当前位置: 仪器信息网 > 行业主题 > >

羟基鸟苷

仪器信息网羟基鸟苷专题为您提供2024年最新羟基鸟苷价格报价、厂家品牌的相关信息, 包括羟基鸟苷参数、型号等,不管是国产,还是进口品牌的羟基鸟苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟基鸟苷相关的耗材配件、试剂标物,还有羟基鸟苷相关的最新资讯、资料,以及羟基鸟苷相关的解决方案。

羟基鸟苷相关的资讯

  • 欧盟科学委员或将对羟基苯甲酸酯修改意见
    2012年11月1日消息,欧盟消费者安全科学委员会(Scientific Committee for Consumer Safety ,SCCS)被要求就潜在的内分泌干扰物羟基苯甲酸丙酯(propylparaben)和羟苯丁酯(butylparaben)提供建议,这两种物质作为防腐剂被用于个人护理产品中。   2011年3月,SCCS认为一种产品中羟苯丁酯和对羟基苯甲酸丙酯的单独的浓度总量不超过0.19%,那么这两种物质都是安全的。与此同时,丹麦通知委员会,该国已禁止在三岁以下儿童用化妆品中使用对羟基苯甲酸丙酯和羟苯丁酯。2011年10月,SCCS在其之前的意见上添加了一项说明,结论为六个月以下婴幼儿尿布中的“风险不能排除”。   SCCA被要求考虑其对羟基苯甲酸的意见是否需要更新。
  • 新品上市 | 液态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。月旭科技之前已推出了酿造酱油和固态发酵食醋中对羟基苯甲酸酯色谱检测预处理方法包,此次针对液态发酵食醋,新研发推出了液态发酵食醋(如白醋、米醋等液态发酵工艺的食醋)中对羟基苯甲酸酯类色谱检测样品预处理方法包,其操作步骤相较前两种食品的方法包更为简单,但净化效果依旧很好,可实现从食醋样品中同时提取、分离、净化这4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),以用于气相色谱和液相色谱技术对这些防腐剂的检测。样品稀释液:将食醋样品溶解稀释以备上样;净化专用SPE柱:吸附食醋中的杂质;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来;洗脱净化管:进一步吸附残留杂质并除水;萃取液:将洗脱收集液中的目标物萃取出来。1)食醋样品称量:准确称取5g食醋样品;2)稀释溶解:使用“样品稀释液”,稀释溶解食醋样品;3)净化:使用“净化专用SPE柱”,用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集在“洗脱净化管”内,然后氮吹浓缩;4)萃取:使用“萃取液”,类似于QuEChERS的操作,上清液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280℃;5)载气:氮气,纯度≥99.999%,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 新品上市 | 固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。国标中预处理技术存在的问题现行的《食品安全国家标准 食品中对羟基苯甲酸酯类的测定》(GB 5009.31-2016)中,针对气相色谱法检测的样品预处理技术主要是多次液液萃取+液液洗涤的技术,该方法操作繁琐、检测耗时长、有机溶剂消耗量大(其中包括消耗大量的易制毒化学试剂),且回收率较低、稳定性差,另外净化效果也不佳,往往存在着干扰检测的杂质成分。月旭科技针对固态发酵食醋这种复杂基质食品,开发出了固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理专用方法包,这个方法包所采用的双柱SPE法可实现高效、稳定可靠地从各种复杂基质的固态发酵食醋中提取、分离和净化4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、乙酯、丙酯和丁酯),大幅度减少对色谱柱及色谱管路污染、甚至堵塞情况,可以很好地保护色谱系统。提取液:从食醋样品中提取对羟基苯甲酸酯类;提取吸附剂:吸附食醋样品中的大颗粒杂质;萃取液:使对羟基苯甲酸酯类提取液中的杂质沉淀分离;萃取管:管中的吸附剂可吸附萃取时沉淀的杂质;净化专用SPE柱(双柱):吸附食醋中不同种类的色素;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来。主要操作流程1)食醋样品称量:准确称取5g食醋样品;2)分离提取:使用“提取液”和“提取吸附剂”,振荡分离提取;3)萃取:取试样提取上清液进行萃取,使用“萃取管”和“萃取液”,类似于QuEChERS的操作;4)净化:使用双柱串联的“净化专用SPE柱”,上样用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280 ℃;5)载气:氮气,纯度≥99.999 %,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 上海硅酸盐所研制出新型快检试纸 有望用于尿糖快速检测
    p   近年来,快速分析检测技术在化学检测、医学诊断、司法鉴定、环境监测和食品检测等领域具有广泛的应用。这一仪器分析检测工作过去往往需要求助于某些特定单位(机构),如科研单位、医院、分析测试中心等。仪器分析方法具有高测定精度和低检出限, 但由于所用仪器一般是大型精密仪器, 且采用交流电做电源,操作较为复杂,使用不方便,一般不适合用于现场快速检测。随着科学技术的进步,各种现场性、临时性、快速高效的分析检测手段相继出现,这些分析检测手段大多是通过颜色变化以及变化程度来实现的。试纸法作为一种快速的现场检测方法,其特点是操作简单、携带方便、价格便宜, 并具有一定的选择性、准确性和灵敏度,在医疗卫生、食品、水质、空气及其它检测方面具有广泛的应用。因此,具备诸多优点的检测试纸应运而生。例如,现今市场上销售的早孕试纸为女性判断是否怀孕提供了快速高效的检测手段。 /p p   尿糖检测对分析人体健康状态非常重要,定期尿检已经成为大众生活中不可缺少的一部分。现今,尿糖检测试纸已经商品化。在尿糖的检测中,通常需要用到葡萄糖氧化酶、过氧化氢酶以及显色剂。商业化的尿糖试纸将上述三种物质负载在纸条上,通过显色反应和比色卡来检测尿糖含量。然而,葡萄糖氧化酶、过氧化氢酶这类天然酶价格高,其制备、提纯和储存均耗时耗力,而且检测活性易受外界环境如pH值、温度等影响。 /p p   近年来,具有天然酶活性的人工模拟酶受到人们的广泛关注。通过化学方法合成的人工模拟酶成本低,催化活性较为稳定,有望取代部分天然酶应用于分析检测领域。最近,中国科学院上海硅酸盐研究所研究员朱英杰带领的科研团队发明了一种有望用于尿糖检测的快速检测试纸,该检测试纸本身具有类似过氧化物酶的活性,可用于葡萄糖、过氧化氢等物质的快速分析检测。更重要的是该检测试纸制备简单、成本较低、稳定性好,可实现多次重复回收利用。相关研究工作发表在国际期刊《欧洲化学》上(Fei-Fei Chen, Ying-Jie Zhu, Zhi-Chong Xiong, Tuan-Wei Sun, Chemistry-A European Journal, 23, 3328?3337 (2017) ),入选热点论文和封面论文,并且申请了一项发明专利。论文发表后不久,Chemistry Views以Chemical Test Paper from Core/Shell Nanofibers为题对该研究工作做了报道。 /p p   研究团队发明的方法很简单,在羟基磷灰石超长纳米线上原位生长具有类过氧化物酶活性的Fe基金属有机框架复合物,利用羟基磷灰石超长纳米线上的钙离子与金属有机框架复合物上的羧基之间的耦合作用,制备具有核壳结构的羟基磷灰石超长纳米线@金属有机框架复合物纳米纤维,并将其用于制备快速检测试纸。重要的是,该方法制备的快速检测试纸可实现多次回收再利用,只需将使用后变色的检测试纸浸泡在酒精中仅仅30分钟后,检测试纸就重新变回原来的颜色。 /p p   高柔韧性羟基磷灰石超长纳米线是新型无机耐火纸的重要制造原料,在此之前,该团队开展了羟基磷灰石超长纳米线的制备方法探索研究,成功地制备出高柔韧性羟基磷灰石超长纳米线 (Ceramics International, 41, 6098–6102 (2015) Materials Letters, 144, 135–137 (2015))。该研究工作是新型无机耐火纸的系列研究工作之一,是该团队在成功研发出新型高柔韧性羟基磷灰石超长纳米线耐火纸 (Chemistry-A European Journal, 20, 1242–1246 (2014)) 、新型高效抗菌羟基磷灰石超长纳米线耐火纸 (Chemistry-A European Journal, 22, 11224–11231 (2016),入选封面论文和热点论文)、以及新型羟基磷灰石超长纳米线防水耐火纸 (ACS Applied Materials & amp Interfaces, 8, 34715–34724 (2016))、羟基磷灰石超长纳米线有序结构纳米绳和柔性耐火织物(ACS Nano, 10, 11483–11495 (2016))之后取得的又一个新的重要研究进展。 /p p   相关研究工作得到国家自然科学基金、上海市科委、中科院上海硅酸盐研究所创新重点项目等资助。 /p p style=" TEXT-ALIGN: center" img title=" W020170411317051985316.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/914ccd96-179b-43ce-8674-eec8112e0c39.jpg" / /p p   图1. (a) 不同尺寸和形状的快速检测试纸,标尺为1 cm (b) 检测过氧化氢的基本原理 (c) 检测葡萄糖的基本原理 (d) 对不同浓度的过氧化氢进行分析检测 (e) 对不同浓度的葡萄糖进行分析检测 (f) 检测试纸可实现多次回收再利用。 /p p /p p /p
  • 欧盟拟放宽番茄中8-羟基喹啉的最大残留限量
    近日,欧洲食品安全局就放宽番茄中8-羟基喹啉(8-hydroxyquinoline)的最大残留限量发布意见。   依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到一家公司要求修订番茄中8-羟基喹啉的最大残留限量的申请。为协调8-羟基喹啉的最大残留限量(MRL),西班牙建议对其残留限量进行修订。   依据欧盟委员会(EC)No396/2005法规第8章的规定,西班牙起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定:建议将番茄(商品代码:0231010)中8-羟基喹啉的最大残留限量放宽至0.1mg/kg(现行标准是:0.01mg/kg)。
  • 新型毒饮料伪装上市,“合法”“非法”仅在“氨基”“羟基”一字之差
    这两天,一条关于某种“新毒品”在各大酒吧流行的“预警”信息,在记者朋友圈掀起了一阵转发热潮。相关信息称,这种“新毒品”是一款含有“γ-氨基丁酸”成分的饮料——咔哇,多地有人喝了这个东西可以连续嗨三个晚上,据说之前吸k粉的人很多都嗨这种东西了。 据了解,咔哇是生长在南太平洋岛国、海拔500-1000英尺地区的一种植物,系胡椒科多年生灌木。当地民间医生广泛应用咔哇改善睡眠、缓解焦虑、战胜抑郁、松弛肌肉、消除疲劳。咔哇可榨制一种饮料,即咔哇酒。2015年,国内一旅途探秘综艺真人秀节目中,节目嘉宾率领的旅行达人,曾在瓦努阿图制作饮用所谓“最幸福的饮料”——咔哇酒,从而引起国内关注,并在年轻人、时尚人士中流行。 但是仔细阅读配料表后我们发现,我国出现的这种含有“γ-氨基丁酸”成分的饮料,并非来自太平洋岛国的“最幸福的饮料——咔哇”。在太平洋岛国流行的咔哇饮料,是由卡瓦胡椒制成的,卡瓦胡椒当中含有的卡瓦内脂和二氢醉椒素,是“γ-氨基丁酸”的激动剂,能够调节人体内“γ-氨基丁酸”的传输,所以能够起到安神、镇定的作用。 饮料中标示的“γ-氨基丁酸”(gamma aminobutyric acid, gaba),是一种天然存在的功能性氨基酸,广泛分布于动植物体内,如豆属、参属、中草药等的种子、根茎和组织液中都含有,2009年9月27日由卫生部批准使用γ-氨基丁酸为新食品原料,并不是毒品。参见卫生部网站http://www.moh.gov.cn/mohbgt/s9513/200910/43090.shtml 这批咔哇饮料之所以引起关注,是因为经公安机关毒品实验室对其进行检验和分析,发现其中含该饮料含有 γ-羟基丁酸(我国一类精神药品)和 γ-丁内酯( γ-羟基丁酸的前体),并不是商品介绍的γ-氨基丁酸,这两种物质虽然只有一字之差,却有天壤之别。 γ-羟基丁酸(gamma hydroxybutyrate, ghb),是属于中枢神经抑制剂,它曾被用来当做全身麻醉剂,后由于有报导其可导致癫痫发作或昏迷使得使用率降低。滥用“γ-羟基丁酸”会造成暂时性记忆丧失、恶心、呕吐、头痛、反射作用丧失,甚至很快失去意识、昏迷及死亡,与酒精并用更会加剧其危险性。在过去的十几年,美国、东南亚国家以及中国港台地区γ-羟基丁酸的滥用呈快速增长趋势,ghb及其相关物质γ-丁内酯(gamma-butyrolactone, gbl)和1,4-丁二醇(1,4-butanediol, 1,4-bd)常被用作迷奸药,因此,2005年我国就将“γ-羟基丁酸”列入二类精神药物予以管制,并于2007年变更为一类。 据了解,目前夜场各种打着咔哇旗号的所谓潮饮数不胜数,不排除部分饮料“挂羊头卖狗肉”,打着合法成分的旗号使用违禁药物。文中提到的“毒饮料”已被勒令全面下架,但是我们仍要保持警惕,尤其在酒吧、ktv这样的地方,建议青少年朋友不要因为好奇去尝试一些“小众”“特色”的饮品。相关检测标准品
  • 欧盟限制化妆品中对羟基苯甲酸酯类的使用
    4月10日,欧盟委员会发布官方公报(EU) No 358/2014,修订了欧洲化妆品法规No 1223/2009附件Ⅱ,限制物质清单新增尼泊金异丙酯、羟苯异丁酯、羟苯苄酯、4-羟基苯甲酸苯酯、戊烷基对羟苯甲酸酯5种对羟基苯甲酸酯类物质。   此外,修订案还规定二氯苯氧氯酚在漱口水中使用最大浓度为0.2%,在其他化妆品如牙膏、手皂、扑面粉中使用最大浓度为0.3%。羟基苯甲酸及其盐和酯类作为单酯中的酸用于制作配制品中的最大浓度为0.4%,作为混合酯中的酸最大允许浓度为0.8%。2014年10月30日前,不符合新规的化妆品仍可在市场上正常销售,2015年6月30日起,所有市场上流通的化妆品必须符合新规。   对此,检验检疫部门提醒相关企业:一是密切关注欧盟化妆品修订案,及时掌握法规变化动态 二是强化同进口商的沟通,做好过渡期期间的合同评审,避免因法规认识偏差导致的退运风险 三是加强产品质量管控,通过优化升级生产工艺、第三方检测,确保降低对羟基苯甲酸酯类限制物质含量,确保平稳过渡。
  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
  • 拉曼光谱分析法在古陶瓷真伪的应用-羟基无损科学检测(二)
    文物是文化的产物,是人类社会发展过程中的珍贵历史遗存物。它从不同的领域和侧面反映出历史上人们改造世界的状况,是研究人类社会历史的实物资料。我国古陶瓷源远流长,不仅种类繁多、风格各异,而且工艺精湛,文化、科技内涵丰富。由于不法者在仿制过程中借用高科技手段,使一些高仿赝品几乎达到了乱真的程度。  拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的鉴定分析中。  我们主要依据是否在陶瓷釉面发现“羟基”这种化学分子结构去判断陶瓷是不是老的,因为“羟基”是天然生成, 而且生长速度非常缓慢,大概在100年左右的时间,如果在陶瓷釉面发现“羟基”,说明是古董,最起码是清未、民国早期的瓷器。“羟基”和年代成正比,“羟基”峰值越高,年份越老。  检测陶瓷样品的拉曼特征峰,通过3700cm-1附近的羟基峰判断古陶瓷真伪。图1:拉曼光谱图,没有检测到羟基峰图2:拉曼光谱图,可以检测到3632cm-1的羟基峰图3:拉曼光谱图,可以检测到微弱的3601cm-1的羟基峰  拉曼光谱——羟基古陶瓷真伪检测鉴定法的依据和原理是现代仿品和古代真品的成岩过程有着本质区别,而时间是造成的这种区别的根本原因,造假者无法跨越时间所产生的鸿沟。时间所造成的古陶瓷的物理、化学变化是造假者无法仿制的。基于此,古陶瓷真伪拉曼光谱——羟基鉴定法的技术研发者把古陶瓷真品在地表环境下其釉面所产生的化学反应中生成的羟基作为古陶瓷鉴定的定性及定量物质,从而做出准确而科学的鉴定结论。
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 吃饼干治糖尿病?新研究让口服胰岛素成为可能
    吃块饼干,治糖尿病。这个很多“糖友”梦寐以求的成果出现在11月16日的国际顶刊《自然化学生物学》上。北京大学药学院刘涛团队与华东师范大学叶海峰团队利用合成生物学技术开发出了一种新细胞。在他们的研究中,植入这种工程细胞的糖尿病小鼠,只要吃下特定的氨基酸饼干,就能提高胰岛素水平,进而降糖。“这是首次将基因密码扩展技术用于细胞治疗。”论文通讯作者之一、北京大学药学院教授刘涛告诉科技日报记者,吃下饼干的小鼠只需要90分钟就能降糖,和注射胰岛素起效时间相当。创造胰岛素微型“无人工厂”在“糖友”体内产生胰岛素,光靠饼干就可以吗?其实不是,“饼干”只是一把钥匙,真正生产胰岛素的是一座微型“无人工厂”。胰岛素作为人体的一种蛋白要求极高,胰岛素水平高了会发生低血糖、低了或者无效危害更大。细胞能做到精准的控制吗?“我们有一套独特的控制系统,控制的核心是一种人造的密码子。” 论文通讯作者之一、华东师范大学生命学院、上海市调控生物学重点实验室研究员叶海峰解释,自然界里有3个不编码氨基酸的密码子(终止子,功能是终止蛋白质翻译),通过人为改造可以让其中一个只听“饼干”的命令。饼干里的特殊氨基酸在自然界找不到,所以平时不会开启。经过改造的密码子就此有了双重身份。人工氨基酸一来,密码子配对,开启胰岛素的翻译过程,人工氨基酸一走,密码子还是“终止子”,整个流水线关闭。这才有了“吃饼干”合成胰岛素的完整治疗过程。给饼干开通一个专线快递前面说了,饼干里的氨基酸在自然界里找不到,那自然也找不到匹配的运送系统。“原来负责转运氨基酸的信使RNA都有自己的密码子,就像京东快递是负责这几个密码子、顺丰快递负责另外几个密码子、圆通也有自己要负责的密码子,现在多出来一个非天然的快递单怎么办呢?”刘涛打了一个很形象的比方,为了解决这个问题,合成生物学又出手了。“我们给‘饼干’开通了一个专线快递。”刘涛说,一种人工的合成酶能够把非天然的氨基酸送到快递员手上,即通过氨酰化的生化反应,把非天然氨基酸与特定的转运RNA连接起来,让它直送到胰岛素的装配生产线上。经过一系列“神操作”,饼干里的非天然氨基酸有如神助地直接成为生物体内胰岛素的重要组成部分。这种“专线快递”特点的正规名称叫“生物正交”,是指人造反应不会被机体内源的元件识别,也不干扰内源的生物化学过程。也就是说,胰岛素的整个制造过程不会干扰到其他生命活动。更具临床实用价值“利用我们的技术,只需要纳摩尔每升级别浓度的非天然氨基酸,给药1分钟就足以激活系统,表达释放胰岛素 。”刘涛说,这种非天然氨基酸与很多功能饮料中添加的成分类似,对人体非常友好。动物试验研究显示,将改造过的工程细胞经材料包埋后植入小鼠皮下,给小鼠喂食含有非天然氨基酸的饼干,可以在一个月内稳定且有效地降低小鼠血糖。一系列动物安全性实验也表明,服用一个月有效剂量的非天然氨基酸后,小鼠并未表现出明显的体重减低或其它生化指标的改变。“或许某一天,只需要每天饭前服用一粒非天然氨基酸药物,或含有非天然氨基酸成分适合糖尿病患者的食物,就可以控制血糖了。”刘涛说。浙江大学药学院院长顾臻教授在论文同期刊发的评论中认为,通过合成生物学方法创建工程细胞,进而产生治疗性蛋白质是解决包括胰岛素在内的蛋白质分子稳定性差、生物半衰期短及其不受控释放等挑战的极具吸引力的替代方法。据介绍,该研究获得国家“重大新药创制”专项、科技部合成生物学重点专项、国家自然科学优秀青年基金、北京市杰出青年基金、上海市科委等项目的支持。
  • 【瑞士步琦】近红外光谱法定量测定多元醇中羟基值和浊点
    近红外光谱法定量测定多元醇中羟基值和浊点近红外应用”1简介多元醇见图1是用于生产各种最终用途的聚合物和塑料的基本组成部分。例如,我们日常使用的聚氨酯产品就是用多元醇来制造的。多元醇是从多功能醇或胺开始,通常与环氧乙烷(EO)或环氧丙烷(PO)反应制成的。▲ 图1. 多元醇真正的多元醇是复杂的,具有混合和不同的链长和末端。羟基值(OH值)是有机化合物质量的快速评价指标。它是可用于反应的活性羟基数量的量度,并提供有关链长分布和范围的信息。羟值既是衡量多元醇分子量及质量的主要参数之一,又是聚氨酯制品生产厂家在配方设计时决定各原料投用量的重要参考依据。 因此羟值测定的准确性非常重要。目前,检测羟值的方法主要有化学分析法和仪器分析法。化学分析法中最常用的是滴定法,基于滴加试剂与被测溶液中物质的反应,利用滴加滴定试剂的量来推测被测物质的浓度。该方法中使用吡啶作为溶剂,吡啶易挥发且有恶臭气味,被世界卫生组织国际癌症研究机构列入2B 类致癌物清单,对实验人员的身体健康有一定的危害,且该方法反应时间较长( 需回流加热 1h),操作复杂,分析时间较长,测试效率低,测试准确性受人为因素影响较大。仪器分析法主要有核磁共振法和近红外光谱法。核磁共振法操作简单,测试快速且准确度较高。但是该方法所需要的设施昂贵,且实验室环境要求高,在企业中并未得到广泛推广。近红外光谱法是近红外光源照射下分子发生能级跃迁时产生的,记录的是分子中单个化学键的基频振动的倍频和合频信息,受含氢基团 X-H(X 为C,N,O)的倍频和合频的重叠主导,其光谱信息与样品的结构和成分组成相关。 多元醇在近红外光谱区的吸收主要包括 C-H、N-H,O-H 个含氢基团基频振动的合频和倍频振动吸收,通过这些含氢基团分子振动从基态到高能级跃迁的过程中记录的羟基的合频和倍频吸收信息,从而进行羟值的定量分析。 该方法在测试过程中无需对样品进行稀释、分散处理,因其操作简单、检测快速、绿色安全的特点而被广泛应用。浊点是当混合物从足够高的温度缓慢冷却以使混合物成为单相时,多元醇混合物中形成薄雾或云状的温度。浊点随着多元醇分子量的增加而减小,随着 EO 的加入而增大。这一分析被用来衡量多元醇的水溶性、表面活性剂性质和反应性。浊点控制反应系统中多元醇的相行为,这种行为对最终产品质量有极其重要的影响。由于多元醇在水中具有反溶解度,较高的浊点表明这些重要性能属性的增加。2应用设备及附件本文重点介绍步琦近红外光谱 N-500 用于快速测定多元醇的 OH 值和浊点。它可以应用于:最终产品或来料的检测和过程的监控支持。使用的仪器介绍如下:N-500 是市面上第一台商业化偏振干涉仪的傅里叶变换近红外光谱仪。▲步琦近红外光谱仪 N-500多至 6 通道同时检测0.5, 1, 2, 4, 5,8, 10mm 的比色皿控温,室温至 65 度3实验仪器配置:液体样品 NIRFlex Liquids,配备样品腔用于液体透射分析,可控温(室温~65℃),可自动切换背景测量通道,同时容纳 6 个比色皿。测量参数:波长:4500-10000;分辨率:8cm-1;温度设定 60°C,扫描次数:液体样品 64 次。测量要求:多元醇样品装入比色皿 8mm 后测量,每个样品测量三次光谱,每条光谱采集前都进行相同的混匀、取样。测量多元醇的样品光谱谱图:如图2▲图2. 测量多元醇的样品光谱谱图从光谱本身来看,样品的信号加强,反射率在 0.3 以上可以满足近红外分析。模型参数如下表:从表中可以看出:模型的相关系数均大于 0.99,样品羟值和浊点的准确度较高完全符合国家标准《塑料 聚氨酯生产用多元醇近红外光谱法测定羟值》的误差要求,分析方法重复性较好,可以用于实验室日常检测。4结论结果表明,近红外光谱技术可以成功地监测 OH 值和浊点,并具有良好的精度。该技术不需要样品制备用于测定 OH 值的标准湿化学方法可以被更快,更便宜和更简单的近红外分析所取代,以更快的批 QA 审核通过。近红外法具有分析效率高、制样简单、环保等优势,测试成本低,被实验室和企业广泛应用。
  • 许国旺团队合作成果:糖尿病视网膜病变可通过血液代谢标志物检测与发现
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 近日,中国科学院大连化学物理研究所研究员许国旺团队与上海交通大学附属第六人民医院贾伟平团队、中科院上海生命科学研究院研究员吴家睿团队合作,在糖尿病视网膜病变的早期发现方面取得新进展,发现了12-羟基花生四烯酸(12-HETE)和2-哌啶酮(2-piperidone)适用于糖尿病视网膜病变的诊断,尤其适合早期筛查。相关研究近日发表于Advanced Science。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/b2ace437-6b49-465c-af3b-35195092e4ec.jpg" title=" 11111.jpg" alt=" 11111.jpg" / /p p style=" text-align: center " 糖尿病视网膜病变可通过血液代谢标志物的检测 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 糖尿病在世界各地的发病率不断上升,造成社会、财政和医疗系统负担不断加重。国际糖尿病联合会预计,到2045年全球糖尿病患病人数将高达7亿人。中国糖尿病的患病人数已高居全球首位。糖尿病视网膜病变是糖尿病最常见、最严重的微血管并发症之一,也是成年人视力降低和致盲的主要原因,严重影响着全球成千上万人的生活质量。糖尿病视网膜病变的筛查和早期诊断对该病的预防和治疗尤为重要。目前的筛查和诊断仍依赖于视网膜成像,该方法人力、物力、财力消耗大,且依赖专业眼科医生的操作及对视网膜图像的判读,不利于大规模的快速筛查。因此,探索一种快速、高效、简便的体外诊断技术对糖尿病视网膜病变的早期发现和诊断有重要价值。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本项研究共纳入905名受试者的血清样本,基于多平台代谢组学数据,全面揭示了糖尿病视网膜病变发生发展过程中异常的代谢特征和紊乱的代谢通路。通过多变量/单变量统计分析,研究人员发现并验证了一个新型组合标志物(12-HETE和2-piperidone),实现了糖尿病视网膜病变的快速、精准的体外诊断,其灵敏度高达80.5%~89.4%、特异性高达91.9%~93.3%,受试者工作曲线下面积AUC=0.928-0.946。该组合标志物在疾病的早期诊断中也表现出明显优势,其灵敏度高达81.6%~92.9%、特异性高达90.1%~93.3%、AUC=0.925-0.958,使糖尿病视网膜病变只需要进行血液检测就可快速及早发现病变原因,为糖尿病视网膜病变血液检测提供了可靠、高效、便捷的新方法。 /p p style=" text-indent: 2em " 点击链接了解原文: a href=" https://onlinelibrary.wiley.com/doi/10.1002/advs.202001714" target=" _blank" https://onlinelibrary.wiley.com/doi/10.1002/advs.202001714 /a /p
  • 助力精准诊断!药明奥测质谱法“25-羟基维生素D测定试剂盒”获批
    维生素D是人体内重要的微量元素之一,可调节钙、磷代谢、促进骨骼生长、调节细胞生长分化、调节免疫功能,但据不完全统计,目前有50%以上的中国人群存在维生素D缺乏的现象。维生素D在体内转化成25-羟基维生素D2/D3,因其半衰期长、含量高、易于检测,已成为评估VD含量的最佳指标。传统VD测定试剂盒多采用免疫分析法,因抗体特异性差异等因素影响,常存在干扰,影响了定量的准确度。为助力精准诊断,近日,上海药明奥测医疗科技有限公司(以下简称“药明奥测”)自主开发推出了“25-羟基维生素D测定试剂盒(液相色谱-串联质谱法)”,且该试剂盒已获批二类医疗器械注册证。据了解,药明奥测是中国第一家践行整合诊断的赋能平台公司,公司依托Mayo Clinic的整合诊疗理念与经验,凭借融合多平台、多组学及临床数据驱动的开放式赋能平台,通过算法整合升级,不断推出创新诊断服务和产品,同时加速诊疗创新者从研发到应用的技术转化,创造共赢共享的产业新生态。值得关注的是,为打造领先的临床质谱平台,药明奥测独家引进Mayo Clinic的400余项质谱项目,提供肿瘤、个体化用药、人体营养和代谢、激素、金属元素检测等服务,其质谱法25-羟基维生素D测定试剂盒,更是经过严格质量体系验证,可溯源至美国国家标准与技术研究院(NIST)Standard Reference Material® 2972a。液相色谱-串联质谱法(LC-MS/MS)检测特异性及灵敏度高,可对25-羟基维生素D2、25-羟基维生素D3分别测定,保证了测试准确度。同时,作为一家高新技术企业,药明奥测始终坚持国际高标准自主创新,在试剂盒的开发过程中,药明奥测秉承以客户为中心的理念,积极提出差异化的解决方案并落实到产品性能优化中。在前处理阶段,采用“蛋白沉淀一步法”,显著减少了前处理步骤,操作方便快捷,有效地提高通量。此外,鉴于25-羟基稳定性差,目前市场上诸多解决方案采用-20℃冷冻保存或冻干粉基质,增加了客户使用成本,影响了用户体验。奥测试剂盒创新的采用独特配方新基质,产品为液体剂型,2-8℃稳定保存。据悉,截至目前,公司已累计申请体外诊断(IVD)专利近200项,涉及免疫、分子及质谱技术平台。目前,国内疫情仍处于不平静阶段,疫情常态化推动了诊疗场景拓展,在社区、在第三方检测机构、在家庭,方便快捷地采集、检测,已成为广大人民群众的需求,药明奥测国际高标准的试剂开发与整体解决方案创新,不仅大大提高了维生素D检测准确性与便捷性,实现了应用场景拓宽,也让更多人获益于高质量的医疗服务。此后,药明奥测将持续凭借强大的医疗及商业资源整合能力,基于临床需求布局丰富的研发管线,通过算法整合升级,不断创新整合诊断服务和产品,以“自主研发+授权合作”双模式,推动诊疗药险全新生态,促进诊疗场景的融合与拓展,让更多人在医院、在社区、在家庭中,都能获得高品质的医疗服务。
  • 【瑞士步琦】干货!聚醚多元醇羟基含量分析,BUCHI FT-NIR 快速检测技术助您一臂之力!
    聚醚多元醇羟基含量分析 聚醚(又称聚醚多元醇)主要是由环氧丙烷、环氧乙烷等为原料,以碱金属氢氧化物为催化剂,按阴离子机理开环聚合,可以是均聚或共聚而制得分子末端带有羟基基团的线型聚合物, 聚醚在聚氨酯以及合成润滑材料上得到广泛的应用,对聚醚多元醇羟基含量的测定是监测反应程度和产品质量的主要手段。传统的聚醚羟值分析一般采用化学法,其原理是:样品中羟基与酸酐定量地进行反应,生成酯或酸。过量的酸酐水解成酸。 用已知浓度的碱标准溶液滴定酸。同量的酰化剂,不加样品,其他条件与样品滴定相同,做空白滴定。空白滴定和样品滴定两者所耗用碱标准溶液的体积差就是样品中的羟基所相当于耗用碱标准溶液的体积。由于这种方法反应时间长需要 3-4h, 操作比较复杂, 已不能适应工业分析的需要。近红外光是介于可见光与中红外光之间的电磁波, 波长为 780~2500nm。 有机物分子中 C-H , O-H , C=O 等基团振动频率的合频与倍频吸收在近红外区。 光谱中 OH 伸缩振动所引起的吸收峰的强弱决定于羟值的高低, 即单位质量聚醚羟值含量的多少。羟值高则吸收峰强度大, 反之则强度小。 所以可以应用此关系来测量聚醚羟值。BUCHI FT-NIR 的优点1无损利用近红外光以透射或透反射的方式采集被照样品的近红外光谱,对样品没有破坏性。2快速平均 1-2min 可以完成 1 个样品的检测,采集一次样品光谱,可以同时分析多组分含量。3利润高,成本低无需化学试剂消耗,实现零成本,可以大大提高检测效率。4绿色环保无需样品前处理,避免使用有毒,有害的化学试剂,从而对环境造成污染。▲ 建模样品集的近红外吸收光谱▲ 羟值含量的化学值与模型校正值、模型预测值的相关关系图▲ 羟值含量检测的液体附件配置多至6个孔位, 0.5,1,2,5,8,10mm 比色皿根据样品可选,控温室温到 65 度。用近红外光谱法,克服了化学方法测定羟值费时费力且大量使用有害试剂的缺点,此外,使用比色皿作样品吸收池,省去了每次测试后需要花费大量时间清洗吸收池的麻烦。这种方法不仅在聚醚多元醇生产中具有很大实用价值,而且在其他类似黏度较大、清洗不便的样品测试中也具有很大推广价值。步琦近红外光谱仪可以提供各种型号的光谱,以适用于实验室检测、旁线检测和在线检测的应用过程设备。如您对以上应用产品感兴趣,欢迎咨询了解!
  • 厦大牵头研制!全球首个戊型肝炎病毒抗原尿液检测试剂盒获批上市!
    25日,记者从厦门大学国家传染病诊断试剂与疫苗工程技术研究中心获悉,近日,由厦门大学、中国食品药品检定研究院和万泰生物联合研制的戊型肝炎病毒抗原尿液检测试剂盒(胶体金法、荧光免疫层析法)获得国家药品监督管理局批准上市。该试剂为全球首个以尿液抗原为靶标的戊肝诊断试剂,填补了相关产品和技术空白,其临床评估结果显示检测准确度为98.58%,对全球戊肝患者的临床诊断与治疗管理具有重大意义。戊型肝炎病毒(hepatitis E virus,HEV)是全球范围内病毒性肝炎最主要的病原体之一。全球每年新发HEV感染2000万例,死亡44000例。在我国,戊肝是急性病毒性肝炎的首要病因,其发病人数正逐年上升。慢性肝病患者、孕妇、老年人是HEV感染的高危人群。慢乙肝患者重叠感染HEV后,与未重叠感染HEV的患者相比,肝衰竭发生风险升高至10.9倍,死亡风险升高至8.54倍。有报道显示孕妇特别是妊娠晚期孕妇,感染HEV后的病死率高达15%~25%,且死胎率、早产率高。老年人感染HEV容易导致重型肝炎,占比达14%。我国现阶段戊肝的临床诊断主要依赖HEV IgM抗体检测(《戊型病毒性肝炎诊疗规范》,2009),但仅依赖血清学检测指标难以判断是否为戊肝现症感染,因此亟需病原学检测方法。作为RNA病毒,HEV的核酸检测存在操作复杂、成本高、易污染等问题,因而未能大规模的推广和使用。HEV抗原检测虽然是更便捷的诊断手段,但此前的抗原试剂存在灵敏度不高、阳性周期短等问题。研究团队以尿液中pORF2抗原为靶标研制了全球首个HEV抗原尿液检测试剂盒,首次在全球范围内将临床肝炎的诊断与治疗指导由血液或者粪便靶标转移至尿液中。据介绍,尿液抗原检测为戊肝临床诊断提供了最有效的手段。同时其采样简便、安全无创、检测快速,将极大提高戊肝临床诊断可及性和诊断效率,尤其是在戊肝主要流行的非洲、东南亚等发展中地区。该试剂具有我国自主知识产权,在戊肝诊断方面实现了重要突破,为全球肝炎防治贡献了中国力量。据悉,该试剂近期将投入市场,未来将出现在医院、疾控中心等场所用于戊肝的快速精准诊断。
  • 300万!甘肃省妇幼保健院尿气相色谱质谱联用仪政府采购项目
    项目编号:FYZC2021019项目名称:甘肃省妇幼保健院尿气相色谱质谱联用仪政府采购项目预算金额:300.0(万元)最高限价:225(万元)采购需求:甘肃省妇幼保健院(甘肃省中心医院)所需尿气相色谱质谱联用仪(遗传代谢病气质高危筛查及辅助诊断系统)1套。合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否
  • 岛津战略合作伙伴和合诊断集团自主研发25-羟基维生素D试剂盒,获批国家二类医疗器械注册证
    2020年2月,和合诊断集团全资子公司合肥和合医疗科技有限公司自主研发的25-羟基维生素D检测试剂盒(液相色谱-串联质谱法)、25-羟基维生素D校准品、25-羟基维生素D质控品正式通过审批,获得国家二类医疗器械注册证!上图为25-羟基维生素D检测试剂盒、校准品、质控品的国家二类医疗器械注册证件 合肥和合医疗科技有限公司自主研发的25-羟基维生素D系列检测试剂盒产品基于液相色谱-串联质谱检测方法,该方法为国际公认的维生素D项目检测金标准,可以大大提高血清维生素D检测的精确性,为相关疾病的临床诊断提供重要依据。产品适用机型广、组成全面,能很好的满足临床客户的检测需求。 和合诊断集团自2011年开始与岛津合作,现在拥有多台岛津LCMS-8050CL、Nexera系列液相色谱仪。LCMS-8050CLNexera X2(LC-30A系列) 岛津液相色谱仪历经50年在技术积淀,从输液泵、自动进样器到柱温箱和检测器,各个方面做到最优,为用户获得最优、最稳定的检测结果,提供最优秀的仪器平台。 和合诊断尤以开展高效液相色谱、串联质谱法检测擅长,是国内第一家也是目前规模最大的临床“色谱/质谱检验技术平台”,可提供临床化学和分子遗传学检验专业的百余项检测项目。集团率先在国内开展血清维生素检测,为全国2000余家医院提供诊断技术服务。集团各实验室执行国际通用标准ISO15189,拥有与世界同步的检验技术和实验室管理系统,检测结果为全球100多个国家和地区认可。科研能力突出,截至目前,集团共获得国家专利局审批及受理的专利近百余项、其中维生素D检测发明专利10余项。 研究表明,人体血清维生素D水平与免疫力息息相关,维生素D可以使细胞因子水平提高,从而增强人体免疫力。所以高度关注血清维生素水平,及时干预,可使肌体抗病毒感染能力提升。
  • EST发表水生所关于电子垃圾拆解对人体健康影响的文章
    近日,环境科学领域的权威刊物Environmental Science and Technology(简称EST)在网络上率先发表了中科院水生生物研究所生态毒理学学科组组博士研究生闻胜等人关于电子垃圾拆解对人体健康影响的文章“Elevated Levels of Urinary 8-Hydroxy-2´ -deoxyguanosine in Male Electrical and Electronic Equipment Dismantling Workers Exposed to High Concentrations of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans, Polybrominated Diphenyl Ethers, and Polychlorinated Biphenyls。 该论文以我国某电子垃圾拆解区为试验点,研究了该地区拆解工人工作环境和人体中典型持久性有机污染物,特别是二恶英、多溴联苯醚和多氯联苯的暴露水平。研究发现,在拆解作业区室内的灰尘与拆解工人头发样品中发现了高浓度的二恶英、多溴联苯醚和多氯联苯;两类样品之间的指纹特征高度相似。表明该地区电子垃圾拆解工人处于严重的二恶英,多溴联苯醚和多氯联苯的暴露中。通过对化合物的指纹特征分析,发现这些污染物主要来源于电子垃圾拆解过程中的无序焚烧。通过测定工人上班前和下班后尿液中DNA氧化损伤的生物标志物(8-羟基脱氧鸟苷,8-OHdG),发现下班后工人尿中8-羟基脱氧鸟苷是上班前浓度的四倍,并且两组数据之间具有显著性差异(P 0.05)。尤其值得注意的是下班后的尿液中8-羟基脱氧鸟苷的浓度水平甚至和一些前列腺和膀胱癌症患者的水平相当,表明该试验点拆解工人存在相当高的癌症风险。该研究结果为电子垃圾拆解的无序焚烧释放大量有毒持久性有机污染物,及其给当地环境,尤其是对拆解工人健康的危害提供了直接的科学证据。
  • 广东省食品流通协会发布《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    由广东省食品流通协会提出的《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿提出宝贵的意见和建议,并将意见反馈表于2023年10月28日前反馈至协会标准化专委会处,意见接收邮箱:gdfcastandard@126.com。附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明附件3、广东省食品流通协会团体标准征求意见表关于对《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见的函.pdf附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿).pdf附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明.pdf附件3、广东省食品流通协会团体标准征求意见表.docx
  • 广东省农药协会发布《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    各有关单位及专家:广东省农药协会立项的《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、严谨性和适用性,现公开征求意见。请有关单位及专家提出宝贵意见或建议,并请于2023年12月3日前将《标准征求意见汇总表》(见附件1)以电子邮件的形式反馈至广东省农药协会秘书处,逾期未回复将按无异议处理。感谢您对我们工作的大力支持!联系人:沈文胜;联系电话:020-37288797, 13802631090;电子邮箱:swsg@163.com 附件:1. 标准征求意见汇总表2. 《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》征求意见稿 广东省农药协会2023年11月3日广东省农药协会关于征求《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准意见的通知.pdf附件1:标准征求意见汇总表.docx附件2:农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定(征求意见稿).pdf
  • 南开大学李功玉:我的质谱前十年,从“菜鸟球员”到“菜鸟教练”的奇妙之旅
    从收到中科大黄光明老师转发的贺老师邀请邮件至今,已过去数月有余。很遗憾没能赶上盛大的CNCP-2020《十年回顾》。思考了很久,也拜读了多篇优秀的CNCPer回顾文章,今天总算在南开园,敲下了《我的质谱前十年》这样一个平淡而真实的题目。一直在想是否用《我的质谱前半生》为题会更有吸引力。2012-2022,从中科大起步,踏入质谱分析的科研殿堂,我用了将近十年的时间,勉强完成了从一个质谱“菜鸟球员”(质谱分析方向的一年级研究生)到“菜鸟教练”(质谱分析方向的特聘研究员)的艰难转身。然而,时至今日,在CNCP中我仍然是一名初学者,每天都在继续学习蛋白质组学及相关技术,争取成为一名合格的CNCPer。很荣幸能成为第三代CNCPer一员,也特别感谢贺老师和黄老师给予这样宝贵的平台与机会,我也得以从繁杂的课题组事务中偷得片刻闲暇,在2022年11月的某个傍晚晚饭过后,关上办公室透着微光的玻璃门,放下《视频会议中///请勿扰》的警示牌,随手开了一瓶“82年”的可乐,开始回顾这十年的点点滴滴与细细碎碎。这篇波澜不惊的流水账,期待能给大家茶余饭后带来些许谈资笑料,足矣。如能给年轻的CNCPer学生朋友们带来些许借鉴或者经验教训,也是我内心深处最大的满足啦。  梦起中科大:初识基础质谱  中科大是一个令人魂牵梦萦的地方。出国率高、理科强校、数不清的第一名,对于一个“菜鸟”研究生来说,这些就是中科大耀眼的标签。由于怀揣一个出国梦,因此选择了考研中科大并最终以专业第一的成绩被录取(后来才知道很多同学是保研进来的,根本就不用跟我们pk)。2012年3月底第一次来到科大见到年轻的黄老师。当时在教学楼与黄老师第一次见面聊了一个多小时,初步印象是,黄老师皮肤很好,人也很好。我感觉自我回答很完美的一个问题是:为什么选择分析化学而不是有机化学等其它方向(是因为分析轻松吗)?我说,分析方向相对绿色环保、无毒无害,但是要想出重要成果,肯定要付出加倍努力才行(多么朴实无华的表态)。在我自己当过好多次面试官以后,我才发现自己当时的回答有多么强烈地抓住一位年轻老板的心(此处手动偷笑中)。自此被黄老师选中,追随着黄老师的脚步,在黄老师入职科大大约半年后,我也顺利成为了Huang Lab的第一届硕士研究生。(其实我第一位联系的是邓兆祥老师,当时官网上还没有出现黄老师的太多信息。现在回想起来也要感谢邓老师的推荐,才得以有机会进入质谱分析行业。)  图1. 在Huang Lab搭建的第一个CE-ESI-MS接口装置图。  在中科大这五年,在黄老师的指导下,在科研课题方面,很惭愧仅干了三件小事:1)第一个课题是关于毛细管电泳-质谱接口开发,近乎失败告终(图1,后来课题转给师妹,共同作者发表1篇RCM) 2)基于非接触式电喷雾离子化技术,提出了In-cell MS的概念(原位细胞蛋白质谱,借鉴了当时很火的in-cell NMR),实现了细胞内高表达蛋白的直接进样质谱分析(图2和图3,发表2篇Anal Chem,其中图3是博士毕业前3个月,拿到了博后offer之后等签证过程中的一个quick publication) 3)发展出毫秒级微电泳理论(可能与第一个失败的电泳课题有关)与毫秒级电磁感应加热理论,并整合离子淌度质谱(访问密西根大学),实现了溶液蛋白高级结构动态变化的在线质谱实时监测(发表1篇Anal Chem)。  图2.在Huang Lab搭建的脉冲高压电源电路图、In-cell MS及高通量非接触式电喷雾装置图图3. 博士毕业前3个月发表的一篇Anal Chem  中科大读博期间,有太多的难忘时刻。正如我的博士毕业论文上青涩的文笔所描绘的那般场景,我们致力于发展一种新型的蛋白质质谱监测方式,力争实现细胞内蛋白质的原位、快速监测与结构分析,核心的解决思路是利用超强抗基质干扰能力的离子化方法,并在活细胞内金属蛋白与配体相互作用等方面做了初步的尝试。至今仍会为尝试了6个月差点放弃的全细胞电喷雾实验而突然看到蛋白信号的那一瞬间所触动,起初黄老师和我自己其实都并不太确定最后能拿到信号。6个月的时间里,我们尝试了除了稀释样品外的几乎所有可能想到的方案,直到有一天,我不小心把细胞稀释液给配稀了3个数量级(“失误”),隐隐约约在杂乱的氯化钠团簇离子背景峰中,看到了几个与众不同的多电荷态峰。虽然那时候的信噪比奇差无比,我顿时就预感了成功就在眼前了。剩下的只是参数优化而已。这个课题当时是和中科大化学系刘扬中老师课题组合作的,翻到当时给刘老师的邮件(图4),当时还起了一个特别诗意的名字,One Spray One Separation。这个课题后来我总结起来,还是自己受限于思维定势了,当时一直想着寄希望提高样品量以此获得信号,不曾想过稀释、降低浓度可以减少干扰、提高离子化效率,毕竟惯性思维(思维定势)告诉我,细胞内的蛋白太少了。可是质谱是一个超高灵敏的检测仪器,甚至可以实现单个分子水平上的离子信号监测。虽然后来我们开复盘会的时候,有朝这个方向思考,不过最终并没有进一步实施,后来Albert Heck等相关课题组在charge detection-mass spectrometry(CDMS)仪器上就实现了类似的设想(发表了一系列高影响力文章)。(欲了解相关可点击:电荷检测质谱技术进展)  总结而言,中科大的这段时光是质谱梦的开端,在黄光明老师的指导下,我学会了基础质谱的相关知识,尤其是离子源方面。在黄老师自由宽松的学术氛围下,一切似乎都是那么从容,我可以做自己想做的课题,可以尝试自己不靠谱的想法,这种和谐的科研环境让我很多时候都觉得博士生活并不是人们宣扬的那样枯燥与无趣。这份心态陪伴我渡过了一个又一个关键的时间节点:2014年4月第一篇文章的发表,2015年6月第一次看到细胞内冷应激蛋白的信号,2015年12月与斯坦福大学Richard Zare教授在南京第一次面谈,2016年3月校青年基金获批,2016年4月成功抵达密歇根大学安娜堡分校Brandon T. Ruotolo教授实验室,2016年10月Anal. Chem.接收,2017年4月提交博士毕业论文。  图4. 2015年6月17日首次看到全细胞喷雾钙调蛋白的信号之后,给合作导师刘扬中老师的邮件  寻梦安娜堡:启蒙结构质谱  安娜堡给人的感觉就像是初恋,砰然心动、短暂相伴却也刻骨铭心。在个人职业发展方面,也特别感谢黄老师的大力支持,成功前往密西根大学进行短期交流。这次作为访问学生的身份前往安娜堡的经历,对我的人生走向起着至关重要的作用,彷佛打开了新世界的大门。我可以把所有的事情写成回忆录、拍成照片视频等共享,然而这种认识新事物的过程与体验,若非本人经历是无法体会的。  作为访问学生,第一次去美国,一切都充满未知,语言、饮食习惯、生活和社会环境,每天都给我带来冲击。当时Brandon刚好过了tenure考核,正在学术休假。因此与他直接面对面的交流机会并不多。大多数时间都是跟着实验室师兄师姐们学习离子淌度质谱。很庆幸在此期间接受了离子淌度理论、非变性质谱样品制备以及质谱数据采集及数据处理等方面的系统训练。短短的四个月时间,太多令人回忆起来觉得温暖的瞬间,报到那天是4月11日,负责帮我办手续的HR上来就是一句happy birthday,随后就拿到了后来失而复得的两张UM校园卡(图5)。2016年参加了人生第一次ASMS会议,一个人感受经济舱(第一次坐那种只有二三十个座位的小型客机)、乘坐灰狗长途汽车、换乘短途Uber穿梭在美国中西部大玉米地之间,安娜堡、普渡、俄亥俄州立以及UIUC香槟多个校区,朝发夕至。  图5. 两张UM校园卡(其中一张属于遗失又找回)  图6. ASMS-2016 Ruotolo课题组圣安东尼奥聚餐  翻看着旧照片,思绪万千。2016年和2019年,两次到访Ruotolo Lab,体验截然不同。图6是第一次访问时随课题组参加当年的ASMS年会,在圣安东尼奥(德州)当地一家牛排店,课题组聚餐前的大合影。那一次会议对我来说突如其来,规模之大、交流之深,完全超出我对学术会议的预期,由于我没有做好充分准备,一切都猝不及防,走马观花、热闹过场,却也收获了一批一面之交的、之后时不时线上交流的学术网友。学术上,我的结构质谱是从这里开始的,Ruotolo Lab教会了我离子淌度质谱的基础知识。在做文献阅读时我被Brandon发表在JACS和Angew上的三篇Hofmeister盐调控蛋白结构的文章所深深吸引。作为一个初学者,最快入门的方式就是模仿与重复别人的代表性实验。当时我对此执念很深,因此就开始动手重复那些让我痴迷的实验。Brandon那三篇文章主要是聚焦在盐本身对蛋白的一级质谱的信号挖掘,包括寡聚体组成以及碰撞横截面积CCS的变化等信息。我当时就很想知道,这些盐如果真的调控了高级结构,是否这些盐也能调控复合物拓扑学组装结构?我当时有一个猜想:有没有可能在特定盐的喷雾条件下,复合物的拓扑学结构能够得到更好的保护?因为在结构质谱领域,一直被人诟病的一个地方,就是我们直接测量的是脱溶剂条件下的结构,与溶液相真实结构之间必然存在差异。而这种差异具体有多少,尚缺乏有效的定量评估方法以及通用的差异缓和措施。  图7. 附带普渡大学Graham Cooks院士真迹的实验记录本  一次实验中我意外地发现,当我在经典的非变性质谱溶液中,加入低浓度的碳酸氢铵时,神奇的现象出现了:血红蛋白四聚体复合物的气相解离路径发生了显著变化。传统条件下,几乎所有文献和实验都会相信,四聚体会解离成单体和三聚体,这种解离路径与其溶液中“二聚的二聚”的结构特点是相矛盾的。而在我调整Hofmeister盐条件之后,这种传统认知被打破,四聚体优先解离为二聚体,而这恰恰是溶液相拓扑学结构的真实情况。在我去Purdue访问Aston Lab以及去Ohio State University访问Wysocki Lab时,分别与Graham和Vicki谈论了我当时引以为傲的新发现,试图从两位SID发明人那里得到机制解析方面的帮助。两位都对这个现象表示感兴趣,Graham还用一张便签纸写下了他从电荷态分布的角度给我的一些猜想建议(图7)。第一次观测到这个新现象是大约在抵达安娜堡一个月内。Brandon对此非常谨慎,为了说服他,我接下来的访问时间里,做了至少十种不同复合物体系,并从各种不同的侧面去试图解释这里到底发生了什么。正如博士导师黄光明老师经常在组会上说的那样,咱们做科研的,没有人会相信魔术。后来经过接近2年的断断续续补充实验(图8),我们发现这可能和pH改变之后邻近的双硫键易发生交联有相关性,最终Brandon选择将文章发表在IJMS的一期结构质谱约稿专刊上(尽管我当时有一万个不愿意,从一个初学者的执拗与不成熟的角度看,这种新奇的发现怎么都可以发到一个影响力更高的杂志上)。  图8. 论“喷针质量对于非变性结构质谱实验成功重要性” ——UM实验记录本  2019年夏天,在美国质谱学会博士后职业发展奖的支持下,我再次来到Ruotolo Lab,再次感受安娜堡夏天的尾巴。只是这次是短暂的两周交流,来之前我就一个一个联系之前一起住在Arbor Village、周末一起打球的好朋友们,包括现在已经回到浙大任教授的优秀结构生物学专家张岩老师(青千、长江、青年973首席科学家),只是大家大都已经搬走离开或已回国。我自己选择住在一个更远的、公交车可以直达的地方,想着进一步感受安娜堡downtown远端的生活。这一次,UM给我重新启用之前的学号,课题组安全培训表上我的两次签名之间竟然还没有翻页(亲切感油然而生!),实验室也仍然沿用之前大家商量安排质谱机时的传统(图9)。这一次我来的主要任务是学习结构质谱指引下的分子模拟方法(图10),然而很遗憾,两周的时间还是太过短暂,我并没有完全掌握分子模拟本身,在课题组成员的帮助下,我只基本掌握了在拿到分子结构后,如何用我们的结构质谱数据去匹配、筛选、构建气相条件下的蛋白结构。而图10是当时我在离开安娜堡之前,为了防止我离开课题组以后就忘了怎么做,带我做模拟的Chae要求我在黑板上写下来的工作流程。这一张照片已经成为了我实验室(LimsLab)分子模拟初学者的第一手教材。看着图5的校园卡,猛然发现,还在有效期内,期待疫情过后,重返安娜堡的画面。  图9. Ruotolo课题组安全培训记录(2016+2019)与质谱实验安排表。  图10. 结构质谱指引下的分子模拟过程(2019年8月,写于安娜堡Ruotolo Lab)。  驻扎麦迪逊:感受定量质谱  麦迪逊的经历印象深刻,酸甜苦辣,受益终生。从2017年8月至2021年1月,我在麦屯过了四个中国年。期间没有回国,后来疫情来了,也就直接放弃了回国休假的打算,直到回南开的那一天。麦屯是全美宜居幸福指数排名第一的城市,也是我人生中待过时间第四长的一个城市,同时也是我在美国待过时间最长的一个城市。难忘的生活细节太多,也认识了超级多好朋友兄弟姐妹。竟然一时间不知从何处下笔。今天回想起来,还是觉得时间过得太快,过去四年的时光历历在目,仿佛一切就在昨天。  图11. 博士后导师Lingjun赠送歌手赵雷亲笔签名CD,2019年3月23日,药学院办公室。  非常荣幸加入李灵军老师课题组Li Lab进行博士后训练。印象中Lingjun一直都非常忙,Li Lab课题组大小事务都要操心,几乎每天都工作到凌晨两三点,在凌晨收到李老师的邮件或者信息也不足为奇,当然如果你的邮件被淹没在茫茫list中也偶有发生。记得当时联系李老师申请博后位置,李老师就是在我发送第二封邮件时才回复。Li Lab课题组的研究兴趣广泛,但是以定量质谱方法开发为核心,Lingjun在这个方向上还获得了美国质谱学会ASMS专门给中青年科学家设立的、一年仅颁发一位的重量级奖项Biemann Medal(李老师获得的荣誉如果全部列出来,将占据我这篇文章一半以上的篇幅,建议感兴趣的读者请自行查阅)。Lingjun最让我佩服的一点是,可以常年不花时间锻炼身体,却似乎从来不感冒不生病,一年365天铁人般坚守在工作岗位上。平时的爱好,主要是追追星(图11,赵雷)以及朋友圈发发美食美景和美图。  犹记得当时,刚好前期主要负责离子淌度相关方向的贾辰熙师兄回国(现任北京蛋白质中心独立PI),而我在Brandon那边有一些离子淌度的训练背景,加上有NIH的基金需要这个方向继续发展,最后顺利进入了Li Lab,成为麦屯定量质谱大团队的一员。李老师备受领域内同行的尊敬与认可,作为李老师的学生与课题组成员,我们也深得其益,每次出去开会提到Madison Li Lab就能得到wow的大声回应,而我自己也得益于Lingjun的reputation,成功申请到ASMS的博士后职业发展奖(Postdoc Career DevelopmentAward)。这对于我的职业生涯确实起着很大的鼓舞作用,并以此为契机,推动着后面的每一步探索。  图12. “快速入门”的一篇文章(手性修饰质谱方法学开发)。  博后期间,协助指导了几名研究生,负责维护管理离子淌度质谱Synapt G2,参与撰写了几份NIH基金并发表了五六篇论文,代表Li Lab在ASMS年会上做了两次口头报告。科研方面,总结起来,很惭愧在Li Lab仅干了以下两件小事:  (1)定量质谱方向,一事无成,只是在最后一年时间里(拿到南开的offer之后回国之前),跟着实验室的小伙伴们,学会了4-plex DiLeu的简单合成与组学定量应用,没有在这个方向上帮助Li Lab做出任何贡献(而我自己到今天还在后悔,如果给我更长的时间,我一定会把蛋白组学样品制备、数据处理、定量测量等方面加强,组学质谱技术太强大了!)。当然,在我现在自己课题组LimsLab,我正在弥补这个遗憾,我的学生们目前也正在DiLeu定量质谱的道路上摸索着前行,争取能将DiLeu探针推广到完整蛋白标记领域中。  图13. “厚积薄发”的一篇文章(纳秒光化学点击反应助力原位蛋白质谱分析)。  (2)结构质谱方向,三年多的时间里,主要在以下三个方面取得一点小的进展:发展了面向蛋白结构微小差异的高通量构象操控新策略AIU(发表1篇AC+1篇JASMS) 借鉴印第安纳大学Clemmer Group多维分离单糖小分子的思路,发展了多维差异放大结构质谱新策略,并成功应用于手性多肽的快速结构拆分(图12,如果没记错,这是Li Lab近年来的第一篇Nat. Commun.) 受荧光热电泳实验启发,开发了质谱兼容的纳秒光化学点击反应,实现了蛋白原位检测与结构标记分析(图13,如果没记错,应该是Li Lab近年来的第二篇Nat. Commun.)。前两个工作我现在的学生也在follow,似乎他们现在很喜欢使用相关的技术方法,而第三个工作,我当时在Li Lab协助指导的博士生也跟着拓展,应用到小分子代谢物的检测分析中,今年发表了一篇AC。第二个工作我把它标注为“快速入门”,第三个工作则为“厚积薄发”,主要原因在于课题的完成过程截然不同,前者的关键数据是在我抵达麦屯一个多月就拿到了(美国入境签证为证,哈哈哈),而后者则是我构思了很长时间的一个idea(2017年开始构思),经过漫长的摸索调整,才以最终发表的样子呈现在大家面前。  2020年2月,一场突如其来的新冠疫情席卷全球。所有人的生活方式均因此而改变。犹记得最后一次驱车前往UIUC校园,Jonathan Sweedler实验室使用TIMS仪器就是2月底,当时还特别幸运,在大玉米地香槟这座城市遇到了受Jonathan邀请来化学系做特邀报告的Dick Zare(图14,右下倒数第二张)。这也是除了我去斯坦福Zare Lab访问期间与Dick在美国的唯一一次会面。从此之后,大家经历了居家办公、线上组会、带薪休假的艰难岁月,后来给南开投了第一封求职信便很快收到学院回复,再后来就是和Li Lab的各位小伙伴线上告别(图14,Lingjun很贴心地拼贴了我们故事的点点滴滴,包括第一次线下和李老师在海口国际分析化学年会见面的青涩照片,右下,太感动啦)。  图14. 2021年1月,与Li Lab的各位小伙伴们线上告别。  南开再起航:创办LimsLab  南开是一个既熟悉又陌生的全新环境,无限可能、机遇大于挑战,因此充满期待。南开化学在我投递求职信的第二天就给了我面试通知,并在面试后一周内毫不犹豫地通知我通过了学院的面试。我也在随后毫不犹豫地接受了这份来自南开的爽快offer。于是开始筹建实验室,回国前就在构思自己实验室名字,博后实验室叫Li Lab,最后把自己的实验室叫做LimsLab(图15),寓意为Li-MS-Lab或者Li-IMS-Lab。如其名,LimsLab将打造以离子淌度质谱为核心技术的大分子结构质谱分析实验室。  图15. 南开大学大分子结构质谱分析实验室Logo。  2021年2月25日,我第一次来到天津,第一次来到南开,高效完成了各项报到工作。至此,可以算得上是完成了从“菜鸟球员”到“菜鸟教练”的角色转换。虽然之前也曾帮助实验室做过一些相关的服务工作,而只有此次真正完成角色转变之后,我才深刻意识到一位导师所面临的事物有多繁杂,尤其是对一个从毛坯房白手起家的“菜鸟教练”(图16)。每次被要求填写业余爱好时,我都会毫不犹豫地写下“篮球”这两个字。如果把科研事业当成篮球爱好,首先要建好球场,然后要招募球员。而在这些工作之前,最为重要的是,作为这样一个身兼数职的“菜鸟教练”,虽然有学校给提供的start-up启动经费,还需要时时刻刻思考着如何“融资”,而不断构思着说服“资本家们”给你投资的理由。  庆幸的是,在各位同行专家的大力支持与鼓励下,经过快两年的摸爬滚打,LimsLab目前运转逐渐步入正轨,课题组目前拥有操作室(图17)、质谱室(图18)、制样室(图19)、细胞间和学生办公室等多个活动空间,仪器设备有适用于蛋白组学高通量定量分析的Orbitrap Eclipse(依托生科院)、Fusion Lumos(依托药化生国重),有高分辨结构质谱离子淌度仪Cyclic IMS(依托海河实验室)和经典结构质谱仪Synapt G2(依托国重),近期也着手采购非变性大分子结构质谱QE UHMR仪器。同时,实验室的小伙伴们还一起盲盒般开箱了一台适用于离子源等方法开发的Orbitrap二手质谱仪器(图20)。除配套设备外,LimsLab课题组目前经费充足,拥有研究生和科研助理十余名科研人员,现亟需在定量蛋白组学、合成化学和计算模拟化学等方向的博士后研究员加入,以充实、完善LimsLab队伍,尽快提升团队的整体科研素养与综合水平。待遇由你定,要求仅一条,那就是对高水平科研工作有足够的热情与向往。  随附LimsLab课题组网站:https://www.x-mol.com/groups/gongyu_li  同附PI联系方式:李功玉(ligongyu@nankai.edu.cn)  再附PI简介:李功玉,南开大学化学学院,研究员、博士生导师。入选国家高层次青年人才计划(2021)、主持科技部重点研发青年项目(2022)。2017年毕业于中国科学技术大学,获理学博士学位。 2017年至2021年在美国威斯康星大学麦迪逊分校开展博士后研究。2016年和2019年两次前往美国密西根大学安娜堡分校交流访问。2021年2月加入南开大学化学学院,成立LimsLab课题组,研究方向为大分子结构质谱分析。图16. “菜鸟教练”的必修课之毛坯实验室装修(拍摄于2021年3月)。图17. 南开大学LimsLab实验室操作室(拍摄于2022年11月)。图18. 南开大学LimsLab实验室质谱室(拍摄于2022年11月)。 图19. 南开大学LimsLab实验室制样室(拍摄于2022年11月)。  图20. 南开大学LimsLab实验室成功自主拆机(拍摄于2022年11月)。
  • 文献解读丨基于LCMS-IT-TOF的中药同系物代谢物鉴定方法的建立:五味子木脂素在大鼠体内代谢的性别差异
    本文由中国药科大学药物代谢与药代动力学重点实验室所作,发表于DRUG METABOLISM AND DISPOSITION 38:1747–1759, 2010。 中药通常被定义为一种治疗方案,它不是由单一化合物与单一靶点相互作用组成的,而是几种化合物与多个靶点相互作用的协同药理干预。由于天然产物具有多种多样的生物活性和药用潜力,几乎每个文明都积累了使用它们的经验和知识。 最近,西方制药公司开始更喜欢用纯净的天然产品,而不是粗提取物作为药物原料。然而,在识别通过联合用药来有效对抗疾病的天然化合物或受自然启发化合物方面存在巨大的挑战。此外,体内可能存在的大量代谢物、有害药物相互作用的固有风险以及多组分制剂不可预测的药代动力学特性仍需解决。因此,中药代谢研究不仅是中药现代化的关键,而且对新药的开发具有重要意义。 中药代谢研究是一项艰巨的任务,由于中药成分复杂,代谢途径复杂,缺乏标准品,目前尚处于起步阶段。本研究基于液相色谱-离子阱-飞行时间质谱技术,建立了快速鉴定和分类中药成分代谢物的技术平台。 以五味子木脂素提取物为例,完成了体外和体内代谢研究。在体外研究中,对五种典型五味子的代谢产物进行了鉴定和结构表征。主要的代谢途径有去甲基化、羟基化及去甲基-羟基化。在体内研究中,在大鼠尿液中检测到44种代谢物。根据体外代谢规律,对这些代谢产物进行了快速鉴定和分类,并证实羟基化是木脂素在大鼠尿液中的主要代谢途径。 此外,根据在0 - 12、12 - 24和24 - 36小时采集的尿液样本的相对强度,计算雌性和雄性大鼠代谢产物的“相对累积排泄”(RCE)。结果发现,RCE存在很大的性别差异。对于大多数代谢物,雌性大鼠的RCE显著低于雄性大鼠。综上,目前开发的木脂素五味子代谢研究方法和途径将在中药代谢研究中得到广泛应用。 图1 基于液相色谱-质谱联用技术开发的中药代谢平台和工作流程图2 用LC-IT-TOF/MS测定NADPH存在时,五味子木脂素A及其代谢物在雌性(A)和雄性(B)大鼠肝脏S9中的EICs,以及五味子木脂素A可能代谢物的裂解途径(C-F)。虚线方块:潜在的去甲基化位点 虚线圆圈:潜在的羟基化位点。 综上所述,本研究基于LC-IT-TOF/MS单一平台,为解决中药代谢领域的关键问题——包括代谢产物的鉴定和分类,开发了一套系统方法论(图1)。在此基础上,利用LC-IT-TOF/MS平台对五味子木脂素的代谢产物进行了系统鉴别和分类。 首先,利用基于诊断片段离子的扩展策略对五味子木质素提取物中的五味子木脂素进行快速鉴定,并在此过程中对31种五味子木脂素进行了结构特征鉴定。 其次,基于LC-IT-TOF/MS,对5种五味子木脂素成分的标准品在肝脏和肠道S9系统中的代谢命运进行逐一研究,其主要生物转化方式包括去甲基化(-CH3)、羟基化(+OH)和去甲基化-羟基化(-CH3+OH)。 文献题目《Development of a Systematic Approach to Identify Metabolites for Herbal Homologs Based on Liquid Chromatography Hybrid Ion Trap Time-of-Flight Mass Spectrometry: Gender-Related Difference in Metabolism of Schisandra Lignans in Rats》 使用仪器岛津LC–IT-TOF/MS 作者Yan Liang, Haiping Hao, Lin Xie, An Kang, Tong Xie, Xiao Zheng, Chen Dai, Kun Hao, Longsheng Sheng, and Guangji Wang Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, People’s Republic of China
  • 文献解读丨利用DHB-GO复合基质提高MALDI-TOF MS分析中药皂苷的性能
    本文为中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表于JOURNAL OF MASS SPECTROMETRY (2019)10.1002/jms.4385。 基质辅助激光解吸/电离飞行时间质谱(MALDI‐TOF MS)是一种出色的分析技术,可以通过简单的样品预处理快速分析各种分子。MALDI‐TOF质谱的性能在很大程度上取决于基质的类型,新型MALDI基质的开发引起了人们的广泛关注。本研究以人参皂苷Rb1、Re和三七皂苷R1为模型皂苷,寻找更合适的MALDI基质。 在本研究的开始阶段,发现2,5‐二羟基苯甲酸(DHB)在四种传统的MALDI基质中为皂苷分析提供了最高的强度,然而DHB与分析物的非均相共结晶使信号采集有些“不稳定”。氧化石墨烯(graphene oxide, GO)由于其单层结构和良好的分散性,被认为是改善DHB结晶均匀性的辅助基质,从而提高皂苷分析的shot-to-shot和spot-to-spot重现性。令人满意的精度进一步证明了微量氧化石墨烯(0.1 μg/spot)可以大大降低真空条件下氧化石墨烯从MALDI靶板脱离造成仪器污染的风险。更重要的是,DHB-GO复合基质能显著提高皂苷标准曲线的灵敏度和线性。最后,利用大鼠血浆开展了复杂生物样品中Rb1的检测,证明其可快速适用于大鼠药代动力学研究。这不仅为DHB‐GO在中药皂素分析中的应用开辟了新领域,也为开发复合基质提高MALDI质谱性能提供了新思路。 使用仪器:岛津MALDI‐TOF/TOF MS 图1 氧化石墨烯(GO)对2,5 -二羟基苯甲酸(DHB)结晶和灵敏度的影响。A, 分别在5 - 0.01、5 - 0.02、5 - 0.05、5 - 0.1、5 - 0.2和5 - 0.5 mg/ml浓度下DHB - GO复合基质的光学图像 B, 使用一系列的DHB - GO浓度(5 - 0.01,5 - 0.02,5 - 0.05,5 - 0.1,5 - 0.2和5 - 0.5 mg/ml)在MALDI - TOF MS上测定三七皂苷的信号强度;C, 使用DHB (5mg/ml,蓝线)、GO (0.1mg/ml,黑线)和DHB - GO (5 - 0.1mg/ml,红线)基质生成的Rb1、Re和R1的代表性质谱[颜色图可在wileyonlinelibrary.com上查看]图2 在一个点内的随机位置(n = 7)采集的人参皂苷Rb1、人参皂苷Re和三七皂苷R1的质谱图谱。A:Rb1, B: Re, C:R1, 以2,5 -二羟基苯甲酸(DHB)为基质;D:Rb1, E: Re, F:R1, 以DHB‐氧化石墨烯(GO) 为基质;[彩色图可在wileyonlinelibrary.com上查看] 图3 MALDI-TOF MS测定的人参皂苷Rb1、人参皂苷Re和三七皂苷R1的标准曲线,以A:2,5-二羟基苯甲酸(DHB)和B:DHB-氧化石墨烯(GO)为基质[彩色图可在wileyonlinelibrary.com查看] 一般来说,MALDI-MS的性能在很大程度上取决于基质的类型,并且最近提出的使用不同基质是改善解吸/电离过程和质谱质量的有效方法。在本研究开始时,发现DHB比其他常规基质对皂苷具有更高的灵敏度,然而DHB在MALDI靶板上的非均相共结晶使得自动化质谱信号采集有些“不稳定”。于是,我们致力于开发更合适的皂苷MALDI基质。 氧化石墨烯GO是一种碳材料,已被证明有助于DHB在亲水表面上形成均匀的晶体层,并改善质量峰强度的区域差异。我们推测氧化石墨烯具有高度的水分散性和强缺陷效应,这使得其能够均匀地吸附分布在其表面的分析物和基质。不出所料,MALDI-TOF质谱分析皂苷在shot-to-shot和spot-to-spot重现性方面取得了显著改善。精度的提高进一步表明,微量氧化石墨烯(0.1 μg/spot)可以大大降低真空条件下氧化石墨烯从MALDI靶板脱离造成仪器污染的风险。氧化石墨烯中π共轭结构的强吸收可以使其获得较强激光吸收,从而有助于化学基质电离,提高光谱质量。此外,灵敏度和线性也大大提高。 文献题目《The improved performance of MALDI-TOF MS on the analysis of herbal saponins by using DHB-GO composite matrix》使用仪器岛津MALDI‐TOF/TOF MS 作者Zhangpei Zhu,Jiajia Shen,Yangfan Xu,Huimin Guo,Dian Kang,Tengjie Yu,He Wang,Wenshuo Xu,Guangji Wang,Yan Liang 声 明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 长期超量吃碘盐或诱发高血压
    本核泄露事件发生后,沿海各地出现市民抢购食盐风潮。对此,医学专家明确表示,盲目过多食用碘盐不仅有害自身健康,而且在防辐射方面也起不到针对性作用。每天摄盐6克以上,长此以往可能出现高血压。营养学家建议多吃点新鲜蔬菜和水果,均衡营养,提高免疫力。 “如果盲目过量摄入大量碘盐,还可能引起高血压等疾病。”华东医院营养科主任孙建琴教授分析说,从健康角度而言,每人每天从盐中摄取的碘含量约在100微克左右,每人每天的盐摄入量最好在4至6克左右,过量则可能引起高血压、肺水肿等症状加重,心衰发生率增加。由于碘是水溶性的物质,碘吃多了只会通过尿液排出体外。至于用强化碘的酱油来代替碘盐,则更是没有必要。在天然食品中,像海带、虾皮、海鱼等,碘含量都很高。专家建议,倒不如多吃点新鲜蔬菜和水果,均衡营养,减少抽烟,放松心情,不要盲目恐慌,避免疲劳,提高免疫力。ELISA英文名称 Human 8-iso-Prostaglandin F2a ELISA KIT 人8-异前列腺素F2α(8-ISOPGF2a) 规格: 96T/48T英文名称 Human 8-hydroxy-2-deoxyguanosine ELISA Kit 人8-羟基脱氧鸟苷(8-OHdG) 规格: 96T/48TELISA英文名称 Human 6-keto-prostaglandin elisa kit 人6-酮-前列腺素(6-keto-prostaglandin) 规格: 96T/48T英文名称 Human Serotonin 5-Hydroxytryptamine ELISA Kit 人5-羟色氨(5-HT)ELISA试剂盒 规格: 96T/48T英文名称 Human 25(OH)D3 ELISA Kit 人25羟维生素D3(25(OH)D3)ELISA试剂盒 规格: 96T/48T英文名称 Human 25-HVD ELISA Kit 人25-羟基维生素D(25-HVD) 规格: 96T/48T英文名称 Human17-KS ELISA KIT 人17-酮皮质类固醇(17-KS) 规格: 96T/48T英文名称 Human17-Hydroxycorticosteroids ELISA KIT 人17-羟皮质类固醇(17-OHCS) 规格: 96T/48T英文名称 Human 15-lipoxygenase ELISA Kit 人15-脂加氧酶(15-LO) 规格: 96T/48T英文名称 Human 14-3-3 protein ELISA Kit 人14-3-3蛋白(14-3-3 pro) 规格: 96T/48T英文名称 Human 1,25-dihydroxyvitamin D3 ELISA Kit 人1,25-二羟基维生素D3(1,25(OH)2D3)ELISA Kit 规格: 96T/48T
  • 便携式数字尿糖计登陆中国
    百利达公司日前宣布,其通过中国国家食品药品监督管理局核准的便携式数字尿糖计在中国正式上市。这个直接测量尿液中糖分含量的小仪器,6秒钟就能知道测量结果,可以帮助糖尿病患者实现方便、快捷的无痛血糖监测。   据最新的流行病学调查结果推算,中国现有糖尿病患者9240万人,有1.482亿人处于糖尿病前期,已成为全球糖尿病患者最多的国家,其中增长最快的是2型糖尿病。自我血糖监测(包括空腹和餐后血糖监测)是糖尿病治疗过程中的重要一环,有利于观察疗效和调整治疗方案。但是,由于传统测血糖时多次手指穿刺带来的疼痛和创伤,不少“糖友”的生活品质下降,有的因此放弃测量,导致目前在中国,有超过70%的2型糖尿病患者血糖控制不理想。   北京大学医学部公共卫生学院营养专家李榴柏教授表示,尿糖作为衡量血糖的间接手段,可以反映从上次排尿到这次排尿这一段时间的平均血糖水平。而且尿糖计对饭后高血糖监测更敏感,一旦餐后血糖超过肾阀值,这一瞬间的高血糖状态就能反映在尿糖中,可以给医生提供参考,有利于减少餐后高血糖引发的多种并发症,还可以据此调节运动和饮食,最终能帮助患者和高风险人群高效、可持续性地监测和控制血糖。   据研发专家介绍,虽然尿糖监测目前还无法取代血糖监测,但数字尿糖计无痛、无创、方便携带的优点,能减少“扎手指”(测血糖)次数,比如原来是周一到周五每天都要“扎手指”测血糖的“糖友”,使用尿糖计后,只需要周一、周三和周五进行手指穿刺,周二和周四可通过测尿糖进行监测。这将惠及包括孩子、老人以及疼痛不耐受者在内的广大“糖友”。(余锦境)
  • 代谢组学揭示肠癌患者临床诊断依据
    近年来,医学领域的基础研究日趋系统化和多学科交叉,系统生物学的迅猛发展翻开了临床实践、药物研发的新篇章。作为国内较早涉足系统生物学研究的贾伟教授研究团队,近年来应用代谢组学技术对各种临床疾病的早期预测、诊断和预后的生物标志物进行了广泛的研究,现以结直肠癌的系列研究为例介绍我们的研究进展。  研究团队首先采用气相色谱质谱联用、液相色谱质谱联用分析方法,结合单维统计、多维统计的代谢组学研究技术,对I-IV期的64名肠癌患者和65名健康志愿者分别进行了血清和尿液代谢标志物的筛查,并进一步在扩大的研究对象101名肠癌患者和103名健康人中对所发现的潜在代谢标志物进行了验证。  研究结果显示,肠癌患者与健康人的血清代谢物组成具有显著差异。肠癌患者的糖酵解通路中的两个代谢产物丙酮酸和乳酸在血清中呈显著性升高,三羧酸循环中的琥珀酸、异柠檬酸、柠檬酸中间产物呈下降趋势 油胺在肠癌病人血清中的含量也有显著性降低 尿素循环代谢物精氨酸、鸟氨酸和瓜氨酸在病人血清中均显著降低,脯氨酸、羟基脯氨酸和谷氨酸也显著下降 另外,色氨酸及其相关的代谢物5-羟基色氨酸和5-羟基吲哚乙酸在肠癌组和正常组之间有显著性差异,提示与5-羟色胺的代谢相关。研究结果还显示,血清代谢产物不仅可以将肠癌Ⅱ-Ⅳ期的患者与健康人明显区分开,还能将Ⅰ期的早期肠癌患者与健康人也区分开来。我们的相关研究结果从2009年开始陆续发表在专业领域内具有较大影响力的杂志Journal of Proteome Research(2009和2013)上。  尿液代谢组学结果同样显示,结直肠癌患者和正常人的代谢谱亦呈显著差异。结直肠癌患者中的色氨酸代谢上调,组胺和谷氨酸代谢通路、三羧酸循环和肠道菌群代谢紊乱。另外,结直肠癌病人中紊乱的代谢谱,如5-羟色氨酸代谢物、三羧酸循环代谢和肠道菌群代谢物在手术后得到明显改善。研究进而开展了二甲肼(DMH)所致结肠癌早期病变的SD大鼠模型的研究,同样发现这些代谢物的波动和紊乱。研究结果发表在Journal of Proteome Research (2010和2012)上,并得到美国ACS和TIME(时代周刊)为代表的多家权威媒体的重点报道和关注,对该研究结果和前景给予了极高的评价。  在结直肠癌血清和尿液的代谢组学研究基础上,我们对肠癌的组织也进行了深入的研究,对组织的研究可以有效规避血清、尿研究中由于饮食差异等外界因素对体内代谢物的影响带来对研究结果的影响。研究团队首先对来自上海地区的结直肠癌和癌旁组织进行研究,发现了一组在癌和癌旁组织中具有显著性差异的代谢物。进而对来自北京、浙江和美国加州另外3个不同地区的结直肠癌和癌旁组织也进行了研究。结果显示肠癌组织中总的代谢物变化趋势在4个不同地区的样本具有很高的相似性,其中的15个代谢分子呈现出完全一致的变化趋势。进一步研究发现这些差异性代谢物的变化与所在的代谢通路上的基因表达水平的变化呈高度的一致性。这些差异代谢物包括上调的犬尿氨酸、b-丙氨酸、谷氨酸、半胱氨酸、2-氨基丁酸、棕榈油酸、焦谷氨酸、天冬氨酸、次黄嘌呤、乳酸、豆蔻酸、甘油、尿嘧啶、腐胺,以及下调的肌醇。差异表达性的基因包括LDHA、TALDO1、GOT2、MDH2、ME1、GAD1、ABAT、PANK1、DPYD、ACLY、FASN、SCD、IDO1、GPX1、GSTP1、GSR、GSS、GGCT、ANPEP、CAT、ERCC2。结合代谢物和基因表达变化发现的结直肠癌的代谢物模式和基因表达模式特点主要可以从三个方面阐释其生物特性:1)“瓦伯格效应”(Warburg Effect):这是肿瘤细胞能量代谢的典型特征,表现在大量地摄取葡萄糖进行有氧糖酵解,生成大量的乳酸,同时为不断生长的肿瘤细胞提供生物合成原料 2)伴随着糖酵解的上升,用于大分子物质合成的代谢中间体显著上升:肿瘤细胞的代谢会产生大分子中间体来支持细胞生长,导致某些特定的游离脂肪酸(豆蔻酸、棕榈油酸)和核酸(次黄嘌呤)的浓度上升。在肿瘤细胞中,高表达的ACLY、 FASN和SCD同样提示了脂肪酸合成的增强。而b-丙氨酸在肿瘤细胞生长中明显的变化可能与脂肪酸合成中的乙酰辅酶A和丙二酸辅酶A有着密切的联系,提示这种变化可能与肠道菌群代谢有相关性 3)肿瘤细胞内维持较高的氧化应激水平:我们发现肿瘤组织内具有抗氧化活性代谢物的浓度显著上升。由于肿瘤细胞加速合成代谢而产生较高的活性氧,从而使胞内氧化应激水平上升。所发现的这些具有抗氧化活性的代谢产物在肿瘤组织中被大量的合成,提示肿瘤细胞通过改变代谢模式,用还原性的分子来平衡活性氧,从而在较高的氧化应激水平下维系其生理和代谢功能。实验中发现,氧化应激的生物标志物视晶酸、2-氨基丁酸在肿瘤细胞中上升。同时,与谷胱甘肽相关的基因包括GPX1、GSR、GGCT、GSTP1也在肿瘤组织中显著升高。该研究结果发表于国际知名的癌症研究期刊ClinicalCancer Research(2014)。  我们相信对结直肠癌的系统性的代谢研究,对寻找和发现具有临床早期诊断和预后价值的生物标志物研究提供了极大的可能性,为未来的临床转化研究奠定了坚实的基础。     原文出处:  1.Qiu, Y. Cai, G. Su, M. Chen,T. Zheng, X. Xu, Y. Ni, Y. Zhao, A. Xu, L. X. Cai, S. Jia, W., Serummetabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS.Journal of Proteome Research. 2009, 8, 4844–4850.  2.Qiu, Y. Cai, G Su, M. Chen, T. Liu, Y. Xu, Y. Ni, Y. Zhao, A. Cai, S. Xu, L. X. Jia, W.,Urinary Metabonomic Study on Colorectal Cancer. Journal of Proteome Research.2010, 9, 1627–1634.  3.Cheng, Y., Xie, G., Chen, T., Qiu, Y., Zou,X., Zheng, M., Tan, B., Feng, B., Dong, T., He, P., Zhao, L., Zhao, A., Xu,LX., Zhan,g Y., Jia, W. Distinct urinary metabolic profile of human colorectalcancer. Journal of ProteomeResearch. 2012, 11(2):1354-63.  4.Tan, B, Qiu,Y, Zou, X, Chen, T, Xie, G, Cheng, Y, Dong, T, Zhao, L, Feng, B, Hu, X, Xu, L.X, Zhao, A, Zhang, M, Cai, G, Cai, S, Zhou, Z, Zheng, M, Zhang, Y & Jia, W.Metabonomics identifies serum metabolite markers of colorectal cancer. Journalof Proteome Research 2013, 12, 1354?1363.  5.Qiu, Y. Cai,G. Zhou, B. Li, D. Zhao, A. Xie, G. Li, H. Cai, S. Xie, D. Huang,C. Ge, W., Zhou,Z. Xu, L. Jia, Weiping Zheng, S. Yen, Y. Jia, W. Metabonomicsof human colorectal cancer: new approaches for early diagnosis and biomarkerdiscovery. Clinical Cancer Research.2014, 20(8):15.
  • 武大干细胞时空隧道技术进展——突破瓶颈,点亮治愈糖尿病希望
    干细胞中胰岛素分泌细胞只占0.1%一0.5%,这远远不能满足糖尿病移植的需。获得的脱靶细胞越多,治疗上相关的细胞就越少,潜在风险性越大。干细胞治疗不存在短期危害,但容易导致胰腺癌,肝细胞癌的潜在风险性增高☆1,难以达到临床标准或满足临床需求。干细胞异群miRNA可通过时空隧道技术,通过分子之间耦合作用,快速传递给采集到的缺陷胰岛分泌细胞上,帮助其修复,并通过时间机器里微环境作用快速使胰岛α细胞向β细胞转化,促进胰岛β细胞的修复。干细胞时空隧道技术突破糖尿病瓶颈,为彻底治愈糖尿病提供了新方法。1. 干细胞治疗的未来前景近年来,糖尿病发病率“爆炸式”增长,并呈年轻化趋势。糖尿病并发症造成心、脑、肾、血管、神经等多脏器损害,已成为危害人民群众生命健康的第三号杀手。但随着基因技术、细胞技术和材料技术的进步,干细胞在治疗糖尿病显示了灿烂的前景,为糖尿病患者治疗提供了新的可期待的治疗途径。美国《时代》杂志把干细胞治疗糖尿病列为改变未来十年医疗的12大创新发明之一。在治疗糖尿病的领域里,干细胞的潜力得到充分认可。人类有望在不久的将来突破干细胞治疗糖尿病瓶颈,彻底治愈糖尿病。2.干细胞治疗糖尿病存的问题与挑战干细胞治疗糖尿病,目前主要有三种方法:自体骨髓干细胞移植、自体血液干细胞移植和脐血干细胞移植。干细胞技术的发展,组织工程的进步,再加上生物材料的发展,使得其离临床转化越来越近,成为最有潜力的糖尿病替代治疗策略。然而,干细胞治疗糖尿病关键技术和核心问题仍有待深入研究。第一,干细胞分化为胰岛细胞所使用的方法相当复杂,存在其分泌胰岛素的能力较低的现象。如需达到良好的降糖效果,需要的细胞数量非常庞大。实验证明, 人胚胎干细胞(ESC)在体外培养自发分化形成的细胞中胰岛素分泌细胞只占0 . 1%一0 . 5%。这远远不能满足糖尿病移植的需求,需要大约十亿个β细胞才能治愈一个糖尿病人。但是,如果制造的细胞中有四分之一实际上是肝细胞或其他胰腺细胞,而不是需要十亿个细胞,那么将需要12.5亿个细胞,这使治愈该疾病的难度提高了25%。获得的脱靶细胞越多,治疗上相关的细胞就越少☆2。第二,诱导后的胰岛细胞在体内能否长期存活,仍是未知数。第三,干细胞诱导后的胰岛细胞如何与体内原有的胰岛细胞协同工作,都是目前尚未解决的难题。相关文献也报道过干细胞治疗可能会导致肿瘤的发生发展。因此干细胞治疗糖尿病面临着许多困难和障碍。间充质干细胞外泌体,体外胰岛β细胞培育法或直接输入注射疗法治疗糖尿病技术,获得的脱靶细胞太多,如果不改变传统过旧的操作模式,以及干细胞过度治疗,则容易导致胰腺癌、肝细胞癌的潜在风险性,是难以达到临床标准或满足临床需求的。3.干细胞时空隧道技术我们研究发现虽然间充质干细胞是不同的细胞群,分泌不同的细胞外泌体miRNA等,但它们个个都具有强大的细胞生长因子。虽然胰岛素分泌细胞只能占0.1%一0.5%,但我们可以用一种独特形式方法,使所有不同细胞群体的miRNA快速转化成为同一胰岛细胞的方法。利用超滤膜可以从中筛选出专一人体内采集的β细胞及其分泌体miRNA;其它不同群细胞miRNA可在时间机器里,通过分子之间耦合作用,快速传递给采集到的缺陷胰岛素分泌细胞上,帮助其修复,并通过胰岛局部微环境作用诱导胰岛α细胞向β细胞转化,促进胰岛β细胞的修复。诸多研究表明,干细胞时空隧道技术能将2型糖尿病胰岛受损的功能性治疗提高到80%左右。生命时空隧道技术为干细胞治疗糖尿病临床应用打开了一扇新的窗口。生物时间机器一细胞时间隧道透析机,大体可以分为时间透析膜隧道系统、时间透析柱内外系统、细胞时间监测系统(DNA蛋白质能量监测仪系统)、自动温度控制系统、时间透析机机械系统等五个部分组成。将间充质干细胞、外泌体加进在生物时间机器透析外柱內,对透析柱內的人体内采集的缺陷胰岛素分泌细胞,通过溶液及半透膜在时间机器中进行生长因子、激发态物质交换,然后再回输到人体内修复改造胰岛β细胞的方法。将部分干细胞诱导分化,形成初级胰岛β细胞,然后在C臂监控下用导管经腹腔动脉送抵达患者胰腺,或微创手术与胰腺中部位建立起时空隧道技术,或将时空隧道技术改造的β细胞,自体干细胞移植于患者胰腺。人体内采集的细胞与时间机器交换后可监测安全有效性,生成胰岛增强β细胞后可再进一步纯化分离,然后再安全回输到患者胰岛细胞上,帮助其修复。利用细胞时间隧道透析机与胰岛组织缺陷β细胞进行胞质效应交换,能生产出强大的胰岛素分泌细胞,是干细胞再生医学崭新的方法。本文作者:严银芳 武大医学部病毒学研究所武汉市武昌东湖路115号联系电话 15927431505参考资料☆1人脐带间充质干细胞治疗乙型肝炎肝硬化患者发生肝细胞癌的危险因素分析 http://www.cnki.com.cn/Article/CJFDTotal-XDKF201809009.htm☆ 2多能干细胞转化为胰岛素的β细胞“治愈”1型糖尿病的小鼠https://k.sina.com.cn/article_5895622040_15f680d9802000v9bn.html
  • “双十一”远慕ELISA试剂盒促销了
    “双十一”远慕ELISA试剂盒促销了,一下是相关详情,欢迎新老客户前来洽谈!活动截止时间:2014年11月4日-2014年11月15日Elisa试剂盒组织结构:1、 血清:操作过程中避免任何细胞刺激。使用不含热原和内毒素的试管。收集血液后,1000×g离心10分钟将血红细胞迅速小心地分离。2、 血浆:EDTA、柠檬酸盐、肝素血浆可用于检测。1000×g离心30分钟去除颗粒。3、 细胞上清液:1000×g离心10分钟去除颗粒和聚合物。4、 组织匀浆:将组织加入适量生理盐水捣碎。1000×g离心10分钟,取上清液。5、 保存:如果样品不立即使用,应将其分成小部分-70℃保存,避免反复冷冻。尽可能的不要使用溶血或高血脂血。如果血清中大量颗粒,检测前先离心或过滤。不要在37℃或更高的温度加热解冻。应在室温下解冻并确保样品均匀地充分解冻。人皮质酮/肾上腺酮(CORT)ELISA试剂盒96T/48T人前列腺素E2(PGE2)ELISA试剂盒96T/48T人神经特异性烯醇化酶(NSE)ELISA试剂盒96T/48T人细胞间粘附分子2(ICAM-2/CD102)ELISA试剂盒96T/48T人细胞间粘附分子3(ICAM-3/CD50)ELISA试剂盒96T/48T人纤溶酶原激活物抑制因子1(PAI-1)ELISA试剂盒96T/48TCAS:569-83-5 XanthohumolCAS:274675-25-1 黄腐酚D XanthohumolDCAS:647853-82-5 三叶甙2’’-乙酸酯 Trilobatin2' ' -acetateCAS:60-81-1 根皮苷 PhlorizinCAS:4192-90-9 三叶甙 Trilobatin人纤溶酶原激活物抑制因子(PAI)ELISA试剂盒 96T/48T人磷脂酶A2(PL-A2)ELISA试剂盒96T/48T人6酮前列腺素(6-K-PG)ELISA试剂盒96T/48T人载脂蛋白A1(apo-A1)ELISA试剂盒96T/48T人载脂蛋白B100(apo-B100)ELISA试剂盒96T/48T人Ⅲ型前胶原肽(PⅢNP)ELISA试剂盒96T/48T人Ⅱ型胶原(Col Ⅱ)ELISA试剂盒96T/48T人Ⅰ型胶原(Col Ⅰ)ELISA试剂盒96T/48TCAS:80787-59-3 1-羟基-6-铁屎米酮 1-Hydroxycanthin-6-oneCAS:80557-12-6 灰叶酸 GrifolicacidCAS:329975-47-5 3,4-Secocucurbita-4,24-diene-3,26,29-trioicacid人Ⅰ型前胶原羧基端肽(PⅠCP)ELISA试剂盒96T/48T人可溶性P选择素(sP-selectin)ELISA试剂盒96T/48T人S100蛋白(S-100)ELISA试剂盒96T/48T人S100B蛋白(S-100B)ELISA试剂盒96T/48T人白介素1(IL-1)ELISA试剂盒96T/48T人白介素17(IL-17)ELISA试剂盒96T/48TCAS:50-89-5 beta-胸苷 ThymidineCAS:84745-95-9 毛萼乙素 EriocalyxinBCAS:28593-92-2 咖啡酸二十二酯 DocosylcaffeateCAS:1159579-44-8 AlstonicacidACAS:115334-05-9 二氢尼洛替星 Dihydroniloticin人白介素1β (IL-1β)ELISA试剂盒96T/48T人白三烯B4(LTB4) ELISA试剂盒96T/48T人白血病抑制因子受体(LIFR)ELISA试剂盒96T/48T人表皮生长因子(EGF)ELISA试剂盒96T/48T人肠脂肪酸结合蛋白(iFABP)ELISA试剂盒96T/48TCAS:60796-64-7 去甲布拉易林 NorbraylinCAS:26585-14-8 1-乙基-4-甲氧基-9H-吡啶并[3,4-B]吲哚 CrenatineCAS:442-51-3 通关藤苷F HarmineCAS:928151-78-4 通关藤苷F TenacissosideF人端粒酶(TE)ELISA试剂盒96T/48T人基质金属蛋白酶5(MMP-5)ELISA试剂盒96T/48T人角化细胞生长因子(KGF)ELISA试剂盒96T/48T人血小板衍生生长因子BB(PDGF-BB)ELISA试剂盒96T/48T人中期因子(MK)ELISA试剂盒96T/48T人CXC趋化因子配体16(CXCL16)ELISA试剂盒96T/48TCAS:480-10-4 紫云英苷 AstragalinCAS:1432075-68-7 7-Geranyloxy-5-methoxycoumarinCAS:89915-39-9 BETA-咔啉-1-丙酸CAS:96850-29-2 MaoecrystalB人CXC趋化因子受体3(CXCR3)ELISA试剂盒96T/48T人基质细胞衍生因子1a(SDF-1a/CXCL12)ELISA试剂盒96T/48T人淋巴细胞趋化因子(Lptn/LTN/XCL1)ELISA试剂盒96T/48T人白介素27(IL-27)ELISA试剂盒96T/48T人白介素23(IL-23)ELISA试剂盒96T/48T人第八因子相关抗原(FⅧAg)ELISA试剂盒96T/48TCAS:304642-94-2 旱生香茶菜素G XerophilusinGCAS:2239-24-9 千层塔烯二醇山芝烯二醇 SerratenediolCAS:3984-73-4 乌药环戊烯二酮甲醚 MethyllinderoneCAS:1228175-65-2 8-Geranyloxy-5,7-dimethoxycoumarinCAS:210108-87-5 2,5,14-三乙酰氧基-3-苯甲酰基氧基-8,15-二羟基-7-异丁酰氧基-9-烟酰氧基-6(17),11E-麻风树属二烯 2,5,14-Triacetoxy-3-benzoyloxy-8,15-dihydroxy-7-isobutyroyloxy-9-nicotinoyloxyjatropha-6(17),11E-diene人P53(P53)ELISA试剂盒96T/48T人环磷酸鸟苷(cGMP)ELISA试剂盒96T/48T人巨噬细胞移动抑制因子(MIF)ELISA试剂盒96T/48T人β淀粉样蛋白1-40(Aβ1-40)ELISA试剂盒96T/48T人组织因子途径抑制物(TFPI)ELISA试剂盒96T/48T人心肌转录因子GATA4 ELISA试剂盒96T/48TCAS:981-15-7 臭椿酮 AilanthoneCAS:60796-65-8 5,7,8-三甲氧基香豆素CAS:1782-79-2 乌药环戊烯二酮 LinderoneCAS:82467-50-3 戈米辛M R(+)-GomisinM1人干扰素诱导蛋白10(IP-10/CXCL10)ELISA试剂盒96T/48T人胰高血糖素样肽1(GLP-1)ELISA试剂盒96T/48T人胆囊收缩素/肠促胰酶肽(CCK)ELISA试剂盒96T/48T人脑肠肽(BGP/Gehrelin)ELISA试剂盒96T/48T人可溶性凋亡相关因子(sFAS/Apo-1)ELISA试剂盒96T/48T人抗利尿激素/血管加压素/精氨酸加压素(ADH/VP/AVP)ELISA试剂盒96T/48TCAS:210108-89-7 2,5,7,14-四乙酰氧基-3-苯甲酰基氧基-8,15-二羟基-9-烟酰氧基-6(17),11E-麻
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制