当前位置: 仪器信息网 > 行业主题 > >

硅酸三钙

仪器信息网硅酸三钙专题为您提供2024年最新硅酸三钙价格报价、厂家品牌的相关信息, 包括硅酸三钙参数、型号等,不管是国产,还是进口品牌的硅酸三钙您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硅酸三钙相关的耗材配件、试剂标物,还有硅酸三钙相关的最新资讯、资料,以及硅酸三钙相关的解决方案。

硅酸三钙相关的论坛

  • 土壤中硅酸二钙,三钙的测试方法

    大家好: 请问哪位大侠做过水与土壤中硅酸二钙,硅酸三钙,铝酸二钙,铝酸三钙的测试,或者有这些项目的其他测试方法也提供一下啦,谢谢http://simg.instrument.com.cn/bbs/images/brow/em09509.gif

  • 硅酸镁和三硅酸镁的问题

    请问这两种是一个东西吗?水质 石油的检测标准里是硅酸镁,我们去买,拿到的是三硅酸镁,供应商说是一个东西。。。但我看英文名字和CAS都不一样

  • CNS_02.009_硅酸钙

    CNS_02.009_硅酸钙

    [align=center][font='宋体'][size=18px]食品添加剂 硅酸钙[/size][/font][/align][align=center][font='宋体'] 杨牧源[/font][/align][font='宋体']摘要[/font][font='宋体'] [/font][font='宋体'] [/font][font='宋体']本文简要介绍了食品添加剂硅酸钙([/font][font='宋体']CaSiO[/font][font='宋体'][size=13px]3[/size][/font][font='宋体'])的理化性质、制法、质量指标、用途等方面内容。硅酸钙可作为抗结块剂添加入固体食品中。[/font][font='宋体']关键词[/font][font='宋体'] [/font][font='宋体'] [/font][font='宋体']硅酸钙 食品添加剂[/font][font='宋体'] [/font][font='宋体']抗结剂[/font][font='宋体'][size=16px]一、硅酸钙理化性质简介[/size][/font][font='宋体']硅酸钙([/font][font='宋体']Calcium silicate[/font][font='宋体']),法定编号CNS [/font][font='宋体']02.009 [/font][font='宋体']INS 5[/font][font='宋体']52[/font][font='宋体'],是一种白色粉末,由不同比例的CaO和SiO[/font][font='宋体']2[/font][font='宋体']组成,包括硅酸三钙(3CaOSiO[/font][font='宋体']2[/font][font='宋体'])和硅酸二钙Ca[/font][font='宋体']2SiO4[/font][font='宋体']。并分为有水和无水两种。白色至灰白色易流动粉末,即使在吸收较多水分或其他液体后仍然如此。不溶于水,但可与无机酸形成凝胶。5[/font][font='宋体']%[/font][font='宋体']悬浊液的pH值为8[/font][font='宋体'].4~10.2[/font][font='宋体']。相对密度2[/font][font='宋体'].9[/font][font='宋体']。[/font][font='宋体']硅酸钙由新熟化的石[/font][font='宋体']灰(氧化钙)与合成二氧化硅在高温下煅烧熔融而成,[/font][font='宋体']是一[/font][font='宋体']种疏松多孔结构,[/font][font='宋体']具有较高的吸油值和吸水值,可以[/font][font='宋体']很好的吸附到食用盐的表面颗粒上。硅酸钙作为抗结剂是一种安全有效的添加剂,[/font][font='宋体']添加工艺[/font][font='宋体']简单,[/font][font='宋体']方便易操作。[/font][font='宋体'][[/font][font='宋体']1][/font][font='宋体']硅酸钙于[/font][font='宋体']2016年6月30日由关于海藻酸钙等食品添加剂新品种的公告(2016年第8号)增补[/font][font='宋体'],成为我国规定的合法食品添加剂。根据食品添加剂国标[/font][font='宋体'] GB2760[/font][font='宋体']-[/font][font='宋体']2014[/font][font='宋体']中的有关规定,硅酸钙在食品中[/font][font='宋体']的添加无限量。[/font][font='宋体']1[/font][font='宋体'].1 [/font][font='宋体']硅酸钙质量指标[/font][font='宋体']根据[/font][font='宋体']GB 1886.90-2015 [/font][font='宋体']《[/font][font='宋体']食品安全国家标准 食品添加剂 硅酸钙[/font][font='宋体']》中规定,[/font][font='宋体']感官指标应符合表1的规定。[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262017051551_79_1608728_3.png[/img][font='宋体']理化指标应符合表[/font][font='宋体']2[/font][font='宋体']的规定。[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262017052596_9422_1608728_3.png[/img][font='宋体']1.2[/font][font='宋体']限量[/font][font='宋体']按照《食品安全国家标准[/font][font='宋体'] 食品添加剂使用标准》(GB 2760——2014)规定,最大使用量按照生产需要适量使用。FAO/WHO规定,硅酸钙用于干燥乳清粉及乳清制品的最大使用量为10 g/kg,用于糖粉和葡萄糖粉的最大使用量为15 g/kg,用于盐及代盐制品最大使用[/font][font='宋体']量为按照生产需要适量添加。[/font][font='宋体']FDA规定该产品可用于餐桌用盐及各种食品的抗结剂(最大添加量不超过食品质量的2%)用于发酵粉最大添加量不超过食品质量的5%。[/font][font='宋体']1[/font][font='宋体'].3[/font][font='宋体']毒性[/font][font='宋体']ADI值不作特殊规定。一般可以认为是安全的。[/font][font='宋体'][size=16px]二、硅酸钙的鉴别和质量指标分析[/size][/font][font='宋体']2.1[/font][font='宋体']鉴别试验 [/font][font='宋体']1[/font][font='宋体'])取试样约5[/font][font='宋体']00[/font][font='宋体']g,加稀盐酸试液(TS[/font][font='宋体']-117[/font][font='宋体'])1[/font][font='宋体']0[/font][font='宋体']mL,混合并过滤。用氨试液(TS[/font][font='宋体']-13[/font][font='宋体'])中和滤液至石蕊试纸成中性。然后按(IT[/font][font='宋体']-10[/font][font='宋体'])方法进行钙试验,应呈阳性。[/font][font='宋体']2)取少量磷酸钠铵结晶放入白金丝环中,于本生灯火焰上熔化成珠状。趁热将熔珠于试样中触蘸少量,再熔化。在冷却过程中,会有不透明的网状结构的小珠状二氧化硅浮于磷酸钠铵熔珠上。[/font][font='宋体']2[/font][font='宋体'].2[/font][font='宋体']质量指标分析[/font][font='宋体']2[/font][font='宋体'].2.1[/font][font='宋体']二氧化硅含量的测定[/font][font='宋体']精确称取[/font][font='宋体']400 mg试样(精确至0.1 mg) , 置于烧杯中, 加入5mL水和10mL高氯酸[/font][font='宋体'],[/font][font='宋体']加热直至产[/font][font='宋体']生高氯酸的白色浓烟。[/font][font='宋体']使用表面皿盖住烧杯[/font][font='宋体'],[/font][font='宋体']并持续加热15min。待冷却后[/font][font='宋体'],[/font][font='宋体']加入30mL水[/font][font='宋体'],[/font][font='宋体']过滤[/font][font='宋体'],[/font][font='宋体']并[/font][font='宋体']用[/font][font='宋体']200mL热水清洗滤渣。合并滤液和清洗液[/font][font='宋体'],[/font][font='宋体']为试样A[/font][font='宋体'],[/font][font='宋体']用于氧化钙含量的测定。转移滤纸和滤渣至[/font][font='宋体']铂坩埚,[/font][font='宋体']缓慢加热直至干燥[/font][font='宋体'],[/font][font='宋体']再充分加热至滤纸烧焦。冷却后[/font][font='宋体'],[/font][font='宋体']加入几滴硫酸[/font][font='宋体'],[/font][font='宋体']在1300℃灼烧直至恒[/font][font='宋体']定。[/font][font='宋体']加入5滴硫酸湿润残渣[/font][font='宋体'],[/font][font='宋体']再加入15mL氢氟酸[/font][font='宋体'],[/font][font='宋体']小心加热直至所有酸挥发[/font][font='宋体'],[/font][font='宋体']在不超过1000℃的温[/font][font='宋体']度下灼烧至恒定。[/font][font='宋体']在干燥器中冷却并称重。减少的质量等同于试样中二氧化硅的量[/font][font='宋体']。[/font][font='宋体']注意[/font][font='宋体']: 操作高氯酸和氢氟酸需在通风橱内。[/font][font='宋体']2.2.2 氧化钙含量的测定[/font][font='宋体']取上述试样[/font][font='宋体']A[/font][font='宋体'],[/font][font='宋体']以石蕊做指示剂[/font][font='宋体'],[/font][font='宋体']用1mol/L氢氧化钠溶液中和[/font][font='宋体'],[/font][font='宋体']然后边搅拌边从50mL的试管中[/font][font='宋体']加入[/font][font='宋体']30mL 0.05mol/L的EDTA二钠盐溶液。加入15mL的1mol/L氢氧化钠溶液和300mg羟基[/font][font='宋体']萘酚蓝指示剂。[/font][font='宋体']继续用EDTA二钠盐溶液滴定至蓝色终点。每毫升0.05mol/L的EDTA二钠盐溶液[/font][font='宋体']相当于[/font][font='宋体']2.804mg氧化钙。[/font][font='宋体']2.2.3 氟(F) 的测定[/font][font='宋体']注意[/font][font='宋体']: 所有氟化物溶液应使用塑料容器。[/font][font='宋体'](1)[/font][font='宋体']0.2 mol/L EDTA-0.2 mol/L TRIS溶液[/font][font='宋体']:[/font][font='宋体']称取18.6g EDTA二钠盐和6.05g TRIS[/font][font='宋体'],[/font][font='宋体']移入250 mL的烧杯中。加入200mL热去离子水[/font][font='宋体'],[/font][font='宋体']搅拌直至全部溶解。用5 mol/L氢氧化钠调节pH 至7.5~7.6。冷却溶液[/font][font='宋体'],[/font][font='宋体']并用5 mol/L氢氧化钠调节pH至8.0。将溶液转移至250mL的量筒中, 并用去[/font][font='宋体']离子水稀释至刻度。[/font][font='宋体']混合均匀后, 储存在塑料容器中。[/font][font='宋体'](2)[/font][font='宋体']氟标准贮存溶液(1000mg/kg) [/font][font='宋体']:[/font][font='宋体']将2.210 g氟化钠溶于50 mL去离子水中。将溶液移入1 L的[/font][font='宋体']量筒中[/font][font='宋体'], 加水稀释至刻度。[/font][font='宋体'](3)[/font][font='宋体'] 氟标准溶液(1 mg/kg和10 mg/kg[/font][font='宋体']):[/font][font='宋体']移取10 mL标准贮存溶液至100 mL的量筒中, 用去离子[/font][font='宋体']水稀释至刻度,[/font][font='宋体']并混合均匀。分别移取10 mL和1 mL该溶液至单独的100 mL量筒中, 分别用去离子[/font][font='宋体']水稀释至刻度。[/font][font='宋体']注意[/font][font='宋体']: 该溶液应当天配置当天使用。[/font][font='宋体'](4)[/font][font='宋体']试样溶液[/font][font='宋体']:[/font][font='宋体']沉淀或其他二氧化硅基产品[/font][font='宋体']:[/font][font='宋体']将5g试样移入聚四氟乙烯烧杯中。加入40mL去离[/font][font='宋体']子水和[/font][font='宋体']20 mL的1 mol/L盐酸。加热近沸1 min[/font][font='宋体'],[/font][font='宋体']并持续搅拌。冰浴冷却烧杯[/font][font='宋体'],[/font][font='宋体']转移内容物至100 mL[/font][font='宋体']量筒,[/font][font='宋体']并用去离子水稀释至刻度。[/font][font='宋体']注意:[/font][font='宋体']试样并不完全溶解。[/font][font='宋体']硅藻土基产品:[/font][font='宋体']将5 g 试样移入聚四氟乙烯烧杯中。 加入60 mL去离子水[/font][font='宋体'],[/font][font='宋体']并搅拌1 min。转移内[/font][font='宋体']容物至[/font][font='宋体']100 mL量筒, 并用去离子水稀释至刻度。将上清液转入2个50 mL离心管中[/font][font='宋体'],[/font][font='宋体']离心直至溶液清[/font][font='宋体']澈,[/font][font='宋体']通常不超过30 min[/font][font='宋体']。[/font][font='宋体']注意[/font][font='宋体']: 试样并不完全溶解。[/font][font='宋体'](5)[/font][font='宋体']校正曲线: 移取以上两种浓度的标准溶液各20 mL至单独的100 mL塑料烧杯中, 分别加入10 mL的0.2 mol/L EDTA-0.2 mol/L TRIS溶液。使用 Orion model 96-09组合氟电极(或其他等同[/font][font='宋体']产品[/font][font='宋体']) 测量电势。通过标准溶液氟离子浓度(mg/kg)的对数与电势做图可得到一条标准曲线。或对Orion可扩展离子分析仪EA-940(或其他等同产品)校正[/font][font='宋体'],[/font][font='宋体']以直接读出浓度。[/font][font='宋体'](6)[/font][font='宋体']分析: 移取20 mL 试样溶液至100 mL 塑料烧杯中, 加入10 mL 的0.2 mol/L EDTA-0.2 mol/LTRIS溶液, 测量溶液的电势, 并通过校正曲线计算出氟离子的浓度。[/font][font='宋体']2.2.4干燥失重的测定[/font][font='宋体']取[/font][font='宋体']1g试样, 精确至0.0001g[/font][font='宋体'],[/font][font='宋体']置于和试样相同条件下干燥至恒定的扁形称量瓶中[/font][font='宋体'],[/font][font='宋体']在105 ℃下干[/font][font='宋体']燥[/font][font='宋体']2h。保留此干燥过的试样为试样B[/font][font='宋体'],[/font][font='宋体']供测定灼烧失重时使用。[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262017053457_7504_1608728_3.png[/img][font='宋体']干燥失重的质量分数[/font][font='宋体']w1[/font][font='宋体'],[/font][font='宋体']按式(A.1)计算[/font][font='宋体']:[/font][font='宋体']式中m[/font][font='宋体'][size=13px]1[/size][/font][font='宋体']——称量瓶和干燥前试样的质量,单位为克(g)[/font][font='宋体']m[/font][font='宋体'][size=13px]2[/size][/font][font='宋体']——称量瓶和干燥后试样的质量,单位为克(g)[/font][font='宋体']m[/font][font='宋体'][size=13px]0[/size][/font][font='宋体']——称量瓶的质量,单位为克(g)[/font][font='宋体']2.2.5灼烧失重的测定[/font][font='宋体']称取[/font][font='宋体']1g~2g上述干燥后的试样[/font][font='宋体'],[/font][font='宋体']精确至0.0002g[/font][font='宋体'],[/font][font='宋体']置于预先于900 ℃下灼烧至质量恒定的瓷坩[/font][font='宋体']埚中灼烧[/font][font='宋体']2 h。取出[/font][font='宋体'],[/font][font='宋体']于干燥器中冷却[/font][font='宋体'],[/font][font='宋体']称量。[/font][font='宋体']灼烧失重的质量分数[/font][font='宋体']w2 [/font][font='宋体'],[/font][font='宋体']按式(A.2)计算[/font][font='宋体']:[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262017055243_8020_1608728_3.png[/img][font='宋体']式中m[/font][font='宋体'][size=13px]5[/size][/font][font='宋体']——试料和瓷坩埚灼烧前的质量,单位为克(g)[/font][font='宋体']m[/font][font='宋体'][size=13px]4[/size][/font][font='宋体']——试料和瓷坩埚灼烧前的质量,单位为克(g)[/font][font='宋体']m[/font][font='宋体'][size=13px]3[/size][/font][font='宋体']——瓷坩埚的质量,单位为克(g)[/font][font='宋体']2.2.6[/font][font='宋体']铅(Pb)的测定[/font][font='宋体'](1)[/font][font='宋体'] 标准贮存溶液(100 μg/mL 铅离子) : 将 159.8 mg 硝酸铅( 分析纯) 溶解于含 1 mL 硝酸的100 mL水中。用水稀释至1L并混合。[/font][font='宋体']注意[/font][font='宋体']: 本溶液应在无铅离子的玻璃容器中准备和储存。[/font][font='宋体'](2)[/font][font='宋体']标准溶液: 由标准贮存溶液制备铅浓度为0.25 μg/mL的溶液。[/font][font='宋体'](3)[/font][font='宋体']样品溶液: 将5.0 g样品置入250 mL 烧杯中[/font][font='宋体'],[/font][font='宋体']加入50 mL的0.5 mol/L盐酸[/font][font='宋体'],[/font][font='宋体']用表面皿覆盖[/font][font='宋体'],[/font][font='宋体']缓[/font][font='宋体']慢加热至沸腾。[/font][font='宋体']温和沸腾15 min[/font][font='宋体'],[/font][font='宋体']冷却[/font][font='宋体'],[/font][font='宋体']使未溶解物质静置。使用Whatman四号滤纸或其他等同滤纸[/font][font='宋体']将上清液过滤至[/font][font='宋体']100 mL的量筒中[/font][font='宋体'],[/font][font='宋体']尽可能保持不溶解物质在烧杯中。 使用10mL热水清洗浆质和烧[/font][font='宋体']杯三次,[/font][font='宋体']并将液体过滤至量筒中。最后使用15mL热水清洗滤纸[/font][font='宋体'],[/font][font='宋体']将滤液冷却至室温[/font][font='宋体'],[/font][font='宋体']加水稀释至刻[/font][font='宋体']度,[/font][font='宋体']混合均匀。[/font][font='宋体'](4)[/font][font='宋体']分析: 使用合适的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计[/font][font='宋体'],[/font][font='宋体']设定217 nm[/font][font='宋体'],[/font][font='宋体']使用水进行调零[/font][font='宋体'],[/font][font='宋体']分别测定标准溶液和样[/font][font='宋体']品溶液的吸光度。[/font][font='宋体']样品溶液的吸光度应不大于标准溶液的吸光度。[/font][font='宋体'][[/font][font='宋体']2][/font][font='宋体'][size=16px]三、硅酸钙的用途[/size][/font][font='宋体']按照《食品安全国家标准[/font][font='宋体'] 食品添加剂使用标准》(GB 2760——2014)规定,硅酸钙作为抗结剂可用于乳粉(包括加糖乳粉)和奶油粉及调制产品[/font][font='宋体']、[/font][font='宋体']干酪和再制干酪及其类似品[/font][font='宋体']、[/font][font='宋体']可可制品(包括以可可为主要原料的脂、粉、浆、酱、馅等)[/font][font='宋体']、[/font][font='宋体']淀粉以及淀粉类制品[/font][font='宋体']、[/font][font='宋体']食糖[/font][font='宋体']、[/font][font='宋体']餐桌甜味料[/font][font='宋体']、[/font][font='宋体']盐及代盐制品[/font][font='宋体']、[/font][font='宋体']香辛料及粉[/font][font='宋体']、[/font][font='宋体']复合调味料[/font][font='宋体']、[/font][font='宋体']固体饮料[/font][font='宋体']、[/font][font='宋体']酵母及酵母类制品[/font][font='宋体']。[[/font][font='宋体']3][/font][font='宋体']抗结剂是用于防止颗粒或粉末食品聚集结块,保持其松散或自由流动状态的食品添加剂。抗结剂的主要特点是颗粒细小,粒径为2[/font][font='宋体']~9 [/font][font='宋体']μm;表面积大,比表面积、比体积大,具有细微多孔性,吸附能力很强,易吸附水分和其他物质,保持产品的膨松和流动性。[/font][font='宋体']硅酸盐类的抗结剂通过提供阻隔食品颗粒表面液滴作用达到抗结块的效果,当食品颗粒表面被抗结剂颗粒完全覆盖以后,由于抗结剂之间的作用力比较小,形成的抗结剂层就能阻隔食品表面的亲水性物质,并能使食品颗粒表面更为光滑,降低颗粒间的摩擦力,增加颗粒的流动性。[[/font][font='宋体']4][/font][font='宋体']参考文献[/font][font='宋体']【1】凌关庭主编.[/font][font='宋体'] [/font][font='宋体']食品添加剂手册第三版 北京:化学工业出版社,2[/font][font='宋体']003.02[/font][font='宋体']:8[/font][font='宋体']27[/font][font='宋体']【2】中华人民共和国国家标准[/font][font='宋体']GB 1886.90-2015 食品安全国家标准 食品添加剂 硅酸钙[/font][font='宋体']【3】郝利平主编.[/font][font='宋体'] [/font][font='宋体']食品添加剂.[/font][font='宋体'] [/font][font='宋体']北京:中国农业大学出版社,[/font][font='宋体']2016.07:235[/font][font='宋体']【4】高彦祥主编.[/font][font='宋体'] [/font][font='宋体']食品添加剂. 北京:中国轻工业出版社,[/font][font='宋体']2011.05[/font][font='宋体']:[/font][font='宋体']273[/font]

  • sem这是水化硅酸钙吗

    sem这是水化硅酸钙吗

    sem这是水化硅酸钙吗 [img=,568,429]https://ng1.17img.cn/bbsfiles/images/2023/03/202303112253557477_9002_5943694_3.jpg!w568x429.jpg[/img]是碱激发高炉矿渣土样

  • 氟硅酸对原子吸收的干扰该如何消除

    当机体为氟硅酸的时候,氟硅酸遇到高温时,马上有二氧化硅析出,不但使所有波长的吸光度受到严重干扰,而且会沉积在原子化器的狭缝上.使火焰越来越小,也严重干扰分析读数.请问各位高手,应该怎样解决啊?[em42]

  • 自检矿泉水检测偏硅酸和第三方检测的结果偏低问题

    自己工厂实验室检测矿泉水中偏硅酸结果,和第三方外检的结果都是偏低,比如自检的范围在28-31,外检的在34-37,好多次都是外检的高,检测方法都是按国标进行,检测仪器是不同的,请问这正常么,导致结果不同原因有哪些?谢谢

  • 硅酸根分析仪的应用

    首先,在工业生产中,硅酸根分析仪被广泛应用于检测循环水、锅炉水、冷却水等水样中的硅酸盐含量。通过对硅酸盐含量的监测,可以有效地控制水质,预防结垢和腐蚀等问题,保证工业生产的安全和稳定。其次,在环境保护领域,硅酸根分析仪也发挥着重要作用。在污水处理过程中,硅酸根分析仪可以用于监测污水中的硅酸盐含量,为污水处理工艺的优化提供数据支持。同时,通过对污水中硅酸盐含量的监测,可以评估污水对环境的影响程度,为环境保护提供科学依据。此外,在农业生产领域,硅酸根分析仪也有着广泛的应用。在农田灌溉过程中,硅酸根分析仪可以用于监测灌溉水中的硅酸盐含量,为农田灌溉提供科学依据。同时,通过对灌溉水中硅酸盐含量的监测,可以评估灌溉水对作物生长的影响,为农业生产提供科学指导。最后,在科学研究领域,硅酸根分析仪也扮演着重要角色。在地质学、地球化学、水文学等领域中,硅酸根分析仪被广泛应用于研究地下水、河水、湖水等水样中的硅酸盐含量。通过对水样中硅酸盐含量的分析,可以了解水样的化学组成和来源,为相关研究提供数据支持。综上所述,硅酸根分析仪在多个领域中都有着广泛的应用。通过硅酸根分析仪的应用,可以有效地监测水样中的硅酸盐含量,为工业生产、环境保护、农业生产以及科学研究等领域提供科学依据和支持。随着技术的不断发展和进步,硅酸根分析仪的性能和精度也将不断提高,其应用前景将更加广阔。[来源:得利特(北京)科技有限公司][align=right][/align]

  • 【原创大赛】(二)简述红色硅酸盐发光材料的硅酸盐基质

    由于铝酸盐基磷光体在水中易水解,需在颗粒表面进行物理化学修饰,以提高其稳定性。Mitsuharu等人发现利用 CaO-Al2O3-SiO2作为基质材料体系,共掺杂稀土Eu2+和Nd3+合成的发射500-600 nm 波长光的长余辉蓄光材料,稳定性良好,发射波长取决于基质材料组成,并且都是由于Eu2+的4f-5d 跃迁引起的。据研究:用Eu激活的SrO-MgO-SiO2,可以合成发射波长为468-480 nm 的蓝色发光材料,但共掺杂稀土元素Dy的SrO-MgO-SiO2体系的硅酸盐长余辉磷光体尚无报道。本实验尝试采用以Sr2MgSi2O7作为基质,通过掺杂Eu离子,共掺杂稀土Dy离子,合成了一种稳定性良好的硅酸盐基蓝色长余辉蓄光材料。以硅酸盐为基质的发光材料由于具有良好的化学稳定性和热稳定性,而且高纯二氧化硅原料价廉、易得,长期以来人们都重视对硅酸盐体系荧光粉的研究和开发。硅酸盐体系发光材料已经发展成为一类应用范围广的重要光致发光材料和阴极射线光材料。如Zn2Si04:Mn2+早在1938年就用于荧光灯,作为光色校正荧光粉,至今仍是彩色荧光灯用荧光粉,在阴极射线显示管上,它也是常用的主要荧光粉。近年来随着等离子平板显示器(PDP)的快速发展,Zn2Si04:Mn2+成为PDP三基色荧光粉的主要绿色组分。1992年,我国肖志国等人开展了硅酸盐体系发光材料的研究,成功地研制出硅酸盐发光材料,该体系材料在500nm以下短波光激发下,发出420~ 650nm 的发射光谱,峰值为450 ~ 580 nm,发射光谱峰值在470~ 540nm之间可连续变化,呈现蓝、蓝绿、绿、绿黄或黄颜色长余辉发光。2002年,罗昔贤等首次在硅酸盐体系中发现了余辉时间长达10h以上的高亮度长余辉现象,并采用高温固相法合成了一系列硅酸盐长余辉发光材料。Eu2+、Ln 共激活的镁黄长石结构的焦硅酸盐化合物和镁硅钙石结构的硅酸盐化合物的余辉发光性能最好,发光颜色覆盖从469nm 的蓝色光区到536nm 的黄色光区,余辉时间长达10h 以上,且耐水性及温度特性好。并且研究了各发光材料的光谱特征、长余辉性能,测量了各发光材料的激发光谱和发射光谱以及余辉衰减曲线。同时研究了其应用性能,测量了发光材料的热释光谱和X 射线粉末衍射图谱,确定了发光材料的晶格类型。碱土氯硅酸盐是一类发光性能优良的基质材料,这是由于碱土卤化物和碱土硅酸盐都是支持Eu2 +发光的高效基质,由两者复合的碱土卤硅酸盐由于合成温度低、物理化学稳定性好而获得广泛研究。目前开发的硅酸盐体系长余辉发光材料主要特点如下:(1)化学稳定性比较好、耐水性比较强。曾对铝酸盐体系长余辉发光材料Sr2MgSi207:Eu2+,Dy3+进行了化学稳定性的对比试验。参SrAl204:Eu2+,Dy3+放入5%的NaOH溶液中浸泡2~3小时发光消失,而Sr2MgSi207:Eu2+,Dy3+浸泡20天后仍保持发光性能不变;(2)扩展了长余辉材料的发光颜色范围,发光颜色范围从469nm的蓝色光区536nm的黄色光区,余辉时间长达2000min以上。特别是蓝色长余辉发光材料Sr2MgSi207:Eu2+,Dy3+不仅应用特性优异,而且余辉亮度高、时间长,为长余辉发光材料增加了新的品种,填补了铝酸盐体系长余辉材料蓝色发光性能不佳的缺陷;(3)由于硅酸盐体系长余辉发光材料的应用特性优良,在某些领域的应用(如陶瓷行业),长余辉发光制品要优于铝酸盐体系。硅酸盐体系的发光性能尚未达到铝酸盐体系的水平,镁的正硅酸盐性能还未能得到应用,因此进一步提高硅酸盐体系的发光性能,还需要做更深入的研究工作。此篇与上一篇是我较早之前做研究时做的综述调研,关于这个课题,我还有一些其他方向的调研,有机会再与大家分享。上一篇:(一)简述红色硅酸盐发光材料的铝酸盐基质http://bbs.instrument.com.cn/topic/5948561主要参考文献如下: 刘志平,胡社军,黄慧民,李昌明。发光材料特征及其制备方法当代化工,2008 , 37 (5)。Sakai R,Katsumata T.Komuro S et al J.Luminescence,1999,85.149 刘应亮,丁红长余辉发光材料研究进展 无机化学学报,2001,17(2)。 林 林,尹 民,施朝淑,等。红色长余辉材料Mg2 SiO4 : Dy3+,Mn2 +的制备及发光特性发光学报,2006,27(3) : 3312335。 石 涛,周箭,申乾宏,等。溶胶凝胶法制备纳米晶γ2Al2O3 : T3+粉末及其发光性能硅酸盐通报,2009,28(2) : 2242228。 韩永飞,陈振强,李景照,等。Yb3 + : NaBi(WO4)(MoO4)的制备与性能表征硅酸盐通报,2009,28 (1) : 76279。 曲艳东,李晓杰,陈涛,等。铝酸盐系长余辉发光材料的研究新进展稀有金属,2006,30(1) : 1022105。 郭庆捷,徐明霞,曹佩玲。 Eu2 +激活的碱土铝酸盐长余辉发光材料的研究现状稀土金属材料与工程,2004,33 (3) : 2252228。 Nag Abanti,Kutty T R N. Effectof interface states associated with transitional nanophaseprecitates in theenhancement of red emission from SrAl12O19 : Pr3 + by Ti4 + incorporation. Journal of Physics and Chemistry of Solids,2005, 7: 1912199. 刘全生,章瑞铄,方潇功,黄原亮,张希艳,孟繁艳,董飞,孟庆贺。稀土掺杂Sr3Al2O6红色发光材料的制备与表征硅酸盐通报,2010,29(3) БланкЮС,Завьяловаид.Журналприкладнойспектроскопий,1975 ,T22 (B2) :2632266. Song Qingmei, Huang Jinfei,Wu Maojun,et al . Study on synthesisand luminescence property of Eu2 + activated strontium aluminates . J.FudanUniversity ( Natural Science) ,1991, 12 (2) :1442150. 松尺隆嗣,等。日本第248回萤光体同学会讲演予稿,1993 ,1:1. Tang Mingdao,Li Changkuan,GaoZhiwu,et al . The study on longpersistence of SrAl2O4 ∶Eu2 + . Chin. J .Lumin., 1995 , 16 (1) :51256 (inChinese) . Song Qingmei,Chen Jiyao, Wu Yazhong. A study on luminescence of Mg doped SrAl2O4∶Eu phosphors . J.FudanUniversity (Natural Science) ,1995, 34 (1) :1032106 (in Chinese) . Xiao Zhiguo. The new photoluminescence materialand dope ,The identify data for expert . Dalian ScienceCommittee . 1993 ,1 ,18.肖志国。蓄光型发光材料及制品.化学工业出版社,2002.Aizawa H,Katsumata T,Takahashi J,et a1.Fiber--optic thermometer using afterglow phosphorescencefrom long duration phosphor.Ele

  • 【讨论】动植物油测定时,硅酸镁需要处理吗?

    我现在测动植物油,国标上说硅酸镁要按照6%(m/m)的比例加蒸馏水放置12h,我不确定是硅酸镁占6%,还是水占6%,这两种我都试了,觉得都不可能,前者水太多,后者水太少,我也试了不加水,直接用硅酸镁,可是吸附后再测出来的浓度和原来一样,请教大家,我该怎么做?我用的是内径1.2cm的吸附柱,应该填充多高?

  • 【讨论】磷酸盐中硅酸盐的测定?

    有没有哪个朋友知道,为什么几乎磷酸盐的所有标准中都没有测硅酸盐的?标准里面硅酸盐的测试一般是采用的硅钼蓝比色法,而这种测试方法中要加入配合剂,调节酸度等消除磷酸盐的干扰,那么主体是磷酸盐时是不是就不能采用这种方法,那该采用什么方法呢? 此外,磷酸盐中不可能没有硅酸盐,因为磷就是要硅石做的。

  • 【求助】锆硅酸铝和硅酸铝的判定?

    在REACH检测中,我们测定样品时经常会出现Si和Al元素很高的情况,换算到化合物就超过限值了。在此向各位大侠求助:像塑料之类的样品会不会含有锆硅酸铝和硅酸铝?怎么判定各类样品中含有锆硅酸铝和硅酸铝?谢谢!

  • 关于硅酸铝耐火陶瓷纤维(Al-RCF)定性问题

    [font=Arial, sans-serif][size=13px][color=#333333]SVHC中的硅酸铝[/color][/size][/font][font=Arial, sans-serif][size=13px][color=#f73131]耐火陶瓷纤维[/color][/size][/font][font=Arial, sans-serif][size=13px][color=#333333](Al-RCF),我们测得硅和铝均有值,这个还不好完全确定是否有该物质,我看了某检测公司报告上写的结合显微镜判断,请问有板油有这个显微镜判断经验吗?想请教一下。[/color][/size][/font]

  • 【求助】跪求如何用原子吸收法测定硅酸盐水泥中的钾、钠、钙

    跪求大家,如何用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定硅酸盐水泥中的钾、钠、镁,应该用多大波长,标准溶液浓度应该配置成什么浓度范围,请详细给讲讲具体怎么操作的,谢谢了!还有钾、钠前处理时为什么一定要用铂皿,我这没有铂皿应该怎么办啊,用瓷蒸发皿加盐酸(代替硫酸和氢氟酸)来处理是否可以?跪求了,着急啊

  • 【分享】硅酸根分析仪的安装和使用

    硅酸根分析仪主要应用于发电厂锅炉给水蒸汽及化学除盐水,凝结水中硅酸根(SiO2)的含量以及半导体器件行业,化工厂,制药厂等纯水中硅酸根含量的测定。其工作原理是仪表利用光电比色原理进行工作,根据朗伯--比尔定律,平行光通过有色溶液时,一部分会被溶液吸收。当液层厚度不变,光能被吸收的程度(或吸光值)与溶液中有色物质浓度成正比。硅酸根分析仪的安装:首先从包装箱内取出仪表,水平安放在合适的工作台上。从备件盒内取出水罐组件,插入水罐插座中并用固定螺钉拧紧,将硅胶管接在水罐出水口上,确保不发生漏液,然后将硅酸根分析仪电源线接入仪表电源插座,仪表通电后倒入高纯水。预热一段时间后,把高纯水排出。高纯水是指将蒸馏水经过离子交换树脂所得的水为高纯水。将显色后的水样(从锅炉里取出的水样一定要加显色液)倒入水罐,待样品从水罐流入比色皿,并从溢流口中流出即可进行读数。水样分析完毕后,要将比色皿中的水样及时排出,再倒入高纯水冲洗三遍即可。

  • 【求助】硅酸镁问题请教

    有哪位同仁知道硅酸镁吸附极性非烃有机物质的原理?硅酸镁的表面是不是偏酸性的?这和它吸附极性非烃有机物质有关系吗?

  • 活性硅酸聚合中顶置搅拌器的应用

    活性硅酸是制备硅酸助凝剂及新型含金属离子的聚硅酸系无机高分子絮凝剂的重要原料, 活性硅酸的聚合速度受搅拌速度的影响显著。有实验证明采用激光光散射、浊度、黏度等多种表征方法对活性硅酸在聚合过程中的形态变化进行了监测及表征, 结果表明: 搅拌速度越快, 硅酸的聚合速度越快, 但形成的有效粒径反而越小; 选择在静置条件下制备活性硅酸, 有利于形成高分子量、高黏度、高浊度的聚硅酸, 更有利于聚硅酸吸附架桥作用的发挥, 这为制备高效混凝剂提供了实验依据。 众所周知, 在化学实验中经常以搅拌来加速某个化学反应速度, 因为搅拌可以使反应物粒子之间发生更多有效的碰撞从而加速整个反应的进程。然而在硅酸聚合这一复杂过程中, 搅拌所起的作用将不同于一般化学反应过程中所起的作用, 它将起到两方面的作用: 1)破坏单分子硅酸聚合时产生的硅氧烷键, 结果将使硅酸聚合速度显著降低, 从而延长聚硅酸的成冻时间; 2)搅拌将加速单分子硅酸颗粒之间的有效碰撞, 这将加速聚合反应, 缩短聚硅酸的成冻时间。 在活性硅酸聚合实验中,选择一款性能稳定的搅拌器非常重要。目前行业内广泛使用的搅拌器是意大利VELP 生产的顶置式搅拌器。VELP顶置式搅拌器采用防腐蚀材料, 环氧涂层金属结构。VELP顶置式搅拌器搅拌最大粘度可达50000mPa*s。VELP顶置搅拌器有两个清晰、易读的显示器展示当前速度和设定的速度。VELP顶置式搅拌器具备恒速控制,当样品的粘度发生变化,VELP顶置式搅拌器的搅拌速度始终保持恒定。当搅拌器发生错误运行时,系统会阻止操作继续运行,从而确保仪器的安全。

  • 【原创大赛】氟硅酸含量的测定失败的探讨和改进

    【原创大赛】氟硅酸含量的测定失败的探讨和改进

    氟硅酸含量的测定失败的探讨和改进摘要:本文对采用HG/T 2832—2008进行氟硅酸测定过程遇到的问题进行简单的说明,就过程中出现问题的现象进行简单的阐述,对问题产生的原因进行了分析,最后结合本人的经验对现有方法进行了局部的改进,获得良好的结果,获得较好的精密度,有利于大家以后在做类似样品的时候能够借鉴和学习。希望大家在工作中能做到举一反三思路,解决一些常见的问题。关键词:氟硅酸、测定、改进氟硅酸易分解为四氟化硅和氟化氢。水溶液无色,呈强酸性反应。有腐蚀性,能侵蚀玻璃。氟硅酸有消毒性能,用于制氟硅酸盐和冰晶石,并用于电镀、啤酒消毒、木材防腐等。应朋友要求帮忙测定其样品中氟硅酸其含量,按照标准方法且结合咱实验室的条件进行测定,但效果不好,精密度较差。怎么解决呢???最后结合个人经验对方法的理解,对方法进行改进,精密度非常的好,说明方法的改进实验非常的成功。现与大家分享一下。1 国标方法简要氟硅酸与硝酸钾反应,生成氟硅酸钾沉淀和硝酸,先在低温下以氢氧化钠标准滴定溶液滴定反应生成的硝酸及其他的酸(微量的HF)。然后滴定经沸腾水解产生的氢氟酸。根据滴定后者时氢氧化钠标准滴定溶液的用量计算出氟硅酸的含量。主要的反应方程式如下:H2SiF6+2KNO3= K2SiF6↓+2HNO3HNO3+ NaOH=Na NO3+ H2OHF+ NaOH=NaF+ H2OK2SiF6+ 4NaOH=2KF+ 4NaF+SiO2↓+ 2H2O2 本次实验涉及的试剂硝酸钾饱和溶液。氢氧化钠标准滴定溶液:C(NaOH)=0.5mol/L酚酞指示液:10 g/L。溴酚兰指示液:2%(乙醇),KCl-乙醇洗液:1+13 分析步骤称取2.000g试样,精确至0.0002g,置于250 mL锥形瓶中,加入10 mL饱和硝酸钾溶液和10 mL水,于冰箱室中放置30 min。取出加人3滴酚酞指示液,用氢氧化钠标准滴定溶液滴定至红色保持30 S不褪。将溶液加热至沸,将滴定管调零后用氢氧化钠标准溶液滴定至稳定的红色为终点,记下消耗的体积(V)。4 结果计算氟硅酸含量以氟硅酸的质量分数计,按公式计算:http://ng1.17img.cn/bbsfiles/images/2013/07/201307052306_449753_1607403_3.jpg式中:[size=12pt

  • ICP测定偏硅酸

    ICP测偏硅酸,一般以测定样品中硅元素的含量再换算成偏硅酸。但买回来的标准溶液是二氧化硅,而ICP测的是硅元素,最终是否以二氧化硅的含量换算成偏硅酸?

  • 【求助】水质在线 硅酸根 测量问题

    我 厂用的是 华科仪的 118W 型在线 硅酸根 测量仪 药品试剂 原来用的是 华科仪制定的 硫酸 钼酸铵 酒石酸 跟 1 2 4 酸 。 后来因为酒石酸总是涨一些黑色的絮状物 我们就改成了 草酸 1 2 4 酸 换成的 硫酸亚铁铵试剂 请问 对显色反应会不会有影响啊? 还有就是看资料上说 草酸 酒石酸 跟柠檬酸都是 掩蔽剂 可以跟水质中的 磷 铁 砷 反应 消除干扰因素 。 这三种酸的作用是一样的吗 后来看资料上说 当水中 含有较多的 磷酸根 时要 增加 柠檬酸的 浓度 那是不是 只有柠檬酸 才能掩蔽 水质中磷 的干扰呢 其他的两种酸是不是 只是起到 二次酸化的作用呢?、

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制