当前位置: 仪器信息网 > 行业主题 > >

高根二醇

仪器信息网高根二醇专题为您提供2024年最新高根二醇价格报价、厂家品牌的相关信息, 包括高根二醇参数、型号等,不管是国产,还是进口品牌的高根二醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高根二醇相关的耗材配件、试剂标物,还有高根二醇相关的最新资讯、资料,以及高根二醇相关的解决方案。

高根二醇相关的资讯

  • 药物分析进展和应用专栏|植物甾醇分析技术介绍
    植物甾醇是常见的植物活性成分,同时也是人类饮食中的主要脂类成分组成部分。其结构与胆固醇类似,均具有环戊烷多氢菲母核,图1中的β-谷甾醇、菜油甾醇、和豆甾醇为较为常见的植物甾醇。由于植物甾醇与胆固醇具有相似的结构,二者均需溶于胶束后才能被人体吸收,植物甾醇能与膳食来源的胆固醇竞争进入混合胶束从而减少肠道对于胆固醇的吸收,因此有助于控制血液中的总胆固醇、低密度脂蛋白和甘油三酯水平,从而减少心血管疾病的风险(图2)[1]。近年来,随着人们对健康饮食的日益重视,越来越多的科研人员开始关注到含植物甾醇的食品及植物的分析技术的开发与运用,本文将重点介绍基于气相色谱-氢火焰离子化检测器联用技术及液相色谱-大气压化学电离质谱联用技术的植物甾醇分析方法。图1. 常见的三种植物甾醇结构图2. 植物甾醇降低血清胆固醇的示意图[1]1. 植物甾醇的分析技术食物与植物中的甾醇类成分经过前处理并富集后,可采用不同的分析技术与手段开展分析与鉴定。目前最常用于植物甾醇定量分析的技术为气相色谱法(Gas Chromatography,GC)。液相色谱法(Liquid chromatography,LC)、薄层扫描法(Thin Layer Chromatography Scanning,TLCS)等也可以进行植物甾醇组分的分离与定量分析。1.1 气相色谱-氢火焰离子化检测器联用技术(GC-FID)技术原理:氢火焰离子化检测器(Flame Ionization Detector,FID)的工作原理是基于有机化合物能够在火焰中发生自由基反应而被电离从而对待测物进行分析[2]。如图3所示,FID离子室中火焰分为A层预热层;B层点燃火焰;C层温度最高,为热裂解区,有机化合物CnHm在此发生裂解而产生含碳自由基CH:CnHm→CH含碳自由基进入反应层D层,与外面扩散进来的激发态原子或分子氧发生反应,生成CHO+及e-:CH+O→CHO++e-形成的CHO+与火焰中大量水蒸气碰撞发生分子-离子反应,产生H3O+离子:CHO++H2O→H3O++CO化学电离产生的正离子(CHO+,H3O+)和电子(e-)在外加直流电场作用下向两极移动而产生微电流,收集极与基流补偿电路间的电流作为微电流放大器的输入,微电流放大器输出的电流信号(或电压信号)经A/D转换器,将模拟信号转换成数字信号,由计算机记录下来并进行数据处理从而获得色谱峰。图3. 氢火焰离子化检测器(FID)的示意图技术特点:火焰离子化检测器(FID)是气相色谱常用的检测器,它对几乎所有有机物均有响应,特别是对于烃类化合物灵敏度高且其响应与碳原子数成正比。与此同时,它对于气体流速、压力、温度变化的细微差异相对不敏感,不易受到外界环境改变影响。通过该法对植物甾醇进行分析时,需要对样品进行衍生化处理,将游离的植物甾醇转化为适合GC分析的疏水性衍生物,如生成三甲基硅醚(TMS)衍生物。目前广泛使用于植物甾醇分析的衍生化试剂包括有:含N-甲基-N-三甲基硅烷基三氟乙酰胺(N-methyl-N-trimethylsilylfluoroacetamide,MSTFA)无水吡啶溶液、含1%的三甲基氯硅烷(Trimethylchlorosilane,TMCS)的双三甲基硅基三氟乙酰胺(Bis-trimethylsilyltrifluoroacetamide,BSTFA)等。通过GC-FID对植物甾醇进行定量时,常使用的内标包括有白桦脂醇(Betuline)、5α-胆甾烷醇和5α-胆甾烷-3β-醇等。分析仪器:1957年,澳(大利亚)新(西兰)帝国化学工业公司(Imperial Chemical Industries of Australia and New Zealand,ICIANZ)中央研究实验室的McWilliam和Dewar开发了第一台FID。目前FID检测器已经成为应用最广泛的气相色谱检测器之一,其获取、操作成本、维护要求均相对较低。市面上的气相色谱仪基本上均可配置FID检测器,包括安捷伦9000、8890、8860和7890气相色谱系列,赛默飞 TRACE 1300、1100系列,岛津Nexis GC-2030,珀金埃尔默 2400等进口气相色谱系统以及福立 GC9790、GC 9720,常州磐诺GC1949,上海仪电分析GC 128、北分瑞利 GC3500系列等国产气相色谱仪。1.2 液相色谱-大气压化学电离质谱联用技术(LC-APCI-MS)技术原理:大气压化学电离化(Atmospheric Pressure Chemical Ionization,APCI)原理与化学离子化相同,但离子化在大气压下进行。流动相在热及氮气流的作用下雾化成气态,经由带有几千伏高压的放电电极时离子化,产生的试剂气离子与待测化合物分子发生离子-分子反应,形成单电荷离子,正离子通常是(M+H)+,负离子则是(M-H)-。大气压化学离子化能在流速高达2 ml/min下进行,常用于分析分子质量小于1500道尔顿的小分子或弱极性化合物,主要产生的是(M+H)+或(M-H)-离子,很少有碎片离子,是液相色谱-质谱联用的重要接口之一。图4. 大气压化学电离源(APCI)的示意图技术特点:植物甾醇的发色团数量少,因此不适合通过紫外检测器检测;同时植物甾醇质子亲和力较小、酸性较弱、不宜在溶液中形成质子化的离子或去质子化生成阴离子,因此通过电喷雾电离(Electron Spray Ionization,ESI)的电离效率相对较差。由于植物甾醇亲脂性较强,分子量一般小于1000 Da,采用APCI离子源可以提供更高的植物甾醇检测灵敏度,且无需对样品进行衍生化,极大地缩短了分析所需的时间。研究人员还发现植物甾醇分析过程中,采用正离子模式能够提供了比负离子模式更高的灵敏度,且易于生成准分子离子峰[M+H]+、[M+H-H2O]+ [4]。分析仪器:目前国内外均有大量厂商生产搭配有APCI离子源的液相色谱质谱联用系统,已运用于药物研究、食品安全检测、生命科学和分子生物学等多个领域。Agilent 6470、6490系列三重四极杆液质联用系统,Bruker EVOQ LC-TQ液相色谱质谱联用系统,PerkinElmer QSight 400系列三重四极杆质谱仪,SHIMADZU LCMS-2020、LCMS-2050液相色谱质谱联用系统以及国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310LC-MS/MS、EXPEC 5250 气相/液相色谱-三重四极杆质谱联用仪、EXPEC5510LC-MS/MS、禾信仪器LC-TQ5100等均配置有APCI离子源。国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310系列质谱仪等均配置有APCI离子源。2. 应用实例2.1 基于GC-FID快速分析橄榄油中的植物甾醇在对特级初榨橄榄油样本进行皂化处理后,国际橄榄理事会(International Olive Council,IOC)方法采用乙醚对皂化样本多次液液萃取以提取植物甾醇;研究人员优化后前处理方法采用反相聚合物基质固相萃取柱对皂化样品中的植物甾醇进行提取。同时研究人员基于GC-FID建立了同时快速定量17种脂质(含内标胆甾烷醇)的分析方法,其中包括16种植物甾醇,这17种脂质的GC-FID色谱图如图4所示[5]。通过分析比对不同前处理方法结果,研究人员发现优化后前处理方法简单、省时,并减少了溶剂的使用量,但是与IOC官方方法获得的结果较为一致。通过GC-FID快速定量17种脂质的分析方法也有助于评估高价值且容易掺假的特级初榨橄榄油的真实性。图5. 特级初榨橄榄油样品采用IOC方法(A)及优化前处理方法(B)处理后,分别经由GC-FID分析得到色谱图。(1)胆固醇;(2)菜籽甾醇;(3)24-亚甲基胆固醇;(4)菜油甾醇;(5)菜油烷甾醇;(6)豆甾醇;(7)Δ7-菜油甾醇;(8)赪桐甾醇; (9)β-谷甾醇;(10)谷甾烷醇;(11)Δ5-燕麦甾醇;(12)Δ5,24-豆甾二烯醇;(13)Δ7-豆甾醇;(14)Δ7-燕麦甾醇;(15)高根二醇;(16)熊果醇;(IS)胆甾烷醇。2.2 基于LC-APCI-MS/MS快速分析饲料中的植物甾醇相较于GC-FID或GC-MS,LC-APCI-MS/MS无需进行样品衍生化即可完成植物甾醇的定量分析,极大地缩短了样品前处理时间。研究人员建立了基于LC-APCI-MS/MS的植物甾醇分析方法,并可在8分钟内快速定量6种目标植物甾醇[6],图6为胆固醇与6种植物甾醇混合标准溶液(500 ng/mL)的MRM提取离子流色谱图。该方法提供了一种适用于大豆、向日葵、草料、犊牛成品饲料和上述饲料混合物在内的不同类型饲料中的植物甾醇定量的方法。同时将实验结果与其他相关研究结果进行比较,显示出良好的一致性。该方法简单、快速,可以将其应用于其他饲料和食品中的植物甾醇分析。图6. 不同研究化合物混合标准溶液的MRM提取离子流色谱图。①麦角甾醇;②胆固醇;③岩藻甾醇;④Δ5-燕麦甾醇;⑤菜油甾醇;⑥豆甾醇;⑦β-谷甾醇3.小结与展望植物甾醇是植物中的生物活性化合物,同时因其在降低血液胆固醇水平方面有着重要意义,植物甾醇可作为保健食品中的功效成分用于调节人体机能。在这种情况下,有必要建立适合于保健食品中植物甾醇类化合物的分析方法,以评估保健食品质量。同时随着分析技术的发展和相关研究的不断深入,更多快捷、灵敏的分析技术也将成为植物甾醇分析的有力工具,并为更多不同的植物甾醇类化合物在降低血脂、预防心血管疾病等健康领域的运用提供支持与保障。参考文献:[1] Zhang R, Han Y, McClements D J, et al. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2483-2494.[2] 胡坪, 王氢. 仪器分析(第五版)[M]. 北京:高等教育出版社,2019.[3] 国家药典委员会. 中华人民共和国药典(2020版):四部[M]. 北京:中国医药科技出版社,2020.[4] Mo S, Dong L, Hurst W J, et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass spectrometry[J]. Lipids, 2013, 48: 949-956.[5] Gorassini A, Verardo G, Bortolomeazzi R. Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID[J]. Food chemistry, 2019, 283: 177-182.[6] Simonetti G, Di Filippo P, Pomata D, et al. Characterization of seven sterols in five different types of cattle feedstuffs[J]. Food Chemistry, 2021, 340: 127926.
  • 从“牛奶检出丙二醇”事件,来看看丙二醇检测都用哪些仪器及方法
    近日,麦趣尔纯牛奶检测出丙二醇问题引起社会广泛关注。据了解,浙江省庆元县市场监督管理局公示了2022年第4期食品抽检情况,结果显示,麦趣尔集团生产的2批次纯牛奶抽检不合格,被检出丙二醇,该项目标准值为“不得使用”。序号样品名称被抽样单位名称生产单位名称抽样时间检测结果不合格项目检验结果标准值1纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.318g/kg不得使用2麦趣尔纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.321g/kg不得使用数据来源于网络那么,丙二醇到底为何物,对人体危害性如何? 丙二醇可分为两种稳定的同分异构体:1,2-丙二醇和1,3-丙二醇。基本特征是无色、无味和无臭,易燃烧,吸水性很强,能够与水、乙醇以及其他多种有机溶剂任意混溶。 根据GB 2760-2014《食品安全国家标准 食品添加剂使用标准》、GB30616-2020《食品安全国家标准 食品用香精》的规定,丙二醇是批准使用的食品添加剂,也是允许使用的食品用合成香料和食品用香精中允许使用的溶剂。食品添加剂丙二醇在生湿面制品、糕点中的最大使用量分别为1.5g/kg、3.0g/kg。但是,丙二醇不得在纯牛奶中使用。 有专家表示,长期过量食用丙二醇可能引起肾脏障碍。然而,笼统的说“长期大量”是没有意义的。世卫专家给出丙二醇的ADI值是25mg/kg,按一个成年人60公斤计算,每天喝5升检出丙二醇含量为0.32g/kg的奶,才达到这个每日容许摄入量,所以即使喝过含丙二醇牛奶的朋友们也不用太过焦虑。那么,丙二醇为什么会出现在牛奶中? 我们先来介绍下丙二醇的作用,丙二醇常用作稳定剂和凝固剂、抗结剂、增稠剂等,在塑料、服装、合成树脂、化妆品、食品等众多领域有着广泛的应用。 对于麦趣尔牛奶中检测出丙二醇,有专家提出了以下可能性:第一,在挤牛奶时一般会对牛的乳房进行消杀,杀菌剂中会添加丙二醇起到溶解的作用;第二,乳制品生产过程中会清洗管道,管道中会添加大量清洗剂,而清洗剂中会添加丙二醇;第三,该牛奶与其他使用丙二醇的产品共用生产设备,切换产品时没有清洗;第四,有可能是饲料中添加了丙二醇,进而转移到了牛奶中。根据以上内容,丙二醇在日常生活中几乎无处不在,那么丙二醇检测都用什么仪器及方法呢?GB 5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》中规定了,用气相色谱和气相色谱-质谱法测定食品中1,2-丙二醇。此外,小编这儿还为大家整理了几种常见样品中丙二醇的检测方法,一起来学习一下吧~~1、GC/GCMS法测定进出口食用动物、饲料中的丙二醇含量使用仪器:气质联用仪气质联用仪方法简介:本文建立了进出口食用动物、饲料中丙二醇含量的气相色谱分析方法,并采用气相色谱-质谱联用法进行确证,本方法操作简单、灵敏度高,可为进出口食用动物、饲料中丙二醇含量测定提供参考。2、电子雾化液中丙二醇、丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:采用岛津公司气相色谱仪GC-2010 Pro建立了电子雾化液中1,2-丙二醇和丙三醇含量的检测方法。在100-2000 mg/L浓度范围内,1,2-丙二醇和丙三醇标准曲线的线性相关系数均在0.999以上。取浓度100 mg/L标准溶液6次平行测定,峰面积的相对标准偏差(RSD%)小于2%,重复性良好。加标试验中,丙二醇和丙三醇的平均加标回收率分别为100.8%和99.4%,回收率良好。该方法可为电子雾化液中1,2-丙二醇和丙三醇含量的测定提供参考。3、气相色谱酒中风味物质—— 1,2-丙二醇使用仪器:气相色谱仪气相色谱系统方法简介:采用配备自动进样器和FID的8860GC进行分析,系统对醇、醛、有机酸和酯类物质均实现了优异的分离度和峰形,为白酒中风味物质的研究提供了可靠的参考依据。4、烟草中1,2-丙二醇和丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:本文采用 Thermo Scientific 模块化气相色谱 Trace1310 配置 FID 检测器,以含1,4-丁二醇做内标的甲醇溶剂对烟丝中的 1,2-丙二醇和丙三醇进行震荡提取,并测定。该方法的操作步骤简单,对 1,2-丙二醇和丙三醇的检出限分别为 88.25 ug/g 和 288.25 ug/g,定量限均为1.25mg/g, 体现了其较高的检测灵敏度;同时以3种不同浓度水平对烟丝样品进行加标回收试验,其回收率对1,2-丙二醇为105~110%、对丙三醇为96.0~112%,能够很好地符合对烟丝样品中1,2-丙二醇和丙三醇的日常检测要求。5、牙膏中丙二醇、二甘醇、甘油等二醇类化合物检测方案(毛细管柱)使用仪器:气质联用仪气质联用仪方法简介:通过GC/MSD分析牙膏样品中的二醇类物质,采用超高惰性气相色谱柱,按照US FDA方法进行,样品中的待测物均表现出良好的峰形。以上就是小编为大家整理的部分样品中丙二醇的检测方案,更多内容,请查看【行业应用】栏目。同时,也欢迎广大厂商积极上传相应的解决方案,为更多用户提供参考,更能展示公司技术实力! 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案5万+篇。 选靠谱仪器,就上仪器信息网【仪器优选】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类,收录数十万台优质仪器。
  • PEN聚萘二甲酸乙二醇酯的粘度测量
    聚萘二甲酸乙二醇酯简称PEN,是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。目前主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,也开始逐渐延伸至碳酸饮料瓶、酸性饮料瓶等包装领域和工业电缆料、过滤器介质用单丝等工业用纤维领域。PEN化学结构与PET相似,其各项特性也与PET类似,但在分子链中PEN由刚性更大的萘环代替了PET中的苯环。使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。国标GB/T 1632.5-2008中对聚萘二甲酸乙二醇酯特性黏度的测量方法给出了详细的说明:对于无定型的PEN采用苯酚四氯乙烷作为溶剂,结晶PEN采用苯酚三氯苯酚作为溶剂,再通过相关辅助设备测试PEN溶液的黏度。在PEN的黏度测试流程中,传统的手动测试方式是使用乌氏粘度管在温控精准度较高的恒温水浴槽中进行黏度测试,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 丙二醇在牛奶界“出圈”了,热度蹭蹭的
    近日,某品牌纯牛奶检测出丙二醇的词条冲上热搜,引发了社会公众的关注。那么,丙二醇是什么?对人体危害性如何?食品中是否需要添加该物质?如何检测等等一系列疑问浮现在脑海中。丙二醇是什么? 丙二醇(Propylene glycol),中文名1,2-丙二醇、1,2-二羟基丙烷、丙二醇或α-丙二醇。在塑料、注射类药物、合成树脂、化妆品、食品等众多领域有着广泛的应用。在GB2760-2014《食品安全国家标准 食品添加剂使用标准》中,丙二醇被用作稳定剂、凝固剂、抗结剂、消泡剂、乳化剂、水分保持剂、增稠剂等食品添加剂或食品工业中冷却剂、提取溶剂等加工助剂使用。在生湿面制品和糕点中的用量限值分别为1.5g/kg和3g/kg。丙二醇对人体的危害丙二醇在我国作为食品添加剂,其添加的范围是明确的,并不包含牛奶。有报道称长期过量摄入可能会损伤肾功能。遵守国家法律法规,合法使用食品添加剂是每个企业的责任和义务。丙二醇检测食品中丙二醇的检测标准参考GB5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》,标准中针对不同物质规定了详细的检测方法,涉及气相和气质两款产品。 东西分析作为一家拥有三十多年分析仪器设备生产、研发企业,对食品安全检测有丰富的经验,可为食品中丙二醇检测提供全套解决方案。方法一:气相色谱法 (GC+FID检测器)GC-4100气相色谱仪该方法适用于糕点,膨化食品、奶油、干酪、豆制品、奶片、生湿面制品、冷冻饮品、液体乳、植物蛋白饮料、乳粉、黄油、奶油中丙二醇检测。 参考条件色谱柱:DB-WAX柱,60m x 0.25mm,0.25μm;载气:高纯He;流速:1.0mL/min;程序升温:初始温度80℃,保持1min,以20℃/min速率升温至160℃,保持2min,再以15℃/min速率升温至220℃,保持10min。进样口温度:230℃;检测器温度:240℃;氢气流量:40mL/min;空气流量:350mL/min;进样量:1μL;分流比:10:1。方法二:GC-MS 气质法 GC-MS3200气相色谱(四极)质谱联用仪该方法适用糕点、膨化食品、干酪、豆制品、奶片、生湿面制品中丙二醇的检测。参考条件色谱部分色谱柱:PEG柱,60m x 0.25mm,0.25μm;载气:高纯He;流速:1.0mL/min;程序升温:初始温度80℃,保持1min,以20℃/min速率升温至160℃,保持2min,再以15℃/min速率升温至220℃,保持5min。进样口温度:230℃;检测器温度:240℃;进样量:1μL;分流比:10:1。质谱条件EI源;电离能量:70eV;离子源温度:230℃;溶剂延迟:8min扫描方式:SIM,选择离子m/z31、45、61,定量离子:m/z45。
  • 我国工业排放气制乙二醇技术获突破
    开创乙二醇生产新原料路径 降低投资30%   记者从西南化工研究设计院获悉,该院开发的“回收和利用工业排放气制乙二醇技术”,日前通过由四川省科技厅组织的专家鉴定。新技术不仅开创了乙二醇生产的新原料路径,降低投资30%,还有效解决工业排放气的污染问题,已具备成熟工业化条件。   西南化工院自1986年在国内率先开展合成气制乙二醇技术研究,并承担“十一五”国家科技支撑计划重点项目“非石油路线制备大宗化学品关键技术开发”。经过25年不懈努力,科研人员先后完成该技术的关键催化剂及配套工艺集成开发,开发了具有工业应用价值的两个核心催化剂,实现转化率100%、选择性90%条件下,6000小时以上长周期考核 通过减去复杂的“煤气化”设备和工艺,每吨产品节省甲醇消耗0.16吨、蒸汽消耗2.5吨 形成加氢反应器、聚酯级乙二醇产品精制等五大关键工艺技术,目前已获4项国家发明专利。   专家介绍,与传统石油路线、煤制路线制备乙二醇相比,采用黄磷尾气或电石炉尾气等工业排放气生产乙二醇的新技术,成本仅为4000元/吨,分别节省3500元和1000元。而从环保效益分析,按国内每年产100万吨黄磷计算,每年可减排3750吨磷化物、7500吨硫化物、200吨砷化物和1250吨氟化物。   乙二醇作为用于溶剂、防冻剂以及合成涤纶的主要原料,今年年底在我国产能将达到每年450万吨,消费量则为每年800万吨。若近400万吨产能缺口采用工业排放气为原料替代生产,每年可节约外汇30多亿美元,同时减少200多万吨乙烯消耗。
  • 纯牛奶检出丙二醇不合格,美正检测助力牛奶安全
    近期网红牛奶麦趣尔检出丙二醇引发大家关注,小编帮大家整理此事时间线如下:2022/06/28麦趣尔两批次纯牛奶检出低毒类添加剂丙二醇不合格。2022/06/30麦趣尔深夜回应「监管部门进驻,相关产品封存」。2022/07/03市场监管总局要求严查麦趣尔纯牛奶检出丙二醇问题。2022/07/03麦趣尔被立案调查:牛奶生产过程中超范围使用香精。2022/07/03麦趣尔发布沟通函称,系未有效清洗罐线的残留调制奶,导致丙二醇成分混入纯牛奶。丙二醇为何物?丙二醇属于有机化合物,通常是略有甜味、无臭、无色透明的油状液体,吸湿,并易与水、丙酮、氯仿混合,其黏性和吸湿性好,广泛应用于食品、医药和化妆品工业中,长期过量食用丙二醇可能引起肾脏障碍。丙二醇加入的来源有两个,一是作为添加剂(GB 2760)使用,起到稳定消泡凝固等表面活性剂功能,应用范围比较小。在2022年食品安全监督抽检实施细则中只对生湿面制品和糕点有使用限量要求,其他产品禁止使用。应用范围更大的来源是,丙二醇是最为常用的水溶性液体香精基质(溶剂)(GB 30616)。所以牛奶中丙二醇不是当前监督抽检细则项目,没有常态监管。虽然麦趣尔发布沟通函称,系未有效清洗罐线的残留调制奶,导致丙二醇成分混入纯牛奶,但是浙江省庆元县查出麦趣尔2个批次纯牛奶丙二醇检出量高达0.318g/kg和0.321g/kg,远远高于一般残留带入水平。此外,调制乳的残留受影响的理应只是一个批次,监管部门在 6 个不同批次中都检测到了丙二醇,含量还特别接近(0.0264%~0.0363%),很难让消费者信服。目前现行有效的检测标准为GB 5009.251-2016 食品安全国家标准 食品中1,2-丙二醇的测定,代替GB/T23813—2009《食品中1,2-丙二醇的测定》、NY/T1662—2008《乳与乳制品中1,2-丙二醇的测定 气相色谱法》。美正为中国的牛奶安全保驾护航美正致力于食品健康领域检测与服务,针对此次牛奶检出丙二醇不合格事件,美正检测迅速推出相应的标准品和基体质控样,帮助检测单位迅速建立方法,快速完成检测项目,为中国的牛奶安全保驾护航。
  • 使用超高效合相色谱系统测定雌二醇(Estradiol)色谱纯度
    目的 采用沃特世ACQUITY UPC2&trade 系统对雌二醇进行杂质分析,能获得和美国药典(USP)方法相当或者更好的结果。 背景 目前,美国药典(USP)检测雌二醇(estradiol)色谱纯度的方法使用4.6 x 250 mm的硅胶柱和含有2,2,4-三甲基戊烷、正丁基氯、甲醇45:4:1的流动相,流速2 mL/min。由于许多实验室都想限制脂肪烃和氯化物溶剂的使用,所以必须对替代性的色谱方法,如超临界流体色谱(SFC)进行评估。沃特世ACQUITY UPC2系统被用于开发测定雌二醇色谱纯度的方法。Ultra Performance Convergence Chromatography&trade (UPC2&trade )得到的结果直接和由目前的美国药典检测雌二醇杂质的方法对比。两种方法检测的结果相似,与美国药典使用的正相HPLC方法相比,UPC2方法检测雌二醇杂质的灵敏度更高。此外,使用UPC2时,样品的运行时间大大缩短,每次分析的总成本也显著降低(基于溶剂用量和废液处理成本计算)。 使用UPC2方法测定雌二醇的色谱纯度,其速度是目前正相HPLC方法的3倍,而单次分析的成本降低100多倍。 解决方案 使用现行美国药典方法制备和分析雌二醇,如图1所示。HPLC分析的结果同ACQUITY UPC2系统分析的结果(使用相同的样品制备方法)进行对比,如图2所示。 UPC2方法的条件如下: 色谱柱: ACQUITY UPC2 BEH,2.1 x 150 mm,1.7 微米 流动相: A=CO2 B=1:1甲醇/异丙醇 背压: 130 bar/1880 psi 柱温: 45 ° C 检测: UV /PDA,280 nm 两种测试方法得到的结果对比见表1。正相HPLC方法和UPC2均检出至少5种含量小于0.1%(按面积计算)杂质。两种方法在0.01%范围内峰的信噪比约为3:1,UPC2结果得到的值稍高。UPC2方法测得的最大杂质(以面积计约0.05%)的信噪比为16:1,正相HPLC方法测得的为9:1。这些实验结果清晰地表明,ACQUITY UPC2系统可成功地用于分析雌二醇中的微量杂质。UPC2方法的运行时间明显短于正相HPLC方法所用的时间(20min对比60min),从而提高了实验室的生产率。对每次运行的成本分析表明,正相HPLC的溶剂成本5.89美元,而使用UPC2,每次运行的成本仅为0.05美元。正相HPLC方法所产生需要处理的混合氯化物废液为108Ml2,2,4-三甲基戊烷、9.6mL正丁基氯和2.4mL甲醇。UPC2方法产生的需处理废液为甲醇和异丙醇各0.60mL。分离中使用的CO2通过实验室排气管排出。使用UPC2方法,废液处理成本降低了150倍之多。2,2,4-三甲基戊烷、9.6mL正丁基氯和2.4mL甲醇。UPC2方法产生的需处理废液为甲醇和异丙醇各0.60mL。分离中使用的CO2通过实验室排气管排出。使用UPC2方法,废液处理成本降低了150倍之多。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 氯丙二醇兴风作浪,岛津方案让您一招全搞定
    导读近日有媒体报道,香港婴儿配方奶粉检出致癌物氯丙二醇(3-MCPD)及可致癌的环氧丙醇,其中不乏有惠氏、美赞臣、雅培、meiji等知名品牌。此事牵动着广大宝妈对婴幼儿奶粉质量安全及婴儿身体健康等的担忧。当晚,香港食安中心在专页澄清指出,根据联合国粮农组织及世界卫生组织专家委员会的相关参考值,全部奶粉均无超标,市民可放心按奶粉建议食用分量给婴儿食用。这使得宝妈悬着的心又一次平静下来。但此事也反映了广大民众对食品安全质量的又一次警钟长鸣。 什么是氯丙二醇类物质 氯丙二醇类物质是包括3-MCPD(3-氯丙二醇)、2-MCPD(2-氯丙二醇)、3-MCPDE(3-氯丙二醇脂肪酸酯)、2-MCPDE(2-氯丙二醇脂肪酸酯)以及GE(缩水甘油脂肪酸酯)。其中氯丙醇酯是氯丙醇在食品中与各种脂肪酸形成的一大类物质的总称,主要为3-MCPDE及2-MCPDE。缩水甘油又称环氧丙醇,是一种环氧化合物,在食品中与脂肪酸结合形成较为稳定的缩水甘油酯(GE)。这类物质中3-MCPD毒性最大,对人体的肝、肾、神经系统及血液循环系统会造成毒害,具有潜在致癌性,国际癌症研究机构(IARC)将其定2B级,即“可能的人类致癌物”。 表1 氯丙二醇类物质相关信息 氯丙二醇类物质属于是食品原料中带入的一种污染物,目前还无法完全避免。食品在加工生产过程中,酸水解植物蛋白或者高温油脂精炼过程中,均会产生氯丙二醇及相关污染物。婴幼儿配方奶粉脂肪含量大约为25%,添加的多数为精炼油脂,因此受到了氯丙二醇污染。同时媒体报道的奶粉中可疑致癌物环氧丙醇,在食品中以缩水甘油脂肪酸酯(GE)的形式存在。 因氯丙二醇类物质的致癌性,各国也推出了其建议的限量要求。 FAO/WHO及欧盟建议3-MCPD的最高日允许摄入量为2μg/Kg体重。美国FDA建议食品所含3-MCPD不应超过1mg/kg干物质;欧盟食品污染限量法规(EC)规定:酱油、水解植物蛋白(干物质含量为40%的液体产品)最大限量要求为20μg/Kg;干物质产品为50 μg/Kg。我国GB 2762-2017《食品安全国家标准 食品中污染物限量》中规定了3-MCPD的限量为:添加酸水解蛋白的液态调味品≤0.4 mg/Kg;固态调味品≤1.0 mg/Kg。 氯丙二醇类物质检测方法 目前对氯丙二醇类物质的检测国际上没有统一的标准,采用较多的为AOCS(美国油脂化学协会)官方方法 cd 29a-13;我国国标GB 5009.191-2016、SN/T 5220-2019也对氯丙二醇类物质规定了检测方法。以上标准均采用气相色谱-单四极杆质谱法(GC-MS)进行测定,但会出现复杂样品杂质干扰大的缺点,从而影响结果的准确定性定量;同时为了提高灵敏度需要复杂的样品前处理及净化过程。而采用气相色谱-三重四极杆质谱法(GC-MS/MS)的多反应监测模式(MRM)检测,定量目标物更加准确,是目前复杂基质中微量化合物最有效的检测手段,也是氯丙二醇类物质测定的最佳选择。 岛津整体解决方案 岛津公司秉承以“为了人类及地球的健康”的公司理念,结合自身仪器特点,在氯丙二醇事件发生后,快速应对,为食品中氯丙二醇类物质的检测提供完整的解决方案。在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪 氯丙醇的检测方法 使用岛津公司独有的在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪(GPC-GCMS-TQ8040),食品样品简单的提取后,经在线GPC净化去除掉样品中的脂肪、蛋白等大分子干扰物,采用GC-MS/MS的MRM方式无需衍生的条件下分析食品中的氯丙醇含量,同时采用氘代同位素内标法进行校正。相关MRM条件及色谱图如下 表2 氯丙醇类化合物MRM参数 图1 氯丙醇及氘代同位素内标溶液色谱图 在0.005~1 mg/L范围内,通过同位素内标法得到的线性其相关系数R均大于0.999,其各物质的检出限及定量限见下表所示: 表3 氯丙醇类化合物线性相关系数、检出限、定量限 注:以上数据来源于易青,苗虹,吴永宁,《在线凝胶渗透色谱-气相色谱-串联质谱非衍生化法测定食品中氯丙醇》,分析化学研究报告,2016,5(44):678~684. 气相色谱-三重四极杆质谱联用仪(GCMS-TQ8040 NX) 氯丙醇酯及缩水甘油酯的检测方法 食品中的脂肪经溴代反应后,其中的缩水甘油酯转变成溴丙醇酯;溴丙醇酯以及样品中的氯丙醇酯在酸性条件下发生酯交换反应,并被水解为相应的氯丙醇,同时经基质分散固相萃取净化后,氮吹并经七氟丁酰基咪唑(HFBI)衍生后,上GC-MS/MS仪器进行分析,采用同位素内标法定量,可一次性同时测定样品中的3-MCPDE、2-MCPDE和GE的含量。相关MRM条件及色谱图如下: 表4 氯丙醇酯类化合物MRM参数 图 2. 氯丙醇酯及缩水甘油酯标准色谱图(100 ng/mL) 在0.01~0.3 mg/L范围内,通过同位素内标法得到的线性相关系数(R2)均大于0.997,其各物质的检出限及定量限见下表所示: 表5 氯丙醇类化合物线性相关系数、检出限、定量限 结论 岛津公司提供全面应对食品中氯丙二醇类致癌物质检测的整体解决方案,结合自身独有技术特点,方便、快捷地让您轻松应对食品污染物分析,在婴儿奶粉氯丙二醇事件中乘风破浪!
  • 国际首次!二氧化碳一步转化为乙醇
    记者16日从江南大学获悉,该校化学与材料工程学院刘小浩教授团队创新性地采用结构封装法,构筑了纳米“蓄水”膜反应器,在国际上首次实现了二氧化碳在温和条件下一步近100%转化为乙醇。相关研究成果发表于《美国化学会催化》。江南大学供图近年来,科学家已经开发了多种途径将二氧化碳转化为乙醇,比如光催化、电催化以及间歇釜热催化。相较于上述技术途径,在连续流固定床反应器中,由于便捷的物质流和能量流管理,更容易实现工业应用。但目前的技术无法实现可控精准增碳定向生成乙醇,易产生大量低价值的副产物。江南大学供图该科研团队构筑的纳米“蓄水”膜反应器,合成的催化剂结构类似于一个胶囊,内部封装了二氧化铈载体分散的双钯催化剂。刘小浩介绍,胶囊的壳层具有高选择性,疏水修饰后,保证内部生成的水富集而产物乙醇可以溢出。其中的水环境可以稳定双钯活性位点,该催化剂能够实现温和条件下(3MPa,240℃)二氧化碳近100%选择性高效稳定转化为乙醇。值得一提的是,这项研究构筑的双钯活性位点具有独特的几何和电子结构,可实现二氧化碳加氢定向生成单一高价值产物乙醇。“催化剂合成工艺和催化反应路线简单,有大规模工业化应用前景。”刘小浩表示。
  • 世界首创万吨级“煤制乙二醇”成套技术通过鉴定
    世界首创万吨级“煤制乙二醇”工业化示范获得成功   5月7日,中国科学院“世界首创万吨级煤制乙二醇工业化示范”新闻发布会在北京人民大会堂隆重举行。全国人大常委会副委员长、中国科学院院长路甬祥出席会议。科学技术部、工业和信息化部、国土资源部、自然科学基金委、中国石油化工协会等相关部门领导,福建省人民政府领导、江苏省人民政府领导、内蒙古自治区领导以及技术成果鉴定专家组组长何鸣元院士等共同出席了发布会。会上获悉:中国科学院福建物质结构研究所依托20多年的技术积累与江苏丹化集团、上海金煤化工新技术有限公司联手合作,成功开发了“万吨级CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)成套技术。该成套技术已通过中国科学院组织的成果鉴定。   “世界首创万吨级煤制乙二醇工业化示范”新闻发布会举行      全国人大常委会副委员长、中国科学院院长路甬祥讲话   鉴定委员会专家一致认为,此项成果标志着我国领先于世界实现了全套“煤制乙二醇”技术路线和工业化应用,是一项拥有完全自主知识产权的世界首创技术。该技术的推广应用将有效缓解我国乙二醇产品供需矛盾,对国家的能源和化工产业产生重要积极影响,具有重要的科学意义、突出的技术创新性和显著的社会经济效益。   乙二醇是重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、饮料瓶、薄膜)、炸药、乙二醛,并可作防冻剂、增塑剂、水力流体和溶剂等。“煤制乙二醇”即以煤代替石油乙烯生产乙二醇。专家指出,此类技术路线符合我国缺油、少气、煤炭资源相对丰富的资源特点。中国科学院福建物质结构研究所通过长期基础研究、应用研究和产业化获得的该项成果,拥有多项技术专利和自主知识产权 该成套技术符合循环经济 “减量化、再利用、资源化”三原则,其显著特点还在于全部采用工业级的CO、NO、H2、O2和醇类为原料,对形成规模化产业极为有利。鉴定委员会专家在现场考察后认为,万吨级工业试验装置运行稳定,具备了进一步建设大规模工业化生产装置的条件。据专家测算,用石油乙烯路线每生产一吨乙二醇约耗2.5吨石油。目前全世界用石油乙烯生产的2000多万吨乙二醇,若都以煤为原料进行生产,那么,节省下来的石油相当于新开发一个年产5000万吨石油的大庆油田。   煤制乙二醇技术是国家“八五”、“九五”重点科技攻关项目。中科院福建物构所自1982年起经过多年前期研究,获得了一系列具有完全自主知识产权的小试技术和模试技术 江苏丹化集团技术团队拥有化工新技术产业化的长期积淀,曾在国内首创“碳化法制碳酸氢铵”、“羰基化合成醋酐”和“变压吸附分离CO”等多项化工新工艺。2005年起,由上海盛宇企业投资有限公司投资约1.8亿元,与中科院福建物构所、丹化集团、上海金煤化工新技术有限公司等强强联手启动了“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”的产业化试验,经过3年多的艰苦努力,在国家发改委、科技部、中科院、福建省、上海市和江苏省政府的大力支持下,相继在丹化集团建成年产300吨中试和1万吨工业化试验两套装置,在多项关键技术领域取得突破,2007年12月万吨装置顺利开车打通全流程,经过一年多的实际运行检验,并经专家组鉴定,证明全球首套“万吨级煤制乙二醇”技术已完全取得成功。   经中国科学院和国家财政部批准,中科院福建物构所和上海金煤化工新技术有限公司已将全部煤制乙二醇技术入股通辽金煤化工有限公司,该企业正在内蒙古通辽市建设全球首套年产20万吨煤制乙二醇示范装置,该项目是我国煤化工五大重点示范工程之一,预计今年年底前即可建成投产,未来五年内将建成120万吨生产规模,有望成为国内最大的乙二醇生产企业,实现部分替代进口。   关于该项目的合作模式,全国人大常委会副委员长、中国科学院院长路甬祥认为:在学习实践科学发展观、建设创新型国家进程中,中国科学院实施创新工程,构建了知识创新、技术创新和工程产业化的“金三角”并发挥三者互动的科技创新体系,在推动科技创新、科技成果转移转化与产业化、创建高新技术企业等方面谋划了独具特色的创新机制。在应对国际金融危机的新形势下,它将为企业通过科技成果转移转化,提升自主创新能力提供一些宝贵的经验,为实现我国国民经济的平稳快速发展,探索出一条合作共赢的创新之路。
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers® M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 全自动乌氏粘度计-用毛细管法测定PEN(聚萘二甲酸乙二醇酯)树脂稀溶液的黏数
    聚萘二甲酸乙二醇酯的简称。聚萘二甲酸乙二醇酯(PEN)是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。其化学结构与PET相似,不同之处在于分子链中PEN由刚性更大的萘环代替了PET中的苯环。萘环结构使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。近年来,PEN薄膜主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,而PEN薄膜新的用途仍然在不断开发中。如数据磁带,数据磁盘的种类有DDS(数字、数据、储存),8MM数据磁带,1/4英寸磁带,DDS的需求量较大。根据DDS的记忆容量公别为Ⅰ、Ⅱ、Ⅲ型。Ⅱ、Ⅲ型为聚芳酰胺膜,Ⅰ型为PEN与PET共用型。记忆容量为2G,90MM的PEN薄膜代替。从记忆容量来考虑,Ⅰ型几乎全部被PEN占领。随着手机及小型携带机械的发展,对薄膜电容器的需求也不断增大。目前,虽然这方面市场规模虽小,但将是一个很有发展前途的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,乌氏毛细管法是PEN树脂质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的黏数也是PEN树脂的核心指标之一。按国标规定的中描述的步骤测定聚合物的黏数,测试温度为25℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:苯酚/1,1.2,2-四氯乙烷溶剂,在25℃下2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PEN树脂稀溶液样品的制备:在万分之一天平上称量到0.0001g,通过自动配液器将溶液浓度配制到0.005g/ml,再将样品瓶放置到多位溶样器中,待溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 康宁新案例 |可烯醇化酮α -羟胺化连续流合成工艺之二
    可烯醇化酮的α-羟胺化反应一、以苯乙酮或苯丙酮的α-羟胺化反应以苯乙酮或苯丙酮为底物,在高效、多功能流动化学工艺平台进行了α-氯亚硝基衍生物原位制备、底物拔氢、α-羟胺化反应、硝酮中间体酸解、产物分析、液液分离、环戊酮骨架循环套用的整个流程(下图)。该连续流工艺平台实验室和放大规模反应单元采用的是康宁 LowFlow Reactor 和G1反应器,康宁反应器无缝放大的技术优势是该反应进一步扩大产能的保障。图7. 苯乙酮或苯丙酮的α-羟胺化反应连续流反应体系底物苯乙酮/苯丙酮与LiHMDS进入反应模组I在0℃、1 min停留时间条件下完成拔氢反应。反应液与发生器II中生成的 1-氯-1-亚硝基环戊烷进入反应模组II在0℃、1 min停留时间条件下发生亲电胺化反应。所得反应液中的硝酮中间体与盐酸进入反应模组III在60℃、1 min停留时间条件下发生酸解,原料转化率分别为70%(苯乙酮)和98%(苯丙酮),产物分离收率分别为62%(苯乙酮)和90%(苯丙酮)。表8. 产物收率随时间和温度变化曲线值得一提的是,在反应釜条件下,如果以一级酮(苯乙酮)为底物,即便将反应温度冷却至-78℃,反应生成的硝酮中间体还是更容易与原料烯醇负离子质子交换,进一步反应后只能得到46%的二胺化杂质。而在连续流工艺条件下,得益于物料的快速混合效果、低返混以及局部化学计量的精准控制,有助于得到目标产物,避免二胺化杂质的产生(下表)。对比典型的间歇釜反应条件(-78℃),在连续流工艺中,亲电胺化反应可以在更温和的反应温度(0℃)中进行,同时避免物料分解并在停留时间1分钟内达到几乎定量的转化。但不建议尝试高于0℃的反应条件以进一步减少停留时间,这可能会导致堵塞或物料的爆炸性分解。反应模块III的出料口集成了Zaiput高效液-液分离器在用来在线自动分离水相和有机相,水相中基本为纯的目标产物的盐酸盐,有机相中主要为环戊酮骨架。对有机相进一步处理以回收环戊酮,可转化为环戊酮肟,分离收率83%。环戊酮骨架的循环利用,使整个工艺更加绿色环保。Zaiput 液-液分离器是康宁在中国独家代理的在线分离仪器。是由MIT孵化出来的新型专利技术,可取代传统萃取技术。 二、扩展实验维持反应器设置不变,尝试了包括苯乙酮在内的22个底物,原料转化率和产物分离收率列于下表:实验结果讨论本通过独特、高效、可放大的连续流平台,可实现从可烯醇化酮和α-氯亚硝基化合物1a以高分离收率制备α-羟胺化酮化合物库。对高附加值的α-羟胺化酮中间体的生产可以实现工业化生产。分别以一级、二级和三级酮类化合物为原料制备了22个α-羟胺化酮化合物,为几种医药中间体 (包括世卫组织必需品和短缺药物)的生产开辟了道路。本项研究充分体现了连续流工艺的主要优点包括:高效的传热、传质系数,在线分析的集成、很少的占地面积等。反应平台保持了紧凑和高度集成的反应器设计(包括辅助设备在内小于2平方米)。连续流工艺条件下毒性和有潜在爆炸风险的化合物的原位制备和消耗使反应对环境的影响大大降低,对绿色合成技术延伸与拓展具有显著的参考意义!Reference:Victor-Emmanuel H. Kassin, Romain Morodo,a Thomas Toupy,Isaline Jacquemin, Kristof Van Hecke, Raphaël Robiette and Jean-Christophe M. Monbaliu ,Green Chem., 2021, 23,2336
  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style=" text-indent: 2em " 近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。 /p p style=" text-indent: 2em " H酸、对位酯价格暴涨 /p p style=" text-indent: 2em " 作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。 /p p style=" text-indent: 2em " TDI价格上涨4.16% /p p style=" text-indent: 2em " TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。 /p p style=" text-indent: 2em " 对二甲苯价格上涨 /p p style=" text-indent: 2em " 10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。 /p p style=" text-indent: 2em " 正丁醇 /p p style=" text-indent: 2em " 正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。 /p
  • 启示2023:中国电子测量仪器行业投融资及兼并重组分析
    行业主要上市公司:同惠电子(833509.BJ) 坤恒顺维(688283.SH) 普源精电(688337.SH) 鼎阳科技(688112.SH) 优利德(688628.SH)等。本文核心数据:电子测量仪器行业投融资事件 电子测量仪器行业兼并重组事件。电子测量仪器行业投融资热度不高根据IT桔子数据库,2003-2023年,我国电子测量仪器行业融资事件数量呈先上升后下降趋势。2019年为近年来中国电子测量仪器行业融资事件数量最多的一年 2022年,我国电子测量仪器行业共发生融资事件共3起。截止2023年5月31日,我国电子测量仪器行业发生融资事件2起。就融资事件数量情况来看,我国电子测量仪器行业投融资热度不高。注:2023年数据统计时间截至2023年5月31日,下同。电子测量仪器行业投融资仍处于早期阶段从电子测量仪器的投资轮次分析,目前电子测量仪器行业的融资轮次仍然处于早期阶段,融资事件主要集中C轮以前。电子测量仪器行业投融资集中在广东从电子测量仪器行业的企业融资区域来看,目前广东的融资企业最多,2003-2023年累计达到10起。电子测量仪器行业投融资主体以投资类为主2003年-2023年我国电子测量仪器行业的主要投融资事件如下:根据对电子测量仪器行业投资主体的总结,目前我国电子测量仪器行业的投资主体主要以投资类为主,代表性投资主体有超越摩尔基金、深圳高新投、深创投等等 实业类的投资主体有蚂蚁集团、前锋电子等。电子测量仪器行业的产业投资基金目前电子测量仪器行业的产业投资基金比较少,目前在中国证券投资基金业协会中仅查询到与电子测量仪器强相关的产业基金一家,即中山火炬电子产业基金管理有限公司。电子测量仪器企业横向收购扩大规模目前中国电子测量仪器行业的兼并重组事件类型主要为中游企业横向收购扩大规模及业务领域,进一步扩展和完善产业链布局。电子测量仪器行业投融资及兼并重组总结
  • 中科院研发水稻全根系磁共振成像无损检测技术
    记者24日从中科院合肥物质研究院了解到,该院技术生物所和强磁场科学中心共同合作,在世界上首次利用造影剂加磁共振成像技术实现水稻全根系无损检测,为植物根系全生长周期研究提供了一种重要的新方法。   根系在植物生长发育中具有重要作用,但由于根系生长在不透明的土壤中,缺乏快速、准确、无损的原位观测方法,影响了对植物根系的深入研究。传统的根系研究方法采样破坏性大、工作量大、准确性较低。   磁共振成像作为一种在医学上广泛应用的成像技术,其具有无损检测和分辨率较高等优点。中科院研究人员利用强磁场科学中心高场强成像装置为植物根系全生育期成像找到了一个更加优越的研究平台。   此外,水稻根系的磁共振成像也面临着磁共振成像信号强度较低等技术问题与挑战。研究人员利用磁共振造影剂来提高根系成像品质,并通过反复试验,得出不影响植物生长、真实反映根系状况的造影剂使用剂量和浓度。   据了解,这项研究成果发表在美国《公共科学图书馆》杂志上。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 珀金埃尔默洗手液分析仪可在30秒内完成甲醇检测
    致力于为创建更健康的世界而持续创新的全球技术领导企业,珀金埃尔默日前宣布其洗手液分析仪可用于检测含酒精的洗手液产品中是否存在甲醇,并在30秒内给出产品合格与否的检测结果。美国食品药品监督管理局(FDA)最近发布的警告和实施的产品召回,表明含有毒性的甲醇若经皮肤被人体吸收可能对消费者有害,若不慎摄入,还会危及生命。这款仪器于2020年4月上市,还可检测洗手液中乙醇和异丙醇等目标醇类物质的浓度水平,有助于按照世卫组织(WHO)、美国药典(USP)或美国食品药品监督管理局(FDA)的指南确保产品功效。这款设计紧凑的便携式分析仪是在珀金埃尔默的Spectrum Two™ 傅里叶变换红外(FT-IR)光谱仪解决方案基础上研发的。利用这项基础技术,可快速检出浓度低至0.03%(或300ppm)的甲醇,检测灵敏度高于FDA规定的检出限。珀金埃尔默应用市场事业部副总裁兼总经理Suneet Chadha谈到:“目前,新冠疫情仍在全球蔓延,流感爆发季又即将来临。在这种环境下,含酒精的洗手液产品必须能让消费者充分信任其安全性与功效。珀金埃尔默洗手液检测仪能助力这些高需求量产品的生产企业和供应商快速获得可靠的检测结果,从而保护消费者,避免消费者使用假冒产品,杜绝产品召回事件。”洗手液分析仪是珀金埃尔默助力抗击新冠疫情综合解决方案的一部分。从病毒检测到发现药品和疫苗乃至在整个保护性产品检测过程中,都能发现珀金埃尔默的创新成果,包括各种试剂、仪器、信息科学服务、自动化和工作流程解决方案及服务。珀金埃尔默还致力于向世界各地捐赠仪器和试剂,以帮助重点疫区开展疾病的筛查和诊断。欲了解更多信息,敬请访问: www.perkinelmer.com.cn。关于珀金埃尔默珀金埃尔默助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。我们始终致力于为创建更健康的世界而持续创新,我们为诊断、生命科学、食品及应用市场推出独特的解决方案,我们与客户建立战略合作关系,凭借深厚的市场知识和技术专长,助力客户更早地获得更准确的洞察。在全球,我们拥有13,000名专业技术人员,服务于全球190多个国家和地区,时刻专注于帮助客户创造更健康的家庭,改善生活质量,并维持全球人民的健康和长寿命。2019年,珀金埃尔默年营收达到约29亿美元,客户遍及190个国家,并为标准普尔500指数中的一员。了解更多信息,请通过纽交所上市代号1-877-PKI-NYSE或访问www.perkinelmer.com.cn。
  • 莫高窟千年不朽,月牙泉万年不涸——大型舞剧《大梦敦煌》观后感
    2012年6月19日,深圳市朗诚实业有限公司工会组织全体员工,在深圳保利剧院观看了一场由兰州歌舞剧院演出的大型舞剧《大梦敦煌》。 舞剧《大梦敦煌》是一部富于传奇色彩的四幕舞剧,以敦煌艺术宝库的千百年创造历史为背景,演绎了青年画师莫高与大将军之女月牙之间一段可歌可泣的爱情故事。该剧自首演至今,已获得中宣部&ldquo 五个一工程奖&rdquo 、中国舞蹈&ldquo 荷花奖&rdquo 、中国&ldquo 文华奖&rdquo 等多个奖项,《大梦敦煌》已演出12年,在全国40多个城市和6个国家精彩上演,累计演出960场,编剧赵大鸣、苏孝林,作曲张千一,总编导陈维亚。 昏暗的灯光下,王道士打开了散落在浩如烟海的遗书中的一本,如梦的故事这样展开了&hellip &hellip 第一二幕向我们展现了月牙跟莫高的相识相知相恋,第三四幕讲述了为爱情,月牙、莫高跟大将军抗争的过程,最后,大将军的剑刺穿了为莫高挺身阻挡的月牙,月牙变成了一谭清泉,远远流去...... 而莫高以泉润笔,用毕生的心血,在巨大的悲怆中完成了艺术的绝唱&mdash &mdash 莫高窟壁画&hellip &hellip 莫高窟的辉煌灿烂,月牙泉的清纯秀丽,就这样在这部舞剧中以&ldquo 莫高窟千年不朽,月牙泉万年不涸&rdquo 的凄美得到了人格化的展现。 伴随着现场观众热烈的掌声,这部唯美的舞剧结束了。尾声久久不息,这辉煌的颂歌是对凄美人生的无声咏叹,对光辉人性的顶礼膜拜。同时,也感谢公司让我们有此机会去观看这么一场大型的舞剧表演,使我们混乱、浮躁的心灵似乎被圣洁的艺术圣地洗礼一番,淡雅,宁静,憧憬,激情涌入心中。 月牙的独舞 莫高与月牙相恋 莫高强忍月牙离去的悲痛完成壁画
  • 乐枫科普:浅谈超纯水TOC检测方法(二)
    上一篇我们列举了在不同的应用领域不同的TOC检测方法,而实验室纯水、超纯水行业,最常见的检测方法是什么呢?答案是紫外光氧化法。 紫外光氧化方法过程如下: 进水水流流经第一个电导率传感,接着流过UV氧化反应器,水中的有机物被氧化成CO2,再次流经第二个电导率传感,两次电导率的变化即反映水中TOC的含量。 其原理是:水中的某些分子流经UV氧化反应器时,从UV辐射吸收能量后,其化学键断裂产生自由基,而自由基是具有很高活性的物质,可以氧化有机分子。自由基使有机物电离,随后产生水的电导率变化。 更细一点区分,紫外氧化法又可分为全氧化法和部分氧化法二种。顾名思义,前者就是把被测水中的有机物100%氧化,直到电导率不再变化,测出TOC值。完全氧化水中的有机物,对检测装置的要求极高,氧化时间至少需要5分钟以上,测的是氧化曲线,所以结果也更准确。而后者只是氧化了被测水中的部分有机物,从而推算水中的TOC值,检测的是点,氧化时间很短,几乎是即时显示结果。这种氧化方法的检测结果与实际值误差较大,无法准确的反应实际TOC值。 目前的纯水器市场,部分高端水机具备TOC检测功能,那么,如何区分它采用的是全氧化法还是部分氧化法呢?这里介绍两个简单的辨别方法: 1.从结构上看,全氧化法检测的是氧化曲线,检测单元与紫外灯合为一体;部分氧化法检测的是点,检测单元与紫外灯互相独立。 2.从检测时间上看,全氧化法检测一个结果至少需要5分钟以上,甚至更多(为确保有机物100%转换),部分氧化法几乎是即时显示结果。 水中有机物的成分复杂:小分子、大分子、蛋白质、微生物。各种有机物氧化需要消耗的能量不同,部分氧化法无法准确估算水中的各类有机物成分,所以,它的检测结果与实际值误差较大。可以这样想象:部分氧化就是一个渔夫,用渔网捕鱼,来推测鱼池中有一共有多少鱼,全部氧化就是把鱼池抽干,鱼都清点一遍。都自称带有TOC检测的纯水系统,孰优孰劣,也就一目了然了。 乐枫在2017年初推出的纯水TOC检测技术采用的就是全部氧化方法,其检测结果绝对是经得起推敲的。关于上海乐枫生物科技有限公司上海乐枫专业从事高端水纯化和实验室分离纯化产品的研发、设计和制造,致力于,为生命科学和生物技术提供精锐品质、高附加值的创新产品。乐枫产品线包括实验室纯水系统、密理博纯水兼容耗材和实验室分离纯化产品。成立十年,乐枫创立出了自己的品牌RephiLe(瑞枫),拥有30多项专利和多个软件著作权。产品销往全球近90个国家和地区。
  • PerkinElmer化学化工解决方案:分析含乙醇的汽油终产品中的苯和甲苯
    化学化工解决方案:使用PerkinElmer Clarus 680 GC 和Swafer 技术分析含乙醇的汽油终产品中的苯和甲苯 请即点击了解详细的解决方案有关化学化工的招聘转发给朋友我想询问 ASTM D3606,设计使用双柱反吹的填充柱设定来检测汽油中苯和甲苯的含量。这一已建方法在最初建立时所用于分析的汽油并不含有乙醇。然而乙醇作为一种生物燃料被添加到现代的汽油中以提高燃烧效率。各国在汽油中添加有效的汽油量不尽相同——比如美国为10%(E10)而巴西为25%(E25)。当使用D-3606时,样品中大量存在的乙醇就会因和苯色谱共流出而带来问题。经修订后的方法(D-3606-07)加入了一根备选的柱子以处理存在的乙醇,但仍有共流出的问题被报道,且正考虑更进一步的色谱柱设定。本应用所描述的方法也是基于ASTM D-3606的。主要的不同在于使用了毛细柱。这一方法完全消除了乙醇带来的色谱干扰(甚至是纯的乙醇溶液也可以运行),整体改进了色谱图,并显著缩短了分析时间(根据色谱柱的不同可达50%或75%)。
  • 盘山游(一)
    盘山游(一) 五一期间,公司利用长假组织部分员工同游盘山。 4号清晨,员工赶到公司集合。在人群中发现一位爱美的女同事竟然还穿着高跟鞋,心里暗自纳闷,如果穿着高跟鞋能爬上山,那I就服了you。遂过去搭讪,虚情假意的询问到,这样爬山可不行,容易崴脚。她瞟了我一眼说道,包里还背着一双鞋。我倒!看来我是多余问了。 一行18人分乘3辆车于9:00出发直奔盘山,其中一辆宝莱,一辆捷达,还有一辆长安面包,考虑到自己的体型没去挤长安面包,那辆车要坐8个人。挤进了捷达,嘿嘿。途经快速路到外环线后直奔津蓟高速。和我同车的经理,也就是我们的驾驶员对路途不太熟悉,好在我们的老板开着宝莱在前边带路。经理看着前边的宝莱左拐右柺,对道路非常熟悉的样子,遂感叹道,咱们老板可以在蓟县开出租车了。车内一阵笑声。 到了石趣园附近,由于联系农家院的同事前一晚发烧,没和我们一起来,而且正值长假期间,来盘山游玩的人也多,警察同志在不该拐弯的地方指挥我们拐了进去。下了一个小土坡,开到了村子里,彻底迷路了。于是经理给农家院的迎接人员打电话,对方问我们在哪里。除了房屋就是草垛,也没有某某路,某某弄的路牌,经理就说在一个村子里,我小声的咕哝:“旁边还有一个草垛和一头驴。”引来大家一阵笑声。还好一位同事发现了村户门前的门牌,几经周折终于到了石趣园附近的农家小院。 看了看表已经11:30了,老板发话,大家将东西放好,男同志后排两间屋子,女同志前排两间屋子,自由组合分配住宿。我拎起包直杀前排,结果被四个女同事一齐四脚踹回。倒!郁闷!我只不过想给她们看看住宿的地方有没有危险,呵呵。 12:00整,准备好农家饭,大伙儿一起就餐,由于下午要爬山,没有喝白酒。席间有一位庄姓同事举杯邀我干一个,嘿嘿,他的酒量我知道,也就是一瓶啤酒,而我呢应该可以喝两瓶。咱没含糊,一饮而尽,又满上,复敬他一个,如此酒过三巡他喝晕了。嘿嘿。一个大红脸,^_^,估计下次不敢和我喝酒了。(没想到我如此举动引起众怒,此是后话暂且不提) 吃过午饭,一行人步行山路来到盘山正门外。途中,一位王姓同事和一位俞姓同事因啤酒喝多了内急,四处寻找都没有发现公厕,情急之下,翻过一道小土坡,找了个众人看不到的地方解决了问题,回来后两人一起说还是盘山好,旮旯也行。呵呵。我还好,虽然也有点不过还是坚持到山脚下的公厕。 剩余部分近期内更新。
  • 美国Perma Pure公司在华注册“博纯”商标
    作为全球唯一的膜渗透技术产品供应商, 美国Perma Pure有限责任公司凭借独特Nafion技术,成为全球领先的气体处理设备制造商。一直以来公司重视技术创新,尊重知识产权,业务发展严格遵循各地法律法规,公司现正式宣布已在中国注册新商标“博纯”。 新的商标将连同英文标识一起,作为公司对外进行品牌宣传和市场活动的视觉传播标识,以更为清晰、更易辨识的中文标识进一步推广和提升博纯品牌形象,以突显博纯产品技术的独特性。正是基于公司在全球化战略中的市场定位和品牌定位,我们希望有更多的客户能了解到博纯产品独特的技术和优异的性能,体验到博纯的非凡品质。博纯将一如既往的为成就客户的卓越而努力。 关于Perma Pure 成立于1972年,总部位于美国的博纯(Perma Pure www.permapure.com)有限责任公司是国际领先的气体处理设备制造商。我们为全世界医疗、工业和科学、氢燃料电池和环境监测应用领域提供气体采样和预处理类产品如,干燥器、加湿器、过滤器、冷凝器、特种气体洗涤器及完整采样系统等。 博纯(Perma Pure)已经成为医疗设备市场中呼吸气体干燥器的主要供应商,应用包括麻醉监护、呼吸监测及代谢测试中对呼出气体进行干燥,同时可对呼吸器的供气或供氧进行加湿。近年来,公司也开始向燃料电池厂商提供加湿器,并逐步成为环保和流程气体分析仪器的OEM供应商,应用包括电化学传感器(用于气体检测)、红外分析、化学发光、总碳测定(TOC)和颗粒测量的样气脱水处理。 博纯(Perma Pure)公司在1978年向DuPont公司买下了Nafion材料生产特许权,Nafion的膜渗透脱水技术以其独特的原理和优异的性能闻名于业内。一直以来博纯(Perma Pure)运用Nafion® 技术,连同其他创新多样的技术和专业知识,为客户提供全面的样气处理应用解决方案。公司于1992年加入英国豪迈集团(Halma p.l.c.),豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。依托豪迈全球性业务的支持,公司在技术、投资以及生产上获得了长足发展。公司已获得ISO9001:2000认证,相关产品也均获得CE认证。 拥有完整的样气处理器件和成套系统,各种气体分析应用的客户化解决方案以及几十年来的产品应用经验和成功案例,相信我们在样气预处理方面的专业能力将为您的业务发展提供长久助力。
  • 瑞枫发布中央纯水系统Super-Genie 新品
    Super-Genie 新一代智能型大流量产品系列,专为现代实验室对纯水 品质的高要求和用量多样化而设计,可为单个或多个实验室供应数升乃至 日产量高达 14000 升的纯水。 Super-Genie 通过主机可实现对整个纯水系统及管路的运行进行全面 监控,产水稳定可靠,能适应实验室用户不断变化的需求,是目前市场上 集成度最高,功能最完整的实验室中央纯水工作站。Super-Genie 一机多用: 1. 可产多种规格纯水,且可一机两水2. 用作楼层纯水 / 超纯水供应中心3. 用作中央供水系统监测终端,监测水质及设备运行。优势特点: 不合格 RO 水排放,为系统运行条件优化提供保障,确保产水水质 内置漏水保护模块,漏水自动切断自来水总水源,保证实验室安全 可选应急模块,系统故障时仍可无间断提供纯水供应,使用无后顾之忧 主机可配备1 个或2 个取水手柄,分别取用纯水和超纯水 超大触摸屏显示,系统运行、水质状况一目了然,直观方便 水箱水位连续显示,低液位自动报警 底部带滚轮,移动灵活,方便设备维护及维修 水质历史数据存储功能(两年以上),可追溯,符合标准认证要求 一体化设计,通过主机控制预过滤、主机、纯水存储、分配管路等模块运行,集成度高,提高实验室空间利用率 内置预过滤,有效保障后续纯化元件的安全运行,确保系统稳定工作,节省维护成本 自带 100 L 一体式储水箱,可根据实际需要进行容量升级 专用节水回路,提高产水得率,减少水资源消耗,节约成本主要应用 超纯水:仪器分析的配套首选:HPLC、IC、AAS、ICP、UV-Vis、LC-MS、ICP-MS等 标准溶液和空白溶液配置;生命科学应用 EDI 纯水:各种实验设备(清洗机,老化机,高压高温灭菌器等)进水; 微生物培养基的配置;缓冲液的配置;制备化学和生化试剂;超纯水系统进水 RO 纯水:常规实验室玻璃器皿及其他实验容器的清洗;缓冲溶液和常规试剂的制备;其他实验室设备,如高压灭菌器、水浴锅、消毒机、蒸汽发生器和恒湿设备等供水;实验室动物饲养及微生物培养性能指标Super-Genie GSuper-Genie ESuper-Genie USuper-Genie R进水要求(城市自来水) TDS进水压力2 - 6 kg/cm2(30 - 90 psi)产水技术指标产水类型EDI 纯水 + 超纯水EDI 纯水RO 纯水 + 超纯水RO 纯水纯水产水流速30,60,125,250 L/hr(@25℃)30,60,125,250,500 L/hr(@25℃)50,150,300 L/hr(@25℃)50,150,300, 600L/hr(@25℃)纯水手柄取水流速4 - 6 L/min4 - 6 L/min4 - 6 L/min4 - 6 L/min纯水电阻率(电导率)(@25℃) 5 MΩ.cm (典型值10 - 15 MΩ.cm) 5 MΩ.cm (典型值10 - 15 MΩ.cm)典型值 超纯水产水流速2 L/min2 L/min2 L/min2 L/min超纯水电阻率(@25℃)18.2 MΩ.cm-18.2 MΩ.cm-超纯水总有机碳 TOC*0.2μm)超纯水微生物 ×深×高(cm) 56 X 88 X 138(含水箱) 56 X 61 X 138(不含水箱)主机功率 * 产水TOC值直接受到进水条件和采样操作环境的影响订购信息 描述 货号 Super- Genie G 30 纯水工作站主机 RL0G03000 Super- Genie G 60 纯水工作站主机 RL0G06000 Super- Genie G 125 纯水工作站主机 RL0G01H00 Super- Genie G 250 纯水工作站主机 RL0G02H00 Super- Genie E 30 纯水工作站主机 RL0E03000 Super- Genie E 60 纯水工作站主机 RL0E06000 Super- Genie E 125 纯水工作站主机 RL0E01H00 Super- Genie E 250 纯水工作站主机 RL0E02H00 Super- Genie U 150 纯水工作站主机 RL0P01H00 Super- Genie U 300 纯水工作站主机 RL0P03H00 Super- Genie R 50 纯水工作站主机 RL0R05000 Super- Genie R 150 纯水工作站主机 RL0R01H00 Super- Genie R 300 纯水工作站主机 RL0R03H00 Super- Genie G 30 纯水工作站主机,带 100 L 水箱 RL0G030T1 Super- Genie G 60 纯水工作站主机,带 100 L 水箱 RL0G060T1 Super- Genie G 125 纯水工作站主机,带 100 L 水箱 RL0G01HT1 Super- Genie G 250 纯水工作站主机,带 100 L 水箱 RL0G02HT1 Super- Genie E 30 纯水工作站主机,带 100 L 水箱 RL0E030T1 Super- Genie E 60 纯水工作站主机,带 100 L 水箱 RL0E060T1 Super- Genie E 125 纯水工作站主机,带 100 L 水箱 RL0E01HT1 Super- Genie E 250 纯水工作站主机,带 100 L 水箱 RL0E02HT1 Super- Genie U 150 纯水工作站主机,带 100 L 水箱 RL0P01HT1 Super- Genie U 300 纯水工作站主机,带 100 L 水箱 RL0P03HT1 Super- Genie R 50 纯水工作站主机,带 100 L 水箱 RL0R050T1 Super- Genie R 150 纯水工作站主机,带 100 L 水箱 RL0R01HT1 Super- Genie R 300 纯水工作站主机,带 100 L 水箱 RL0R03HT1以上主机系统需要另外配置纯化柱等使用,具体订购信息请联系RephiLe创新点:1、流量提升300L/h提升到600L/h; 2、取水手柄采用无线连接,取水便捷 3、主控屏升级为超大彩色触摸屏,防水设计,可带乳胶手套操作,系统运行状态一目了然 3、高度集成,占地面积小 中央纯水系统Super-Genie
  • 瑞枫发布中央纯水系统Super-Genie 新品
    Super-Genie 新一代智能型大流量产品系列,专为现代实验室对纯水 品质的高要求和用量多样化而设计,可为单个或多个实验室供应数升乃至日产量高达 14000 升的纯水。 Super-Genie 通过主机可实现对整个纯水系统及管路的运行进行全面 监控,产水稳定可靠,能适应实验室用户不断变化的需求,是目前市场上 集成度最高,功能最完整的实验室中央纯水工作站。Super-Genie 一机多用: 1. 可产多种规格纯水,且可一机两水2. 用作楼层纯水 / 超纯水供应中心3. 用作中央供水系统监测终端,监测水质及设备运行。优势特点: 不合格 RO 水排放,为系统运行条件优化提供保障,确保产水水质 内置漏水保护模块,漏水自动切断自来水总水源,保证实验室安全 可选应急模块,系统故障时仍可无间断提供纯水供应,使用无后顾之忧 配置独立的远程智能取水终端,放置在不同取水点,取水更加自由灵活 8英寸超大彩色触摸屏,系统运行、水质状况一目了然,直观方便 水箱水位连续显示,低液位自动报警 底部带滚轮,移动灵活,方便设备维护及维修 水质历史数据存储功能(两年以上),可追溯,符合标准认证要求 一体化设计,通过主机控制预过滤、主机、纯水存储、分配管路等模块运行,集成度高,提高实验室空间利用率 内置预过滤,有效保障后续纯化元件的安全运行,确保系统稳定工作,节省维护成本 自带 100 L 一体式储水箱,可根据实际需要进行容量升级 专用节水回路,提高产水得率,减少水资源消耗,节约成本主要应用 超纯水:仪器分析的配套首选:HPLC、IC、AAS、ICP、UV-Vis、LC-MS、ICP-MS等 标准溶液和空白溶液配置;生命科学应用 EDI 纯水:各种实验设备(清洗机,老化机,高压高温灭菌器等)进水; 微生物培养基的配置;缓冲液的配置;制备化学和生化试剂;超纯水系统进水 RO 纯水:常规实验室玻璃器皿及其他实验容器的清洗;缓冲溶液和常规试剂的制备;其他实验室设备,如高压灭菌器、水浴锅、消毒机、蒸汽发生器和恒湿设备等供水;实验室动物饲养及微生物培养性能指标Super-Genie GSuper-Genie ESuper-Genie USuper-Genie R进水要求(城市自来水) TDS产水类型EDI 纯水+超纯水RO纯水+超纯水EDI 纯水RO 纯水纯水产水流速30,60,125,250 L/hr(@25℃)50,150,300 L/hr(@25℃)30,60,125,250,500 L/hr(@25℃)50,150,300, 600L/hr(@25℃)纯水手柄取水流速4 - 6 L/min4 - 6 L/min4 - 6 L/min4 - 6 L/min纯水电阻率(电导率)(@25℃) 5 MΩ.cm (典型值10 - 15 MΩ.cm)典型值 5 MΩ.cm (典型值10 - 15 MΩ.cm)典型值 水总有机碳 TOC*2 L/min2 L/min超纯水电阻率(@25℃)18.2 MΩ.cm18.2 MΩ.cm--超纯水总有机碳 TOC*超纯水颗粒(0.2μm)技术规格外形尺寸 长×深×高(cm) 56 X 88 X 138(含水箱) 56 X 61 X 138(不含水箱)主机功率 Super- Genie G 30 纯水工作站主机 RL0G03000 Super- Genie G 60 纯水工作站主机 RL0G06000 Super- Genie G 125 纯水工作站主机 RL0G01H00 Super- Genie G 250 纯水工作站主机 RL0G02H00 Super- Genie E 30 纯水工作站主机 RL0E03000 Super- Genie E 60 纯水工作站主机 RL0E06000 Super- Genie E 125 纯水工作站主机 RL0E01H00 Super- Genie E 250 纯水工作站主机 RL0E02H00 Super- Genie U 150 纯水工作站主机 RL0P01H00 Super- Genie U 300 纯水工作站主机 RL0P03H00 Super- Genie R 50 纯水工作站主机 RL0R05000 Super- Genie R 150 纯水工作站主机 RL0R01H00 Super- Genie R 300 纯水工作站主机 RL0R03H00 Super- Genie G 30 纯水工作站主机,带 100 L水箱 RL0G030T1 Super- Genie G 60 纯水工作站主机,带 100 L 水箱 RL0G060T1 Super- Genie G 125 纯水工作站主机,带 100 L 水箱 RL0G01HT1 Super- Genie G 250 纯水工作站主机,带 100 L 水箱 RL0G02HT1 Super- Genie E 30 纯水工作站主机,带 100 L 水箱 RL0E030T1 Super- Genie E 60 纯水工作站主机,带 100 L 水箱 RL0E060T1 Super- Genie E 125 纯水工作站主机,带 100 L 水箱 RL0E01HT1 Super- Genie E 250 纯水工作站主机,带 100 L 水箱 RL0E02HT1 Super- Genie U 150 纯水工作站主机,带 100 L 水箱 RL0P01HT1 Super- Genie U 300 纯水工作站主机,带 100 L 水箱 RL0P03HT1 Super- Genie R 50 纯水工作站主机,带 100 L 水箱 RL0R050T1 Super- Genie R 150 纯水工作站主机,带 100 L 水箱 RL0R01HT1 Super- Genie R 300 纯水工作站主机,带 100 L 水箱 RL0R03HT1以上主机系统需要另外配置纯化柱等使用,具体订购信息请联系RephiLe创新点:1、流量提升300L/h提升到600L/h; 2、取水手柄采用无线连接,取水便捷 3、主控屏升级为超大彩色触摸屏,防水设计,可带乳胶手套操作,系统运行状态一目了然 4、高度集成,占地面积小 中央纯水系统Super-Genie
  • 二恶烷广泛存于化妆品中 专家称“纯天然”都是忽悠人
    近日,有香港媒体报道称,霸王旗下中草药洗发露、首乌黑亮洗发露以及追风中草药洗发水,经过香港公证所化验后,均含有被美国列为致癌物质二恶烷。霸王公司首席执行官万玉华回应称,这并非故意添加,而是技术上无法避免所产生的微量二恶烷,其含量对人体无害,且全行业大部份洗头水均有。   对此,记者今天采访了中国药理学会理事长、中国协和医科大学药物筛选中心主任杜冠华。杜冠华表示,二恶烷是我国明确禁止的化妆品生产原料,但在牙膏、洗发水等日化用品中却广泛存在。   据杜冠华介绍,二恶烷是一种有机化合物,呈无色液体状,稍有香味,微毒,自然环境中对水的亲和性较强,且不易为生物所降解。二恶烷可能有致癌性,国际肿瘤研究机构(IARC)将它列为2B类致癌物,即对人类致癌性证据不足,但对实验动物致癌性证据充分。   由于二恶烷对人体皮肤、眼部和呼吸系统有刺激性,并可能对肝、肾和神经系统造成损害,急性中毒时可能导致死亡,因此其属于化妆品中禁止作为生产原料添加的组分,在我国《化妆品卫生规范》禁用物质成分表中,二恶烷名列其中。   “事实上,二恶烷却广泛存在于牙膏、洗发精、除臭剂、漱剂、化妆品等日化用品中。”杜冠华表示,“这并不是故意添加进去的,而是产品生产过程中在添加其它化工原料时带入或通过化学反应所生成的副产物,但是对成品中的二恶烷含量,国家并没有明确的标准,生产商可以通过一定工序降低二恶烷的含量,但这一步也不是强制性的。”   对于某些化妆品所标榜的“纯天然”“中草药”,杜冠华表示,这其实都是在偷换概念。“因为在化妆品生产过程中必需添加类似发泡剂、去污剂、表面活性剂等化学催化剂成分,这又何来‘纯天然’呢?而所谓的‘中草药化妆品’也只不过是在原有的化学物质中添加了中草药成分而已。如果是真的‘中草药洗发水’中被检测出含有二恶烷,也只能说明其生产原料或生产工艺不过关。”
  • 暖春优惠二重奏,快接住这一波促销!
    春归万物苏,美好如约而至。月旭科技为各位小伙伴准备了特别的暖春好礼,线上线下,优惠二重奏,为你的春天再添些许色彩。 一、通用耗材一口价活动时间:2021年3月26日-4月9日(部分产品数量有限,售完即止)活动渠道: 月旭科技小程序-线上商城活动内容:耗材一口价,19.9元拿下它!注意事项此活动仅限线上用户参与;活动不限购;折扣价为售价不含运费。 二、麦迪康一次性手套预购优惠 活动时间:2021年3月26日-4月9日开启预售预约,2021年4月12日起,按预售下单顺序进行发货。活动渠道:线下签署订单活动内容:一次性手套任意选择10盒起售(订购满10盒即送即送价值78元的50ml续净一号银离子消毒液2瓶,可叠加)注意事项1. 参加预售活动需签署合同后视为有效,口头预约及销售预约无效;2. 3月26-4月9日之间为预售预约时间,不进行发货,发货时间自4月12日期按订单顺序进行发货;3. 此活动有起订量,10盒起订,产品和规格可任意搭配;4. 订购10盒起即送价值78元的50ml续净一号银离子消毒液2瓶,可叠加。
  • 新一代二氧化碳纯度在线监控解决方案
    新一代二氧化碳纯度在线监控解决方案用于测量CO2气体中O2的新解决方案安东帕(Anton Paar)推出了新的二氧化碳纯度监测仪,用于监测发酵产生的二氧化碳气体中的氧气。在线氧气传感器Oxy 5100与集成的压力传感器相结合,可在线监测发酵后加压CO2中的O2含量,带自动压力补偿功能,使二氧化碳纯度监测仪成为紧凑,且精确的独立解决方案。此仪表无需气体调节。而对于非加压的测量点,Oxy 5100和其灵巧的传感器盖在气体调节系统之后即可安装。二氧化碳纯度监测仪的组成:一台Oxy 5100&用于自动压力补偿的压力传感器主要特性功能:• 为了快速启动,独特的Toolmaster™ 技术可确保轻松更换瓶盖。所有必需的校准参数都存储在传感器盖中。盖上盖子后,所有校准参数都会自动传输,并且可以立即开始在线测量。• 内置先进的寿命估算器估算光学帽的寿命,并连续监控剩余寿命(以天为单位)。当需要更换时,Oxy 5100便会提示您。Oxy 5100是作为独立解决方案开发的,用于测量啤酒,CSD和DAW等液体中的溶解氧。安东帕在技术上向前迈进,通过增加气相中的O2浓度来扩大覆盖流体的范围。此外Anton Paar特定的适配器或调节系统还可满足用户的定制化需求。适用行业+啤酒厂和苹果酒制造商在啤酒厂中,发酵产生的二氧化碳(CO2)会被收集和纯化,以提高啤酒的可持续性并确保CO2的自给自足。用于O2在线测量的二氧化碳纯度监测器可提供有效处理和高质量CO2的关键信息。在CO2回收工厂中,将发酵产生的CO2收集,过滤,压缩,干燥并从诸如氧气(O2)和氮气(N2)的气体中纯化。在回收的CO2中,O2含量不应超过〜5ppmv。为了减少O2摄入量,确保啤酒稳定性和较长的保质期,必须对O2含量进行可靠且准确的监控,以确保回收的CO2的高纯度且经济性。测量解决方案+用于CO2回收工厂中的O2监测方案全新的二氧化碳纯度监测仪可进行准确可靠,连续的氧气含量和温度在线监测。如果发酵产生的CO2进入限值以内,全自动的O2监测可提供关键信息,以确保高质量和有效的CO2回收。工艺压力的影响会得到补偿, 测量并不受外来气体和湿度的影响。在去除泡沫之后和压缩之前,可安装二氧化碳纯度监测器(上图)。这样可以避免液体完全覆盖传感器的风险,确保测量结果的准确性。使用Pico 3000的CO2纯度监测仪(VARIVENT® 法兰直接安装在管线中)二氧化碳纯度监测器由一个Oxy 5100在线溶氧传感器和一个压力传感器组成,二氧化碳纯度监测仪符合国际卫生标准并获得EHEDG认证。特定于应用程序的计算由mPDS 5或Pico 3000评估单元执行。一个mPDS 5最多可以连接8个CO2纯度监控器,结果可以显示并传输到PLC或通过Davis 5数据采集和可视化软件在电脑上读取。另外,也可以将二氧化碳纯度监测仪连接至Pico 3000 RC外壳,以进行远程控制。带有Toolmaster™ 的传感器盖Oxy 5100的所有传感器帽均配备了Toolmaster™ 技术,可自动检测每个帽的所有所需配置和校准参数。无需通过HMI进行手动干预,从而减少了停机时间和人为错误,从而可以快速轻松地更换光学帽。产品优势+可靠,准确的二氧化碳纯度监测仪可实现• 实时在线监测氧气含量• 改善了CO2处理的质量和效率• 检测任何违规行为并实时控制过程• 可预测,快速且容易地更换传感器盖• 选择性测量(不受湿度影响)
  • 新疆理化所研发二维分子印迹固相萃取技术纯化石榴皮单宁
    p   分子印迹是一种根据给定模板制备具有特异选择性材料的新兴技术,目前广泛应用于各种目标物的富集与分离,其中包括天然药物中有效组分和活性组分的分离纯化。然而,分子印迹具有一定的技术局限性,阻碍了其进一步应用,主要包括3方面:分子印迹填料的选择性较为单一,往往不能满足复杂体系的分离需求 非共价型分子印迹的非特异性吸附普遍存在,决定其更适合作为富集而非纯化手段 分子印迹聚合物的合成仍处在小批量实验水平,从而限制了分子印迹技术的应用规模。 /p p   中国科学院新疆理化技术研究所新疆特有药用资源利用重点实验室的科研人员从石榴皮单宁类化合物的纯化需求出发,分别通过控制引发剂的量和少量多批次的方式,实现了鞣花酸和安石榴苷印迹聚合物的放大合成;将所得的印迹聚合物分别填充于半制备级固相萃取柱中,并实现了“二维”分子印迹系统的组装。为优化“二维”分子印迹系统的纯化效率,研究人员基于二维液相色谱正交性评价体系,提出适用分子印迹评价的“功能互补性”概念并最终确定了“鞣花酸-安石榴苷”二维分子印迹系统的最佳纯化条件。最后,该系统被用于石榴皮提取物中鞣花酸、安石榴苷、石榴亭皮A以及鞣花酸己糖苷四种单宁类组分的快速分离,并结合反相液相色谱法和结晶等经典手段,对所得组分进行了二次纯化,取得了纯度较好的石榴皮单宁。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/2c2d245f-1193-472a-9430-3c9881dddf52.jpg" / /p p style=" text-align: center " strong 半制备级二维印迹系统结合结晶和反相色谱快速纯化石榴皮多酚 /strong /p p   该技术快速、简单,具有一定的产业化潜力。同时,该研究提出的“功能互补性”概念,对二维分子印迹系统的条件优化有一定的借鉴意义。 /p p   相关研究发表在《色谱A》(Journal of Chromatography A)上。该研究工作受到国家自然科学基金新疆联合基金重点项目的支持。 /p p /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制