当前位置: 仪器信息网 > 行业主题 > >

甲氨蝶呤

仪器信息网甲氨蝶呤专题为您提供2024年最新甲氨蝶呤价格报价、厂家品牌的相关信息, 包括甲氨蝶呤参数、型号等,不管是国产,还是进口品牌的甲氨蝶呤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲氨蝶呤相关的耗材配件、试剂标物,还有甲氨蝶呤相关的最新资讯、资料,以及甲氨蝶呤相关的解决方案。

甲氨蝶呤相关的资讯

  • 甲氨蝶呤、革兰阳性菌鉴定等14项试剂注册审查指导原则发布
    近日, 国家药监局器审中心发布了血液融化设备、甲氨蝶呤检测试剂、革兰阳性菌鉴定试剂等14项医疗器械产品注册审查指导原则。在这些原则中“甲氨蝶呤检测试剂注册审查指导原则”和“革兰阳性菌鉴定试剂注册审查指导原则”适用于质谱检测法。甲氨蝶呤检测试剂注册审查指导原则适用范围:本指导原则适用于以化学发光法、液相色谱-串联质谱法、均相酶免疫等方法对人体血清/血浆中甲氨蝶呤进行定量检测的体外诊断试剂。其他方法学的甲氨蝶呤检测试剂注册可参照本指导原则,但应根据产品的具体特性确定其中内容是否适用。革兰阳性菌鉴定试剂注册审查指导原则适用范围:本指导原则适用于利用生化鉴定原理,鉴定临床医学相关的革兰阳性需氧型、厌氧型或兼性厌氧细菌的试剂(革兰阳性菌及其鉴定简介见附件);检测样本为从血液、体液、粪便、泌尿生殖道分泌物等临床样本中分离的纯菌。《血液融化设备注册审查指导原则》等14项医疗器械产品注册审查指导原则.ra
  • 微观世界|第5期 ‘蝶’影重重
    引子 各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾 书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)。扫描电镜下图像 绿色部分 图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。 黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。 所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • OPTON的微观世界第5期 ‘蝶’影重重
    引子各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下图像偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)扫描电镜下图像绿色部分图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 蒙特利尔大学开发纳米器件提高癌症的治疗与监测
    这个装置表明的金纳米粒子改变检测仪器中光线的颜色。检测到的颜色反映了血液中药物的浓度。图片:蒙特利尔大学   中国科技网10月27日报道(张微)甲氨蝶呤是一个常用但有潜在毒性的抗癌药物,蒙特利尔大学开发的一个小型设备可以在不到一分钟的时间里测量病人血液中的甲氨蝶呤。该设备与目前医院里正在使用的设备一样精确,但成本却是目前设备的十分之一。   这个纳米设备有一个光学系统,可以迅速判断病人使用甲氨蝶呤的最佳剂量,同时尽量减少药物的副作用。这项研究在蒙特利尔大学化学系的Jean-Franç ois Masson 和Joelle Pelletier领导下完成。   甲氨蝶呤多年来一直用于治疗某些癌症及其他疾病,因为它能够阻止酶二氢叶酸还原酶(DHFR)。这种酶活跃在DNA的合成前体,从而促进肿瘤细胞的繁殖。&ldquo 虽然在治疗癌症方面有效,但甲氨蝶呤也有剧毒,会损害患者的健康细胞,因此需要密切监控患者血清中的药物浓度并及时调整用药剂量。&rdquo Jean-Franç ois解释道。   &ldquo 直到现在,医院一直使用的监控装置是一个笨重,昂贵的平台,需要有经验的人员,因为需要操作许多样品&rdquo ,Masson说。   精度相同但比当前医院使用的设备便宜10倍的这个装置,包含了一个光学系统,使它能够迅速识别治疗癌症所需剂量的甲氨蝶呤,将药物副作用最小化。图片:蒙特利尔大学   &ldquo 新设备的测量精度与在蒙特利尔Maisonneuve Rosemont医院应用的设备进行了对比。测试结果是准确的,不仅测量准确,而且我们的设备,花了不到60秒就产生了结果,而现有设备用时30分钟。&rdquo Masson说。   除了实时产生结果,由Masson设计的设备小巧便携,只需要小样本的就可以进行检测化验。&ldquo 在不久的将来,我们可以预见该设备放置在医生的办公室甚至在病人的床边,给病人最佳剂量的药物,使病人获得个性化的治疗,同时尽量减少并发症的风险。&rdquo Masson说。另一个非常大的好处是,&ldquo 传统设备需要投资约10万美元,新的移动设备可能会少十倍,成本约1万美元。&rdquo
  • 国内首家:IPHASE SLC家族OAT1转运体细胞研发成功
    PART.01 OAT转运体 肾脏在代谢产物的排泄、酸碱平衡、维持体内系统稳态中起关键作用,其中肾小管的分泌和重吸收功能主要由转运体介导,这也是葡萄糖、氨基酸和其他营养物质吸收及清除内源性废物和外源性生物制剂的有效机制。这些转运体主要分布于肾近端小管细胞基底膜和顶端膜,其中OATs主要负责阴离子和两性离子有机分子(包括内源性物质和许多药物)的跨膜运输,属于两亲性溶质转运蛋白家族(SLC)。 目前已报道的OAT家族成员有10余种,包括OAT1-OAT10以及尿酸转运体,大多分布于肾脏之中。OATs可以将由血液进入管周液中的多种外源性及内源性有机阴离子毒素逆电化学梯度转运至肾小管上皮细胞内,最终随尿液排出体外。而疾病、药物-药物相互作用或其他因素等均可能引起OATs表达或功能的改变,从而导致药物的肾脏分布改变,诱导有毒代谢产物的积累,最终引发肾脏毒性。因此,OATs在药物的肾脏毒性中具有关键作用。 图片出自文献“肾脏有机阴离子转运体介导的中药肾毒性研究进展” PART.02 OAT1转运体 OAT1是肾脏的主要药物转运体之一,同时也是肾脏OATs家族中分布最广的一种,被FDA列为与临床药物治疗密切相关的7个重要转运体之一,主要分布于肾近曲小管。OAT1底物覆盖范围非常广泛,主要包括叶酸等内源性物质以及对氨基马尿酸(PAH)、抗病毒药物、甲氨蝶呤、抗生素、非甾体类抗炎药等。 在联合用药方案中,底物可能彼此竞争结合转运蛋白,使药物清除率降低,药物在体内积累,从而导致潜在的不良反应。研究显示,丙磺舒可竞争性抑制OAT1对头孢类的摄取,使得头孢类药物的肾清除率下降,半衰期和血药浓度明显增加;吲哚美辛、酮洛芬可降低甲氨蝶呤的肾脏清除率,引起急性肾衰竭;马兜铃酸可抑制OAT介导的丙磺舒的摄取,马兜铃酸在肾脏蓄积,产生毒性。 药物肾毒性的传统评价方法多采用体内动物模型和体外2D肾细胞系模型,但是肾脏OATs在转运多种具有潜在肾毒性的药物中起着至关重要的作用。目前尚没有OATs晶体蛋白,主要借助特异性的人源OATs转染细胞,对OATs的配体识别结合域结构及配体结构特点进行考察,阐明OATs与药物间相互作用,以此评价药物肾毒性。基于此,IPHASE研发出了国内首家瞬时转染重组OAT1转运体细胞。 PART.03 IPHASE 转运体相关产品 IPHASE作为创新药体外研究生物试剂引领者,凭借先进的设备、专业的技术人员和多年研发经验,通过HEK293细胞系成功构建国内首家瞬时转染重组OAT1转运体细胞,推出SLC转运体家族新产品! IPHASE技术人员以PAH为底物验证重组OAT1转运体细胞的代谢能力。结果发现,IPHASE重组OAT1转运体细胞转运PAH的能力是指导原则的9倍,表明IPHASE瞬时转染重组OAT1转运体细胞满足药物研发要求。 1 批量生产采用批量生产方式,库存充足,可保证同一批次产品的供应。 2 货期短国内现货,保障客户使用需求。 3 售后服务机制健全有专业技术人员提供全方位服务。 除瞬时转染重组SLC OAT1转运体细胞外,IPHASE同时推出了就ABC转运体囊泡和SLC转运体细胞相关产品,供客户自行选择,以满足客户对于不同药物的研究。 产品名称 产品规格 OATP1B1 转运体 8-10 million OAT1 转运体 8-10 million OAT3 转运体 8-10 million OCT2 转运体 8-10 million OATP1B3 转运体 8-10 million OATP2B1 转运体 8-10 million OCT1 转运体 8-10 million NTCP 转运体 8-10 million MATE1 转运体 8-10 million MATE2K 转运体 8-10 million OATP1A2 转运体8-10 million BCRP 转运体 0.5 mg/mL*0.5mL BSEP 转运体 0.5 mg/mL*0.5mL MDR1 转运体 0.5 mg/mL*0.5mL MRP1 转运体 0.5 mg/mL*0.5mL MRP1 转运体 0.5 mg/mL*0.5mL MRP3 转运体 0.5 mg/mL*0.5mL MRP4 转运体 0.5 mg/mL*0.5mL MRP8 转运体 0.5 mg/mL*0.5mL IPHASE/汇智和源凭借多年的研发经验,推出了多领域、多种类的高端科研试剂,为药物早期研发提供筛选工具,为生命科学领域的探索提供新材料、新方法和新手段,为遗传毒性研究提供便捷产品。此外,IPHASE/汇智和源可提供特殊产品的定制服务,望广大科研工作者来电咨询,咨询热线400-127-6686。 发 文 章 得 奖 励 凡使用本公司产品,在国内及国际刊物上发表论文(论文发表日起一年内),并注明产品属于汇智和源/IPHASE所有,即可申请奖励。根据发表刊物影响因子不同,给予不同金额奖品: 非SCI论文及IF≤5分,500元礼品; 5分<IF≤8分 800元; 8分<IF≤10分 1000元; IF≥10分 2000元; 注:礼品卡也可兑换同等金额产品购买抵用券; 活动多多,礼品丰厚,快来参与吧! 关 于 我 们 汇智和源,致力于为创新药研发企业及生命科学研究机构提供高品质的生物试剂,IPHASE为公司核心品牌,品牌宗旨“Innovative Reagents For Innovative Research”。
  • 2008,中国食品药品安全大事记
    大事记一 民以食为天,食以安全为先,2008年的中国食品药品安全监管领域,充满了警示和反思。即将过去的一年中,我国在汶川地震灾后救援和北京奥运会成功的食品药品安全保障令人难忘,问题奶粉、刺五加注射剂等严重不良事件的警钟更响彻全国。伴随着国家食品安全立法、建立基本药品制度等改革步伐的加快,让我们共同期待吃药更安全、餐桌更绿色。 I级响应,问题奶粉风暴席卷全国 今年9月,一场突袭的问题奶粉风暴席卷全国,三鹿等奶制品企业的婴幼儿奶粉中被查出含有三聚氰胺。截至11月底全国诊疗问题奶粉导致泌尿系统出现异常的患儿达29万余人,并有多名患儿死亡。国务院迅速启动国家重大食品安全事故I级响应机制,成立应急处置领导小组,彻查各类奶制品,问题奶粉下架、封存并销毁、筛查和诊疗患儿……国务院常务会议审议并原则通过《乳品质量安全监督管理条例(草案)》。审议中的食品安全法草案明确规定:食品安全监督管理部门对食品不得实施免检。 点评:在蛋白质检测值上弄虚作假,使无辜的孩子受害,受到伤害的还有中国食品的整体形象。我们不仅要进行道德的追问,更要展开严厉的问责、充分的赔偿,亡羊补牢。正如温家宝总理所说,只有靠切实行动和产品质量,才能恢复我国食品行业的声誉,赢得人民的信任。 大事记二 大震之后“无大疫” 奥运食品“零投诉” 汶川地震灾后救援和北京奥运会中的食品药品安全保障至关重要,我国的食品药品安全保障体系经受住了考验,交出了两份满意的答卷。北京奥运食品安全万无一失,实现了食品供应“零中断”、餐饮运行“零投诉”和食品安全“零事故”。经过科学预防和严格处置,四川地震灾区无重大传染病疫情发生。 点评:地震和奥运会考验的不仅是食品药品安全保障体系面对重大事件和活动的应急能力,更是平日的积累。建立食品药品安全监管的长效机制和提升应急处置能力相辅相成,同样重要。 大事记三 药品安全白皮书首次发布,确保百姓用上安全药放心药 今年7月,我国首次发布《中国的药品安全监管状况》白皮书,白皮书显示,我国已建立比较完备的药品监管体制,并不断加大投入提高药品安全检验检测能力和水平。在白皮书中,“中药和民族药的监管”被作为重要内容单列,通过制定符合民族药发展规律的监管措施等举措,鼓励和支持民族药的发展。同时,白皮书指出,我国正处于药品安全风险高发期和矛盾凸显期。 点评:在白皮书发布之际,国家食品药品监管局局长邵明立表示:“我国政府有能力保障广大人民群众的用药安全,确保老百姓用上安全药和放心药。”这不仅是一句宣言,更是一句沉甸甸的承诺。 大事记四 甲氨蝶呤注射液事件“结案”,60年名厂被“摘牌” 4月11日,国家食品药品监督管理局发布信息,注销上海医药(集团)有限公司华联制药厂甲氨蝶呤注射液的药品批准文号,依法吊销药品生产许可证,这起严重药物损害事件正式“结案”。去年7月,由于现场操作人员将硫酸长春新碱尾液混于注射用甲氨蝶呤、盐酸阿糖胞苷等批号药品中,导致多个批次的药品被硫酸长春新碱污染,造成这起重大的药品生产质量责任事故。事故不仅导致广西、上海部分医院的白血病患儿出现下肢疼痛、乏力、行走困难等不良反应症状,也使上海华联这家拥有60多年历史的知名药厂被最终“摘牌”。 点评:一批名企、老厂的“落马”固然令人痛心,但是更让人体会到我国严格药品安全监管的决心和勇气。相关人员隐瞒违规生产的事实,折射出药品生产企业社会责任的缺失。要切实保障食品药品安全,光靠企业自律还远远不够,需要更刚性的综合手段促使企业把安全责任真正落到实处。 大事记五 刺五加注射剂遭污染,中药注射剂安全性受关注 10月,云南省红河州6名患者使用了完达山药业公司生产的刺五加注射液出现严重不良反应,其中3例死亡。调查发现这是一起由药品污染引起的严重不良事件。“罚单”开出:完达山药业公司被责令全面停产,依法处理企业直接责任人,在十年内不得从事药品生产、经营活动等。 点评:在药品的生产、运输和使用全过程中,1%的疏忽,都会酿成100%的严重后果。此外,从去年的“鱼腥草”到今年的“刺五加”事件,中药注射剂生产普遍存在的成分难控、提纯工艺不强的弱点也需引起重视。 大事记六 公布并审议食品安全法草案,食品安全立法步伐加快 4月20日,食品安全法草案向社会广泛征求意见。草案明确提出,要建立畅通、便利的消费者权益救济渠道,对消费者的赔偿将提高到10倍。为防止问题奶粉事件重演,今年10月的食品安全法草案三审作出八项修改,包括突出全程监管,强调地方政府、部门的职责及沟通配合;加强食品安全风险监测和评估,尽快尽早控制事故蔓延;完善食品召回制度,加强对食品小作坊和摊贩的监管等。 点评:从“食品卫生法”到“食品安全法”,两字之差却蕴涵着观念的巨大进步。食品安全关系到千家万户,我们期望这是一部“苛刻”的法律,因为它打响的不仅是一场全民族的保“胃”战,更维系着人民群众最宝贵的生命健康。 大事记七 建立国家基本药品制度,确保公众合理用药 今年10月《关于深化医药卫生体制改革的意见(征求意见稿)》正式发布,其中提出建立国家基本药物制度。我国把基本药物制度作为保证“人人享有初级卫生保健”的重要基础,规范基本药物的生产和配送,公众基本用药将由国家统一定价等。 点评:吃药贵,贵在中间环节,贵在大处方,只有挤掉药价中的水分,改革以药补医的机制,切断医生、医院与药品销售商之间的利益链条,才能确保老百姓合理用药,药品安全也将更加得到有效保障。 大事记八 创新监管机制,更好地为人民负责 今年,我国的食品药品监管体制发生重要调整。卫生部新改建的食品安全综合协调与卫生监督局,在原承担卫生监督职责的基础上,增加了组织拟订食品安全标准,组织查处食品安全重大事故,组织开展食品安全监测、风险评估和预警,拟订食品安全检验机构资质认定条件和检验规范以及重大食品安全信息发布等职责。药物政策与基本药物制度司主要承担建立国家基本药物制度并组织实施的工作。 点评:新改建的国家食品安全综合协调部门已经开始工作。将国家食品药品监督管理局改由卫生部管理,有利于建立医药一体化管理平台,增强政府部门对市场的监管能力,加强对公众生命安全的保障。 大事记九 向“违法添加”宣战,严惩违法犯罪分子 从12月10日起,我国9部门联合组成全国专项整治领导小组,在全国范围内启动打击违法添加非食用物质和滥用食品添加剂专项整治行动。15日,专项整治领导小组公布第一批“食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单”,其中包括17种非食用物质和10种易滥用的食品添加剂。 点评:违法成本过低、处罚过轻,一直被认为是我国食品安全事故层出不穷的原因之一,这次专项整顿提出“严厉打击在食品中违法添加非食用物质和滥用食品添加剂的违法犯罪分子”,让我们从中看到了希望。“什么都能加、什么都敢加”,这样的评语,再不要加在中国食品身上。
  • 中国投资逾十亿建设食品药品检定研究新院
    拥有60年历史的中国药品生物制品检定所今天迎来新生——更名为中国食品药品检定研究院,并获国家10.9亿元人民币投资,在北京大兴生物医药基地建设新院。这是国家食品药品监督管理局局长邵明立9月26日宣布的。   他在此间举行的中国药品生物制品检定所建所60周年庆典仪式上透露,新院占地200亩,建筑面积100383平方米,主要建筑包括药品检验楼、生物制品检验楼、医疗器械检验楼、生物安全实验楼、特殊实验楼、动物资源中心、标准物质楼、以及专家公寓、教学报告楼等。   成立于1950年的中检所是中国药品检验的法定机构和最高技术仲裁机构,设有药品、食品化妆品、中药民族药、生物制品检验检测体系以及医疗器械、实验动物、药品安全评价、标准物质、药品市场监督管理体系、医疗器械标准管理体系等11个业务体系。同时还承担着国家细菌耐药性监测中心、国家病毒性肝炎研究中心等一批国家级中心及实验室的工作;拥有中国工程院院士、外籍院士等具有高级专业技术职务的专家220多人。   目前开展检验项目1000余项,为全国药检机构、生产企业等单位提供近2500多种标准物质。在近年发生的欣弗、甲氨蝶呤、肝素钠、刺五加等重大药品安全事件中,及时开展检验检测,为科学定性、行政执法提供了重要技术依据。其自主研制的车载药品快速检验系统,已被世界卫生组织国际药品打假行动计划推荐为现场快速检测技术。   该所所长李云龙称,随着中国医药产业发展和对药品监管力度的加大,监督检验任务逐年增加,其基础设施、技术条件已不能满足检验任务和技术监管的需要;将于2014年竣工的新址建设,将使之得到根本性改善。   全国人大常委会副委员长桑国卫以及国家发改委、科技部、卫生部、国管局和北京市政府的代表约300人出席庆典及新址开工奠基仪式。
  • 在手性色谱领域争创国际一流——“创新100”访广州研创生物技术发展有限公司
    色谱柱和色谱填料被誉为色谱“芯”,技术壁垒高,全球90%以上的市场被国外企业垄断。一旦发生国际贸易壁垒,相关生产与研发将停滞,只有自主研发才是打破垄断的选择。近年来色谱柱和色谱填料的国产化进程受到业内的关注,仪器信息网也关注到多家深耕这一领域的国产企业。  本期“创新100”访谈,仪器信息网带大家认识广州研创生物技术发展有限公司(以下简称:广州研创),一家成立于2006年,主要从事手性色谱柱和手性色谱填料的研发、生产与销售,并提供⼿性分析与手性分离制备一体化解决方案的高新技术企业。  ——企业概况  色谱柱是色谱系统的心脏,色谱填料是色谱柱的核心材料,因此色谱柱和色谱填料被誉为色谱“芯”。色谱柱的分离纯化效果及分析检测性能很大程度上取决于色谱填料。其中,手性色谱柱及手性色谱填料的填装与合成技术是严重“卡脖子”领域,技术壁垒较高,用户粘性强。在手性色谱领域,广州研创是国内拥有自主知识产权、并且能大规模工业化生产手性色谱柱和手性色谱填料的企业。  创立至今,广州研创已获9项国内技术发明专利,2012年批准为高新技术企业,通过“ISO9001质量管理体系”认证。公司是广东省第四批“博士后创新实践基地”获批单位、华南师范大学第二批校级“联合培养研究生基地”之一,2013年与广东省华南新药创制中心合作共建“华南手性药物分离工程技术中心”,2016年成立“天然药物手性分离院士工作站”,2019年公司手性系列产品稳定了生产工艺,解决了原材料批次间不稳定因素,实现了工业化生产,2020年全面商业推广。  近三年来,广州研创平均研发费用占比70%。公司注重与国内外有关高校和研究单位合作,特别是与南方科技大学、暨南大学、华南师范大学、南京大学、厦门大学、浙江大学、中山大学、清华大学等高校相关研究领域的院士、专家和教授一直有密切的交流与合作。  在药企和CRO公司方面,广州研创与多家药企完成了工业化制备生产合作,与头部CRO公司签订战略合作协议。得益于精益求精的工匠精神和坚持攻克“卡脖子”技术难关的初心,广州研创的手性色谱柱已进入国内多家药企新药质量标准,成为该药企质量检验的长期供应商之一。  ——产品创新  手性色谱柱与手性色谱填料广泛应用于药物、食品、精细化工、信息材料和环境等领域,是分析、分离纯化的重要材料。广州研创现已完成三大系列19款手性色谱柱的研发,稳定了生产工艺,解决了原材料批次间不稳定因素,实现了工业化生产。  在产品层面,广州研创介绍了企业的竞争优势:  1、产品优势  国内唯⼀⼀家可以做到⼿性填料⼯业化⽣产的企业。19款手性色谱柱及填料可拆分90%的手性化合物,更多产品正在研发中。  2、价格优势  进口的质量,国产的价格,价格较进口便宜20-40%。  3、技术优势  公司有来自华南手性分离工程技术中心的技术团队,经验丰富,可为客户提供多方位的技术服务。且公司在不断积累产品应用数据,致力于建立首个中国人自己的手性拆分数据库。  4、服务优势  提供前期免费手性柱筛选,分析方法开发及制备等系列服务,提供后期产品保修维护,产品技术问题解答等完善的售后服务。  以广州研创独家专利产品——牛血清蛋白手性色谱柱Enantiopak® BSA(货号BSA51546,规格4.6*150mm,5μm)为例,其填充填料是键合牛血清蛋白,适用于反相系统。牛血清蛋白是由583个氨基酸组成的单条多肽链,分子量约为65KDa,包括17对二硫键。主要型号有分析柱及保护柱,适用于水溶性化合物、氨基酸类、伯胺类的测定,特别对抗肿瘤药甲氨蝶呤有非常高的特异性。  根据《中国药典2020年版》中甲氨蝶呤的检测方法,用牛血清蛋白键合柱可检测其光学纯度。广州研创使用独家产品牛血清蛋白柱,并按照药典载明的高效液相色谱法做了全面的验证,在标准条件下,可满足检测要求。  色谱图及样品测定结果如下:  ——发展规划  当前,各国药典中载明的药物中大约40%-50%为手性药物,2014-2020年美国FDA批准上市的 220 余种小分子新药中,手性药物占比达60%,已公开报道的在研药物中,手性药物的占比则达到 70%以上,手性药物占比呈上升趋势。手性 HPLC 不仅在医药领域,更在有机合成、手性材料制备和检测分析领域被广泛应用。  随着国内生物医药市场的快速增长,国产手性色谱柱及手性色谱填料供应商迎来了巨大的国产化替代趋势。近年来,包括生物制药与原料药在内的制药行业对分离纯化手性色谱柱及填料产品的性能提出越来越高的要求,亟需新技术突破与新产品的开发。未来,具备完备技术积累与自主研发的国产化手性色谱柱与填料供应商将迎来市场扩张和份额提升的双重红利。  对于广州研创而言,机遇和挑战也与药典有关。中国药典、检测标准及教科书绝大部分采用的是国外手性色谱柱,药企想用国产替换进口产品程序复杂、周期较长,药企原动力欠缺,企业急需拥有政府、药检所、药监局、高校、制药、农药等上下游客户资源,帮助企业快速打开市场。  针对这些问题,广州研创在持续打磨、优化现有的三大系列19款手性色谱产品的基础上,还会发力特种手性柱的研发,丰富产品系列,满足特殊类型手性化合物的拆分。在降低药企生产成本方面,投入大粒径手性色谱填料的研发,促进国产替代进口进程。公司近期还将推出冠醚手性色谱柱产品,适用于氨基酸、氨基醇、胺类等手性中心旁边有一级胺的化合物拆分,敬请期待。  未来,广州研创将建立起中国人自己的手性化合物色谱拆分数据库,目标是让民族品牌在国内市场生根发芽,摆脱完全依赖进口产品的局面,成为国际一流的手性色谱填料及手性色谱柱的研发和生产商。  附:“创新100”介绍  秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,通过筛选一批具备自主创新能力的中小仪器厂商,借助报道、走访、调研等方式,在企业发展的关键时期“帮一把”。  项目自启动以来,已收到超过180家企业的踊跃申请,通过输出公益性的宣传报道,组织企业研学、参观交流、主题讨论等各类资源对接活动,得到广大科学仪器企业与用户单位的高度关注与一致好评,现已成为中国科学仪器市场颇具影响力的特色活动,对于提升国产仪器品牌影响力,为行业筛选优质仪器企业贡献重要力量。为延续“国产科学仪器腾飞行动”精神,筛选和服务更多国产科学仪器潜力企业,“创新100”将于2022年继续进行,为国产仪器企业输送更多公益资源。  诚邀具备实力、符合条件的创新企业扫码申报“创新100”。  报名通道及活动专题:https://www.instrument.com.cn/zt/chuangxin100-2021
  • 上海实施药品、餐饮和化妆品“黑名单”制
    今年9月起,上海将在药品、餐饮和化妆品领域正式实施“黑名单”制度,一旦发生情节严重的食品药品安全事件,相关责任人还将面临被驱除出本行业的惩戒措施,最高时限达10年。据了解,这在全国相关行业内尚属首次。   市食药监管局有关负责人7月28日表示,推行“黑名单”制度的目的,是在这三个行业内倡导“诚信执业”的风气,被列入黑名单的企业和相关责任人将被双双记入本市的企业和个人信用系统。   此项“黑名单”制度被称为《上海市食品药品严重违法企业与相关责任人员重点监管及其名单管理办法(试行)》。在这份管理办法中,诚信贯穿始终,提供虚假材料、伪造生产记录、伪造国家机关批准文件等行为,都将被重点监管。   与现有法规相比,上海的这项“黑名单”制度对于食品、药品行业内的弄虚作假行为提出了更为具体的行业内惩罚措施。尤其是从事生产、销售假药、劣药情节严重的企业直接负责主管和其他有直接责任的相关人员,不仅在十年内不得从事药品生产、经营活动,而且在十年内不能获得执业药师的注册资格。   市食药监管局政策法规处处长严梁在举例中提到了上海华联药厂的“甲氨蝶呤”事件,该药物对部分白血病患儿造成了不同程度的伤害。“此类事件的责任人就将被驱逐出药品行业,我们未来将把‘黑名单’向社会公开,也欢迎全社会共同来监督。”   同样会被限制“入行”的还有药品申报过程的虚报行为。据了解,在前几年药品行业申报不规范时期,有的药企人为编造或篡改药品临床试验过程的科研数据,有的在药品样品检测中偷梁换柱,以其他药厂的产品替代本企业产品,等等。“在过去,这些行为被揭穿后,有的会改换名目重新申报,有的责任人会换个‘东家’继续造假,可现在一旦被发现,企业或个人将被视为全行业的‘不受欢迎者’。”   据了解,制定“黑名单”制度时,市食药监管部门还借鉴了国内外的立法和实践经验,特别是美国的相关制度。被重点监管的企业及相关责任人员名单的信息,由市食品药品监管局管理,并按照《上海市企业信用征信管理试行办法》、《上海市个人信用征信管理试行办法》的规定及与相关部门约定的形式与时限,提交给本市有关信用征信服务机构。
  • Janssen 银屑病关节炎药物取得 3 期成功
    今天,janssen research & development 宣布,关键性 3 期 go-vibrant 临床研究取得积极结果,数据显示静脉注射施用抗肿瘤坏死因子(tnf)alpha 制剂——simponi aria(golimumab 单抗)有效治疗活性状态的银屑病关节炎(psoriatic arthritis)。银屑病关节炎是一种慢性免疫系统介导的炎性疾病,其特征在于与银屑病相关的关节炎和皮肤损伤。据估计,全球 1.25 亿人患有银屑病的人群中约有三分之一会发展成为银屑病关节炎。该疾病导致疼痛、关节及其周围组织的僵硬和肿胀,通常出现在 30 和 50 岁之间,但可能随时引发疾病。虽然银屑病关节炎的确切致病原因未知,但基因、免疫系统和环境因素都被认为可在疾病最初发病状态中发挥作用。simponi aria 是一种注射型、完全人源化的抗 tnf-α单克隆抗体,其有效靶向具有生物活性的胞外分泌可溶型和跨细胞膜形式的 tnf-α。该分子是由于慢性炎性疾病而在体内过度产生的蛋白质,引起炎症且损害骨骼、软骨等组织。通过与 tnf-α结合并阻断 tnf-α介导的细胞信号,simponi aria 有助于控制炎症。simponi aria 已经在美国等 23 个国家获得批准,以 30 分钟输液形式联合甲氨蝶呤(methotrexate)用于治疗患有中度至重度活性的类风湿性关节炎成人患者。在上述 go-vibrant 临床研究中,在第 14 周时,75.1%接受 2mg/kg 剂量 simponi aria 的活性银屑病关节炎患者达到了研究的主要终点,即由美国风湿病学会(american college of rheumatology)定义的 acr20 测量指标:关节炎体征和症状至少有 20%幅度的改善,而接受安慰剂的患者仅占 21.8%(p参考资料:[1] janssen pharmaceutical release: new phase iii data show anti-tnf alpha simponi aria (golimumab) significantly improved arthritis and skin manifestations in patients with active psoriatic arthritis[2] janssen pharmaceutical 官方网站
  • 应用分享|近红外二区发射Au纳米团簇的磷酸化用于靶向骨成像和改进类风湿关节炎治疗
    近日,The Lancet Rheumatology发表一项研究预测到2050年全球骨关节炎的患病率情况,研究显示,截止到2020年,全球骨关节炎患者增加到5.95亿,约占全球人口的7.6%,增幅高达132%。由此可见,开发针对骨相关疾病的精准无创诊疗技术迫在眉睫,因为它不仅可以连续监测骨代谢、生长、转移、给药和指导手术,而且可以实现骨疾病的高效治疗。然而,设计精准无创的骨疾病诊疗探针是极具挑战的工作。应 用 报 道今年9月,青岛科技大学袁勋教授团队在《Aggregate WILEY》报道了一种新型的金团簇基骨靶向诊疗探针[1],实现了高时空分辨的体内骨靶向近红外二区(NIR-II)荧光成像和增强的类风湿性关节炎治疗。图1. Au44MBA26-P团簇的体内特异性骨靶向和高分辨率成像该探针的设计关键在于将原子级精确的NIR-II发射Au44团簇的表面进行磷酸化。一方面,Au44团簇的表面磷酸化大大增强了探针的骨靶向能力,使骨主要成分羟基磷灰石对磷酸化前后的Au44团簇探针的理论max吸附量提高了1.36倍,使该团簇探针实现了高对比度和高分辨率的体内骨靶向NIR-II荧光成像(信噪比提升1.4倍,见图1)。图2. Au44MBA26-P团簇对胶原免疫诱导大鼠类风湿性关节炎(CIA)模型的治疗作用另一方面,该团簇探针作为一种新型纳米药物,具有直接的生物效应,可显著抑制脂多糖诱导的小鼠巨噬细胞促炎因子的产生。在II型胶原诱导的大鼠类风湿性关节炎治疗中,该团簇探针表现出优异的抗炎和免疫调节作用,可将破坏的软骨恢复到接近正常状态,比临床治疗药物甲氨蝶呤效果更为显著(图2),且具有良好的肾脏清除率和优良的生物相容性。本研究提出了一种金属纳米团簇基诊疗探针的设计范例,为高分辨率骨靶向荧光成像和类风湿性关节炎治疗提供了新思路。图3.睿光NirVivo-Pro 近红外二区小动物活体荧光成像系统助力科研研究[1]: Phosphorylation of NIR-II emitting Au nanoclusters for targeted bone imaging and improved rheumatoid arthritis therapyhttps://linkinghub.elsevier.com/retrieve/pii/S0142961223001382产 品 推 荐近红外二区小动物活体荧光成像系统NirVivo-Pro 活体荧光成像系统是北京睿光科技自主研发的一款专门用于近红外二区的光学成像系统。该系统可实现高质量荧光图像的采集及图像处理,实时地观察基因在活体动物体内的表达、肿瘤的发生、生长、转移及药物的治疗效果,对同一个动物进行时间、环境、发展和治疗影响跟踪,可用于生命科学、医学研究及药物开发等应用领域。产品特点
  • “ADC一哥”营收大增75.59%,双产品驱动新药研发关键冲刺
    荣昌生物一度被视为中国ADC企业的龙头。作为国内的“ADC一哥”,近日荣昌生物披露了2024年中期业绩:实现总营收7.42亿元,同比增加75.59%。这一成绩主要得益于泰它西普和维迪西妥单抗两款产品的强劲销售增长。荣昌生物正站在新药研发的关键冲刺阶段,步入了发展的关键时期。营收大增75.59%当前,荣昌生物已顺利将两款产品商业化,分别为自身免疫药物泰它西普和抗肿瘤产品维迪西妥单抗。具体而言,泰它西普(代号RC18)于2021年3月在国内获批用于治疗系统性红斑狼疮,今年7月又获NMPA批准针对类风湿关节炎的新适应症;维迪西妥单抗(代号RC48),分别于2021年6月、12月获NMPA批准用于治疗胃癌、尿路上皮癌。得益于两款产品的强劲销售,2024年上半年,荣昌生物的总营收较去年同期激增75.59%,达到4.22亿元。其中,第二季度单季实现营收4.11亿元,同比增长61.82%,环比也实现了24.55%的增长。在商业化方面,荣昌生物采取了多项策略,除了迅速让产品纳入医保目录,还分别组建了自免和肿瘤两个商业化团队。截至今年6月30日,自免商业化团队已组建约800人的销售队伍,已准入超过900家医院;肿瘤商业化团队已组建近600人的销售队伍,已准入超过700家医院。图片来源:中泰证券研报与此同时,随着两款核心产品不断拓宽市场,准入医院和覆盖药房数量显著增加,商业化团队的一线销售人员规模不断扩大,以及加大市场推广力度,使得上半年销售费用同比增长11.28%至3.9亿元。不过,得益于产品销售增速快于销售费用的增长,以及公司加强成本控制、提升效率,使得销售费率较上年同期下降了30%,充分体现了荣昌生物在市场拓展、成本管控及策略优化等多方面所取得的显著成效。此外,随着新药研发管线的增加,多个创新药物处于关键试验研究阶段,尤其是海外临床进展加快,相关临床试验费、材料费、测试费等费用增加,导致上半年公司研发费用同比增长49.18%至8.06亿元。而研发费用的大幅增加,导致荣昌生物归母净利润同比减少。同时,截至今年6月30日,公司总现金储备为8.76亿元,较去年同期有所减少。不过,针对现金流管理,荣昌生物表示在资金方面做了充分的准备,包括账上有一定的现金储备、商业化带来一定规模的现金流、拥有充足的银行授信、潜在的国际合作和资本市场融资。同时,公司还计划通过定增募资不超过19.53亿元,以推动RC18、RC48及RC28等产品的临床研究进程。值得一提的是,当前荣昌生物所面临的挑战,恰恰反映了其正处于发展的关键节点。未来发展的关键已处于临床后期的众多管线,是决定荣昌生物未来发展的关键。短期来看,已有多个适应症处于Ⅲ期临床的泰它西普和维迪西妥单抗,以及临近商业化的RC28,将是充盈公司现金流的有力支撑。今年7月,泰它西普获国家药监局批准第2项适应症:联合甲氨蝶呤,用于对甲氨蝶呤疗效不佳的中、重度活动性类风湿关节炎(RA)成人患者。这进一步拓宽了泰它西普的临床应用范围,有望为公司带来新的增长点。另外,泰它西普还有多个适应症已处于临床Ⅲ期阶段,包括在美国开展的系统性红斑狼疮(SLE)、原发性干燥综合征(中美两地同步开展)、IgA肾炎(中美两地同步开展)、重症肌无力(MG)、视神经脊髓炎谱系疾病(NMOSD)。8月13日,荣昌生物宣布,泰它西普治疗MG的III期临床研究已达到主要终点,将择机向NMPA递交上市申请。根据弗若斯特沙利文报告,全球MG患者人数预计2025年达到114.6万,中国患者人数约为21.67万。荣昌生物主要研发管线情况图片来源:荣昌生物财报维迪西妥单抗(RC48)是首个国产抗体偶联药物(ADC),靶向HER2,目前已在中国获批治疗胃癌、尿路上皮癌(UC)。目前,荣昌生物针对RC48开展了多个单药或联合用药治疗不同实体瘤的临床试验,其中RC48治疗HER2阳性乳腺癌伴肝转移患者的Ⅲ期临床研究已达到主要终点、RC48联合PD-1治疗围手术期HE2表达浸润性膀胱癌已处于III期临床、合作伙伴Seagen正在开展RC48联合PD-1治疗一线UC的III期临床研究。临近商业化阶段的RC28,是荣昌生物在眼科领域的核心产品。RC28是用于治疗眼部疾病的VEGF/FGF双靶点融合蛋白,目前正在开展针对湿性老年黄斑变性(wAMD)和糖尿病黄斑水肿(DME)的III期临床试验,以及治疗糖尿病视网膜病变(DR)的II期临床试验。市场认为,眼科治疗药物是极具市场潜力的“黄金赛道”,主要是由于患者基数庞大,2022年中国wAMD、DME和DR患者人数分别达到524万人、1452万人、3253万人。据浙商证券研报显示,2022年抗VEGF药物雷珠单抗、康柏西普、阿柏西普的样本医院销售额均达到3亿元以上,目前国内抗VEGF药物市场规模已超过40亿元,预计RC28三项适应症在2026-2028年获批上市,国内销售峰值将超过10亿元。图片来源:浙商证券研报管线梯队全面开花研发管线梯队和技术平台,是创新药企实现持续发展的基石。基于此,荣昌生物打造了三大具备自主知识产权的核心技术平台,包括抗体和融合蛋白平台、ADC平台和双功能抗体平台。除了泰它西普、维迪西妥单抗和RC28,荣昌生物的管线梯队还拥有5个处于临床开发阶段的分子,包括RC88、RC148、RC198、RC248和RC278,药物类型包括ADC、融合蛋白和双抗。RC88是具有FIC潜力的新型间皮素(MSLN)靶向ADC,用于治疗MSLN阳性实体瘤,其作用机制与维迪西妥单抗类似,正在开展用于治疗铂耐药复发性上皮性卵巢癌、输卵管癌和原发性腹膜癌(PROC)患者II期临床试验,以及联合PD-1注射液治疗晚期恶性实体瘤患者的I/IIa期临床研究。MSLN高度表达于间皮瘤、胰腺癌和卵巢癌,当前针对MSLN靶点的药物类型众多,而MSLN ADC管线以海外药企布局为主,国内管线稀少。今年6月,荣昌生物在ASCO年会上公布了RC88针对卵巢癌、非鳞状非小细胞肺癌和宫颈癌的I/II期临床研究结果。值得一提的是,辉瑞在2023年12月以总额11亿美元引进了和铂医药子公司诺纳生物MSLN ADC药物HBM9033的全球权益。图片来源:华泰证券研报RC148(PD-1/VEGF双抗)是荣昌生物双抗平台首个进入IND阶段的产品,正在开展治疗局部晚期不可切除或转移性恶性实体瘤的I期临床,以及联合ADC治疗多种实体瘤的II期临床试验。PD-(L)1/VEGF双抗深受海外药企青睐,目前已达成多项License out交易:康方生物就依沃西单抗(PD-1/VEGF双抗)与Summit达成总额50亿美元合作,普米斯生物就PM8002(PD-L1/VEGF双抗)与BioNTech达成超10亿美元合作,宜明昂科就IMM2510(PD-L1/VEGF双抗)和CTLA-4抗体IMM27M与Instil Bio达成超20亿美元合作。巨大的市场潜力,自然吸引不少药企进军PD-(L)1/VEGF双抗领域,除上述药企外,已进入临床阶段的还有三生制药SSGJ-707、神州细胞SCTB14、君实生物JS207和天士力控股子公司天士力生物B1962等。RC198是IL-15和IL-15Rα的Fc融合蛋白,具有广谱抗肿瘤的潜力,正在开展单药治疗晚期恶性实体瘤的I期临床试验,目标肿瘤类型包括但不限于黑色素瘤、尿路上皮癌、肾细胞癌等。RC248是新型DR5靶向ADC,用于治疗多种实体瘤,目前正处于I期爬坡的研究阶段;RC278也是一种用于治疗多种实体瘤的新型ADC药物,目前尚处于临床前研究阶段,靶点处于保密状态。结语营收大增75.59%的亮眼业绩,显著展现了荣昌生物商业化速度的明显提升。而研发费用的攀升,也揭示出荣昌生物正站在新药研发的关键冲刺阶段,面临至关重要的转折点。从强劲的研发势头和定增方案可以看出,荣昌生物正在积极备战,全力冲刺产品研发的“最后一公里”,完成蜕变。
  • 仪器表征,科学家开发新型纳米药物,用于治疗动脉粥样硬化!
    【科学背景】动脉粥样硬化是一种以动脉斑块逐渐沉积为特征的疾病,最终可能导致严重的动脉血栓事件。因此,抗炎策略在临床治疗中显现出巨大的潜力。近来,Canakinumab抗炎血栓结果研究(CANTOS)临床试验对约10,000名心肌梗死后患者进行了研究,结果显示,使用Canakinumab(一种中和促炎性IL-1β细胞因子的单克隆抗体)的治疗显著减少了心血管事件的发生。然而,这一疗法也增加了致命感染的风险,主要是因为中性粒细胞减少,宿主防御能力受到削弱。另一个临床试验,心血管炎症减少试验(CIRT),则表明低剂量甲氨蝶呤的系统治疗未能有效减少促炎细胞因子的表达或心血管事件。这些结果提示,若能将治疗药物有效地递送至动脉壁病变区域,将可能显著提高疗效并减少副作用。此外,病灶巨噬细胞中过量的活性氧(ROS)是促进动脉粥样硬化进展的另一个关键因素。ROS过量产生会增加氧化应激,导致细胞凋亡并激活炎症反应。由于炎症在动脉粥样硬化过程中引起ROS的过量生成,因此尽管具有挑战性,但同时解决炎症和抑制病灶ROS生成的治疗策略对于动脉粥样硬化的管理具有重要意义。虽然一些纳米治疗剂在临床前研究中显示出双重治疗功能,但其在疾病部位的低积累、复杂的合成路线和潜在的毒性问题仍然是临床转化的障碍。因此,迫切需要合成具有抗氧化和抗炎功能并且能在疾病部位高效积累的生物相容性纳米材料。为此,科学家们将研究目光投向了二维(2D)黑磷纳米片(BPNSs)。由于其独特的物理化学特性和优异的生物相容性,BPNSs在纳米医学领域得到了广泛研究。最近的一项临床前研究表明,BPNSs可以有效清除过量的ROS,改善急性肾损伤。基于这一发现,四川大学华西医院宋相容课题组和哈佛大学医学院的陶伟、Wei Chen合作开发了具有良好生物相容性和高病灶巨噬细胞积累能力的靶向BPNS纳米治疗剂。与传统的纳米载体递送药物策略不同,作者采用了一种创新的“纳米药物递送药物”方法,用于治疗动脉粥样硬化。具体而言,作者利用BPNSs的药物携带能力,将解决炎症的脂质介质Resolvin D1(RvD1)加载其中。RvD1负载的BPNSs不仅能够清除周围的ROS,且在病灶巨噬细胞中选择性地释放RvD1,从而在载脂蛋白E缺乏(Apoe&minus /&minus )小鼠的动脉粥样硬化模型中增强抗动脉粥样硬化效果。【科学亮点】(1)实验首次开发了靶向肽修饰的黑磷纳米治疗剂(BPNSs@PEG-S2P/R),旨在解决动脉粥样硬化治疗中的挑战。(2)实验通过将2D PEGylated BPNSs结合S2P靶向肽和抗炎药物RvD1,成功实现了以下几点结果:&bull BPNSs@PEG-S2P/R能有效积聚于动脉粥样硬化斑块的病灶巨噬细胞,并在S2P肽的协助下渗透斑块。&bull 药物RvD1在ROS响应性释放的方式下,被有效递送至病灶巨噬细胞,展现出显著的抗炎效果。&bull BPNSs@PEG-S2P/R不仅能同时清除ROS,还能抑制病灶巨噬细胞中ROS诱导的炎症反应。&bull 在Apoe&minus /&minus 小鼠模型中,BPNSs@PEG-S2P/R显著减少了斑块面积,并提高了斑块的稳定性。&bull 在动脉粥样硬化斑块中,BPNSs@PEG-S2P/R能有效抑制巨噬细胞负担、炎症反应和氧化应激。&bull 长期治疗后,BPNSs@PEG-S2P/R未引起小鼠免疫或毒性不良反应。【科学图文】图1:BPNSs@PEG-S2P/R的合成策略和抗动脉粥样硬化机制示意图。图2:BPNSs@PEG-S2P/R的表征及RvD1负载和释放研究。图3:BPNSs@PEG-S2P/R处理后细胞摄取、ROS清除能力、抗炎效果、氧化低密度脂蛋白摄取和泡沫细胞形成的体外分析。图4:BPNSs@PEG-S2P/R的药代动力学和生物分布。图5:通过量化病变面积和评估斑块稳定性特征,评估BPNSs@PEG-S2P/R在Apoe&minus /&minus 小鼠中的抗动脉粥样硬化效果。图6:单细胞转录组学揭示了BPNSs@PEG-S2P/R治疗调控主动脉病灶巨噬细胞的基因和关键分子通路。【科学结论】本研究深入探索了动脉粥样硬化的复杂病理机制,突出了慢性炎症和ROS过量生成在疾病发展中的关键作用。通过利用二维黑磷纳米片(BPNSs)的独特特性,如优异的生物相容性和强大的ROS清除能力,本文创新性地设计了靶向肽修饰的纳米治疗剂,实现了双重治疗功能:有效清除ROS并解决斑块中的炎症。这一“纳米药物递送药物”的策略不仅有效提高了治疗效果,还显著减少了对机体的不良影响。研究结果不仅在动物模型中验证了其显著的疗效和安全性,而且通过单细胞水平的分析揭示了治疗机制的深层次调控,为未来开发治疗动脉粥样硬化及其他炎症性疾病的新型纳米药物提供了重要的价值。这些成果不仅有望促进相关领域的进一步研究和临床应用,还为纳米技术在个体化医疗和精准治疗中的广泛应用提供了有力支持,为解决复杂疾病治疗中的关键挑战开辟了新的道路。原文详情:He, Z., Chen, W., Hu, K. et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01687-1
  • 资助1500万元!“重型车辆氨氢融合零碳动力系统基础研究”专项项目指南
    为推动面向国家碳中和的基础研究,国家自然科学基金委员会(以下简称自然科学基金委)交叉科学部拟设立“重型车辆氨氢融合零碳动力系统基础研究”专项项目,针对重型车用氨氢融合燃料及其高效近零排放的核心科学问题,开展多学科交叉研究,为我国实现重型运输装备的碳中和提供科学依据和基础支撑。  一、科学目标  本专项项目旨在围绕氨氢融合燃料和热、电复合动力系统,探索相关化学反应动力学、流体动力学、热力学和系统动力学的协同机制,建立氨氢融合燃料复合动力系统的设计理论与方法,解决车用氨燃料点火难、燃烧慢及动态控制复杂等问题,为重型运载车辆氨氢融合燃料复合动力系统零碳排放技术创新与应用奠定基础。  二、拟资助方向  (一)氨氢燃料融合、发动机燃烧、排放物生成及后处理全过程的化学反应动力学。阐明氨车载制氢、氨氢融合燃料燃烧及有害排放物(NOx、NH3等)生成与净化机理,形成新型发动机设计理论和方法。  (二)氨氢融合动力系统中的多相多组分非稳态流体动力学。揭示氨氢融合燃料喷雾、相变机理以及混合流动规律,建立跨临界、多相多组分流体动力学模型,实现非稳态条件下燃料与空气混合的精确控制。  (三)重型车辆氨氢融合热电复合高效动力系统的热力学和动力学及其动态控制方法。阐明多源能量在动态条件下的调配与控制机制,建立车用高效氨氢多源复合动力系统设计理论与协同控制方法。  三、资助期限和资助强度  本专项项目资助期限为5年,项目研究期限应填写“2023年1月1日—2027年12月31日”,拟资助1项,直接费用为1500万元。  四、申请要求及注意事项  (一)申请资格  1.具有承担基础研究课题的经历。  2.具有高级专业技术职务(职称)。  在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。  (二)限项申请规定  1.本专项项目从申请开始直到自然科学基金委作出资助与否决定之前,不计入高级专业技术职务(职称)人员申请和承担总数2项的范围;获资助后计入高级专业技术职务(职称)人员申请和承担总数的范围。  2.申请人和参与者只能申请或参与申请1项本专项项目。  3.申请人同年只能申请1项专项项目中的研究项目。  (三)申请注意事项  1.申请书报送时间为2022年4月15日—4月21日。  2.本专项项目申请书采用在线方式撰写。对申请人具体要求如下:  (1)申请人在填报申请书前,应当认真阅读本“专项项目指南”和《2022年度国家自然科学基金项目指南》的相关内容,不符合项目指南和相关要求的申请项目不予受理。  (2)本专项项目旨在紧密围绕指南公布的科学目标集中国内优势研究团队进行协同攻关,申请人应针对拟资助研究方向具体阐述拟开展的研究内容、方案及资金预算。同时要求综合运用多学科研究方法开展深入、系统的研究,各研究方向间要有紧密和有机联系,研究内容互补,充分体现项目整体研究与各研究方向的科学目标实现路径,各研究方向间涉及材料、数据和方法的应进行共享。  (3)申请人登录科学基金网络信息系统https://isisn.nsfc.gov.cn/(没有系统账号的申请人请向依托单位基金管理联系人申请开户),按照撰写提纲及相关要求撰写申请书。  (4)申请书中的资助类别选择“专项项目”,亚类说明选择“研究项目”,附注说明选择“科学部综合研究项目”,申请代码选择“T01”。以上选择不准确或未选择的项目申请不予受理。  (5)本专项项目的依托单位和合作研究单位数合计不得超过5个。主要参与者必须是项目的实际贡献者。  (6)申请书应突出有限目标和重点突破,明确对实现本专项项目总体目标和解决核心科学问题的贡献。  如果申请人已经承担与本专项项目相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。  (7)专项项目资金管理采用预算制。申请人应当认真阅读《2022年度国家自然科学基金项目指南》申请规定中预算编报要求的内容,根据《国家自然科学基金资助项目资金管理办法》(财教〔2021〕177号)、《国家自然科学基金项目申请书预算表编制说明》的具体要求,认真如实编报项目预算,依托单位要按照有关规定认真进行审核。  3.本专项项目实行无纸化申请,申请人完成申请书撰写后,在线提交电子申请书及附件材料。依托单位只需在线确认电子申请书及附件材料,无须报送纸质申请书,但应对本单位申请人所提交申请材料的真实性和完整性进行认真审核,在项目接收工作截止时间前(2022年4月21日16时)通过信息系统逐项确认提交本单位电子申请书及附件材料;在截止时间后24小时内在线提交本单位项目申请清单。项目获批准后,依托单位将申请书的纸质签字盖章页装订在《资助项目计划书》最后,在规定的时间内按要求一并提交。  4.本专项项目咨询方式:  国家自然科学基金委员会交叉科学部综合与战略规划处,联系电话:010-62328382。  (四)其他注意事项  1.为实现专项总体科学目标,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定。  2.为加强项目的学术交流,每年应举办一次项目年度学术交流会,并不定期地组织相关领域的学术研讨会。 国家自然科学基金委员会交叉科学部2022年3月15日
  • 卫生部:串联质谱法将用于新生儿疾病筛查
    新生儿疾病筛查是减少出生缺陷、提高我国出生人口素质的三级预防措施之一。为进一步做好新生儿疾病筛查工作,卫生部于2008年开始对2004年印发的《新生儿疾病筛查技术规范》进行修订。经多次研讨并广泛征求有关专家、各省(区、市)卫生厅局及卫生部相关司局意见,形成了《新生儿疾病筛查技术规范(2010年版)》(以下简称《技术规范(2010版)》)。   《技术规范(2010年版)》由六个部分组成:新生儿遗传代谢病筛查血片采集技术规范 新生儿遗传代谢病筛查实验室检测技术规范 苯丙酮尿症和先天性甲状腺功能减低症诊治技术规范 新生儿遗传代谢病筛查操作流程 新生儿遗传代谢病筛查知情同意书 新生儿听力筛查技术规范、新生儿听力筛查技术流程和新生儿听力筛查知情同意书。主要对筛查机构、诊治机构、人员和设备要求以及技术流程等内容作了具体规定和修改。与2004年版的技术规范相比,《技术规范(2010年版)》有以下几个方面特点:   一是强调了新生儿疾病筛查中心的设置必须符合《新生儿疾病筛查管理办法》的要求   二是在《新生儿遗传代谢病筛查血片采集技术规范》中增加了“采血机构和人员职责”内容,强调“血片采集步骤”中的生物安全,以及明确了“合格滤纸干血片”的内容   三是在《新生儿遗传代谢病筛查实验室检测技术规范》中强调了实验室硬件和软件的建设,筛查实验室必须符合《新生儿疾病筛查管理办法》及《医疗机构临床实验室管理办法》,在苯丙氨酸的检测方法上增加了串联质谱法   四是在《苯丙酮尿症和先天性甲状腺功能减低症诊治技术规范》中,更加明确了“机构设置”、“人员要求”和“机构与人员职责”,增加了“召回制度”,在诊断方面,增加了“四氢生物蝶呤缺乏症(BH4D)”内容   五是“新生儿遗传代谢病筛查操作流程”更明确具体,并新增加了“新生儿遗传代谢病筛查知情同意书”   六是《新生儿听力筛查技术规范》增加了随访及康复环节的内容、以及技术流程与知情同意书。
  • 通用仪器发布深圳通用血药浓度分析仪的功能参数与优势新品
    GI-3000XY血药浓度分析仪的功能参数与优势 一、产品简介GI-3000XY是基于二维高效液相色谱技术上研发的血药浓度分析仪。配备了丰富的临床治疗用药的血药浓度检测方法和专业色谱工作站软件,使其成为一套具有功能强大的在线前处理功能、药检方法丰富的全智能化操作的血药浓度监测专用设备。能够使血药浓度监测从原来的实验室研究可以走向临床用药监测和指导。填补了该项目空白,具有划时代意义,为国家对某些药物治疗必须要进行血药浓度监测强制性要求提供了必要设备和手段。 二、产品五大优势:(1)产品技术优势:采用第三代液相色谱仪技术, 恒流泵采用高精度伺服电机驱动精密滚珠丝杠的丝杠传动技术、100MPa超高耐压技术,自动进样器采用电脑全自动控制高压进样、流动相过针技术,检测器采用高频采样技术(频率80HZ)(2)产品方案优势:采用全自动二维液相色谱技术方案,是先进、具有发展前途的血药浓度检测仪技术方案,也是目前较适应临床监测的方法。其它传统方案均不适应临床监测。(3)药检方法多优势:配有丰富的临床药物检查方法,可满足医院各科临床药物检测。比如:精神病、癫痫病、免疫抑制、维生素、抗肿瘤、抗菌素、心脏药物等等。(4)专用仪器优势:产品针对血药浓度检测目的研发,检测系统整体统一设计、生产,系统整体性强,配合度高,重复检测精度高、系统稳定性、耐用性好。(5)厂家售后服务优势:厂家销售,厂家售后服务、后续软件免费升级、功能定制、产品维护服务都有保障。 三、主要功能与技术参数:1、检测系统综合功能参数(1)检测分析方法:采用高效液相色谱法★(2)仪器系统采用技术:二维液相色谱技术,具备二维系统直观引导、操作界面。(3)仪器软硬件各个部分都保持统一由一个原厂设计制造,确保仪器系统整体一致性好,稳定性强★(4)每例样品检测时长:5-10分钟★(5)加标回收率:必须在90%-110%范围(6)系统重复性RSD6(定性):≤0.05%(7)系统重复性RSD6(定量):≤0.2%★(8)机载配备临床治疗药物浓度检测方法30种以上。(9) 样品处理仅采用稀释去蛋白处理(10)工作曲线最少保持30个工作日内稳定 2、自动进样器:★(1)样品瓶位数量:不小于144个(2)样品残留:小于0.005%★(3)自动进样器,要采用高压进样,流动相过针技术,无需清洗进样针内壁,外壁自动清洗,可减少样品残留。 (4)采用高压计量泵量自动抽取,通过电脑随时改变进样量大小,无需更换定量环。 (5)进样前可自动清洗进样针外壁,减少样品交叉污染 (6)电源功率220v±10%,50hz 150w 3、四元超高耐压恒流泵:★(1)采用双步进电机,分别独立驱动二根精密滚珠丝杆的恒流泵输液系统,柱塞冲程20uL-140uL可调,可用电脑方便地设置调节。(2) 恒流泵耐压:80-100MPa(3)压力脉动:≤±0.02MPa。 (4)内置四元梯度比例阀,比例阀寿命 1000万次 ★(5) 具有5寸16:9的TFT高分辨率触控彩屏(800*480点阵)。并具有大屏幕直接操控与电脑软件反控二种功能(6)输液泵系统,不需要独立梯度混合器,梯度混合在泵内完成,以减小死体积,提高系统重复检测精度。 (7)内置在线脱气机,脱气机采用高效Teflon AF管,脱气机死体积 (11) 泵的压力可精确显示到0.01MPa,便于进一步观察掌握压力波动的细微变化。 4、综合分离分析单元: (1) 温度控制范围:5℃~80℃(室温<25℃);(2) 温度控制精度:≤±0.1℃;(3)高柱效分析柱 4.6*100(mm) 粒径3uL(4)在线SPE柱 4.6*10(mm) (5) 综合单元的参数可由色谱数据处理工作站进行设定和控制 (6) 温度可双方向控温:可制冷和制热,智能温控。(7) 温度设定分辨率:0.1℃(8) 综合单元具有电脑软件反控功能 5、紫外检测器:(1) 波长范围:190nm-700nm;(2) 基线噪声:≤±1×10-5 AU(甲醇、1ml/min、254nm、20℃); (3) 基线漂移:≤±3×10-4 AU/h(甲醇、1ml/min、254nm、20℃);(4) 检测浓度:≤2×10-9g/ml(萘);(5) 光谱带宽:5nm;(6) 波长示值误差:≤±1nm;(7) 波长扫描:多波长时间编程(10波段);(8) 检测器具有电脑软件反控功能(9) 检测器采用双通道数据、高精度24位AD转换、信号采样频率高达80hz/s高速数据采集器,确保检测器的高速度、低噪声、低漂移、超高灵敏度检测。 (10) 采用新型H型流通池,双方向对流,保证基线的波动小(11) 池体积:8μL; 6、高压稀释泵:(1) 泵压力:0-45mpa(2) 流量范围:0.001-9.999ml/min;设定步长:0.001mL/min(3) 流量精度:具有独立的公有和私有的仪器方法,分析方法,报告方法的设置,修改私有方法时不改变公有方法,方便样品表方法的建立和管理。仪器方法、分析方法与报告方法的建立、修改、删除都具有权限管理和审计追踪功能,数据库更安全高效。(2)软件具有满足GMP要求的用户权限管理,审计追踪功能(3)软件带有有MySQL数据库管理功能,所有关键数据均存入数据库,具有数据的导入导出功能。(4)机载四十种临床药物检测方法,方便用户临床检测使用。软件方便用户进行药检方法开发并保存。 ★(5) 控制方式:具有电脑反控功能。(6)主界面可以可以完成大部分操作,不要多个界面中来回切换。(7)具有样品表批处理功能,即样品表建立后,可一键完成全部的样品测试。样品完成后可设置自动冲柱,智能关机,实现无人值守。 (8)软件要高度集成,数据设置、采集、分析和查看一个软件完成,操作方便。 数据分析以实际采集的数据为依据,确保数据真实性。 (9)软件采用纯面向对象的JAVA语言编写,软件具有高扩展性,和跨平台运行功能。(10) 软件能对系统进行全反控操作控制、自动数据采集、谱图处理等。 (11) 使用的方法文件能对色谱仪的分析参数、谱图数据、分析报告进行存储与统一管理; (12) 全中文操作菜单, 直观方便的人性化操作界面; (13) 工作站具有多形式的谱图比较功能,有利于色谱研究; (14) 工作方式:前后台实现数据采集、计算、整理、储存和打印 ★8、验收试验设备验收时,必须做加标回收率实验,加标回收率是判定仪器检测分析结果准确度的量化指标,加标回收率:必须在90%-110%范围, 四、仪器配置1、四元超高耐压恒流泵系统 (内置四元比例阀、在线脱气机、含在线柱塞杆清洗装置) 二套,2、四单元在线脱气机(内置) 二套,3、UV紫外检测器系统 一套,4、综合分离分析系统 一套,5、自动进样器系统 一套,6、高压稀释泵 一台7、色谱控制软件系统 一套,8、高柱效分析柱 一根9、SPE固相萃取柱 五、产品适用范围仪器检测药物种类多、品种广泛,并可不断开发新的药检方法。(1)精神科药物:氯氮平、奥氮平、文拉法辛、利培酮、西酞普兰、舒必利、阿立哌唑、米氮平、阿米替林、氯丙嗪、喹硫平、氯米帕明、齐拉西酮、帕利哌酮、三氟拉嗪、氟西汀等等。(2)抗癫痫药物:卡马西平、丙戊酸钠、苯巴比妥、苯妥英钠、奥卡西平、左乙拉西坦、拉莫三嗪等等。 (3)催眠镇静类:阿普唑仑、氯硝安定、硝基安定、咪达唑仑、安定、舒乐安定、劳拉西泮等等。 (4)抗肿瘤药物类:顺铂、卡铂、紫杉醇、甲氨蝶呤、5-氟尿嘧啶、阿糖胞苷、阿霉素、表阿霉素、足叶乙苷、卡莫司汀、呋喃氟尿嘧啶、环磷酰胺、异环磷酰胺 等等(5)维生素类:维生素A、D、E 等等。(6)免疫制剂类:霉酚酸、特异性环孢霉素、FK-506 等等。(7)其它类别:单胺类 、镇痛类药物、激素类药物、心血管类、抗结核类药物、 循环系统、 胃肠道药物 、其他药物等等。 创新点:采用丝杠传动技术,用二个伺服电机分别驱动主泵与辅泵的二根滚珠丝杠,进而驱动柱塞杆运动,二者独立控制,无齿轮传动联动,因此主辅二个泵的冲程独立任意可调,为液相色谱仪流动相的梯度混合、在泵内完成提供前提条件,从而可以去掉泵外的独立梯度混合器,减小死体积,提高仪器的重复检测精度。 深圳通用血药浓度分析仪的功能参数与优势
  • 交叉科学部拟设立“重型车辆氨氢融合零碳动力系统基础研究”专项项目
    为推动面向国家碳中和的基础研究,国家自然科学基金委员会(以下简称自然科学基金委)交叉科学部拟设立“重型车辆氨氢融合零碳动力系统基础研究”专项项目,针对重型车用氨氢融合燃料及其高效近零排放的核心科学问题,开展多学科交叉研究,为我国实现重型运输装备的碳中和提供科学依据和基础支撑。本专项项目资助期限为5年,项目研究期限“2023年1月1日—2027年12月31日”,拟资助1项,直接费用为1500万元。  一、科学目标  本专项项目旨在围绕氨氢融合燃料和热、电复合动力系统,探索相关化学反应动力学、流体动力学、热力学和系统动力学的协同机制,建立氨氢融合燃料复合动力系统的设计理论与方法,解决车用氨燃料点火难、燃烧慢及动态控制复杂等问题,为重型运载车辆氨氢融合燃料复合动力系统零碳排放技术创新与应用奠定基础。  二、拟资助方向  (一)氨氢燃料融合、发动机燃烧、排放物生成及后处理全过程的化学反应动力学。阐明氨车载制氢、氨氢融合燃料燃烧及有害排放物(NOx、NH3等)生成与净化机理,形成新型发动机设计理论和方法。  (二)氨氢融合动力系统中的多相多组分非稳态流体动力学。揭示氨氢融合燃料喷雾、相变机理以及混合流动规律,建立跨临界、多相多组分流体动力学模型,实现非稳态条件下燃料与空气混合的精确控制。  (三)重型车辆氨氢融合热电复合高效动力系统的热力学和动力学及其动态控制方法。阐明多源能量在动态条件下的调配与控制机制,建立车用高效氨氢多源复合动力系统设计理论与协同控制方法。  三、资助期限和资助强度  本专项项目资助期限为5年,项目研究期限应填写“2023年1月1日—2027年12月31日”,拟资助1项,直接费用为1500万元。  四、申请要求及注意事项  (一)申请资格  1.具有承担基础研究课题的经历。  2.具有高级专业技术职务(职称)。  在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。  (二)限项申请规定  1.本专项项目从申请开始直到自然科学基金委作出资助与否决定之前,不计入高级专业技术职务(职称)人员申请和承担总数2项的范围;获资助后计入高级专业技术职务(职称)人员申请和承担总数的范围。  2.申请人和参与者只能申请或参与申请1项本专项项目。  3.申请人同年只能申请1项专项项目中的研究项目。  (三)申请注意事项  1.申请书报送时间为2022年4月15日—4月21日。  2.本专项项目申请书采用在线方式撰写。对申请人具体要求如下:  (1)申请人在填报申请书前,应当认真阅读本“专项项目指南”和《2022年度国家自然科学基金项目指南》的相关内容,不符合项目指南和相关要求的申请项目不予受理。  (2)本专项项目旨在紧密围绕指南公布的科学目标集中国内优势研究团队进行协同攻关,申请人应针对拟资助研究方向具体阐述拟开展的研究内容、方案及资金预算。同时要求综合运用多学科研究方法开展深入、系统的研究,各研究方向间要有紧密和有机联系,研究内容互补,充分体现项目整体研究与各研究方向的科学目标实现路径,各研究方向间涉及材料、数据和方法的应进行共享。  (3)申请人登录科学基金网络信息系统https://isisn.nsfc.gov.cn/(没有系统账号的申请人请向依托单位基金管理联系人申请开户),按照撰写提纲及相关要求撰写申请书。  (4)申请书中的资助类别选择“专项项目”,亚类说明选择“研究项目”,附注说明选择“科学部综合研究项目”,申请代码选择“T01”。以上选择不准确或未选择的项目申请不予受理。  (5)本专项项目的依托单位和合作研究单位数合计不得超过5个。主要参与者必须是项目的实际贡献者。  (6)申请书应突出有限目标和重点突破,明确对实现本专项项目总体目标和解决核心科学问题的贡献。  如果申请人已经承担与本专项项目相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。  (7)专项项目资金管理采用预算制。申请人应当认真阅读《2022年度国家自然科学基金项目指南》申请规定中预算编报要求的内容,根据《国家自然科学基金资助项目资金管理办法》(财教〔2021〕177号)、《国家自然科学基金项目申请书预算表编制说明》的具体要求,认真如实编报项目预算,依托单位要按照有关规定认真进行审核。  3.本专项项目实行无纸化申请,申请人完成申请书撰写后,在线提交电子申请书及附件材料。依托单位只需在线确认电子申请书及附件材料,无须报送纸质申请书,但应对本单位申请人所提交申请材料的真实性和完整性进行认真审核,在项目接收工作截止时间前(2022年4月21日16时)通过信息系统逐项确认提交本单位电子申请书及附件材料;在截止时间后24小时内在线提交本单位项目申请清单。项目获批准后,依托单位将申请书的纸质签字盖章页装订在《资助项目计划书》最后,在规定的时间内按要求一并提交。  4.本专项项目咨询方式:  国家自然科学基金委员会交叉科学部综合与战略规划处,联系电话:010-62328382。  (四)其他注意事项  1.为实现专项总体科学目标,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定。  2.为加强项目的学术交流,每年应举办一次项目年度学术交流会,并不定期地组织相关领域的学术研讨会。
  • 牙膏添加处方药“氨甲环酸”,为什么大家反应这么大?
    最近,某款牙膏被曝光,所谓的中草药止血,是因为在牙膏里掺了西药处方药“氨甲环酸”,引起了网络一系列讨论。为什么在牙膏里添加氨甲环酸被曝光后,会受到一众抵制呢?这就要从氨甲环酸,这一款处方药说起了。氨甲环酸(Tranexamic acid)又名凝血酸,化学名为反-4-氨甲基环已烷甲酸,白色结晶性粉末;无臭,味微苦。分子式:C8H15NO2氨甲环酸为氨甲苯酸的衍生物,是一种抗纤溶的止血药物。氨甲环酸化学结构与赖氨酸相似,能竞争性抑制纤溶酶原在纤维蛋白上吸附,防止其激活,保护纤维蛋白不被纤溶酶所降解和溶解,最终达到止血效果。但是!氨甲环酸是处方药!必须遵医嘱使用!我们来看看氨甲环酸的使用注意事项:1. 联合用药禁忌 药物名称临床症状及处置方法作用机制 危险因素凝血酶有可能有血栓形成的倾向有促进血栓形成的作用,如果联合用药有增加血栓形成的倾向2. 联合用药时的注意事项:药物名称临床症状及处置方法作用机制 危险因素蛇毒凝血酶大量合用时可引起血栓形成倾向本制剂具有的抗纤溶作用,有可能导致蛇毒血凝酶引起的我纤维蛋白块存留较长时间,从而使栓塞的症状延续巴曲酶有可能引起血栓或栓塞症由巴曲酶所生成的desA ,可阻碍纤维蛋白聚合体的分解。 凝血因子制剂依他凝血染等在口腔等纤溶系统活性比较强的部位,有可能使凝血系统进一步亢进。凝血因子制剂通过活化凝血系统出现止血作用,而本药物通过阻碍纤溶系统也出现止血作用以下患者应慎重给药(1)有血栓的患者(脑血栓、心肌梗塞、血栓静脉炎等)以及可能引起血栓症的患者。[有使血栓稳定化的倾向](2)有消耗性凝血障碍的患者。(与肝素等并用)[有使血栓稳定化的倾向](3)术后处于卧床状态的患者以及正在接受压迫止血的患者。[上述情况易发生静脉血栓,给予本药后有使血栓稳定化的倾向。有在下床运动及解除压迫后发生肺栓塞的报告。](4)有肾功能不全的患者[有时血药浓度升高](5)对本剂有既往过敏史的患者。可以看出,不合理用药,会增加血栓风险,因此氨甲环酸必须在医生指导下使用。而牙膏是我们日常生活必需品,老人小孩都会使用到它。虽然并不是直接服下,但是我们不能排除风险。另外,牙龈出血也不是随随便便把血止住就万事大吉了的。在排除了刷牙方式不当或牙刷刷毛过硬外,牙龈出血表示:1. 你患有牙龈炎,牙周炎了;2. 你牙结石过多了;3. 其他的一些全身性疾病。而所谓的止血牙膏,仅仅是把血止住了而已,对牙龈炎牙周炎等并无改善作用,类似于掩耳盗铃。久而久之,很多人就会错过口腔传递的求救信号,许多疾病就无法得到及时治疗,导致更严重的后果出现。最后,牙膏最主要的功能,就是清洁牙齿防止蛀牙,所以购买牙膏时,不必为了各种花哨的功能而左挑右选,除了含氟牙膏是经过证实能够预防龋齿之外,别的宣传基本上都是噱头。
  • 从非典到新冠,一家国产仪器厂商的蝶变
    9月15日下午,在第十四届中国科学仪器发展年会的CMO论坛上,我代表屹尧科技做了《内容营销下的品牌效应》的报告。初次讲这个主题,内心是有些忐忑的,因为这方面我们做得其实也并不够好,但最终在石老师的鼓励下,还是决定勇敢分享,以期抛砖引玉。报告最后,我说我们能够站在这里,屹尧科技的LOGO能够出现在报告厅的大屏幕上,就已经是胜利。胜利,不是对别人说的,屹尧科技战胜的是过去的自己。2003年,那次是非典。面对突如其来的疫情,三岁的屹尧科技对未来无比茫然。两位创始人相对无言,不知道是谁最先提出来的:“要不,算了吧?”当时有一家公司有意收购,双方甚至都谈妥了转让协议,屹尧科技在2003年初的估值是——30万人民币。大概相当于今天的一台TOPEX+微波消解仪,而就是这个价格,都没卖出去。17年后,这次是新冠,来势更加凶残。就在今年2月初,全民都响应号召宅在家里,而医护人员白衣执甲逆行出征的时候,屹尧科技官宣:“公司不会裁员减薪。”这一年,公司20岁。怀抱“共克时艰”的信念,半年后,那个逆势增长的数字,就是全体同仁对公司的回馈。喜讯同样来自乌兹别克斯坦,在他们的国家粮食局,“外企”屹尧科技脱颖而出,一举拿下7台TOPEX+。品牌怎么做?我在报告里说应该是立人设、通悲欢,然后可以共岁月。两次疫情,17年里,从要卖家当到想买点什么,一家国产仪器公司的蝶变背后,是天时地利人和,有偶然也有必然。我相信,我们只是国产仪器中普通的一员,类似的故事也发生在很多同行身上,甚至有人做得更好。圆桌论坛上,好几位老总都在大谈收购计划和扩大生产。就像胡老师说的,有仪器公司挺过了两次世界大战和多次经济危机,只要做好自己,持续去做到更好,我们就有理由保持乐观。16日和17日两天,听了很多领导、专家和同行的报告,分析问题、发掘机遇、探讨对策,受益良多。我们还获得了两个奖项,一个是“领军企业奖”,一个是“用户青睐仪器奖”(制样消解领域,国产进口各评选一台)。领奖的事儿,倪总坚决不上,让不那么帅的我去。我说:“那我回去把西装穿上,身材都走样了,遮着点。”他给否决了:“不用,这样挺好,衬衣上还有LOGO。”明年我决定认真减肥,毕竟到时获奖的型号很可能有我们全新推出的大眼萌M6,屹尧科技微波消解仪的颜值相当。
  • 文章推荐 | 使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量
    荷兰应用科学院(TNO, the Netherlands Organisation for Applied Scientific Research)和荷兰国家公共卫生与环境研究所(RIVM, National Institute for Public Health and the Environment)的联合研究团队发表了一篇题为“ Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods "的研究论文,已发表于《Atmospheric Measurement Techniques》。实验项目:使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量项目地点:荷兰 Ruisdael 观测站合作伙伴:荷兰应用科学院和荷兰国家公共卫生与环境研究所的联合研究团队部署仪器:HT8700大气氨激光开路分析仪项目简介:氨的干燥沉积(NH3)是荷兰大气向土壤和植被的氮沉积的最大因素,导致富营养化和生物多样性的损失。然而,学术界对于氨通量测量的数据十分有限,而且通常最多只有月度分辨率。造成这种情况的一个重要原因是在干燥条件下测量氨通量非常困难。过去,没有一种技术可以被认为是氨通量测量的黄金标准,这使得新技术的测试和判断其质量变得复杂。 这项研究展示了两种新型测量装置的相互比较结果,旨在以半小时分辨率测量氨的干沉降。在为期五周的比较期内,研究人员在荷兰 Cabauw 的 Ruisdael 观测站并排运行了两种光学开路的通量观测技术:其一是使用梯度法通量技术新型 RIVM-miniDOAS 2.2D 仪器,其二是宁波海尔欣光电科技有限公司推出的使用涡度协方差技术的HT8700大气氨激光开路分析仪。HT8700大气氨激光开路分析仪部署于荷兰的观测站RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪均为开路式光学仪器,在测量过程中直接测量氨在大气中的含量。除此之外,它们在测量原理和从测量浓度得出沉积值的方法上存在很大差异。在迎风地形均匀又没有附近障碍物时,两种不同的技术显示出非常相似的结果(r = 0.87)。观察到的通量从约80 ng NH3 m-2 s-1 的沉降到约140 ng NH3 m-2 s-1 的排放不等。无论是在绝对通量值还是实时的通量和浓度变化,两种截然不同的技术中获得了相似的结果,这证实了两种仪器都能够在至少几周的连续时间内以高时间分辨率测量氨通量。不过这个相关性也会受到其他因素影响,例如当风向受到附近障碍物干扰时。HT8700与定制化RIVM-miniDOAS 2.2D 仪器所测量的氨通量变化显示高度的一致性此外,论文中还讨论了两个系统的技术性能(例如,正常运行时间、精度)和实际局限性。miniDOAS 系统的正常运行时间达到了 100%,但在这次活动中对两台仪器进行了定期校准(占7周正常运行时间的35%)。而HT8700在下雨期间和下雨后不久数据有效性较低,并且其早期产品使用的光学镜面涂层可能会退化,导致约21%的数据缺失(针对此问题的升级版光学镜面已经交付客户使用)。虽然HT8700在恶劣天气条件下的独立运行时间有限,在适当的情况下,该系统仍然可以提供良好的结果,为未来的升级迭代版本打开了良好的前景,将能适用于业务化的实时氨通量监控应用。这些仪器所提供的崭新的高时间分辨率数据将促进对氨干沉降过程的研究,从而更好地理解氨沉降过程,并更好地对化学传输模型进行参数化。HT8700大气氨激光开路分析仪产品升级自动清洁自动清洁系统使用清洗和喷气功能来清除下镜面的灰尘,免除常规的手动清理。并采用了一种全新的镜面涂层技术,增强耐腐蚀性,以保证实地的长期观测。降雨传感如遇降雨天气,系统收集的数据为无效数据。增设降雨识别芯片,通过传感装置实时反馈至系统。并将降雨期间收集的数据特殊标注,便于使用者筛选有效数据。镜片加热在野外工作过程中会遇到低温条件,普通镜片易积水雾,影响镜片反射效率。开发加热系统,增设加热组件,可将镜片温度提至高于环境温度。确保反射能力不受低温、冷凝、降雨影响,使仪器分析结果更精准、更可靠。HT8700搭载升级版光学镜面,进行全新一轮野外测试通过这次研究,我们可以看到,RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪在测量氨沉降方面具有很高的潜力和应用价值。尽管这两种仪器在测量原理和数据处理方法上存在差异,但在一定条件下,它们都能提供准确可靠的测量结果。此外,通过不断的技术升级和改进,HT8700大气氨激光开路分析仪的性能和稳定性得到了进一步提高,为未来的氨沉降测量提供了更好的工具和手段。总之,这项研究提供了有关氨沉降测量的新思路和新方法,为未来的环境保护和生态学研究提供了新的工具和手段。我们相信,随着技术的不断进步和研究的深入,我们将能够更好地了解氨沉降过程,为保护环境、维护生态平衡和促进可持续发展做出更大的贡献。
  • 氨的过去,今天以及未来
    在碳达峰、碳中和的世纪热潮中,世界各国都在积极寻找下一代能源技术,氨能高效利用正在成为近期全球关注的焦点。目前,氨正从传统的农业化肥领域向新能源领域拓展。正是因为氢的储存和运输成本太高,氨开始受到更多的关注。资料显示,中国是全球氨生产大国,全世界每年生产合成氨2亿吨左右,我国的产能大约占到全球的四分之一。 图 碳达峰、碳中和是全球人类在21世纪的共同目标 从技术角度,氨由一个氮原子和三个氢原子组成,是天然的储氢介质;常压状态下,温度降低到零下33摄氏度就能够液化,便于安全运输。氨能是一种以氨为基础的新能源,既可以与氢能融合,解决氢能发展的重大瓶颈问题,也可以作为直接或者间接的无碳燃料直接应用,是实现高温零碳燃料的重要技术路线。 在进入新能源时代之前,氨已经是全球使用广泛的高产量(High Production Volume, HPV)的工业化学品之一,其中大约80%的商业化生产的氨进入农业并用于制造肥料。因此氨有完备的贸易和运输体系。所以,从理论上来看,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。 图 农业施肥为氨目前大的利用领域 除了化肥,氨在许多大型工业制冷系统中用作冷却剂,也时常是制造药品、塑料、纺织品、染料、杀虫剂、炸药和工业化学品的成分。在石油和天然气工业中,氨用于中和原油中常见的苛刻酸性化合物。采矿业使用“裂解”的 氨来提取铜、镍和其他金属,而燃煤和燃油发电厂则将氨添加到反应器中以净化烟雾并将有毒的氮氧化物转化为水和氮。氨还支持用于净化饮用水的氯胺消毒剂,并防止形成致癌副产品,这使得氨成为水处理应用的一种有价值的化合物。 如今,在船舶航运领域,氨即将以崭新替代能源的身份大展宏图。2021年10月28 日,国际可再生能源署(International Renewable Energy Agency, IRENA)发布报告称,氨在海运领域将成为清洁燃料的主力军。令人关注的是,挪威化肥巨头雅苒国际出资建造的全球一艘用氨能驱动的货船雅苒伯克兰号,已于2021年11月22日下水首航。 图 氨在海运领域将成为清洁燃料的主力军 全方位了解氨的危害 虽然氨在现代和未来社会的用途甚广,缺乏正确的氨气浓度测控和法规监管,过高的氨气浓度将会对人体健康和生态环境产生破坏性的影响。 l 健康危害接触低水平的氨会导致咳嗽以及对眼睛、鼻子、喉咙和呼吸道的刺激。虽然,高于25ppm浓度的氨可通过其刺激性气味被人类察觉,提供足够的早期预警信号。但氨的气味也会导致长时间接触后产生嗅觉疲劳,甚至损害人的嗅觉。 如果人体接触高浓度的氨,会立即灼伤鼻子、喉咙和呼吸道,导致呼吸道受损、甚至呼吸窘迫或衰竭,也可能导致死亡。由于儿童的肺表面积与体重之比较大,更容易受到氨的影响。 氨浓度 (ppm)对人体健康的影响50刺激眼睛、鼻子、喉咙(2小时暴露)100眼睛和呼吸道短时间内感到刺激性250大多数人能忍受(30-60分钟暴露)700眼睛和喉咙立即感到刺激性1500咳嗽、肺水肿、喉咙痉挛2500-4500致命(暴露30分钟以上)5000-10,000短时间内因气道堵塞立即致命,甚至造成皮肤损伤表一 暴露在不同的氨气浓度水平,可能会引起不同程度而的人体伤害(来源:Ammonia Toxicological Overview, Public Health England ) l 环境污染氨在二次气溶胶颗粒物生成中扮演着重要角色。其与大气中的硫酸和硝酸反应形成铵盐,作为颗粒物质在大气中停留几天至一周,然后再沉积回地面,是引发重霾污染和过量氮沉降的重要活性氮。图 大气中的氨是PM2.5的重要前体物 l 富营养化氨的排放以湿沉降和干沉降的形式返回地标,造成土壤和地表水的富营养化,从而影响植物和动物物种的生存。 氨气检测面面观 l 报警氨是一种有毒气体,暴露在一定浓度以上的氨气会对人体健康造成伤害,因此必须始终配备适当的安全监控程序和设备,以避免严重的意外伤害或死亡。 现有行业内氨分析仪器的常规标准为JJG 1105-2015《氨气检测仪检定规程》,适用于测量空气或氮气中氨含量的气体分析仪和检测报警器的检定,规程要求的两种量程范围其一为0-50 umol/mol(ppm),要求测试误差在±10%;其二为50-1000 umol/mol,要求测试误差在±6%。 JJG 1105-2015主要针对仪器检测原理的包含电化学、红外声光、非色散红外、化学发光、紫外等,采样方式有吸入式和扩散式两种。 l 氨逃逸燃煤锅炉烟气排放所含的氮氧化物,是空气污染的重要前体物,控制燃煤过程烟气排放的氮氧化物总量是各国环保法规的重点。选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是目前烟气脱硝主流技术。通过在烟气中注入氨水或尿素,其主要成分氨与氮氧化物发生化学反应,生成对环境无害的氮气和水。 脱硝过程的还原反应结束后,残余的氨气称之为氨逃逸。考虑氨气本身也是有害污染物,必须对烟气中残余氨气浓度进行实时监控,一方面使喷氨效率达到优,一方面降低氨的消耗及排放。 2018年,国务院将“开展大气氨排放控制试点 ”写入新版空气污染整治目标和计划——《关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》。随着各级政府对氨气污染的高度重视,工业氨气监测的需求也更加具有挑战。举例来说,2019年山东发布新的《火电厂大气污染物排放标准》重点增加了氨逃逸和氨厂界浓度控制指标要求,要求采用氨法脱硫或使用尿素、液氨或氨水作为还原剂脱硝的企业,其氨逃逸浓度应满足HJ2301中小于2.0mg/m3(约2.63ppm)的要求。 除了空气污染,氨逃逸对采用脱硝过程的企业还可能带来诸多危害:l 形成堵塞空预器的铵盐,增加维护成本(逃逸浓度2ppm时,半年后风机阻力增加约30%;3ppm时,半年后风机阻力增加约50%);l 频繁冲洗空预器,影响机组安全;l 使催化剂失活,缩短使用寿命;l 还原剂氨的耗材浪费;l 影响用于建材的飞灰(脱硝过程副产品)质量。 为了有效监测氨逃逸,一般情况下氨的监测仪表安装于脱硝系统的还原反应结束处,烟道处也会安装一台以监测最终烟气中的氨排放浓度。然而,传统的氨逃逸分析仪在实际监测中所遭遇的困难重重。传统基于近红外激光的分析仪,由于氨分子在近红外波段可用吸收光谱窄、吸收峰强度低,使得分辨率低(下限1ppm)并且易受其他气体干扰。从安装方式来看,对射式原位安装对法兰开孔精度要求高,烟道的振动、膨胀及收缩等都非常影响光精度与系统的稳定性,大大降低数据质量。同时原位式在线分析系统难以在线通入标气,对仪器进行有效的检验与标定。 海尔欣科技自主研发的LGM1600便携式高精度激光氨逃逸分析仪,基于新一代中红外激光吸收光谱技术,采用氨分子在中红外波段的强吸收峰,其强度高于近红外波段吸收100多倍,因此LGM1600检测精度比现有大多数氨逃逸分析仪器至少高出一个量级。结合德国进口高温采样预处理系统,LGM1600可实现无冷凝和极低吸附的氨气采样和分析。图 LGM1600便携式高精度激光氨逃逸分析仪 l 大气氨大气中的氨与农业活动密切相关。目前,农业活动例如施肥、畜牧养殖等是主要的人为氨排放源。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。 因氨具有强表面吸附力和水溶性等特性,大气氨浓度和地气氨交换通量的原位准确测量一直是学界的一大挑战,目前国际上主流的测量仪器大多采用闭路吸入式的构造,采样管路的吸附效应一直制约着大气氨浓度的快速高频高准度测量。与此同时,闭路仪器和搭配使用的外置抽气泵均要求交流供电,这意味着目前绝大多数的大气氨通量观测只能在少数电力条件允许的环境下开展。 例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。相较于氨气泄漏报警和工业排放,大气中的氨气浓度仅为0-50ppb,大多数情况下不超过10ppb,加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 宁波海尔欣光电科技有限公司与中科院大气物理研究所碳氮循环团队深入合作,研发了HT8700便携式、高精度、快响应的开路多通池激光氨分析仪(图X)。这款仪器基于可调谐激光吸收光谱(TDLAS)技术,采用了分布反馈式量子级联激光(DFB-QCL)的光源,其开放式的光路结构,解决了传统闭路仪器管路吸附引起的测量误差,光机电软各个部分高度集成,可完全由太阳能驱动运行,适合野外条件使用。 图 HT8700 高精度大气氨本底激光开路分析仪 目前,HT8700在国内已为中科院大气物理所和中国农业大学所采用,研究成果发表于世界SCI期刊《Agricultural and Forest Meteorology》和《Atmospheric Environment》。HT8700同时获得海内外专家青睐,先后展示于国家碳中和北方中心、欧洲地理学会(EGU)年会、世界氮素倡议大会(INI)、亚洲通量观测联盟(AsiaFlux)年会,并出口英国与荷兰,参与欧洲高端科学机构的研究项目。
  • 微波合成-拉曼光谱联用技术 | 应用于药物开发
    微波合成拉曼光谱“安东帕将微波合成技术带向新征程,迈向化学信息精准监测阶段。来看看这种联用技术在制药领域的巨大应用潜力吧! 微波化学是什么? 频段为2450MHz的电磁波与溶剂分子产生穿透、反射以及吸收,产生了特殊微波效应、热效应以及非热微波效应,可以对化学合成发挥巨大作用。穿透反射吸收常规合成的瓶颈在于如何优化反应条件,从而以合适的产率和纯度得到所需的产物。由于很多反应序列需要至少一步的长时间加热步骤,因此反应条件的优化通常耗时且困难。但利用微波辅助加热技术,可以将数天或数小时的反应缩短至几分钟甚至几秒钟,并可以快速测定反应参数,进而快速优化药物生产反应条件,提升化学制药的整体质量。与此同时,微波化学还能够提升化学反应的纯度。此外还可以通过产生新的化学反应,推动新产物的研发。 拉曼光谱是什么? 当入射激光照射物质时,存在着极少数的光子与物质分子发生非弹性碰撞,反射出的光线频率就会发生变化,这种光散射现象就是拉曼散射。反射光线与入射光线的频率差被称为拉曼位移(cm-1)。拉曼位移与分子结构有一一对应的关系,因此物质的拉曼光谱能够表示物质分子的指纹特征。在化学药物合成中,溶剂和反应物、生成物一般都有很强的拉曼散射效应。因此,可以利用拉曼光谱检测各组分含量,还可以检测生成物的晶型,判断反应终点等。安东帕 Cora 5001 拉曼光谱仪微波合成-拉曼光谱联用技术 微波合成的典型应用领域就是为委托性合成进行工艺开发,并确保其能够符合GMP的要求。为了能够获得GMP程序的批准,必须确保能对每一过程无一遗漏地反向追查以保证重现性。在以往安东帕微波合成技术中,我们采用精准的传感器来测量重要反应参数如温度和压力,并以图示来确保反应的高重复性。而如今,安东帕将微波合成技术带向新征程,迈向化学信息精准监测阶段。借助拉曼光谱这一有利的分子指纹信息,用于实时监测化学变化,其光谱响应时间快,测量精准,并且能够监测反应体系真实状态下的化学数据。因此,微波合成-拉曼光谱联用技术对于药物化学合成具有重要意义。 应用案例:Biginelli环缩合反应 该反应可用于构建功能化嘧啶支架,它是多组分反应中很具代表性的实例。在反应过程中,乙酰乙酸乙酯、芳香醛、脲被连接,生成二氢嘧啶酮(DHPM),体系溶剂为乙腈。Biginelli的反应过程该反应可以获得很多功能化嘧啶,这种成分在维生素、核苷酸、蝶呤和一些天然抗生素中广泛存在,因此获得一种高效的合成路线对于制药企业来说是非常需要的。实验方法微波合成-拉曼联用系统的耦合方式将Cora 5001 Fiber拉曼光谱仪和Monowave 400 R微波合成系统耦合。安东帕使用了特殊的非金属拉曼探头,可以防止传统探头对于微波合成的干扰。入射激光会聚焦在玻璃反应管内用于收集反应腔中的样品的拉曼信号。1.微波合成参数如下:微波化学合成的反应条件2.拉曼实验参数拉曼光谱使用785 nm激发波长,功率为450 mW。拉曼测量与微波加热同时开始,光谱采集时间为500ms,每隔100s采集一次,直到1000s时微波加热程序结束。所有的光谱扣除基线,并以溶剂乙腈在2253.7 cm-1处的峰强进行归一化处理。溶剂乙腈的浓度在反应过程中基本不变,该信号是一个非常理想的内标参数。3.实验结果不同反应时间下的拉曼光谱:箭头指示的是不断上升的产物DHPM的特征峰反应终点时的拉曼光谱特征峰1650cm-1强度的增加表明了产物DHPM的生成。而在1150cm-1~ 1230cm-1光谱区域的信号强度下降与苯甲醛的消耗有关。4.化学反应监测数据的生成数据1:反应过程中的几个拉曼特征峰的强度变化数据2:反应工艺参数的详细视图使用微波合成-拉曼联用技术将会最终得到2组重要的监测数据。“数据1”为特征拉曼峰信号强度与时间的变化曲线,再结合“数据2”可以得到化学合成的进展。反应刚开始时,由于还没有达到所需的最低反应温度,所以代表产物DHPM的特征峰1650cm-1的强度只是缓慢增加;在300s时,体系中的动能达到阈值,反应开始明显加快;400s后,产物的特征峰变化曲线开始出现平台;随后进入到长达600s的保持时间;直到1000s时,DHPM的转化全部完成。微波合成对温度和压力的精准调控,允许实验人员进行复杂的合成反应控制。通过在微波腔中引进一个特殊的光谱仪端口,就可以实现在线拉曼光谱监测。微波合成-拉曼联用技术可用于研究化学反应动力学,即参与反应的物质的量随时间的变化量,以及反应参数(如温度、压力、浓度、介质)对反应速率的影响,帮助企业提高优化合成路线的工作效率。
  • 【安捷伦】“药害”事件频发,用药安全如何保证?
    p style=" text-align: center margin-bottom: 15px " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/202006/uepic/d84598fb-236f-4944-b9cf-38f86507f79a.jpg" title=" 药害-1N.png" alt=" 药害-1N.png" width=" 450" vspace=" 0" height=" 299" border=" 0" / /p p style=" text-indent: 2em text-align: justify " 近年来,频频发生的“药害”事件引发了全社会的高度关注:鱼腥草注射剂,齐二药事件,甲氨蝶呤事件,毒胶囊以及 2018 年备受瞩目的缬沙坦基因毒性杂质和长生疫苗案,每一次都牵动着全国人民的神经。药品安全性保障成为重中之重,其中药物杂质研究及控制则是药品安全性保障的关键要素之一。 br/ /p p style=" text-indent: 2em text-align: justify " 俗话说“手中有粮,心中不慌”,对于药物杂质检测来说,则是“手中有‘方’,遇事不慌”,在了解药物杂质检测的妙方之前,不妨先来梳理一下药物杂质的来源分类和监管法律法规吧! /p p style=" margin-top: 15px margin-bottom: 10px " span style=" color: rgb(0, 112, 192) " strong 药物杂质来自哪? /strong /span br/ /p p style=" text-indent: 2em text-align: justify " 药物杂质指的是活性药物成分(API)或药物制剂中无治疗作用或者影响药物稳定性、疗效,甚至危害人体健康的物质。原料药物中的杂质主要来源于以下两个方面: br/ /p p (1)药物合成过程或起始物料、中间体、溶剂、催化剂,以及反应副产物; /p p (2)在药品开发过程中,杂质可能由于原料药物成分不稳定、与辅料不兼容,或者是与包装材料发生反应而产生。 /p p style=" text-indent: 2em " 药物杂质的含量将影响药品的安全性。因此,药物杂质的鉴别、定量、定性和控制已成为药物开发过程的关键组成部分。 /p p style=" margin-top: 15px margin-bottom: 10px " span style=" color: rgb(0, 112, 192) " strong 有哪些机构和法规在监管? /strong /span /p p style=" text-indent: 2em text-align: justify " 目前,许多监管机构都在关注药物杂质的控制,包括人用药品注册技术要求国际协调会议(ICH)、美国食品药品监督管理局(USFDA)、欧洲药品管理局局(EMA)、加拿大药品与健康管理局、日本药物和医疗器械管理局(PMDA)和澳大利亚健康和老龄化的治疗用品部。除此之外,很多官方药典,如英国药典(BP)、美国药典(USP)、日本药典(JP)和欧洲药典(EP),也加入了对原料药和药物制剂中杂质限量水平的规定。 /p p style=" text-indent: 2em " 既然已经弄清楚了药物杂质的来源,也有明确的监管法律法规,那是不是说以后就可以避免层出不穷的“药害”事件了?No,当然没有这么简单!杜绝“药害”事件除了需要专业的知识和完善的法律法规,更需要先进的检测手段对制药工艺与质量进行严格把控。 /p p style=" margin-top: 15px margin-bottom: 10px " span style=" color: rgb(0, 112, 192) " strong 药物杂质该怎么检测? /strong /span /p p style=" text-indent: 2em text-align: justify " ICH 指南将原料药物相关杂质分为三个大类,即有机杂质、无机杂质和溶剂残留。常见有机杂质包括反应起始物、副产物、中间体、降解产物、试剂、配位体、催化剂等;无机杂质则包括试剂、配位体、催化剂、重金属、无机盐及过滤介质、活性炭等;常见的残留溶剂杂质则有69种。 /p p style=" text-indent: 2em text-align: justify " 对于上述三类杂质,关键问题在于在工艺开发过程中建立一种可靠的检测方法,并且该方法最终可以得到验证并能够转移到 QA/QC环节。针对受监管的极低浓度杂质(如遗传毒性杂质)开发可靠的分析方法,是这个过程的一大挑战。 /p p style=" text-indent: 2em text-align: justify " 为了更好地检测、鉴定、定量和表征原料药和药物制剂中存在的杂质,研发人员需要借助具有高灵敏度和高特异性的稳定分析工具。杂质分析的主要分析手段包括光谱、色谱、质谱以及它们的各种组合(即联用技术),可以根据杂质的特性和分析所需的信息水平选择合适的技术。药物开发中各种复杂的分析问题往往需要采用多种分析技术才能解决。LC/UV、LC/MS、GC/MS、CE/MS 和 LC/UV 等分析技术可提供正交检测和互补的信息,有助于高效解决这些难题。因此,这些技术在药物杂质谱分析(从未知杂质的鉴定到最终结构解析)中起到了重要作用。 /p p style=" text-align: left margin-top: 20px " span style=" font-size: 14px " strong 表 1. 药物杂质分析常用技术 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 579px height: 136px " src=" https://img1.17img.cn/17img/images/202006/uepic/416d547e-11a1-46a5-bb62-c1d2e6cc2754.jpg" title=" 药害-2.png" alt=" 药害-2.png" width=" 579" height=" 136" / /p p style=" text-align: left " strong span style=" font-size: 14px " 表 2. 安捷伦药物杂质分析全面解决方案 /span /strong /p p style=" text-align: center margin-bottom: 15px " img style=" max-width: 100% max-height: 100% width: 588px height: 554px " src=" https://img1.17img.cn/17img/images/202006/uepic/39152026-5812-45ca-84ec-240fda995c27.jpg" title=" 药害-3N.png" alt=" 药害-3N.png" width=" 588" height=" 554" / /p p style=" text-indent: 2em text-align: justify " 安捷伦在制药领域有着丰富的应用经验,相继推出了《药物杂质分析概述》和《基因毒性杂质检测》两份方案指南,详尽地阐述了药物杂质和遗传毒性杂质分析的完整策略与先进一体化解决方案,有相关需求的小伙伴不妨仔细研读。 /p p style=" text-indent: 2em margin-top: 15px " 利器在手,分析不愁;先到先得,先睹为快! /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 【安捷伦】供稿 /p
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 超导量子芯片演绎“庄周梦蝶”
    量子计算的前景令人期待,它在基础科学研究、新材料和药物研发、类脑人工智能技术开发等领域有潜在应用价值。  中国科学院物理研究所固态量子信息与计算实验室研究员范桁、副研究员许凯,与中国科学院物理研究所量子计算研究中心研究员郑东宁、副主任工程师相忠诚等合作,研发出超40比特的一维超导量子芯片,以战国时期思想家和哲学家庄子命名,利用其成功模拟了“侯世达蝴蝶”能谱以及各种新奇拓扑零模式。相关研究成果近日发表于《物理评论快报》。  “庄子”芯片诞生记  在科学家看来,大规模的量子计算正朝着实用化的方向发展,要想实现实用化,需要操纵精确、比特数多、相干时间长、效率足够高。在这个过程中,量子芯片的设计、制备、测控都至关重要。  相忠诚长期从事超导量子芯片制备,他告诉记者,与传统芯片相比,量子芯片对外界环境的扰动非常敏感。  “量子芯片是一种非常脆弱的系统,稳定时间非常短,在芯片上运行量子算法就好像是在夏日里堆雪人,需要足够的速度,赶在雪融化前把雪人堆出来。通常超导量子芯片的相干时间大约在几十微秒量级,这意味着量子效应维持的时间只在一瞬,要在很短的相干时间尺度内精确执行完量子算法是比较困难的。”相忠诚解释道。  借助中国科学院物理研究所位于北京怀柔的综合极端条件实验室的超导量子计算实验平台,郑东宁与相忠诚在器件设计和制备实践中反复摸索思考,不断改进和优化器件的设计方法和制备工艺,完成了43比特一维超导量子芯片的设计和制备,芯片中整体比特参数与设计值一致,总体退相干时间、制备良品率、量子状态易读性等都得到了大幅提升。部分比特退相干时间达到百微秒量级。  在最新发表的研究中,他们设计并构建了多达41个量子比特的对角AAH模型的各种实例,并应用动态光谱技术实验测量了著名的“侯世达蝴蝶”能谱。由于对角AAH模型的拓扑特性,出现了“翅膀形状”的能隙,整个能谱图看起来就像一只翩翩起舞的蝴蝶,研究人员不禁联想到庄周梦蝶的故事,这也是该量子处理器名字的由来。  因为“庄子”处理器拥有足够多的量子比特,有限尺寸效应的影响被极大地抑制,“蝴蝶”身体细节中的分形结构和能带的分裂被清晰展示了出来。  零下200多摄氏度的实验  量子芯片是第一步,利用多个超导量子比特模拟各种量子效应也是当前人们关注的前沿研究。  量子芯片只有指甲盖大小。拿到芯片后,许凯和团队成员立刻开始对芯片进行测控,并开展量子模拟实验。  许凯告诉记者:“量子模拟,就是通过调控量子芯片构建一些重要的多体模型,实现对真实物质或材料体系的各种新奇物理特性进行仿真和计算,以解决能源、材料等领域的一系列重要问题。”  超导量子计算芯片需要在极低温环境中工作,以避免热量(噪声)对量子态的干扰。  研究人员将芯片封装进盒子中,并放入稀释制冷机中降温至10mK,制冷机的温度比绝对零度(零下273.15℃)仅高了0.01℃,这种极低的温度可以使芯片转变为无损的超导态并有效抑制芯片周围的环境噪声和热噪声,从而呈现量子效应,让科研人员更好地操控量子效应。  操控芯片的过程并不轻松。在实验室,数十台仪器微波脉冲信号与“芯片”相连,研究人员在自己开发的软件平台上编写程序控制仪器,对芯片发出“指令”,从而“操控”芯片。“指令”发出的时间达到了纳秒级。  “我们要非常精细地优化每个量子比特的调控参数和它们之间的相互作用,这个过程需要准备两个月。”许凯说,通过使程序实现自动化参数搜索,进行自动化操控,未来的研究会更加高效。  由于“庄子”量子处理器超过40个量子比特,这足以让研究人员在这个重要的一维量子多体系统复杂的能带结构中捕捉到大量拓扑特征。使用由高度可控的Floquet(周期驱动)调控技术辅助的超导量子处理器,研究人员提出了一种通用混合量子模拟方法来探索含噪声中等规模量子时代的量子拓扑系统。  前景广阔 需要人才  许凯和相忠诚及其所在团队长期致力于超导量子计算、量子模拟、量子器件制备等方面的实验研究,并取得了许多领先的成果。在他们看来,量子计算前景广阔,未来还有很长的路要走。  “虽然目前量子芯片只能完成一些特定任务,而且还未达到超越经典计算的量子优势,但是通过量子模拟的实验可以积累各种操控技术、探索和展示量子计算的各种应用场景,这对未来量子计算机的实现和应用都是非常有价值的。”许凯说。  在许凯看来,我国在量子计算方面与国际上最好的团队相比还存在一定的差距。量子计算是一个交叉学科,需要各方面的人才,他们期待新鲜血液加入量子团队。  “我们虽然需要建立全方位的生态,但还要尊重科学发展的自然规律,在加快实验节奏的同时不能操之过急。”许凯说。
  • 我国首家水性聚氨酯国家重点实验室被批准
    记者从广东佛山市有关部门获悉,顺德东方树脂有限公司被正式批准授牌为佛山市水性聚氨酯胶粘剂工程技术研究开发中心,至此,该公司成为我国第一家水性聚氨酯国家重点实验室。   据介绍,佛山市水性聚氨酯研发中心的落成具有深远的意义。每年我国仅用于制鞋的溶剂型胶类产品就达上千万吨,如此庞大的数量挥发出来的VOC等有害气体不逊于我国汽车尾气一年排放的总量,严重影响我国的大气环境,为国家的环境建设与稳定带来巨大的危害。随着我国环保理念的加强,溶剂型产品将被绿色环保的水性聚氨酯产品所取代。但在目前,水性聚氨酯研发处于起步阶段,水性聚氨酯核心技术一直被国外公司控制。严格的技术壁垒,导致了高额的进口成本,不利于与之相关的行业发展。该中心成立,得到佛山市、顺德区两级政府高度重视,研发中心将承担起国家部分水性聚氨酯研发课题,为打破技术堡垒,推动行业的发展做出重要贡献。
  • 再签标杆!CTI华测检测与金蝶达成战略合作
    1月31日,华测检测认证集团股份有限公司(以下简称“CTI华测检测”)与金蝶软件(中国)有限公司(以下简称“金蝶”)数字化战略合作签约仪式成功举办。本次签约标志着双方将在数字化转型方面展开深度合作。借助可组装的企业级PaaS平台金蝶云苍穹与金蝶云星瀚SaaS管理云,携手推进CTI华测检测数字化转型战略的实施,共同打造检测与认证服务行业的数字化转型标杆。CTI华测检测集团总裁申屠献忠、首席财务官王皓、计量及数字化事业部总裁徐江、华南区行政总裁王在彬、数字化战略发展中心总监赵小云、人力资源总监陈志红、信息资源管理部总监林宏轩,以及金蝶中国总裁章勇、助理总裁兼深圳分公司总经理颜全铨、深圳大客户经营部总经理胡炜等双方领导出席本次会议。CTI华测检测成立于2003年,总部位于深圳,是第三方检测与认证服务的开拓者和领先者,中国检测认证行业首家上市公司(股票代码:300012)。CTI华测检测在全球90多个城市设立160多间实验室和260多个服务网络,拥有12,000多名员工,是中国国家强制性产品认证(CCC)指定认证机构,中国合格评定国家认可委员会(CNAS)和检验检测机构资质认定(CMA)机构,同时获得众多海外权威机构认可并授权合作。基于遍布全球的服务网络和权威公信力,CTI华测检测每年可出具390多万份检测认证报告,服务客户逾十万家,其中世界五百强客户逾百家。当下,在国内国际双循环相互促进的背景下,高质量发展要求带来新一轮科技革命和产业转型升级,给检验检测行业带来新的挑战和发展机遇。CTI华测检测坚持高质量发展方向,通过推进数字化战略转型,积极探索数字化技术的综合应用,来提高公司并购整合、运营协同、客户服务、国际化等能力,实现精益和数字化创新助力,持续提升公司在检测行业内的核心竞争力。为响应集团数字化战略发展大方向,CTI华测检测携手金蝶,将搭建先进的数字化技术平台,全面支持数字化战略落地,实现人、财、物管理全面贯通,提升集团组织效能及智能化发展。CTI华测检测总裁申屠献忠表示,经过20多年的发展,CTI华测检测已经成为中国TIC行业的领军企业,而且有志于跻身全球领军TIC企业之列;数字化转型升级既顺应了行业和客户不断往数字化发展的趋势,也是公司自身往国际化发展和效率提升的需要。华测此次与业内知名服务商金蝶达成数字化战略合作,将借助金蝶在数字化软件和科技智能场景应用方面多年沉淀的经验和技术,打造华测“一套系统、一个平台”的全新运营管理模式,全面提升CTI华测检测在信息共享、业务流程优化、运营效率和协同等方面的能力,不断提升客户体验和服务水平。同时,依托云计算、物联网技术研究和应用,不断优化实验室流程和效率,并逐步推进智能化、无人检测实验室落地,全面打造智能华测和科技华测。CTI华测检测总裁申屠献忠金蝶中国总裁章勇表示,CTI华测检测与金蝶在数字化领域合作悠久,非常荣幸能够参与并见证华测检测与金蝶战略合作签约的重要时刻。此次华测检测ERP系统建设,将借助行业内先进的“低代码、云原生”的金蝶云苍穹平台,打造华测集团统一数字化底座平台,提升华测整体数字化服务水平、快速的业务响应能力。此次合作,金蝶也将对项目充分重视,扎实落实每一阶段的工作,确保资源充分投入,为项目建设全程保驾护航,为CTI华测检测数字化转型提供重要助力,共同将此打造成行业灯塔项目。金蝶中国总裁章勇成立30年来,作为全球知名的企业管理云SaaS公司,金蝶已经为超过740万家企业、政府等组织构建可组装的EBC(Enterprise Business Capability,企业业务能力)。未来,金蝶将依托核心技术能力与多年行业数字化实践经验,助力CTI华测检测构建强大的数字化平台,共创数字化转型标杆,共同迈向世界一流!
  • 拥抱指尖,化茧成蝶!
    四年指尖梦 我们共飞翔---指尖上的仪器四周年生日快乐时序更替,梦想前行。2018年1月27日-28日,指尖上的仪器四周年年会暨仪器联盟筹备大会在风景秀丽的从化成功举办。会议以“拥抱指尖、化茧成蝶”为主题,吸引了来自全省各地的200多名行业精英汇聚一堂,共襄行业盛举。会议内容丰富,思想深邃,先后以检测行业新趋势、用户采购心得分享、进出口贸易中注意事项分享、招投标的注意事项分享、价值时代、新形势下仪器行业的新思考等为题进行了交流分享,对行业发展现状、前景趋势进行了深入的探讨分析,碰撞出了不少思想火花,对行业发展具有一定的指导意义和参考价值。砥砺前行,不忘初心。指尖上的仪器成立于2014年,致力于打造仪器行业新人专业技能培训,公司同行信息交流互动,用户需求整体解决方案探索分享的最佳平台。历经四年磨砺洗礼,俘获了业界的广泛信任和支持,已经发展成为立足广东,辐射华南,具有一定影响力的专业行业协会组织。目前,全国拓展5个群,集聚了500余位资深从业人员,人员结构涵盖外企高管、销售、代理商老板、业务员。线上分享活动达1500多个,95%以上的仪器产品在线交流咨询,线下活动达到100多次!同行感情与专业技能与日俱增。众多尖友通过指尖的平台,获得了成长的智慧,积蓄了腾飞的力量。凡是过去,皆是序章。2018年,又是充满希望的一年。面对崇山峻岭、激流险滩,正如会议所言,指尖将充分发挥桥梁和纽带作用,以规范仪器行业、联合多方力量、建立互动机制、促进身心健康为愿景和宗旨,为尖友谋福利,为行业谋发展,逐步扩大知名度、认知度和影响力。拥抱指尖,化茧成蝶,诚邀更多有识之士仪器同行加入指尖、融入指尖,让我们扬帆再起航,让梦想在春天里蝶舞飞翔。--指尖仪器联盟
  • HJ1076-2019环境空气中氨、甲胺、二甲胺、三甲胺的测定
    随着工业文明和城市发展,工业在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。我们的生存环境污染日趋严重,尤其是空气污染几乎危及到每个人。世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难。空气污染物中的许多物质对人有严重的损害,例如其中的氨、甲胺、二甲胺、三甲胺可对人体造成严重损伤。氨能引起喷嚏、流涎、咳嗽、恶心、头痛、出汗、脸面充血、胸部痛、呼吸急促、尿频、眩晕、窒息感、不安感、胃痛、闭尿等症状。刺激眼睛引起流泪、眼疼、视觉障碍。皮肤接触后引起皮肤刺激、皮肤发红、可致灼伤和糜烂。慢性中毒时出现头痛、恶梦、食欲不振、易激动、慢性结膜炎、慢性支气管炎、血痰、耳聋等。甲胺具有强烈刺激性和腐蚀性。吸入后,可引起咽喉炎、支气管炎、重者可因肺水肿、呼吸窘迫综合征而死亡;极高浓度吸入引起声门痉挛、喉水肿而很快窒息死亡,或致呼吸道灼伤。二甲胺对眼和呼吸道有强烈的刺激作用。液态二甲胺接触皮肤可引起坏死,眼睛接触可引起角膜损伤、混浊。三甲胺主要是刺激人的眼、鼻、咽喉和呼吸道。长期接触会感到眼、鼻、咽喉干燥不适。盛瀚解决方案为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护生态环境,保障人体健康,测定环境空气和固定污染源无组织排放监控点空气中氨、甲胺、二甲胺SH和三甲胺,盛瀚色谱推出了相关解决方案。采用盛瀚CIC-D120型离子色谱仪,使用盛瀚SH-CC-3(4.6×250)阳离子色谱柱和甲烷磺酸淋洗液对氨、甲胺、二甲胺、三甲胺检测,能够满足《HJ1076-2019环境空气氨、甲胺、二甲胺和三甲胺的测定离子色谱法》的检测要求。SH-CC-3 型色谱柱是青岛盛瀚色谱技术有限公司生产的一种弱酸型阳离子色谱柱。基质为交联度 55%的苯乙烯-二乙烯苯聚合物,表面接枝羧基。SH-CC-3 型色谱柱可用非抑制或抑制电导法完成常规阳离子分析,可同时分析 6 种常见阳离子:Li+、Na+、NH4+、K+、Mg2+、 Ca2+,在特定条件下,可直接电导分析部分过渡金属阳离子。盛瀚一直致力于研究开发高精度、高灵敏度和高智能的离子色谱仪,目前CIC系列产品已广泛应用于环保、疾控、自来水、质检、水文、地质、高校、科研院所、企业等众多领域,并出口到韩国、印度等34个国家和地区。“保障人类生存环境,促进生态良性发展”是盛瀚所属集团新光智源集团的企业宗旨,集团一直在为“成为环境生态文明安全管理的推动者”的伟大愿景不懈奋斗,期望我们共同缔造蓝天白云、绿水青山,让环境更美好!
  • 中国科大研制高抗氨毒化的燃料电池阳极
    近日,中国科学技术大学高敏锐教授课题组研制出一种高抗氨毒化的镍基碱性膜燃料电池阳极催化剂,其在阳极含10 ppm氨的膜电极组装中,能保持95%的初始峰值功率密度和88%的初始电流密度(0.7 V下),远超商业铂碳催化剂。相关成果以“Efficient NH3-Tolerant Nickel-Based Hydrogen Oxidation Catalyst for Anion Exchange Membrane Fuel Cells”为题发表在国际著名学术期刊《美国化学会志》(J. Am. Chem. Soc. 2023, 145, 31, 17485)上。氢氧燃料电池由于比能量高和零排放等优点,有望在国家“双碳”战略中扮演重要的角色。然而,商业铂碳催化剂极易被氢气燃料中的氨气毒化而导致性能降低。特别地,在碱性膜燃料电池中,铂基催化剂的氢气氧化反应动力学缓慢,其与氨毒化协同作用,加速电池性能的衰退。因此,设计高活性、高抗氨毒化的新型阳极催化剂是碱性膜燃料电池实用化亟需解决的难题。   通常,过渡金属结合氨的能力与其未占据和占据的d轨道相关,其既可接受来自氨的电子也能向氨反向供给电子,两者都能增强氨的吸附。钼镍合金是高效氢氧化催化剂,研究人员认为营造镍位点的富电子态会排斥氨的孤对电子供给,而引入比镍电负性小的元素可以提供电子获得镍的富电子态。研究人员发现,将Cr掺杂入钼镍合金不仅获得镍的富电子态来抑制σN-H→dmetal电子供给,同时还使d带中心下移阻隔了d→σ*N-H的反向电子供给,两者协同作用大大削弱了氨吸附。 图1.氨毒化机制和电子态调控   旋转圆盘电极测试表明,该催化剂在2 ppm氨存在条件下电化学循环1万次性能几乎没有损失,而铂碳催化剂性能损失严重。在实际的碱性膜燃料电池中,以该催化剂作为阳极组装的器件在10 ppm氨存在下可保留95%的初始峰值功率密度。相比之下,铂碳催化剂的功率输出则降低至初始值的61%。   衰减全反射-表面增强红外吸收光谱测试表明,没有Cr掺杂的钼镍合金与商业铂碳催化剂在不同电位下对氨具有吸附行为。经Cr调制的催化剂表面则没有任何氨吸附峰的存在。同时,电子能量损失谱和电子顺磁共振分析也表明Cr的引入使得镍的d带占据数更高,验证了其富电子态催化中心;理论计算发现Cr引入可降低镍的d带中心,佐证了氨在其表面吸附被削弱。   近年来,高敏锐研究小组致力于碱性膜燃料电池非贵金属电催化剂的研制和应用研究(Acc. Chem. Res.2023, 56, 12, 1445;Nat. Catal. 2022, 5, 993;Nat. Commun. 2021, 12, 2686;Nano Lett. 2023, 23, 107;Nano Res. 2023,16, 10787)。在之前的工作中,该小组与杨晴教授合作发现Co元素的掺杂可以有效抑制镍的d轨道对一氧化碳分子2π*反键轨道的电子“反向供给”,获得了高一氧化碳耐受性的氢气氧化非贵金属电催化剂(Angew. Chem., Int. Ed. 2022, 61, e202208040)。   论文的通讯作者是合肥微尺度物质科学国家研究中心高敏锐教授,共同第一作者为中国科大博士研究生王业华、博士后高飞跃和张晓隆。相关研究受到国家自然科学基金委、国家重大科学研究计划、安徽省重点研究与开发计划等项目的资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制