当前位置: 仪器信息网 > 行业主题 > >

硼酸三钠

仪器信息网硼酸三钠专题为您提供2024年最新硼酸三钠价格报价、厂家品牌的相关信息, 包括硼酸三钠参数、型号等,不管是国产,还是进口品牌的硼酸三钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硼酸三钠相关的耗材配件、试剂标物,还有硼酸三钠相关的最新资讯、资料,以及硼酸三钠相关的解决方案。

硼酸三钠相关的资讯

  • 宁波海产品牌陷“硼酸门” 检测方推翻结论致歉
    中新网宁波5月26日电 5月13日,网友微博爆料称,“宁波知名品牌陆龙海蜇头被江东工商局查出硼酸超标”。5月24日,第三方当事检测机构中普检测技术服务(宁波)有限公司(简称“中普检测”)在当地媒体上发布一份《致陆龙兄弟的道歉声明》,推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。中普检测称:在判定上出现了失误,错误理解了标准。   根据“陆龙兄弟”官方网站的介绍,该公司是产销量、企业规模、纳税额等经济指标均排名业内第一的中国海产领军品牌,1978年由多名陈姓兄弟共同创建成立,现已发展成为中国最大的“海产食品全品类一站式供应商”。   资料显示,硼酸俗称硼砂,可增加食品韧性、脆度以及改善食品保水性、保存性,但毒理学实验表明,硼酸在人体内有积存性,会引起食欲减退、消化不良、抑制营养素的吸收,且硼酸具有较高毒性,摄入1~3克可致中毒,成人20克、小儿5克可致死亡。   2008年以来,全国打击违法添加非食用物质和滥用食品添加剂专项整治领导小组陆续发布了5批《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》,硼酸与硼砂名列其中。   宁波江东工商分局工作人员此前接受记者采访时称,当时共抽取了15个品牌的87个批次产品,其中,江东欧尚超市抽选的样本陆龙海蜇头被检出含有硼酸。该工作人员表示,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。   中普检测是负责此次陆龙海蜇检测的机构。据“中普检测”官网介绍,该公司成立于2006年5月,是"一家公正、独立、专业的第三方检验、测试、认证公司"。3年前,“中普检测”开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测负责人李伟告诉记者,检测报告是今年1月15日出具的。根据该公司工作流程,报告会在第一时间送达企业。此后一段时间,“陆龙兄弟”并没就报告提出疑义。李伟称,4月份“陆龙兄弟”与他们进行了沟通,称检测报告的结果认定有问题。   5月14日,陆龙兄弟官方微博针对此事发文《陆龙海产致社会各界的一封信》中解释,检出硼酸系原料本身自带,属不可抗的客观因素。   李伟介绍,后来工商部门也督促他们作出解释,而“陆龙兄弟”在多次沟通中也要求作出解释,“双方沟通得挺好”。   5月24日,中普检测在当地媒体上推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。   李伟接受记者采访时表示,公司做了3年的食品检测,以前从来没有出现过误判。他认为,这份检测报告是“中普检测”在判定上出现了失误,错误理解了标准,报告的判断依据为:SC/T3210-2001中实际表述为:“不允许使用硼酸或硼砂作防腐剂”,并非“不得检出”。   在“中普检测”发出《致陆龙兄弟的道歉声明》后,记者来到“陆龙兄弟”采访。公司前台称领导都不在公司,边上一位被其称为陈副主任的办公室工作人员称,企业现在没有什么好回复的,这件事很明显,各方面舆论、微博都讲得很清楚。陈副主任让记者有事找戴总,称对方可以代表“陆龙兄弟”发言。   此后,记者拨通了戴总的电话。不过,对方却表示自己并非“陆龙兄弟”的工作人员,也是媒体人,只是对这个事情比较了解,并不能代表“陆龙兄弟”作出回应。
  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。   该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。   其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。   然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。   RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 宁波硼酸门认定被推翻 工商称对检测报告无核实义务
    中新网宁波5月28日电 今年1月,浙江宁波市工商局江东分局在超市抽查陆龙兄弟海蜇产品,通过第三方检测机构检测,产品被检测出含有硼酸,3月份,该案件被移交宁波市公安局江东分局。5月24日,中普检测技术服务(宁波)有限公司(简称中普检测)发布一份《致陆龙兄弟的道歉声明》,推翻此前陆蜇不合格的认定,转而认定其合格。对此,宁波市工商局江东分局副局长张建刚表示,工商部门此前所说硼酸“不得检出”的结论是根据检测机构的检测报告做出的,而对检测报告工商部门没有核实的义务。   中普检测是负责此次陆龙海蜇检测的机构。据中普检测官网介绍,该公司成立于2006年5月,是“一家公正、独立、专业的第三方检验、测试、认证公司”。3年前,中普检测开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测质量部经理李伟告诉记者,检测报告是今年1月15日出具的,送检的陆龙兄弟海蜇被检测出硼酸含量为5.9mg/kg,报告第一时间送达企业。   宁波市工商局江东分局工作人员此前接受记者采访时称,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。3月份工商部门将此案移交给公安,等待进一步的调查结果。   5月24日,中普检测在诸媒体发表《致陆龙兄弟的道歉声明》,称陆龙产品检出的5.9mg/kg硼酸系本底含量,推翻了此前送检陆龙海蜇不合格的结论。据李伟介绍,新结论是在陆龙兄弟提供了诸多证据的基础上做出,中普检测并没有进行重新检测。   作为此次检测的委托方,宁波市工商局江东分局副局长张建刚表示,工商部门对检测报告没有核实的义务,检测结果由检测机构来认定,工商部门主要负责三项工作:确认检测机构是否有资质 跟被抽检人有没有利益关系 检测程序是否合法。   宁波市工商局江东分局提供的材料称,依据《食品安全法》第五十九条:“食品检验实行食品检验机构与检验人负责制。食品检验报告应当加盖食品检验机构公章,并有检验人的签名或者盖章。食品检验机构和检验人对出具的食品检验报告负责”。   “在法律上,我们不存在任何责任。”张建刚称,工商部门此前所说,硼酸不得检出的结论是根据检测机构的检测报告得出。   据介绍,宁波市工商局江东分局过去只对海蜇进行一般检测,今年开始才增加了硼酸检测项目。   针对中普检测推翻检测结论公开致歉一事,宁波市工商局江东分局在给记者的书面回复称,“这个事情我们始终是严格依法按程序办理的。根据检测报告,海蜇被检出硼酸,为了消费者的食品安全和国家的相关规定,我们依法移送公安部门,由公安部门对硼酸的来源进行侦查。在公安部门确认非人为添加的情况下,退回工商部门,由工商部门依法按程序作出处理。”
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • 赛默飞发布食品样品中硼砂(硼酸)的检测方案
    2015年2月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布食品样品中硼砂(硼酸)的检测方案。一些不良商贩在食品中非法添加硼砂或硼酸,以起到增筋、保水、改良口感和防腐等作用。硼摄入量过高会表现毒性,可致脑组织氧消耗受抑制,酶活力丧失活性。国家食品整治办于2008年将硼酸、硼砂列为禁用添加剂第一批,明令严格监查食品中硼违法添加等行为。 目前食品中硼的检测的方法主要有比色法、ICP-OES法和ICP-MS(www.thermo.com.cn/Category226.html)法等,其中比色法操作非常繁琐,而ICP-OES法和ICP-MS则是总硼测试的良好解决方案。动植物体中的硼往往存在多种形态(主要有水溶游离态、半束缚态和束缚态),而外源性添加硼酸则主要以游离态存在,因此对于游离态的硼酸准确则更有意义。离子色谱柱的分离机理使其容易保留游离态的硼,因此在ICP-OES或ICP-MS前端增加分离单元可以准确样品中的游离硼。赛默飞发布食品样品中硼酸的检测方法,采用ICS-900基础型离子色谱仪配备IonPac ICE-Borate排斥色谱柱,在等度淋洗条件下即可良好保留游离态硼酸,而络合态硼酸不干扰测定。利用电感耦合等离子光谱仪作为检测手段则可大大增强检测的选择性,排除了食品中常见有机酸对于硼酸的干扰,具有较好的检测效果。ICS-900 基础型离子色谱系统产品详情:http://www.thermo.com.cn/Product6477.html iCAP 7000系列电感耦合等离子体光谱仪产品详情:http://www.thermo.com.cn/Product6694.html 下载应用纪要:离子色谱-电感耦合等离子体光谱联用检测食品样品中硼砂(硼酸)http://www.thermo.com.cn/Resources/201501/1616106789.pdf ----------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • ECHA开展有关环草啶和硼酸的新统一分类和标签公众意见征询
    2013年5月14日消息,欧洲化学品管理局(ECHA)邀请利益相关方提交有关环草啶(lenacil)和硼酸(boric acid)的统一分类和标签(harmonised classification and labelling,CLH)新提案的评论意见。公众咨询为期45天,将于2013年6月28日结束。   有关环草啶的CLH提案由比利时提交。环草啶是一种除草剂,目前并没有统一分类和标签。卷宗提交者计划对该物质的环境危害进行分类。   有关硼酸的CLH提案由波兰提交。硼酸已有统一分类,卷宗提交者拟议修订生殖毒性分类,即移除生育影响分类,降低发育毒性分类。ECHA提醒相关方正在进行的有关其他两种硼酸盐的公众咨询(截至6月14日),卷宗提交者(荷兰)拟议为其发育和生殖毒性制定比硼酸更为严格的分类。   在45天的咨询阶段,收到的评议意见将会定期公布在ECHA网站上。   表格一 拟议的统一分类和标签以及物质使用范例。 物质名称 EC号 CAS号 拟议统一分类和标签 使用范例 环草啶(ISO);3-环己基-1,5,6,7-四氢环戊嘧啶-2,4-(3H)二酮 218-499-0 2164-08-1 对水生环境有危害 对水生环境的危害未分类 作为一种除草剂 硼酸 233-139-2 10043-35-3 生殖毒性 硼酸被用于许多行业和专业应用,被添加在消费品中。 硼酸在杀菌剂中被用作活性物质,被添加到化肥中被用作一种植物微量元素。   *请注意使用信息不会影响分类和标签,这完全基于一种物质的内在属性。使用范例是从CLH报告中复制而来。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。   王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • 蓝国祥先生在我国光散射研究方面的贡献
    南开大学是国内开展光散射研究得比较早的单位之一。早在1935年,我校的沈寿春先生就与吴大猷、饶毓泰先生合作,在北京大学开始了拉曼光谱研究。抗日战争时期,在昆明西南联大,沈寿春和吴大猷二位先生合作研究了硝酸镍氨晶体的拉曼光谱,考察了晶体场对硝酸根离子的效应。解放后,在沈寿春先生领导下,陈文驹、王之仁等老师较早开始了拉曼光谱的工作,研究最多的是有机磷化合物。1965年教育部决定在北大、复旦、南开三校成立固体能谱科研组,由复旦的谢希德先生牵头,合作开展半导体的基础研究,教育部定期给三校下达研究经费。张光寅先生利用该项经费,购买了一台在当时很先进的英国产的Hilger E612型拉曼光谱仪。该仪器采用石英棱镜分光,光源是汞弧光灯,记条仪是笔式的。但在十年文革期间三校的固体能谱研究组都中断了研究工作,这台光谱仪就一直闲置到20世纪七十年代末。此时南开物理系固体物理教研室正式恢复,固体能谱研究组也就合并到固体物理教研室。当时固体物理教研室主要从事激光技术所需要的非线性光学晶体钽酸锂和铌酸锂的研究及其光学器件的研制。时任教研室主仼的是王华馥先生和副主仼张光寅先生。蓝国祥教授是王华馥先生研究组的成员,当时研究组主要从事非线性光学晶体基础性方面的研究。鉴于蓝国祥教授有扎实的晶体学和晶格动力学的基础知识,又从事晶格振动光谱的研究,从仪器设备、晶体样品的选取和基础知识的储备这三方面考虑,都具备了开展非线性光学晶体激光光谱研究的条件。因此,王华馥先生决定由蓝国祥先生和青年教师李兵承担此项课题的研究,王先生还把他的第一个博士研究生分配到该课题组一起参加研究工作。课题组对Hilger E612光谱仪进行了改造,配置了自行研制的氩离子激光器,开始了非线性光学晶体的拉曼光谱研究。当课题组获得第一批研究成果时,正好迎来1981年在厦门大学召开的全国第一届光散射学术会议,课题组在会议上宣读了相关的研究成果。虽然参加此次学术会议的单位不少,但受制于当时的科研条件,国内有条件开展光散射研究的大学和研究单位毕竟比较少,能提供研究论文的单位并不多。在南开,有很多位老师从事过光散射的研究,力量非常之强,据了解到的,还有陈文驹、陈亭、张春平、刘思敏等多位老师,涉及多种材料。例如,非线性光学晶体偏硼酸钡、钽酸锌锂、铌酸锂和钽酸锂等,关注压力、温度对晶体结构的影响;利用拉曼光谱研究晶体中的电磁激元、铁电性质、铁弹性质,缺陷和非晶化过程等;随着表面增强效应的发现,我校也开展了表面增强光谱的研究,首次观察了吸附于银胶体表面的邻菲啰啉等分子的表面增强拉曼光谱。在从事光散射研究的几十年过程中,蓝国祥教授对待研究生宽严相济,以身作则,学生深刻体会到研究者应该具备的素养和追求。蓝先生带领组内老师和学生,在国内外学术期刊上发表论文百余篇,取得了丰硕的成果。非线性光学晶体的拉曼光谱一直是南开固体教研室关注的重点。对于铌酸锂和钽酸锂的光谱研究非常细致深入,取得一些重要的结果。铌酸锂和钽酸锂室温下是铁电晶体,属于三角晶系的单轴晶体。为获得钽酸锂晶体的异常声子的色散,在蓝先生的指导下,老师和学生精心设计实验方案,共制备11个不同取向的样品,用来获得波矢与光轴成不同夹角的光谱。由于钽酸锂和铌酸锂的折射率约2.1左右,所以表面反射率高达14%。为了消除内反射光引起的附加散射,在样品的表面上镀了增透膜(SiO2)。经过细致的实验测试和严谨的理论分析,获得了钽酸锂晶体的全部13个异常声子,也对之前相关研究报道中的疑点进行了澄清;通过分析测试钽酸锂晶体的变温拉曼光谱,结合中子衍射的晶体结构数据,做出了钽酸锂的铁电相变是有序-无序型的推论,并用结构相变的先兆丛团理论给予解释。20世纪80年代我国的紫外非线性光学晶体的研制得到了飞速发展,例如偏硼酸钡(BBO)、三硼酸锂(LBO)以及三硼酸铯锂(CLBO)等。蓝国祥教授带领课题组的师生对这些晶体的室温、低温以及高压下的光谱进行了较为全面的研究,利用层状和阴离子基团模型,并结合群论和理论计算分析对晶体的外振动、内振动以及阴离子基团的特征振动谱进行了识别和确认。BBO晶体单晶高压拉曼光谱的研究表明了在50 Kbar的压力下拉曼光谱发生突变,预示着存在由压力导致的结构相变。获得非晶材料的传统方法有多种,如熔体急冷,蒸发沉积和离子注入等。上世纪90年代,蓝国祥教授研究组开始利用拉曼光谱进行晶态物质在高压下非晶化转变的研究,先后研究了硼酸盐(硼酸钡、硼酸锂),锗酸盐(锗酸铅、锗酸锂、锗酸铜),以及铌酸锂、钽酸锂等晶体的高压拉曼光谱,在原子水平上研究了这些晶体的非晶态转变机制。对于硼酸盐而言,是由于硼酸基团被破坏,导致结构发生塌缩,由晶态变成非晶态。课题组另外的一项重要工作是有关碳材料的制备和拉曼光谱研究,包括石墨、石墨插入化合物,C60碱金属插入化合物,碳纳米管等。其中一个非常重要和难度很大的问题是单壁碳纳米管的呼吸模谱峰的认定。因为呼吸模的频率与碳管的直径密切相关,困难的原因在于样品中碳管的直径和类型不是单一的;另外,用可见和近红外光激发的单壁碳纳米管拉曼光谱中存在共振散射效应,使得谱峰数目较多且随激发光波长而变化,所以将这些谱峰归属于何种碳管不是显而易见的。为了进行这种认定,我们计算了一系列碳管的电子态密度、呼吸模的频率,并考虑到双共振增强效应,建立了一个图表法,可以对单壁碳纳米管光谱中的呼吸模特征峰进行指认。这种指认包括管子类型的确定,是金属的还是半导体的,是扶手椅管、锯齿管还是一般的手性管,当然也可确定碳管的直径和指数。SPEX 1403 激光拉曼光谱仪(小图:实验室自制的碳纳米管制备装置)为了给研究生开展晶格振动光谱研究打好基础,张光寅先生率先开设了晶格振动光谱课程,并编写了讲义,两年后由蓝国祥先生接替讲授晶格振动光谱学直到退休。这本讲义经过多年的教学积累和反复修改,著成《晶格振动光谱学》一书,由高等教育出版社出版。该本书先后发行了两版,成为教育部研究生教学的推荐用书。无论是科学研究还是教书育人,先生对中国光散射事业的发展都做出很大的贡献。从第一届厦门光散射会议开始直到退休前的第十一届,没有错过一届会议;从第二届光散射会议开始担任光散射专业委员会副主任;退休前一直担任《光散射学报》副主编,全心全力支持学报的发展。80年代国内很多学校科研单位都购置了Spex系列的谱仪,南京大学物理系也有一台Spex激光光谱仪,在使用过程中缺少了一个小部件,张明生老师就向南开大学物理系借用这个部件。考虑到我们这个部件休置不用,就送给南京大学。这也是先生一直秉承的理念:兄弟院校之间和同行之间要有相互帮助和团结的精神,不要彼此拆台闹予盾。参加1999年8月第十届全国光散射学术会议师生合影留念(长春)先生退休多年,留给我们后辈做人做学问的精神一直在,激励我们前行!文中所述纯属个人点滴所见,不当之处,欢迎斧正!作者:南开大学物理学科学院 王玉芳教授
  • 添加纳米线让锂离子电池更安全
    p style=" text-indent: 2em " 无论手机、笔记本电脑、还是电动车辆都离不开锂离子电池,它是“点燃”我们日常生活的重要能源。然而近些年,锂离子电池却因为实实在在的着火事件而引起了舆论的关注。怎样才能开发出更为安全的电池呢?据科学家在ACS期刊的纳米板块发表的文章介绍,在电池中加入纳米线不仅可以提升电池的耐火性,同时也能提升电池其他方面的性能。 /p p style=" text-indent: 2em " 在锂离子电池中,锂离子通过电解质往返穿梭于两电极之间,传统锂离子电池的电解质是盐和有机溶剂构成的液体,很容易蒸发,是造成火灾的隐患。因此,学者们将研究的重心转向了固态电解质。被提议担起固态电解质的“人选”有很多,然而这些物质大多或稳定性不够,或不能满足大规模生产的需要,二者不可得兼。这其中,聚合物电解质因其良好的稳定性、低成本和灵活性而被认为是担当固态电解质的潜力股,但是它的导电性和力学性能却较差,因此,科学家们通过添加一系列化合物来设法提升聚合物电解质的性能。陶新永和他的研发团队制备出的硼酸镁纳米线恰好就具有良好的力学性能和导电性,如果把硼酸镁纳米线加入到固态电解质中,是否电池也会被赋予相应的良好特性呢?陶新永的团队对此十分好奇。 /p p style=" text-indent: 2em " 他们在固体电解质中混合了5、10、15、20重量百分比的硼酸镁纳米线并进行实验观察,发现硼酸镁纳米线确实可以提升电解质的导电性,这种提升与离子通过电解质的速度和数量息息相关,离子通过电解质的速度越快,快速通过的数量越多,电解质的导电性能就越好。此外,硼酸镁纳米线的添加还使得电解质能够承受更大的压力。研究团队还测试了加入硼酸镁纳米线后电解质的可燃性,发现它几乎不可燃烧。而由硼酸镁纳米线强化的固态电解质与阴阳极配对所构成的电池,在速率性能和循环容量上都比电解质中不含硼酸镁纳米线的电池有所提升。 /p
  • 欧洲严管三氯乙烯等对人体有害物质
    欧洲化学品管理局(ECHA)3月8日发布公告称,将对三氯乙烯等8种化学品实施严格管制。   据了解,要求对三氯乙烯和3种含硼化学物硼酸、无水四硼酸钠、十水四硼酸钠,及4种铬酸盐包括铬酸钠、铬酸钾、重铬酸铵和重铬酸钾共8种化学品归入“高度关注物质”中进行严格控制的提议,最早由丹麦、法国和德国发起,这三国称有证据证明这8种物质对人类健康具有潜在危害。欧洲化学品管理局在公告中称,这8种化学品具有致癌性和基因诱变性,对人的生殖系统会造成危害。   欧洲化学品管理局表示,如果欧盟成员国同意将这些化学品归入“高度关注物质”目录的话,该局将把它们列入严控物质中,这类化学物质的应用必须得到欧洲化学品管理局的特定授权。
  • 帕纳科与XRF Scientific合作推出熔融机新品
    帕纳科公司是思百吉集团下属的X射线分析技术公司,而XRF Scientific公司是材料表征领域的样品制备专家。近日,帕纳科与XRF Scientific两家公司结成了XRF样品制备领域的OEM战略联盟。在此协议下,由Steve Prossor领导的XRF Scientific子公司Automated Fusion Technology公司将向帕纳科公司提供样品制备设备。   Pittcon2010上首次发布的Eagon 2 全自动台式双样品熔融系统,是此项合作签署后经过12个多月的技术和商业讨论后的成功成果,“在纵观所有的熔融技术之后,我们更加清楚的看到,与XRF Scientific公司一起,我们可以把最安全、实用,功能齐全、强大的自动化熔融设备推向市场:the Eagon 2是一种高性能、低成本的解决方案。”帕纳科公司XRF产品经理Simon Milner先生说到。此合作协议包括:合作双方互相发展和共享知识产权,合作推出的仪器设备将在2010年初开始生产。   在低熔融硼酸锂盐存在情况下,熔融或溶解一个样品将阻止测量过程中的一些不利,如:矿物学的,晶粒尺寸或方向的影响,当制备一种助熔剂或硼酸锂盐玻璃时,不必使其熔融即可产生均匀的样品。这是一个用在采矿工业的特殊方法,其使拥有丰富矿产资源的澳大利亚成为相关公司的天堂。   截止2009年6月30日,XRF Scientific公司12个月的营业额达1710万澳元时,其净收入达200万澳元,与前一年相比,公司的收入增长了14% 而截止12月31日的6个月内,公司的收入急速下降了36%,只有660万澳元 此次下降抹去了公司的净利润,公司的净利润下降了82%,只有27万澳元。在今年的开端,XRF Scientific公司没有债务并且在银行拥有450万澳元的现金。另外,大量新推出的仪器设备,以及采矿工业市场的复苏,预示着2010年将有一个很好的前景,XRF Scientific公司的常务董事,Terry Sweet先生评论到。
  • 三类化学试剂存放,每一个实验室人都应该知道!
    因为化学试剂的特殊性,所以对于它们的存放管理有很多需要注意的地方。今天我简单给大家讲解下,化学试剂的存放。化学试剂存放主要分3块,1是有机物化学试剂;还有2是无机物化学试剂;3是危险化学试剂的存放;下面来分开讲下。  一、有机物化学试剂存放  有机物化学试剂,按官能团分类: 如烃类、烃的衍生物、碳水化合物、含氮化合物、有机离分子化合物等。有机物化学试剂应按纯度级别依次排列,配制的溶液应与固体试剂分开存放。  二、无机物化学试剂存放  无机物化学试剂,应按盐类、单质、氧化物、碱类、酸类等类别分开存放。盐类一般按金属离子所在周期表中的位置,也就是从左向右,先下盐后酸式盐的方法分类。 如钠盐—硫化钠、碳酸钠、硅酸钠、亚硝酸钠、硫酸钠、硫代硫酸钠、钙盐等。单质再分成金属和非金属类,或以单质元素在元素周期表中的列分类。酸类中的不含氧酸可按酸根元素在周期表中位置由左向右,从上到下来分类。如氢卤酸、氢氟酸、盐酸、氢溴酸、氢碘酸等。含氧酸可按成酸元素的列分类: 硼酸、硝酸、硫酸、磷酸等。碱类主要按碱可中金属元素在周期表中的列分类: 如氢氧化钠、氢氧化钾、氢氧化镁、氢氧化钙等。  三、危险化学试剂存放  对于化学试剂管理本来就应该需要特别注意,而化学试剂的重中之重就是危险性化学试剂了。因为危险化学试剂具有较高化学活性的物质,如易燃易爆性、腐蚀性、毒害性、氧化性、放射性等有害于人和环境的一系列的“烈性”化学物质。其活性之高,甚至可以自行分解并威胁生命财产安全,必须加以认真对待。根据相关关规定,危险性化学试剂的包装上必须带有危险性标志、危规编号,在相关试剂手册上也要有文字说明。  1、易燃易爆性化学试剂必须存放在专用的危险性试剂仓库里,并存放在不燃烧材料制作的柜、架上,温度不宜超过28℃,按规定实行“五双”制度。实验室少量瓶装可设危险品专柜,按性质分格贮存,同一格内不得混放氧化剂等性质的试剂,并根据存储种类配备相应的灭火设备和自动报警装置。低沸点极易燃烧试剂宜低温下存储在5℃以下,禁用有电火花产生的普通家用电冰箱贮存。  2、氧化性试剂不得与其它性质抵触的试剂共同储存,而且包装要完好并且密封,严禁与酸类混放,应置于阴凉通风处,防止日光曝晒。  3、腐蚀性试剂储存容器必须按不同的腐蚀性来选择存放,酸类应与氰化物,发泡剂、遇水燃烧品、氧化剂等远离,不宜与碱类混放。  4、剧毒性试剂应远离明火、热源、氧化剂及食物用品,且通风良好处贮存,一般不与其它种类共同储存,且应按规定贯彻“五双”制度。  5、化学试剂中遇水易燃试剂一定要存放在干燥、严防漏水及暴雨或潮汛期间保证不进水的仓位。不得与有盐酸、硝酸等散发酸雾的物品存放在一起,亦不得与其它危险品混存混放。  以上这三大类是比较常见的化学试剂,其它还有如指示试剂就不另外说了。关于化学试剂的管理和存放,相信大家都知道大概流程了。但如果还仅依靠传统人工管理,那肯定容易出问题,这时借助专业试剂耗材管理系统,就能到到事半功倍之效。
  • 第三届全国生物质谱会议在丽江隆重召开
    “蛋白质组数据处理暨第三届全国生物质谱学术交流会”在云南丽江召开   为了积极促进我国蛋白质组学技术发展和应用、数据挖掘和生物质谱的经验交流,由中国生物化学与分子生物学会蛋白质组学专业委员会、中国质谱学会生物质谱专业委员会和中国化学会分析化学委员会主办,北京蛋白质组研究中心、复旦大学和蛋白质组学国家重点实验室共同承办的“蛋白质组数据处理暨全国生物质谱学术交流会”于2010年5月15日在云南省丽江市召开。200余名从事蛋白质组学研究的专家、学者参加了此次会议,仪器信息网作为支持媒体也应邀参加。 大会现场   本次会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。其中,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,而第二天的报告则以讨论蛋白质数据处理技术为主,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。 钱小红研究员主持会议   大会主席由北京蛋白质组学研究中心钱小红研究员和复旦大学杨芃原教授共同担当。并且,会议开幕式由钱小红研究员主持,杨芃原教授在开幕式上致辞。中科院大连化学物理研究所张玉奎院士、军事医学科学院二所科技处王东根处长、美国加州大学心血管研究中心Ping Peipei教授出席了开幕式。 杨芃原教授在开幕式上致辞   杨芃原教授在开幕式上的致辞中表示,近年来,随着质谱的灵敏度、精确度、分辨率的不断提高,以及高通量技术的不断发展,质谱在蛋白质组学研究中扮演着越来越重要的角色。自2002年在军事医学科学院举办了第二届生物质谱研讨会后,时隔8年,今天再次举办第三届生物质谱会议,希望此次学术交流会取得圆满成功。并且,蛋白质组学专业委员会理事会议通过决定,将中国蛋白质组学大会由每年一届改为每两年一届,从而增强质谱界同仁的学术交流,促进我国质谱技术的进一步发展。 王东根处长出席开幕式 Ping Peipei教授出席开幕式 参加开幕式的与会人员合影   开幕式后,中科院大连化学物理研究所张玉奎院士作了题为《蛋白质组研究分离和鉴定技术进展》的大会特邀报告 来自日本Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology的Hisashi Narimatsu教授作了题为“Development of glyco-biomarkers for liver fibrosis, and liver cancers and others using newly developed technologies for Glycomics”的大会特邀报告。 张玉奎院士作大会特邀报告   张院士在报告中表示,近年来,针对蛋白质组的高效、高分辨、高通量分离和高灵敏度、高可靠性鉴定,发展了多种蛋白质组分离鉴定新技术新方法。   在高丰度蛋白质去除方面,发展了基于多维阵列液相色谱的通用型高丰度蛋白质去除技术 一次运行可去除58种高丰度蛋白质,并将样品中蛋白质的鉴定数目提高2倍以上。此外,还发展了基于蛋白质印迹材料的高丰度蛋白质选择性去除技术。在低丰度蛋白质富集方面,研制了多种固载金属亲和色谱材料,包括无机有机杂化整体材料、聚合物颗粒和介孔材料,以及金属氧化物气溶胶和复合金属氧化物微球,实现了磷酸化肽的高选择性富集。此外,还研制了亲水材料和硼酸功能化材料,实现了糖肽的高选择性富集。   在多维多模式液相分离方面,研制了多种固定化酶反应器,实现了蛋白质组的在线快速酶解。研制了多种色谱柱和毛细管等电聚焦柱,提高了蛋白质和多肽分离的柱效和分辨率。建立了多维液相色谱、多维毛细管电泳和多维芯片毛细管电泳分离方法 通过与样品预处理或在线酶解的集成,不仅提高了系统的分析通量,而且提高了蛋白质鉴定的可靠性。   在质谱高灵敏度鉴定方面,合成了新型磁性微纳米材料,提高了基体辅助激光解吸离子化质谱对蛋白质鉴定灵敏度。发展了针对磷酸化肽的衍生技术,可不经过富集,直接实现磷酸化肽的高灵敏度鉴定。此外,还建立了多种质谱数据处理新方法。 Hisashi Narimatsu教授作大会特邀报告   Hisashi Narimatsu教授在报告则提到,近10年来,糖蛋白组学的技术在不断发展,目前,其科研组已经发现了184个人类糖基因。在蛋白质组学研究中,应关注糖蛋白研究,因为除白蛋白外的蛋白质,最终会糖化。其在报告中介绍了糖蛋白组学研究应用的三种技术:(1)实时定量PCR技术(2)微矩阵分析技术(3)用IGOT方法确定载体蛋白。   围绕会议主题,中国科学院北京基因组研究所的刘斯奇研究员、复旦大学的张祥民教授、军事医学科学院放射与辐射医学研究所张养军副研究员等30多位业内资深专家进行了深入的交流、探讨。   除大会报告外,会议同期举办了AB SCIEX新技术推广会和小型的厂商仪器展览会,安捷伦科技、沃特世、AB SCIEX、赛默飞世尔科技、布鲁克道尔顿、戴安中国、源资信息科技(上海)有限公司等厂商参展。 AB SCIEX新技术推广会现场 小型展会展示现场   大会开幕式晚宴由安捷伦科技赞助,安捷伦科技有限公司生命科学事业部经理赵影女士在晚宴上宣布, 5月15日对安捷伦而言,是具有里程碑意义的一天,因为安捷伦于今天(5月15日)正式完成了对瓦里安公司的收购,此条消息已在其英文的官方网站上正式对外公布。 安捷伦招待晚宴现场 赵影女士在晚宴上讲话   晚宴后,为了大家解除一天的劳顿,安捷伦科技诚邀全体参会人员参加“安捷伦之夜”,共同前往丽江国际民族文化交流中心剧场,欣赏精彩的民族舞蹈诗画《丽水金沙》。 “安捷伦之夜”现场 民族舞蹈诗画《丽水金沙》表演现场   关于大会报告具体内容及会议详细情况,敬请关注仪器信息网后续报道……
  • 化妆品相关检验标准上新了,您准备好了吗?
    化妆品相关检验标准上新了,您准备好了吗?关注我们,更多干货和惊喜好礼 数据来源:中商情报网近年来,我国人均可支配收入持续提高,追求高质量生活成为时尚,在消费升级与颜值经济的带动下,化妆品消费迅速崛起。2019年我国化妆品行业整体市场容量达到4777.20亿元,预计2019-2024年年均复合增长率将达到11.6%,我国已成为全球第1大化妆品消费国。在本行业蓬勃发展的同时,一些负面新闻却不绝于耳。 针对化妆品安全问题,我国相继出台了多项监管政策。日前,国家药品监督管理局对2015版《化妆品安全技术规范》做了4项修订,3项新增。本期飞飞跟大家一同分享《规范》中zui新修订的《化妆品中硼酸和硼酸盐检测方法》。 硼在化妆品中以硼酸、硼酸盐和四硼酸盐的形式存在,具有一定的抗菌防腐功能。但如不慎吸入或被创口吸收,可引起急性中毒,出现恶心、腹泻等症状,严重者还会出现昏厥、肾衰竭甚至死亡。因此,化妆品中的硼酸和硼酸盐的含量受到严格监管。以下是中国和欧盟关于化妆品中硼酸的监管限量要求:表 1 中国和欧盟关于化妆品中的硼酸监管要求(点击查看大图) 此方法修订的一大亮点是将操作繁琐、分析误差大的甲亚胺-H分光光度测定方法改为灵敏度高、抗干扰强的离子色谱法,同时增加了离子色谱-电感耦合等离子体质谱法进行结果确认。技术点解析,且听飞飞娓娓道来。 先来一览标准中使用的离子色谱条件: 色谱柱:IonPac ICE Borate (9 mm ×250 mm)离子排斥分析柱,或等效色谱柱;抑制器:排斥型阴离子微膜抑制器(ACRS-ICE 500 9 mm),或等效抑制器;淋洗液:3 mmol/L甲烷磺酸+60 mmol/L甘露醇;化学抑制再生液:25 mmol/L四甲基氢氧化铵+15 mmol/L甘露醇;淋洗液流速:1.0 mL/min;再生液流速:1.0 mL/min;柱温:30 ℃;进样量:25 µL;检测器:化学抑制型电导检测器。 + + + + 条件中所用的是甲磺酸的酸性淋洗条件,在酸性条件下(~pH2.6),硼酸盐会以硼酸(H3BO3)的形式存在,这也是中国和欧盟规范中提到zui大允许浓度要以硼酸计的原因。例如,四硼酸钠(Na2B4O7)会与强酸甲磺酸(CH3SO3H)立即发生反应,产生硼酸。此外,在酸性条件下,硼酸和甘露醇(C6O6H14)会形成一个稳定的一价阴离子配合物,从而使得它更容易被电导检测。因此,方法中选用甲磺酸作为淋洗液分离硼酸,而甘露醇被加入淋洗液中可进一步提高待测物在离子排斥条件中的检测灵敏度。 图 1 四硼酸盐、硼酸和甘露醇在酸性条件下的反应(~pH2.6,3mM MSA)(点击查看大图) 独特分离选择性 排斥型离子色谱法中强酸性离子化合物因Donnan排斥作用,不能在色谱柱上保留而基本在死体积洗脱。弱酸性离子化合物由于质子化作用,可以穿过Donnan膜进入固定相,解离度越低的物质越容易进入固定相,其保留值也就越大。因此,离子排斥色谱法是解决弱酸性硼酸和强酸性离子分离的有效方式。但是化妆品组成复杂,常添加苹果酸、柠檬酸,丙三醇调节基体的pH值和赋予产品保湿功能,在普通排斥色谱柱上干扰硼酸的测定。《规范》中使用了对硼酸具有独特选择性的排斥色谱柱——IonPac ICE borate。在选定色谱条件下,能有效消除柠檬酸、丙三醇等物质的干扰。图 2 某样品及加标样品中硼酸的分离检测谱图(点击查看大图) 专属抑制检测模式 电导检测器提供一个分析硼酸灵敏和易用的方法。ACRS-ICE 500 Suppressor有效降低了甲磺酸淋洗液的背景电导,抑制产物是一种比酸淋洗液电导更低的盐;同时为了得到电导检测响应,保持硼酸以硼酸和甘露醇阴离子配合物的形式。对于IonPac ICE抑制反应,可总结如下:用于再生液中的甘露醇,尽管没有直接参与抑制反应,但它可保持其穿过抑制器膜的平衡,对于降低抑制噪音十分必要。 完善的样品前处理 化妆品基体复杂,前处理过程是不可缺少的。对于硼酸和可溶性硼酸盐,《规范》中采用水或甲醇-水的提取方法,再经RP柱净化后测试。对于硼酸和硼酸盐总量测定,处理过程是将碳酸钠溶液加入到称量好的样品中,转移至高温炉,经充分灰化后,再用盐酸溶液溶解灰分,用水稀释定容后,经Ag柱、H柱处理。 以上所用离子色谱分析耗材,您选对了吗?(点击查看大图) 多种检测方式 赛默飞可提供quan方位的色谱质谱仪器分析平台,离子色谱与电感耦合等离子质谱联用技术在元素形态价态分析方面具有无可比拟的优势,目前已成为该应用方向首xuan的检测技术。因为电感耦合等离子质谱具有卓yue的检测灵敏度和抗基体干扰能力,《规范》中将这一联用技术做为结果确认分析方法。
  • 欧盟拟禁止销售使用部分化学物质
    据香港贸发局经济研究官网消息,欧洲化学品管理局修订《化学品注册、评估、授权和限制(REACH)法规》,其中,附件XIV列出了已被或将被禁止在欧盟使用或销售的物质清单。具体包括以下22种化学物质:   1.两种来自煤焦油的物质:蒽油及焦油   2.七种铅物质:四氧化三铅、氧化铅、三碱式硫酸铅、氧化铅与硫酸铅的复合物、矽酸铅、烧绿石锑铅黄、碱式乙酸铅   3.四种硼物质:硼酸、无水四硼酸二钠、三氧化二硼、水合七氧四硼酸二钠   4.七种邻苯二甲酸盐:邻苯二甲酸二异戊酯、邻苯二甲酸二-C6-8-支链庚酯(富C7)、邻苯二甲酸二(C7-11支链与直链)烷基酯、支链与直链的邻苯二甲酸二戊酯、邻苯二甲酸二(2-甲氧基乙)酯、邻苯二甲酸正戊基异戊基酯、邻苯二甲酸二戊酯   5.支链和直链-4-壬基酚   6.溴丙烷。   (中国WTO/TBT国家通报咨询中心供稿)
  • 明日开播!第七届热分析与联用技术网络会议聚焦三大主题专场
    由仪器信息网联合中国化学会热力学与热分析专业委员会共同主办的第七届与联用技术网络会议将于2021年9月15-16日举办。会议主题将围绕化学热力学、热分析技术、联用技术、量热技术及其应用和先进仪器与表征技术等方向,邀请中国化学会热力学与热分析专业委员会的多位委员和领域内知名学者以及主流科学仪器厂商分享经验成果和最新进展,旨在促进国内热力学与热分析领域先进仪器技术及前沿科学研究的发展。会议时间:2021年9月15-16日会议日程:本次会议共设置了热分析与联用技术(9月15日) 、热力学与热分析及其应用(9月16日)、量热学与量热技术(9月16日)三大主题会场。热分析与联用技术(9月15日) 报告时间报告题目报告嘉宾09:30--10:00热分析/红外光谱联用曲线解析及其合理表述中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师 丁延伟10:00--10:30热分析方法的选择及其在运动场地合成材料中的应用研究华东理工大学副研究员 于惠梅10:30--11:00绿色溶剂研究中的热分析及联用技术中国人民大学教授 牟天成11:00--11:30热重/红外联用技术(TG/FTIR)的检测原理与谱图解析北京大学分析测试中心正高工 章斐13:30--14:00热失重/热裂解与GC/MS联用分析的原理及应用上海交通大学研究员 朱邦尚14:00--14:30热重分析仪联用解决方案梅特勒-托利多国际贸易(上海)有限公司 技术专家 陈成鑫14:30--15:00二维/多维异步相关谱在解析热重红外光谱联用实验产生的双线性数据上的应用进展北京大学化学与分子工程学院副教授 徐怡庄15:00--15:30热分析联用技术及应用西安近代化学研究所副研究员 王晓红热力学与热分析及其应用(9月16日)报告时间报告题目报告嘉宾09:30--10:00反应临界状态精确分析方法中国科学院工程热物理研究所研究员 夏红德10:00--10:30热分析方法的选择及其在运动场地合成材料中的应用研究华东理工大学副研究员 于惠梅10:30--11:00动态力学分析及其常见应用苏州大学分析测试中心高级实验师 徐颖11:00--11:30结晶动力学的DSC表征进展南京大学化学化工学院胡文兵教授课题组成员 何裕成量热学与量热技术(9月16日)报告时间报告题目报告嘉宾13:30--14:00碱金属硼酸盐学溶液体系热力学性质量热学研究天津科技大学二级教授/院长 邓天龙14:00--14:30大体积量热计研究进展中国科学院化学研究所副研究员 张武寿14:30--15:00低温量热在材料热力学性质研究中的应用中国科学院大连化学物理研究所研究组长/研究员 史全15:00--15:30具有等温环境微型转动弹燃烧-溶解多功能量热计的搭建与性能评价湘南学院二级教授 李强国15:30--16:00量热仪技术在锂电池热安全与热管理领域的应用中国计量大学副研究员 许金鑫嘉宾阵容:报名方式:点击下方链接立即报名https://www.instrument.com.cn/webinar/meetings/thermalanalysis2021/或扫描参会二维码报名。扫码报名
  • ICIF China 2022-(第二十届)中国国际化工展览会
    “中国国际化工展览会(ICIF China)”创办于1992年,由中国石油和化学工业联合会、中国国际贸易促进委员会化工行业分会和中国化工信息中心三大石油和化工行业权威机构共同组织,至今已走过三十个年头。展会以“聚力创新-驱动高质量发展”为主题,为石油、能源和化工行业搭建全产业链一站式贸易与服务平台,集中展示全行业新产品、新技术、新理念, 来自石油化工、能源化工、基础化工原料、精细与专用化学品、化工技术与装备、化学品包装及储运、智慧化工-智能制造等领域的各大供应商齐聚一堂,为石油化工行业提供从原材料、设备到包装、智造、节能一系列解决方案,为石化企业提高产量和质量、降低成本、安全生产、转型升级保驾护航,为推动行业创新与高质量发展贡献力量! 自2018年起,中国国际化工展携手中国国际橡胶技术展和中国国际胶粘剂及密封剂展,同期同地举办共同打造行业盛会“中国石化产业周”。为石油和化工企业提供产品展示、交流与贸易合作一站式平台,旨在服务和推动企业技术进步及创新业态,助力行业高质量发展,引领行业发展方向。中国石化产业周每年汇聚1,600余家参展企业,现场展出10,000多种产品。2022年展示总面积预计将突破100,000余平方米,吸引超60,000余人次专业观众到场参观。一、组织机构主办单位:中国石油和化学工业联合会承办单位:中国国际贸易促进委员会化工行业分会中国化工信息中心二、时间、地点时间:2022年9月6-8日 地点:上海新国际博览中心三、展品范围1.石油化工及能源化工展区:原油、石脑油、凝析油、轻烃、溶剂油、石蜡及石油产品添加剂,沥青、炼化一体化及大宗石油化工产品等;页岩气、LPG、LNG、油田伴生气、煤层气、焦炉气、煤化工、氢能及氢能全产业链的技术及产品、化学储能、新能源化工等2.基础化工原料展区:无机、有机化学品及原料,钡盐、镁盐、钾盐、硼化合物及硼酸盐、溴化合物、铬盐、氰化物、氟化合物、磷化合物及磷酸盐、硅化合物及硅酸盐等无机酸碱盐、硝酸、硫酸、盐酸、纯碱、烧碱、电石、活性炭、炭黑、钛白粉等3. 化工新材料展区:有机氟硅材料、工程塑料、改性塑料、高性能分离膜材料、高性能纤维、环氧树脂、高性能树脂、聚氨酯材料、高端聚烯烃材料、汽车、电子、航天航空用特殊材料、兵工及特殊环境材料、纳米材料、复合材料等4.精细化学品展区:表面活性剂、催化剂、化学试剂、精细有机化工原料及中间体、离子交换树脂、农用化学品、日用化学品及清洁剂、生物化学品、饲料和食品添加剂、水处理化学品、添加剂(塑料添加剂、特种添加剂等)、外购/定制合成/委托加工化学品、香精香料、荧光增白剂、助剂、电子化学品、皮革化学品、油田化学品等特种专用化学品 5. 化工技术与装备展区:工业气体制备设备、泵、阀、管件等通用设备、流体传动及换热设备、制冷设备、干燥/分离及过滤设备、控制、分析及检测仪器、粉体及筛分设备、密封设备及配件、仪器与仪表、化工成套装置等6. 化工安全与环保展区:化工环境保护技术与设备、固废处理、VOCs、土壤修复、环境工程及综合解决方案等、化工安全生产技术、安全监测与应急防控技术与装备、安全防护产品、防爆电气、防爆设备等7.化学品包装与储运展区:包装:IBC吨桶、塑料桶、PE阀口袋、纸塑复合袋、塑料编织袋、液袋集装箱充气袋、不锈钢容器、塑料托盘、木质托盘、周转箱、瓶盖、标签、清洗系统及包装设备等储运:化工物流公司、存储设备、储罐设计与工程、专业仓库、罐区、港口、堆场等危险品物流技术与装备等8.智慧化工-智能制造展区:智能制造关键技术装备、生产过程自动化、智能包装、物流与仓储、信息化安全及网络安全管控、制造过程管理信息化及数据互联互通、智慧工厂/数字化工厂、工业互联网/物联网/云平台、智能机器人、大数据、5G、云计算、数字化软件及解决方案、人工智能、边缘计算、数字孪生、传感器等四、参展费用展位形式展位价格展位配置备注升级展位A/B区16800元/9平方米展位墙板、公司楣板、地毯、问询台X1、圆桌X1、折椅X4、废纸篓X1、长臂射灯X2、5V/220V插座X1、资料架X1标准展位B区13800元/9平方米展位墙板、公司楣板、地毯、问询台X1、圆桌X1、折椅X3、废纸篓X1、长臂射灯X2、5V/220V插座X1标准展位C10800元/9平方米光地展位A区1280元/平方米无,需自行设计装修36平方米起订光地展位B区1180元/平方米无,需自行设计装修36平方米起订五、会议与交流第六届国际智慧化工大会将围绕“创新驱动数字化转型、智慧赋能高质量发展”主题,解读石化和化工行业发展趋势,助力行业打造安全、环保、 绿色化工产业,实现石油和化工行业数字化和信息化高度融合。同期还将举办10余场次的技术交流、贸易洽谈、信息发布会等一系列活动。邀请国内外著名专家进行趋势发布及案例解析,助力企业与行业专业化、国际化、品牌化发展。六、往届部分展商(排名不分先后)中国石油、中国石化、中国海油、国家能源、中国中化(原中化集团、中国化工)、中兵华锦、延长石油、陕煤集团、华谊集团、鲁西化工、 巨化集团、万华化学、渤化集团、海湾集团、滨化集团、鲁北集团、云天化、新疆中泰、天业集团、中盐集团、恒力集团、荣盛集团、盛虹集团、卫星石化、东明石化、万达石化、京博石化、富海集团、沿海锌业、潍坊恒丰、广州华纳、莱州龙鹏、河北诚信、山西金兰、美国空气产品、朗盛化学、霍尼韦尔、3M、罗克韦尔、锐克斯环保,德国赢创、西门子、埃纷德、莱茵、SAP、耐驰、法国BV、瑞士海克斯康、E+H恩德斯豪斯、苏尔寿、日本星光、横河电机、三菱重工、日陆物流、英国马尔文帕纳科、西班牙Tecam Group、奥地利安东帕、韩国Neurolines、新加坡PANGEA、浙江中控、六六云链、杭州优时、阿里云、软控股份、长春融成、江苏汤姆、陕鼓集团、世纪恒、江苏捷远、无锡米多、泰山科技、华东风机、汉瑞普泽、宏工科技、青岛恒信、河南智信等七、部分优质买家巴斯夫、埃克森美孚、朗盛化学、三井化学、默克化工、阿克苏诺贝尔、沙特基础工业、三菱化学、林德、SK化学、LG化学、住友化学、大金氟化工、日本AGC集团、艾敏斯帝、赢创、陶氏、阿克苏诺贝尔、科莱恩化工、安克曼化工、杜邦、阿科玛、瓦克化学、索尔维、三井化学、辽宁宝来集团、浙江卫星石化、中国平煤神马集团、万华化学、桐昆集团、恒逸集团、山东寿光鲁清石化、海科集团、龙盛集团、宝钢化工、液化空气等八、中国国际化工展组委会联系方式:联系人: 贾晓云电话/传真:18810660277(同微信) E-mail: jiaxy@cncic.cn
  • 课堂 | 金相典型特征样品图谱 (七) : 有色金属合金组织
    为发挥北京科技大学材料学科专业优势,服务材料相关专业实验教学,北京科技大学材料国家级教学示范中心与北京科大分析检验中心有限公司联合开发了一系列金相典型特征样品,并使用徕卡智能型显微镜DM4 M采集了所有样品的显微组织,为广大教师和实验室技术人员提供参考。此次为您准备了以下8个系列的金相样品图谱,本篇是第七篇,将为您展示有色金属合金组织样品图谱。一、铁碳平衡组织二、钢的热处理组织三、工模具钢组织四、不锈钢组织五、铸钢组织六、铸铁组织七、有色金属合金组织八、塑性变形组织有色金属合金组织 纯铜材料状态:退火浸蚀剂:三酸乙醇溶液显微组织:α固溶体黄铜材料状态:退火浸蚀剂:三酸乙醇溶液显微组织:α固溶体+β相亚共晶铝硅合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+共晶硅共晶铝硅合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:共晶硅过共晶铝硅合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:初晶硅+共晶硅ZL102材料状态:铸态未变质处理浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+共晶硅ZL104材料状态:变质处理浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+变质硅铝铜合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:α固溶体+Al2Cu共晶体亚共晶铅锡合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:先共晶α相+共晶相共晶铅锡合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:共晶相过共晶铅锡合金材料状态:铸态浸蚀剂:氟硼酸溶液电解浸蚀显微组织:先共晶β相+共晶相以上的清晰图片都是采用徕卡 DM4 M智能型金相显微镜采集。Leica DM4 M智能型金相显微镜德国进口显微镜,主要应用于材料科学研究:- 载物台移动范围:100x100mm- 放大倍率: 50-1000- 2 齿轮手动调焦驱动器- 6 位或7位编码物镜转盘- 手动/电动载物台,6个符合人体工学设计的可编程按钮- 照明管理系统- 对比度管理器- LED 照明装置可实现所有对比度模式- 相衬模式:明场、暗场、微分干涉相衬、偏振、荧光- Leica Application Suite (LAS X) 软件关于徕卡显微系统Leica Microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(Wetzlar, Germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • 欧盟REACH法规高关注物质清单新增8种化学物质
    记者昨日从厦门检验检疫局获悉,欧洲化学品管理署(ECHA)7月底正式将三氯乙烯等8种新的化学物质纳入REACH法规中高关注物质(SVHC)清单。截至目前,该清单已包含38种高关注物质。该局提请广大出口欧盟化工品及其下游产品生产企业密切关注REACH法规中高关注物质(SVHC)清单最新情况,尽快做好相关产品是否含有高关注物质的核查工作。   厦门检验检疫局轻纺化矿检验监管处建议,当前广大进出口企业应以下几方面着手准备应对工作,避免出口欧盟产品受阻,遭受损失。   一是对自己生产的产品所含有的化学物质进行充分分析,尽量不使用列入REACH法规公布的高关注物质清单中的化学物质,或者尽早开发使用其他安全的替代物质。   二是要尽量使用已注册过并覆盖自己生产制品用途的化学物质。   三是对于无法开发替代品的高关注物质,并且其使用量超过REACH法规规定的限量要求的,尽快按照REACH法规的要求完成向欧盟化学品管理局通报或注册。   附表:REACH法规高关注物质(SVHC)清单 序号 物质名称 1 5-叔丁基-2,4,6-三硝基-间-二甲苯(二甲苯麝香) 2 4,4′-二氨基二苯基甲烷(MDA) 3 短链氯化石蜡(SCCPs) 4 六溴环十二烷(HBCDD) 5 邻苯二甲酸二-(2-乙基己)酯(DEHP) 6 邻苯二甲酸甲醇丁醇酯(BBP) 7 邻苯二甲酸二丁酯(DBP) 8 三乙基砷酸盐 9 蒽 10 二氯化钴 11 五氧化二钴 12 亚砷酐 13 重铬酸钠 14 双三丁基氧化锡 15 砷酸氢铅 16 蒽油 17 蒽油,蒽糊,蒸馏轻组分 18 蒽油,蒽糊,蒽馏分 19 蒽油,低含蒽量 20 蒽油,蒽糊 21 煤焦油沥青(高温) 22 硅酸铝耐火陶瓷纤维 23 氧化锆硅酸铝耐火陶瓷纤维 24 2,4-二硝基甲苯 25 邻苯二甲酸二异丁酯(DIBP) 26 铬酸铅 27 钼铬红(C.I.颜料红104) 28 铅铬黄(C.I.颜料黄34) 29 磷酸三(2-氯乙基)酯 30 丙烯酰胺 31 三氯乙烯 32 硼酸 33 无水四硼酸钠 34 水合硼酸钠 35 铬酸钠 36 铬酸钾 37 重铬酸铵
  • 央视曝光!网红玩具毒素超标!拉曼光谱仪竟是药用硼砂“鉴定官”
    【央视曝光网红玩具毒素超标 硼砂毒副作用大】专家表示,目前市面上几乎所有的“史莱姆”水晶泥内全都含有硼砂成分,再加上这种玩具质地黏软,极易粘在皮肤上,孩子们经常接触,就有可能会发生轻微的皮肤过敏。如果皮肤有破损,再接触硼砂,毒副作用的显现就会更快更大。对于成人来说,中毒量大概是一到三克,致死量就是十五克。而对于婴幼儿来说的话,致死量就是二到三克;对于儿童来说(致死量)就是五克。(网红玩具-史莱姆)硼砂(Borax)一种无机化合物,一般写作Na2B4O710H2O,为硼酸盐类矿物硼砂经精制而成的结晶,为常用外用中药品种之一,其主要成分为四硼酸钠[Na2B4O5(OH)48H2O,Na2B4O710H2O],性能甘,咸,凉,归肺、胃经,具有清热消痰,解毒防腐等功效。硼砂具有一定的毒性,应用不当,易对人体产生伤害,目前市场上,药用硼砂和工业用硼砂混杂,其中质量不合格的工业硼砂充当药用,严重的影响了临床用药安全有效。质量安全问题突出,检测就成了安全使用最重要的一环。奥谱天成科研级显微拉曼光谱仪‍拉曼Raman光谱分析是一种快速分析技术,它是利用拉曼散射原理,得到可以表征分子振动能级的指纹光谱,提供成分和结构的信息,拥有非破坏性和精细如“指纹”的分辨能力。拉曼光谱峰形尖锐明显,分子结构信息明确,其在药品检测中的应用主要为定性鉴别。根据有关文献,硼砂(Na2B4O710H2O)在拉曼光谱中的拉曼位移主要体现在四面体硼( BO5-4 )、三角形硼( BO3-3 )、水分子以及B ( OH) 键〔9〕。其中,拉曼位移在576cm-1处的7号峰是四面体硼( BO5-4 )振动最强吸收的特征峰 在460、385和350 cm-1处的 10 号、12号、13号峰为BO5-4对称弯曲振动中强吸收的特征峰 在762 cm-1处的6号峰为BO5-4对称伸缩振动 在948 cm-1处的4号峰为三角形硼( BO3-3 ) 的对称伸缩振动 其余的16、17、19和20这4个共有峰属于晶格振动。(硼砂样品拉曼光谱特征)综上所述,奥谱天成拉曼光谱仪可通过直观分析鉴别硼砂及其粉末的真伪,可用于硼砂及其粉末的鉴别。对于硼砂的两种易混淆药材:白硇砂和白矾,图谱的特征峰明显与硼砂正 品不同,可以准确区分,说明该图谱特征专属性较高,可为硼砂真伪鉴别提供基本和可靠的依据;中药硼砂拉曼指纹特征图谱,与正 品硼砂拉曼图谱相似度高,指纹特征明显,专属性强,为硼砂的快速鉴别提供了可靠的方法。
  • 晒晒「布鲁克S8 TIGER波长色散X射线荧光光谱仪」的硬实力
    X射线荧光光谱(XRF),作为一种快速的、非破坏式化学成分分析方法,以其分析元素多、分析浓度范围广、多种元素同时分析等特点被广泛应用。近年来,XRF需求规模不断增长的同时,市场竞争也日趋激烈。在这样的局势下,推出“有实力”的XRF产品成为企业成败的关键,展现XRF产品的“硬实力”是企业争取市场的重要途径之一。基于此,仪器信息网特组织“晒晒XRF明星产品的硬实力”主题活动,发布系列稿件,通过不同渠道进行推广,以帮助仪器企业展现自身实力、争取更多市场,也帮助广大用户了解前沿XRF技术、解决选型难题。本期要“晒”的明星产品是布鲁克S8 TIGER波长色散X射线荧光光谱仪。布鲁克S8 TIGER系列是目前市场上畅销的波长色散X射线荧光光谱仪,曾多次入选“科学仪器行业用户关注仪器”。布鲁克S8 TIGER波长色散X射线荧光光谱仪布鲁克(纳斯达克上市公司,股票代码BRKR)是一家专业的分析仪器制造商,有8500多名员工分布在全球90多个国家和地区,其中研发人员1400多人,拥有4000多项专利,年销售收入超过25亿美元。为了更好地服务中国用户,布鲁克于2012年在中国成立了布鲁克(北京)科技有限公司,专门负责布鲁克产品在中国的销售和售后服务,并在上海建立了备件库,以保证备件的及时供应。布鲁克旗下的AXS公司,前身是西门子AXS公司,1895年伦琴博士发现了X射线,同年西门子生产了世界上第一支X射线管,并在1920年生产了世界上第一台X射线分析仪器,至今已有100多年的X射线分析仪器生产历史。2006年,布鲁克AXS公司推出第一代S8 TIGER波长色散X射线荧光光谱仪;2017年,推出第二代S8 TIGER波长色散X射线荧光光谱仪。第二代S8 TIGER采用HighSenseTM技术,包括专利保护的紧凑光路设计、HighSense X射线发生器、HighSense X射线管、HighSense XS系列分光晶体、HighSense计数电子元件,确保为从铍(4Be)到镅(95Am)的元素提供最佳灵敏度,提高样品分析速度,降低元素检出限。此外,第二代S8 TIGER还采用了专利保护的直接进样技术,即样品直接装入到仪器的测量位,保证样品到光管的距离始终不会变化(绝对参考位,没有定位误差),这种直接进样方法的样品室可以设计得很紧凑,保证了抽真空或充氦气的快速可靠,从而可以快速、低成本的分析固体、液体、松散粉末样品,满足各种应用需求。随着社会的发展,环境保护越来越受到重视,对环境监测技术提出了更高的要求。布鲁克波长色散X射线荧光光谱仪在环境监测领域发挥着越来越重要的作用:→ 2003年,江苏省环境监测中心配置了布鲁克AXS公司的早期仪器S4 PIONEER波长色散X射线荧光光谱仪,牵头起草了土壤和沉积物分析标准“HJ 780-2015土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法”;→ 2013年,湖南省环境监测中心站配置了S8 TIGER波长色散X射线荧光光谱仪,牵头起草了固废分析标准“HJ 1211-2021 固体废物 无机元素的测定 波长色散X射线荧光光谱法”;→ 2017年发布的大气颗粒物分析标准“HJ 830-2017 环境空气 颗粒物中无机元素的测定 波长色散X射线荧光光谱法”,布鲁克(北京)科技有限公司和三家使用S8 TIGER的用户参与了标准验证试验。在协助环境监测部门制定分析标准,以及后续的标准实施过程中,布鲁克(北京)科技有限公司X射线荧光应用专家学习了环境监测领域的高分析要求,积累和总结了实践经验。面对成分复杂的土壤、脆弱的大气颗粒物滤膜、种类繁多的固废等环境样品,布鲁克的应用专家们进行了大量试验,优化制样和测量条件,和用户进行深入的交流,及时了解使用过程中遇到的问题,和用户、制样设备制造商、公司研发部门一起探讨方案,解决了一些列问题:→ 解决了土壤在样品制备过程中,钴元素的污染问题;→ 开发了防止硼酸挥发污染仪器的防污屏蔽罩;→ 将土壤分析元素从HJ 780规定的32个扩大到41个;→ 采用冷光管头技术,解决了特氟龙滤膜在射线照射过程中的脆化问题;→ 开发了滤膜样品分析专用样品杯及配套的无背景散射样品杯;→ 解决了固废样品复杂基体校正问题。布鲁克给用户提供的不仅仅是一台X射线荧光仪,而是从标准样品、样品制备技术到分析方法的全套解决方案。目前,有数十家环境监测部门(中国环境监测总站、北京生态环境监测中心、上海生态环境监测中心等)、第三方检测公司(中检集团理化检测有限公司、江苏省苏力环境科技有限责任公司等)、高校科研院所(上海交通大学分析测试中心、中国科学院新疆生态与地理研究所、甘肃省治沙研究所等)在使用布鲁克S8 TIGER波长色散X射线荧光光谱仪,开展环境领域的样品分析工作。布鲁克(北京)科技有限公司X射线分析仪器演示中心(布鲁克非常重视应用技术支持,在北京建立了应用演示中心,为用户进行售前调研测试、现场应用培训、售后技术支持、培训班培训等工作。)随着波长色散X射线荧光光谱分析技术在环境监测领域的普及,布鲁克将继续高标准、严要求地保证光谱仪的质量,不断完善环境样品分析解决方案,开拓新的检测项目,推广X射线荧光分析技术在协同处置固体废物、废水排放等新领域的应用,为提高环境监测领域的X射线荧光分析技术水平贡献力量。
  • 欧盟拟撤消活性物质肯定列表中6种农药
    欧盟拟从活性物质肯定列表中撤消丁苯吗啉等6种农药   2008年12月24日,欧盟委员会发布了修订欧洲议会和理事会指令98/8/EC将丁苯吗啉、硫酰氟、氧化硼、硼酸、四硼酸钠和四水八硼酸二钠作为活性物质包括在附录I中的欧盟委员会指令草案。   这6个欧盟委员会指令草案将可能用于生物农药产品的丁苯吗啉、硫酰氟、氧化硼、硼酸、四硼酸钠和四水八硼酸二钠包括在欧共体活性物质肯定列表中。本欧盟委员决议草案涉及企业原先打算提交风险及功效评估信息—基于此这些活性物质被允许保留在生物农药市场上-的活性物质清单。然而,提交信息的最后截止期限到来时,文件没有被提交。因此,这些物质无法按照生物农药指令98/8/EC第16条第2款规定的10年审查计划被审查,现决定12个月的逐步退出期之后从生物农药市场撤销这些物质。
  • 我科学家发现一种新型光学晶体
    本报北京2月28日电 2月19日的《自然》杂志,以《中国藏匿的晶体》为题,用3页篇幅对中科院理化技术研究所陈创天院士率领的团队,发现并生长出一种最新的光学晶体———氟代硼铍酸钾(KBBF)晶体进行了详细报道,并称“中国实验室成为这种具有重大科学价值的晶体的唯一来源,它表明中国在材料科学领域实力日益增强”。   KBBF晶体是目前唯一可直接倍频产生深紫外激光的非线性光学晶体,是在非线性光学晶体研究领域中,继硼酸钡、三硼酸锂晶体后的第三个“中国产”非线性光学晶体。《自然》杂志称:“其他国家在晶体生长方面的研究,目前看来还无法缩小与中国的差距。”   陈创天团队经过18年研究,采用“局域自发成核生长技术”,突破大尺寸KBBF晶体生长的技术瓶颈,生长出迄今为止尺寸最大的透明块状KBBF单晶,并结合他们发明的非线性光学晶体的棱镜耦合专利技术,成功制作出KBBF晶体厚度为2.3毫米的光接触棱镜耦合器件,保证了产生深紫外激光的实用性和精密化性能。这项技术为193纳米光刻技术系统中所需要的全固态光源奠定了基础。目前,该技术已获中国、美国和日本发明专利授权。   KBBF晶体能够缩短激光的波长,装备该晶体的各种激光器能发出具有极窄频宽的紫外光波,可测量固体电子能级的分辨率达到360微电子伏特 并可用于建造超高分辨率光电子能谱仪、超导测量、光刻技术等前沿科学研究,对未来的微纳米加工、生物医学、激光电视等将产生深远影响。
  • 2010年微纳尺度分离和分析技术学术会议召开
    2010年微纳尺度分离和分析技术学术会议暨第六届全国微全分析学术会议召开   仪器信息网讯 由国家自然科学基金委、中国化学会联合主办,复旦大学和上海交通大学联合承办的“2010年微纳尺度分离和分析技术学术会议暨第六届全国微全分析学术会议”于2010年10月18日在上海复旦大学召开。会议主题为“科技让生活更美好,微纳让科技更奇妙”。400余名国内同行和20余名国外专家参加,将讨论交流微/纳尺度分离、微全分析、以及微/纳技术在化学生物学和生物医学领域中的应用等学术问题。 会议现场 本次学术会议倡议者杨芃原教授致辞   开幕式上,本次学术会议倡议者杨芃原教授致开幕辞。在大会报告环节,张玉奎院士、刘爱群教授、林炳承研究员、刘冲教授、蒋兴宇研究员、庄乾坤教授分别作报告。 中国科学院大连化物所 张玉奎院士 报告题目:定量蛋白质组分析的挑战   张玉奎院士在其报告中详细阐述了近年来发展的多种蛋白质组分离鉴定新技术新方法:   在高丰度蛋白质去除方面,发展了基于多维阵列液相色谱的通用型高丰度蛋白质去除技术;一次运行可去除58 种高丰度蛋白质,并将样品中蛋白质的鉴定数目提高2倍以上。此外,还发展了基于蛋白质印迹材料的高丰度蛋白质选择性去除技术和基于蛋白质均衡器技术的降低蛋白质丰度分布范围的方法。利用上述策略,均显著提高了低丰度蛋白质的鉴定能力。   在低丰度蛋白质富集方面,研制了多种固载金属亲和色谱材料,包括无机有机杂化整体材料、聚合物颗粒和介孔材料,以及金属氧化物气溶胶和复合金属氧化物微球,实现了磷酸化肽的高选择性富集。此外,还研制了亲水材料和硼酸功能化材料,实现了糖肽的高选择性富集。   在蛋白质分离鉴定平台方面,研制了多种固定化酶反应器,实现了蛋白质组的在线快速酶解。研制了多种色谱柱和毛细管等电聚焦柱,提高了蛋白质和多肽分离的柱效和分辨率。建立了多维液相色谱、多维毛细管电泳和多维芯片毛细管电泳分离方法;通过与样品预处理或在线酶解的集成,不仅提高了系统的分析通量,而且提高了蛋白质鉴定的可靠性。   在液质联用高灵敏度鉴定方面,合成了新型磁性微纳米材料,提高了基体辅助激光解吸离子化质谱对蛋白质鉴定灵敏度。发展了针对磷酸化肽的衍生技术,可不经过富集,直接实现磷酸化肽的高灵敏度鉴定。此外,还建立了多种质谱数据处理新方法。新加坡南洋理工大学 刘爱群教授 报告题目:A Breakthrough Tuning Point from Microfluidics to Optofluidics   微流控技术(microfluidics) 是在微流控芯片上实现微量化学或生物样品的合成与分析等操作的技术,微流控光学技术(Optofluidics)则是在微观尺度上通过操控流体,探索微流控系统与光子的相互作用规律,目的是开发具有可调化、集成化和微型化的微流控光学器件与系统。微流控光学技术用于光学器件的研究是可谓是一次全新的突破。 中国科学院大连化学物理研究所 林炳承研究员 报告题目:功能化微流控芯片实验室的构建   林炳承研究员长期从事毛细管电泳和微流控芯片的研究,并以医学诊断和药物筛选为研究和应用的主要背景,在理论、技术平台、方法发展及重大应用等方面取得了一系列的成就,在国际、国内相关领域产生了重要影响。   许多主要的分析化学操作模式已经在微流控芯片上实现,从原理上讲,几乎所有的分析化学操作模式均可以在微流控芯片及其周边完成。微流控芯片分析化学实验室具有微型、可控的操作单元灵活组合规模集成的本质特征,还可用于复杂体系从而在系统层面上认识事物和解决问题的能力。构建和完善微流控芯片分析化学实验室应当成为未来十年、二十年中分析化学领域发展和研究的主流趋势之一。   以细胞生物学的系统研究为基本目标的微流控芯片细胞实验室正呼之欲出。微流控芯片研究的热点正逐步转向构建各种不同类型的芯片实验室,从化学、生物到信息、光学、材料,林林总总。微流控芯片中流体的流动通常通过通道或液滴实现,通道和液滴是微流控芯片实验室的重要组成部分。   林炳承研究员课题组通过微泵微伐对通道网络中流体的控制,实现了大样本量线虫的衰老研究,显示了环境、营养等因素对线虫寿命的显著影响,对人类衰老的研究具有借鉴作用,有望在此基础上构建微流控芯片衰老研究实验室。借助于大规模液滴操控技术,实现了不同生物材料的液滴内合成,是微流控芯片材料实验室的一种理想模型。 大连理工大学微系统研究中心 刘冲教授 报告题目:聚合物多层微流控芯片及新型无源仿生微泵的设计与制作   刘冲教授设计与制作了一种集成浓度梯度发生器和细胞培养阵列的多层微流控芯片,利用厚胶光刻工艺和干法刻蚀工艺分别制作了SU-8 胶模具和硅模具,浇注PDMS制得芯片。   该芯片由4 层PDMS 键合而成:第一层可以实现细胞培养及检测,水滴状微结构为细胞培养腔,其一端具有微柱阵列,相邻微柱间隙为5μm,用于拦截细胞;第二层为浓度梯度发生器,从两个入口分别注入含药物和不含药物的培养液,经过混合,在通道末端形成5种不同浓度的药物溶液,经通孔垂直进入第一层的细胞培养腔;第三层为30μm 的微阀薄膜;第四层为气体通道层,与第三层共同构成微阀,用于对浓度梯度发生器和细胞培养腔之间连通与关断的控制。   利用制作的芯片进行了A549肺腺癌细胞的培养实验,该细胞可很好地贴壁生长,为研究不同浓度的抗癌药物对癌细胞的抑制作用提供了条件。   刘冲教授设计与制作了一种新型无源仿生微泵,该泵具有植物通过气孔蒸腾进行水分运输的优势。其蒸腾速率远大于自由水面,可以获得较高液体流速;运输水分是一个被动运输的过程,无需外部能源;可以通过调整参与蒸腾的微孔开度或微孔数量来控制水分流量;可以持续不间断进行水分运输,工作时间长。 国家纳米科学中心 蒋兴宇研究员 报告题目:微流控芯片生化分析及读出技术   建立在芯片系统中的生化分析具有自动化、即时现场检测、快速等特点,其中很多都应用到了微流控技术。由于微流控芯片分析中所需的样品、试剂量少,集成度高,使其在各类芯片分析中都成为一项重要的技术。但是在芯片分析微型化的进程中,遇到的一个最重要的问题就是信号的读出技术,很多芯片使用本身体积很小,但是由于检测仪器的体积过大而限制了其微型化的相关应用。随着材料科学的快速发展,出现了很多具有优良性能的材料以及基于这类材料的新型检测方法。这些方法与微流控技术的结合,将会使微流控芯片的检测效率更加提高。   利用静电纺丝制备的纳米纤维薄膜具有很高的比表面积,大大提高了生物大分子在表面的吸附,结合微流控芯片,纳米纤维薄膜可以提高固相免疫检测的灵敏度。蒋兴宇研究员课题组建立的新型HIV免疫检测方法可以提高检测的灵敏度、效率。一般需要4小时或更长时间才可以完成的试验减少到8分钟之内,将多种物质之间的相互作用同时加速进行,大大加快了检测物质相互作用的速度,并且减少了疾病检测以及检测物质相互作用试验的时间、降低对于试验条件的要求。   蛋白质免疫印迹分析是分子生物学和细胞生物学研究中的一个重要方法,蛋白质免疫印迹分析能够检测细胞中目标蛋白质的含量,并且可以得到目标蛋白质的近似分子量。但是传统的蛋白质免疫印迹分析技术的缺点是一次实验只能检测到细胞中的一种蛋白质,并且会消耗相对大量的抗体溶液。然而大多数的生物学研究中都需要对细胞中的多种蛋白质含量进行监测,这导致生物学家往往需要收集大量细胞来进行多次免疫印迹分析,并且会消耗较大量的昂贵的抗体溶液。开发新型的蛋白质免疫印迹技术一直备受生物技术产业界和生物学家关注。   蒋兴宇研究员课题组将微流控技术和传统的免疫印迹技术相结合,解决了以上难题。该方法利用SDS-PAGE凝胶电泳将细胞中的蛋白质按分子量大小分离为蛋白质条带,然后将凝胶中的蛋白质条带在电场的作用下转移到PVDF高分子膜上。在传统的免疫印迹分析技术中,后续的免疫检测会将这张PVDF印迹膜直接浸泡在抗体溶液中进行免疫反应。本方法创造性的将印迹了蛋白质条带的PVDF膜作为PDMS微流控芯片的基底,微流控芯片上平行的排列了很多微流管道,微流管道的方向与膜上蛋白质条带方向垂直。这样,通过在不同的微流管道中通入针对不同蛋白质的抗体,可以实现一次实验检测细胞中的多种蛋白质(n10),并且将抗体溶液的用量从原来的大约1毫升降低到小于1微升。实验结果表明,这种新方法的蛋白质检测灵敏度不亚于传统的免疫印迹方法。   这种微流控免疫印迹的新方法可以大大的降低免疫印迹实验中的人力物力消耗。并且所需的微流控芯片成本低廉、操作简单。该方法有望运用于细胞信号通路、蛋白质组学等研究。 国家自然科学基金委员会化学科学部主任 庄乾坤教授 报告题目:分析化学资助现状与思考   庄乾坤教授介绍了自然科学基金项目系列、各类项目资助侧重点、科学基金最新动向、分析化学进一步发展等内容。国家自然科学基金主要的定位是:引导源头创新、支持基础研究;强调三大战略(源头创新、科技人才和创新环境),资助种类已形成了三大系列(研究项目系列、人才培养系列、科研环境系列)。科学基金的新动向:青年基金纳入到人才基金板块,并降低资助额度(约18~20万/项),扩大青年基金的资助率,希望逐步达到30%;控制面上项目的资助率约为申请面上项目总数的1/5,并增加资助额度,近两年将逐步达到40万/项;更加侧重基础、更加侧重人才、更加侧重前沿。   各类项目资助侧重点分别是:面上项目起到全面协调的作用,强调可持续、创新;重点项目鼓励学科前沿分析发展;重大项目强调集成、力争出重大成果;杰青项目的目标是培养学科带头人;重大研究计划保护创新;国际合作项目注重强强合作、平等互惠、以我为主;仪器专项则是实现创新的手段。   近两年,在基金委的支持下,已培养了一大批创新的团队和人才,比如:国家实验室、国家重点实验室、省部属重点实验室、重点学科、优秀团队和973项目首席科学家。   分析化学进一步发展的问题:据AC统计,1996年-2008年中国分析化学论文数在全球排名已达第二位,仅次于美国;但在引用因子和被引用数目上还低于美国、日本、德国等国家;尤其是每篇论文的被引用次数还低于很多国家。所以中国的分析化学研究还有待再上一个新台阶。   关于如何再上一个新台阶,庄乾坤教授谈到了几点思考。从分析化学的研究目标来说,是要追求“3S+2A”,3S即Sensitivity, Selectivity and Speediness灵敏度、选择性、高速度;2A为Accuracy, Automatics,准确度、自动化。从研究创新方面来说,庄乾坤教授强调3点:1)引入物理学新概念和新技术;2)创建分析仪器装置;3)瞄准国际公认的有影响的重大科学问题。庄乾坤教授还提出了理论基础的学科源头论,认为数学是源头,物理是上游,化学是中游,生命科学、环境等应用领域是下游,而一个学科的发展准则是“下游”离不开“上游”,“上游”可独立于“下游”。   本次会议历时2天,含特邀报告、专题报告、墙报等交流形式,是我国微/纳技术近十年研究成果的一个阶段性总结,也将对未来该技术的发展方向以及对其他学科的影响进行展望。
  • 征集|化妆品原料禁用化学成分和动植物品种的意见
    科学与技术飞速发展,化妆品的研制和开发越来越多的融入高科技的含量,以满足人们越来越高的要求。各种功能性化妆品应运而生,为保证化妆品的使用安全,进一步加强化妆品原料安全监管,1月22日,中检院向各级药品监管部门和检验检测机构、相关行业协会、生产企业及科研机构等征集关于化妆品原料禁用目录的意见和建议。要求于2021年2月18日前,填写《征求意见反馈表》(见附件),以电子邮件方式发送至hzpbwh@nifdc.org.cn。目前,中检院对化妆品禁用原料目录等文件进行了修订,包括1309项化学成分目录(附件1)、112项植(动)物品种目录(附件2)、化学成分修订前后对比(附件3)、植(动)物品种修订前后对比(附件4)。《化妆品禁用原料目录》制修订说明为贯彻落实《化妆品监督管理条例》(以下简称《条例》)要求,进一步加强化妆品原料管理,保证化妆品的质量安全,规范和促进化妆品行业健康发展,国家药品监督管理局组织启动了对《化妆品禁用原料目录》(以下简称《禁用目录》)的制修订工作,现将有关情况说明如下: 一、必要性(一)满足化妆品行业发展需要近年来,我国化妆品生产和消费均呈现快速发展的趋势。化妆品原料的使用与化妆品的质量安全密切相关,随着化妆品行业的发展和科学认识的提高,根据我国对一些化妆品原料风险评估结果,同时参考近几年欧盟、美国等化妆品行业发达国家或地区对一些化妆品评估和法规调整情况,发现部分原料急需调整管理使用要求。为切实保障消费者的使用安全,按照从严管理原则,我国《化妆品安全技术规范》(2015版)中禁用原料管理规定亟待调整。(二)满足化妆品安全监管的需要《条例》第十五条规定,禁止用于化妆品生产的原料目录由国务院药品监督管理部门制定、公布。随着科学技术的发展,新的检测方法和安全评估方法的出现,逐步发现部分原料可能存在潜在安全风险,需要加强管理。为了贯彻落实《条例》关于禁用原料的管理规定,结合化妆品行业发展和监管工作需要,急需在《化妆品安全技术规范》(2015版)中禁用组分的基础上制修订《禁用目录》,用于指导和规范化妆品行业和化妆品禁用原料的管理工作。二、制定目标和原则(一)制定目标以《化妆品安全技术规范》(2015版)为基础,制修订化妆品禁用原料要求,提高《禁用目录》的适应性和可操作性,满足化妆品监管工作的需要。(二)制定原则一是继承发展的原则。以《化妆品安全技术规范》(2015版)第二章化妆品禁用组分的内容为基础,对适用的部分予以充分保留,并根据最新的风险评估结果,将具有潜在安全风险的原料纳入《禁用目录》,满足监管工作的需要,切实保障消费者的使用安全。二是科学规范的原则。在充分考虑当前化妆品相关学科领域科研成果的基础上,参考国内外权威机构对原料的命名原则要求,对部分原料名称进行修改完善,力求科学规范。三是与时俱进的原则。根据化妆品技术研究进展和化妆品监管工作需要,对《禁用目录》内容进行修订和补充。三、制定要点《禁用目录》以《化妆品安全技术规范》(2015版)第二章化妆品禁限用组分的内容和体例为基础,结合评估结果、近期国际和国内化妆品安全监管的要求及变化,参考相关规范性文件编写而成。一是参考最新的评估结果,按从严原则,《化妆品安全技术规范》(2015版)中的限用、准用组分表或《已使用化妆品原料名称目录》中的评估结论认为可能存在安全风险的物质,纳入至《禁用目录》。二是针对近几年化妆品安全监管工作中发现的问题,为严厉打击不法企业添加禁用目录中具体药物名称外的药物,对易发生非法添加进而凸显化妆品功效的抗感染药物、激素和抗组胺药,不仅限于原目录中的具体名称,进行类别管理。三是规范部分禁用原料名称及内容。四是规范部分禁用植物原料名称。四、主要内容(一)新增17种化妆品禁用原料一是参考国际法规相关规定,结合我国对《化妆品安全技术规范》(2015版)限用、准用组分列表和《已使用化妆品原料名称目录》中部分已收录原料的评估结果,将可能存在安全风险的原料纳入《禁用目录》。例如,3-亚苄基樟脑、新铃兰醛、万寿菊花(TAGETES ERECTA)提取物、万寿菊花(TAGETES ERECTA)油、2-氯对苯二胺、2-氯对苯二胺硫酸盐、硼酸、硼酸盐、四硼酸盐和其他硼酸盐类和酯类、过硼酸钠、甲醛、多聚甲醛、二氯甲烷等。二是根据我国安全评估结论,将在化妆品中使用可能存在安全风险的原料纳入《禁用目录》,如非那西丁等。三是参考其他国家或地区的法规调整,结合我国的评估情况,考虑其可能存在安全风险,新增纳入《禁用目录》,例如苔黑醛、氯化苔黑醛、苄氯酚、环己胺、咪唑等。(二)修订13种化妆品禁用原料一是对部分原料名称进行规范,如“抗生素类”修改为“抗感染类药物”等。二是补充部分禁用原料的CAS号,如右丙氧芬、地芬诺酯、石棉、氢醌、羟苯异丙酯及其盐、羟苯异丁酯及其盐、羟苯苯酯、羟苯苄酯、羟苯戊酯、短杆菌素等。三是补充部分禁用原料的EC号,如联邻甲苯胺基染料等。四是对部分原料的CAS号勘误,如常压塔处理的残液(石油)等。(三)按照技术法规文件要求对文字内容进行调整规范考虑到下一步《禁用目录》将作为单独的技术法规文件或者强制性国家标准进行发布,有必要对《化妆品安全技术规范》(2015版)载明的禁用组分表1和表2的内容和体例进行调整规范,将原禁用组分中引用的部分在新《禁用目录》里进行相应调整。例如将“表1”改为“本表”, “表2”改为“化妆品禁用植(动)物原料”,“表3”改为“化妆品限用组分”,“表4”改为“化妆品准用防腐剂”,“表6”改为“化妆品准用着色剂”,“组分”改为“原料”。(四)将禁用药物成分进行分类合并参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的药物成分进行分类合并,将三溴沙仑、抗生素、二氢速甾醇、乙硫异烟胺、呋喃唑酮、酮康唑、甲硝唑、呋喃妥因、磺胺类药物(磺胺和其氨基的一个或多个氢原子被取代的衍生物)及其盐类、甲巯咪唑等合并为抗感染类药物;将溴苯那敏及其盐类、氯苯沙明、苯海拉明及其盐类、多西拉敏及其盐类、羟嗪、曲吡那敏等合并为抗组胺药;将甾族结构的抗雄激素物质、肾上腺素、糖皮质激素类(皮质类固醇)、雌激素类、孕激素类、具有雄激素效应的物质等合并为激素类。(五)修订27种禁用植(动)物原料一是规范原料名称。将禁用植(动)物组分表2中名称不规范的原料名称进行统一调整规范,如将“八角科八角属植物(八角茴香除外)”调整为“五味子科八角属植物(八角除外)”。二是规范原料命名格式。调整植物组分(属)的拉丁文学名或英文名的格式为“属(科)拉丁名”,如“羊角拗类”调整为“夹竹桃科羊角拗属植物”。 调整植物组分(种)的拉丁文学名或英文名的格式为“拉丁名(部位/描述/英文名)”,如土木香根油、无花果叶净油、月桂树籽油。三是统一原料拉丁文学名或英文名。若植物原料(种)有多个拉丁文学名或英文名,将其学名(正名)放首位,异名后置,异名格式对属名+种加词,并用synonym标记,如魔芋、威灵仙、铃兰、藤黄等。参考中国植物志,若植物原料(种)的中文名称对应多个拉丁文学名的,各拉丁文学名所述并非同一种植物原料,则将其拆分,如魔芋、威灵仙、大风子、牵牛、商陆;若一个条目包括2种原料,也将其拆分,如芥、白芥。四是规范正名和异名。参考中国植物志,将植物原料(种)的中文名称和拉丁文学名均以学名(正名)表述,原名称为异名/俗名的原料,保留原名称并增加其学名(正名)。学名(正名)置于首位,异名/俗名后置,异名格式对属名+种加词,并用synonym标记。包括海芋、吐根及其近缘种、木香根油、野百合(农吉利)、茅膏菜、莨菪、夹竹桃、北五加皮(香加皮)、牵牛、补骨脂、除虫菊、一叶萩、(白)海葱、马鞭草油、白附子。五、需要重点说明的问题(一)药物成分分类管理参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的部分种类药物成分按种类进行合并,合并类别为抗感染类药物、抗组胺药和激素类,并将原分散于禁用组分表中的药物成分作为具体实例体现在合并后药物类别中。但类别药物的涵盖范围包括但不限于举例的药物成分,凡是属于该类别的药物成分,均属于该类药物的涵盖范围。(二)序号调整本次制修订工作涉及多个条目合并为一条(如类别药物,抗感染类药物、抗组胺药、激素类),也涉及一个条目拆分为多条(如魔芋、芥、白芥、威灵仙、牵牛、商陆)。为保证《禁用目录》的延续性,在原有的编号顺序基础上进行调整。将因合并而空出的序号删除;将因拆分而变多的原料赋予新序号,原序号删除。附件下载:附件1.xlsx附件2.xlsx附件3.xlsx附件4.xlsx征求意见反馈表.xlsx
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 出入境检验检疫行业标准制(修)订计划公布-2011年第三批
    北京、天津、河北、山西、辽宁、上海、江苏、宁波、福建、山东、广东、深圳、新疆检验检疫局、中国检验检疫科学研究院,各有关出入境检验检疫标准化专业技术委员会:   为有效落实质检总局2011年相关重点工作部署,保障食品接触材料、入境环保微生物检疫监管工作的顺利开展,经相关检验检疫标准化专业技术委员会审议推荐,并征求总局有关业务司局意见,我委研究确定了《2011年第三批出入境检验检疫行业标准制(修)订计划项目》(见附件)。为确保本批计划项目的有效实施和管理,现就有关事项通知如下:   一、对项目负责起草单位和参加单位的要求   (一)项目负责起草单位和项目负责人应根据计划及时安排工作,尽快成立标准起草小组,严格履行起草、验证、征求意见、送审等环节工作程序和要求,确保验证数据的真实可靠,务求意见征求过程广泛且具有针对性,高质量地完成标准制修订任务。在标准制修订过程中,项目负责起草单位应主动与主管业务司(局)和检验检疫标准化专业技术委员会做好沟通,使标准符合相关法律法规和业务管理的要求。   (二)多个单位共同承担的项目,由负责起草单位组织项目实施,并与参加起草单位做好沟通,建立必要的项目协调机制,明确各自的分工,协商解决相关技术问题 参加起草单位应积极与负责单位取得联系,派遣专家参加项目起草小组,承担起标准相关部分的起草工作。双方共同努力,切实发挥标准研制多方参与、优势互补的合力作用。   (三)项目负责起草单应做好对标准研制所需标准样品、试剂等基础核心物质供应情况的摸底调查和及早准备,防止因标准样品、试剂等缺乏造成标准研制时间后延或项目撤销情况的发生。   (四)项目负责起草单位应提供标准研制配套经费保障,确保标准研制各环节工作的顺利推进。   二、对各单位标准化管理部门的要求   (一)各负责起草单位标准化管理部门要加强对项目执行过程的管理,做好对项目进度、项目协调机制、人员参与情况、执行过程问题等的跟踪检查,遇有重大问题应及时向我委科技与标准管理部汇报 同时要为项目起草小组提供必需保障,确保其按时高质量的完成标准起草工作。   (二)各单位标准化管理部门应严格项目调整审查手续。在计划项目执行过程中,如项目确需调整,项目负责起草单位应填写《出入境检验检疫行业标准项目计划调整申请表》,所在单位标准化管理部门应认真审核后报送我委,同时通过检验检疫标准管理信息系统上报电子文档,并按照我委批复的意见执行。《出入境检验检疫行业标准项目计划调整申请表》的报送不得晚于项目完成时限之前三个月(以邮戳为准)。   三、对各有关检验检疫标准化专业委的要求   (一)各有关专业委应根据本专业项目实际,适时组织开展项目中期检查、预审或统稿工作,针对问题做好阶段性把关,并与业务工作做好有效衔接。   (二)请各有关专业委根据自身人员和业务实际,安排专人进行指导,跟踪项目起草的全过程,确保项目技术路线的准确性和起草质量。   (三)各有关专业委应根据本专业项目特点,对项目在征求意见环节需针对性征求意见的专家人选做出考虑,并及时与项目承担单位标准化管理部门做好协调。   四、其它注意事项   (一)专业委指导专家、项目负责人和参与单位之间应建立良好的项目协作关系,确保项目的进度和质量。专业委组织项目中期检查、预审或统稿工作时,应将参与单位纳入相关工作当中,切实发挥参与单位在制标过程中的作用。   (二)为扩大检验检疫标准化工作的影响力和服务力度,增强检验检疫行业标准的实用性和有效性,鼓励各项目负责起草单位吸纳有条件和能力、愿意共同参与标准制修订活动的科研院所、企事业单位参加项目起草小组的工作。   (三)标准制修订补助经费另行下达。   二○一一年九月一日   附件:2011年第三批出入境检验检疫行业标准制(修)订计划项目 序号 计划编号 项目名称 计划完成时间 负责起草单位 1 2011B421 入境环保微生物菌剂符合性检验规程 2013 辽宁检验检疫局 2 2011B422 入境环保微生物菌剂取样操作规程 2013 辽宁检验检疫局 3 2011B423.1 入境环保微生物菌剂检测方法 第1部分:地衣芽孢杆菌 2013 辽宁检验检疫局 4 2011B423.2 入境环保微生物菌剂检测方法 第2部分:短小芽孢杆菌 2013 辽宁检验检疫局 5 2011B423.3 入境环保微生物菌剂检测方法 第3部分:巨大芽孢杆菌 2013 辽宁检验检疫局 6 2011B423.4 入境环保微生物菌剂检测方法 第4部分:嗜酸氧化亚铁硫杆菌 2013 辽宁检验检疫局 7 2011B423.5 入境环保微生物菌剂检测方法 第5部分:副溶血性弧菌 2013 辽宁检验检疫局 8 2011B423.6 入境环保微生物菌剂检测方法 第6部分:金黄色葡萄球菌 2013 辽宁检验检疫局 9 2011B423.7 入境环保微生物菌剂检测方法 第7部分:沙门氏菌 2013 辽宁检验检疫局 10 2011B423.8 入境环保微生物菌剂检测方法 第8部分:志贺氏菌 2013 辽宁检验检疫局 11 2011B423.9 入境环保微生物菌剂检测方法 第9部分:致泻大肠埃希氏菌 2013 辽宁检验检疫局 12 2011B423.10 入境环保微生物菌剂检测方法 第10部分:淡紫拟青霉 2013 辽宁检验检疫局 13 2011B423.11 入境环保微生物菌剂检测方法 第11部分:恶臭假单胞菌 2013 辽宁检验检疫局 14 2011B423.12 入境环保微生物菌剂检测方法 第12部分:哈茨木霉 2013 辽宁检验检疫局 15 2011B423.13 入境环保微生物菌剂检测方法 第13部分:黄孢原毛平革菌 2013 辽宁检验检疫局 16 2011B423.14 入境环保微生物菌剂检测方法 第14部分:焦曲霉 2013 辽宁检验检疫局 17 2011B423.15 入境环保微生物菌剂检测方法 第15部分:解淀粉芽孢杆菌 2013 辽宁检验检疫局 18 2011B423.16 入境环保微生物菌剂检测方法 第16部分:类产碱假单胞菌 2013 辽宁检验检疫局 19 2011B423.17 入境环保微生物菌剂检测方法 第17部分:恶臭假单胞菌 2013 辽宁检验检疫局 20 2011B424 出口食品接触材料检验规程 高分子材料类 2012 山东检验检疫局 21 2011B425 出口食品接触材料检测方法 纸、再生纤维材料 亚甲基双硫氰酸酯迁移量的测定 液相色谱-质谱法 2012 中国检科院 22 2011B426 出口食品接触材料检测方法 糯米纸 聚乙烯醇(PVA)含量的测定 紫外-可见分光光度法 2012 新疆检验检疫局 23 2011B427 出口食品接触材料检测方法 水性食品模拟物中甲醛的测定 液相色谱法 2012 山西检验检疫局 24 2011B428 出口食品接触材料检测方法 高分子材料 橄榄油中邻苯二甲酸酯迁移量的测定 GC-MS法 2012 宁波检验检疫局 25 2011B429 出口食品接触材料检测方法 纸、再生纤维材料 硼酸盐的测定 2013 上海检验检疫局 26 2011B430 出口食品接触材料检测方法 纸、再生纤维材料 烷基酚的测定 2012 中国检科院 27 2011B431 出口食品接触材料检测方法 纸、再生纤维材料 多环芳烃的测定 2013 深圳检验检疫局 28 2011B432 出口食品接触材料检测方法 木质材料 软木塞中氧化残余物的测定 碘量滴定法 2012 福建检验检疫局 29 2011B433 出口食品接触材料安全卫生技术规范 2012 山东检验检疫局 30 2011B434 出口食品接触材料检测方法 高分子材料 食品模拟物中2,4,4'-三氯-2'-羟基二苯醚(三氯生)的测定 2013 北京检验检疫局 31 2011B435 出口食品接触材料检测方法 高分子材料 食品模拟液中2,4-二羟基二苯甲酮的测定 2012 江苏检验检疫局 32 2011B436 出口食品接触材料检测方法 高分子材料 食品模拟液中 2-羟基-4-甲氧基二苯甲酮的测定 2012 江苏检验检疫局 33 2011B437 出口食品接触材料检测方法 高分子材料 双酚A的测定 酶联免疫法 2012 上海检验检疫局 34 2011B438 出口食品接触材料检测方法 高分子材料 N,N-二(2-羟乙基)烷基酰胺(C10-C18)的检测 液相色谱/质谱法 2013 河北检验检疫局 35 2011B439 出口食品接触材料检测方法 高分子材料 N,N'-二(2,6-二异丙基苯基)碳二亚胺的检测 液相色谱/质谱法 2013 天津检验检疫局 36 2011B440 出口食品接触材料 高分子材料 2,4-二氨基-6-苯基-1,3,5-三嗪含量的测定 2012 江苏检验检疫局 37 2011B441 出口食品接触材料检测方法 高分子材料 食品模拟物中BPA、BADGE、BFDGE及其羟基的测定 液相色谱-质谱法 2012 山东检验检疫局 38 2011B442 出口食品接触材料检测方法 再生纤维素薄膜 涂层中溶剂残留量的测定 2012 广东检验检疫局 39 2011B443 出口食品接触产品 刀具和凹形餐具 第1部分:准备食物用刀具的要求 2012 北京检验检疫局 40 2011B444 出口食品接触产品 刀具和凹型餐具.第2部分:不锈钢和镀银餐具的要求 2012 北京检验检疫局
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制