原子荧光联用仪ICP-7760HP型全谱电感耦合等离子体发射光谱仪ICP-7700型电感耦合等离子发射光谱仪GBC Quantima型电感耦合等离子发射光谱仪GBC OptiMass 9600电感耦合等离子体直角加速式飞行时间质谱仪Cintra 4040 紫外-可见分光光度计IC-2800离子色谱仪有机物检测有机物综合指标修订内容有机物指标修订内容对原有28个指标进行了修订(四氯化碳、1,2二氯乙烷、1,1,1-三氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯(顺、反)、三氯乙烯、四氯乙烯、丙烯酰胺、邻苯二甲酸二(2-乙基己基)酯、微囊藻毒素、环氧氯丙烷、苯、甲苯、二甲苯(邻、间、对)、乙苯、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯、四氯苯、苯乙烯、六氯丁二烯)。纳入27个新指标(1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、2,2-二氯丙烷、1,1,2-三氯乙烷、1,2,3-三氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2-二溴-3-氯丙烷、1,1-二氯丙烯、1,2-二氯丙烯(顺、反)、1,2-二溴乙烯、1,2-二溴乙烷、1,2,4-三甲苯、1,3,5-三甲苯、丙苯、4-甲基异丙苯、丁苯、五氯苯、2-氯甲苯、4-氯甲苯、1,3-二氯苯、溴苯、异丁基苯、萘、叔丁基苯、二苯胺)。增加以下检验方法:生活饮用水中环氧氯丙烷检验方法-气相色谱质谱法;生活饮用水中55种挥发性有机物检验方法-吹扫捕集/气相色谱质谱法;生活饮用水中11种挥发性有机物检测方法-顶空气相色谱法;生活饮用水中27种卤代烃的检验方法-顶空气相色谱法;生活饮用水中二苯胺的检验方法-高效液相色谱法。 农药指标修订内容 对原有的18个指标进行了修订修订指标包括滴滴涕、林丹、对硫磷、甲基对硫磷、马拉硫磷、乐果、百菌清、溴氰菊酯、灭草松、2,滴、敌敌畏、呋喃丹、毒死蜱、莠去津、草甘膦、七氯、六氯苯、五氯酚。纳入12个新指标(氟苯脲、氟虫脲、除虫脲、氟啶脲、氟铃脲、杀铃脲、氟丙养脲、敌草隆、氯虫苯甲酰胺、利谷隆、甲氧隆、氯硝柳胺) 增加了生活饮用水中15种半挥发性有机物标准检验方法-固相萃取/气相色谱质谱法生活饮用水中五种拟除虫菊酯标准检验方法-高效液相色谱法生活饮用水百菌清标准检验方法-毛细管柱气相色谱法生活饮用水中草甘膦标准检验方法-离子色谱法生活饮用水中氯硝柳胺标准检验方法高效液相色谱法 消毒副产物指标修订内容修订指标8个、新增指标5个、共增加了1种检验方法:修订指标为三氯甲烷、三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二氯乙酸、三氯乙酸、2,4,6-三氯酚。新增指标为:一氯乙酸、一溴乙酸、二溴乙酸、氯溴甲烷、二溴甲烷。增加了亚硝基二甲胺固相萃取气相色谱质谱法、液液萃取气相色谱质谱法;生活饮用水中一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸五种卤乙酸离子色谱检验方法。GC-4100型气相色谱仪GC-MS 3200型气相(四极)色谱质谱联用仪GCxGC TOF MS 3300全二维气相色谱质谱联用仪LC-5520型高效液相色谱仪IC-2800离子色谱仪东西分析在水质安全领域深耕多年,拥有丰富的行业经验及完整的生活饮用水解决方案和应用文集,欢迎您与我们联系,一起守护民众健康安全。
  • GB/T 5750.8 《生活饮用水标准检验方法》配套混标上架
    2020年国家卫生健康委员会提出GB 5749—2006《生活饮用水卫生标准》修订立项计划,并获国家标准化管理委员会批准。2021年7月12日,在全国标准信息服务平台公开征求意见,同时,GB/T 5750-2006《生活饮用水标准检验方法》也发生了有很大变化。相比GB/T 5750.8-2006,新版修订内容包括:*对原有28个指标进行了修订。修订指标包括四氯化碳、1,2 二氯乙烷、1,1,1-三氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯(顺、反)、三氯乙烯、四氯乙烯、丙烯酰胺、邻苯二甲酸二(2-乙基已基)酯、微囊藻毒素、环氧氯丙烷、苯、甲苯、二甲苯(邻、间、对)、乙苯、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯、四氯苯、苯乙烯、六氯丁二烯。*纳入27个新指标。新增加指标包括1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、2,2-二氯丙烷、1,1,2-三氯乙烷、1,2,3-三氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2-二溴-3-氯丙烷、1,1-二氯丙烯、1,2-二氧丙烯(顺、反)、1,2-二溴乙烯、1,2-二溴乙烷、1,2,4-三甲苯、1,3,5-三甲苯,丙苯、4-甲基异丙苯、丁苯、五氯苯、2-氯甲苯、4-氯甲苯、1,3-二氯苯、溴苯、异丁基苯、萘、叔丁基苯、二苯胺。*共增加7个检验方法。1、生活饮用水中环氧氯丙烷检验方法—气相色谱质谱法2、生活饮用水中55种挥发性有机物(VOC) 检验方法—吹扫捕集/气相色谱质谱法3、生活饮用水中5种微囊藻毒素的测定方法—液相色谱串联质谱联用法4、生活饮用水中丙烯酰胺的测定方法—液相色谱串联质谱联用法5、生活饮用水中11种挥发性有机物的检验方法—顶空气相色谱法6、生活饮用水中27种卤代烃的检验方法—顶空气相色谱法7、生活饮用水中二苯胺的检验方法—高效液相色谱法阿尔塔科技紧跟新标准步伐推出配套标准品系列产品,针对基础不同实验室满足多样需求。新建型实验室可以选择标准混标完整套装,助力实验室展开全面的扩项工作;具有一定实验基础的实验室可以选择新增指标的标准品补充包;需要兼顾新标准和各地饮用水地标的客户可以选择阿尔塔混标定制服务。更多产品需求欢迎来电咨询。标准配套部分混标:更多产品信息请联系对应业务员获取!
  • 中国食品工业协会立项《造纸化学品中氯丙醇含量的测定 气相色谱-质谱法》团体标准
    近期我会拟组织制定《造纸化学品中氯丙醇含量的测定 气相色谱-质谱法》团体标准,现将立项说明如下:目的:建立一种针对造纸化学品中氯丙醇含量的测试方法,为造纸化学品生产企业提供一种有效的检测技术手段,为食品接触用纸的生产企业在选择原材料和上游供应商时提供技术性参考依据,确保食品接触用纸的安全性,保障消费者健康与安全。意义及必要性:自从新修订的GB 4806.8-2022《食品安全国家标准 食品接触用纸和纸板材料及制品》于2022年6月30日正式发布以来,标准中新增加的氯丙醇水提取物指标受到行业和监管部门的高度关注,因为这个项目不仅在当前的食品接触用纸制品中检出率和不合格率都较高,而且在检测方法上也具有较大的难度和挑战性。因此对于食品接触用纸制品的生产企业来说,如何做好产品中的氯丙醇含量管控、确保产品复合新修订的GB 4806.8-2022产品标准要求、保障消费者健康与安全成为亟待解决的重要任务。对于造纸企业来说,产品中氯丙醇的来源主要有聚酰胺多胺环氧氯丙烷树脂型湿强剂(PAE湿强剂)、聚酰胺多胺环氧氯丙烷树脂型粘缸剂(PAE型粘缸剂)、环氧氯丙烷改性松香、环氧氯丙烷改性淀粉、环氧氯丙烷改性纤维素等造纸化学品,因此确保这些造纸化学品中不含或尽量少含氯丙醇成为确保纸制品中不含或尽量少含氯丙醇的关键。但是到目前为止,国内外对于造纸化学品中氯丙醇的测试方法并没有官方检测标准,这对造纸化学品生产企业有效管控造纸化学品中氯丙醇的残留、以及造纸企业选择尽量低氯丙醇残留的造纸化学品原材料都带来巨大的挑战,也为检测机构对相关产品和原材料提供检测技术服务造成困难。因此亟需尽快建立造纸化学品中氯丙醇含量的检测方法标准,为造纸和造纸原材料生产企业做好各自的产品质量控制提供技术支持。本标准的制定和实施,将有效填补国内尚无造纸助剂氯丙醇检测标准的空白,为造纸和食品包装行业及相关机构提供一种科学有效的定量检测手段,并将在提升企业的产品质量合格率、引领行业发展、保障消费者健康等方面发挥积极作用。我会现就以上立项计划征求意见,如有不同意见,请于2023年7月14日前将意见及理由返回至我会邮箱:cnfia@vip.163.com到期无回复视为同意。中国食品工业协会标准化工作委员会2023年6月30日
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
  • 阿尔塔有约生活饮用水检测技术线上研讨会!张岚等几位专家精彩答疑
    生活饮用水检测 2022/10/13饮用水安全是关乎全人类生存与发展的重要议题。为协助检测相关从业者了解法规及标准动态、促进各相关单位交流与合作, 我们举办这次饮用水检测技术与方法线上研讨会,围绕生活饮用水标准检验方法(GB/T 5750)最新修订进展、液质/气质检测技术及应用案例分享、检测方法包及检测中相关标准物质等主题进行重点解读。参与网友响应热烈,并提出相关问题。由于问题数量众多,阿尔塔科技将网友问题进行了筛选和整合,并与专家及时沟通。现将问答内容集中呈现。答疑1、5750.4-9中挥发酚类测定,可以直接用一级水作为无酚水吗?回答:无酚水的要求是“无酚”,建议通过试验确认一级水是否满足无酚要求。 2、方法标准上说标准物质可以自己配,也可以买市售的有证标准物质,那么自己配的标准物质有效期该写多久?而且方法只写了配制,并没有写标定,是不是就不需要标定了回答:大家可以根据自己的需求选择买标物或者自己配,标准溶液保存期与配制浓度相关,通常浓度高保存时间长,浓度低保存时间就短。此外,还与保存条件、标准物质的物理化学性质密切相关。自配标准溶液的保存时间可以参考同等条件下市售有证标准物质的规定和要求,但建议进行试验验证。3、GBT5750.8附录A 80多种挥发性有机物,按标准里给出的升温条件,中间部分(15-20分钟段)有些峰分不开。我的柱子是HP-INNOAWX,60米,其中间对二甲苯这种同分异构体 有时候出在一起,这种就怎么报呢?两个物质的检出限还不一样,怎么设置检出限?回答:标准方法中提供的色谱柱、仪器条件等都是参考条件,实验室应在自己的仪器设备上进行方法优化,优化时可参考标准中提供的各项参数,并最终确定自己设备的最佳条件。在本轮国标方法修订中的质量控制部分已明确要求实验室首次采用标准方法之前应对方法进行验证。此外,本轮国标方法修订中还在总则部分补充了针对二甲苯这种存在同分异构体情况的结果判定方法,我在刚才的报告中已进行了介绍。1、刚才老师讲解了吹扫捕集能测定55种VOC,二甲基硫醚,苯系物、二溴乙烯、二溴乙烷、五氯丙烷等多种物质,吸附管也是一样的,目前测定这些化合物采用多个方法,实验室能否采用该方法一次同时测定上述多种化合物?回答:吹扫捕集能测定55种VOC,二甲基硫醚,苯系物、二溴乙烯、二溴乙烷、五氯丙烷等多种物质,吸附管也是一样的,目前测定这些化合物采用多个方法。2、实验室能否采用该方法一次同时测定上述多种化合物?回答:GB/T 5750征求意见稿中吹扫捕集测定55种VOC,二甲基二硫醚,苯甲醚、二溴乙烯、、五氯丙烷等五种方法,测定的目标物没有重叠的化合物,将来出具带CMA标识的报告,优先按照国家标准方法。当然实验室也可开发一次同时测定上述多种有机物的方法,在满足方法学研究要求的基础上,可作为科研目的使用。如果需要出具带CMA标识的报告,则需开展非标方法研究,通过资质认定后方可出具带CMA标识的报告。3、测定55种VOC方法与15种SVOC方法中,采样时去除余氯加入的抗坏血酸 量为何不同?测定voc采样时每40mL水样加入25mg,而测定SVOC时每升加入100mg回答:目标物的性质不同,余氯的影响也有差异,加入抗坏血酸的量是在实验室验证基础上得到的最佳投入量。请问如何避免或减缓滴滴涕的降解,可以分享一下滴滴涕标液的制备和保存方法吗?回答:DDT在高温、光照和催化条件下可分解为DDE。但是,在正常的储存条件下,比如棕色包装瓶避光冷藏,滴滴涕或其溶液还是比较稳定的,在冷冻条件下,如-20度,其保质期会得到延长。建议按照标准物质证书上的储存温度进行储存。1、配阀的液质,液相和ICP/MS解决方案在切换方法后怎么确保检测结果不受前一个方法影响?回答:在切换到新方法的色谱柱及流动相之后,首先用新流动相充分清洗和平衡色谱柱,然后再进样。通过阀切换色谱柱和流动相时,不用重新连接管路,避免连接不当导致色谱柱损坏或漏液影响结果。所以,通过多方法方案自动切换方法后,不仅不受前一个方法影响,而且结果重复性更好。2、低含量PFAS检测很容易受液相色谱中合氟管线及部件的影响,贵公司验证过的管路无氟 LC/MS/MS系统及消耗品,性能不仅满足GB5750.8方法83.1的要求,而且还满足20种热点 PFAS的自动在线固相萃取解决方案要求,请问整个无氟液相色谱系统是否适合其他的非 PFAS分析方法?回答:可以用于其他分析方法,不需要拆除已经安装的无氟部件及管路。3、SPMEArrow做土臭素和2-甲基异莰醇的效果比我以前用SPME的效果好很多,请问一支SPME Arrow可以做多少个样品分析?回答:至少可以做500个样品4、气相配顶空一机两析一次进样可以同时把27个卤代烃和11个VOC结果做出来,挺好,但是分流了,方法的灵敏度可以满足要求吗?回答:灵敏度可以满足要求,重复性及线性都满足要求。了解更多产品或需要定制服务,请联系我们!
  • 文献解读丨生物活性聚甲基丙烯酸甲酯骨水泥治疗骨质疏松性椎体压缩性骨折
    研究背景 目前全球骨缺损手术每年约为2000万例,为保持原有骨骼的结构与功能的完整,骨修复就必须依赖于移植材料,因而临床治疗中对于具有支撑作用的骨植入材料需求量巨大。植入材料的特性对于骨修复具有重要影响,是再生医学研究中的关键问题,也是临床骨修复的核心要点。聚甲基丙烯酸甲酯 (PMMA) 骨水泥是临床上出现很早、使用非常广泛的骨水泥制品,其安全性和临床效果已经得到普遍认可。但是过高的弹性模量、相对较低的生物活性都限制了它在临床使用上的进一步应用和发展。骨组织的修复和再生是一个动态过程,始于骨祖细的增殖和迁移,最终分化为成熟骨细胞。虽然骨组织具有较强的再生能力,但是当大段骨组织损伤造成大范围骨缺损时,为保持原有骨骼的结构和功能,骨的修复就必须依赖于移植材料。植入材料的特性对于骨修复具有重要影响,该过程的影响成为再生医学研究中的关键问题,也是临床骨修复的核心要点。骨植入材料主要有自体骨、异体骨(同种异体骨、异种骨)和合成材料等。自体骨一直被认为是骨移植材料的金标准,但来源有限,取骨后容易出现穿孔、伤口感染、脓肿、出血等相关并发症,植入困难、创伤大等,也使其在临床上的应用受到限制。随着组织工程技术的不断发展,人工骨不仅可以实现大批量生产,而且往往具有新的研究不断赋予的生物相容性、成骨诱导性等特点,使得人工骨普遍应用于临床骨修复以及作为骨外科填充材料。 鉴于上述缺点,材料和医学科学家尝试了多种PMMA骨水泥改性策略,通过改变单体、添加生物活性材料或有机材料等策略来优化PMMA骨水泥的生物机械性能和生物学活性。 方法与结果 本研究以PMMA骨水泥作为支持材料,在其中添加具有生物活性的矿化胶原(MC)材料,通过基础实验研究复合骨水泥的材料学表征以及体内外活性,通过将该材料应用于临床,探究临床的实用性以及价值。采用兔骨质疏松模型对复合骨水泥材料MC-PMMA在体内的生物相容性及成骨性能进行评价。 采用岛津InspeXio SMX-225 CT FPD HR对骨水泥进行扫描重建,统计骨水泥的孔隙率。如图1所示,PMMA骨水泥的孔隙率与MC-PMMA骨水泥的孔隙率几乎相同(5.61±0.16%比7.22±0.53%)。与PMMA骨水泥相比,MC-PMMA具有较低的CT值(9.36±0.13对5.46±0.22)。图1 岛津micro-CT扫描材料结果 体内实验中,更重要的评价环节为影像学评价。在4周,8周,12周时处死兔子,选择有材料的椎体,在Micro-CT定位下确定材料的位置,并进行硬组织切片和染色。采用岛津InspeXio SMX-225 CT FPD HR扫描样品,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 术后各组在各个时间点的典型扫描三维重建结果如图2A所示,骨水泥材料牢固地结合到骨组织上,没有明显的间隙。通过显微CT进行的三维渲染显示了缺损和骨水泥的位置。在图2A中,骨水泥具有以红色和黄色显示的高CT值,而骨是黑色的。随着骨水泥被骨替代,颜色变为绿色,蓝色,最后变为黑色,表明CT值逐渐降低。在4周时,两组标本的骨水泥CT值和体积相似。在8周时,MC-PMMA组的CT值下降,但在PMMA组中几乎相同。在12周时,MC-PMMA组的CT值与以前相似的区域更多。然而,PMMA组的CT值保持不变。骨水泥的界面外观和CT值的差异表明MC-PMMA组中的材料吸收和骨再生比PMMA组更多。在手术后4,8和12周,MC-PMMA骨水泥组的椎体重建三维图像的定量显示比PMMA骨水泥组有更多的骨形成(图2B-E)。手术后4周,MC-PMMA组的骨量百分比和骨小梁厚度较高。然而,骨小梁厚度或骨小梁分离没有差异。手术后8周和12周,与PMMA组相比,MC-PMMA组的骨小梁厚度显着增加,骨量百分比增加,骨小梁数较高,骨小梁分离度较低,表明随着时间的推移MC-PMMA组的骨生长增加。图2 micro-CT三维重建结果和计算结果 总结与讨论 本研究通过向广泛用于PVP和BKP的PMMA骨水泥品牌的粉末中添加矿化胶原来开发基于生物活性PMMA的骨水泥。与PMMA骨水泥相比,MC-PMMA骨水泥的压缩模量显着降低,而处理时间大致相同。MC-PMMA骨水泥促进细胞增殖和分化,并加速骨质疏松兔模型中椎骨的修复和小规模临床试验中患者的OVCF。我们的研究结果表明,MC-PMMA骨水泥有望用于临床转化。 微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus高分辨率,图像清晰擅长复合材料的拍摄操作简单、试验速度快 文献题目《Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures》 使用仪器岛津inspeXio SMX-225CT FPD HR Plus 第一作者诸进晋,杨淑慧 原文链接:https://doi.org/10.7150/thno.44276
  • 真的有“0添加”防腐剂化妆品?智商税!
    我们常用的化妆品,如护肤、彩妆、洗护类产品,由水、油脂和营养物质组成,是微生物增生、繁殖的培养基地,极易变质腐败。为了延长化妆品使用寿命,在生产的过程中需加入适量的防腐剂。根据文献资料和新闻报道,绝大多数化妆品所谓的“0添加”只是没有添加《化妆品安全技术规范》中列出的防腐剂,而是使用了其他替代防腐剂,且这类物质使用时间较短,其副作用还暂不明确。 2015版《化妆品安全技术规范》中规定了51种准用防腐剂及最大允许浓度,较常用的有苯氧乙醇、苯甲酸钠、对羟基苯甲酸酯类、甲基异噻唑啉酮等。某护手霜成分表 如何检测化妆品中防腐剂? 防腐剂是一把双刃剑,过量的或不适合自身肤质的防腐剂可能会导致过敏性皮炎、肝脏毒性、类激素作用等副作用。 2021年3月国家药品监督管理局发布《化妆品中防腐剂检验方法》(2021年第17号通告),与2015版《化妆品安全技术规范》中绝大部分准用防腐剂一一对应,检测仪器有液相色谱仪和气相色谱仪,如有阳性检出或测试结果存在干扰因素,可采用三重四极杆液相色谱-质谱仪、气相色谱-质谱仪进行确证。 《化妆品安全技术规范(2015年版)》准用防腐剂与检验方法对照表岛津解决方案 岛津公司拥有丰富的色谱质谱产品,性能优越,操作简便,可以应对化妆品中防腐剂的检测。 检验方法 液相色谱法检测化妆品中23种防腐剂色谱柱:Shim-pack GIST C18,250mm x 4.6mm x 5μm流动相:A 0.12%磷酸水溶液 B乙腈流速:1 mL/min,柱温:30℃检测波长:230nm、254nm、280nm进样体积:10 μL洗脱程序:梯度洗脱 色谱图(1. 甲基异噻唑啉酮、2. 2-溴-2-硝基丙烷-1,3-二醇、3. 4-羟基苯甲酸、4. 甲基氯异噻唑啉酮、5. 苯甲醇、6. 苯氧乙醇、7. 苯甲酸、8. 4-羟基苯甲酸甲酯、9. 氯苯甘醚、10. 脱氢乙酸、11. 5-溴-5-硝基-1,3-二噁烷、12. 4-羟基苯甲酸乙酯、13. 4-羟基苯甲酸异丙酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 4-羟基苯甲酸异丁酯、17.4-羟基苯甲酸丁酯、18. 4-羟基苯甲酸苄酯、19.苯甲酸乙酯、20. 4-羟基苯甲酸戊酯,21. 苯甲酸异丙酯、22. 苯甲酸丙酯、23. 苯甲酸苯基酯) 气相色谱法检测化妆品中26种防腐剂色谱柱:Rxi-wax,60m×0.32mm×0.25μm柱温程序:50℃(1 min)_50℃/min_ 120℃ _5℃/min_195℃(3 min)_20℃ /min_220℃(10min)_20℃/min_240℃ (15 min)进样方式:分流进样(分流比为5:1)检测器温度:250℃ 色谱图(1. 丙酸、2. 三氯叔丁醇、3. 苯甲酸甲酯、4.苯甲酸异丙酯、5. 苯甲酸乙酯、6. 苯甲酸丙酯、7. 苯甲酸异丁酯、8. 苯甲酸异丁酯、9. 苯甲醇、10. 甲基氯异噻唑啉酮、11. 苯氧异丙醇、12. 甲基异噻唑啉酮、13. 山梨酸、14. 苯氧乙醇、15. 苯甲酸、16. 十一烯酸、17. 对氯间甲酚、18. 氯二甲酚、19. 邻苯基苯酚、20. 4-羟基苯甲酸甲酯、21. 4-羟基苯甲酸异丙酯、22. 4-羟基苯甲酸乙酯、23. 4-羟基苯甲酸丙酯、24. 4-羟基苯甲酸异丁酯、25. 4-羟基苯甲酸丁酯、26. 4-羟基苯甲酸戊酯) 确证方法 三重四极杆液相色谱-质谱法检测化妆品中34种防腐剂 色谱柱:Shim-pack GIST C18,50mm x 2.1mmx 2μm流动相1:A相-5 mM乙酸铵;B相-甲醇流动相2:A相-5 mM乙酸铵(含0.1%甲酸) B相-甲醇流速:0.3 mL/min洗脱方式:梯度洗脱离子化模式:ESI +/- 同时扫描离子源接口电压:4.0 kV雾化气:氮气 3.0 L/minDL温度:250℃扫描模式:多反应监测(MRM) 色谱图流动相1:(1. 水杨酸、2. 甲基异噻唑啉酮、3. 苯甲酸、4. 2-溴-2硝基丙烷-1,3-二醇、5. 4-羟基苯甲酸、6. 脱氢乙酸、7. 甲基氯异噻唑啉酮、8. 硫柳汞、9. 4-羟基苯甲酸甲酯、10. 4-羟基苯甲酸乙酯、11. 4-羟基苯甲酸异丙酯、12. 对氯间甲酚、13. 碘丙炔醇丁基氨甲酸酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 邻苯基苯酚、17. 氯二甲酚、18. 4-羟基苯甲酸异丁酯、19. 4-羟基苯甲酸丁酯、20. 4-羟基苯甲酸苄酯、21. 氯咪巴唑、22. 十二烷基三甲基溴化铵、23. 4-羟基苯甲酸戊酯、24. 苄氯酚、25. 十二烷基二甲基苄基氯化铵、26. 苄索氯铵、27. 溴氯酚、28. 三氯卡班、29. 三氯生、30. 十四烷基二甲基苄基氯化铵、31. 十六烷基二甲基苄基氯化铵、32. 海克替啶) 流动相2:(1. 己咪定二(羟乙基磺酸)盐、2. 氯己定) 部分同分异构体色谱图气相色谱-质谱法检测化妆品中19种防腐剂色谱柱:InertCap Pure-WAX,30 m×0.25 mm×0.25 μm柱温程序:40℃(1 min)_40℃/min_80℃_10℃/min_230℃(1 min) _10℃/min_260℃(5 min)色谱柱流量:1 mL/min进样方式:分流进样(分流比为5:1)采集模式:SIM 色谱图(1. 甲酸、2. 丙酸、3. 三氯叔丁醇、4. 苯甲酸甲酯、5. 苯甲酸异丙酯、6. 苯甲酸乙酯、7. 苯甲酸丙酯、8. 苯甲酸异丁酯、9. 苯甲酸丁酯、10. 苯甲醇、11. 苯氧异丙醇、12. 山梨酸、13. 苯氧乙醇、14. 2,6-二氯苯甲醇、15. 邻伞花烃-5-醇、16. 2,4-二氯苯甲醇、17. 十一烯酸、18. 苯甲酸苯基酯、19. 氯苯甘醚) 结语 其实,为了抑制细菌繁殖,绝大多数化妆品都会添加防腐剂。防腐剂种类繁多,涉及多种检测仪器,利用岛津LC、GC可以准确测定防腐剂含量,如存在不确定因素,可用岛津LC-MS/MS和GC-MS进行定性定量确证,符合法规要求,助您高效准确识别化妆品中防腐剂。 撰稿人:郑嘉
  • GB/T 5750-2023《生活饮用水标准检验方法》新增质谱方法盘点
    生活饮用水保障是关系到国计民生的重要公共卫生问题之一。2023年3月经国家市场监督管理总局(国家标准化管理委员会)批准发布GB/T 5750-2023《生活饮用水标准检验方法》系列标准在10月1日正式实施,成为我国新版《生活饮用水卫生标准》(GB 5749-2022)配套检验方法的系列标准。本次修订主要特点有:①大幅增加了高通量的分析方法;②大幅扩展了质谱技术的应用范畴;③重点加强了自动化程度高检测方法;④进一步强化了以人为本的制标理念;充分体现了方法标准的配套性和前瞻性。特别值得关注的是,在2023版新标准增加的水质检测方法中,以质谱技术相关的方法居多,涉及质谱技术的检测方法由2006版标准的3个增加至本次的28个。其中气相色谱质谱法由原有的2个增至14个,新增1个气相色谱串联质谱法、1个液相色谱质谱法,同时增加了11个液相色谱串联质谱法。涉及质谱方法变化的各章节的具体情况见下表:GB/T 5750.5 无机非金属指标》》》点击下载序号项目方法方法编号1碘化物电感耦合等离子质谱法13.42高氯酸盐超高液相色谱串联质谱14.3GB/T 5750.6 金属和类金属指标》》》点击下载序号项目方法方法编号1砷液相色谱-电感耦合等离子质谱法9.52硒液相色谱-电感耦合等离子质谱法10.53六价铬液相色谱-电感耦合等离子质谱法13.24氯化乙基汞液相色谱-电感耦合等离子质谱法28.2GB/T 5750.8 有机物指标》》》点击下载序号项目方法方法编号1四氯化碳吹扫捕集气相色谱质谱法4.22丙烯酰胺高液相色谱串联质谱法13.13邻苯二甲酸二(2-乙基己基)酯固相萃取气相色谱质谱法15.14微囊藻毒素液相色谱串联质谱法16.25环氧氯丙烷气相色谱质谱法20.161,2-二溴乙烯吹扫捕集气相色谱质谱法61.17双酚A超高液相色谱串联质谱75.18土臭素顶空固相微萃取气相色谱质谱法76.19五氯丙烷吹扫捕集气相色谱质谱法78.210戊二醛液相色谱串联质谱80.111环烷酸超高液相色谱串联质谱81.112苯甲醚吹扫捕集气相色谱质谱法83.113全氟辛酸超高液相色谱串联质谱84.114二甲基二硫醚吹扫捕集气相色谱质谱法86.115多氯联苯气相色谱质谱法89.116药品及个人护理品超高液相色谱串联质谱90.1GB/T 5750.9 农药指标》》》点击下载序号项目方法方法编号1甲基对硫醚液相色谱串联质谱8.32甲萘威液相色谱串联质谱13.43氟氯脲液相色谱串联质谱25.14乙草胺气相色谱质谱法41.1GB/T 5750.10 消毒副产物指标》》》点击下载序号项目方法方法编号1二氯乙酸高液相色谱串联质谱15.32亚硝基二甲胺固相萃取气相色谱质谱法23.1液液萃取气相色谱质谱法23.1在此背景下,为了进一步促进生活饮用水检测工作的交流与合作,仪器信息网特别发起“《生活饮用水标准检验方法》——质谱篇”主题约稿,欢迎各位行业协会/学会、高校/科研院所的专家老师,以及领域内仪器厂商们积极投稿。点击图片,进行投稿
  • 食品接触材料及制品 菲罗门色谱柱解决方案
    小伙伴们,2017 年 4 月 19 日起,一大波食品接触材料及制品的食品安全国家标准来袭, 你准备好了吗?是不是还在纠结柱子选的对不对,还在犯愁哪里能订到如此特殊规格的色谱柱? 菲罗门想您所想,为您提供一站式的解决方案。 序号国标编号国标名称方法固定相菲罗门对应产品货号1GB 31604.11-20161,3-苯二甲胺迁移量的测定液相C18,5μm 150×4.6mmTitank C185μm 150×4.6mmFMF-5560-EONU2GB 31604.12-20161,3-丁二烯的测定和迁移量的测定气相聚苯乙烯-二乙烯基苯石英毛细管柱30m×0.32mm×10μmFB-PLOT Q30m×0.32mm×10μm30M-L086-1003GB 31604.13-201611-氨基十一酸迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U4GB 31604.14-20161-辛烯和四氢呋喃迁移量的测定气相(5%-苯基)-甲基聚硅氧烷石英毛细管柱30m×0.25mm×0.25μmFB-530m×0.25mm×0.25μm30G-L005-0255GB 31604.15-20162,4,6-三氨基-1,3,5-三嗪(三聚氰胺)迁移量的测定液相氨基柱5μm 250×4.6mmACE Excel NH25μm 250×4.6mmEXL-1214-2546U6GB 31604.16-2016苯乙烯和乙苯的测定气相聚乙二醇30m×0.32mm×0.5μmFB-Inowax30m×0.32mm×0.5μm30M-L020-0507GB 31604.17-2016丙烯腈的测定和迁移量的测定气相交联键合聚乙二醇30m×0.32mm×0.25μmFB-Inowax30m×0.32mm×0.25μm30M-L020-025 8GB 31604.18-2016丙烯酰胺迁移量的测定液相Venusil CIS 离子排斥色谱柱5μm 250×4.6mmMARS CIS5μm 250×4.6mmFMG-1038-EONU9GB 31604.19-2016己内酰胺的测定和迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U10GB 31604.20-2016醋酸乙烯酯迁移量的测定气相DB-5 石英毛细管柱30m×0.32mm×0.25μmFB-530m×0.32mm×0.25μm30M-L005-025气质DB-5ms30m×0.25mm×0.25μmFB-5MS30m×0.25mm×0.25μm30G-L015-02511GB 31604.21-2016对苯二甲酸迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U液质C18,5μm 150×4.6mmACE Excel C185μm 150×4.6mmEXL-121-1546U12GB 31604.22-2016发泡聚苯乙烯成型品中二氟二氯甲烷的测定气相6%腈丙苯基-94%二甲基聚硅氧烷毛细管色谱柱30m×0.32mm×0.18μmFB-62430m×0.32mm×0.18μm30M-L062-01813GB 31604.23-2016复合食品接触材料中二氨基甲苯的测定气相HP-5MS30m×0.25mm×0.25μmFB-5MS30m×0.25mm×0.25μm30G-L015-02514GB 31604.26-2016环氧氯丙烷的测定迁移量的测定液相C8,5μm 250×4.6mmACE Excel C85μm 250×4.6mmEXL-122-2546U气质聚乙二醇30m×0.25mm×0.25μmFB-Inowax30m×0.25mm×0.25μm30G-L020-02516GB 31604.27-2016塑料中环氧乙烷和环氧丙烷的测定气相键合苯乙烯-二乙烯苯的 PLOT 柱30m×0.32mm×20μmFB-PLOT Q30m×0.32mm×20μm30M-L086-200 17GB 31604.28-2016己二酸二(2-乙基)己酯的测定和迁移量的测定气相(5%)二苯基(- 95%)二甲基亚芳基硅氧烷共聚物30m×0.32mm×0.25μmFB-5MS UI30m×0.32mm×0.25μm30M-L015-025UI18GB 31604.29-2016甲基丙烯酸甲酯迁移量的测定气相聚乙二醇(PEG)30m×0.25mm×0.25μmFB-Inowax30m×0.25mm×0.25μm30G-L020-02519GB 31604.30-2016邻苯二甲酸酯的测定和迁移量的测定气相5%苯基-甲基聚硅氧烷石英毛细管柱30m×0.25mm×0.25μmFB-5MS30m×0.25mm×0.25μm30G-L015-02520GB 31604.31-2016氯乙烯的测定和迁移量的测定气相聚乙二醇30m×0.32mm×1μmFB-Inowax30m×0.32mm×1μm30M-L020-10021GB 31604.35-2016全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定SPE弱阴离子交换,WAX150mg/6mLPolyClean X-WAX150mg/6mL9B-P005-06150液质C18,3μm 150×2.1mmACE Excel C183μm 150×2.1mmEXL-111-1502U22GB 31604.36-2016软木中杂酚油的测定气质HP-INNOWax30m×0.25mm×0.25μmFB-Inowax30m×0.25mm×0.25μm30G-L020-02523GB 31604.37-2016三乙胺和三正丁胺的测定气相ZB-530m×0.32mm×5μmFB-530m×0.32mm×5μm30M-L005-50024GB 31604.39-2016食品接触用纸中多氯联苯的测定气相5%苯基-甲基聚硅烷30m×0.25mm×0.25μmFB-530m×0.25mm×0.25μm30G-L005-02525GB 31604.40-2016顺丁烯二酸及其酸酐迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U26GB 31604.43-2016乙二胺和己二胺迁移量的测定气相100%二甲基硅氧烷柱30m×0.32mm×5μmFB-130m×0.32mm×5μm30M-L001-500 27GB 31604.44-2016乙二醇和二甘醇迁移量的测定气相硝基对苯二酸修饰的聚乙二醇毛细管柱30m×0.32mm×1μmFB-FFAP30m×0.32mm×1μm30M-L021-10028GB 31604.45-2016异氰酸酯的测定液相C18,5μm 150×4.6mmACE Excel C185μm 150×4.6mmEXL-121-1546U29GB 23296.19-2009食品中模拟物中乙酸乙烯酯的测定气相色谱法气相100%二甲基硅氧烷柱25m×0.32mm×5μmFB-125m×0.32mm×5μm25M-L001-500聚乙二醇25m×0.32mm×1μmFB-Inowax25m×0.32mm×1μm25M-L020-100
  • 应对新国标——化妆品中限用防腐剂测定
    化妆品中含有很多天然高营养、高活性的有机物,如氨基酸、蛋白质、糖类、维生素等,为了合理延长产品保质期,确保产品在使用期间不会因为各种污染而产生变质,通常会加入阻止微生物滋生的各种防腐剂,常用防腐剂有苯酸甲酯、乙酯、丙酯和丁酯、苯甲酸、山梨酸等,防腐剂不超标都是正常的,防腐剂种类以及含量越低越好。 “GB/T 39927-2021化妆品中限用防腐剂二甲基噁唑烷、7-乙基双环噁唑烷和5-溴-5-硝基-1,3-二噁烷的测定”已于2021年11月1日正式实施,在《化妆品安全技术规范(2015)》中规定二甲基噁唑烷使用范围及限制条件PH≥6,7-乙基双环噁唑烷禁用于接触粘膜的产品,5-溴-5-硝基-1,3-二噁烷用于淋洗类产品,避免形成亚硝胺。本标准适用于水剂类、水包油类和油包水类化妆,推荐方法包括气相色谱-质谱联用以及高效液相色谱法。 岛津拥有丰富的色谱质谱产品,性能优越,操作简便,在应对化妆品中防腐剂的检测方面有丰富应用。 液相色谱法检测化妆品中23种防腐剂Nexera LC-40 (1. 甲基异噻唑啉酮、2. 2-溴-2-硝基丙烷-1,3-二醇、3. 4-羟基苯甲酸、4. 甲基氯异噻唑啉酮、5. 苯甲醇、6. 苯氧乙醇、7. 苯甲酸、8. 4-羟基苯甲酸甲酯、9. 氯苯甘醚、10. 脱氢乙酸、11. 5-溴-5-硝基-1,3-二噁烷、12. 4-羟基苯甲酸乙酯、13. 4-羟基苯甲酸异丙酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 4-羟基苯甲酸异丁酯、17.4-羟基苯甲酸丁酯、18. 4-羟基苯甲酸苄酯、19.苯甲酸乙酯、20. 4-羟基苯甲酸戊酯,21. 苯甲酸异丙酯、22. 苯甲酸丙酯、23. 苯甲酸苯基酯) 气相色谱-质谱法检测化妆品种19种防腐剂GCMS-QP2020NX (1. 甲酸、2. 丙酸、3. 三氯叔丁醇、4. 苯甲酸甲酯、5. 苯甲酸异丙酯、6. 苯甲酸乙酯、7. 苯甲酸丙酯、8. 苯甲酸异丁酯、9. 苯甲酸丁酯、10. 苯甲醇、11. 苯氧异丙醇、12. 山梨酸、13. 苯氧乙醇、14. 2,6-二氯苯甲醇、15. 邻伞花烃-5-醇、16. 2,4-二氯苯甲醇、17. 十一烯酸、18. 苯甲酸苯基酯、19. 氯苯甘醚) 如需了解岛津相关仪器设备或化妆品中相关应用资料,请不吝与岛津联系! 本文内容非商业广告,仅供专业人士参考。
  • 上海市食品接触材料协会立项《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》等两项团体标准
    各有关单位:根据《上海市食品接触材料协会团体标准管理办法》的相关规定,协会组织专家组对《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》、《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准进行了立项评审。经评审,两项团体标准的申报材料符合立项条件,批准立项。请编制单位按照协会工作要求,严把标准质量关,确保标准的适用性和有效性,按期完成标准的起草编制工作。同时,欢迎有关单位积极申报,参与上述两项团体标准的起草编制工作。特此公告。联 系 人:陈宁宁 黄 蔚联系电话:021-64372212邮 箱:safcmxh@163.com通信地址:上海市徐汇区永嘉路627号301室邮 编:200031上海市食品接触材料协会2024年3月29日上海市食品接触材料协会关于《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》、《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准的立项公告.pdf
  • 德国更新有害物质技术规则
    2013年7月17日消息,德国联邦职业安全与健康研究院(The German Federal Institute for Occupational Safety and Health ,Baua)已经就有害物质的职业暴露限值发布最新的技术规则草案。   该草案修订了现有化学物质清单,新增了9种物质:   溴甲烷(bromomethane)   环氧丙烷(propylene oxide)   2 -丁酮肟(2-butanone oxime)   N-异丙基-N'-苯基对苯二胺(N-isopropyl-N'-phenyl-p-phenylenediamine)   二环己胺(Dicyclohexylamine)   环己胺(cyclohexylamine)   二苯胺(diphenylamine)   N-(1,3-二甲基)丁基-N'-苯基对苯二胺(N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine)   多菌灵(Carbendazim)。   该草案预计将最终定稿,并于本月晚些时候在德国的官方公报上公布。(
  • 特色双柱系统丨全面应对GB 5749-2022饮用水GCMS检测项目
    导读GB 5749-2022《生活饮用水卫生标准》已于2023年4月1日起正式实施,与之配套的检验标准GB/T 5750-2023《生活饮用水标准检验方法》也于3月17日正式颁布,并将于2023年10月1日起正式实施。GB/T 5750-2023标准中气相色谱质谱联用仪(GCMS)是检测多项水质指标的利器之一。而让众多水质分析工作者头疼的,竟然是……今天小编就带大家深入了解下岛津GCMS特色系统岛津质谱双柱系统(Twin Line MS System)优势特色应用案例1 GCMS双柱系统测定生活饮用水中4种异味物质和SVOCs含量★ 分析利器岛津AOC-6000 Plus+GCMS-QP2020 NX★ 色谱图4种异味组分标准品色谱图(浓度为300 ng/L,以土臭素计)(1、二甲基二硫醚,2、二甲基三硫醚,3、2-甲基异莰醇,4、土臭素)16种SVOCs标准品色谱图(浓度为5.0 mg/L)(1、敌敌畏,2、2,4,6-三氯酚,3、六氯苯,4、乐果,5、五氯酚,6、林丹,7、百菌清,8、甲基对硫磷,9、七氯,10、马拉硫磷,11、毒死蜱,12、对硫磷,13、o, p'-滴滴涕,14、p, p'-滴滴涕,15、DEHP,16、溴氰菊酯)★ 双柱系统灵敏度与单柱系统对比取200 ng/L(以土臭素计)的异味物质标准溶液和1.0 mg/L的SVOCs标准溶液分别在双柱系统和单柱系统上进行测试,各组分峰面积见下图所示,双柱系统灵敏度较单柱系统无明显差异,峰面积相对偏差均小于5%。异味物质各组分在双柱系统和单柱系统中峰面积比较SVOCs各组分在双柱系统和单柱系统中峰面积比较2 GCMS双柱系统测定生活饮用水中VOCs含量★ 分析利器Tekmar吹扫捕集仪+岛津GCMS-QP2020 NX★ 色谱图35种VOCs标准品色谱图(浓度为1.0 μg/L)(1、1,1,2-三氯-1,2,2-三氟乙烷,2、1,1-二氯乙烯,3、氯丙烯,4、二氯甲烷,5、1,1-二氯乙烷,6、顺式-1,2-二氯乙烯,7、三氯甲烷,8、1,1,1-三氯乙烷,9、四氯化碳,10、苯,11、1,2-二氯乙烷,12、三氯乙烯,13、1,2-二氯丙烷,14、顺式-1,3-二氯丙烯,15、甲苯,16、反式-1,3-二氯丙烯,17、1,1,2-三氯乙烷,18、四氯乙烯,19、1,2-二溴乙烷,20、氯苯,21、乙苯,22、间,对-二甲苯,23、邻-二甲苯,24、苯乙烯,25、1,1,2,2-四氯乙烷,26、4-乙基甲苯,27、1,3,5-三甲基苯,28、1,2,4-三甲基苯,29、1,3-二氯苯,30、1,4-二氯苯,31、苄基苯,32、1,2-二氯苯,33、1,2,4-三氯苯,34、六氯丁二烯)★ 双柱系统灵敏度与单柱系统对比取0.1 μg/L的VOCs标准溶液分别在双柱系统和单柱系统上进行测试,各组分峰面积见下图所示,双柱系统灵敏度较单柱系统无明显差异,峰面积相对偏差均小于5%。VOCs各组分在双柱系统和单柱系统中峰面积比较结语岛津双柱系统由两个进样口同时安装两根不同色谱柱并一同接入质谱检测器,在双入口高效真空系统下,不会影响离子源真空度,保证检测的灵敏度,一台仪器上完成两台仪器的任务。如此“王炸”的产品,希望成为您在水质分析工作中事半功倍的好帮手。撰稿人:周懿——THE END——本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • 丙二醇在牛奶界“出圈”了,热度蹭蹭的
    近日,某品牌纯牛奶检测出丙二醇的词条冲上热搜,引发了社会公众的关注。那么,丙二醇是什么?对人体危害性如何?食品中是否需要添加该物质?如何检测等等一系列疑问浮现在脑海中。丙二醇是什么? 丙二醇(Propylene glycol),中文名1,2-丙二醇、1,2-二羟基丙烷、丙二醇或α-丙二醇。在塑料、注射类药物、合成树脂、化妆品、食品等众多领域有着广泛的应用。在GB2760-2014《食品安全国家标准 食品添加剂使用标准》中,丙二醇被用作稳定剂、凝固剂、抗结剂、消泡剂、乳化剂、水分保持剂、增稠剂等食品添加剂或食品工业中冷却剂、提取溶剂等加工助剂使用。在生湿面制品和糕点中的用量限值分别为1.5g/kg和3g/kg。丙二醇对人体的危害丙二醇在我国作为食品添加剂,其添加的范围是明确的,并不包含牛奶。有报道称长期过量摄入可能会损伤肾功能。遵守国家法律法规,合法使用食品添加剂是每个企业的责任和义务。丙二醇检测食品中丙二醇的检测标准参考GB5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》,标准中针对不同物质规定了详细的检测方法,涉及气相和气质两款产品。 东西分析作为一家拥有三十多年分析仪器设备生产、研发企业,对食品安全检测有丰富的经验,可为食品中丙二醇检测提供全套解决方案。方法一:气相色谱法 (GC+FID检测器)GC-4100气相色谱仪该方法适用于糕点,膨化食品、奶油、干酪、豆制品、奶片、生湿面制品、冷冻饮品、液体乳、植物蛋白饮料、乳粉、黄油、奶油中丙二醇检测。 参考条件色谱柱:DB-WAX柱,60m x 0.25mm,0.25μm;载气:高纯He;流速:1.0mL/min;程序升温:初始温度80℃,保持1min,以20℃/min速率升温至160℃,保持2min,再以15℃/min速率升温至220℃,保持10min。进样口温度:230℃;检测器温度:240℃;氢气流量:40mL/min;空气流量:350mL/min;进样量:1μL;分流比:10:1。方法二:GC-MS 气质法 GC-MS3200气相色谱(四极)质谱联用仪该方法适用糕点、膨化食品、干酪、豆制品、奶片、生湿面制品中丙二醇的检测。参考条件色谱部分色谱柱:PEG柱,60m x 0.25mm,0.25μm;载气:高纯He;流速:1.0mL/min;程序升温:初始温度80℃,保持1min,以20℃/min速率升温至160℃,保持2min,再以15℃/min速率升温至220℃,保持5min。进样口温度:230℃;检测器温度:240℃;进样量:1μL;分流比:10:1。质谱条件EI源;电离能量:70eV;离子源温度:230℃;溶剂延迟:8min扫描方式:SIM,选择离子m/z31、45、61,定量离子:m/z45。
  • 富邦仪城联手GS-tek向您推荐快速炼厂气分析新方案
    炼厂气组份分析是炼油厂气体常规分析项目,对其分析的准确程度直接关系到原油加工过程工艺条件的控制,再者,炼厂气是非常重要和宝贵的石油化工产原料,分析其组成对其进一步加工应用有重要意义。鉴于此,众多石化行业专家在寻求完美的“快速炼厂气分析”方案的路上可谓越走越远。富邦仪城的合作伙伴Gs-tek,作为专业的色谱柱生产厂家及色谱系统分析改造方案的提供者,近期推出新的快速炼厂气分析解决方案。区别于传统炼厂气分析的仅有一个控温单元,新的炼厂气分析采用无机气体分析流路与烃类分析流路分开并独立控温的方式,多个控温单元,满足不同流路不同的温度要求,实现了整个分析效率大大提高,整个分析可以在6.5min内完成;于此同时,采用GS-Tek最新开发的Plot色谱柱,C4烯烃的几个异构体的分离度亦大大提高。堆砌文字稍显浮夸,直接上谱图对照: 图1:传统炼厂气分析,烃类分析流路色谱图,总分析时间15min图2:新快速炼厂气分析,烃类流路色谱图,总分析时间6.5min图3:C4烯烃分离效果图,远远优于传统的AL203 Plot色谱柱阀流路对比图:图4:传统炼厂气分析 四阀五柱双TCD炼厂气分析流路图,分析时间15min 图5:新快速炼厂气分析阀图,分析时间6.5min分析组份详情:序号English中文1 Mathane 甲烷 2 Ethane 乙烷 3 Ethylene 乙烯 4 Propane 丙烷 5 Cyclopropane 环丙烷 6 Propylene 丙烯 7 i-Butane 异丁烷 8 n-Butane 正丁烷 9 Propadiene 丙二烯 10 Acetylene 乙炔 11 t-2-Butene 反-2-丁烯 12 1-Butene 正丁烯 13 i-Butene 异丁烯 14 c-2-Butene 顺-2-丁烯 15 i-Pentane 异戊烷 16 n-Pentane 正戊烷 17 1,3-Butadiene 1,3-丁二烯 18 t-2-Pentene 反-2-戊烯 19 2-Methyl-2-butene 2-甲基-2-丁烯 20 1-Pentene 正戊烯 21 c-2-Pentene 顺-2-戊烯 22 C6+ C6+ 总结:根据上述图文,新的炼厂气分析方案之所以有如此显著的效率提高,主要是把握了如下几个关键点:1. 控温单元增加,使无机气体流路分析独立开来,这使烃类分析快速化成为可能。2. 色谱柱性能提高,采用GS-Tek最新的Plot色谱柱,使烃类分析效率大大提高,在快速出峰的同时,分离度仍有显著提高,特别是C4烯烃的完全分离,实现的烃类化合物的精确定量。3. 阀流路调整,基于上述两个条件的成立,通过调整阀流路,提高分离效率。以上三个条件相辅相成,实现了整个分析的快速化、高效化。如果您苦于旧的炼厂气分析仪分析时间长,效率低,或者对我们新的炼厂气分析方案感兴趣,我们将提供以下服务为您助力:1.提供整套快速炼厂气分析仪,包括GC主机,追加的控温单元、流量控制单元、阀系统、色谱柱套柱、现场调试及操作培训。2.提供炼厂气分析色谱柱套柱、现场调试及培训、标准曲线的制作。3.如您已有旧的炼厂气分析系统,想要提高分析效率,我们亦可提供就系统改造升级服务,我们根据您现有的系统,为您设计并改造成新的快速系统。这需要您提供现有系统的配置,我们在近可能利用您现有硬件设施的同时,进行适当的升级,实现上述的分离效果。(注:仅限于Agilent及SHIMADZU主机系统)富邦仪城——检测化验一站式采购平台,为您提供全方位实验室服务。
  • 百灵威与ACROS ORGANICS
    ACROS ORGANICS是全世界享有盛誉的精细化学品供应商,是有机化学和精细化学产品行业的l导者。ACROS ORGANICS凭借不断发展创新的产品和服务以满足有机、医药、分析和生化l域的各类研发和生产的产品需求。 ACROS ORGANICS源自Eastman Kodak Laboratory Chemicals 和 Janssen Chimica两家知名化学工厂,自创立之初便继承了Eastman Kodak Laboratory Chemicals和Janssen Chimica在基础化学试剂l域和医药中间体l域的生产经验和研发成果。现在ACROS ORGANICS作为ThermFisher Scientific集团中的y员,有了更高的起点。ThermFisher Scientific集团将助力ACROS ORGANICS不断扩大差异化产品和长期战略资源的供应能力和服务能力,不断提高产品pz和服务质量,满足有机、医药、分析和生化l域客户不断发展的研发和生产需求。 ACROS ORGANICS可提供c过18,000种化学产品,30,000多个不同纯度产品和包装。从毫克到公斤j别的常规基础试剂、百公斤乃至吨j的工业原料,ACROS ORGANICS均可提供。 百灵威作为ACROS ORGANICS在中g大陆及香港的指定服务商及战略合作伙伴,长期为中g用户提供高pz的产品与优质的服务,支持有机合成、医药等多个l域的研究与开发:在百灵威中g的标准化学品仓库中储备c过3,000种实验室常规试剂,满足24小时快速发运要求;每周四次以上中g-欧洲直飞航班,数以万计的产品可在5天内送达实验室;专业化的订货系统与独特的产品预留体系,将远在欧洲的产品提前锁定,保证稳定的货期;定期出版的专业资料,为用户提供世界前延的化学信息。百灵威将始终秉承&ldquo 资源共享,共同发展&rdquo 之理念,y如既往地为中g化学行业广大科研和生产用户提供卓越的产品与服务! 擅长l域 有机化学、分析化学、生物化学、药物化学 特色产品 c干溶剂 c干四氢呋喃,含水量小于50ppm c干二甲亚砜,含水量小于50ppm c干乙腈,含水量小于10ppm 有机锂 正丁基锂、甲基锂、仲丁基锂、叔丁基锂、苯基锂、三仲丁基硼氢化锂 气相衍生化试剂 三氟乙酸(TFA) N,O-双(三甲基硅基)乙酰胺(BSA) N,O-双(三甲基硅)三氟乙酰胺(BSTFA) 三甲基氢氧化硫 生物缓冲液 吗啉乙烷磺酸(MES) 双(2-羟乙基)胺-三(羟甲基)甲烷(Bis-Tris) 3-(N-吗啉)丙烷磺酸(MOPS) 核心实力 精细化学品的专业顾问 合同委托保密生产模式 多j产品定制合成规划: 500毫升到100升的玻璃柔性合成反应釜 散装灌装和包装设备达到药品标准的质量控制和分装体系 个性化产品包装 提供包含即时递送(just-in-time delivery)的发布合同(call-off contracts) 中试和放大能力 从500毫升到6000升的不锈钢制柔性合成反应釜满足不同j别产品需求 提供数千种药物中间体和有机中间体,c过2000种产品可进行工艺缩放 质量控制 通过ISO 9001质量体系和ISO 14001环境管理体系认证 网址:www.acros.com
  • 新版《生活饮用水标准检验方法》GB/T 5750征求意见稿发布
    新年伊始,水行业就迎来了重磅消息:《生活饮用水标准检验方法》GB/T 5750征求意见稿正式发布,本标准作为生活饮用水检验技术的推荐性国家标准,与 GB 5749《生活饮用水卫生标 准》配套,是《生活饮用水卫生标准》的重要技术支撑,为贯彻实施《生活饮用水卫生标 准》、开展生活饮用水卫生安全性评价提供检验方法支持。GB/T 5750新版修订内容文件由13个部分构成。——第 1 部分:总则; ——第 2 部分:水样的采集与保存;——第 3 部分:水质分析质量控制; ——第 4 部分:感官性状和物理指标; ——第 5 部分:无机非金属指标; ——第 6 部分:金属和类金属指标; ——第 7 部分:有机物综合指标; ——第 8 部分:有机物指标; ——第 9 部分:农药指标; ——第 10 部分:消毒副产物指标; ——第 11 部分:消毒剂指标; ——第 12 部分:微生物指标;——第 13 部分:放射性指标。1.GB/T 5750.4 感官性状和物理指标新增6个检验方法臭和味嗅阈值法嗅觉层次分析法挥发酚类、阴离子合成洗涤剂流动注射法连续流动法2.GB/T 5750.5 无机非金属指标新增8个检验方法氰化物、氨(以 N 计)流动注射法连续流动法碘化物电感耦合等离子体质谱法高氯酸盐离子色谱法-氢氧根系统淋洗液离子色谱法-碳酸盐系统淋洗液超高效液相色谱串联质谱法修改了2个检验方法硫化物:N,N-二乙基对苯二胺分光光度法碘化物:硫酸铈催化分光光度法删除了3个检验方法氟化物锆盐茜素比色法,硝酸盐(以N计)镉柱还原法,碘化物气相色谱法3.GB/T 5750.6 金属和类金属指标新增9种检验方法砷液相色谱-电感耦合等离子体质谱法液相色谱-原子荧光法硒、铬(六价)液相色谱-电感耦合等离子体质谱法氯化乙基汞液相色谱-原子荧光法液相色谱-电感耦合等离子体质谱法吹扫捕集气相色谱-冷原子荧光法石棉扫描电镜-能谱法相差显微镜-红外光谱法修改了1种检验方法铝:电感耦合等离子体质谱法4.GB/T 5750.7 有机物综合指标新增3个检验方法高锰酸盐指数(以 O2计)分光光度法电位滴定法总有机碳:膜电导率测定法5.GB/T 5750.8 有机物指标新增24 个检验方法,涵盖以下类目:四氯化碳、丙烯酰胺、邻苯二甲酸二(2-乙基己基)酯、微囊藻毒素、环氧氯丙烷、二苯胺、1,2-二溴乙烯、双酚 A、土臭素、五氯丙烷、丙烯酸、戊二醛、环烷酸、苯甲醚、萘酚、全氟辛酸、二甲基二硫醚、多环芳烃、多氯联苯、药品及个人护理品修改了 1个检验方法苯:顶空毛细管柱气相色谱法6.GB/T 5750.9 农药指标新增 9 个检验方法甲基对硫磷、氟苯脲液相色谱串联质谱法百菌清:毛细管柱气相色谱法溴氰菊酯:高效液相色谱法草甘膦:离子色谱法氯硝柳胺萃取-反萃取分光光度法高效液相色谱法乙草胺:气相色谱质谱法7.GB/T 5750.10 消毒副产物指标新增6个检验方法 三氯乙醛:液液萃取气相色谱法一氯乙酸:离子色谱-电导检测法二氯乙酸:高效液相色谱串联质谱法亚硝基二甲胺固相萃取气相色谱质谱法液液萃取-气相色谱质谱法固相萃取气相色谱串联质谱法8.GB/T 5750.11 消毒剂指标新增2种检验方法游离氯、总氯现场 N,N-二乙基对苯二胺(DPD)法9.GB/T 5750.11 微生物指标新增 6 个检验方法菌落总数:酶底物法贾第鞭毛虫、隐孢子虫滤膜浓缩/密度梯度分离荧光抗体法肠球菌多管发酵法滤膜法产气荚膜梭状芽孢杆菌:滤膜法10.GB/T 5750.12 放射性指标新增4个检验方法饮用水中的铀紫外荧光法ICP-MS 方法饮用水中的镭-226射气法液体闪烁计数法GB/T 5750睿科解决方案为帮助广大实验室同行更好地应对新版《生活饮用水标准检验方法》,特附睿科集团解决方案,欢迎扫码下载意见稿原文+睿科解决方案!意见稿原文睿科解决方案欢迎扫码领取!
  • 关于阿拉伯木聚糖等8种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对阿拉伯木聚糖等3种物质申请作为新食品原料,羟基酪醇等4种物质申请作为食品添加剂新品种,“2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物”申请作为食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2024年7月25日阿拉伯木聚糖是以甘蔗渣为原料,经清洗、压榨、氢氧化钠提取、沉淀、纯化、干燥等工艺制成。该原料主要作为膳食纤维来源之一。美国食品药品监督管理局将阿拉伯木聚糖作为一种膳食纤维,欧盟、加拿大等国家和地区已允许该物质添加在食品或膳食补充剂中。本产品推荐食用量为≤15克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对阿拉伯木聚糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于阿拉伯木聚糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。长双歧杆菌婴儿亚种(原名称为“婴儿双歧杆菌”)已被列入我国《可用于食品的菌种名单》,也已列入欧洲食品安全局资格认定(QPS)名单的推荐微生物列表。长双歧杆菌婴儿亚种M-63(Bifidobacterium&ensp longum&ensp subsp.infantis&ensp M-63)从健康婴儿肠道中分离得到,该菌株在美国被作为“一般认为安全的物质(GRAS)”管理,可用于婴幼儿食品。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对长双歧杆菌婴儿亚种M-63的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性,批准列入《可用于婴幼儿食品的菌种名单》。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该原料的食品安全指标应符合《食品安全国家标准&ensp 食品加工用菌种制剂》(GB&ensp 31639)的规定,同时克罗诺杆菌属不得检出(/100g)。N-乙酰氨基葡萄糖是以葡萄糖、玉米浆干粉、硫酸铵、磷酸二氢钾、硫酸镁为原料,经谷氨酸棒杆菌RDG-2110(Corynebacterium&ensp glutamicum&ensp RDG-2110)发酵、过滤、浓缩、结晶、离心、醇洗、干燥等工艺制成。韩国允许N-乙酰氨基葡萄糖作为食品原料使用;加拿大批准其作为天然健康食品使用;我国台湾地区已将其作为食品原料使用。本产品推荐食用量≤500毫克/天(以干基计)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对N-乙酰氨基葡萄糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于N-乙酰氨基葡萄糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。1.背景资料。羟基酪醇申请作为食品添加剂新品种。本次申请用于植物油脂(食品类别02.01.01)。美国食品药品管理局、欧盟委员会等允许其用于植物油中。2.工艺必要性。该物质作为抗氧化剂用于植物油脂(食品类别02.01.01),延缓油脂氧化。其质量规格按照公告的相关要求执行。1.背景资料。二氯甲烷申请作为食品工业用加工助剂新品种。本次申请用于茶叶脱咖啡因工艺。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许其作为提取溶剂脱咖啡因。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶脱咖啡因工艺,在茶叶提取加工中发挥作用。其质量规格按照公告的相关要求执行。1.背景资料。2’-岩藻糖基乳糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许2’-岩藻糖基乳糖用于婴幼儿配方食品等食品类别。2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。1.背景资料。聚甘油蓖麻醇酸酯作为乳化剂、稳定剂已列入《食品安全国家标准&ensp 食品添加剂使用标准》(GB&ensp 2760),允许用于水油状脂肪乳化制品、半固体复合调味料等食品类别,本次申请扩大使用范围用于调制稀奶油(食品类别01.05.03)。美国食品药品管理局、日本厚生劳动省等允许其用于人造黄油等食品类别。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-7.5&ensp mg/kgbw。2.工艺必要性。该物质作为乳化剂用于调制稀奶油(食品类别01.05.03),改善产品品质。其质量规格执行《食品安全国家标准&ensp 食品添加剂&ensp 聚甘油蓖麻醇酸酯(PGPR)》(GB&ensp 1886.95)。&ensp 2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物1.背景资料。该物质常温下为淡黄色液体,不溶于水、微溶于丁酮等有机溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料基础树脂,具有较好的交联性和耐化学性。以该物质为原料生产的涂层具有较好的附着力和耐腐蚀性能。食品相关产品新品种.pdf阿拉伯木聚糖等 3 种新食品原料.pdf羟基酪醇等 4 种食品添加剂新品种.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制