当前位置: 仪器信息网 > 行业主题 > >

咔唑硼酸

仪器信息网咔唑硼酸专题为您提供2024年最新咔唑硼酸价格报价、厂家品牌的相关信息, 包括咔唑硼酸参数、型号等,不管是国产,还是进口品牌的咔唑硼酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合咔唑硼酸相关的耗材配件、试剂标物,还有咔唑硼酸相关的最新资讯、资料,以及咔唑硼酸相关的解决方案。

咔唑硼酸相关的资讯

  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。   该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。   其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。   然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。   RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 宁波硼酸门认定被推翻 工商称对检测报告无核实义务
    中新网宁波5月28日电 今年1月,浙江宁波市工商局江东分局在超市抽查陆龙兄弟海蜇产品,通过第三方检测机构检测,产品被检测出含有硼酸,3月份,该案件被移交宁波市公安局江东分局。5月24日,中普检测技术服务(宁波)有限公司(简称中普检测)发布一份《致陆龙兄弟的道歉声明》,推翻此前陆蜇不合格的认定,转而认定其合格。对此,宁波市工商局江东分局副局长张建刚表示,工商部门此前所说硼酸“不得检出”的结论是根据检测机构的检测报告做出的,而对检测报告工商部门没有核实的义务。   中普检测是负责此次陆龙海蜇检测的机构。据中普检测官网介绍,该公司成立于2006年5月,是“一家公正、独立、专业的第三方检验、测试、认证公司”。3年前,中普检测开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测质量部经理李伟告诉记者,检测报告是今年1月15日出具的,送检的陆龙兄弟海蜇被检测出硼酸含量为5.9mg/kg,报告第一时间送达企业。   宁波市工商局江东分局工作人员此前接受记者采访时称,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。3月份工商部门将此案移交给公安,等待进一步的调查结果。   5月24日,中普检测在诸媒体发表《致陆龙兄弟的道歉声明》,称陆龙产品检出的5.9mg/kg硼酸系本底含量,推翻了此前送检陆龙海蜇不合格的结论。据李伟介绍,新结论是在陆龙兄弟提供了诸多证据的基础上做出,中普检测并没有进行重新检测。   作为此次检测的委托方,宁波市工商局江东分局副局长张建刚表示,工商部门对检测报告没有核实的义务,检测结果由检测机构来认定,工商部门主要负责三项工作:确认检测机构是否有资质 跟被抽检人有没有利益关系 检测程序是否合法。   宁波市工商局江东分局提供的材料称,依据《食品安全法》第五十九条:“食品检验实行食品检验机构与检验人负责制。食品检验报告应当加盖食品检验机构公章,并有检验人的签名或者盖章。食品检验机构和检验人对出具的食品检验报告负责”。   “在法律上,我们不存在任何责任。”张建刚称,工商部门此前所说,硼酸不得检出的结论是根据检测机构的检测报告得出。   据介绍,宁波市工商局江东分局过去只对海蜇进行一般检测,今年开始才增加了硼酸检测项目。   针对中普检测推翻检测结论公开致歉一事,宁波市工商局江东分局在给记者的书面回复称,“这个事情我们始终是严格依法按程序办理的。根据检测报告,海蜇被检出硼酸,为了消费者的食品安全和国家的相关规定,我们依法移送公安部门,由公安部门对硼酸的来源进行侦查。在公安部门确认非人为添加的情况下,退回工商部门,由工商部门依法按程序作出处理。”
  • 宁波海产品牌陷“硼酸门” 检测方推翻结论致歉
    中新网宁波5月26日电 5月13日,网友微博爆料称,“宁波知名品牌陆龙海蜇头被江东工商局查出硼酸超标”。5月24日,第三方当事检测机构中普检测技术服务(宁波)有限公司(简称“中普检测”)在当地媒体上发布一份《致陆龙兄弟的道歉声明》,推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。中普检测称:在判定上出现了失误,错误理解了标准。   根据“陆龙兄弟”官方网站的介绍,该公司是产销量、企业规模、纳税额等经济指标均排名业内第一的中国海产领军品牌,1978年由多名陈姓兄弟共同创建成立,现已发展成为中国最大的“海产食品全品类一站式供应商”。   资料显示,硼酸俗称硼砂,可增加食品韧性、脆度以及改善食品保水性、保存性,但毒理学实验表明,硼酸在人体内有积存性,会引起食欲减退、消化不良、抑制营养素的吸收,且硼酸具有较高毒性,摄入1~3克可致中毒,成人20克、小儿5克可致死亡。   2008年以来,全国打击违法添加非食用物质和滥用食品添加剂专项整治领导小组陆续发布了5批《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》,硼酸与硼砂名列其中。   宁波江东工商分局工作人员此前接受记者采访时称,当时共抽取了15个品牌的87个批次产品,其中,江东欧尚超市抽选的样本陆龙海蜇头被检出含有硼酸。该工作人员表示,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。   中普检测是负责此次陆龙海蜇检测的机构。据“中普检测”官网介绍,该公司成立于2006年5月,是"一家公正、独立、专业的第三方检验、测试、认证公司"。3年前,“中普检测”开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测负责人李伟告诉记者,检测报告是今年1月15日出具的。根据该公司工作流程,报告会在第一时间送达企业。此后一段时间,“陆龙兄弟”并没就报告提出疑义。李伟称,4月份“陆龙兄弟”与他们进行了沟通,称检测报告的结果认定有问题。   5月14日,陆龙兄弟官方微博针对此事发文《陆龙海产致社会各界的一封信》中解释,检出硼酸系原料本身自带,属不可抗的客观因素。   李伟介绍,后来工商部门也督促他们作出解释,而“陆龙兄弟”在多次沟通中也要求作出解释,“双方沟通得挺好”。   5月24日,中普检测在当地媒体上推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。   李伟接受记者采访时表示,公司做了3年的食品检测,以前从来没有出现过误判。他认为,这份检测报告是“中普检测”在判定上出现了失误,错误理解了标准,报告的判断依据为:SC/T3210-2001中实际表述为:“不允许使用硼酸或硼砂作防腐剂”,并非“不得检出”。   在“中普检测”发出《致陆龙兄弟的道歉声明》后,记者来到“陆龙兄弟”采访。公司前台称领导都不在公司,边上一位被其称为陈副主任的办公室工作人员称,企业现在没有什么好回复的,这件事很明显,各方面舆论、微博都讲得很清楚。陈副主任让记者有事找戴总,称对方可以代表“陆龙兄弟”发言。   此后,记者拨通了戴总的电话。不过,对方却表示自己并非“陆龙兄弟”的工作人员,也是媒体人,只是对这个事情比较了解,并不能代表“陆龙兄弟”作出回应。
  • 赛默飞发布食品样品中硼砂(硼酸)的检测方案
    2015年2月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布食品样品中硼砂(硼酸)的检测方案。一些不良商贩在食品中非法添加硼砂或硼酸,以起到增筋、保水、改良口感和防腐等作用。硼摄入量过高会表现毒性,可致脑组织氧消耗受抑制,酶活力丧失活性。国家食品整治办于2008年将硼酸、硼砂列为禁用添加剂第一批,明令严格监查食品中硼违法添加等行为。 目前食品中硼的检测的方法主要有比色法、ICP-OES法和ICP-MS(www.thermo.com.cn/Category226.html)法等,其中比色法操作非常繁琐,而ICP-OES法和ICP-MS则是总硼测试的良好解决方案。动植物体中的硼往往存在多种形态(主要有水溶游离态、半束缚态和束缚态),而外源性添加硼酸则主要以游离态存在,因此对于游离态的硼酸准确则更有意义。离子色谱柱的分离机理使其容易保留游离态的硼,因此在ICP-OES或ICP-MS前端增加分离单元可以准确样品中的游离硼。赛默飞发布食品样品中硼酸的检测方法,采用ICS-900基础型离子色谱仪配备IonPac ICE-Borate排斥色谱柱,在等度淋洗条件下即可良好保留游离态硼酸,而络合态硼酸不干扰测定。利用电感耦合等离子光谱仪作为检测手段则可大大增强检测的选择性,排除了食品中常见有机酸对于硼酸的干扰,具有较好的检测效果。ICS-900 基础型离子色谱系统产品详情:http://www.thermo.com.cn/Product6477.html iCAP 7000系列电感耦合等离子体光谱仪产品详情:http://www.thermo.com.cn/Product6694.html 下载应用纪要:离子色谱-电感耦合等离子体光谱联用检测食品样品中硼砂(硼酸)http://www.thermo.com.cn/Resources/201501/1616106789.pdf ----------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • ECHA开展有关环草啶和硼酸的新统一分类和标签公众意见征询
    2013年5月14日消息,欧洲化学品管理局(ECHA)邀请利益相关方提交有关环草啶(lenacil)和硼酸(boric acid)的统一分类和标签(harmonised classification and labelling,CLH)新提案的评论意见。公众咨询为期45天,将于2013年6月28日结束。   有关环草啶的CLH提案由比利时提交。环草啶是一种除草剂,目前并没有统一分类和标签。卷宗提交者计划对该物质的环境危害进行分类。   有关硼酸的CLH提案由波兰提交。硼酸已有统一分类,卷宗提交者拟议修订生殖毒性分类,即移除生育影响分类,降低发育毒性分类。ECHA提醒相关方正在进行的有关其他两种硼酸盐的公众咨询(截至6月14日),卷宗提交者(荷兰)拟议为其发育和生殖毒性制定比硼酸更为严格的分类。   在45天的咨询阶段,收到的评议意见将会定期公布在ECHA网站上。   表格一 拟议的统一分类和标签以及物质使用范例。 物质名称 EC号 CAS号 拟议统一分类和标签 使用范例 环草啶(ISO);3-环己基-1,5,6,7-四氢环戊嘧啶-2,4-(3H)二酮 218-499-0 2164-08-1 对水生环境有危害 对水生环境的危害未分类 作为一种除草剂 硼酸 233-139-2 10043-35-3 生殖毒性 硼酸被用于许多行业和专业应用,被添加在消费品中。 硼酸在杀菌剂中被用作活性物质,被添加到化肥中被用作一种植物微量元素。   *请注意使用信息不会影响分类和标签,这完全基于一种物质的内在属性。使用范例是从CLH报告中复制而来。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。   王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • 151种非法食品添加物黑名单公布
    记者23日从国务院食品安全委员会办公室获悉,为严厉打击食品生产经营中违法添加非食用物质、滥用食品添加剂以及饲料、水产养殖中使用违禁药物,卫生部、农业部等部门根据风险监测和监督检查中发现的问题,不断更新非法使用物质名单,至今已公布151种食品和饲料中非法添加名单,包括47种可能在食品中“违法添加的非食用物质”、22种“易滥用食品添加剂”和82种“禁止在饲料、动物饮用水和畜禽水产养殖过程中使用的药物和物质”的名单。   根据有关法律法规,任何单位和个人禁止在食品中使用食品添加剂以外的任何化学物质和其他可能危害人体健康的物质,禁止在农产品种植、养殖、加工、收购、运输中使用违禁药物或其他可能危害人体健康的物质。这类非法添加行为性质恶劣,对群众身体健康危害大,涉嫌生产销售有毒有害食品等犯罪,依照法律要受到刑事追究,造成严重后果的,直至判处死刑。   这次公布的151种食品和饲料中非法添加名单,是由卫生部、农业部等部门在分次分批公布的基础上汇总再次公布,目的是提醒食品生产经营者和从业人员严格守法按标准生产经营,警示违法犯罪分子不要存侥幸心理 同时,欢迎和鼓励任何单位个人举报其他非法添加的行为。   表一 食品中可能违法添加的非食用物质名单 序号 名称 可能添加的食品品种 检测方法 1 吊白块 腐竹、粉丝、面粉、竹笋 GB/T 21126-2007 小麦粉与大米粉及其制品中甲醛次硫酸氢钠含量的测定;卫生部《关于印发面粉、油脂中过氧化苯甲酰测定等检验方法的通知》(卫监发〔2001〕159号)附件2 食品中甲醛次硫酸氢钠的测定方法 2 苏丹红 辣椒粉、含辣椒类的食品(辣椒酱、辣味调味品) GB/T 19681-2005 食品中苏丹红染料的检测方法高效液相色谱法 3 王金黄、块黄 腐皮 4 蛋白精、三聚氰胺 乳及乳制品 GB/T 22388-2008 原料乳与乳制品中三聚氰胺检测方法 GB/T 22400-2008 原料乳中三聚氰胺快速检测液相色谱法 5 硼酸与硼砂 腐竹、肉丸、凉粉、凉皮、面条、饺子皮 无 6 硫氰酸钠 乳及乳制品 无 7 玫瑰红B 调味品 无 8 美术绿 茶叶 无 9 碱性嫩黄 豆制品 10 工业用甲醛 海参、鱿鱼等干水产品、血豆腐 SC/T 3025-2006 水产品中甲醛的测定 11 工业用火碱 海参、鱿鱼等干水产品、生鲜乳 无 12 一氧化碳 金枪鱼、三文鱼 无 13 硫化钠 味精 无 14 工业硫磺 白砂糖、辣椒、蜜饯、银耳、龙眼、胡萝卜、姜等 无15 工业染料 小米、玉米粉、熟肉制品等 无 16 罂粟壳 火锅底料及小吃类 参照上海市食品药品检验所自建方法 17 革皮水解物 乳与乳制品 含乳饮料 乳与乳制品中动物水解蛋白鉴定-L(-)-羟脯氨酸含量测定(检测方法由中国检验检疫科学院食品安全所提供。该方法仅适应于生鲜乳、纯牛奶、奶粉 联系方式: Wkzhong@21cn.com) 18 溴酸钾 小麦粉 GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法 19 β-内酰胺酶 (金玉兰酶制剂) 乳与乳制品 液相色谱法(检测方法由中国检验检疫科学院食品安全所提供。 联系方式: Wkzhong@21cn.com) 20 富马酸二甲酯 糕点 气相色谱法(检测方法由中国疾病预防控制中心营养与食品安全所提供 21 废弃食用油脂 食用油脂 无 22 工业用矿物油 陈化大米 无 23 工业明胶 冰淇淋、肉皮冻等 无 24 工业酒精 勾兑假酒 无 25 敌敌畏 火腿、鱼干、咸鱼等制品 GB T5009.20-2003食品中有机磷农药残留的测定 26 毛发水 酱油等 无 27 工业用乙酸 勾兑食醋 GB/T5009.41-2003食醋卫生标准的分析方法 28 肾上腺素受体激动剂类药物(盐酸克伦特罗,莱克多巴胺等) 猪肉、牛羊肉及肝脏等 GB-T22286-2008 动物源性食品中多种β-受体激动剂残留量的测定,液相色谱串联质谱法 29 硝基呋喃类药物 猪肉、禽肉、动物性水产品 GB/T 21311-2007 动物源性食品中硝基呋喃类药物代谢物残留量检测方法,高效液相色谱-串联质谱法 30 玉米赤霉醇 牛羊肉及肝脏、牛奶 GB/T 21982-2008 动物源食品中玉米赤霉醇、β-玉米赤霉醇、α-玉米赤霉烯醇、β-玉米赤霉烯醇、玉米赤霉酮和赤霉烯酮残留量检测方法,液相色谱-质谱/质谱法 31 抗生素残渣 猪肉 无,需要研制动物性食品中测定万古霉素的液相色谱-串联质谱法 32 镇静剂 猪肉 参考GB/T 20763-2006 猪肾和肌肉组织中乙酰丙嗪、氯丙嗪、氟哌啶醇、丙酰二甲氨基丙吩噻嗪、甲苯噻嗪、阿扎哌垄阿扎哌醇、咔唑心安残留量的测定,液相色谱-串联质谱法 无,需要研制动物性食品中测定安定的液相色谱-串联质谱法 33 荧光增白物质 双孢蘑菇、金针菇、白灵菇、面粉 蘑菇样品可通过照射进行定性检测 面粉样品无检测方法 34 工业氯化镁 木耳 无 35 磷化铝 木耳 无 36 馅料原料漂白剂 焙烤食品 无,需要研制馅料原料中二氧化硫脲的测定方法 37 酸性橙Ⅱ 黄鱼、鲍汁、腌卤肉制品、红壳瓜子、辣椒面和豆瓣酱 无,需要研制食品中酸性橙II的测定方法。参照江苏省疾控创建的鲍汁中酸性橙II的高效液相色谱-串联质谱法 (说明:水洗方法可作为补充,如果脱色,可怀疑是违法添加了色素) 38 氯霉素 生食水产品、肉制品、猪肠衣、蜂蜜 GB/T 22338-2008 动物源性食品中氯霉素类药物残留量测定 39 喹诺酮类 麻辣烫类食品 无,需要研制麻辣烫类食品中喹诺酮类抗生素的测定方法 40 水玻璃 面制品 无 41 孔雀石绿 鱼类 GB20361-2006水产品中孔雀石绿和结晶紫残留量的测定,高效液相色谱荧光检测法(建议研制水产品中孔雀石绿和结晶紫残留量测定的液相色谱-串联质谱法) 42 乌洛托品 腐竹、米线等 无,需要研制食品中六亚甲基四胺的测定方法 43 五氯酚钠 河蟹 SC/T 3030-2006水产品中五氯苯酚及其钠盐残留量的测定 气相色谱法 44 喹乙醇 水产养殖饲料 水产品中喹乙醇代谢物残留量的测定 高效液相色谱法(农业部1077号公告-5-2008);水产品中喹乙醇残留量的测定 液相色谱法(SC/T 3019-2004) 45 碱性黄 大黄鱼 无 46 磺胺二甲嘧啶 叉烧肉类 GB20759-2006畜禽肉中十六种磺胺类药物残留量的测定 液相色谱-串联质谱法 47 敌百虫 腌制食品 GB/T5009.20-2003食品中有机磷农药残留量的测定   表二 食品中可能滥用的食品添加剂品种名单 序号 食品品种 可能易滥用的添加剂品种 检测方法 1 渍菜(泡菜等)、葡萄酒 着色剂(胭脂红、柠檬黄、诱惑红、日落黄)等 GB/T 5009.35-2003 食品中合成着色剂的测定 GB/T 5009.141-2003 食品中诱惑红的测定 2 水果冻、蛋白冻类 着色剂、防腐剂、酸度调节剂(己二酸等) 3 腌菜 着色剂 、防腐剂、甜味剂(糖精钠、甜蜜素等) 4 面点、月饼 乳化剂(蔗糖脂肪酸酯等、乙酰化单甘脂肪酸酯等)、防腐剂、着色剂、甜味剂 5 面条、饺子皮 面粉处理剂 6 糕点 膨松剂(硫酸铝钾、硫酸铝铵等)、水分保持剂磷酸盐类(磷酸钙、焦磷酸二氢二钠等)、增稠剂(黄原胶、黄蜀葵胶等)、甜味剂(糖精钠、甜蜜素等) GB/T 5009.182-2003 面制食品中铝的测定 7 馒头 漂白剂(硫磺) 8 油条 膨松剂(硫酸铝钾、硫酸铝铵) 9 肉制品和卤制熟食、腌肉料和嫩肉粉类产品 护色剂(硝酸盐、亚硝酸盐) GB/T 5009.33-2003 食品中亚硝酸盐、硝酸盐的测定 10 小麦粉 二氧化钛、硫酸铝钾 11 小麦粉 滑石粉 GB 21913-2008 食品中滑石粉的测定 12 臭豆腐 硫酸亚铁 13 乳制品(除干酪外) 山梨酸 GB/T21703-2008 《乳与乳制品中苯甲酸和山梨酸的测定方法》 14 乳制品(除干酪外) 纳他霉素 参照GB/T 21915-2008《食品中纳他霉素的测定方法》 15 蔬菜干制品 硫酸铜 无 16 “酒类”(配制酒除外) 甜蜜素 17 “酒类” 安塞蜜 18 面制品和膨化食品 硫酸铝钾、硫酸铝铵 19 鲜瘦肉 胭脂红 GB/T 5009.35-2003 食品中合成着色剂的测定 20 大黄鱼、小黄鱼 柠檬黄 GB/T 5009.35-2003 食品中合成着色剂的测定 21 陈粮、米粉等 焦亚硫酸钠 GB5009.34-2003食品中亚硫酸盐的测定 22 烤鱼片、冷冻虾、烤虾、鱼干、鱿鱼丝、蟹肉、鱼糜等 亚硫酸钠 GB/T 5009.34-2003 食品中亚硫酸盐的测定   食品动物禁用的兽药及其它化合物清单 序号 兽药及其它化合物名称 禁止用途 禁用动物 1 β-兴奋剂类:克仑特罗Clenbuterol、沙丁胺醇Salbutamol、西马特罗Cimaterol及其盐、酯及制剂 所有用途 所有食品动物 2 性激素类:己烯雌酚Diethylstilbestrol及其盐、酯及制剂 所有用途 所有食品动物 3 具有雌激素样作用的物质:玉米赤霉醇Zeranol、去甲雄三烯醇酮Trenbolone、醋酸甲孕酮Mengestrol,Acetate及制剂 所有用途 所有食品动物 4 氯霉素Chloramphenicol、及其盐、酯(包括:琥珀氯霉素Chloramphenicol Succinate)及制剂 所有用途 所有食品动物 5 氨苯砜Dapsone及制剂 所有用途 所有食品动物 6 硝基呋喃类:呋喃唑酮Furazolidone、呋喃它酮Furaltadone、呋喃苯烯酸钠Nifurstyrenate sodium及制剂 所有用途 所有食品动物 7 硝基化合物:硝基酚钠Sodium nitrophenolate、硝呋烯腙Nitrovin及制剂 所有用途 所有食品动物 8 催眠、镇静类:安眠酮Methaqualone及制剂                    所有用途 所有食品动物 9 林丹(丙体六六六)Lindane 杀虫剂 所有食品动物 10 毒杀芬(氯化烯)Camahechlor 杀虫剂、清塘剂 所有食品动物 11 呋喃丹(克百威)Carbofuran 杀虫剂 所有食品动物 12 杀虫脒(克死螨)Chlordimeform 杀虫剂 所有食品动物 13 双甲脒Amitraz 杀虫剂 水生食品动物 14 酒石酸锑钾Antimonypotassiumtartrate 杀虫剂 所有食品动物 15 锥虫胂胺Tryparsamide 杀虫剂 所有食品动物 16 孔雀石绿Malachitegreen 抗菌、杀虫剂 所有食品动物 17 五氯酚酸钠Pentachlorophenolsodium 杀螺剂 所有食品动物 18 各种汞制剂包括:氯化亚汞(甘汞)Calomel,硝酸亚汞Mercurous nitrate、醋酸汞Mercurous acetate、吡啶基醋酸汞Pyridyl mercurous acetate 杀虫剂 所有食品动物 19 性激素类:甲基睾丸酮Methyltestosterone、丙酸睾酮Testosterone Propionate、苯丙酸诺龙 Nandrolone Phenylpropionate、苯甲酸雌二醇Estradiol Benzoate及其盐、酯及制剂 促生长 所有食品动物 20 催眠、镇静类:氯丙嗪Chlorpromazine、地西泮(安定) Diazepam及其盐、酯及制剂、 促生长 所有食品动物 21 硝基咪唑类:甲硝唑Metronidazole、地美硝唑Dimetronidazole及其盐、酯及制剂、 促生长 所有食品动物
  • 十年携手,共铸辉煌 行业大咖共讨环境发展新篇章
    2021年是我国“十四五”开局之年,又恰逢“国家环境分析测试中心-岛津企业管理(中国)有限公司环境研究合作实验室”成立十周年。在此之际,岛津携手国家环境分析测试中心,共同举办第七届环境研究合作实验室论坛。本次论坛共有150余人出席、参与。 现场实况 双方庆祝合作实验室成立十周年 国家环境分析测试中心POPs研究室主任董亮主持 国家环境分析测试中心主任黄业茹 岛津企业管理(中国)有限公司分析计测事业部市场部部长胡家祥 黄业茹主任和胡家祥部长共同回顾了双方首次从1996年联合国大学“东亚水环境监测与管理”项目接触开始,有了初步的了解与合作。2011年双方成立合作实验室,到2021年已经十个年头。合作实验室成立十年以来,国家环境分析测试中心使用岛津的质谱型号,从最早期的GCMS-QP5000,到后来的GCMS-QP2010系列,再到GCMS-QP2020系列,一直到现在的GCMS-TQ8050,LCMS-8040等串接质谱,发表了论文30多篇,环境标准6项。未来“十四五”双方还会在重点流域新污染物试点监测、国家履约监测、国家地下水环境质量考核监测质控、典型行业企业及周边土壤污染状况监测质控等方面开展更加深入的合作。中国科学院生态环境研究中心 杨敏研究员报告题目:建设美丽中国,我们还需要做什么? 杨敏介绍到,美丽中国建设是国家战略,要加快生态文明体制改革,要实现天蓝、地绿、水清、人和四大目标。目前,我国已建成全球最密集的水质监测网络,污水处理能力突飞猛进,黑臭水体治理等成效显著,城镇饮用水安全保障水平持续提升。杨敏表示,总体而言,我国的水处理能力持续提升,城市税生态环境改善显著,重点流域水质总体向好。但美丽中国建设任重而道远,在饮用水安全方面,重金属、高氯酸盐、全氟化合物、未知雌激素、臭味、工农业污水等仍是水源污染的主要因素和来源。未来,我国需以“三水”为指导思路,针对工业污水、农村农业污水等薄弱环节进行管控与加强,为实现美丽中国而努力。 中国环境科学研究院 马瑾研究员报告题目:荷兰土壤环境基准与标准理论方法及其对我国的启示 马瑾表示,荷兰土壤环境法起源于上世纪70年代,历经多次迭代,已经成为全球借鉴的榜样。由于我国土壤污染问题日益严重,借鉴荷兰等相关法规对我国土壤污染防治法实现从基准到标准有重要意义。通过多年对荷兰土壤环境基准的研究,马瑾介绍了以下启示:1. 基于标准的标准;2. 土壤类型校正;2. 实现创新;3. 参数决定结果;4. 更新和创新;5. 是否修复土壤;6. 建立土壤质量地图;7. 立法与执法等。 岛津企业管理(中国)有限公司事业战略室室长 端裕树报告题目:高分离耦合质谱技术在环境分析领域的应用 随着斯德哥尔摩公约的建立,人们逐渐重视POPs类物质对环境的危害,尤其是短链氯化石蜡(SCCPs)对高持久性,高生物富集潜力以及高毒性,对环境带来长期负面影响。由于短链氯化石蜡中氯原子的位置、取代等因素,难以使用常规方法对其检测。为此,岛津使用全二维气质联用技术(GC×GC-MS/MS)实现了SCCPs的多种同分异构体的分离与定量,得到了有效的分析方法。此外,针对POPs类物质,岛津也开发了多维LC-MS/MS通用分析方法,帮助实验室降低采购仪器成本,同时又能实现准确分析。 国家环境分析测试中心研究室副主任 杜兵报告题目:服务新污染物调查监测的非靶向筛查 杜兵表示,在“十四五”开局之年,生态环境部下达了要更加重视新污染物,如内分泌干扰物、POPs、抗生素、VOCs等治理的要求,要求2025年建立健全化学物质环境风险管理法规制度体系,2035年建成较为完善的新污染物环境风险评估和治理体系,并为此配套了相关的政策和资金。为此,国家环境分析测试中心通过高通量识别方法建立了新污染物非靶向筛查技术,对可能存在的化合物清单以及未知化合物的筛查提供了新方法。未来,团队将在方法标准化、数据库开源、合作共享等方面实现突破,力争实现完善的新污染物环境风险评估和治理体系。岛津企业管理(中国)有限公司分析计测事业部市场部 潘晨松报告题目:高分辨液质联用在新兴环境有机污染物非靶标分析及泛靶向筛查研究中的应用和特色 潘晨松表示,非靶向分析已经成为新兴环境污染物研究的技术热点,尤其是基于高分辨质谱的分析成为人们分析新污染物的利器。由于单一分析仪器已经无法提供最准确的分析结果,因此需要多种仪器的组合才能获得上述最理想结果。岛津作为多种分析仪器生产商,可以为用户提供包括GC-MS/MS、LC-MS/MS、ICP-MS、自动在线固相萃取、超临界流体自动提取在内的组合产品,帮助用户进行最前沿的科学探索。例如可以帮助用户实现水中抗生素的泛靶向筛查、水中多氟/全氟烷基酸类的泛靶向筛查和非靶向分析、食品中多农残检测等。 国家环境分析测试中心 周志广报告题目:典型地区土壤中卤代咔唑的分布特征研究 周志广表示,咔唑、卤代咔唑广泛用于光电材料、染料、医药等领域,其具有持久性、生物累积性、类二噁英毒性等特点,了解、识别这类化合物的环境风险对人类健康具有重要意义。为此,团队利用GC-MS/MS技术,建立了土壤中卤代咔唑的分析方法,并对我国土壤中卤代咔唑的分布进行了研究。 国家环境分析测试中心 杜祯宇报告题目:环境空气消耗臭氧层物质及氢氟碳化物检测技术研究 杜祯宇表示,为了保护地球臭氧层不被破坏殆尽,人们于1985年在维也纳签署《保护臭氧层维也纳公约》,并在此后的35年里不断制定新的公约。为了实现对消耗臭氧层物质及氢氟碳化物检测,团队开发了全新采样技术,和分离技术;在低温下,通过温度程序控制,配合岛津的GCMS-QP2020进行分析,实现了在中等吸附力辅助下的高精度、高灵敏度检测。 国家环境分析测试中心 刘金林报告题目:新型全氟化合物替代品在电镀行业的环境行为研究 刘金林表示,全氟化合物在电镀行业中起到至关重要的作用,尤其是作为铬酸雾的抑制剂,在环境保护以及健康防护中起到了重要作用。然而,由于全氟化合物(如PFOS)的持久性和生物富集性等问题,造成了新的危害。团队利用岛津XPS技术对全氟化合物替代品进行研究,发现PFOS的替代品6:2 Cl-PFAES具有更强的疏水性,同时相比PFOS更易在人体中聚集,因此在其替代PFOS后需更加注意6:2 Cl-PFAES的释放。 国家环境分析测试中心 朱超飞报告题目:土壤和沉积物中六溴环十二烷和四溴双酚A的高效液相色谱串联质谱分析 朱超飞表示,六溴环十二烷和四溴双酚A是常见的溴代阻燃剂。其具有高持久性和高生物富集性,对人体大脑、骨骼等发育有严重阻碍作用。针对这两类物质,团队采用样品富集和前处理方法,使用岛津的LCMS-8040,建立了基于LC-MS/MS的水质和土壤的同位素稀释法,预计这两项标准在2022年正式发布。岛津企业管理(中国)有限公司分析计测事业部市场部 石欲容报告题目:岛津无机质谱及联用技术在环境中的典型应用 石欲容表示,无机质谱仪是以电感耦合高温等离子体使元素离子化,主要用于无机元素的痕量、超痕量分析。岛津自1986年推出ICP-MS以来,经过三十多年发展,已经拥有丰富的技术积累。通过介绍ICP-MS在单纳米颗粒、单细胞分析领域的应用,证明岛津的ICP-MS已经可以满足最前沿科学探索的需求。此外,岛津特有的SPE-LC-ICP-MS系统可以在线富集、分离和测定汞形态,为用户带来全新的汞形态分析解决方案。 至此,第七届环境研究合作实验室论坛圆满落下帷幕。
  • 岛津成像质谱显微镜应用专题丨黄皮代谢物研究
    黄皮不同部位中代谢物分子空间分布的质谱成像分析 黄皮(Cluasena lansium(Lour.)Skeels)属于芸香科(Rutaceae)黄皮属(Clausena)中的一种特殊果树,分布在中国南方地区。黄皮以其果实闻名于世,是非常受欢迎的热带保健水果,其根、茎、叶和种子也被广泛应用于民间医药或中药中。 以往对该植物的化学研究主要集中在寻找具有药用价值的生物活性成分,到目前为止,已经分离和鉴定一系列天然产物,这些物质具有明显的抗肿瘤、抗炎、抗氧化及降血糖等作用,主要包括咔唑类生物喊、香豆素类化合物、酰胺类生物碱、萜类和黄酮等。其中咔唑类生物碱和单萜基香豆素为其特征性成分。有关黄皮中活性成分的分离和测定方法已得到广泛报道,然而,人们对黄皮特征代谢物在组织内的分布却知之甚少。对黄皮果中的化学成分进行研究,探究其中具有药用价值的生物活性成分空间分布信息,有助于理解植物代谢物合成的调控机制和功能基础,对黄皮保健食品的开发具有重要意义。 质谱成像技术是近年来受到关注的一种新型的分子成像技术。基于高灵敏、高分辨、高通量特性的质谱结合先进的显微成像技术,样品制备过程不需要组织粉碎,无需标记即可实现多种物质在组织中的原位分布,为多种代谢物的研究提供了更多的信息维度。 本研究通过优化样品前处理方法,采用基质辅助激光解吸/电离质谱成像技术(MALDI-MSI)对黄皮(Clausena lansium, Lour)的组织分布特征进行研究,为更好地开发、利用黄皮这一药食两用的水果资源提供理论基础。本研究是首次利用质谱成像技术实现对黄皮小分子代谢物的系统研究(见图1)。 图1 利用质谱成像技术可视化黄皮不同组织中内源性分子分布 1. iMScope TRIO 成像质谱显微镜测试条件将不同部位的组织块包埋在2%羧甲基纤维素(CMC)中进行冷冻切片,切片厚度为 25μm,将所得组织切片放置在 ITO 导电载玻片上(100 Ω/m2,日本大阪松浪玻璃),将载玻片在真空干燥箱中干燥20分钟。使用带有0.22 mm喷嘴的喷枪(PS-270,GSI Creos,日本东京)和基质升华设备iMLayer(Shimadzu,Kyoto,日本)进行基质涂敷。在喷枪法中,使用1mL 40mg/mL DHB溶液(0.1%TFA,70%甲醇水配置)作为基质,喷枪与载玻片保持250px的距离, 每喷雾10s后干燥5s,循环喷雾-干燥过程,直到将1 mL DHB溶液喷涂于切片并干燥完全。对于升华法,使用iMLayer设备将基质升华于组织切片表面,厚度为0.7μm DHB。所有数据都是在装有MALDI离子源的iMScope TRIO(Shimadzu,Kyoto,日本)上采集,质谱条件如下:正离子模式采集, 采集质量范围 m/z 100-1000, 激光强度50。 2. 基于 iMScope TRIO 成像质谱显微镜的组织成像研究采集黄皮植物不同部位作为研究样品,分别对应果实、小茎、叶片。采用iMScope TRIO 成像质谱显微镜对三个不同部位的横切面进行了生物碱、香豆素、糖及小分子酸等内源性分子的空间分布分析。 如图2所示,3-甲基咔唑和Murrastinin在果实全果均有分布,尤其在果核含量特别丰富。在黄皮小茎中,这两个物质主要存在于木质部和髓质部,表皮含量较低。此外,在叶片的上下表皮含量丰富。Murrayanine和heptaphylline这两种咔唑碱仅分布于果肉组织中,茎中含有少量,果皮、果核和叶片中几乎不存在。而Girinimbine只存在于黄皮果核外皮以及茎的外表皮。黄皮属植物咔唑类化合物通过直接细胞毒性、诱导肿瘤细胞凋亡和/或免疫增强作用抑制肿瘤生长,他们的抗癌潜力引起了越来越多研究的兴趣。通过定位该类物质的组织分布,可以有效提高活性成分的提取效率。图2 不同生物碱在黄皮果实、茎、叶片中空间分布的质谱成像图 此外,如图3所示,香豆素类化合物在黄皮中的分布是相似的,主要存在于果皮中。有报道称,香豆素类化合物的抗氧化、抗癌及抗炎症方面发挥重要作用。糖类广泛存在于植物中,是植物快速储能物质。 图3 不同香豆素在黄皮果实、茎、叶片中的空间分布的质谱成像图 如图4所示,己糖(葡萄糖和果糖)主要分布在黄皮果实的果肉当中,蔗糖分布在果皮、果肉以及果肉中纤维上。水果中产生的蔗糖由蔗糖转化酶水解成葡萄糖和果糖,黄皮切片中蔗糖的检测强度约为己糖的4.7±1.4倍,说明黄皮中糖类主要以蔗糖的形式存在。据文献报道,葡萄糖和果糖的甜度分别是蔗糖的0.75倍和1.7倍。因此,这很好地解释为什么黄皮果品尝比其他水果酸。图4 糖、有机酸及其他小分子在黄皮果实中空间分布的质谱成像图 本研究结果有助于更好的了解黄皮内源性生物活性物质在不同组织部位的分布,为黄皮成分识别、质量评价、高值化利用等提供参考。 本文相关内容由广东省农业科学院农业质量标准与监测技术研究所唐雪妹博士提供,详细研究内容已正式发表于Phytochemistry, 2021, 192:112930. 文献题目《Visualizing the spatial distribution of metabolites in Clausena lansium (Lour.) skeels using matrix-assisted laser desorption/ionization mass spectrometry imaging》 使用仪器岛津iMScope TRIO 作者Xuemei Tang a,b, Meiyan Zhao a, Zhiting Chen a, Jianxiang Huang a,b, Yan Chen a,Fuhua Wang a,b, Kai Wan a,b,* a Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Chinab Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China* Corresponding author. Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. 声 明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。
  • 你的朋友都收藏啦!卡拉洛尔残留测定前处理方法
    卡拉洛尔的危害及检测目的卡拉洛尔又名咔唑心安,化学名4- (3-异丙胺基-2-羟丙氧基) 咔唑,属β肾上腺受体阻断剂,在兽医临床中常用于消除动物紧张,特别是在运输过程中防止因应激导致的动物死亡。β肾上腺受体阻断剂目前已成为临床上常见的七类兽药残留之一,其代表性药物卡拉洛尔常在动物屠宰前数小时内注射使用,因此相对其他兽药可能对消费者造成的健康风险更高。因此我国农业农村部和国家市场监督管理总局2019年发布的GB 31650-2019《食品安全国家标准食品中兽药最da残留限量》中明确规定了卡拉洛尔在猪靶组织中的残留限量。本文阐述了如何将卡拉洛尔从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据行标SN/T 4144-2015,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡拉洛尔应用范围:猪肉、鱼肉、虾肉、肝脏、肾脏、脂肪、奶、鸡蛋和蜂蜜高效液相色谱-质谱/质谱法方法原理:试样中的卡拉洛尔用甲醇(脂肪用乙酸乙酯-正己烷溶解提取)提取,提取液经MCX柱净化(脂肪用GPC净化)后,供液相色谱-质谱/质谱仪测定,外标法峰面积定量。前处理仪器:凝胶净化色谱仪;电子天平(感量0.01 g 和0.1 mg);组织捣碎机;涡旋混匀器;氮吹仪;均质机(10000 r/min);离心机(6000 r/min);具塞塑料离心管(50 mL)。检测仪器:LC-MS/MS+ESI源 样品的制备与保存1.肌肉(猪肉)、内脏(肝脏、肾脏)、脂肪和水产品(鱼肉、虾肉):取代表性样品约500 g,用组织捣碎机捣碎,装入洁净容器作为试样,密封并做好标识,于零下18 ℃下保存。2.奶、蜂蜜、鸡蛋:取代表性样品约500 g,搅拌均匀后装入洁净容器内密封并做好标识,于4 ℃下保存。 前处理方法1.提取肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉称取5 g试样(精确至0.01 g)于50 mL具塞离心管中,加入15 mL甲醇,涡旋提取2 min,用均质器(10000 r/min)均质2 min,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用15 mL甲醇均质提取一次。离心合并有机相,用水定容至50 mL,待净化。 奶、蜂蜜、鸡蛋称取5 g试样(精确至0.01 g)于50 mL具塞离心管中,加入15 mL甲醇,涡旋提取2 min,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用15 mL甲醇涡旋提取一次。离心合并有机相,用水定容至50 mL,待净化。 脂肪称取2 g试样(精确至0.01 g)于50 mL具塞离心管中,加入20 mL乙酸乙酯-环己烷(1+1)溶解并混匀,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用20 mL乙酸乙酯-环己烷(1+1)溶解提取一次。离心合并有机相,用乙酸乙酯-环己烷(1+1)定容至50 mL,待净化。 2.净化肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉、奶、蜂蜜、鸡蛋MCX柱(60 mg/3 mL)依次用甲醇3 mL和水3 mL活化,加入5.0 mL待净化液,用3 mL水淋洗,用抽空3 min。用5 mL 5 %三乙胺-甲醇洗脱,收集洗脱液,于40 ℃氮气浓缩吹干,残渣用50 %乙腈水溶液1.0 mL溶解后,加2 mL乙腈饱和正己烷脱脂,下层清液过0.45 μm滤膜,供液质测定。 脂肪凝胶渗透色谱条件凝胶色谱净化系统:Accuprep(J2);凝胶净化柱:Bio-Beads S-X3(38 μm~75 μm),400 mm×25 mm(内径);流动相:乙酸乙酯-环己烷(1+1);流速:5 mL/min;收集时间:7 min~17 min。净化过程:取10 mL待净化液于GPC样品管中,用GPC柱净化,收集洗脱液,于40 ℃旋转蒸发至干,残渣用50 %乙腈水溶液1.0 mL溶解后,加2 mL乙腈饱和正己烷脱脂,下层清液过0.45 μm滤膜,供液质测定。 国标解读及注意事项1.卡拉洛尔标准物质用乙腈配成100 μg/mL的标准储备液,在0 ℃~4 ℃ 避光保存。2.本方法使用甲醇提取两次目标化合物,阳离子交换柱富集净化,相当于0.5 g试料进行上机检测(其中脂肪样品用乙酸乙酯-正己烷提取两次,再用GPC柱净化,相当于0.4 g试料进行上机检测)。3.MCX固相萃取过程中需要控制流速,使溶液一滴一滴地流下,以保证离子交换的效果。洗脱过程中洗脱溶剂少量多次加入,可以增加洗脱率。4.在GPC净化过程中配合紫外检测器使用,可以准确监测目标化合物及杂质的流出情况。 参考文献SN/T 4144-2015 出口动物源性食品中卡拉洛尔残留量的测定 液相色谱-质谱/质谱法 图1 肌肉、内脏和水产中卡拉洛尔残留量测定的前处理流程图图2 奶、蜂蜜和鸡蛋中卡拉洛尔残留量测定的前处理流程图图3 脂肪中卡拉洛尔残留量测定的前处理流程图
  • “感恩笃定前行 服务励行致远” 东京理化超级品牌日圆满落幕
    7月21日,仪器信息网联合东京理化(EYELA)举办的“感恩笃定前行 服务励行致远”超级品牌日活动顺利落下帷幕。本次活动,不仅邀请到多位科研及技术专家带来了精彩分享,同时让广大用户更加全面地了解了东京理化的企业文化和发展历程。与此同时,线上观众也纷纷送出热烈的祝福,祝贺东京理化中国区成立20周年。会议伊始,东京理化副社长千野英树先生和东京理化中国区总经理荐田慎也先生分别致辞。 东京理化副社长千野英树 致辞千野英树先生在致辞中对广大中国用户多年来对于东京理化产品的支持和信任表示诚挚的感谢,并着重强调了中国市场对于东京理化的重要性。目前,日本每年的研发支出约为10万亿日元,而中国的研发支出约为60万亿日元,与美国相差无几。未来,东京理化将继续把中国市场放在首位,继续加强开拓中国市场,加强开发出适合中国市场,让中国用户满意的产品。 东京理化中国区总经理荐田慎也 致辞荐田慎也先生在致辞中简单回顾了东京理化进入中国市场20年以来的发展和所取得的重要成果,并对广大中国用户和合作伙伴多年来的大力支持表示感谢,希望未来能够继续团结一心,创造更好的成绩。中国海洋大学教授朱伟明 致辞紧接着,中国海洋大学朱伟明教授作为用户代表致辞。致辞中,朱教授提到,他从2003年独立开展科学研究以来就开始使用东京理化的产品,包括各型号的旋转蒸发仪 、小型薄膜浓缩装置、试管浓缩仪、溶媒回收装置、隔膜真空泵等,东京理化的产品相比其他进口品牌功能上丝毫不逊色,但价格却非常便宜,售后也十分人性化,譬如每年一次的免费上门服务。最后,朱教授也对东京理化产品和服务的进一步完善提出了相应的建议,其中还包括希望增加售后巡访频次,以及易耗配件价格更优惠等。除了精彩的致辞之外,本次超级品牌日还邀请了顺德职业技术学院博士唐本钦、中国医学科学院药物研究所助理研究员臧应达、东京理化器械株式会社应用工程师王超等为观众带来精彩的报告分享。报告人:顺德职业技术学院博士 唐本钦报告题目:东京理化提取浓缩设备的应用报告人:中国医学科学院药物研究所助理研究员 臧应达报告题目:有机合成仪PPM-5512在咔唑生物碱合成中的应用报告人:东京理化(中国)应用工程师 王超报告题目:柱型连续流动反应装置的应用 与超级品牌日同时进行的还有一系列的感恩活动,其中包括秒杀加热磁力搅拌器、购旋转蒸发仪送水流真空泵、东京理化中国20周年寄语征集、买旋蒸送超长延保等。了解更多活动详情或报名参加,请点击下图。
  • 最新欧盟ZEK 01.4-08技术文件,18种多环芳烃检测整体解决方案
    2011年11月29日,德国GS认证技术文件ZEK 01.4-08发布,要求从2012年7月1日起进行GS认证的产品必须测试18种多环芳烃(PAHs)。 多环芳香族化合物(PAHs)通常存在于石化产品、橡胶、塑料、润滑油、防锈油、不完全燃烧的有机化合物中,亦有部分是因应用于制造过程而残留在产品中,如塑料、染料和杀虫剂制造等,而电子电气产品中的塑料和橡胶材质、黑色或深色的硬性聚合物材料、表面涂料与油漆,以及用于刷毛、皮革、纤维和木材的防腐剂均可能含有PAHs。PAHs在环境中的含量甚微但分布广泛,一些PAHs中除含有致癌和致突变的成分外,还含有多种促进致癌的物质,对人体健康产生很大的威胁。 迪马科技一直致力于为用户提供全方位的整体解决方案,在ZEK 01.4-08技术文件实施之际,迅速响应定制了符合ZEK 01.4-08技术文件的18种多环芳烃(PAHs)混标,同时推出多环芳烃专用分析气相色谱柱,为广大多环芳烃分析工作者提供了全方位的解决方案,详细信息如下: ********************************************************************* 18种多环芳烃混标详细信息 CAT NO:46641 浓度:1000 &mu g/mL 溶剂:甲苯 体积:1mL 序号 中文名称 英文名称 CAS号 1 萘 Naphthalene 91-20-3 2 苊烯 Acenaphthylene 208-96-8 3 苊 Acenaphthene 83-32-9 4 芴 Fluorene 86-73-7 5 菲 Phenanthrene 85-01-8 6 蒽 Anthracene 120-12-7 7 荧蒽 Fluoranthene 206-44-0 8 芘 Pyrene 129-00-0 9 苯并(a)蒽 Benzo(a)anthracene 56-55-3 10 屈 Chrysene 218-01-9 11 苯并(b)荧蒽 Benzo(b)fluoranthene 205-99-2 12 苯并 (k)荧蒽 Benzo(k)fluoranthene 207-08-9 13 苯并(j)荧蒽 Benzo(j)fluoranthene 205-82-3 14 苯并(e)芘 Benzo(e)pyrene 192-97-2 15 苯并(a)芘 Benzo(a)pyrene 50-32-8 16 茚苯(1,2,3-cd)芘 Indeno(1,2,3-cd)pyrene 193-39-5 17 二苯并(a, h)蒽 Dibenzo(a,h)anthracene 53-70-3 18 苯并(ghi)苝Benzo(g,hi)perylene 191-24-2 其他相关多环芳烃混标(EPA 610/525/550 16种PAHs) CAT NO:12-PPH-10JM 浓度:100 &mu g/mL 溶剂:甲醇 体积:1mL CAT NO:257404 浓度:2000 &mu g/mL 溶剂:二氯甲烷 体积:1mL ********************************************************************* 多环芳烃检测专用气相毛细管色谱柱 货号:8862 色谱柱:DM-PAH 规格:30 m x 0.25 mm x 0.25 &mu m 柱温:65 º C ( 0.5 min ) - 220 º C, 15 º C/min - 330 º C ( 15 min ), 4 º C/min 载气:He, 2.0 mL/min 进样方式:不分流 ( 保持 1.75 min ), 0.5 &mu L, 320 º C 尾吹气流速:75 mL/min 检测:FID, 320 º C 样品:EPA 8310 PAH 混标溶于二氯甲烷溶液, 10 ppm 1. 萘 8. 蒽 15. 苯并[k] 荧蒽 22. 二苯[a,h] 蒽 2. 2- 甲基萘 9. 荧蒽 16. 苯并[j] 荧蒽 23. 苯并[ghi] 北 3. 1- 甲基萘 10. 芘 17. 苯并[a] 芘 24. 7H- 二苯并[c,g] 咔唑 4. 苊烯 11. 苯并[a] 蒽 18. 3- 甲基胆蒽 25. 二苯并[a,e] 芘 5. 苊 12. 屈 19. 二苯[a,h] 吖啶 26. 二苯并[a,i] 芘 6. 芴 13. 三亚苯 20. 二苯[a,j] 吖啶 27. 二苯并[a,h] 芘 7. 菲 14. 苯并[b] 荧蒽 21. 茚并 [1,2,3-cd] 芘
  • 尼康公司将任命新董事成员
    尼康集团宣布,执行委员会今天决定了向2013年6月27日举行的股东大会,及接下来的董事会会议推荐的新董事等人选。   目前担任精密设备公司董事、董事会成员、高级执行官、总裁职务的Kazuo USHIDA,被提名为代表董事、董事会成员及执行副总裁。   目前担任精密设备公司液晶显示设备部门运营官、总经理的Tomohide HAMADA,被提名为执行官。   目前担任运营官的Koji MORISHITA将退休,但将被任命为集团顾问。 编译:刘丰秋
  • 化妆品相关检验标准上新了,您准备好了吗?
    化妆品相关检验标准上新了,您准备好了吗?关注我们,更多干货和惊喜好礼 数据来源:中商情报网近年来,我国人均可支配收入持续提高,追求高质量生活成为时尚,在消费升级与颜值经济的带动下,化妆品消费迅速崛起。2019年我国化妆品行业整体市场容量达到4777.20亿元,预计2019-2024年年均复合增长率将达到11.6%,我国已成为全球第1大化妆品消费国。在本行业蓬勃发展的同时,一些负面新闻却不绝于耳。 针对化妆品安全问题,我国相继出台了多项监管政策。日前,国家药品监督管理局对2015版《化妆品安全技术规范》做了4项修订,3项新增。本期飞飞跟大家一同分享《规范》中zui新修订的《化妆品中硼酸和硼酸盐检测方法》。 硼在化妆品中以硼酸、硼酸盐和四硼酸盐的形式存在,具有一定的抗菌防腐功能。但如不慎吸入或被创口吸收,可引起急性中毒,出现恶心、腹泻等症状,严重者还会出现昏厥、肾衰竭甚至死亡。因此,化妆品中的硼酸和硼酸盐的含量受到严格监管。以下是中国和欧盟关于化妆品中硼酸的监管限量要求:表 1 中国和欧盟关于化妆品中的硼酸监管要求(点击查看大图) 此方法修订的一大亮点是将操作繁琐、分析误差大的甲亚胺-H分光光度测定方法改为灵敏度高、抗干扰强的离子色谱法,同时增加了离子色谱-电感耦合等离子体质谱法进行结果确认。技术点解析,且听飞飞娓娓道来。 先来一览标准中使用的离子色谱条件: 色谱柱:IonPac ICE Borate (9 mm ×250 mm)离子排斥分析柱,或等效色谱柱;抑制器:排斥型阴离子微膜抑制器(ACRS-ICE 500 9 mm),或等效抑制器;淋洗液:3 mmol/L甲烷磺酸+60 mmol/L甘露醇;化学抑制再生液:25 mmol/L四甲基氢氧化铵+15 mmol/L甘露醇;淋洗液流速:1.0 mL/min;再生液流速:1.0 mL/min;柱温:30 ℃;进样量:25 µL;检测器:化学抑制型电导检测器。 + + + + 条件中所用的是甲磺酸的酸性淋洗条件,在酸性条件下(~pH2.6),硼酸盐会以硼酸(H3BO3)的形式存在,这也是中国和欧盟规范中提到zui大允许浓度要以硼酸计的原因。例如,四硼酸钠(Na2B4O7)会与强酸甲磺酸(CH3SO3H)立即发生反应,产生硼酸。此外,在酸性条件下,硼酸和甘露醇(C6O6H14)会形成一个稳定的一价阴离子配合物,从而使得它更容易被电导检测。因此,方法中选用甲磺酸作为淋洗液分离硼酸,而甘露醇被加入淋洗液中可进一步提高待测物在离子排斥条件中的检测灵敏度。 图 1 四硼酸盐、硼酸和甘露醇在酸性条件下的反应(~pH2.6,3mM MSA)(点击查看大图) 独特分离选择性 排斥型离子色谱法中强酸性离子化合物因Donnan排斥作用,不能在色谱柱上保留而基本在死体积洗脱。弱酸性离子化合物由于质子化作用,可以穿过Donnan膜进入固定相,解离度越低的物质越容易进入固定相,其保留值也就越大。因此,离子排斥色谱法是解决弱酸性硼酸和强酸性离子分离的有效方式。但是化妆品组成复杂,常添加苹果酸、柠檬酸,丙三醇调节基体的pH值和赋予产品保湿功能,在普通排斥色谱柱上干扰硼酸的测定。《规范》中使用了对硼酸具有独特选择性的排斥色谱柱——IonPac ICE borate。在选定色谱条件下,能有效消除柠檬酸、丙三醇等物质的干扰。图 2 某样品及加标样品中硼酸的分离检测谱图(点击查看大图) 专属抑制检测模式 电导检测器提供一个分析硼酸灵敏和易用的方法。ACRS-ICE 500 Suppressor有效降低了甲磺酸淋洗液的背景电导,抑制产物是一种比酸淋洗液电导更低的盐;同时为了得到电导检测响应,保持硼酸以硼酸和甘露醇阴离子配合物的形式。对于IonPac ICE抑制反应,可总结如下:用于再生液中的甘露醇,尽管没有直接参与抑制反应,但它可保持其穿过抑制器膜的平衡,对于降低抑制噪音十分必要。 完善的样品前处理 化妆品基体复杂,前处理过程是不可缺少的。对于硼酸和可溶性硼酸盐,《规范》中采用水或甲醇-水的提取方法,再经RP柱净化后测试。对于硼酸和硼酸盐总量测定,处理过程是将碳酸钠溶液加入到称量好的样品中,转移至高温炉,经充分灰化后,再用盐酸溶液溶解灰分,用水稀释定容后,经Ag柱、H柱处理。 以上所用离子色谱分析耗材,您选对了吗?(点击查看大图) 多种检测方式 赛默飞可提供quan方位的色谱质谱仪器分析平台,离子色谱与电感耦合等离子质谱联用技术在元素形态价态分析方面具有无可比拟的优势,目前已成为该应用方向首xuan的检测技术。因为电感耦合等离子质谱具有卓yue的检测灵敏度和抗基体干扰能力,《规范》中将这一联用技术做为结果确认分析方法。
  • 化妆品安全技术规范修订和新增高效液相色谱法测化妆品中防腐剂含量等7项检验方法
    日前,国家药品监督管理局组织起草了《化妆品中防腐剂检验方法》《化妆品中硼酸和硼酸盐检验方法》《化妆品中对苯二胺等32种组分检验方法》《化妆品中维甲酸等8种组分检验方法》《体外哺乳动物细胞微核试验》《化妆品祛斑美白功效测试方法》《化妆品防脱发功效测试方法》7项检验方法,并纳入《化妆品安全技术规范(2015年版)》。上述7项检验方法中,前4项为《规范》修订的检验方法,自2021年5月1日起施行,原有检验方法同时废止。后3项检验方法为《规范》新增的检验方法,自发布之日起施行。《化妆品中防腐剂检验方法》规定了高效液相色谱法测定化妆品中甲基异噻唑啉酮等23种组分、吡硫鎓锌等19种组分、己脒定二(羟乙基磺酸)盐等7种组分、聚氨丙基双胍、海克替啶、硼酸苯汞的含量。《化妆品中硼酸和硼酸盐检验方法》规定了离子色谱法测定化妆品中硼酸和硼酸盐的含量。《化妆品中对苯二胺等32种组分检验方法》和《化妆品中维甲酸等8种组分检验方法》均规定使用高效液相色谱法检测相关含量。7项检测方法具体实验参数、仪器及图谱详见附件。7项检验方法.doc
  • 硝酸钠和肥料中氮的测定
    硝酸钠和肥料中氮的测定devarda 蒸馏法测定硝酸钠和肥料中的氮1介绍本文介绍了一种简便、快速、灵敏的测定硝酸钠中氮含量的 Devarda 方法。采用 K-365 MultiKjel 进行 Devarda 蒸馏,然后在万通 Eco 滴定仪上进行硼酸滴定。Devarda 金属与氢氧化钠反应生成氢。产生的氢将硝酸盐和亚硝酸盐还原为氨。然后氨被硼酸溶液吸收,用标准硫酸滴定。2设备MultiKjel 和 万通 Eco 滴定仪 (11K36531211)300 mL 玻璃样品管 (11059690)分析天平(精度 ± 0.1 mg)Devarda 防溅保护器 (11071014)3试剂与材料试剂:NaOH 32%, VWR (9913.9010)硼酸 (H3BO3) 4%:200 g 硼酸, 稀释至 5L 蒸馏水, pH 调节到 4.65硫酸 0.1 mol/L 滴定液硝酸钠 ≥ 99.5% Devarda’s 合金粉末样品:在当地市场购买的化肥,含 15% 的硝酸盐 + 氨氮和微量尿素安全操作请参考所有相应的 MSDS!4步骤直接蒸馏然后硼酸滴定 —— 采用硼酸滴定法测定 Devarda 蒸馏过程中氨的蒸馏量。氨和硼酸形成硼酸络合物,直接用已知浓度的硫酸滴定。过量的硼酸保证了氨能够被完全吸收。氮的测定包括以下步骤:在碱性条件下,德瓦达合金将硝酸盐/亚硝酸盐还原为氨。用蒸汽蒸馏法将氨蒸馏到硼酸接收。硼酸滴定法测定氮含量。系统准备:先进行预热,然后进行启动步骤(选择相同的方法作为启动方法进行分析),或者在主屏幕上使用准备功能。在保持自动蒸馏模式上,即使间断性的中断之间的测定,也不需要进一步的预热或启动。空白制剂:本实验用一个空的 300ml 样品管,内含 2g 的 Devarda 合金作为空白。每个空白用一个新的样管。将样品管安装在蒸馏装置上,进行蒸馏和滴定。参考标准准备:小心地在每个 300ml 样品管中称量±0.2 g 硝酸钠,并在蒸馏前加入 2g 德瓦达合金。把准确的记下来。样品称重,将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。样品制备:仔细称量每个 300ml 样品管中 ±0.2 g 的样品,并在蒸馏前加入 2g 德瓦达合金。记下样品的确切重量。将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。注意事项:Devarda 合金由 ~ 45% 铝、~ 50% 铜和 ~ 5% 锌的混合物组成。在碱性条件下,铝和锌被还原,产生氢气。氢气在原地将硝酸盐还原为氨。这是一个放热反应,因此在反应过程中,液体温度升高,反应混合物产生泡沫。催化剂应准确称量。反应时间应保持足够长的时间,以使反应完全和强烈的反应平息下来。排空程序应该关闭,因为 Devarda 合金的残留物会堵塞管路!Devarda 合金的残留物对环境有潜在威胁!蒸馏后不要将样管中的废物倒入水槽中!一定要把它安全地处理掉。在样品测定前,先进行 5 次空白测定,再进行 5 次标准品蒸馏。所有蒸馏参数列于表 1。Table 1:蒸馏和滴定的参数(点击放大查看)计算 —— 结果是按氮的百分比计算的。用式 (1) 和 (2) 计算结果。对于对照品,其纯度如式 (3) 所示。wN:氮的重量分数VSample :样品消耗滴定酸的体积[mL]VBlank :空白消耗滴定酸的平均体积[mL]z :摩尔系数(1 for HCl, 2 for H2SO4)c:滴定液浓度[mol/L]f:滴定系数(商业溶液一般为 1.000 参照产品合格证)MN:氮的分子量 (14.007 g/mol)mSample:样品重量 [g]1000:转化因子 [mL to L]%N :氮的重量百分比%NNaNO3:为 NaNO3 纯度校正的氮的重量百分比[%]P:对照品 NaNO3 的纯度[%]5结果硝酸钠回收 —— 硝酸钠(纯度或含量 = 99.5%) 的氮测定和回收率的结果见表 3。硝酸钠含氮量为 16.48%。Table 2:空白测定结果Table 3:硝酸钠中氮的回收结果(点击放大查看)Table 4:标记 N % = 15 的肥料样品中氮的测定结果(点击放大查看)6结论用该方法测定硝酸钠和化肥中的氮,结果可靠,重现性好。这些结果与给定的硝酸钠值吻合得很好。加样回收率为 100.296 % (RSD = 0.049%),在 98 ~ 102% 的标准范围内。
  • 欧盟拟撤消活性物质肯定列表中6种农药
    欧盟拟从活性物质肯定列表中撤消丁苯吗啉等6种农药   2008年12月24日,欧盟委员会发布了修订欧洲议会和理事会指令98/8/EC将丁苯吗啉、硫酰氟、氧化硼、硼酸、四硼酸钠和四水八硼酸二钠作为活性物质包括在附录I中的欧盟委员会指令草案。   这6个欧盟委员会指令草案将可能用于生物农药产品的丁苯吗啉、硫酰氟、氧化硼、硼酸、四硼酸钠和四水八硼酸二钠包括在欧共体活性物质肯定列表中。本欧盟委员决议草案涉及企业原先打算提交风险及功效评估信息—基于此这些活性物质被允许保留在生物农药市场上-的活性物质清单。然而,提交信息的最后截止期限到来时,文件没有被提交。因此,这些物质无法按照生物农药指令98/8/EC第16条第2款规定的10年审查计划被审查,现决定12个月的逐步退出期之后从生物农药市场撤销这些物质。
  • 课堂 | 金相典型特征样品图谱 (七) : 有色金属合金组织
    为发挥北京科技大学材料学科专业优势,服务材料相关专业实验教学,北京科技大学材料国家级教学示范中心与北京科大分析检验中心有限公司联合开发了一系列金相典型特征样品,并使用徕卡智能型显微镜DM4 M采集了所有样品的显微组织,为广大教师和实验室技术人员提供参考。此次为您准备了以下8个系列的金相样品图谱,本篇是第七篇,将为您展示有色金属合金组织样品图谱。一、铁碳平衡组织二、钢的热处理组织三、工模具钢组织四、不锈钢组织五、铸钢组织六、铸铁组织七、有色金属合金组织八、塑性变形组织有色金属合金组织 纯铜材料状态:退火浸蚀剂:三酸乙醇溶液显微组织:α固溶体黄铜材料状态:退火浸蚀剂:三酸乙醇溶液显微组织:α固溶体+β相亚共晶铝硅合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+共晶硅共晶铝硅合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:共晶硅过共晶铝硅合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:初晶硅+共晶硅ZL102材料状态:铸态未变质处理浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+共晶硅ZL104材料状态:变质处理浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+变质硅铝铜合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+Al2Cu共晶体亚共晶铅锡合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:先共晶α相+共晶相共晶铅锡合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:共晶相过共晶铅锡合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:先共晶β相+共晶相以上的清晰图片都是采用徕卡 DM4 M智能型金相显微镜采集。Leica DM4 M智能型金相显微镜德国进口显微镜,主要应用于材料科学研究:- 载物台移动范围:100x100mm- 放大倍率: 50-1000- 2 齿轮手动调焦驱动器- 6 位或7位编码物镜转盘- 手动/电动载物台,6个符合人体工学设计的可编程按钮- 照明管理系统- 对比度管理器- LED 照明装置可实现所有对比度模式- 相衬模式:明场、暗场、微分干涉相衬、偏振、荧光- Leica Application Suite (LAS X) 软件关于徕卡显微系统Leica Microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(Wetzlar, Germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • 口腔清洁护理用品,IC-ICP-MS法验证《GB/T 38791》
    IC-ICP-MS可以很好的分离硼的不同种形态,有助于硼酸和硼酸盐含量的准确测定,且可同时实现溴、碘元素形态分析。 2020年4月28日,《GB/T 38791-2020口腔清洁护理用品 牙膏中硼酸和硼酸盐含量的测定 电感耦合等离子体原子发射光谱法》正式发布,2020年11月1日正式实施。 硼酸,是一种外用杀菌剂,消毒剂和防腐剂。对多种细菌,霉菌都有抑制作用。可在临床上常常用于止血和防腐剂,但是如果不慎食用了,就会出现恶心,呕吐,腹痛,腹泻等胃肠道症状。 硼砂有杀菌作用,在医学上,硼砂用于皮肤黏膜的消毒防腐、氟骨症等的治疗,近年来还用于肿瘤的治疗,但口服对人体有害。 根据GB/T 38791-2020前处理方法,提取的是可溶性的含硼化合物,然后采用ICP-OES进行总量测定,但标准后面提到可以采用IC-ICP-MS方法对测定结果进行验证。 IC-ICP-MS 可以将硼酸根离子与其他可溶性硼离子进行有效分离,从而准确得到硼酸根离子的含量。 由于ICP-MS具有多元素同时检测的功能,通过不同质量数通道可以检测不同种元素,通过实验发现,在该实验条件下,溴、碘的形态分析可同时得到很好的分离。 IC-ICP-MS 即在一次进样中,同时分析B、Br、I的形态;且IC的惰性能更适合与ICP-MS联用,可有效避免金属等杂质的溶出,同时可降低测定元素的残留。采用IC-ICP-MS的方法,可以高效的同时分离、定量分析硼、溴、碘离子及酸根离子的形态,该方法适用于牙膏等样品的常规分析,更多详细信息请致电岛津。 IC-ICP-MS
  • 添加纳米线让锂离子电池更安全
    p style=" text-indent: 2em " 无论手机、笔记本电脑、还是电动车辆都离不开锂离子电池,它是“点燃”我们日常生活的重要能源。然而近些年,锂离子电池却因为实实在在的着火事件而引起了舆论的关注。怎样才能开发出更为安全的电池呢?据科学家在ACS期刊的纳米板块发表的文章介绍,在电池中加入纳米线不仅可以提升电池的耐火性,同时也能提升电池其他方面的性能。 /p p style=" text-indent: 2em " 在锂离子电池中,锂离子通过电解质往返穿梭于两电极之间,传统锂离子电池的电解质是盐和有机溶剂构成的液体,很容易蒸发,是造成火灾的隐患。因此,学者们将研究的重心转向了固态电解质。被提议担起固态电解质的“人选”有很多,然而这些物质大多或稳定性不够,或不能满足大规模生产的需要,二者不可得兼。这其中,聚合物电解质因其良好的稳定性、低成本和灵活性而被认为是担当固态电解质的潜力股,但是它的导电性和力学性能却较差,因此,科学家们通过添加一系列化合物来设法提升聚合物电解质的性能。陶新永和他的研发团队制备出的硼酸镁纳米线恰好就具有良好的力学性能和导电性,如果把硼酸镁纳米线加入到固态电解质中,是否电池也会被赋予相应的良好特性呢?陶新永的团队对此十分好奇。 /p p style=" text-indent: 2em " 他们在固体电解质中混合了5、10、15、20重量百分比的硼酸镁纳米线并进行实验观察,发现硼酸镁纳米线确实可以提升电解质的导电性,这种提升与离子通过电解质的速度和数量息息相关,离子通过电解质的速度越快,快速通过的数量越多,电解质的导电性能就越好。此外,硼酸镁纳米线的添加还使得电解质能够承受更大的压力。研究团队还测试了加入硼酸镁纳米线后电解质的可燃性,发现它几乎不可燃烧。而由硼酸镁纳米线强化的固态电解质与阴阳极配对所构成的电池,在速率性能和循环容量上都比电解质中不含硼酸镁纳米线的电池有所提升。 /p
  • 新疆理化所在新型紫外非线性光学晶体研究中取得进展
    固体紫外激光器广泛应用于商业和科学领域。非线性光学材料能够对激光器输出的特定波长的激光进行激光频率的转换和拓展,颇具应用价值。例如,利用非线性光学材料进行的Nd:YAG激光辐射的四次谐波产生是输出266 nm紫外激光的有效方式。合成紫外非线性光学材料需要满足苛刻的性能要求,因而在材料设计中存在挑战。 既往研究提出了氟导向材料设计策略,以在硼酸盐体系中探索具有优异性能的双折射和非线性光学材料。向硼酸盐中引入氟可以有效地丰富结构化学和调控光学性能。LiB3O5(LBO)晶体是重要的非线性光学材料,并得到广泛应用,但遗憾的是其小的双折射导致LBO晶体无法实现1064 nm激光的直接四倍频输出。是否可以通过调整晶体结构来增大LBO的双折射,从而达到更短的相位匹配波长?   近期,中国科学院新疆理化技术研究所晶体材料研究中心通过化学合成制备得到氟硼酸盐晶体LiNaB6O9F2。LiNaB6O9F2具有由[B6O11F2]基本构建模块组成的二互穿3[B6O9F2]∞三维网络,这是首次在氟硼酸盐体系中观察到。LiNaB6O9F2在深紫外截止边,大的倍频响应(1.1 × KDP),合适的双折射(0.067@1064 nm)之间实现了更好的平衡。随着氟的引入,LiNaB6O9F2展示出氟导向性能优化,包括比LBO更大的双折射(0.067@1064 nm之于LBO的0.040@1064 nm),比LBO更短的相位匹配波长(210 nm之于LBO的277 nm)。该工作丰富了氟硼酸盐的结构化学,证明了氟导向策略是探索具有优良光学性能的非线性光学晶体的可行方法。   相关研究成果以全文Research Article形式,发表在Advanced Optical Materials上。研究工作得到国家自然科学基金和中科院等的支持。
  • 原装进口高纯助熔剂特价回报客户
    为回报中国广大新老用户对我公司总代理的澳大利亚XRF Scientific Ltd公司高纯助熔剂产品的厚爱,我公司决定: 对澳大利亚XRF Scientific Ltd高纯助熔剂以特惠价1200元/千克进行促销,每位客户最低多限订购100千克,有效期为2009年9月1日至2009年12月31日 在熔融中加入硼酸盐助熔剂是一种*的粉末样品熔融处理技术。这样品处理方法在X-射线荧光光谱(XRF)、原子吸收光谱(AA)、电感耦合等离子体发射光谱(ICP)等分析技术中有着广泛的应用。因为这种助熔剂是一种样品溶剂,选择这种溶剂对实现质量分析具有非常重要的作用。 澳大利亚XRF Scientific Ltd公司在助熔剂技术方面20多年来的专业技术值得信耐,并能帮您改进分析技术。我们提供的硼酸盐助熔剂有以下显著特点: &bull 熔融物获得完美的均质性 &bull 严格可控的粒度分布 &bull 高密度:1.2-1.4 g/cm3 &bull 极低的灼烧减量:一般<0.05% &bull 防尘,易流动 &bull 高纯品质:>99.98% &bull 分析保证:经过分析认证 XRF Scientific 的助熔剂由四硼酸锂(Li2B4O7),四硼酸钠(Na2B4O7)或偏硼酸锂(LiBO2)制得。 我们也提供完整的其它添加剂,如氧化剂、除湿剂 (NWA)等。 通过认证的批量生产硼酸盐助熔剂的纯度:99.98%+ 我们可按您的要求定制助熔剂。 关于XRF Scientific Ltd 澳大利亚XRF Scientific Ltd公司是世界领先的激光诱导击穿光谱仪(LIBS)、熔样机、高纯助熔剂、铂金/铂合金器皿制造商。 它生产的助熔剂以其高品质在世界钢铁行业内被广泛使用,已成为X荧光光谱用户首选的进口助溶剂之一。 关于上海凯来实验设备有限公司 总部设在中国上海,成立于2004年。作为德国Haver & Boecker公司、Bϋ rkle公司、英国Optical Activity公司和Index Instruments公司、美国Ahura公司、Inorganic Venture公司、Reichert公司和W.S. Tyler公司、澳大利亚XRF Scientific 公司、瑞士SONOSWISS公司等在中国的总代理,以及作为德国Hirschmann、HosokawaAlpine的南方区总代理和Dionex液相产品上海区总代理。凯来公司致力于为生命科学和化学分析实验室用户提供优质的科学仪器及服务,同时希望不断完善自身,为客户提供更多更好的解决方案。 更多信息请登录www.chemlabcorp.com了解。
  • 蓝国祥先生在我国光散射研究方面的贡献
    南开大学是国内开展光散射研究得比较早的单位之一。早在1935年,我校的沈寿春先生就与吴大猷、饶毓泰先生合作,在北京大学开始了拉曼光谱研究。抗日战争时期,在昆明西南联大,沈寿春和吴大猷二位先生合作研究了硝酸镍氨晶体的拉曼光谱,考察了晶体场对硝酸根离子的效应。解放后,在沈寿春先生领导下,陈文驹、王之仁等老师较早开始了拉曼光谱的工作,研究最多的是有机磷化合物。1965年教育部决定在北大、复旦、南开三校成立固体能谱科研组,由复旦的谢希德先生牵头,合作开展半导体的基础研究,教育部定期给三校下达研究经费。张光寅先生利用该项经费,购买了一台在当时很先进的英国产的Hilger E612型拉曼光谱仪。该仪器采用石英棱镜分光,光源是汞弧光灯,记条仪是笔式的。但在十年文革期间三校的固体能谱研究组都中断了研究工作,这台光谱仪就一直闲置到20世纪七十年代末。此时南开物理系固体物理教研室正式恢复,固体能谱研究组也就合并到固体物理教研室。当时固体物理教研室主要从事激光技术所需要的非线性光学晶体钽酸锂和铌酸锂的研究及其光学器件的研制。时任教研室主仼的是王华馥先生和副主仼张光寅先生。蓝国祥教授是王华馥先生研究组的成员,当时研究组主要从事非线性光学晶体基础性方面的研究。鉴于蓝国祥教授有扎实的晶体学和晶格动力学的基础知识,又从事晶格振动光谱的研究,从仪器设备、晶体样品的选取和基础知识的储备这三方面考虑,都具备了开展非线性光学晶体激光光谱研究的条件。因此,王华馥先生决定由蓝国祥先生和青年教师李兵承担此项课题的研究,王先生还把他的第一个博士研究生分配到该课题组一起参加研究工作。课题组对Hilger E612光谱仪进行了改造,配置了自行研制的氩离子激光器,开始了非线性光学晶体的拉曼光谱研究。当课题组获得第一批研究成果时,正好迎来1981年在厦门大学召开的全国第一届光散射学术会议,课题组在会议上宣读了相关的研究成果。虽然参加此次学术会议的单位不少,但受制于当时的科研条件,国内有条件开展光散射研究的大学和研究单位毕竟比较少,能提供研究论文的单位并不多。在南开,有很多位老师从事过光散射的研究,力量非常之强,据了解到的,还有陈文驹、陈亭、张春平、刘思敏等多位老师,涉及多种材料。例如,非线性光学晶体偏硼酸钡、钽酸锌锂、铌酸锂和钽酸锂等,关注压力、温度对晶体结构的影响;利用拉曼光谱研究晶体中的电磁激元、铁电性质、铁弹性质,缺陷和非晶化过程等;随着表面增强效应的发现,我校也开展了表面增强光谱的研究,首次观察了吸附于银胶体表面的邻菲啰啉等分子的表面增强拉曼光谱。在从事光散射研究的几十年过程中,蓝国祥教授对待研究生宽严相济,以身作则,学生深刻体会到研究者应该具备的素养和追求。蓝先生带领组内老师和学生,在国内外学术期刊上发表论文百余篇,取得了丰硕的成果。非线性光学晶体的拉曼光谱一直是南开固体教研室关注的重点。对于铌酸锂和钽酸锂的光谱研究非常细致深入,取得一些重要的结果。铌酸锂和钽酸锂室温下是铁电晶体,属于三角晶系的单轴晶体。为获得钽酸锂晶体的异常声子的色散,在蓝先生的指导下,老师和学生精心设计实验方案,共制备11个不同取向的样品,用来获得波矢与光轴成不同夹角的光谱。由于钽酸锂和铌酸锂的折射率约2.1左右,所以表面反射率高达14%。为了消除内反射光引起的附加散射,在样品的表面上镀了增透膜(SiO2)。经过细致的实验测试和严谨的理论分析,获得了钽酸锂晶体的全部13个异常声子,也对之前相关研究报道中的疑点进行了澄清;通过分析测试钽酸锂晶体的变温拉曼光谱,结合中子衍射的晶体结构数据,做出了钽酸锂的铁电相变是有序-无序型的推论,并用结构相变的先兆丛团理论给予解释。20世纪80年代我国的紫外非线性光学晶体的研制得到了飞速发展,例如偏硼酸钡(BBO)、三硼酸锂(LBO)以及三硼酸铯锂(CLBO)等。蓝国祥教授带领课题组的师生对这些晶体的室温、低温以及高压下的光谱进行了较为全面的研究,利用层状和阴离子基团模型,并结合群论和理论计算分析对晶体的外振动、内振动以及阴离子基团的特征振动谱进行了识别和确认。BBO晶体单晶高压拉曼光谱的研究表明了在50 Kbar的压力下拉曼光谱发生突变,预示着存在由压力导致的结构相变。获得非晶材料的传统方法有多种,如熔体急冷,蒸发沉积和离子注入等。上世纪90年代,蓝国祥教授研究组开始利用拉曼光谱进行晶态物质在高压下非晶化转变的研究,先后研究了硼酸盐(硼酸钡、硼酸锂),锗酸盐(锗酸铅、锗酸锂、锗酸铜),以及铌酸锂、钽酸锂等晶体的高压拉曼光谱,在原子水平上研究了这些晶体的非晶态转变机制。对于硼酸盐而言,是由于硼酸基团被破坏,导致结构发生塌缩,由晶态变成非晶态。课题组另外的一项重要工作是有关碳材料的制备和拉曼光谱研究,包括石墨、石墨插入化合物,C60碱金属插入化合物,碳纳米管等。其中一个非常重要和难度很大的问题是单壁碳纳米管的呼吸模谱峰的认定。因为呼吸模的频率与碳管的直径密切相关,困难的原因在于样品中碳管的直径和类型不是单一的;另外,用可见和近红外光激发的单壁碳纳米管拉曼光谱中存在共振散射效应,使得谱峰数目较多且随激发光波长而变化,所以将这些谱峰归属于何种碳管不是显而易见的。为了进行这种认定,我们计算了一系列碳管的电子态密度、呼吸模的频率,并考虑到双共振增强效应,建立了一个图表法,可以对单壁碳纳米管光谱中的呼吸模特征峰进行指认。这种指认包括管子类型的确定,是金属的还是半导体的,是扶手椅管、锯齿管还是一般的手性管,当然也可确定碳管的直径和指数。SPEX 1403 激光拉曼光谱仪(小图:实验室自制的碳纳米管制备装置)为了给研究生开展晶格振动光谱研究打好基础,张光寅先生率先开设了晶格振动光谱课程,并编写了讲义,两年后由蓝国祥先生接替讲授晶格振动光谱学直到退休。这本讲义经过多年的教学积累和反复修改,著成《晶格振动光谱学》一书,由高等教育出版社出版。该本书先后发行了两版,成为教育部研究生教学的推荐用书。无论是科学研究还是教书育人,先生对中国光散射事业的发展都做出很大的贡献。从第一届厦门光散射会议开始直到退休前的第十一届,没有错过一届会议;从第二届光散射会议开始担任光散射专业委员会副主任;退休前一直担任《光散射学报》副主编,全心全力支持学报的发展。80年代国内很多学校科研单位都购置了Spex系列的谱仪,南京大学物理系也有一台Spex激光光谱仪,在使用过程中缺少了一个小部件,张明生老师就向南开大学物理系借用这个部件。考虑到我们这个部件休置不用,就送给南京大学。这也是先生一直秉承的理念:兄弟院校之间和同行之间要有相互帮助和团结的精神,不要彼此拆台闹予盾。参加1999年8月第十届全国光散射学术会议师生合影留念(长春)先生退休多年,留给我们后辈做人做学问的精神一直在,激励我们前行!文中所述纯属个人点滴所见,不当之处,欢迎斧正!作者:南开大学物理学科学院 王玉芳教授
  • OLED材料分析之必备的液相色谱和色谱数据系统
    OLED材料分析之必备的液相色谱和色谱数据系统关注我们,更多干货和惊喜好礼 售价高达5位数的折叠屏为什么这么火爆?一经上市,随即售罄! 还不是被那高科技、超炫酷、可折叠的屏幕吸引, 飞飞今天就来给您讲讲这折叠屏中最重要元器件——OLED的奥秘! OLED全称为有机电致发光二极管,具有自发光性、响应速度快、柔性化可弯曲等优点,是一种全新的平面显示技术,OLED材料是OLED显示技术的核心,是OLED实现自发光的基础。*赛默飞液相色谱服务于国内大型光电材料企业致力于OLED发展(视频来源:眉山天府新区公众号) OLED的有机发光材料一般分为小分子材料和高分子共轭聚合物材料两大类。01小分子发光材料以有机小分子金属螯合物和稀土配合物为代表,常用金属离子包括铝、铱和铂等元素,常用配体有席夫碱类和羟基喹啉类材料。02聚合物发光材料主要包括聚苯撑乙烯类(PPV)材料、聚咔唑类材料以及聚芴类(PF)材料等。此外,OLED的封装材料和柔性OLED的衬底材料,也均采用聚合物材料。 OLED有机材料分析,最重要的检测手段之一便是高效液相色谱(HPLC)。 广东某光电材料有公司质量部主管介绍说: OLED材料对纯度要求非常高,现有的标准检测方法是GB/T 37949-2019,用高效液相色谱峰面积归一化法分析材料纯度,由于OLED材料本身含量达到99.9%以上,杂质含量很低,想要准确测定纯度,对硬件设备是一大考验。Vanquish液相色谱具有检测器灵敏度高、基线噪音低、耐压高、柱温控制能力优异、更准确的流速控制等优点,大大提高了峰容量,节约了分析时间,提高了分析效率,借助Chromeleon 7.3色谱数据系统,在OLED材料分析上有显著优势。 细说说颇受OLED业内人士称赞的——Vanquish液相色谱Vanquish系列液相色谱是赛默飞全新一代的液相产品,系统耐压范围从700bar到1500bar,拥有出色的分析精密度、检测灵敏度和操作简便性,可实现前所未有的检测可靠性和耐用性,能够帮助用户得到更好的结果、更多的信息,提供更强的交互体检。针对OLED材料检测中要求极低的基线噪音,赛默飞可以提供不同规格的混合器,用户可以根据自己的实验需求来选择不同体积的混合器,以达到最you的检测效果。 高通量分析解决方案——超快速分析(赛默飞液相家族)飞飞独jia的电雾式检测器(CAD)是一种新型的质量型通用检测器,灵敏度高,重现性好,用于检测非挥发性和半挥发性的有机物,且不需要发色基团。OLED材料对纯度要求极高,除了常规的紫外检测器外,可以使用CAD来辅助检测产品里的弱紫外吸收或无紫外吸收成分,进一步提高产品质量。另外,CAD还可以应用于硅油类等聚合物材料的分析。 电雾式检测器(CAD)稠环芳烃类 卟啉类 硅油类 近瞧瞧OLED中聚合物材料分析的得力助手——Chromeleon 7.3 色谱数据系统聚合物的分子量和分子量分布会极大的影响聚合物材料的性能,因此需要对材料进行分子量测定,通常通过凝胶渗透色谱(GPC)表征材料的相对分子量及其分布,以评估合成工艺的改善和控制情况。而GPC计算功能由于其复杂性,同类色谱软件或对该功能收费,或需使用第三方软件计算。而Chromeleon色谱数据系统集成了GPC分子量计算功能,无需额外付费购买,与常规数据处理过程类似,使用原有功能即可实现,且拓展灵活,极大地节约了软件成本,提高了生产效率。 赛默飞的Thermo Scientific™ Chromeleon™ 7 色谱数据系统一直因全面兼容、简约智能而广受用户认可。今年,赛默飞全新发布了Thermo Scientific Chromeleon 7.3 色谱数据系统,更是将其易用性、兼容性提高到一个更高的层次。作为第三方仪器控制的先驱与领导zhe,全新的7.3软件全面拓展支持全新的仪器Vanquish Core与全新的MS系列,继续引领全面仪器兼容与MS控制的潮流。行业领xian的LC、GC、IC与MS仪器控制能力,使Chromeleon网络版成为最符he企业环境的多厂商色谱数据系统。 提速增效而更优化的客户端功能,将是实验室自动高效运行的更有力的工具。如智能判断与智能控制(SST/IRC)自动计算结果并根据结果执行不同的进样或其他操作;自动标识未检出的峰,可在色谱图上即对全部杂质一目了然;趋势分析图可快速查看产品质量变化趋势… … 更强大智能的Chromeleon变色龙系统,为您提速增效,期待相遇。 “码”上下载 填写表单即刻获取【Thermo Scientific Vanquish UHPLC系统样本】 如需合作转载本文,请文末留言。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 使用全自动凯氏定氮仪测定土壤氮含量
    使用全自动凯氏定氮仪测定土壤氮含量 一、参考文献:HJ 717-2014 土壤质量 全氮的测定 凯氏法 二、 凯氏法原理:样品在浓硫酸和催化剂硫酸铜、硫酸钾高温硝化反应,把有机的氮结构转化成无机的硫酸氮形式的氮,(为了使得样品消化时不产生挂壁,必须采用样品孔间温差小和带程序升温功能的消化炉,否则会产生挂壁现象,导致消化失败)消化完成后,需要将样品冷却到40℃左右,再把消化管放入定氮仪上。仪器对消化管内自动添加稀释液、碱,反应杯内自动添加硼酸和显色剂。对消化管内样品加热蒸馏,产生氨气和水蒸气结合形成氨水,氨水通过冷凝管冷却流到反应杯内被硼酸吸收,生成硼酸氨,同时用标准硫酸进行滴定,直到蒸馏结束和滴定到终点。三、仪器设备和试剂:1.全自动定氮仪SKD-1000(上海沛欧分析仪器有限公司)2.消化炉SKD-20S2(上海沛欧分析仪器有限公司)3.万分之一天平标准硫酸浓度:0.01mol/L40%的氢氧化钠水溶液2%的硼酸+甲基红和嗅甲酚绿混合的指示剂催化剂(硫酸铜:硫酸钾为1:10的混合物)蒸馏水样品为上海水产研究所提供的土壤标准品:665mgN/KG(允许误差±50mg) 四、操作条件和程序: 1,把2个土壤样品移入2个消化管内,2个消化管再放入5克催化剂,1g的样品加入98%浓硫酸10ml,空白放相同的催化剂和浓硫酸,按序号放入消化炉,盖上排废气装置,打开抽气泵上水龙头开关。 消化炉温度-时间曲线设置:180度(5分钟)--250度(10分钟)---350度(10分钟)----380度(60分钟)。 程序段R:斜率(min/℃)T:保温时间C:目标温度12005180218010 25031805350420060380 消化炉根据时间-温度曲线自动升温和保温,直到消化结束。把消化架取下放在冷却架上,冷却到40℃左右。定氮仪设置:加稀释液40ml、氢氧化钠40ml、标准酸硫酸 0.01(moL/L)、硼酸和指示剂加50ml(仪器定量设置),蒸馏方式:定时(6分钟)、蒸馏功率百分之100(1500W)、加碱方式:间段式加碱。 输入2个样品的编号、重量、标准酸浓度氮含量计算公式N%=1.401(v-v0)c/mN%---------氮含量v--------消耗标准酸体积(ml)V0------空白消化标准酸体积(ml)C--------标准硫酸浓度(mol/L)m--------样品体积(ml)土壤标准品:665mgn/KG(允许误差±50mg)编号样品重量g空白(ul)标准酸浓度mo/l样品消耗标准酸量mlN含量%示值误差%11.001312200.015.9720.0664(=664mgn/kg)-1mg21.019812200.016.0820.0667(=667mgn/kg)+2mg 实验单位:上海水产研究所2018年8月24日
  • 福建物构所制订的2项光学晶体国家标准发布
    由中科院福建物构所、福建光电子材料工程技术研究中心和福建福晶科技股份有限公司联合起草的“硼酸盐非线性光学单晶元件通用技术条件(GB/T 22452-2008)”、“硼酸盐非线性光学单晶元件质量测试方法(GB/T 22453-2008)”两项标准,日前已由中华人民共和国国家标准委员会批准实施,将于今年4月1日开始实施。 据悉,国内外目前尚无与硼酸盐非线性光学单晶元件相关的技术标准。这两项技术标准的实施将有助于提升元件的制备加工和测试的技术手段及检测水平,保证产品质量的一致性,控制产品成本,保护我国的知识产权,提高我国非线性晶体元件行业的整体技术水平。
  • 两项光学晶体国家标准发布实施
    据中科院网站消息,由中科院福建物构所、福建光电子材料工程技术研究中心和福建福晶科技股份有限公司联合起草的《硼酸盐非线性光学单晶元件通用技术条件(GB/T 22452-2008)》、《硼酸盐非线性光学单晶元件质量测试方法(GB/T 22453-2008)》两项标准,日前已获批,将于今年4月1日开始实施。   据悉,国内外目前尚无与硼酸盐非线性光学单晶元件相关的技术标准。这两项技术标准的实施将有助于提升元件的制备加工和测试的技术手段及检测水平,保证产品质量的一致性,控制产品成本,提高我国非线性晶体元件行业的整体技术水平。