当前位置: 仪器信息网 > 行业主题 > >

脱氮嘌呤

仪器信息网脱氮嘌呤专题为您提供2024年最新脱氮嘌呤价格报价、厂家品牌的相关信息, 包括脱氮嘌呤参数、型号等,不管是国产,还是进口品牌的脱氮嘌呤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脱氮嘌呤相关的耗材配件、试剂标物,还有脱氮嘌呤相关的最新资讯、资料,以及脱氮嘌呤相关的解决方案。

脱氮嘌呤相关的资讯

  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。   由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • 哈医大通过色谱法建立食物嘌呤数据库
    哪些食物中含有嘌呤物质?每种食物中的嘌呤含量又是多少?今后,痛风的“原凶”——嘌呤物质,将首次得到准确、科学的“再现”,为痛风患者健康膳食提供指导依据。日前,一项规范测定常见食物中嘌呤含量的研究在哈尔滨医科大学进入研究阶段。科研人员将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,为降低国内高尿酸血症和痛风病的患病率及症状减轻提供科学数据。   据了解,随着经济发展和人们膳食结构的改变,我国人群高尿酸血症和痛风的患病率呈直线上升趋势。有资料显示,我国20岁以上的人群约2.4%—5.7%存在血尿酸过高的情况,从而引起痛风的发病。而在对痛风患者的治疗中,医生发现,低嘌呤膳食是治疗该病的关键。   据哈医大公共卫生学院潘洪志副教授介绍,在我国食物成分表中,目前尚无食物中嘌呤含量的准确数据,临床及有关网站上公布的嘌呤含量数据普遍来源不清且彼此不一致,对嘌呤含量高低类别的划分标准也不尽相同,给广大痛风患者治疗时带来极大疑惑。   哈医大科研人员此次开展的嘌呤含量研究拟采用高效液相色谱法,通过现代科技手段,测定我国常见各类食品中的嘌呤含量,包括腺嘌呤、鸟嘌呤、次黄嘌呤、黄嘌呤等,并计算总嘌呤含量,提高嘌呤测定方法的准确度、精密度和重现性,获得准确的常用食物嘌呤含量数据。   测定结果评出后,将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,以此作为痛风患者健康膳食指导的依据。专家表示,该项研究预计在今年内完成,它将为降低我国高尿酸血症和痛风病的患病率和减轻症状提供科学数据,对公共卫生具有重大意义。   嘌呤为有机化合物,在人体内嘌呤氧化会变成尿酸,而尿酸过高就会引起痛风。据了解,痛风是长期嘌呤代谢障碍、血尿酸增高引起组织损伤的一种疾病。其临床特点为高尿酸血症、急性关节炎反复发作、痛风石形成、关节畸形、肾实质性病变等。   痛风俗称“富贵病”。该病一般在男性身上发病,且会遗传。有痛风的病人发病时,除用药物治疗外,重要的是平时注意忌口,以限制饮食中嘌呤的含量。
  • 上海市食品学会立项团体标准《豆制品中嘌呤的测定 高效液相色谱-串联质谱法》
    各有关单位:根据《上海市食品学会团体标准工作管理办法》的相关规定,由上海清美绿色食品(集团)有限公司牵头申报的《豆制品中嘌呤的测定 高效液相色谱-串联质谱法》团体标准,经审核,该标准符合立项条件,同意立项。请起草单位按照《上海市食品学会团体标准工作管理办法》有关要求,严格把控标准质量关,切实提高标准制定的质量和水平,增加标准的适用性和实效性,按期完成标准编制的相关工作。联系人:上海市食品学会 郭燕茹 021-54891268 18018674491邮箱:ssfs_office@163.com关于《豆制品中嘌呤的测定 高效液相色谱-串联质谱法》团体标准立项的通知.pdf
  • 上海市食品学会发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准征求意见稿
    各相关单位代表及专家:《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准已完成征求意见稿的编制,根据《团体标准管理规定》的要求,为保证标准的科学性、严谨性和可操作性,现在《全国团体标准信息平台》面向社会各界公开征求意见。请各相关单位代表及专家审阅标准文本,对本标准提出宝贵意见和建议,并于2023年5月27日前将《团体标准征求意见反馈表》(附件二) 以E-mail形式反馈给上海市食品学会。逾期未复函,将按无异议处理。此致! 附件一:《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》(征求意见稿)附件二:《团体标准征求意见反馈表》联系人:郭燕茹联系电话:18018674491电子邮箱:ssfs_office@163.com上海市食品学会2023年4月28日关于《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准征求意见函.pdf《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》(征求意见稿).pdf《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》征求意见反馈表.doc
  • 上海市食品学会批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准
    各会员单位、有关单位:根据《上海市食品学会团体标准工作管理办法》相关规定,现批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准(T/SSFS0007-2023),2023年7月18日发布,2023年8月1日实施,现予公告。附件一:关于批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准的公告上海市食品学会2023年7月25日上海市食品学会关于批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准的公告.pdf
  • “蛋白质动态学新技术”成功解析蛋白复合体结构
    近日,中国科学院武汉物理与数学研究所研究员唐淳课题组利用基于973重大科学研究计划“蛋白质动态学研究的新技术新方法”建立的研究技术,协助华中农业大学教授殷平课题组首次解析了N6腺嘌呤甲基转移酶METTL3-METTL14蛋白复合体结构,该研究成果发表于《自然》杂志。  该工作揭示了RNA N6腺嘌呤甲基化修饰过程中的结构基础,是表观遗传学领域的一项重大突破。唐淳、武汉物数所副研究员龚洲和博士后刘主参与该项目,利用课题组发展的新技术新方法,通过结合小角X光散射与计算机模拟的手段,为该蛋白复合体的结构解析提供了研究方法上的帮助。  经过近3年的努力,唐淳课题组发展、建立了包括核磁共振波谱、小角X光散射、化学交联质谱分析、单分子荧光检测和成像等技术在内的多种生物物理化学手段,并开发相应的整合计算方法,用于蛋白质动态结构及其转换过程的研究。课题组除了完成自身的科研项目外,积极开展广泛的合作与交流,与国内外同行共享研究技术和方法。目前,得益于“蛋白质动态学研究的新技术新方法”项目的实施,课题组已助力多个重要蛋白质结构的解析,取得了一系列的研究成果,研究成果发表于《自然—化学生物学》、eLife 等国际一流杂志。
  • 新型安全高效的单碱基编辑系统—TaC9-CBE
    近十年来,以 CRISPR 系统为代表的基因编辑技术迅猛发展,在包括农业、畜牧业和生物医药等各个领域的基础科研和应用中不断涌现出耀眼成果。2020年 CRISPR 技术因其强大的功能和影响力摘得诺贝尔化学奖。然而,随着研究的深入,其引起的 DNA 双链断裂和高脱靶效应等一系列副反应也逐渐走入人们的视野,CRISPR 技术的安全性开始备受关注。单碱基编辑技术以其高效和精确的基因编辑能力,成为目前最有希望治愈各种遗传疾病的明星工具。由 gRNA 与 Cas9-脱氨酶形成 RNP 复合物,gRNA 引导复合物结合在基因组目标位点,Cas9 负责解开 DNA 双链,并将靶向链切断,脱氨酶对非靶向单链 DNA(ssDNA)上的碱基进行脱氨,细胞修复过程中实现碱基转换。然而,单碱基编辑工具被发现具有明显的脱靶编辑效应,主要包括 Cas9 非依赖的 DNA 和 RNA 脱靶效应和 Cas9 依赖的 DNA 脱靶效应。通过对脱氨酶的修饰可大大降低蛋白对核酸链的非特异结合,从而最大限度地减少 Cas9 非依赖的脱靶效应。但由于 Cas9 蛋白本身存在的 Cas9 依赖性脱靶,人们依然对其临床应用的安全性表示担忧。尽管目前已有多种方法尝试解决这一问题,但都无法在保持目标效率的同时解决 Cas9 依赖性脱靶问题。2022年3月,中国科学院广州生物医药与健康研究院赖良学研究员与五邑大学邹庆剑副教授团队合作,首次将腺苷脱氨酶与转录激活因子样效应子(TALE)融合,开发了一种新型腺嘌呤碱基编辑系统——TaC9-ABE。该新型碱基编辑系统可以完全消除Cas9依赖性脱靶,而不影响任何靶向编辑效率。相关成果以:Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to the target site 为题在线发表在 Cell Discovery 期刊上。TaC9-ABE单碱基编辑技术原理近日,该团队再次证实将 TALE 技术与 Cas9 技术结合起来,同样可以实现更加安全高效的胞嘧啶碱基编辑系统——TaC9-CBE。相关成果以:Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE 为题于在线发表在 Molecular Therapy 期刊上。TaC9-CBE单碱基编辑技术原理在 TaC9-ABE 和 TaC9-CBE 碱基编辑系统中,研究人员将脱氨酶与 nCas9 分离,脱氨酶与 TALE 连接,nCas9 与 gRNA 结合,由 TALE 和 gRNA 分别将两个效应器引导到 DNA 靶位点,同时发挥作用,实现靶位点的 A to G 或 C to T 的突变。如果 nCas9 被 gRNA 带到错误的位点,由于没有脱氨酶的存在,碱基转换就不能发生;同理,如果脱氨酶被 TALE 引导至错误的位点,由于没有 nCas9 的存在,不能形成单链 DNA,脱氨酶发挥不了作用,碱基转换也不能发生,这样就彻底地排除了发生 Cas9 依赖性脱靶的可能性。研究结果证实,TaC9-碱基编辑系统在保证高效但碱基编辑的同时,对 gRNA 依赖的脱靶位点以及 TALE 依赖的脱靶位点进行深度测序均未检测到脱靶现象。图3.各种CBE编辑器的Cas9依赖脱靶测试这项研究为基因编辑动植物的培育和人类遗传性疾病的基因治疗提供了一个安全的单碱基编辑工具。TaC9-ABE 论文中,中国科学院广州生物医药与健康研究院博士研究生刘洋和蓝婷、五邑大学周小青博士和广东工业大学博士研究生周继曾为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员和五邑大学邹庆剑副教授为论文的共同通讯作者。TaC9-CBE 论文中,广东工业大学博士生周继曾、中国科学院广州生物医药与健康研究院博士生刘洋、硕士生魏愈惠和五邑大学硕士生郑淑文为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员、五邑大学张焜教授和邹庆剑副教授为论文的共同通讯作者。论文链接:https://www.nature.com/articles/s41421-022-00384-4https://doi.org/10.1016/j.ymthe.2022.04.010
  • 单细胞拉曼光谱揭示氮循环功能菌研究获新进展
    p   氮是维持生命活动最重要的营养元素之一。氮气是氮元素的丰富来源,但由于性质惰性,不能为生物直接利用。氮的生物地球化学循环是将氮转化成生物可利用形式的关键过程。固氮微生物,包括固氮细菌和固氮古菌,可将惰性的氮气转化成生物可利用的氨态氮或硝态氮。据估计,生物可利用氮的半数由生物固氮过程提供。然而,微生物种类和功能丰富多样,超过99%的环境菌目前无法实现纯培养,因而对环境中固氮菌功能和活性的认识仍非常不足。环境微生物的不可纯培养性,带来了方法学上的挑战。从单细胞水平上研究环境微生物可克服纯培养或富集培养的限制,实现在环境介质下的原位研究。拉曼光谱(包括SERS、常规和共振拉曼)可在单细胞水平上对微生物进行无损检测,并提供微生物组成的指纹图谱。拉曼光谱与稳定同位素标记结合(Stable isotope probing, SIP),利用微生物同化SIP标记底物引起蛋白、脂类、色素的特征拉曼谱峰偏移,已实现从单细胞水平上检测环境功能菌。 /p p   中国科学院城市环境研究所城市土壤与生物地球化学研究组(朱永官团队),在发展单细胞拉曼-15N2SIP技术用于固氮功能菌的研究上做了开拓性工作。针对土壤中的固氮菌,首次建立单细胞共振拉曼与15N2标记联用技术,发掘出15N2相关的指示固氮菌的特征偏移谱峰,即细胞色素c共振拉曼峰的偏移。利用此指示峰,实现在单细胞水平上检测复杂土壤环境中的固氮菌,并利用指示峰的偏移程度,在单细胞水平上,比较了土壤固氮菌的固氮活性。此外,研究组与牛津大学教授Wei Huang合作,针对包括固氮菌在内的多种氮循环(N2、NH4、NO3)功能菌,率先发展表面增强拉曼光谱(SERS)-15N SIP联用技术,利用SERS对微生物中含氮生物分子腺嘌呤的选择性增强,获得不同15N标记氮源引起的细菌腺嘌呤谱峰的显著线性偏移,并利用SERS-15N SIP研究厦门杏林湾水体中细菌对15N2、15NH4Cl、15NO3不同氮源的选择性代谢。上述工作促进了对大量未知环境菌群的深入认识,尤其是氮循环功能菌及其活性的深入解析。 /p p   相关研究成果分别以Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with15N2Labeling为题,发表在Anal. Chem.上;以Surface-enhanced Raman spectroscopy combined with stable isotope probing to monitor nitrogen assimilation at both bulk and single-cell level为题,发表在Anal. Chem.上。研究工作得到了国家重点研发计划和国家自然科学基金等的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/95e9fe92-ccc2-4ded-8e88-bac97919cf0d.jpg" title=" W020180807542181390530.jpg" / /p p style=" text-align: center " 城市环境所在发展单细胞拉曼光谱揭示氮循环功能菌研究中取得进展 /p
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • 用科技改变——哈希脱氮除磷整体解决方案
    中国日益严峻的环境形势和越来越严格的国家污水排放标准,使得众多的污水处理厂急需升级换代。哈希为您的污水厂提供多种脱氮除磷整体解决方案,帮助污水工艺管理由粗放式走向精细化。1.脱氮除磷工艺监测与控制 ①以达标排放为标杆的排口监测 主要监测指标:总磷/总氮 仪表类型:在线/实验室 测量点/取样点:排口 产品诉求:符合国标 ②以稳定运行为核心的工艺过程周期检测 主要监测指标:氨氮/硝氮/正磷酸盐 仪表类型:采样+实验室检测 取样点:工艺过程 产品诉求:方法简便,能批量操作 ③以工艺调整为目的的工艺过程连续监测 主要监测指标:氨氮/硝氮/正磷酸盐 仪表类型:在线 测量点:工艺过程 产品诉求:连续读数,趋势准确 ④以工艺优化为诉求的实时控制 主要监测指标:氨氮/硝氮/正磷酸盐 仪表类型:在线 测量点:工艺过程 产品诉求:稳定性高、读数准确 2.脱氮除磷整体解决方案①排口监测方案(主要监测指标:总磷/总氮)②工艺过程监测方案(主要监测指标:氨氮/硝氮、正磷酸盐)③工艺优化过程控制方案(主要监测指标:正磷酸盐/总磷、氨氮/硝氮、污泥浓度/溶氧)
  • 北大王初课题组发展顺铂结合蛋白的组学鉴定方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心王初课题组在RSC Chemical Biology杂志上发表了题为“ Discovery of Cisplatin-binding Proteins by Competitive Cysteinome Profiling”的研究文章。在这项工作中,作者应用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP,在MCF-7活细胞体系中全局性地鉴定了顺铂(cisplatin)结合蛋白与其结合顺铂的位点,发现并证明了顺铂可以结合谷氧还蛋白1(GLRX1)与具有硫氧还蛋白结构域的蛋白17(TXNDC17)的活性位点。除此之外也发现了一个全新的顺铂结合蛋白甲硫氨酸氨肽酶1(MetAP1),并发现其对顺铂的细胞毒性有一定的保护作用。顺铂是1965年被发现的化疗药物,其在如睾丸癌,卵巢癌等癌症的治疗过程中被广泛应用。其在进入细胞后生成的活性的二价铂离子会进攻DNA上的腺嘌呤或鸟嘌呤,从而引起DNA损伤,最终杀死癌细胞,这个过程被认为是顺铂细胞毒性的主要原因。而近年来很多研究也发现活性二价铂离子除了结合DNA之外,其也会与细胞质中大量亲核性物质反应,比如GSH,RNA以及金属硫蛋白等进行结合,据统计,仅有1%左右的铂是结合到DNA上。大量游离的活性二价铂离子会与细胞中多种有功能的蛋白质结合,从而影响其正常的功能,因此对顺铂结合蛋白的研究有助于我们更完整的理解顺铂细胞毒性的机理以及帮助我们避免顺铂耐药性。目前已经有很多组学上鉴定顺铂结合蛋白的方法,例如利用Pt的特征同位素分布的特点,在一级质谱层面筛选那些潜在的顺铂结合蛋白 或者将ICP-MS与二维凝胶电泳结合,从而在组学层面鉴定潜在的顺铂结合蛋白等,但这些方法受限于较低的灵敏度和通量。对顺铂进行生物正交基团改造,从而通过生物素-亲和素富集来鉴定顺铂结合蛋白的方法也被开发,并成功在酵母细胞中鉴定到数百种潜在的顺铂结合蛋白。但由于顺铂的分子较小,并且其作为无机药物,在其上进行官能团化修饰可能会一定程度上改变顺铂本身的性质,并影响最终的鉴定结果。鉴于活性二价铂离子易与半胱氨酸残基反应并结合,因此作者考虑使用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP来鉴定顺铂结合蛋白。首先作者在活细胞水平上证明了顺铂可以与半胱氨酸特异性反应的探针IAyne竞争结合蛋白质的半胱氨酸残基。在优化了质谱条件后,作者在三次重复的质谱实验中共鉴定并定量到1947个肽段,对其进行条件筛选,定义顺铂处理后肽段的色谱强度与对照组中相同肽段色谱强度比值为Ratio,作者认为三次重复的Ratio平均值与对应的p value满足-log10(p value) x log2(ratio) 1.5的是潜在的顺铂结合位点,共筛选到125个肽段归属于107种蛋白。这些蛋白显著富集于核质交换通路以及氧化还原相关通路,这与之前报道的顺铂会引起DNA损伤以及顺铂会引发细胞产生氧化应激相对应。  随后作者在筛选的107种蛋白中,选择了归属于氧化应激通路的已知的与顺铂有关的靶点蛋白GLRX1以及TXNDC17进行验证,纯蛋白层面的竞争标记与ICP-MS结果均表明这两种蛋白为顺铂结合蛋白,并且其顺铂结合位点均是质谱鉴定到的位点,且均是两个蛋白的活性中心位点,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而引起氧化应激。纯蛋白质谱实验中,二级谱也表明两个蛋白与顺铂的结合均是桥连结合,这与文献中报道过的其中一种顺铂与蛋白结合的模式是相对应的。  之后作者选择了另一种尚未明确是否与顺铂有相互作用的蛋白MetAP1进行了后续的生化验证。纯蛋白层面的竞争标记实验与ICP-MS的实验结果证明MetAP1是顺铂结合蛋白,且其顺铂结合位点为我们鉴定到的C14位。随后我们测量了顺铂对MetAP1活性的影响,发现顺铂不会明显影响MetAP1纯蛋白的活性,但可以抑制MetAP1在体内的活性,表明顺铂会在活细胞中影响新生成蛋白的N端甲硫氨酸切割,最后通过比较MetAP1的敲除细胞系和野生型的细胞系对顺铂的MTT曲线,作者发现MetAP1在顺铂引起的细胞毒性中起到了一定程度的保护作用。  总之,作者应用竞争性ABPP策略,在MCF-7活细胞中鉴定到了107种潜在的顺铂结合蛋白,并对其中的三个靶标进行了验证。作者发现顺铂可以结合与氧化还原相关的酶GLRX1与TXNDC17的关键酶活中心,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而可能影响细胞的ROS水平。也证明了顺铂通过结合来影响MetAP1的活性从而影响新生成蛋白的N端甲硫氨酸的加工,并表明MetAP1可以作为提高顺铂细胞毒性以避免肿瘤耐药性的潜在靶点。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心的王初教授。其指导的化学与分子工程学院2019级博士研究生王相贺为本文的第一作者。该工作得到了国家自然科学基金委、国家重点研发计划的经费支持。  本文作者:WXH  责任编辑:JGG  原文链接:https://pubs.rsc.org/en/content/articlehtml/2023/cb/d3cb00042g  文章引用:DOI: 10.1039/D3CB00042G
  • 用科技改变——哈希脱氮除磷整体解决方案
    用科技改变——哈希脱氮除磷整体解决方案哈希公司 END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 浅谈小核酸的固相合成
    近年来由于核酸修饰和递送载体的突破,带来了变革性疗法的创新浪潮,其中被认为是继小分子药物、抗体药物之后第三代创新药物核酸药物迎来了爆发式增长,其优势在于广泛的可成药靶点、特异性强、安全性高、效果持久、开发成功率高和制造成本低等。寡核苷酸药物,即小核酸药物,是由十几个到几十个核苷酸串联组成的短链核酸,目前小核酸药物主要包括 RNAi 药物和 ASO 药物,作用于pre-mRNA或mRNA,通过干预靶标基因表达实现疾病治疗目的。目前小核酸药物大多通过亚磷酰胺三酯合成法进行合成。化学合成按照3'-5'的方向进行。常用的固相载体为可控微孔玻璃珠(CPG)或者聚苯乙烯微珠(PS beads),固相载体通过linker与初始核苷酸核糖的3'-OH共价结合,而核糖的2'-OH用诸如叔丁基二甲基硅基(TBDMS)的保护试剂进行保护,或是核糖的2端有甲氧基、F代、甲氧乙基等修饰,5'-OH则用双甲氧基三苯甲基(DMT)保护。此外,由于腺嘌呤、鸟嘌呤和胞嘧啶存在伯氨基团,也需要用酰基试剂(例如苯甲酰基)进行保护。固相合成每个循环主要包括四个步骤:脱保护、偶联、氧化和加帽。第一步 脱保护(Detritylation)使用溶解在二氯甲烷/甲苯中的二氯乙酸(DCA)或三氯乙酸(TCA)移除核糖5端的DMT基团,暴露5'-OH,以供下一步偶联。脱保护时间取决于流速和柱子尺寸,反应时间不够/脱保护剂酸性太弱会产生n-1杂质(与完整长度为n的寡核苷酸相比仅相差一个核苷酸);反应时间太长/脱保护剂酸性太强则导致序列中脱嘌呤的产生。反应完成后,用乙腈洗涤去除残留的脱保护剂,此步骤中乙腈含水量一般小于20ppm,乙腈需要使用较高流速去冲洗合成柱,脱保护试剂冲洗不干净导致n+杂质的产生。第二步 偶联(Coupling)合成目标的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3端被活化,5端羟基仍然被DMT保护,与溶液中游离的5端羟基发生偶联反应。为了保证较高的总产率,每个循环中都需要有较高的偶联效率。n-1杂质是偶联中最常见的杂质,它们是偶联效率低于100%的结果。与FLP相比,更高分子量的杂质(例如n+1)也存在于偶联步骤中,n+杂质的形成归因于活化剂四氮唑的弱酸性能移除一部分亚磷酰胺溶液中的DMT基团。第三步 氧化(Oxidation)偶联反应后新加上的核苷酸通过亚磷酯键(三价磷)与固相载体上的寡核苷酸链相连。亚磷酯键不稳定,易被酸、碱水解,在下一个循环的脱保护酸性环境中不稳定,因此需要被氧化成稳定的五价的磷。磷酸二酯键中的2-氰乙基保护基团可以使其在后续合成中更稳定。常用碘溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。此外通过将一个硫原子转移到P(三价)上也可以将其转化为P(五价),从而形成硫代磷酸酯键。氧化剂与固相载体的接触时间通常为1-4分钟。第四步 加帽(Capping)由于不可能达到100%的偶联效率,仍存在脱保护后没有反应的5'-OH活性基团(一般少于2%),如果不加处理,那这些基团在下一个循环中仍能发生偶联,产生n-1杂质。通常使用两种试剂(通常使用醋酸酐和N-甲基咪唑的混合液作为加帽试剂)来酰化5'-OH。经过以上四个步骤,一个核苷酸碱基被连接到固相载体的核苷酸上,再以酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。核酸合成系统就是将上述一系列化学合成过程进行自动化,精准化可控制的设备。仪器主要由柱塞系统泵、试剂阀、单体阀、试剂循环阀、紫外检测器、电导率、惰性气体控制盒、压力监测器、合成柱及软件控制系统等多个部分组成。大规模寡核苷酸合成系统采用流穿合成技术,泵精度高,规模广泛,滞留体积低,适用于不同规模和类型的寡核苷酸。其以灵活简便的方式创建和转移方法,为工艺开发和优化提供支持,同时系统先进的数据处理能力和分析工具可高效监测和控制合成。英赛斯大规模核酸合成系统
  • 哈佛仪器网络讲堂第一期-现代超微量核酸蛋白分析技术进展
    哈佛仪器网络讲堂第一期-现代超微量核酸蛋白分析技术进展,将于2014年6月26日14:00开课。报名网址:http://webinar.b.bioon.com.cn/live-info/webinar_biochrom1.html,欢迎参与研讨! 本期简介: 随着常规分子生物学研究的深入,越来越多的生物实验室日常需要测量的核酸、蛋白样品量也在不断地加大。核酸(包括DNA或RNA)中的嘌呤碱和嘧啶碱均具有共轭双键,使碱基、核苷、核苷酸和核酸在240-290nm的紫外波段有一个强烈的吸收峰,最大吸收值在260nm附近。蛋白质在280nm的紫外光吸收可以达最大值,绝大部分是由色氨酸和酪氨酸所引起的。利用这一特性可以使用分光光度法鉴别蛋白质、核酸的含量和纯度。 在实验中分光光度法一直是进行光度分析的最简单方法之一。核酸和蛋白质的强吸收意味着传统的比色皿不进行耗时的稀释就不适于测量高浓度水平的样品。同时,由于核酸样品的体积较小,即使使用昂贵的微量石英比色杯(容积数十微升左右),也往往需要对原始样品进行稀释,从而带来可能的操作偏差。为了应对这些问题,近年来,一类新的用于测量超微量核酸蛋白的分析技术已应运而生。
  • 凯氏定氮法检测脱脂奶粉中蛋白质的含量
    蛋白质是复杂的含氮有机化合物,分子量很大,大部分高达数万至数百万,分子的长链从数纳米至100nm,它们由20种氨基酸通过酰胺键以一定的方式结合,并具有一定的空间结构,所含的主要化学元素为C、H、O、N,在某些蛋白质中还含有P、Cu、Fe、I等元素,但氮的相对丰度基本稳定,是区别于其它有机化合物的主要标志。不同蛋白质的氨基酸构成比例及方式不同,所以各种蛋白质其含氮量也不同。一般蛋白质含氮量平均为16%,即1份氮素相当于6.25份蛋白质,此即蛋白质系数。 意大利VELP凯氏定氮仪在环保节能方面具有性能, 的蒸汽发生器和钛冷凝器,蒸馏滴定同步进行,分析速度快,冷却水用量仅0.5升/分钟,降低能耗从而节约了成本。因此该仪器被广泛应用于各类蛋白质检测的实验研究。 测定脱脂奶粉中蛋白质的含量,对掌握其营养价值和品质的变化,保障人体健康,合理配料,为乳制品深加工提供数据十分重要,此外,蛋白质分解产物对乳制品的色、香、味都有一定作用,所以测定具有深远意义。
  • 单分子蛋白质测序、单细胞代谢组学及体积电镜等上榜2023 年值得关注的七项技术 |《自然》长文
    《自然》选出将在未来一年对科学产生巨大影响的工具和技术。从蛋白质测序到电子显微镜,从考古学到天文学,本文将讲述七项有可能会在未来一年震动科学界的技术。  单分子蛋白质测序  蛋白质组体现了细胞或生物体制造的一整套蛋白质,可以提供关于健康和疾病的深入信息,但对蛋白质组的表征仍然是一项挑战性的工作。  相对于核酸来说,蛋白质是由更多的分子砌块(building blocks)组成的,约有20种天然存在的氨基酸(相比之下,组成DNA和信使RNA等分子的只有4种核苷酸) 因此,蛋白质具有更大的化学多样性。有些蛋白质在细胞中的含量较少 并且与核酸不同,蛋白质不能被扩增 ——这意味着蛋白质分析方法必须使用任何能用的材料。  大多数蛋白质组学分析使用质谱法,这是一种根据蛋白质的质量和电荷来分析蛋白质混合物的技术。这些谱图可以同时量化数千种蛋白质,但检测到的分子并不总能明确识别,并且混合物中的低丰度蛋白质常常被忽视。现在,能对样本中的许多(甚至全部)蛋白质进行测序的单分子技术可能即将问世,其中许多技术类似于用于DNA的技术。  德克萨斯大学奥斯汀分校的生物化学家Edward Marcotte正在研究一种这样的技术,称为荧光测序(fluorosequencing)[1]。Marcotte的技术报道于2018年,该技术基于一种逐步的化学过程,在此过程中,单个氨基酸被荧光标记,然后从表面偶联蛋白的末端逐个被剪切下来,此时摄像机会捕捉到所产生的荧光信号。Marcotte解释道:“我们可以用不同的荧光染料标记蛋白质,然后在切割时逐个分子地观察。”去年,位于康涅狄格州的生物技术公司Quantum Si的研究人员描述了一种荧光测序的替代方法,该方法使用荧光标记的“粘合剂”蛋白来识别蛋白质末端的特定氨基酸(或多肽)序列[2]。  其他研究人员正在开发模仿基于纳米孔的DNA测序技术,根据多肽通过微小通道时引起的电流变化来分析多肽。荷兰代尔夫特理工大学的生物物理学家Cees Dekker及其同事于2021年展示了这样一种方法,他们利用蛋白质制成纳米孔,并能够区分通过纳米孔的多肽中的单个氨基酸[3]。在以色列理工学院,生物医学工程师Amit Meller的团队正在研究由硅基材料制成的固态纳米孔器件,该器件可以同时对许多不同的蛋白质分子进行高通量分析。他说:“你可能可以同时观察数万甚至数百万个纳米孔。”  尽管目前单分子蛋白质测序只是概念上的验证,但其商业化正在迅速推进。例如,Quantum Si公司已宣布计划今年推出第一代仪器,并且Meller指出,2022年11月在代尔夫特举行的蛋白质测序会议上有一个专门针对该领域初创企业的讨论组。他说:“这让我想起了第二代DNA测序技术面世前的那些日子。”  Marcotte是德克萨斯州奥斯汀市蛋白质测序公司Erisyon的联合创始人,他对此持乐观态度。他说:“这已经不是个行不行的问题,而是这项技术几时能送到人们手上。”  詹姆斯韦勃太空望远镜  天文学家们从去年开始就翘首以盼,兴奋不已。经过20多年的精心设计和建造,美国国家航空航天局(NASA)与欧洲航天局和加拿大航天局合作,于2021年12月25日成功将詹姆斯韦布太空望远镜(James Webb Space Telescope,缩写JWST)送入轨道。因为仪器设备需要展开并确定第一轮观测的位置,全世界不得不等待了近七个月,JWST才开始正常工作。  等待是值得的。马里兰州巴尔的摩市太空望远镜科学研究所天文学家、JWST的望远镜科学家Matt Mountain表示,最初传来的图像超出了他的最高预期。“实际上天空并不空旷——到处都是星系,”他说,“理论上我们知道这一点,但真正看到这一景象带来了别样的情感冲击。”  詹姆斯韦布太空望远镜(James Webb Space Telescope)的6.5米主镜片(图中展示了18片镜片中的6片)可以探测数十亿光年外的物体。资料来源:NASA/MSFC/David Higginbotham  JWST的设计是为了接替哈勃太空望远镜的工作。哈勃望远镜可以看到令人惊叹的宇宙景象,但也有盲点:它基本上无法看见在红外范围内具有光信号的古老恒星和星系。要弥补这一点,需要一台高灵敏度的仪器,其灵敏度要能够探测到数十亿光年外发出的极为微弱的红外信号。  JWST的最终设计包括18个完全光滑的铍质镜片阵列,当其完全展开时,直径为6.5米。Mountain说,这些反射镜的设计非常精密,“要是把一块镜面等比放大到美国那么大,上面的隆起也不超过几英寸(高)。”这些反射镜配有最先进的近红外和中红外探测器。  这一设计使JWST能够填补哈勃望远镜的空白,包括捕获来自一个有135亿年历史的星系发出的信号,该星系产生了宇宙中最早的一些氧和氖原子。JWST也带来了一些惊喜,例如,它能够测量某些类型的系外行星的大气组成。  世界各地的研究人员都在排队等待观察时间。英国卡迪夫大学的天体物理学家Mikako Matsuura正在用JWST进行两项研究,调查宇宙尘埃的产生和破坏,这些尘埃可能会导致恒星和行星的形成。Matsuura说,与她所在小组过去使用的望远镜相比,“JWST拥有完全不同的灵敏度和清晰度等级”。她说:“我们看到了这些天体内部正在发生的完全不同的现象——这真令人叹为观止。”  体积电子显微镜  电子显微镜(Electron microscopy,EM)以其卓越的分辨率而闻名,但观察的主要是样本的表面。深入研究样本的内部需要将样本切成非常薄的切片,这对于生物学家来说往往不够。伦敦弗朗西斯克里克研究所(Francis Crick Institute)的电子显微镜学家Lucy Collinson解释说,仅覆盖单个细胞的体积就需要200个切片。她说:“如果你只有一个[切片],你就是在玩统计把戏。”  现在,研究人员正在将EM的分辨率应用于包含多个立方毫米体积的3D组织样本上。  此前,从2D的EM图像重建这样体积的样本(例如,绘制大脑的神经连接图)需要经历艰苦的样本准备、成像和计算过程,才能将这些图像转换为多图像堆叠。现在,最新的“体积电子显微镜”技术大大简化了这一过程。  这些技术有各种优点和局限性。连续切面成像(Serial block-face imaging)是一种相对快速的方法,它使用金刚石刀片在树脂包埋样品上切下一系列薄片,并进行成像,可以处理约1立方毫米大小的样品。然而,它的深度分辨率较差,这意味着生成的体积重建将相对模糊。聚焦离子束扫描电子显微镜(Focused ion beam scanning electron microscopy,FIB-SEM)能制备更薄的薄片样品,因此深度分辨率更高,但更适用于体积较小的样品。  Collinson将体积电子显微镜的兴起描述为一场“安静的革命”,因为研究人员专注于用这种方法得到的结果,而不是生成这些结果的技术。但这正在改变。例如,2021年,弗吉尼亚州珍利亚研究园区(Janelia Research Campus)从事电子显微镜中细胞器分割(Cell Organelle Segmentation in Electron Microscopy,COSEM)计划的研究人员在《自然》上发表了两篇论文,聚焦了在绘制细胞内部结构方面取得的重大进展[4,5]。“这是一个绝佳的原理论证。”Collinson说。  COSEM研究计划使用精密的定制FIB-SEM显微镜,在保持良好空间分辨率的同时,可将单个实验中可成像的体积增加约200倍。将这些仪器与深度学习算法结合使用,该团队能够在各种细胞类型的完整3D体积中定义各种细胞器和其他亚细胞结构。  这种样品制备方法费力且难以掌握,并且由此产生的数据集非常庞大。但这一努力是值得的:Collinson已经看到了该技术在传染病研究和癌症生物学方面产生的见解。她现在正在与同事们合作,探索以高分辨率重建整个小鼠大脑的可行性。她预计这项工作将需要十多年的时间,花费数十亿美元,并产生5亿GB左右的数据。她说:“这可能与绘制第一个人类基因组工作的数据量在一个数量级。”  CRISPR无限可能  基因组编辑工具CRISPR–Cas9作为在整个基因组的目标位点引入特定变化的首选方法,在基因治疗、疾病建模和其他研究领域取得了突破,无可非议地享有盛誉。但它的用途多受限制。现在,研究人员正在寻找规避这些限制的方法。  CRISPR编辑由短链向导RNA(short guide RNA,sgRNA)协调,sgRNA将相关的Cas核酸酶导向其目标基因组序列。但这种酶发挥作用还需要在靶点附近有一种叫做原间隔序列邻近基序(protospacer adjacent motif,PAM)的序列 如果没有PAM,基因编辑很可能会失败。  在波士顿的马萨诸塞州总医院,基因组工程师Benjamin Kleinstover利用蛋白质工程技术,从化脓性链球菌中制造出常用Cas9酶的“近乎不受PAM序列限制的(near-PAMless)”Cas变体。一个Cas变体需要由三个连续核苷酸碱基组成的PAM,其中腺嘌呤(A)或鸟嘌呤(G)核苷酸位于中间位置[6]。“这些酶现在几乎可以读取整个基因组,而传统的CRISPR酶只读取1%到10%的基因组。”Kleinstover说。  这种对PAM序列不太严格的要求,增加了编辑“脱靶”的机会,但进一步的蛋白质工程设计可以提高其特异性。作为一种替代方法,Kleinstiver的团队正在设计和测试大量Cas9变体,每个变体对不同的PAM序列表现出高度的特异性。  还有许多天然存在的Cas变体有待发现。自然条件下,CRISPR–Cas9系统是一种针对病毒感染的细菌防御机制,不同的微生物进化出了具有不同PAM序列偏好的各种酶。意大利特伦托大学的病毒学家Anna Cereseto和微生物组研究人员Nicola Segata梳理了100多万个微生物基因组,鉴定和表征了一组多样的Cas9变体,他们估计这些变体可能总共可以针对98%以上的已知人类致病突变[7]。  然而,其中只有少数能在哺乳动物细胞中发挥作用。Cereseto说:“我们的想法是测试许多种酶,看看是什么决定因素使这些酶正常工作。”从这些天然酶库和高通量蛋白质工程工作中获得的见解来看,Kleinstiver说,“我认为我们最终会有一个相当完整的编辑工具箱,能让我们编辑任何我们想要的碱基。”  高精度放射性碳测年  去年,考古学家利用放射性碳测年技术的进步,对维京探险家首次抵达美洲的确切年份——甚至是季节——进行了研究。荷兰格罗宁根大学的同位素分析专家Michael Dee和他的博士后Margot Kuitems带领的一个团队在加拿大纽芬兰岛北岸的一个聚落中发现了一些被砍伐的木材,通过对这些木材的研究,确定这棵树很可能在1021年被砍伐,而且可能是在春天[8]。  自20世纪40年代以来,科学家一直在利用有机人工制品的放射性碳测年法来缩小历史事件发生的时间范围。他们通过测量同位素碳-14的痕迹来做到这一点,碳-14是宇宙射线与地球大气相互作用的结果,在数千年中缓慢衰变。但这种技术的精确度通常仅为几十年左右。  加拿大纽芬兰省兰塞奥兹牧草地(L'Anse aux Meadows)木材的精确放射性碳年代测定显示,维京人于1021年在此地砍倒了一棵树。图片来源:All Canada Photos/Alamy  2012年,情况发生了变化,日本名古屋大学物理学家三宅芙沙(Fusa Miyake)领导的研究小组发现[9],公元774到775年之间,日本雪松年轮中碳-14含量显著升高。随后的研究[10]不仅证实了这一时期世界各地的木材样本中都存在这种碳-14含量的显著升高,而且还发现历史上存在至少五次这样的碳-14含量上升,最早的一次可以追溯到公元前7176年。有研究人员将这些碳-14峰值与太阳风暴活动联系起来,但这一假设仍在探索中。  无论其原因是什么,这些“三宅事件”的存在,能让研究人员通过检测一个特定的三宅事件,然后对此后形成的年轮进行计数,从而准确地确定木制文物的制造年份。Kuitems说,研究人员甚至可以根据最外圈年轮的厚度来确定树木被砍伐的季节。  考古学家现在正在将这种方法应用于新石器时代聚落和火山爆发遗址的研究,Dee希望用它来研究中美洲的玛雅帝国。在接下来的十年左右,Dee乐观地认为,“我们将对这些古老文明中的许多历史事件有真正精确到年代的完全记录,我们将能够以相当精细的时间尺度谈论这些历史发展。”  至于三宅,则还在继续寻找历史中的时间标尺。她说:“我们现在正在寻找过去一万年中与公元774到775年的事件相当的其他碳-14升高。”  单细胞代谢组学  代谢组学是研究驱动细胞的脂质、碳水化合物和其他小分子的科学,它最初是一套表征细胞或组织中代谢产物的方法,但现在正在转向单细胞水平。科学家们可以利用这些细胞水平的数据,理清大量看似相同的细胞的功能复杂性。但这一转变带来了艰巨的挑战。  代谢组包含大量具有不同化学性质的分子。欧洲分子生物学实验室的代谢组学研究人员Theodore Alexandrov说,其中一些分子存在的时间非常短暂,代谢周转率为亚秒级别。它们可能很难检测:尽管单细胞RNA测序可以捕获细胞或生物体中产生的近一半的RNA分子(转录组),但大多数代谢分析仅涵盖细胞代谢产物的一小部分。这些缺失的信息里可能包含了重要的生物学奥秘。  “代谢组实际上是细胞的活性部分。”伊利诺伊大学厄巴纳-香槟分校的分析化学家Jonathan Sweedler说,“在疾病状态下,如果你想知道细胞状态,你真的要研究代谢产物。”  许多代谢组学实验室使用分离的细胞,这些细胞被捕获在毛细管中,使用质谱法单独分析。相比之下,“成像质谱”方法获取了样本中不同位置的细胞代谢产物发生变化的空间信息。例如,研究人员可以使用一种称为基质辅助激光解吸/电离(MALDI)的技术,其中激光束扫过经特殊处理的组织切片,释放出代谢产物,用于随后的质谱分析。这种方法也能捕获样本中代谢物来源的空间坐标。  Sweedler说,理论上,这两种方法都可以量化数千个细胞中的数百种化合物,但要实现这一目标通常需要顶级的定制硬件设备,成本在百万美元左右。  现在,研究人员正在普及这项技术。2021年,Alexandrov团队报道了SpaceM,这是一种开源软件工具,它能用光学显微镜成像数据,使用标准商用质谱仪对培养的细胞进行空间代谢组学分析[11]。他说:“我们算是做了数据分析部分的体力活。”  Alexandrov的团队使用SpaceM对数以万计人和小鼠细胞中的数百种代谢产物进行了分析,并转向标准的单细胞转录组学方法将这些细胞分类。Alexandrov表示,他尤为热情的是后一项工作,以及构建“代谢组学图谱”的想法——类似于为转录组学开发的图谱,以加速该领域的进展。他说:“这绝对是一个前沿领域,并将对科学起到巨大的推动作用。”  体外胚胎模型  研究人员现在可以在实验室中制造出人工合成胚胎(下图),它与8天大的自然胚胎(上图)类似。来源:Magdalena Zernicka Goetz实验室  科学家们已经在小鼠和人类的细胞水平上详细描绘了从受精卵到完全形成的胚胎这一过程。但驱动这一过程早期阶段的分子机制仍不清楚。现在,“胚状体”模型的一系列活动有助于填补这些知识空白,让研究人员更清楚地了解可以决定胎儿发育成败的重要早期事件。  该领域一些最精细的模型,来自加州理工学院和英国剑桥大学的发育生物学家Magdalena Zernicka Goetz的实验室。2022年,她和她的团队证明,他们可以完全从胚胎干细胞(embryonic stem cells,ES细胞)中产生植入期的小鼠胚胎[12,13]。  与所有多能干细胞一样,ES细胞可以形成任何细胞或组织类型,但它们需要与两种类型的胚外细胞密切相互作用才能完成正常的胚胎发育。Zernicka-Goetz团队研究出了诱导ES细胞形成这些胚外细胞的方法,并表明这些细胞可以与ES细胞共培养,以产生胚胎模型,该模型的成熟度是以前的体外实验无法达到的。“它就如你能想象的胚胎模型那样。”Zernicka Goetz说,“我们的胚胎模型发育出一个头部和心脏——而且还在跳动。”她的团队能够利用这个模型来揭示个别基因的改变如何破坏正常的胚胎发育。  经过工程设计用于模拟胚胎8细胞期的细胞构成的胚状体。来源:M.A Mazid et al./Nature  在中国科学院广州生物医药与健康研究院,干细胞生物学家Miguel Esteban和同事们正在采取一种不同的策略:重新编程人类干细胞,以模拟最早的发育阶段。  Esteban说:“我们最初的想法是,实际上甚至制造合子也是可能的。”该团队没能完全实现这一点,但他们的确发现了一种培养策略,能使这些干细胞回到类似于8细胞期人类胚胎的状态[14]。这是一个至关重要的发育期里程碑,与基因表达的巨大变化相关,最终产生不同的胚胎细胞和胚外细胞谱系。  尽管还不完美,但Esteban的模型展示了自然状态下8细胞期胚胎中细胞的关键特征,并凸显了人类和小鼠胚胎如何启动向8细胞期阶段转变之间的重要差异。Esteban说:“我们发现,一种甚至在小鼠体内都没有表达的转录因子,调节着整个转化过程。”  结合起来,这些模型可以帮助研究人员描绘出仅仅几个细胞是如何发育为高度复杂的脊椎动物躯体的。  在许多国家,对人类胚胎的研究只能在发育14天以内进行,但在这些限制条件下,研究人员仍有许多工作可做。Esteban说,非人类灵长类动物模型提供了一种可能的替代方案,而Zernicka-Goetz说,她的小鼠胚胎策略也可以产生发育到第12天的人类胚胎。她说:“在这个我们能研究的胚胎阶段,仍有很多问题有待提出。”  参考文献:  1. Swaminathan, J. et al. Nature Biotechnol.36, 1076–1082 (2018).  2. Reed, B. D. et al. Science 378, 186–192 (2022).  3. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Science 374, 1509–1513 (2021).  4. Heinrich, L. et al. Nature 599, 141–146 (2021).  5. Xu, C. S. et al. Nature 599, 147–151 (2021).  6. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. etal. Science 368, 290–296 (2020).  7. Ciciani, M. et al. Nature Commun. 13, 6474 (2022).  8. Kuitems, M. et al. Nature 601, 388–391 (2022).  9. Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. Nature 486, 240–242 (2012).  10. Brehm, N. et al. Nature Commun. 13, 1196 (2022).  11. Rappez, L. et al. Nature Methods 18, 799–805 (2021).  12. Amadei, G. et al. Nature 610, 143–153 (2022).  13. Lau, K. Y. C. et al. Cell Stem Cell 29, 1445–1458 (2022).  14. Mazid, M. A. et al. Nature 605, 315–324 (2022).  原文以Seven technologies to watch in 2023为标题发表在2023年1月23日《自然》的技术特写版块上
  • 我国科学家研发出检测DNA中第五种碱基的新技术
    DNA的基本元素包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)和脱氧尿嘧啶(dU),然而目前还无法从单碱基分辨率水平上检测dU,严重影响了对dU功能的理解。近期,我国科学家研发出在单碱基分辨率水平上精准检测dU的新技术,研究成果发表在《Journal of the American Chemical Society》期刊,标题为“UdgX-Mediated Uracil Sequencing at Single-Nucleotide Resolution”。  该方法被命名为Ucaps-seq法(UdgX cross-linking and polymerase stalling sequencing)。研究人员利用从耻垢分枝杆菌中发现的新型糖苷酶UdgX,特异性地识别和切除DNA中的dU,形成的缺口与对应的核糖形成共价键,从而将其捕获。由于DNA高保真聚合酶碰到UdgX标记的dU缺口能原地“停车”,研究人员利用的DNA高保真聚合酶这一特性进一步确认了dU的位置。最后,结合高通量测序技术将“停车”信号放大,从而在单碱基水平上精准定位dU在DNA乃至基因组上的位置。  Ucaps-seq法是国际上第一个酶法检测DNA中的dU碱基的技术,灵敏性好、特异性强、分辨率高,将大大推进核酸序列检测、遗传密码破译和人类对核酸的认知。  注:此研究成果摘自《Journal of the American Chemical Society》期刊原文章,文章内容不代表本网站观点和立场,仅供参考。   论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c11269
  • 东南大学司伟博士: 纳米孔单分子测序为最具潜力DNA测序技术
    1996年,Kasianowicz等人首次发现单链DNA和RNA电泳穿过α溶血素(α-HL)纳米孔的时候会产生对应的阻塞电流信号。此后,众多科研学者在这一研究基础上开始了更为广泛的研究。经过二十余年发展,生物纳米孔技术现已开始商业化,且市面已有成型的基于生物纳米孔单分子测序技术的基因测序仪产品。纳米孔最具前景的应用之一是其可以用于第三代DNA测序技术,因其不需要复杂的酶扩增以及荧光标记,且其具有低成本高通量的特点而受到广大研究者们的青睐。纳米孔是单分子测序仪最核心部件图1 纳米孔DNA测序的基本原理图。(a)基于纳米孔的DNA测序传感器搭建示意图,图中显示一条单链DNA正在电泳穿过石墨烯纳米孔。(b)单链DNA过孔时产生的阻塞离子电流信号细节示意图,每个碱基的体积及其与纳米孔之间的相互作用强度不同导致对应的阻塞电流幅值存在差异,从而可以用来区分不同的DNA碱基。【Si Wei, et al. Chin. Sci. Bull., 2014, 59(35): 4929-4941.】纳米孔单分子DNA测序传感器基于库特计数器原理,如图1所示在固态薄膜的顺式端(cis)和反式端(trans)都注满了离子溶液,两端的溶液仅通过纳米孔进行连接,当带电的DNA分子被置入到液池的顺式端后,在纳米孔的两侧施加电压,DNA分子会在电场力的作用下电泳穿过纳米孔,由于DNA碱基自身在孔内的物理占位以及其与纳米孔间较强的相互作用使得通过纳米孔的电流会被阻塞。一条单链DNA(ssDNA)由腺嘌呤(A),鸟嘌呤(G),胸腺嘧啶(T)和胞嘧啶(C)组成。因为四种碱基的尺寸及特征各异,当单链DNA穿过跟自身尺寸相当的纳米孔时,不同的碱基会产生对应幅值的阻塞电流,通过研究这些电流之间的差异就可以实现对DNA四种碱基的辨识,如图1所示。通过分析这些阻塞电流信号(如阻塞电流幅值和过孔时间等),DNA链上所含的碱基很有可能被检测和区分开来。纳米孔作为单分子测序仪器设计与制造的核心检测部件,因此如何保证纳米孔单分子传感器的检测灵敏度、时间空间分辨率、稳定性和寿命等是影响纳米孔单分子测序仪器工作效率和稳定性的关键技术问题。三大技术突破成就了如今的纳米孔单分子测序仪自1996年纳米孔被Kasianowicz等人发现以来,众多科学家投入大量精力深入研究,在研究过程中也遇到很多难题。例如,尽管研究者们都相继报道了纳米孔离子电流可以用于四种碱基的区分,然而他们得到的结论却大相径庭,使得阻塞电流的幅值和相应碱基之间的对应关系至今仍然含糊不清。研究者们对单链DNA均聚物在过孔时产生的阻塞电流幅值跟碱基体积大小的相关性进行了研究,组成DNA四种碱基的体积大小顺序为GATC,理论上DNA碱基的尺寸对离子电流信号的影响较大,然而其与纳米孔的强相互作用在阻塞电流幅值检测方面也会起到主导作用,且在不同的纳米孔材料或者实验条件下获得的实验结果差异较大,这也制约了基于纳米孔DNA测序的发展。经历了20余年的发展,三大技术突破与革新也成就了现今的纳米孔单分子测序仪的研制。首先是纳米孔检测DNA或RNA全新技术方案的提出,其次是采用酶对DNA分子的剪切或复制用于纳米单分子测序技术中,最后是单碱基信号的测序精度精准调控。之后数年的时间,Oxford Nanopore 公司于2013年11月启动了MinION测序仪的早期试用计划,这时首款纳米孔单分子测序仪也正式开始步入人类的视野。便携、低成本和高通量 纳米孔单分子测序成为最具潜力的DNA测序技术人类基因组计划人类基因组计划在2003 年完成人体全序列的基因测定,历时12 年,耗资数十亿美元,人类基因序列图已成为全人类共同的财富。但是,第一代的 Sanger测序方法也给基因组测序贴上了数亿美元的价格标签,让人望而生畏。近两年发展迅猛的第二代测序仪让人类基因组重测序的费用降低到10 万美元以下,测序时间也缩短到6 个月。但是,这样的价格和时间,相对于个人用户仍然太高,极大地限制了其临床应用和基础理论研究。与传统Sanger测序技术相比,纳米孔单分子测序技术的核心优势在于它的便携性、低成本和高通量。强大的市场需求和探索生命科学未知领域的渴望,有力地推动着DNA 检测水平的提高。2004 年,美国国家人类基因组研究所(NHGRI)启动了“千元基因组测序研究项目”, 目的是让人类基因组的测序费用降至1000 美元以下。基于纳米孔的单分子DNA 测序方法是第三代测序技术中成本最低,最具有竞争力的技术。同年,美国国家卫生研究院(NIH)提出了“1000美元测序”的概念,而基于纳米孔的DNA测序技术是最有潜力实现这一目标的方法之一,众多实验研究也进一步验证了纳米孔DNA测序技术的可行性。该方法的优势在于它简化了对DNA 的化学修饰、扩增和表面吸附等工艺,具有结构简洁、速度快、操作简便等特点,同时省去了昂贵的荧光试剂和CCD照相机的费用。最为重要的是它的效率高,单个核苷酸分子通过纳米孔的时间仅在微秒级,如果考虑单个芯片上集成成百上千个纳米孔阵列,有望在24 小时内完成对个体的基因测序,而目前的二代基因测序仪则需要6 个月时间。 商业化进展慢 提高纳米孔稳定性迫在眉睫纳米孔单分子测序技术现有市场的典型产品是Oxford Nanopore Technologies(ONT)公司的MinION纳米孔测序仪,它具有低成本、高通量、读速快、读长长(约150kb)和高便携等特点,因此纳米孔单分子传感器目前已被广泛应用于物理学、生物学和化学等学科涉及单分子应用的科学研究,助力人类科技的发展,造福人类。基于上述纳米孔单分子测序技术的特点,相比传统测序仪器而言,它的典型应用场景之一是极端环境中病毒或细菌的高精度检测。例如,在偏远贫困地区,在疫情爆发或在没有足够的设备资源的情况下,便携的纳米孔单分子测序仪可以快速的协助病毒检测和疾病诊断。数年前西非爆发埃博拉病毒时,单分子测序仪便在病毒检测过程中起到的重要作用。再例如,存放在外太空空间站的土壤和水等是否已经出现微生物依然成谜,要将样品带至地球进行采样分析方能揭晓,而轻便的纳米孔单分子测序仪仅有u盘大小,可以方便的携带至外太空,在其他辅助条件下协助检测。虽然基于纳米孔的单分子测序仪具备很多优势,而且已经进入商业化进程,但是它的市场占有率相比传统测序技术而言依然偏低。其原因主要是目前市场已有的纳米孔测序仪采用的仍然是生物纳米孔和磷脂膜,这样的生物体系不可避免的面临着寿命短和稳定性不持久的缺陷。因此要推进纳米孔单分子测序技术的发展,这些问题必须得到解决。而固体纳米孔(例如氮化硅,二硫化钼)目前的报道也可以辨识单碱基,因此固体纳米孔有望在未来代替生物纳米孔实现稳定、可重复利用的高精度DNA测序。然而固体纳米孔在信噪比方面不如生物纳米孔,而且DNA在相同条件下通过固体纳米孔的速度偏快,因此如何提高固体纳米孔的信噪比和实现有效的DNA控速也是亟需解决的关键科学问题。作者简介:司伟,博士,东南大学硕导/讲师,2020年度东南大学“至善青年学者”,江苏省2019年度优秀博士学位论文和东南大学2019年度优秀博士学位论文获得者,入选2019年、2020年东南大学机械工程学院“优才培育计划”,担任《MaterialsInternational》(ISSN: 2668-5728)期刊助理编辑和《Bioengineering International》(ISSN 2668-7119)期刊编委,获得2019年Nanotechnology期刊杰出审稿人奖。主要研究方向:(1)机械操控及机器人技术、(2)工程流体动力学及传感器、(3)结构工艺设计及加工制造、(4)程序语言算法和三维建模与仿真。
  • 听大咖讲氮吸附孔径分析 脱附与吸附曲线该选who?
    p style=" text-align: justify text-indent: 2em " 让公益传播科学知识,用教育安抚技能焦虑。2018年11月15日,“比表面与孔径分析原理及应用”系列精品在线讲座第四弹成功举办。中国氮吸附仪的开拓者、国务院特殊津贴专家钟家湘教授与广大网友再度相聚仪器信息网。用内容丰富、深入浅出的精彩讲解,在2小时的滴答中,带大家继续畅游于比表面与孔径分析的世界。该系列讲座共分6讲,在此前的三讲中,钟老先后为大家讲解了氮吸附法、连续流动色谱法和静态容量法比表面及孔径分析仪原理及应用。本期的讲座则聚焦于氮吸附法介孔和大孔的测试与分析。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/d94345d7-5843-42ff-96d2-b7fe28d449cf.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p /p p style=" text-align: center text-indent: 2em " strong 仪器信息网仪颗通平台直播现场 /strong /p p style=" text-align: justify text-indent: 2em " 在学术界,介孔与大孔的测量范围一般在2nm-500nm之间。钟老先为大家讲解了氮吸附法BJH孔径分析的基本方法。该方法通过控制和调节吸附质的压力,由低向高逐级变化,测量出每个压力下产生的吸附或脱附量,利用压力和孔径之间的定量关系,从而计算得到孔体积随孔径的变化,测试的压力点越多,孔径分布的描述就越精确。在该方法中,等温吸、脱附曲线的测定是孔径分析的唯一实验依据。钟老详细讲解了BJH法测量的介孔体积测量和计算方法,以及孔径分析的各种参数来源。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/f1cabf20-a28f-4d7e-ba1c-f1bbe4099dbe.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p /p p style=" text-align: center text-indent: 0em " strong 钟家湘教授 /strong /p p style=" text-align: justify text-indent: 2em " 而在孔径分布的表征中,除了总表面积(BET)和总孔体积外,积分分布、微分分布和最可几孔径是最重要的参数。其中积分分布反应的是孔增量的累计叠加、微分分布反应的是孔体积随直径变化的变化率,最可几孔径则是微分分布最大值对应的孔径,代表着孔径密度最大的等效孔径值,该数据在多孔材料的制备、检测、及实际应用中具有重要的参考意义。 /p p style=" text-align: justify text-indent: 2em " 另外,钟老还认为,吸附平均孔径缺乏实用的意义和价值,虽然仪器会得出相关数据,但是很少会成为主要分析参数。 /p p style=" text-align: justify text-indent: 2em " 氮吸附法比表面与孔径分析仪的精确测量上限在哪里?钟老表示,虽然仪器上标注的上限在500nm左右,但是高点追求接近于1并无实质意义,在0.99及以下才较为适当,这样相对应的孔径测试上限在200nm是合理的。另外,在前几年相关研究的论文中,研究者常采用等温吸附线中的脱附曲线进行分析,钟老表示,由于“张力强度效应”会导致脱附曲线很容易出现假峰(常出现在0.3-0.4nm左右),因此选取吸附分支可以获得更为真实的孔径分布。 /p p style=" text-align: justify text-indent: 2em " 讲座还对孔径分析设备要求、预处理注意事项、P0确定的经验等内容进行了传授,并分析了影响孔径分析测试精度的因素。钟老的精彩讲解赢得了网友们的满堂彩,在随后的问答环节,网友们积极留言互动,钟老也对大家提出的孔壁吸附层厚度选择、脱附曲线异常变动、BJH方法使用范围等内容进行了耐心地一一解答。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/7a054509-c45b-4ed7-b41e-78e9f84680e0.jpg" title=" 企业微信截图_15422713207930(1).png" alt=" 企业微信截图_15422713207930(1).png" / /p p /p p style=" text-align: center text-indent: 0em " strong 网友感谢弹幕 /strong /p p style=" text-align: justify text-indent: 2em " 虽然年逾80,但是钟老精神矍铄,幽默的谈吐,渊博的学识,以及鞭辟入里的条分缕析无不让听众如沐春风,讲座结束后,留言板上满是对钟老真诚感谢的弹幕。“时间过得太快了,希望下次讲座能够讲更多的东西。”钟老憨厚地笑着说。 /p p style=" text-align: justify text-indent: 2em " 作为仪器信息网仪课通平台打造的精品系列讲座之一,“比表面与孔径分析原理及应用”讲座的下一讲将于12月20日与网友们见面,有兴趣的用户可随时关注仪器信息网了解报名详情。仪课通是仪器信息网旗下的在线教育平台,专注于科学仪器与检测行业用户职场技能的提升。千里仪缘一网迁,平台邀请行业资深专家开讲授课,为行业用户提供丰富、高质量的自我提升内容,在知识互通,交流互助的学习环境下完成专业知识的系统化储备与升级。平台在线讲座包罗万象,涉及色、质、谱,物性检测、食品药品检测、环境检测、仪器开发与设计等诸多领域。讲座的直播采取公益形式,用户可免费报名参加。错过直播的用户也可在仪颗通平台购买讲座课程进行学习。 /p p style=" text-align: justify text-indent: 2em " 仪课通平台网址( a href=" https://www.instrument.com.cn/ykt/" target=" _self" https://www.instrument.com.cn/ykt/ /a )。 /p p style=" text-align: justify text-indent: 2em " 仪课通公众号二维码 /p p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/1072b0b6-b309-4496-b53b-914bde7d2b04.jpg" title=" 仪课通.jpg" alt=" 仪课通.jpg" / /p
  • 毒豆芽检测色谱耗材选择指南
    豆芽常检有毒有害成分:2,4-D(2,4-二氯苯氧乙酸)、4-氯苯氧乙酸钠、6-苄基腺嘌呤、尿素、恩诺沙星、亚硝酸盐与硝酸盐、亚硫酸盐、赤霉素 据中新网沈阳4月18日报道,沈阳市公安局皇姑分局端掉6个黄豆芽黑加工点,查获掺入非食品添加剂豆芽25余吨,主要送往饭店做水煮鱼和水煮肉片底料。经检测,豆芽中含有亚硝酸钠、尿素、恩诺沙星、6-苄基腺嘌呤激素,其中,人食用含亚硝酸钠的食品会致癌,恩诺沙星是动物专用药,禁止在食品中添加。我司现根据DB33/625.2-2007《无公害豆芽质量安全要求》和《DB11/T 379-2006》豆芽中4-氯本氧乙酸钠、6-苄基腺嘌呤、2,4-滴、赤霉素、福美双的测定方法汇总出其中所需要色谱耗材供大家参考和选择。 下载pdf: 毒豆芽检测色谱耗材选择指南.pdf 粮食和蔬菜中2,4-滴残留量的测定(GB/T 5009.175-2003) 试样中2,4-滴用有机溶剂提取,用三氟化硼丁醇溶液将2,4-滴衍生成2,4-滴丁酯,液液萃取,柱层析净化除去干扰物质,以气相色谱电子捕获检测器测定,依据色谱峰保留时间定性,外标法面积定量。 上述带*号产品选择的说明: a.在订购2,4标准品(CDCT-C11940000)后是进行甲酯还是丁酯衍生化? 国标方法中是采用14%三氟化硼丁醇溶液(CFFC-X0034-1SET)进行丁酯化,北京地方标准方法上采用的是14%三氟化硼甲醇溶液(CFEQ-4-110056-0250)进行甲酯化后检验,从经济的角度和购买的方便性上考虑,我们推荐使用甲酯化的方法,当然,您也可以根据方法需要选择丁酯化方法。 b. 是否还需要购买2,4-D甲酯标准品(CDCT-C11945000)或者2,4-D丁酯标准品(CDCT-C11941000)? 若您选择甲酯化方法,2,4-D经14%三氟化硼甲醇溶液(CFEQ-4-110056-0250)衍生化为2,4-D甲酯,您可选择购买2,4-D甲酯标准品(CDCT-C11945000); 若你选择丁酯化方法,2,4-D经10-20%三氟化硼丁醇溶液(CFFC-X0034-1SET)衍生为2,4-D丁酯,您可选择购买2,4-D丁酯标准品(CDCT-C11941000)。 选择2,4-D甲酯标准品或者2,4-D丁酯标准品有助于判断2,4-D甲酯或者2,4-D丁酯气相色谱出峰保留时间和计算2,4-D甲酯或者丁酯衍生化过程转化率。 2,4-D甲酯标准品和2,4-D丁酯标准品都是备选产品,可根据您需要选择购买或者不购买。 豆芽中4-氯苯氧乙酸钠的测定(DB11/T 379&mdash 2006) 试样中的4-氯苯氧乙酸钠用稀碱提取后,在酸性条件下用固相萃取柱将样品中的4-氯苯氧乙酸吸附,使其与基体干扰物分离,再用甲醇洗脱并用高效液相色谱法测定,以保留时间定性,外标法峰面积定量。 豆芽中6-苄基腺嘌呤的测定(DB11/T 379&mdash 2006) 豆芽中残留的6-苄基腺嘌呤经酸化甲醇提取后,高效液相色谱法测定,以保留时间定性,外标法峰面积定量。 豆芽菜中尿素测定 参考《豆芽菜中尿素测定的异常现象分析及方法改进》 正常的绿豆芽在生芽过程中,应不添加任何物质,但其生长过程缓慢、周期长,为加速生长周期,人为的加入尿素促进其生长,使芽变粗变长,但也使豆芽中尿素残留增加,对人体健康构成危害。 检测原理:尿素和亚硝酸钠在酸性溶液中生成二氧化碳和氨的气体,当加入格里斯千试剂时,掺有尿素的样品呈现黄色外观,正常的样品呈现紫红色。 注意事项: a.浓硫酸加入量 由于样品的取样量少,少量的浓硫酸即可达到所需的强酸性,因此,建议将浓硫酸的加入量改为0.5ml,为原方法用量的一半; b.亚硝酸钠加入量,当溶液中亚硝酸盐含量高时,与显色剂作用,可呈现黄色,是因为产生的偶氮色素被过量的亚硝酸氧化褪色适当的稀释后方可产生正常紫红色。因为样品中尿素的含量相对较低,它只能与少量的亚硝酸钠作用,当加入过量的亚硝酸钠时,剩余的亚硝酸钠就会将产生的偶氮色素氧化,使之褪色而产生黄色,造成假阳性,故亚硝酸钠的添加量非常关键。当亚硝酸钠的用量减少一半时,但显色效果不明显,当减少到1/4用量时,颜色反应非常灵敏,空白及阴性对照管呈紫红色,阳性管呈黄色,根据尿素的有无样品呈现出不同的颜色。 除产品描述外,上述内容均摘自宋晶瑶、赵玉梅、王琳《豆芽菜中尿素测定的异常现象分析及方法改进》   毒豆芽中恩诺沙星检 参考:GB/T 21312-2007 动物源性食品中14中喹诺酮药物残留检测方法 液相色谱-质谱/质谱法 方法提要:用0.1mol/LEDTA-Mcllvaine缓冲液(pH4.0)提取样品中的喹诺酮类抗生素,经过滤和离心后,上清液经HLB固相萃取柱净化,高效液相色谱-质谱/质谱测定,用阴性样品基质加标法定量。 GB 5009.33-2010 食品中亚硝酸盐与硝酸盐的测定 第一法 离子色谱法 试样经沉淀蛋白质、除去脂肪后,采用相应的方法提取和净化,以氢氧化钾溶液为淋洗液,阴离子交换柱分离,电导检测器检测。以保留时间定性,外标法定量。 第二法 分光光度法 亚硝酸盐采用盐酸萘乙二胺法测定,硝酸盐采用镉柱还原法测定。试样经沉淀蛋白质、除去脂肪后,在弱酸条件下亚硝酸盐与对氨基苯磺酸重氮化后,再与盐酸萘乙二胺偶合形成紫红色染料,外标法测得亚硝酸盐含量。采用镉柱将硝酸盐还原成亚硝酸盐,测得亚硝酸盐总量,由此总量减去亚硝酸盐含量,即得试样中硝酸盐含量。 GB/T 5009.34-2003食品中亚硫酸盐的测定 第一法 盐酸副玫瑰苯胺法 亚硫酸盐与四氯汞钠反应生成稳定的络合物,再与甲醛及盐酸副玫瑰苯胺作用生成紫红色络合物,与标准系列比较定量。 SN 0350-95 出口水果中赤霉素残留量检验方法 以丙酮提取样品中赤霉素,然后用乙酸乙酯提取,再用缓冲溶液凡提取后,在薄层层析板上除去干扰物质,最后用荧光分光光度法测定。 了解更多检测方法请进入上海安谱公司网站: www.anpel.com.cn
  • 拒绝千篇一律,让核酸和蛋白定量检测更准确有效!-Molecular Devices
    拒绝千篇一律,让核酸和蛋白定量检测更准确有效!核酸及蛋白的定量是遗传学和分子生物学中许多复杂实验上游的基本检测方法,如DNA测序、PCR/qPCR、克隆/转染等。如何能够准确和灵敏对核酸及蛋白质进行定量检测是许多实验成败与否的重要环节。各种方法被开发出来用于定量这些生物学成分,然而最常见的检测手段仍然是紫外分光光度法。即DNA、RNA在微孔板读板机测定其溶液在260nm波长处的光吸收值。原理是核酸的嘌呤、嘧啶碱基具有共轭双健在260nm强烈光吸收值特点;而蛋白质溶液则是在280nm波长处的光吸收值,原理是利用色氨酸的芳香性质在280nm 处强烈光吸收值。与核酸定量检测不同的是计算蛋白浓度会受到多种多样的的氨基酸序列中的色氨酸残基的影响。当然通常情况下也会在其他波长处进行辅助测量,以提供样品纯度的信息和检测其他污染物。如进行核酸检测时其260nm/280nm光吸收值作为样品纯度重要考虑因素,比值在1.8-2.0之间说明杂蛋白等物质含量较低。(了解更多请咨询美谷分子仪器)但传统光吸收检测法,不足之处其最低检测线最低仅250 ng/mL,低于这个浓度的DNA溶液使用微孔板读板机的荧光法可进行更准确定量检测,如荧光法对dsDNA检测下限可达到0.5pg/ul,而蛋白检测下限可达10ng/ml,这里介绍Molecular Device公司各种微孔板读板机可为核酸及蛋白质检测提供了多种可靠方案。结合SoftMax Pro 软件强大的数据处理分析功能,可一键生成定量结果,并可根据用户需求定制格式并导出数据。
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T.,Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 中美科学家实现“可定制化裁剪”单壁碳纳米管,或催生室温下的超导体,为量子计算机和量子通信带来广阔前景
    在北京化工大学、和美国阿克伦大学读完本硕博之后,林志伟历经三站博士后研究。除第一站过渡性博士后仍在阿克伦大学,其余两站分别在美国哥伦比亚大学、美国国家标准与技术研究院(NIST,National Institute of Standards and Technology)完成。2022 年 1 月,林志伟回国加入华南理工大学前沿软物质学院担任教授。▲图 | 林志伟(来源:林志伟)时隔数月,其担任第一兼通讯作者的论文,发表在 Science 上。研究中,他利用 DNA 首次实现了单壁碳纳米管的可控有序修饰。对于发展超导材料和量子材料,将起到重要的推进作用。据介绍,超导材料、量子材料等性能独特的变革性材料,被认为具备解决人类当前面临的信息、能源、量子计算等重大问题的可能,甚至有望推动下一次产业革命。正如美国马里兰大学化学与生物化学系教授 YuHuang Wang教授在同期 Science 评论文章所指出的:美国物理学家威廉雷透(William A. Little)在 50 年前提出了经典的室温超导材料的分子模型(即 Little 模型)。然而,经过几十年的努力,人们一直无法在实验上设计出符合 Little 模型的超导分子。而该成果为实现 Little 模型迈出了重要一步,是里程碑式的发现。量子材料,是指由于其自身电子的量子力学特征,而产生奇异物理特性的材料。在发展变革性的数据存储、数据处理、通讯、以及计算机相关技术上具备巨大潜力,并可能产生惊人的经济效益。2016 年,美国能源部确立以量子材料为优先发展方向的变革性能源相关技术。由于具有独特性能,单壁碳纳米管可用于构建一维量子材料,但其缺点是量子产率较低。通过化学修饰,在sp2结构的单壁碳纳米管中引入缺陷构筑量子缺陷,可大大提高量子产率,这让单壁碳纳米管成为很好量子发光材料。可以预见,其将在量子计算机、量子通信等领域拥有广阔的应用前景。像服装设计师一样,"裁剪"单壁碳纳米管的化学结构超导材料,是指电阻为零的材料。在传输电流的时候,既不损失能量也不会产生热量。目前的超导材料都需要在很低的温度下(-100℃ 以下)才能产生超导性能。若发展出室温的超导材料,则有望用于制备超快计算机、超小的电子设备、高速磁悬浮列车等。如前所述,威廉雷透(William A. Little)曾首次提出室温超导体的分子模型——Little 模型。过去 50 年,学界已开展大量实验,但一直未能设计出其设想的超导分子。直到 2016 年,科学家提出碳纳米管或有望实现 Little 室温超导材料,但是得对碳纳米管的结构进行精确可控的化学修饰。可以说,这又是一项难于逾越的重大难题。碳纳米管(Carbon Nanotubes,CNTs),于 1991 年由日本物理学家饭岛澄男(Sumio Iijima)发现。据维基百科介绍,"碳纳米管是一种管状的碳分子,管上每个碳原子采取 sp2杂化,相互之间以碳-碳 σ 键结合起来,形成由六边形组成的蜂窝状结构,以作为纳米碳管的骨架。"按照管子的层数不同,碳纳米管可分为单壁碳纳米管(SWCNT,Single-walled carbon nanotubes)和多壁碳纳米管(MWCNTs,Multi-walled carbon nanotubes)。单壁碳纳米管的结构简单,均匀一致性好,而且缺陷少、 性质稳定,受到的关注更多。鉴于此,自碳纳米管被发现以来,一直是热点研究材料。▲图 1 | 单壁碳纳米管(来源林志伟)凭借优异的光学、电学、力学、热学等性能,单壁碳纳米管已被广泛用于电子器件、光学仪器、锂离子电池、航空航天材料、疾病检测等领域。对单壁碳纳米管进行化学修饰,可以改变它的晶格结构电学性能和光学性能也会随之改变。这一手段对于发展有机超导材料、量子材料等新型材料具有重大意义。然而,在单壁碳纳米管中,所有碳原子的化学环境均为一致,存在着 sp2 杂化(sp2hybridization),即"一个原子同一电子层内由一个 n s 轨道和两个 n p 轨道发生杂化的过程"。因此,对单壁碳纳米管实现可控化学修饰,是领域内长期存在的一项重大挑战。针对此,林志伟与 NIST 的 Ming Zheng研究员,借助 DNA 让单壁碳纳米管,得以实现可控的有序修饰(图 2)。林志伟指出:"精确可控的修饰方法,让科学家有望像服装设计师一样,按自己的想法 ‘可定制化’地设计单壁碳纳米管化学结构,以实现特殊的性能(例如超导性能和量子性能等),进而实现在航空航天、量子计算机、量子通信、新一代生物医疗等领域的前沿应用。"▲图 2 | 有序可控修饰的单壁碳纳米管(来源:林志伟)近日,相关论文以《DNA 指导的碳纳米管晶格重构》(DNA-guided lattice remodeling of carbon nanotubes)为题,发表在 Science 上。林志伟兼任第一和通讯作者,Ming Zheng 研究员为共同通讯作者。(来源:Science)其中一位审稿人认为,该工作实现了一个宏大目标。此前,很多学者反复尝试却无功而返。因此,此次成果是领域内的重大进展。另一位审稿人指出,常温超导材料是无数科学家长期追寻的远大目标。该论文提出了有序可控地修饰单壁碳纳米管的方法,为制备常温超导材料提供了一种潜在解决方案。心情"忐忑"地给美国科学院院士发邮件据介绍,参与此次合作的 Ming Zheng 团队,长期致力于 DNA-碳纳米管复合材料方面的研究,尤其在 DNA 分离高纯度碳纳米管方面有着深厚积累。但是对于碳纳米管的化学修饰,团队的经验稍有不足。在加入 NIST 之前,林志伟本人并没有碳纳米管领域的工作经验,但在大分子精确合成、特别是在富勒烯(英文名为 Fullerene,又名C60)的精确修饰上,已经积累多年经验。C60是一种由 60 个碳原子组成的球型分子,它和碳纳米管同属于碳纳米材料的同素异形体。两者在结构和性能上,有一定的相似性。当有学科背景互补的人在一起讨论,很容易碰出"火花"。结合 NIST 团队在 DNA-碳纳米管复合材料、以及林志伟 C60 精确合成方面的背景,他们很快在科研想法上达成共识,提出了利用 DNA 来调控碳纳米管化学修饰的思路,并借此解决碳纳米管有序可控修饰的艰巨任务。接下来便是正式立项和开展实验。确定研究思路之后,如何选择 DNA 的序列、碳纳米管的种类,以及如何发展高效的化学修饰方法,成为新的工作重点。基于前期积累,该团队选取含有鸟嘌呤碱基(Guanine,G)的DNA 序列,将其缠绕到多种单手性单壁碳纳米管的表面,通过调控单壁碳纳米管种类、DNA 序列和构象,实现了预先定制的反应位点。在 525nm 光照下,名为玫瑰红(Rose Bengal)的光敏剂得以激发,借此产生了单线态氧,进而引发鸟嘌呤碱基与单壁碳纳米管发生反应。之后,课题组利用吸收光谱、光致发光光谱、拉曼光谱,对产物结构进行表征(图 3)。▲图 3 | 单壁碳纳米管与 DNA 的反应示意图和光谱表征(来源:Science)为了研究反应机理,以及反应之后单壁碳纳米管晶格中的反应位点的空间分布,该团队设计出一系列鸟嘌呤碱基含量相同、鸟嘌呤碱基相对位置不同的 DNA(2G-n)。结果发现,在拉曼、荧光光谱中与单壁碳纳米管晶格缺陷相关的峰强里,C3GC7GC3(2G-7)和(8,3)单壁碳纳米管的反应产物出现了极小值。这表明,单壁碳纳米管中形成了有序排列的晶格缺陷,即有序排列的反应位点(图 4)。▲图 4 | 筛选 DNA 序列并在单壁碳纳米管中构筑有序的反应位点(来源:Science)紧接着便是寻求合作和交叉验证。虽然通过上述光谱分析,该团队首次证实了有序可控修饰的单壁碳纳米管结构。但是这一结论太过重要,他们反复告诫自己必须非常谨慎对待,在论文发表前务必借助多渠道,对结论进行交叉验证。因此,课题组怀着"忐忑"的心情给美国科学院院士、弗吉尼亚大学哈里森生物化学和分子遗传学系的爱德华H埃格尔曼(Edward H. Egelman)教授写信,以寻求合作。埃格尔曼教授是冷冻电镜方面(cryo-EM,Cryogenic electron microscopy)的顶尖学者,在利用冷冻电镜解析 DNA-蛋白质等复杂生物分子结构方面有着深入研究。之所以怀着"忐忑"心情,是因为该团队之前和埃格尔曼教授并未有交集,而且后者的主要研究兴趣在生物学,很少涉及材料科学。那么,对方是否愿意合作?课题组表示比较担心。不过,令人激动的是埃格尔曼教授表现出极大的兴趣。双方很快就定下合作方式和目标,即利用冷冻电镜进一步验证有序可控的碳纳米管的结构。有了冷冻电镜的结果之后(图 5),课题组满怀信心地把论文投到 Science,并获得期刊主编和审稿人的高度赞赏。论文接收后,埃格尔曼教授接受 Science Daily 的采访时表示:"虽然我们经常使用物理学中的工具和技术来研究生物学,但是我们这次的工作表明,生物学中开发的方法实际上也可以用于解决物理学和工程学中的问题。科学研究常常会产生预料之外的结果,这正是科学令人着迷的原因所在。"▲图 5 | 冷冻电镜重构有序修饰的单壁碳纳米管结构及反应机理示意图(来源:Science)力争在有机超导和新型量子材料上,实现相关应用和很多在新冠大流行中完成的科研成果一样,如果没有疫情,论文或将更早面世。2019 年 9 月,研究正式启动。2020 年 1 月的一天,林志伟正在做实验,被临时要求必须马上离开实验室,整个马里兰州(NIST 所在的州)进入紧急隔离状态。临走时他和同事聊天,以为最多两个星期。两周很快过去,实验室并未解除隔离。之后进入漫长的等待。1 个月、2 个月、6 个月...... 幸运的是,实验室重新开放后,课题进展得很快。尽管此次研究诞生了符合 Little 模型的超导分子。但是,其超导方面的性能尚未得到真正的验证。针对这些新型单壁碳纳米管材料的性能表征,并揭示材料结构与性能关系,是该团队的后续重点。另一方面,他们还计划将含有不同结构和功能的化学官能团,通过有序可有的修饰方法,引入到单壁碳纳米管中,从而设计出结构更精确、性能更多样的单壁碳纳米管,力争在有机超导和新型量子材料上实现相关应用。目前,林志伟课题组主要围绕高分子、DNA、碳纳米管,致力于新型复合与杂化功能材料的精确设计、精准组装和先进应用等方面的研究。课题组常年招募博士后、博士和硕士研究生。
  • 我国科学家揭示特殊DNA的合成机制
    脱氧核糖核酸(DNA)是生命体的遗传物质,决定生物的特征和多样性。生命的遗传信息存储在由腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)四种碱基组成的DNA序列中。1977年前苏联科学家在感染蓝细菌的一株噬菌体中发现由2,6-二氨基嘌呤(Z)、G、C、T组成的DNA,该类特殊DNA中的Z完全取代了正常的A,且Z与T配对形成更稳定的三个氢键,极大地改变了DNA的物理化学特征。长期以来,特殊DNA的合成机制及存在的普遍性和生理意义一直是未解之谜。  国家重点研发计划“合成生物学”重点专项“新天然与人工产物的定向挖掘和高效合成的平台技术”项目在该特殊DNA的合成机制研究上取得重大进展。天津大学研究团队联合上海科技大学、美国伊利诺伊大学等研究团队,解析了该特殊DNA的合成机制,其中包括关键酶参与的2,6-二氨基嘌呤脱氧核糖核苷酸(dZTP)的生成和脱氧腺苷三磷酸(dATP)的消除,并发现这种特殊DNA遍布全球,大量能感染细菌的噬菌体都含有这种DNA。该研究还发现该特殊DNA可以规避识别位点中含有A的限制性内切酶的切割,因此含有该种特殊DNA的噬菌体可以逃避宿主的免疫防御从而具有进化优势。  该项重大发现对生命起源、物种进化、系统生物学的研究具有重要理论意义,在超级耐药菌感染的治疗、绿色无抗生素畜牧饲料和食品保存技术开发、新型纳米材料制备、DNA信息存贮等领域具有潜在应用价值。该研究成果近期发表在《Science》杂志上。   论文链接:https://science.sciencemag.org/content/372/6541/512.full  注:此研究成果摘自《Science》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • Nature Biotechnology综述,叩响CRISPR之门 -- 基因编辑进化史
    近年来,CRISPR被认为是最简单高效的基因编辑方式,也成为了生物技术发展史上进展最为迅猛的新兴技术之一。2022年6月,正值CRISPR发文十周年,Nature Biotechnology 同步发表了一篇名为《Knock-in on CRISPR' s door》的Reviw,梳理了10年来科学家们对CRISPR基因编辑技术不断探索突破的成果[1]。图1. 2022年6月Nature Biotechnology 发文基于CRISPR的基因疗法如火如荼基因治疗(Gene Therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。基因治疗以其一次给药终生治愈遗传疾病的独特潜力让一切不可能变为有可能。截止今日,通过对clinicaltrials.gov检索,全球已有56项基于CRISPR的临床试验正在进行,中国就有21项,占到3成以上。目前大部分的基因疗法为体外疗法(ex vivo),即细胞在体外通过CRISPR编辑后再输注到体内发挥功能,常见疾病如肿瘤免疫疗法CAR-T,遗传性疾病如地中海贫血,镰刀状贫血症血红蛋白遗传病等在内的各种血液病。与之相对的即体内疗法(in vivo)则是直接将治疗基因递送到患者病患部位,从而治疗疾病,目前已在先天性黑蒙、遗传性甲状腺转淀粉样变性和遗传性血管性水肿等疾病表现出巨大潜力。图2. 全球CRISPR临床试验分布热点图图源:clinicaltrials.gov基因编辑的发展历程早期基因编辑--ZFN和TALEN基因编辑技术主要发展了三代,早期的两代基因编辑主要以ZFN和TALEN为主,这两种基因编辑技术相对简单,可以理解为“基因剪刀”——切割特定 DNA 序列的限制酶。但ZFN技术存在很明显的缺点,如容易脱靶,且可能产生一系列不可预测的基因突变,引发细胞毒性。TALEN技术的出现,在一定程度上优化了ZFN技术存在的脱靶问题,具有设计简单,特异性和活性更高的优点,因此成为基因功能研究和基因治疗研究中有力的工具。美中不足的是,由于TALEN针对不同靶点,每次都需重复构建融合蛋白,因此会造成一定的工作繁琐。第三代基因编辑--CRISPRCRISPR/Cas9是继ZFN、TALEN之后出现的第三代“基因组定点编辑技术”。CRISPR/Cas9 系统由两部分组成,分别是Cas9 蛋白和guide RNA(single-guide RNA,sgRNA)。Cas9蛋白具有解旋酶活性,可以将DNA链解旋,同时具有核酸内切酶活性,可以切割DNA链。其原理是核酸内切酶 Cas9 蛋白通过向导 RNA (guide RNA, gRNA)识别特定基因组位点,并对双链 DNA 进行切割造成 DSB后,通过HDR和NHEJ实现基因的定向敲除或插入。图3. CRISPR/Cas9 示意图[2]相比于传统的ZFN和TALEN技术,CRISPR/Cas9技术更为简单,只需要构建针对特定位点的sgRNA,而且效率也比前面几种技术更高,在疾病治疗研究中发挥越来越重要的作用。然而,CRISPR/Cas9系统仍然存在着一定的局限性,这种局限性主要体现在功能发挥时系统对DNA上PAM序列的依赖性以及切割时潜在的脱靶效应。因此科学家们在CRISPR/Cas9的基础上开发了更加高效且广谱的精准基因编辑工具—单碱基编辑技术BE(Base Editor)和精准基因编辑工具PE(Prime Editors)。单碱基编辑技术BE(Base Editor)单碱基编辑技术是一种基于脱氨酶与CRISPR/Cas9系统融合形成的技术。2016年哈佛大学David Liu实验室首次报道开发出CBE单碱基编辑工具,通过将SpCas9与胞嘧啶脱氨酶(cytidine deaminase, CyD, 如APOBEC1)融合,可以在一定的突变窗口内实现胞嘧啶(C)到胸腺嘧啶(T)的单碱基转换(图4)[3]。2017年10月底,该实验室进一步开发出ABE单碱基编辑工具,实现了从腺嘌呤(A)到鸟嘌呤(G)的精确转换(图5),为基因编辑提供了新的研究工具[4]。图4. CBE示意图[3]图5. ABE示意图[4]相比于CRISPR/Cas9技术,BE技术可以既不引入DNA双链断裂,又不需要重组修复模板,整体提高了编辑的安全性和精准性,而且其效率远远高于由发生DSB引起的HDR和NHEJ修复方式,对于许多点突变造成的遗传疾病具有很大的应用潜能。近年来,多个实验室也发表了类似的工具,并在这些工具的基础上进行了更为深入的改造与优化。邦耀生物科学家团队以不同单链DNA脱氨酶结构域与Cas9切口酶相结合为基础,开发全新一代的DNA碱基编辑工具—超高活性的HyCBEs和双碱基编辑器A&C-BEmax以及等多种碱基编辑新工具,提高了编辑活性并拓宽靶点范围,以实现更广泛、更精确的基因编辑,相关研究成果也发表在Nature Cell Biology、Nature biotechnology等国际著名期刊[5]。图6. 超高精度碱基编辑器HyCBE示意图图7. 双碱基编辑器示意图精准基因编辑工具PE(Prime Editors)2019年10月21日,哈佛大学David Liu实验室开发出了全新的精准基因编辑工具PE (Prime Editors)[6],PE是以CRISPR/Cas9系统为基础,在两方面加以优化:1. pegRNA:pegRNA(prime editingguide RNA)是一段改造后的sgRNA,它在传统sgRNA的3' 末端增加了一段RNA序列。这个RNA序列包括一段引物结合位点(Primer-binding site, PBS),用于与被切割的目标DNA链互补;还包括一段进行逆转录的模板(RT template)的序列,它与切口下游的DNA序列同源,且在RT序列上存在有相应的编辑突变(如点突变或插入缺失突变)。图8. pegRNA的改造[4]2.融合蛋白:将nCas9(H840A)与M-MLV逆转录酶融合。图9. PE结构示意图[4]在pegRNA的引导下,融合蛋白会到达基因组上的目的序列,并对含PAM的靶DNA链进行切割(pegRNA的非互补链)。此后,PBS序列与被切割的目标DNA链互补配对,逆转录酶即从端口空缺处启示逆转录。逆转录产物(DNA)即包含我们所期待的编辑突变。这段逆转录DNA会入侵并进入基因组DNA,发生整合,并进行切口的修复。只要RT序列允许,那么就可以采用此原理完成碱基的点突变(任意转换或颠换)以及片段的插入和缺失。图10. PE原理示意图[4]相比于其它基因编辑工具(采用ZFN,TALEN,CRIPSR/Cas9等产生DSB进行HDR或NHEJ修复或通过base editing系统进行单碱基编辑),PE的优势在于可以在不依赖DSB的前提下,能够实现更精准的编辑,更广的试用范围。但同时相比CBE和ABE,PE的劣势也随之体现,编辑效率不如前者,并且产生随机Indels的可能也会随之提高。图11. PE与ABE、CBE的效率比较[6]最后,除了上述几种基因编辑工具以外,科学家们还发现了除Cas9外的Cas家族的其它一系列蛋白,如 Cas12、Cas13、CasX等。这些新的发现有望使基因疗法能够解决更广泛的遗传疾病,推动生物医学的基础研究和临床基因治疗研究。
  • 北京抽检出10批次食品不合格,涉鸡蛋、白酒等
    据北京市市场监管局网站消息,北京市市场监督管理局组织抽检了调味品,食用农产品,肉制品,糕点,其他食品(冷链即食食品、水发产品、散装自制酒、食品用预拌(料)粉、工业化豆芽、即食鲜切蔬果),水果制品6类食品537批次样品。根据食品安全国家标准及国家有关规定检验和判定,其中合格样品527批次,不合格样品10批次。抽检结果显示,调味品70批次,全部合格;食用农产品240批次,其中合格样品235批次,不合格样品5批次;肉制品69批次,其中合格样品68批次,不合格样品1批次;糕点65批次,其中合格样品63批次,不合格样品2批次;其他食品(冷链即食食品、水发产品、散装自制酒、食品用预拌(料)粉、工业化豆芽、即食鲜切蔬果)53批次,其中合格样品52批次,不合格样品1批次;水果制品40批次,其中合格样品39批次,不合格样品1批次。不合格样品情况1.标称北京市巨江兴蛋糕店生产经营的原味老蛋糕、柴鸡蛋糕,防腐剂混合使用时各自用量占其最大使用量的比例之和不符合食品安全国家标准。检验机构为北京市产品质量监督检验院。2.北京宝发水产店经营的甲鱼,恩诺沙星不符合食品安全国家标准。检验机构为北京市产品质量监督检验院。3.北京南国快餐有限公司经营的鸡蛋,氟苯尼考不符合食品安全国家标准。检验机构为北京市食品安全监控和风险评估中心(北京市食品检验所)。4.北京市密云县密云镇京东东北烧烤店经营的散装白酒,甜蜜素(以环己基氨基磺酸计)不符合食品安全国家标准。检验机构为北京市食品安全监控和风险评估中心(北京市食品检验所)。5.标称天津市大海实业发展有限公司生产,密云县密云镇云河冷荤水产批发店经营的大海三文治肠,大肠菌群不符合食品安全国家标准。检验机构为北京市食品安全监控和风险评估中心(北京市食品检验所)。6.北京市海中鲜餐饮管理有限公司经营的皮皮虾,镉(以Cd计)不符合食品安全国家标准。检验机构为北京市食品安全监控和风险评估中心(北京市食品检验所)。7.北京华鑫傅晓餐饮服务有限公司经营的豆芽,6-苄基腺嘌呤(6-BA) 不符合国家相关规定。检验机构为中国检验检疫科学研究院综合检测中心。8.标称北京祥益斋科技发展有限公司生产经营的桂花金糕(蜜饯),胭脂红不符合食品安全国家标准。检验机构为中国检验检疫科学研究院综合检测中心。9.北京聚顺伟蔬菜店经营的韭菜,腐霉利不符合食品安全国家标准。检验机构为北京市食品安全监控和风险评估中心(北京市食品检验所)。北京市市场监管局表示,针对在食品安全监督抽检中发现的不合格食品,相关食品生产经营者已依法采取措施控制风险,我局已要求属地市场监管部门依法调查处理,涉及外省市的已通报当地市场监管部门。免责声明本文来网络
  • 实验室中首次“撞”出构建生命的四种基本碱基
    大约40亿年前,地球上开始出现早期生命。目前较为流行的一种理论认为,是陨石或小行星等地外天体的撞击触发了关键的化学反应,从而产生了一些与生命有关的物质。现在,捷克科学院的研究人员在实验室中重演了这一过程:他们利用激光轰击黏土和化学物质汤,模拟一颗高速小行星撞击地球时的能量,最终生成了构建生命的至关重要的基本组件&mdash &mdash 形成RNA必需的4种碱基。   研究人员在发表于美国《国家科学院学报》上的论文中称:&ldquo 这些发现表明,地球生命的出现并非意外,而是原始地球及其周围环境条件的直接结果。&rdquo   实验并未证明地球生命就是由此诞生的,因为从这四种碱基到生命的出现,中间还有很多必不可少的神秘步骤,但这可能是这一过程的一个起点。   论文领导作者、捷克科学院海依罗夫斯基物理化学研究所的斯瓦托普卢克· 思维斯说,科学家们此前已经能够用其他方法制造这些RNA碱基,比如使用化学混合物和高压,但这是首次通过实验来检验&ldquo 撞击产生的能量可触发关键化学反应&rdquo 的理论。   据物理学家组织网12月9日(北京时间)报道,研究人员用一个长约152米的激光器产生的无形激光束,轰击名为甲酰胺的化学物质汤,这种液体据认为存在于我们的原始星球上。该激光的功率非常高,在不到十亿分之一秒时间内的输出相当于几个核电站,产生的能量高达十亿千瓦,甲酰胺样本的温度瞬间升高至4200摄氏度以上,从而发生了一系列化学反应。研究人员在最终产品中,发现了RNA的四种碱基&mdash &mdash A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)和U(尿嘧啶),其中前三种也是DNA的碱基。   专家对这项实验的重要性看法不一。美国佛罗里达州应用分子进化基金会的杰出生物化学家史蒂夫· 本纳说,这项研究意义重大,因为它生成了早期地球上可能存在的原始材料。但英国医学研究委员会分子生物实验室的约翰· 萨瑟兰认为,产生的碱基量太少了,没有什么价值。   总编辑圈点   科学家们一般相信,生命起源可以追溯到天外来客,如宇宙射线和小行星。虽然已有很多办法在实验室里制造出了生命的&ldquo 零件&rdquo ,但我们对于生命的发生史只能猜想,不能实证。除非我们找到一颗适合的行星,制造高能量的撞击,再等上几亿年,看看有没有生命诞生。假如有那本事,地球人早就移民过去了。研究生命的诞生史好像没什么用,但自己的身世来历,人类哪能不关心呢!
  • 工欲善其事,必先利其器——基因编辑工具的开发
    基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们梦寐以求的科研神器。我们熟知的CRISPR系统,最常听到、见到的是Cas9蛋白,但Cas蛋白并不是只有Cas9,下图中为Cas蛋白的分类。Cas蛋白功能分类图[1]在如此多的Cas蛋白中,发现如Cas9、Cas12a、Cas13a等可以作为基因编辑工具的,可谓凤毛麟角,少之又少。从1987年报道CRISPR重复序列,到2002年发现Cas4基因具有核酸外切酶功能,直到2012年发现Cas9可以通过RNA介导控制基因组编辑,历经20余年。在CRISPR风靡全球后,对于该系统的开发并未停止,技术大牛们又开发出: 基于CRISPR系统,通过sgRNA介导突变后不具有切割活性的Cas9蛋白(dCas9)对于基因表达进行激活或抑制的CRISPRa和CRISPRi技术; 将失去催化活性的Cas蛋白(dCas)或只有切割一条链活性的Cas蛋白(nCas)和可作用于单链DNA的脱氨酶进行融合,实现对靶点碱基替换的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)[2];工欲善其事,必先利其器。对于基因编辑而言,需要基因编辑工具这个金刚钻。对于基因编辑工具的开发,更需要一把“利器”。Beckman可以为科研工作者提供基因编辑技术与工具开发的整套解决方案。
  • 美国俄亥俄州列车脱轨事故持续发酵,民众担忧污染危害
    2月初,一列载有有毒化学品的火车在美国俄亥俄州东巴勒斯坦发生脱轨事故,造成不明数量的有毒物质和气体泄漏。该事件引发了对该地区空气、土壤和水污染的担忧。脱轨列车被曝载有更多种有毒化学品美国媒体13日报道称,涉事公司公布的数据显示,除已知化学品外,列车上还装载有其它有毒化学品。当地居民:这可不是乌云!他们烧了有害物质!他们在东巴勒斯坦烧了有害物质!这可不是乌云!好好看看!你们居然如此没有耐心!你们本可以冷却车厢!你们用不着引爆!美国广播公司13日报道称,脱轨列车的运营商诺福克南方公司公布了新的数据,列出了脱轨列车上装载的有毒化学品的种类。除了此前公布的氯乙烯外,脱轨列车上还装载有乙二醇单丁醚,丙烯酸异辛酯,异丁烯等有毒化学品。视频显示列车脱轨前已起火出事列车由美国诺福克南方铁路公司运营,本月3日晚行至俄亥俄州东部邻近宾夕法尼亚州的东巴勒斯坦城时脱轨,其中10节车厢装载有毒化学品,包括易燃且致癌气体氯乙烯。而根据美国媒体公布的视频显示,列车在脱轨前大约32公里处就已经起火,但不确定是否引起了工作人员的注意。本月6日,诺福克南方公司曾对5节车厢进行所谓“受控释放”操作,把车厢内装载的氯乙烯排入一个事先准备好的坑道内引爆,产生了很多有毒气体。两天后,当地官员就宣布,事故区域及附近居民区空气质量符合安全标准,疏散居民“可以安全回家”,但不少居民对此疑虑重重。列车脱轨事发地附近居民:这里的水肯定有问题。我不知道撤离令解除后我还想不想回家。列车脱轨事发地附近居民:我起身出来,闻到一股非常非常浓的油漆稀释剂的味道,然后看到我儿子眼睛充血、开始咳嗽。(我)非常焦虑,担心我身体是不是正常,清理得够不够,清理方式是不是正确。我们是不是需要做更多的清理工作?我们是不是要把东西都扔了,换新的?有毒物质泄漏 民众担忧生存环境遭污染列车脱轨导致有毒气体扩散后,周边居民对生活环境可能遭受污染的担忧与日俱增。在俄亥俄州的莱斯利河,可以看到很多死掉的鱼类漂浮在水中。对此,俄亥俄州环境保护署表示,他们已获知这一情况,不过当地居民“不必对此感到担心”,因为“水质是安全的”。这样的说法显然无法让当地居民信服。当地居民 凯茜里斯:别告诉我这是安全的。鱼都漂在河水里,一定有什么事发生了。琳达墨菲的家距离列车脱轨事故地大约不到5公里,自从脱轨事故发生导致有毒化学品泄漏后,她非常担心家附近的水源是否已经遭到污染。当地居民 琳达墨菲:很多死鱼漂浮在河水多段。我们的洗澡水、饮用水、做饭用的水,都来自这条河,但他们无法向我保证水可以安全饮用。丽莎索普科的牧场距离东巴勒斯坦城只有大约10分钟的车程,这两天,她带着自家的80头动物返回了牧场。为了保证安全,丽莎请独立检测机构对当地的空气质量进行了检测,但是更令她担忧的是水质和土壤。当地养殖户 丽莎索普科:我现在最担心的是水,还有可能渗入土壤中的东西(有毒物质) 。未来我们只能一直检测,一直检测,一直检测。当地居民 凯茜里斯:我们已经打电话要求检测我们的井水,但是还没有得到任何回复。对方说,我们要等他们明确到底要检测什么。曾经参与美国太平洋天然气和电力公司地下水污染案的美国知名环境活动家艾琳布劳克维奇也关注了本次有毒气体扩散事件。她表示,自己无法相信环境保护署的检测结果,建议事发地附近居民将自己看到的一切异常情况都拍摄下来。环境活动家 艾琳布劳克维奇:这可是氯乙烯,它就在空气里,鱼类在死亡!你会放心地认为自己应该留在这片地区吗,我觉得不会。更让当地居民担忧的是空气中可能弥漫的有毒物质。氯乙烯燃烧时可产生光气和氯化氢。光气是一种剧毒气体,可致人呕吐和呼吸困难。美国国家癌症研究所称,接触氯乙烯会增加患肝癌、脑癌和肺癌以及淋巴瘤和白血病的风险。有害物质研究专家 席尔拉多卡吉亚诺:有很多假设情况,接下来5年、10年、15年、20年,我们都会关注事故带来的影响,琢磨着会不会出现很多癌症病例。
  • 【瑞士步琦】使用Sepmatix 8x SFC进行高效色谱柱筛选
    高效色谱柱筛选尿嘧啶和黄嘌呤,即咖啡因、可可碱和茶碱,是一组在各种生物过程和人类消费中起重要作用的有机化合物[1-3]。这些分子属于杂环化合物,其特点是含有碳原子和氮原子的环状结构。尿嘧啶是 RNA(核糖核酸)的基本组成部分,RNA 是形成遗传密码并参与蛋白质合成的基本核碱基之一。另一方面,黄嘌呤、咖啡因、可可碱和茶碱是一类结构相似但生物效应不同的生物碱[1-3]。这些黄嘌呤存在于各种植物中,是一种众所周知的兴奋剂,可以穿过血脑屏障,影响中枢神经系统。在 RP(反相色谱)[1-3]条件下(SN_802_2023), LC(液相色谱)可分离生物碱。超临界流体色谱(SFC)是一种使用超临界二氧化碳(CO2)作为流动相的基本成分的色谱技术。这种状态的二氧化碳被称为超临界,它具有独特的特性,如高扩散系数和低粘度,使其成为分离和分析化合物的绝佳溶剂。与传统色谱方法相比,SFC 提供了许多优势,包括更快的分析时间,更低的溶剂消耗和分离的差异选择性。此外,与 RP-LC 相比,SFC 代表了一种正交技术,为各种分析挑战提供了互补的分离能力。在 SFC 中,色谱柱筛选包括测试不同的固定相,以找到最适合特定分离任务的固定相。固定相是色谱系统的重要组成部分,因为它直接影响色谱的选择性。不同的固定相具有不同的化学功能和与分析物的相互作用,使它们或多或少地选择特定的化合物。通过筛选和选择合适的色谱柱,可以优化分离条件,以获得更好的目标分析物的分辨率和灵敏度。本文描述了使用 Sepmatix 8x SFC 仪器对尿嘧啶、咖啡因、可可碱和茶碱混合物进行平行柱筛选,随后转移到制备的 Sepiatec SFC-50。1设备Sepiatec SFC-50 instrumentSepmatix 8x SFC instrumentPrepPure Silica, 5μm, 250 x 10mmPrepPure Diol, 5μm, 250 x 10mmPrepPure Silica, 5μm, 250 x 4.6mmPrepPure Diol, 5μm, 250 x 4.6mmPrepPure Amino, 5μm, 250 x 4.6mmPrepPure 2-EP, 5μm, 250 x 4.6mmReprosil 4-EP, 5μm, 250 x 4.6mm (Dr. Maisch GmbH)PrepPure PEI, 5μm, 250 x 4.6mmPrepPure CBD, 5μm, 250 x 4.6mmCyano, 5μm, 250 x 4.6mm, (Dr. Maisch GmbH)2试剂和材料二氧化碳(99.9%)甲醇(≥99%)尿嘧啶(99% + %)可可素(99%)咖啡(99%以上)茶碱(99%)3实验样品制备:在 50/2.5mL 甲醇/水混合液中,40℃ 下用超声水浴溶解 0.05g 尿嘧啶,0.07g 咖啡因,0.055g 可可碱,0.085g 茶碱。Sepmatix 8x SFC 筛选运行条件:流动相:A =二氧化碳:甲醇流速:3ml /min(每柱)流动相条件:0-0.5min:5% B0.5-8.0min:5 - 50%8.0-9.4min:50%9.4-9.5min:50 - 5%9.5-10min:5% B检测:紫外扫描波段:200nm - 600nm筛选运行是自动开始的。使用流量控制单元将流量设置为每通道 3mL/min,并平衡色谱柱。自动进样(V=5 μL),开始平行筛选(运行时间=10min)。背压调节器设置为 150bar,柱箱加热至 32°C。SFC-50 运行条件:流动相:A =二氧化碳;B=甲醇流动相条件:等度运行条件检测:紫外波长 270nmSFC 柱在规定的流速下条件预热 3 分钟,使用定量环自动注入样品并开始运行。背压调节器设置为 150bar,柱箱加热至 40°C。3结果与讨论用 Sepmatix 8x SFC 筛选色谱柱:为了确定样品的最佳分离选择性,进行了不同色谱柱的筛选。使用 Sepmatix 8x SFC 仪器可以高效地同时筛选8个色谱柱。因此,最佳选择性可以在很短的时间内确定。为此,使用了 8 种不同的固定相:硅胶、二醇基、氨基、氰基、2-EP、4-EP、PEI 和 CBD,图1显示了筛选的结果。▲图1:Sepmatix 8x SFC 仪器筛选结果。从左到右依次为:硅胶、氨基、氰基、二醇基;下从左至右依次为:2-EP、4-EP、PEI、CBD 柱;运行时间=10分钟用分辨率(R)来衡量色谱方法在色谱图中分离和区分两个相邻峰的能力,它量化了分析物相互分离的程度。表 1 显示了 4 组分分离的分辨率值。使用 Sepmatix 软件和以下公式自动确定:其中tR1 和 tR2 代表 组分 1 或组分 2的保留时间W1 和W2 代表分量1或分量 2 峰高一半处的宽度在处理复杂的混合物时,分辨率尤其重要,因为它确保每个分析物都被很好地分离,并且可以准确地识别和定量。分辨率为 1 表示峰值根本没有被分解,基本上是合并的,而更高的分辨率值表示峰值之间的分离更好。在使用过程中,分辨率至少应达到 1.5,才能以适当的定量和鉴定分析物。色谱柱R1R2R3硅胶1.574.183.79氨基5.421.264.44氰基未分离3.351.69二醇3.925.12.292-EP3.622.72未分离4-EP9.462.87未分离PEI9.931.8610.8CBD5.011.274.51表1:SFC 不同筛选条件下的分辨率值R 值的筛选和评价表明,硅胶、二醇基和 PEI 相对样品的分离选择性最好。二醇基在运行时间和分辨率方面表现出最佳性能。硅胶柱上的分离并不完全是茶碱和咖啡因的基线分离。PEI 相的运行时间相对较长,因为样品分子的位阻较大。表 2 为洗脱顺序,这是通过测定的光谱和组分的单独进样来确定的。与其他相相比,硅胶显示出不同的洗脱顺序。对于氰基、2-EP 和 4-EP,不能完全确定洗脱顺序。色谱柱洗脱顺序硅胶茶碱,咖啡因,尿嘧啶,可可碱氨基咖啡因,茶碱,可可碱,尿嘧啶氰基咖啡因和茶碱的双峰,可可碱,尿嘧啶二醇咖啡因,茶碱,可可碱,尿嘧啶2-EP咖啡因,茶碱,可可碱和尿嘧啶的双峰4-EP咖啡因,茶碱,可可碱和尿嘧啶的双峰PEI咖啡因,茶碱,可可碱,尿嘧啶CBD咖啡因,茶碱,可可碱,尿嘧啶表2:SFC 不同色谱柱筛选条件下的洗脱顺序将开发方法通过 SFC-50 放大:由于二醇基取得了最好的结果,因此选择了 5μm, 250 x 10mm 的 PrepPure 二醇基进行 Sepiatec SFC-50 方法放大制备。由于通过堆叠注射法纯化混合物的效率明显高于多次梯度注射法,该方法是在等度运行条件下实施的,这是使用堆叠进样的要求。在等度条件下,样品只能在低甲醇含量下分离(见图2,下)。在高甲醇浓度下,由于流动相的高洗脱强度,尿嘧啶、咖啡因、茶碱和茶碱是不可分离的(见图2,上)。▲图2:使用 PrepPure Diol 5 μm, 250 x 10mm 色谱柱分离样品。上:流速= 20 mL/min, 150 bar, 40℃,270nm, 33% B,进样量= 0.09 mL,运行时间= 4 min;下:流量= 20 mL/min 150 bar 40°C, 270 nm, 12%甲醇,0.09 mL,运行时间= 5 min改变压力和温度可以优化分辨率。最佳分离条件为 40℃ 和 150bar。图 3 为图 2(下)实验条件下的堆叠进样情况,堆叠时间为 2.42min,因此每 2.42min 进样一次。在这种情况下,由于每次额外注入节省了平衡时间,因此提高了产能。为了更有效的多次分离,可以使用硅胶填料。使用 34% 的甲醇作为改性剂,将堆叠时间缩短至 2.15min。与二醇基相比,硅胶填料在 100bar 下表现出更好的性能。然而,在 1.5 的分辨率下,咖啡因和茶碱并不能获得理想的基线分离。由于硅胶的极性比二元醇高,为了快速洗脱,必须增加改性剂的含量,但这也导致溶剂消耗增加。4结论在本文中,使用 Sepmatix 8x SFC 进行柱筛选,并将开发结果转移到 Sepiatec SFC-50 进行放大。在色谱参数分辨率和运行时间方面,二醇基表现出最好的效果。对于二醇基,根据筛选结果,在 Sepiatec SFC-50 仪器上采用 250 × 10 mm 柱进行等度堆叠进样。作为比较,开发了另一种用于硅胶填料的方法,但分辨率值略差。这种分离表明,要想在 prep-SFC 中获得一个好的分离方法,事先通过柱筛选确定最佳选择性是很重要的。然后,该方法可以在 prep-SFC 上简单实现,并进行了优化。最理想的是,该方法在等度条件下应用,以最大限度地提高产量。每次注射后的叠加紫外信号表明该方法具有良好的再现性(图3和4,下面)。垂直线描述了收集相应分数的时间窗口。▲图3:堆叠进样与二醇柱分离。流速= 20 mL/min, 150 bar, 40℃,270 nm, 12% B,进样量= 0.12 mL;堆叠时间:2.42 min,注射次数:8次;上图:最终色谱图;下图为各注射剂的紫外信号叠加图▲图4:堆叠进样与硅胶柱分离。流速= 16 mL/min, 100 bar, 40℃,270 nm, 34% B,进样量= 0.09 mL;堆叠时间:2.15 min,注射次数:7次;上图:最终色谱图;下图:分别在254 nm和270 nm处注射的叠加紫外信号5参考文献https://doi.org/10.1093/chromsci/46.2.144DOI: 10.1021/jf030817mDOI: 10.1016/j.foodchem.2004.11.013DOI: 10.1016/j.saa.2004.03.030Laboratory Chromatography Gμide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制