当前位置: 仪器信息网 > 行业主题 > >

硼氘化锂

仪器信息网硼氘化锂专题为您提供2024年最新硼氘化锂价格报价、厂家品牌的相关信息, 包括硼氘化锂参数、型号等,不管是国产,还是进口品牌的硼氘化锂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硼氘化锂相关的耗材配件、试剂标物,还有硼氘化锂相关的最新资讯、资料,以及硼氘化锂相关的解决方案。

硼氘化锂相关的资讯

  • 上海市分析测试协会立项《氘化铝锂同位素丰度的测定》等2项团体标准
    各会员单位及有关单位:根据《中华人民共和国标准化法》、《团体标准管理规定》和《上海市分析测试协会团体标准管理办法》规定,在相关部门指导下,结合行业发展需要,上海市分析测试协会对《氘化铝锂同位素丰度的测定》、《锂电池电解液成分检测》2项团体标准进行了立项审查,经相关专家审议,上述所申报的2项团体标准符合立项条件,批准立项,现予以公告(详见附件)。请各制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准制定的质量和水平,增强标准的适用性和有效性。同时,欢迎有关企业和机构加入团体标准的起草编制工作。联系人:钱相如电话:15751007487邮箱:1318155546@qq.com上海市分析测试协会2024年2月6日上海市分析测试协会关于《氘化铝锂同位素丰度的测定》等 2 项团体标准立项的公告.pdf
  • 硫化锂电池原位电镜表征与循环稳定性调控研究获进展
    p   随着社会和科技的发展,人类对电化学储能技术的需求日益增加,新兴储能系统——锂硫电池具有理论容量高、成本低、环境友好等优点,备受国内外研究者的关注。而研发高容量锂硫电池正极材料,对推动新能源动力汽车、便携式电子设备等领域的发展至关重要。 /p p   硫化锂(Li sub 2 /sub S)材料理论容量高达1166 mA h g sup -1 /sup ,是其它过渡金属氧化物和磷酸盐的数倍 其首次脱锂充电过程中所发生的体积收缩能给后续的嵌锂放电反应提供空间,保护了电极结构不受破坏 其可与非锂金属负极材料(诸如硅、锡等)组装电池,有效避免锂枝晶形成等问题所带来的安全隐患,是极具发展潜力的锂硫电池正极材料。然而,该材料电子/离子导电率低,反应中间产物多硫化物在电解液中的溶解引发穿梭效应等问题,限制了其在锂硫电池中的实际应用。 /p p   近日,中国科学院苏州纳米技术与纳米仿生研究所张跃钢课题组自主研发设计了原位扫描/透射电镜电化学芯片,实现了其对硫化锂电极充电过程的实时观测 在充分理解Li sub 2 /sub S充放电机理的基础上设计了高氮掺杂石墨烯负载硫化锂材料作为电池正极,并通过控制充电容量和电压,显著提升了Li sub 2 /sub S的容量利用率及循环寿命,相关成果发表在Advanced Energy Materials 杂志上。 /p p   研究人员为提高锂硫电池的容量利用率和循环寿命,通常会将硫填充至具有高比表面积和高导电性的多孔材料中(如:碳纳米管,多孔碳,石墨烯和碳纤维等)。张跃钢课题组在前期研究工作中发现氧化石墨烯上引入氮掺杂官能团,不仅可以有效减少多硫化物在电解液中的溶解,而且可优化多硫化物在沉积过程中的分布(Nano Letters,2014, 14, 4821-4827)。为了更好地改善Li sub 2 /sub S的容量利用率以及循环寿命,该团队利用原位表征技术研究了Li sub 2 /sub S溶解和再沉积机理,进而提出将最初活化电池电压调控到3.8 V,然后通过控制电压(1.7~2.4 V)和充电容量可有效阻止长链可溶性多硫化物的形成,该充放电调控方法让电极在充电过程中保留了一部分不可溶的Li sub 2 /sub S作为种子,使得Li sub 2 /sub S材料能够有效地活化和均匀地再沉积。此外,该研究通过在氮化处理前的氧化石墨烯表面包覆葡萄糖,有效增加了石墨烯的折皱率和弯曲率,进而为多硫化物提供了更多的负载位点 反应过程中利用氨水和高温氨气热处理的方法使得氮掺杂量提高至12.2% 该高氮掺杂石墨烯材料不仅具有高导电性,其表面氮官能团更能有效减少多硫化物的溶解,优化Li2S的均匀分布。利用该高氮掺杂石墨烯-Li2S复合正极材料所制备的锂硫电池在2000圈(1C)循环后其容量仍能保持318 mA h g sup -1 /sup (按硫元素重量折算为457 mA h g sup -1 /sup ),3000圈(2C)循环后仍能保持256 mA h g sup -1 /sup (按硫元素重量折算为368 mA h g sup -1 /sup ),是迄今为止所报道的最长循环寿命。 /p p   该研究工作首次利用了新开发的原位扫描电镜和原位透射电镜芯片技术实现了对硫化锂电极充电过程的实时观测,并在研究 /p p   Li sub 2 /sub S充放电机理的基础上,开发新的电压-容量调控机制,设计了一种新型的高氮掺杂负载硫化锂的电极材料,为高能量的Li sub 2 /sub S-C /Li 电池的应用打开了广阔的应用前景。 /p p   该项研究工作得到了国家自然科学基金重点项目、中国科学院千人计划人才专项的大力支持。 /p p    a href=" http://onlinelibrary.wiley.com/doi/10.1002/aenm.201501369/epdf" target=" _self" title=" " 原文链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201510/noimg/3d4cdfa8-d284-4598-81b3-9799a4671568.jpg" title=" 00000.jpg" / /p p   负载于单层石墨烯电极表面的Li sub 2 /sub S材料在LiTFSI-DOL/DME电解液中活化过程的原位观测SEM图 /p
  • 华立药业突遭停牌 或“专注”仪器仪表业
    中国证券网讯 2010年3月25日凌晨消息,华立药业的突然停牌再度激起了外界对其资产整合的憧憬。   毫无征兆之下,深交所昨日开盘前突发公告,因华立药业发生对股价可能产生较大影响、没有公开披露的重大事项,经公司申请,华立药业自开市起停牌。对此,华立药业今日正式对外披露称,公司正在筹划对经营有重大影响的重大事项,因该事项目前处于磋商阶段,尚无法详细披露相关信息,故公司股票将从24日起停牌,预计在本月29日披露相关事项并复牌。   “作为华立系‘三驾马车’之一,华立药业如何对旗下资产进行整合一直是投资者关注焦点,而从公司今日表述来看,其所运作的极有可能就是该事宜。”一位长期关注华立药业的分析人士对此称。   除华立药业外,由自然人汪力成实际控制的华立系还拥有昆明制药和武汉健民两家上市公司的控股权。但由于华立药业与昆明制药的青蒿素业务有部分重合且战略目标相似,所以市场一直预期两者可能会进一步整合,即通过资源整合在做强青蒿素产业的同时,也以此避免同业竞争。   华立药业此番筹划重大事项也并不令人意外。记者注意到,华立药业去年5月因股价异动向控股股东进行核实时,华立方面当时便回复称其自2005年以来就存在对下属青蒿素产业进行整合的初步意向,但一直未有实质进展。而更意味深长的是,华立集团去年8月曾从其子公司华芳医药(即华立药业原控股股东)处收购了上市公司23.52%股权,进而“直控”华立药业。华立集团随后在其发布的权益报告书中更是明确表示,集团不排除在未来12个月对华立药业资产和业务进行进一步整合、调整的可能性。   上述分析人士进一步表示,按照当前发展趋势,“华立系”以昆明制药作为青蒿素业务整合平台具有较大可能性,而华立药业或将专注于发展仪器仪表等其他产业。   的确,参照华立药业2009年年报,仪器仪表业务去年为公司贡献了10.12亿元的营业收入,而青蒿素及其药品销售所创造收入则均不足亿元,华立药业预计今年医药业务仍然难以摆脱亏损局面。   此外,就在本次停牌之前,华立药业在今年2月曾与法国SAGEMCOM公司(其在宽频通讯、电讯及仪表等领域居领先地位)商谈过合作事宜,尽管合作最终“无果”,但华立药业大力发展仪表产业的决心由此可见一斑。
  • 这些仪器技术成果竟然出自俄国人
    俄罗斯作为中国最近的邻国,国土面积非常广阔。但是上个世纪苏联解体之后,俄罗斯的经济就一直处于低迷的状态,都赶不上日本。然而俄罗斯在科学技术领域的发展成就却是有目共睹,历年来荣获诺贝尔奖的科学家非常多的出自于俄罗斯。仪器技术也不例外,对此,本文盘点了那些出自俄国人的仪器技术成果。亚・普罗霍罗夫(Aleksandr M.Prokhorov,1916-2002)普罗霍罗夫1916年7月11日出生于澳大利亚昆士兰州艾瑟顿一个流亡的俄国革命工人家庭里,1923年回到祖国苏联,逝世于俄罗斯莫斯科。在他当研究生的1944年—1950年间,就建立了关于电子管振荡器中的频率稳定性理论,首次获得同步加速器中电子的超高额相干辐射,并开始了气体波谱学的研究。就在这些研究中,他萌发了研制分子振荡器的想法。1952年5月普罗霍罗夫和他的合作者巴索夫在全苏波谱学会议上提出了获得量子放大与振荡的可能性的报告。接着,在1954年10月出版的苏联《实验与理论物理》杂志上,他们发表的论文提出了一个具体方案。选用分子的转动能级,不同的转动能级其电偶极矩也不同。具有电偶极矩的分子束在不均匀电场中会发生偏转,所以处于不同转动能级的分子偏转程度有所不同。这样就可以把它们分开,使处于上能级的分子进入实验区。这样就人为地造成了粒子数反转状态,从而实现微波的放大和振荡。他们对氟化铯(CsF)分子两基态之间的跃迁进行理论估算,在《苏联科学院报告》上发表了“分子放大与振荡理论”的论文,应用量子力学进行理论分析。普罗霍罗夫与巴索夫和汤斯与肖洛在大约相同的时间内对微波激射器作出了开创性的工作。两组人思路基本相同,汤斯和肖洛首先在实验上获得成功,而普罗霍罗夫和巴索夫则首先奠定了理论基础。氨分子激射器作为第一个量子电子学器件,有其重要的历史意义。它制成后不久,就被做成氨分子钟,作为时间和频率的基准。但由分子束或气体制成的微波激射器波段有限,浓度低,功率小。还有待于继续发展。后来普罗霍罗夫把氨分子激射器的工作波长减小到亚毫米量级,把频率提高了一两个量级。从1955年起,普罗霍罗夫又把注意力转向顺磁共振微波激射器,他在几年内研究了一系列顺磁晶体的顺磁共振与弛豫特性,并于1958年获得了微波激射。1958年普罗霍罗夫和汤斯分别发表文章,指出光学中使用的法布里-珀罗标准具可用作从亚毫米波直到可见光波段的谐振腔。与微波谐振腔相比,这是一种开放式的腔。两块具有高反射率的半透镜对面放置,其间隔远大于波长。但入射电磁波从垂直于镜面的方向射入腔中后,在两镜面间来回反射,形成驻波,起着谐振腔的作用。在他们的理论指导下,两年后就发明了激光器。尼古拉巴索夫(Николай Геннадиевич Басов,1922-2001)巴索夫1922年12月14日出生于俄罗斯的乌斯曼,父亲是一位大学教授。巴索夫于1941年在优龙涅什中学毕业。卫国战争中在部队服役。1946年进入莫斯科机械学院,1950年毕业。从1948年起,巴索夫就在苏联科学院列别捷夫物理研究所振动实验室任实验员,大学毕业后继续在该研究所工作,并升任工程师,1956年获得博士学位,1963年,任该所新建立的量子电子学实验室主任,兼莫斯科工程物理学院(原莫斯科机械学院)教授。普罗霍罗夫与巴索夫联名发表的两篇有关微波激射器的开创性论文,第一作者都是巴索夫,第二作者是普罗霍罗夫。可见,巴索夫在这项有历史意义的工作中起了何等的作用。当时巴索夫还未取得博士学位。巴索夫又一项重要的科学贡献是对半导体激光器的研究。早在第一台激光器问世以前,巴索夫在1959年就提出了半导体激光器的方案。在半导体上加上足够强的脉冲电场,在强电场作用下,大量原子通过碰撞而被电离,导带中的电子数及价带中的空穴数均急剧增多。当电场撤去后,在一定条件下,可以产生粒子数反转状态。1961年,巴索夫又提出p-n结注入式激光器的原理,发表于苏联《实验与理论物理》杂志上。他还导出了产生受激发射的条件。据此,好几个研究组在1962年先后制成了半导体激光器。巴索夫用砷化镓(GaAs)在77K下获得近红外光的受激辐射。这种类型的激光器后来得到不断的完善,改进了结构,降低了阈值电流,提高了效率,压缩了激光线宽,特别是使其能在室温下工作。到了70年代后期,已逐渐形成了在应用上大发展的局面。成为当前应用最广的一种半导体激光器。巴索夫倡导激光引发热核聚变,在1962年苏联科学院主席团会议上,以及在1963年巴黎国际量子电子学大会上,他都提出了这个建议。他一方面研制大功率的激光器和研究靶技术;另一方面深入了解产生这种效应的物理条件。1968年,实现了用强激光照射氘化锂(LiD)靶,首次发现从靶中产生出了中子。巴索夫还致力于寻求新的原理与途径以产生大功率激光。从1962年起,他和他的合作者在化学激光器方面进行了深入研究,制成大功率脉冲和连续的氟化氢化学激光器、大功率纳秒脉冲光解离碘激光器、用电离的新型高气压气体激光器和准分子激光器。他们在信息的光学处理方法、激光稳频、激光频标、激光诱发化学反应、金属表面的激光涂层与固化等方面都有重要工作。在非线性光学方面,产生激波的爆发性化学激光器方面,巴索夫都起到了先驱者的作用。茨维特(Mихаил Семёнович Цвет,1872-1919)1896年获日内瓦大学哲学博士学位后,全家移居俄国。1901年获喀山大学植物学学士学位。1902年任华沙大学讲师,1907年任兽医学院教授,1908年任华沙理工大学教授。茨维特应用化学方法研究细胞生理学。1900年他在树叶中发现了两种类型的叶绿素:叶绿素a和叶绿素b,后来又发现了叶绿素c,并分离出纯的叶绿素。他最重大的贡献是发明分析化学和有机化学中极重要的实验方法——色谱法。他的第一篇关于色谱法的论文发表在1903年华沙的《生物学杂志》上。1906~1910年的论文都发表在德国的《植物学杂志》上。在这几篇论文中,他详细地叙述了利用自己设计的色谱分析仪器,分离出胡萝卜素、叶绿素和叶黄素。由于他的论文发表在不大知名的期刊上,所以当时没有引起化学界的注意。直到1931年,R.库恩才发现茨维特所发明色谱法的重要性,此法才得到普遍的推广和应用。此外,还有创建第一个光电探测器把光电子的能量转换成电能的亚历山大• 斯托列托夫,发明orbitrap的Makarov也都是俄国人。
  • 热烈庆祝GBC公司华丽换装
    春风起,换新衣,热烈庆祝GBC公司华丽换装!GBC此次换装,必将给我们带来一次全新享受的视觉盛宴,同时,换装后的GBC 站在了新的起点,必将给我们带来更好的产品及服务品质。让我们祝福它吧,祝福它勇攀高峰、祝福它前景辉煌!慕尼黑见!Analytica Stand No:Hall B2, Booth 114关于我们北京东西分析仪器有限公司,拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 海能新品华丽亮相,高仪展上再领风骚
    5月23日至25日,2012年春季全国高教仪器设备展示会(高仪展)在美丽的&ldquo 冰城&rdquo 哈尔滨拉开了帷幕,海能公司携FS系列快速检测仪、F系列智能高低温循环水器、元素分析系列、物理光学系列、分光光度计系列、样品前处理系列、氮吹系列等仪器产品,华丽亮相此次展会。   来自国内外近千家国际厂商、全国各地业内知名企业各携得意之作汇聚于此,竞相争艳。身为民族仪器阵营的强力品牌,海能特意准备了刚刚在CISILE 2012上发布的两大明星系列产品:FS系列快速检测仪和F系列智能高低温循环水器。它们的出现让来到海能展位的参观客商眼前一亮,纷纷索要资料,资讯相关信息,让展位服务人员立刻进入了&ldquo 超频&rdquo 状态。通过体验式接触和热情的沟通,客商对海能品牌和产品都给予了高度的评价和广泛的认可。   海能一直追求高品质的产品和完美的服务,产品的生产工艺和质量检验均通过严谨的ISO标准化管控,保障了海能仪器的精湛品质。优秀的技术支持是我们坚实的后盾,业内首家引入4S模式,把专业的服务做到用户身边。
  • 军工的传承 国家的栋梁——第三届“阿达玛斯”学术论文奖优秀课题组专题报道
    引言:阿达玛斯学术论文奖——中国科学精英励志计划,从第一届到第三届,越来越多的科研精英们加入到这个计划中来,鼓励创新,给科研精英科研团队更多的展示机会,促进跨学科交流互助,这是我们坚持活动的初衷。 第三届“阿达玛斯学术论文奖”落下帷幕,优秀课题组专题报道正式开篇。今天我们要介绍的是本届论文奖新设奖项“人气团队奖”得主——中国科学技术大学化学系傅尧教授课题组。在正式介绍之前,我们先来回顾下,在网络评选时,网友是怎么发声的: ......看来已经是一方名人,并且群众感情基础着实深厚呢!团队介绍 生物质洁净能源重点实验室依托中国科学技术大学。中国科技大学自九十年代开始进行生物质能源研究,2001年在校内跨学科成立了生物质洁净能源实验室,由朱清时院士任实验室主任。 安徽省生物质洁净能源重点实验室自成立以来,本着围绕国家和地方“加强生物质能源开发”的战略目标、瞄准生物质能源的科学前沿的建所宗旨,以中国科技大学为依托,整合了校内化学、化工、生物、能源和材料等相关学科的科研力量,联合了省内外其它高校、科研院所和相关企业的研发资源,形成了以生物能源基础理论与应用技术研究为主的完整的科研体系,开展了一系列关于生物质的结构、生物质的热化学气化、生物质的微生物转化、生物质的产品化、生物质催化转化为甲醇等液体燃料、和生物质固态燃料电池等的基础理论与应用技术研究。研究成果 傅尧教授及其团队在生物质基平台分子例如烯烃的转化方面开展了较为系统和深入的研究工作。 烯烃是有机合成化学中极为重要的一类合成分子,也是重要的生物质基平台分子。烯烃的来源非常广泛,价格低廉,容易获得,并且品类丰富。简单烯烃既是石油化工行业的原料也是产品。例如,最为简单的却也最为大宗的乙烯气体,来源于蒸汽裂解。乙烯气体在石化行业,转化成为更高级的烯烃、聚乙烯材料以及多种多样的化学品。从另一个角度考量,烯基官能团也广泛存在于天然产物中,往往这些天然产物也富含大量的其他官能团以及复杂的结构。烯烃能够吸引有机化学家的,不光是他丰富广泛的来源。烯烃的化学性质也着实让有机化学工作者着迷,烯烃有着大量的合成转化途径或方式。一些特殊的过渡金属催化剂或催化体系可以活化烯烃的双键,从而发展了诸多优秀且实用的反应。著名的例子包括wacker氧化反应,烯烃复分解反应,烯烃的氢甲酰化反应,以及heck反应等,这些反应为实验室或工业中合成复杂的有机分子提供了有效的手段和途径。一. 镍催化烯烃与烷基或芳基亲电试剂的还原偶联反应 傅尧教授及其团队实现了镍催化烯烃与烷基或芳基碳亲电试剂的还原偶联反应。该工作展示了烯烃氢碳化反应及其在复杂分子修饰方面的应用,所提出的“以烯烃替代传统有机金属试剂”的概念为金属催化交叉偶联反应开拓了新的思路,为烯烃的直接利用提供了新的途径。在硅烷的参与下,烯烃扮演了烷基金属试剂等价物的角色,参与碳碳键成键反应。以廉价、易得、相对稳定的烯烃,替代传统有机金属试剂,不仅是新颖的概念,更是实用的方法:克服了金属试剂来源、储存以及操作方面的困难。同时,该反应具有出色的官能团兼容性,能够用于复杂天然产物的修饰:诸如,维生素d2的高化学选择性修饰和奎宁的果糖侧链修饰等。这一研究成果发表在《nature communications》上。 原文链接:http://www.nature.com/ncomms/2016/160401/ncomms11129/full/ncomms11129.html二. 配体调控的铜催化区域选择性可控的烯烃硼化烷基化反应 傅尧教授及其团队发展了一例铜催化配体调节的区域选择性可控的烯烃硼化烷基化反应,研究成果发表在德国应用化学杂志(angew .chem. int. ed., 2015, doi: 10.1002/anie.201506713),并在同行评审中被评为vip(very important paper)论文。 从简单易得的原料出发快速高效地构建复杂分子和对多组分反应体系中复杂的选择性进行有效调控一直以来都是有机合成化学中的重要挑战。该方法在铜催化的条件下,实现了从商业可得的烯烃、频哪醇联硼酯和烷基卤素出发一步合成具有复杂结构的烷基硼酯的反应(图1)。在该反应中,通过对配体结构的微调,可以实现对反应区域选择性的高度控制(两种选择性可分别高达23:1和1:13)。此外,该工作还通过设计利用烯烃分子的螯合作用促进烯烃硼化加成的策略,有效地解决了三组分反应中复杂的化学选择性问题。 图1 配体调节的区域选择性可控的烯烃硼化烷基化反应 碳碳键作为生物界最基本的结构单元,其构建方法始终是有机化学家的重要研究方向。该工作提出的通过烯烃的加成-偶联反应构建c(sp3)-c(sp3)键的策略相对于传统的交叉偶联反应(如kumada反应),既避免了大量敏感的烷基金属试剂的使用,又在构建碳碳键的同时引入烷基硼。而烷基硼作为有机合成中重要的合成中间体,可以高效地转化为醇、胺、氟、芳杂环等重要官能团。由此可见,该工作为构建c(sp3)-c(sp3)键提供了一种新的绿色高效的方法。此外,作者证明了其使用的区域选择性可控的“配体对”(xantphos & cy-xantphos)对烯烃的硼氘化反应和硼胺化反应同样适用,这为区域选择性可控的烯烃硼化双官能化反应提供了一对通用的配体。 该论文的共同第一作者为中国科学技术大学化学与材料科学学院博士生苏伟和博士后龚天军。这项研究得到国家973计划(2012cb215306)和国家自然科学基金 (21325208, 21172209, 21361140372)等项目资助。原文链接:http://onlinelibrary.wiley.com/doi/10.1002/anie.201506713/abstract团队/实验室风采团队黄山行 中试生产线双相固体酸连续催化脱水装置制备5-羟甲基糠醛空气氧化装置制备呋喃二甲酸酯化装置制备呋喃二甲酸二甲酯二酯精华装置制备高纯制备呋喃二甲酸二甲酯期望合作领域生物质平台分子转化利用:1)羧酸脱羧及相应偶联反应研究2)烯烃的转化利用3)多元醇的转化利用如有深度交流或合作意向,敬请联系我们:marketing@titansci.com不忘初心,只因感动!
  • Fisher Scientific 网上商城华丽登场
    Fisher Scientific网上商城华丽登场——登录商城并成功注册,赢取iPhone4手机! 想足不出户检索来自全球制造商的六万多种实验室产品详细资料,并选购产品吗?想获得更多优惠,享受成本价购买世界顶级品牌产品吗?想体验与美国客户同样的网上购物乐趣吗? 2011年6月7日,Fisher Scientific网上商城(www.fishersci.com.cn)上线正式运行,为您打造一个全新的实验室产品购物平台!商城建立在独立的B2C电子商务平台之上,通过此平台可以检索到来自全球制造商的六万多种实验室产品及详细产品资料,只需点击鼠标便可轻松下单,简化下单流程,大幅降低操作成本。在这里,可以实现: 即时库存查询; 产品价格和详细信息查询; 常规产品清单和模板定制; 购物篮实时查询; 通过检索结果快速订购。 更有最新的促销活动:活动一:Fisher Scientific Isotemp加热磁力搅拌器特价订购活动活动详情: 凡成功在线下单的客户,均可凭优惠代码享特价购买Fisher Scientific Isotemp加热磁力搅拌器; 货号 目录价 特价 1110250SH ¥2937.07 ¥1574.20 11102101SH ¥4457.42 ¥2389.00 活动二:iPhone4手机幸运抽活动活动详情: 凡8月31日前成功在线注册的客户,均可参与每月一部iPhone4手机的幸运抽奖活动; 活动详情请垂询服务热线:400 881 5117,或登录网站www.fishersci.com.cn*本活动最终解释权归Fisher Scientific所有。
  • 环境监测工作如何华丽转身?
    “十一五”以来,我国各级环境监测站历经了近十年的黄金发展期,装备能力、人员力量、技术水平等取得长足进步,一些长期制约环境监测工作深入发展的瓶颈问题逐步突破。陈吉宁部长在环境保护部组织的“环评和监测工作创新”大讨论中希望改革激发创新活力,为环境监测新发展凝聚力量。结合工作实际,笔者认为,各级环境监测站应主动适应环保工作新形势,在加强环境质量监测、监督,巡视性监测和监测质量监督等方面有所作为。  加强对环境质量的监测与评价  环境质量逐步改善是环境保护工作的根本使命。新环保法规定各级人民政府对本行政区域的环境质量负责。但在目前,普遍采用环境质量各级人民政府自测、自评、自报的工作模式,还是一种绩效的自我评估和审查,不仅在科学性上不符合接受上级或第三方机构独立评估的原则,而且真实性也难以完全保证。  为此,对环境质量要增加和建立上一级环境监测机构不定期核查制度。也就是说,本级人民政府下属环保部门直属的环境监测机构要全面开展辖区内的环境质量监测,并将监测结果按要求报送上一级环境监测机构。上一级环境监测机构根据既定的现场核查计划,以及日常审核上报的监测数据,不定期赴现场开展核查。  这种模式,将环境质量自测与上级监督性质的现场核查结合起来,只要严肃使用现场核查结果,就能使环境质量绩效考核体系正常运转起来。  当务之急,各级环境监测机构应牢牢把握环境质量监测这条主线不动摇,守土有责,科学布设各种环境要素的监测点位,心无旁骛地做好本级环境质量监测,主动接受上级环境监测机构的日常监督和不定期检查,排除来自本级领导的行政干预,如实反映环境质量现状。  加强污染源监督性和巡视性监测  新环保法明确了企事业单位达标排放的主体责任和环保部门的监督责任。企事业单位对自身的排污行为负责,并开展自行监测 环保部门应加强对辖区内各类污染源的统一监管。在此制度设计下,各级环境监测机构要承担起污染源监督性监测这项法定职责。新环保法的有效实施需要配套严格、严谨的监督性监测来保驾护航。  总体上,对排污企事业单位的监督性和巡视性监测正走向正轨,但是频次还不高,威慑力还不够大。环保部门直属环境监测机构要实现业务转型,应安排更多的技术人员开展对排污企事业单位的监督性和巡视性监测。  开展第三方检测公司技术监督  随着环境监测服务社会化深入推进,许多原来由各级环境监测站承担的监测业务都通过政府购买服务的方式委托给有资质的第三方检测公司来承担。这些监测业务,原来都在各级环境监测站施行多年、较为成熟的质量管理体系下运行,有长期技术积累和声誉口碑,总体来说质量是有保证的。  现在业务放开后,市场正处于一哄而上、鱼目混珠的状态,恶性竞争频发。可以说,运动员已上场但游戏规则还不成熟。裁判员一直未露面,场上出现的混乱局面在所难免。  随着市场化的监测业务领域不断扩大,加强监管迫在眉睫。环保部门要迅速开展有针对性的管理,并指导直属环境监测机构将技术监督及时跟进。例如,开展实验室监测项目的审查和技术认可 通过盲样考核、比对监测等手段评估第三方检测公司的工作能力 与第三方检测公司工作人员同赴监测现场,跟踪其监测全过程 仲裁对第三方检测公司的投诉等。对这块新增的业务,直属环境监测机构要配置力量,甚至成立专门的技术管理内设机构。  笔者认为,引入市场力量参与环境监测,使环保部门直属环境监测机构逐步退出涉行政审批和竞争性监测领域,可缓解现阶段人手不足与监测任务日益增长之间的矛盾,也有助于监测站回归公益性的本质。但这需要合理界定其事权,并足额提供相应的财力保障,从而维持监测队伍和能力的总体稳定,实现环境监测工作的华丽转身。各级环保部门直属监测机构也要勇于调整工作重心,主动有为,当好监测市场的技术裁判员和技术监管者。
  • HORIBA海外用户简讯|牛津大学开创单细胞水平微生物代谢研究新方法
    作者 | Sophie微生物在生态系统中扮演重要角色。研究微生物的技术手段多样,却各有利弊:测序技术、质谱和核磁共振结合技术多用于整体分析,能够获取微生物系统发育和宏基因组学特征信息,但掩盖了微生物群体中的高度多样性;二代质谱可以分析单个细胞,但对细胞有破坏且费用高昂。相比于以上的方法,基于稳定同位素的拉曼单细胞光谱方法可以实现对单细胞的无损标记。在此背景下,英国牛津大学工程科学系提出了新设想,即利用拉曼单细胞光谱结合氘同位素标记的方法研究氘化碳源在单细胞中的同化吸收。英国牛津大学(图片转自网络)相比于对C标记,对碳源中的H氘化这种方式,成本低,还能标记复杂底物。实验利用HORIBA共聚焦拉曼光谱仪获得单细胞光谱(SCRS),在2070-2300 cm-1谱段发现可区分的C-D振动带,且C-D带的强度与碳源氘化的程度成正比。实验证明了拉曼-氘同位素标记不仅可以指示微生物利用氘化碳源的代谢活动,还可以通过分析光谱揭示不同的代谢途径。利用低成本和多功能的氘化底物,拉曼-氘同位素标记在单细胞水平上探索代谢途径和功能上很有潜力 。更多研究详细信息可查阅:Analytical Chemistry,DOI: 10.1021/acs.analchem.7b03461或扫描二维码查看英文原文;如需了解该研究中的测试方法,请联系info-sci@horiba.com,我们的应用专家将乐于为您提供解答服务。免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 安捷伦超高惰性气相色谱柱系列新成员华丽登场
    用于农药分析和药物滥用检测的安捷伦超高惰性气相色谱柱系列新成员华丽登场 上海,2010 年9月15日——安捷伦科技公司(纽约证交所:A)今日在第五届慕尼黑上海分析生化展上宣布推出Agilent J&W DB-35ms超高惰性气相色谱柱,这是首个专为满足药物滥用检测和农药分析的独特需求而设计的中等极性色谱柱。Agilent J&W DB-35ms超高惰性气相色谱柱与现有的DB/HP-1ms和DB/HP-5ms非极性色谱柱共同成为超高惰性气相色谱柱家族的成员。 使用新型色谱柱便可为需要中等极性选择性的应用获得超高惰性,提高分离度。化学家可以通过选择具有正确选择性的色谱柱来定量含量更低的组分、获得更宽的线性范围以及优化分离度,从而提高生产力。 安捷伦化学部副总裁 Anne Jones 表示:“对整个分析领域来说,色谱柱惰性的重要性与日俱增。在我们的产品阵容中,中等极性超高惰性色谱柱的推出,再次印证了安捷伦为色谱行业不断提供创新色谱柱的承诺。” 整个 Agilent J&W 超高惰性产品系列提供了最为一致的色谱柱惰性和超低柱流失性,因此获得了更低的检出限和更准确的数据结果。每根色谱柱都使用了业内最为苛刻的测试混合标样进行测试,并且每个包装盒内都随附一张性能汇总表。化学家们可以坚信,这些色谱柱将满足最为严格的研究要求。 安捷伦是全球色谱仪器领域的领导者,提供各种类型、各种规格业内顶尖的气相色谱柱、样品前处理产品和消耗品。所有产品都由经验丰富的设计团队进行设计或选择,根据最严格的指标进行制造,并且在一系列苛刻的条件下进行测试。安捷伦的全部气相色谱产品能够确保仪器长期在最佳性能下运行,实验室获得最高效率。 关于安捷伦科技公司 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2009财政年度的业务净收入为45亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • 赛多利斯新型水分仪MA37、MA160华丽上市
    2014年6月28日赛多利斯中国在新国际博览中心举行的CPHI展会上为即将上市的新型水分仪MA37、MA160举行了隆重的新品发布会。外观上沿袭Secura、Quintix、Practum设计风格与色调,优雅、神秘而又科技感十足的两款新仪器华丽亮相。 MA37、MA160带给用户的体验可以概括为“只在弹指之间”,即弹指之间即可快速完成测定,而且操作简单可以将使用者的双手和大脑从繁复的条件摸索中解放出来。两款水分仪有几个新特点,可以概括为更高、更快、更强1. 更高:加热功率比之前提高了一倍2. 更快:因而测定时间也大大提高;3. 更强:两款水分仪均采用了与iphone\ipad一样的触摸屏,并采用交互式友好菜单设计,无需说明书,所有操作仅需轻轻滑动食指即可流畅完成。 新型水分仪特别是MA160,从用户使用更简单、方便的角度入手,配备了强大的功能:文件管理功能、方法开发助手、性能测试功能、样品工具、易清洁设计、状态指示灯等,因此不仅测试过程,从方法建立、数据管理到结果验证、维护清洗均可轻轻松松完成,一切只在弹指之间。 快速水分仪的应用十分广泛,可应用在食品、制药、化学、塑料及相关行业的质量控制和生产部门,因此耗材的使用寿命非常重要。赛多利斯新型水分仪采用的加热源不仅升温快速而且有非常长的使用寿命维护方便。新产品一经亮相就引起广大参观者的关注,展位上咨询和体验产品的用户络绎不绝,大家都期待着MA37、MA160能够尽早进入实验室成为工作上的得力助手。索取产品资料请给我们留言。赛多利斯集团是一家国际领先的实验室仪器、生物制药技术和设备的供应商。实验室产品及服务部为客户提供一流的实验室仪器如实验室天平、移液器和纯水设备、实验室耗材包括实验室过滤器和移液器吸头,以及优质的服务。生物工艺解决方案涵盖过滤、液体处理、发酵、细胞培养和纯化,并致力于生物制药行业过程控制。工业称重专注于对食品,化工和制药行业生产工艺过程中的称重、监控和控制。赛多利斯集团在欧洲、亚洲以及美洲都拥有自己的生产及研发机构,并已在全球110多个国家设立了办事处及代表处,总共拥有5,000多名员工。 赛多利斯中国 电话:400.920.9889 / 800.820.9889 传真:021.68782332 邮箱:info.cn@sartorius.com 官网:www.sartorius.com.cn
  • analytica China 2014同期研讨会华丽推出
    高水平的学术研讨会一直是analytica China的亮点和重点之一。analytica China 2014同期研讨会将从技术分享、行业预测等多方面着手,探讨包括分析化学、功能材料、高通量测序技术与应用、食品安全等多个议题,为参会者献上100余场专业报告,信息量巨大。除了保留了以往倍受好评的上海国际分析化学研讨会、蛋白质组学专题研讨会、LSAC生命科技论坛、系列专题讨论会和研习班外,在食品安全和材料检测方面也有众多创新和亮点值得关注。除此之外,主办方更有幸邀请到来自中国、德国、日本的行业领袖、知名企业代表担任演讲嘉宾,从不同角度分享行业的先进技术、发展趋势、市场需求等。   分析化学研讨会 关注我们身边的化学   由中国化学会主办的&ldquo 第七届上海国际分析化学研讨会&rdquo 将在上海新国际博览中心于慕尼黑上海分析生化展期间隆重召开。本届大会也得到了清华大学分析中心的大力支持,将围绕&ldquo 分析化学&mdash &mdash 我们身边的科学&rdquo 这一主题展开深入探讨,涉及领域涵盖环境、食品安全、制药与中医领域、生物学、蛋白质组学及代谢组学领域的技术与应用。作为展会的专业品牌大会,上海国际分析化学研讨会一直倍受展商和观众的好评,本届会议预计将吸引超过500名专家、学者及相关企业专业人士参会。   聚焦中欧市场 关注食品安全监控热点   在上届食品安全论坛成功召开的基础上,由慕尼黑展览(上海)有限公司与上海市食品学会共同主办的&ldquo 2014上海中欧国际食品安全研讨会&rdquo 也将华丽升级,关注中国和欧洲在食品安全领域上的差异和发展趋势,就食品安全新法规下的检测与控制技术这一主题展开讨论,在中国愈演愈烈的食品安全话题及背景下,备受广大展商和观众的期待和关注。来自欧洲和中国的专家、教授将为广大食品安全相关工作者讲授国内外最先进和前沿的食品安全检测技术和监控体系,中欧两国技术和思想的碰撞,将为您带来耳目一新的经验分享和启示,是一次与会者与国内外最优秀的科研及实践工作者以及相关领域的专家进行交流的难得机会。   拓展材料检测领域 引进功能材料国际盛会   针对展商和用户的需求及材料检测领域的发展需求,&ldquo 2014功能材料国际会议&rdquo 也将在analytica China 2014同期首次亮相,成为本届展会同期会议的又一大亮点。会议由国际材料联合会(IUMRS)、中国材料研究学会(C-MRS)及国家仪表功能材料工程技术研究中心(NIETRCFM)共同主办,重庆功能材料期刊社(FMPP)和慕尼黑展览(上海)有限公司承办,同时也得到了中国科学技术协会(CAST)、英国物理学会(IOP)、Maney Publishing和国家自然科学基金委(NSFC)的大力支持。功能材料会议也引起国内外著名的演讲嘉宾与各国参会代表的关注及积极的报名反馈,预计规模将达600余人。   慕尼黑上海分析生化展同期会议日程 主题 日期 主办单位 第七届上海国际分析化学研讨会(收费)Sep.24-25 中国化学会 德国慕尼黑国际博览集团 2014上海中欧国际食品安全研讨会(收费) Sep.25-26 上海市食品学会 德国慕尼黑国际博览集团 2014功能材料国际会议(收费) Sep.25-26 国际材料联合会(IUMRS) 中国材料研究学会(C-MRS) 国家仪表功能材料工程技术研究中心(NIETRCFM) &ldquo 组学与个性化治疗&rdquo 专题研讨会(收费) Sep.25-26 中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO) LSAC生命科技论坛:高通量测序技术与应用 Sep.25 生物谷 (www.bioon.com) 德国慕尼黑国际博览集团Tutorial I:气相色谱法培训 Sep.25 德国慕尼黑国际博览集团 Tutorial II:构建中心切割及全二维液相色谱系统(2D-LC)的理论背景和实践方法 Sep.24 德国慕尼黑国际博览集团 Tutorial III:样品制备技术及反相高效液相色谱法固定相的选择 Sep.25 德国慕尼黑国际博览集团 Tutorial IV:分析化学中的质量保证 Sep.25 德国慕尼黑国际博览集团   更多会议详情请访问我们的官网:http://www.a-c.cn/cn/conference.html
  • 上海凯来携新产品华丽亮相“2014 analytica China”
    2014年9月26日,为期三天的第七届慕尼黑上海分析生化展(analytica China)暨中国国际分析、生化技术、诊断和实验室技术博览会在上海新国际博览中心圆满闭幕。本届analytica China接待了来自29个国家和地区的695家参展商、以及来自世界各地的18,775名专业观众。展示包括分析仪器、测试测量、生命科学、生物技术、实验室建设、试剂耗材和通用实验室设备等在内的最新产品及应用。上海凯来实验设备有限公司(Hall3,No3536)作为致力于成为一个专业、灵活、周到的生命科学和化学分析实验室仪器供应商,携多款新产品华丽亮相analytica China。Cobalt RapID空间位移拉曼新一代的物料鉴别仪器,极大地扩展了对透明容器、不透明和有颜色的容器,甚至是多层纸质或塑料袋这类包装进行光谱鉴定的通量。可以快速、*的进行物料鉴别,只需几秒钟,无需繁琐费力的取样。Pion Rainbow在线光纤紫外监测系统采用光纤技术进行紫外在线检测,可与常规溶出仪或pion公司的微量溶出仪联用,在线实时监测样品溶出效果;覆盖整个紫外光谱范围(200-720nm),可编程数据收集,快至2s/次;8个浸入式探头均采用坚固的不绣钢材质;探头前端狭缝大小可调换,灵活,通用。ESI——全套自动进样方案专家ICP及ICPMS常用耗材及配件强大的元素线产品可以为客户提供更完美的样品处理和进样方案XRF Scientific 全自动电热熔样炉新一代全自动电热熔样炉,*温度1250°C,可以实现熔片“零”污染,快速、安全。颗粒产品线(贝克曼LS13320和DelsaMax全自动粒度测试仪、Alpine e200LS型气流筛分机、TylerRX-29振动筛、Haver EML digital plus数显振筛机等)德国Burkle专注于取样器、取样泵、塑料实验室器具,适用于实验室、工业及科研领域等。展会期间,凯来员工耐心详细地为客户讲解产品内容,并抓住一切可以利用的时间与厂家交流学习,进行技术培训和应用指导。本届analytica China展示了上海凯来丰富的产品线,同时也展现了上海凯来团队“团结互助、充满活力”企业风采。上海凯来是第六次参加慕尼黑展会了,每一次展会都见证了上海凯来的进步与成长,希望能通过更多的沟通平台给广大客户展示更多的新产品,提供更多有效的解决方案。未来,我们会在巩固好老产品的基础上,把更多的精力放在开发新产品上,为广大客户提供更好、更全、更卓越的解决方案和更优质的售后服务。关于凯来上海凯来实验设备有限公司成立于2004年,主要经营进口实验室仪器,总部位于上海张江高科,目前在北京,广州,重庆,杭州,南京,青岛,西安,合肥,长沙,武汉等地设有办事处,福建和辽宁设有联络点。 凯来最值得骄傲的地方,是拥有一支专业、年轻、充满活力的团队,员工都具备扎实的专业基础,认真负责的态度。我们的关注点不仅在于销售,更在于提供完善的售后服务与解决方案。 凯来致力于成为一个专业、灵活、周到的生命科学和化学分析实验室仪器供应商,以快捷的业务模式为每一个实验室客户提供性能卓越、质量可靠、价格合理的产品和服务。 更多信息请关注凯来公司官网:www.chemlabcorp.com
  • 使用Native MS和HDX-MS探究高阶蛋白复合物结构
    血红蛋白(Hb)是红细胞中的一种关键蛋白质,负责氧气的运输。它由α和β亚基组成,形成四聚体结构,通过氧合(relaxed)和脱氧(tense)状态之间的变构转变来实现氧气的运输。Hb作为一个重要的模型蛋白,广泛应用于蛋白质基础特性的研究以及包括质谱技术在内的分析化学方法的开发。研究中使用的Hb样品通常从化学公司购买(商业Hb)或从哺乳动物血液中新鲜提取(血液Hb),尽管理论上商业Hb和血液Hb都应该反映血红蛋白的天然活性和三维构象,但先前的电喷雾离子化质谱(ESI-MS)分析显示,这两种Hb来源的性质存在差异,这可能与商业Hb在制备过程中的变性有关。迄今为止,商业Hb和血液Hb之间的结构差异仅使用Native ESI-MS进行过研究。考虑到Native MS不同纯化方法(缓冲液置换、脱盐)对样品的影响,本文尝试使用氢/氘交换质谱(HDX-MS)对血液Hb和商业Hb中的血红蛋白复合物进行比较研究。与Native ESI-MS相比,HDX-MS对不挥发性盐的耐受性要高得多,这主要是由于肽段的脱溶剂效率高于完整蛋白质。在本研究中,作者直接对商业Hb和血液Hb进行了HDX-MS分析,得到的HDX-MS结果与Native ESI-MS数据非常吻合,证实商业Hb已广泛变性形成二聚体物质。对于Native ESI-MS,作者认为缓冲液置换方法对于检测结果具有一定的影响。图1和图2分别展示了血液Hb和商业Hb样品在经过不同次数的缓冲液置换后得到的Native ESI-MS谱图。由图1可见,血液Hb在经过1-5次缓冲液置换后,其质谱图谱从主峰为单体型信号逐渐转变为由二聚体和四聚体信号峰主导,表明缓冲液置换次数对样品结构的完整性有显著影响。图2表明商业Hb在0-4次缓冲液置换后,其质谱图谱从主峰为单体型信号逐渐转变为由二聚体信号主导,最终在四次置换后显示出二聚体为基峰,表明商业Hb在多次置换后更倾向于形成二聚体结构。图1.缓冲液置换(A)1、(B) 2、(C) 4和(D)5次后获得的血液Hb的ESI质谱图。红色符号αh, βa、D、Q分别代表单体全α亚基、单体apo-β亚基、二聚体αhβh和四聚体(αhβh)2离子。标有星号(*)的信号对应电流噪声。图2.缓冲液置换(A)0、(B) 1、(C) 2和(D)4次后获得的商业Hb的ESI质谱图。红色符号αh, βaox、D、D-h,(D-h)ox,Q代表单体全α亚基、氧化单体apo-β亚基、二聚体αhβh、二聚体αhβa、 氧化二聚体αhβaox和四聚体(αhβh)2离子。B和D的插图分别对应β的扩展峰βaox和(D-h)ox。单氧化、二氧化和三氧化物质表示为βaox/(D-h)ox+O, βaox/(D-h)ox+2O 和βaox/(D-h)ox+3O。标有星号(*)的信号对应电流噪声。由于Native ESI-MS分析的可靠性在很大程度上依赖于样品处理方法,因此有必要开发一种互补方法来分析高阶蛋白质复合物的完整性。作者采用HDX-MS来查看是否可以获得血液Hb和商业Hb样品的一致结构信息。图3展示了血液Hb和商业Hb的HDX-MS速率曲线。这些曲线显示了不同时间点上肽段的氘化水平,揭示了两种样品在结构上的显著差异。血液Hb的肽段氘化水平普遍低于商业Hb,特别是在α亚基的33-46及130-141段和β亚基的33-41及130-146段,这表明新鲜血红蛋白在这些区域的溶剂可及性较低,结构更稳定。相反,商业Hb在这些区域显示出更高的氘化水平,暗示其结构可能已经发生了部分解离,增加了溶剂可及性。 图3.血液Hb(绿色曲线)和商业Hb(红色曲线)酶切片段的HDX速率曲线。每个数据点报告三次试验的平均值,误差线表示三次试验的标准偏差。为了将HDX结果与Hb的三维结构相关联,将t = 180 min时两个Hb样品之间的氘代水平差异映射到天然氧合血红蛋白晶体结构(PDB:1LFQ)中,如图4所示。在 t = 180 min时,商业 Hb 的氘水平分别α 130-141和β 130-146比血液Hb高18.9%和26.6%。更高的氘吸收量意味着在这两个区域中商业Hb的溶剂可及性更高。α 130-141和β 130-146分别属于α 1α 2(图4A)和β1β2(图4B)界面。这两个链段中溶剂可及性的增加可能是因为天然四聚体(αhβh)2解离成二聚体αhβh亚复合物,这将导致α1α2和β1β2界面相互作用的破坏。这一推论与Native ESI-MS分析结果一致,即商业Hb的质谱基峰是二聚体信号(图2D),而血液Hb的质谱基峰是四聚体信号(图1D),进一步验证了商业Hb样品在制备和存储过程中可能经历了结构变化。图4.人氧合血红蛋白(PDB:1LFQ)的晶体结构,包括亚基(A)α1和α2,(B)β1和β2,(C)α1和β2,以及(D)α1和β1。根据t = 180 min时商业Hb和血液Hb之间氘代的百分比差异对结构进行着色。总的来说,本文通过Native ESI-MS和HDX-MS来表征商业Hb和血液Hb之间的差异。发现血液Hb主要保持四聚体结构,而商业Hb则主要表现为二聚体,且在商业Hb中观察到更多的氧化形式。这些发现强调了在进行生物医学研究前验证蛋白质高阶结构完整性的重要性,并展示了两种质谱技术在分析蛋白质结构变化中的互补性。
  • Fisher Scientific 中文版实验室产品目录华丽登场
    Fisher Scientific 中文版实验室产品目录华丽登场 (2008年4月3日,上海)— 服务科学,世界领先的赛默飞世尔科技公司(Thermo Fisher Scientific)在上海金茂君悦大酒店举行的为期三天的2008中国药业研发国际年会上宣布正式推出其著名的Fisher Scientific中文版实验室产品目录。赛默飞世尔中国区总裁Syed Jafry参加了活动并致词。客户渠道集团亚太区副总裁Spencer Todd 等向与会者介绍并展示了新的中文目录。Fisher Scientific实验室产品目录包含的产品内容非常全面,是实验室研发、测试和加工处理等各行业最值得信赖的科学工具。 作为为新建实验室提供整体解决方案的专家,Fisher Scientific 已进入中国多年。Fisher Scientific为新建实验室提供整体解决方案和交钥匙一站式服务受到了用户的欢迎和好评。Fisher Scientific专注于提供项目设计,目前正服务于在中国建立或者准备建立研发中心的跨国公司, 同时也服务于众多领域的研发实体。 “推出Fisher Scientific 中文版实验室产品目录是我们在中国发展的又一个里程碑”,赛默飞世尔高级副总裁,客户渠道部总裁Alan Malus先生表示:“我们的目标是通过我们的产品和服务,包括我们的中文产品目录,网站和日益扩大的实力团队在中国建立顶级的客户渠道,我们正继续投资于我们的基础设施和存货,让中国客户也能享受到世界一流的供应链技术”。 Fisher Scientific对全球的科学家而言是一个值得信赖的合作伙伴,为各个领域及时提供他们需要的产品和服务,这些领域包括学术界,政府,医药,生物技术,工业,食品质量和石化行业。 Fisher Scientific实验室产品涉猎最完备的产品范围,包括实验室家具,仪器设备,生命科学消耗品,安全及常规实验室用品和化学品。详情请访问http://www.fishersci.com.cn screen.width-300)this.width=screen.width-300" screen.width-300)this.width=screen.width-300" 关于Thermo Fisher Scientific(赛默飞世尔科技,原热电公司) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约30,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermofisher.com
  • analytica China微网站隆重上线,微粉有礼活动华丽开启
    慕尼黑上海分析生化展(analytica China 2014)微网站5月正式上线,我们将结合时下最热门的社交、信息平台&mdash &mdash 微信,给广大用户带来全新的便携式互动体验。   关注&ldquo 慕尼黑上海分析生化展&rdquo 微信(微信公众号:analytica China展览会),点击微信下方菜单栏&ldquo 关于展会&rdquo &mdash &mdash &ldquo 微网站&rdquo ,即可访问。   四大实用功能,随时随地与展会互动   查寻功能&mdash &mdash 在线用户可随时查看展商预览、产品介绍、展位图、同期研讨会、精彩活动、新闻动态等展会最新信息。   观众预登记&mdash &mdash &ldquo 微网站&rdquo 将为您的参观注册提供更多便捷,仅需两步即可轻松获取电子胸卡。点击微信下方菜单栏&ldquo 我的展会&rdquo &mdash &mdash &ldquo 观众预登记&rdquo 。   我的收藏&mdash &mdash 通过&ldquo 微网站&rdquo 进行观众预登记的用户,可随时收藏感兴趣的展商、产品、同期研讨会、展会活动等信息,并可通过微信菜单栏中&ldquo 我的展会&rdquo &mdash &mdash &ldquo 我的收藏&rdquo 按钮时时查看。参会者可利用这项功能掌握展会日程安排及展商信息,提前制定观展计划。   咨询互动&mdash &mdash 在浏览网页的过程中,用户可随时通过&ldquo 我要咨询&rdquo 按钮对感兴趣的展商、产品或展会活动进行留言咨询。   &ldquo analytica China微粉有礼&rdquo 活动华丽开启   为感谢广大用户对analytica China的支持,我们将在2014年5 -9月期间不定期举办微信精彩活动,欢迎大家随时关注我们。   2014年5月7-27日,第一轮微信活动将正式启动。在此期间,关注analytica China微信,并通过微信回复文本&ldquo 姓名+公司名+冲值手机号&rdquo ,即可获得5元手机冲值(本活动仅针对analytica China的展商、专业观众)。此外,分享本次活动主题到朋友圈,截图并回复至analytica China微信,即有机会赢价值600元的飞利浦收音机(共10台,获奖名单将于5月29 日通过微信公布)! 活动详情,请点击此处。   扫描以下二维码或搜索微信公众号&ldquo analytica China展览会&rdquo ,即可关注&ldquo 慕尼黑上海分析生化展&rdquo 微信!
  • 【热点文章】“标准物质与标准品”专题文章推介
    【编者按】本专题由编委天津阿尔塔科技有限公司张磊博士进行组稿,共收录了3篇文章,分别涉及稳定同位素氘标记盐酸曲托喹酚的制备、氘标记克伦丙罗新的合成方法研究与结构表征,以及盐酸莱克多巴胺-D6新的合成方法研究与结构表征。借助内标试剂的同位素稀释质谱法,只需对样品进行简单的前处理即可利用高分辨质谱进行检测,既便捷高效、降本降耗,又大大提高检测的准确性和灵敏度。因此,对天然丰度的检测用标准品进行稳定同位素标记,高效地合成出相应的内标物,对于食品检测领域具有重要意义。一、稳定同位素氘标记盐酸曲托喹酚的制备1、背景介绍盐酸曲托喹酚又名喘速宁,是β2受体激动剂。目前世界范围内均采用传统的外标法进行测定,但存在着物质浓度低、样品基质复杂、干扰物质多、代谢物多样等问题。而同位素稀释质谱法(IDMS)很好的解决了这一问题。因此,合成稳定同位素标记的盐酸曲托喹酚对于准确检测食品和人体代谢物中曲托喹酚的含量具有重要意义。当前,天然丰度的盐酸曲托喹酚的合成已经有了成熟报道,但关于稳定同位素标记的盐酸曲托喹酚的合成文献还未见报道。本文以廉价的2-(3,4,5-三甲氧基苯基)乙酸为起始原料,将其具有天然丰度的三个甲基通过化学手段置换为具有氘标记的甲基,进而在曲托喹酚分子中引入9个氘原子,使其具有 “内标试剂”的特性。具有较高化学纯度与同位素丰度的盐酸曲托喹酚-D9可以作为药品质检领域、运动员药检以及盐酸曲托喹酚代谢机理研究的内标物,具有重要的实际应用价值。2、文章亮点1)本文参考天然丰度曲托喹酚的合成方法,并在此基础上做进一步地改进,最终合成了稳定性同位素标记的盐酸曲托喹酚(盐酸曲托喹酚-D9)。2)将文中碘甲烷-D3替换为其他标记试剂,如13C标记或者13C和D双标记的碘甲烷,可方便地合成相对应的多种标记化合物,如曲托喹酚-13C3等,均可以作为内标试剂满足曲托喹酚的定性与定量分析。引用本文:秦爽,韩世磊,邵文哲,等. 稳定同位素氘标记盐酸曲托喹酚的制备[J]. 化学试剂, 2022, 44(4): 599-603.二、氘标记克伦丙罗新的合成方法研究与结构表征1、背景介绍克伦丙罗属于一种β2-受体激动剂,我们国家严格禁止将该类药物给动物使用,并要求动物性食品中不得检出。目前国内关于食品中克伦丙罗残留检测方法主要有高效液相色谱法、气质联用法、液质联用法、放射免疫法、酶联免疫吸附测定法等,但是这些方法存在各种各样的问题,对测定结果影响较大。采用同位素稀释质谱法(IDMS),可有效地解决上述问题,能够有效校正方法中出现的误差,显著提高检测方法的稳定性。目前,对于稳定同位素氘标记的克伦丙罗的合成已有文献报道但是存在路线反应步骤较长,且合成过程中的中间体分离纯化难度高,胺化过程中副产物较多等问题,无法从根本上解决制约我国食品安全检测领域严重依赖进口产品的问题。为解决当前合成方法中的不足,本文设计了一条全新的合成路线,以4-氨基-3,5-二氯-α-溴代苯乙酮原料,通过改良的Gabriel方法合成了氨基醇中间体,然后直接与廉价的丙酮-D6缩合得到克伦丙罗-D7。2、文章亮点1)本文以4-氨基-3,5-二氯-α-溴代苯乙酮为起始原料,经4步常规化学反应合成了克伦丙罗-D7,产物经1HNMR和ESI-MS表征确证结构正确,同位素丰度达到了98.3 atom%D,工艺稳定、操作简便,总产率可达40.9%,可实现规模化生产。2)本文设计的新合成路线,以廉价的丙酮-D6作为标记源在最后一步反应中引入,极大地提高了工艺的可操作性和原子经济性,降低了克伦丙罗标记产品的合成成本。此外,若将文中丙酮-D6替换为其他标记原子,如13C或者13C和D双标记试剂,或将第4步还原胺化反应中硼氘化钠替换为硼氢化钠,可方便地合成相对应的多种类标记化合物。引用本文:曹炜东,韩世磊,马秀婷,等. 氘标记克伦丙罗新的合成方法研究与结构表征[J]. 化学试剂, 2022, 44(4):604-607.三、盐酸莱克多巴胺-D6新的合成方法研究与结构表征1、背景介绍日前,关于盐酸莱克多巴胺的检测方法主要有高效液相色谱-质谱联用法(LC-MS)、酶联免疫法检测、荧光免疫分析法等,但这些方法具有一定的局限性。而同位素稀释质谱法(IDMS)很好的解决了这一问题,是唯一一种可用于微量、痕量和超痕量元素权威的测量方法。当前,关于稳定同位素标记的莱克多巴胺的合成方法已有报道。但存在路线较长、操作复杂,且烷基化这步反应收率较低,副产物较多等缺点。本文针对现有合成方法存在的不足,设计了一条全新的合成路线,以廉价易得的4-(4-甲氧苯基)-2-丁酮(1)作为原料,进行氢-氘交换反应,高效的合成了关键的氘标记中间体,进而经过还原胺化、脱保护基等反应得到氘代莱克多巴胺-D6。与文献方法相比,此方法路线简短、条件温和、操作简便,收率较高,可以制备较高同位素丰度的产物,具有大批量制备生产的前景。2、文章亮点1)首次以4-(4-甲氧苯基)-2-丁酮为起始原料,以廉价易得的重水为稳定同位素标记源,经氢-氘交换反应得到关键中间体4-(4-甲氧苯基)-2-丁酮-D5,再经还原胺化、脱保护基反应合成目标产物。2)所设计的合成路线短、原料廉价、反应条件温和、操作简单、工艺易控,总产率以4-(4-甲氧苯基)-2-丁酮来计达到了44%,以关键标记中间体4-(4-甲氧苯基)-2-丁酮-D5计产率为47%,该合成路线较为方便地引入6个标记原子,为食品安全检测领域的内标研发提供新的合成思路。引用本文:刘晓佳,韩世磊,孔香玲,等. 盐酸莱克多巴胺-D6新的合成方法研究与结构表征[J]. 化学试剂, 2022, 44(4) :608-612.以上文章转载自“ 全国化学试剂信息总站”。
  • 安捷伦推出新手持式FTIR 重量比上一代轻35%
    2014年3月4日,安捷伦宣布推出下一代移动光谱产品4300傅立叶变换红外光谱(FTIR)光谱仪,该产品是现场测试的理想产品,应用范围广泛,包括先进材料、艺术、历史文物、地质、农业、复合材料、涂料和聚合物等领域。   4300 FTIR重量轻,符合人体工程学,其能够为高价值样品提供直接分析,而无需样品前处理,是真正的无损检测解决方案。   与其上一代产品相比,4300 FTIR重量轻35%,性能、移动性、灵活性和用户舒适度都是上一代产品所未有的。   安捷伦副总裁兼光谱产品总监Phil Binns 说,&ldquo 我们相信这款手持红外光谱仪是一个改变移动FTIR领域游戏规则的产品。它不仅便携,小巧,而且其先进的人体工程学设计使人们使用该仪器很长时间也能感到很舒适,从而导致更高质量的数据。用户现在可以无需任何样品前处理就可以快速,现场分析样品,减少了分析时间。 &rdquo   目前有两种配置的4300 FTIR :一种配置了氘化三甘氨酸硫酸酯(DTGS)红外探测器,涵盖范围广泛的材料分析应用 另一种高性能版本,配置了热电冷却的碲镉汞(MCT)检测器,提供更高的灵敏度和测量速度,非常适合在表面或在现场测量多个位点。   4300 FTIR为广泛的应用提供五种可互换的样品接口。每个接口配备了无线射频识别(RFID )传感器,能够与安捷伦的方法驱动软件Microlab mobile software完全集成。这些特点,结合操作简单的触摸屏,使用户通过最简单的培训就可以快速掌握4300 FTIR强大功能。   手持式4300 FTIR是安捷伦移动测量解决方案中的最新产品,此外还包括了GC、GC/MS等,主要应用于食品、农业、刑侦、采矿、生物燃料、化工、环境和材料等。(编译:杨娟)
  • 使用非数据依赖采集法实现氢/氘交换质谱数据自动化分析
    HDX-MS是一种基于蛋白质主链酰胺氢原子与氘水中氘原子交换而获取有关蛋白质高阶结构和动态信息的方法。该技术可以帮助研究蛋白质折叠机制、发现配体结合位点、突出变构效应,在生物医药行业中发挥重要作用。尽管HDX-MS在蛋白质分析中频繁使用,但它通常无法进行高通量分析,且受限于大于150 kDa蛋白的分析。此外,HDX-MS生成复杂的同位素峰型常伴有谱图重叠现象,导致氘代值被错误计算。随着样品复杂性的增加,这一问题会更加加剧。目前,数据处理的方法涉及到手动检查原始数据以筛选谱图,并丢弃有任何信号问题的肽段图谱。然而这种方法随着样品分子量和复杂程度的增加变得难以执行,且容易受到人为错误的干扰(图1)。因此迫切需要一种可以消除手动筛选数据的负担,同时能够兼容更复杂的谱图(来自复杂混合物或整个细胞裂解液样品的谱图)。本文作者使用了一种自动化HDX数据分析的方法,利用data independent acquisition(DIA)采集方法同时从MS1和MS2领域获取氘代数据,并开发了AutoHX软件来挖掘和分析HDX数据。图1.传统HDX-MS数据采集与分析流程和本文使用的数据采集和分析流程比较。针对使用HDX-MS时,碰撞诱导解离(CID)碎裂模式产生的肽段碎片会伴随着气相中的氘重组现象(即scrambling现象),会影响残基水平氘代值的准确测量这一问题,作者定量研究了HDX-MS2数据的特性。作者发现,scrambling与离子传输和碎裂能量有关,且在高传输效率的条件下scrambling较严重,因此首先使用较为温和的离子传输参数和碎裂能量能够降低scrambling程度。随后作者建立了可描述碎片氘代值与该肽段可碎裂位点数量之间的线性关系(图2)。随着碎片离子长度的增加,相应的碎片离子氘代值会线性增加,因此通过回归计算可以计算出整个肽段的氘代率。这种方法不仅利用了CID产生的碎片信息,同时更为准确的计算出肽段的氘代值,排除了肽段谱图重叠对计算氘代值的干扰。图2.在一条给定肽段中,HD scrambling中,氘代值与碎片长度的关系。接着作者提出使用DIA方法来获取HX-MS2实验中MS1和MS2域的氘化数据,以实现在不同质谱平台采集数据、采集复杂样品的信息、分析自动化数据,且使得通过CID产生的MS2中提取肽段氘代值成为可能。首先作者设置了尽可能小的DIA窗口,并使用了较大的窗口重叠区域,以最小化MS2谱图的复杂性并确保每条氘代肽段至少有一个窗口(图3)。同时,作者开发了一个名为AutoHX的软件(作为Mass Spec Studio中的插件),该软件自动选择理想的DIA窗口,并从MS1数据计算前体肽段的氘代值,以及从MS2数据计算所有碎片的氘代值。同时改进了HX-PIPE(为HDX-MS量身定制的搜索引擎),使其搜库结果直接应用于AutoHX的分析。随后AutoHX使用了一系列过滤器来从数据集中解析低质量信号,然后使用基于RANSAC的谱图分析器,为所有肽段及其碎片匹配最佳同位素集合,并绘制动力学曲线图。该方法显著提高了肽段序列覆盖的冗余度(图4),从而提高了测量质量。图3. DIA窗口设计示意。图4. 基于DIA采集模式得到的序列覆盖(糖原磷酸化酶B,phosphorylase B)与基于传统HDX-MS中MS1采集模式的结果比对。接着,软件会通过MS1和MS2数据收集到的肽段前体离子和肽段碎片离子的信息,计算出相应的氘代值,同时将所有重复组计算出的氘化值集合成一个分布(通常为正态分布),并从该正态分布中,选择最接近平均值的组合,即为精确的氘代值,利用每个时间点的氘代值生成HDX动力学曲线(图5)。作者将手动筛选检查的数据与自动分析法获得的氘代数据进行了比对,结果具有一致性,验证了自动化方法的准确性和可靠性(图6)。同时在做同一样本不同状态HDX比较实验时,AutoHX可以生成氘代差异的显著性差异分析图(Woods plot)(图7),用于比较不同状态下的蛋白结构和构象差异。图5. 氘代曲线的组合方式。图6.手动MS1数据分析和AutoHX自动计算的氘代率对比。图7.氘代差异分析流程示意图。最后作者用两个蛋白体系验证了该方法的实用性和可靠性。第一个体系为DNA聚合酶ϴ (Pol ϴ )与其抗生素药物novobiocin结合的结构变化。通过比较手动处理与自动化处理的数据,作者发现生成的氘代差异图结果相似,提示该方法具有较好的准确性,并能够定位结合带来的氘代上升和下降区域(图8)。第二个体系是DNA依赖性蛋白激酶(DNA-PKcs)与选择性抑制剂AZD7648的结合。使用AutoHX软件处理了六个HDX-MS实验的数据,快速生成了Woods图,发现大部分可检测到的稳定性增加集中在FAT和激酶结构域(图9b),还包括药物结合位点的铰链环区域(图9c),揭示了药物结合位点及其引起的动态性变化。这部分研究结果展示了自动化数据分析在药物结合研究中的有效性,特别是在分析大型蛋白质复合物和难以纯化的蛋白质时,为药物开发和疾病治疗提供了有价值的信息。图8.手动处理与自动处理的Pol ϴ 与novobiocin-bound Pol ϴ 的HDX数据作差对比。图9. DNA-PKcs+AZD7648的自动化HDX分析流程结果。总的来说,该研究开发了AutoHX软件,通过自动化数据分析和基于DIA的HX-MS2工作流程,显著提高了氢/氘交换质谱技术在蛋白质结构和药物结合分析中的效率与应用范围,使得这一领域技术更加易于使用并可供更广泛的科研社区应用。该工作的亮点,从实验设计上:考虑到了目前HDX-MS流程——数据采集、数据分析——中存在的瓶颈与局限。从方法学考察层面:方法验证科学严谨、周到。从技术上:大大降低了人工处理HDX-MS数据的成本,提高了检测能力,有提高检测通量的潜力。从科学思维上:利用了scrambling的规律,将普遍的问题转化成了机遇。HX-DIA提供了一个概念上的转变,降低了该技术的使用门槛,使该技术“平民化”。本文发表在Nat. Commun.上,题目为“Automating data analysis for hydrogen/deuterium exchange mass spectrometry using data-independent acquisition methodology”,作者是加拿大卡尔加里大学的David C. Schriemer。
  • 水质中硼含量的测定
    一、背景介绍硼(Boron)是一种化学元素,元素符号是B。单质硼为黑色或深棕色粉末,有多种同素异形体,在自然界中主要以硼酸和硼酸盐的形式存在。人们每日从食物及饮用水中会摄人1~3 mg硼,硼也是植物生长所必需的微量元素。但是硼的过量摄取或灌溉水中硼含量过高会对人体和作物产生危害。GB 5749-2006《生活饮用水卫生标准》、GB 3838-2002《地表水环境质量标准》、GB/T 14848-2017《地下水质量标准》等水质标准对硼含量均有限值要求,故我们需要对水质中硼含量进行检测。下面我们将具体介绍硼含量检测的标准要求、测试方法、具体测试过程及结果。 二、标准及限值硼的测定方法主要有甲亚胺-H分光光度法、姜黄素分光光度法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法。甲亚胺-H分光光度法是一种快速、简单、灵敏度高的测量方法,硼与甲亚胺-H形成黄色配合物,在波长420nm处,其颜色与硼的浓度在一定范围内成线性关系。对应的部分标准限值如下:GB 5749-XXXX《生活饮用水卫生标准》的征求意见稿参数限值检测方法依据硼1mg/LGB 5750.5-2006 生活饮用水标准检验方法 无机非金属指标甲亚胺-H分光光度法GB 3838-2002《地表水环境质量标准》参数最|低检出限检测方法方法依据硼0.02mg/L姜黄素分光光度法HJ/T 49-19990.2mg/L甲亚胺-H分光光度法生活饮用水卫生规范GB/T 14848-2017《地下水质量标准》参数I类II类III类IV类V类硼(mg/L)≤0.02≤0.10≤0.50≤2.00>2.00 2、检测试剂:
  • 日立高新发布球差校正透射电镜HF5000 演绎朴实又华丽的回归
    p    strong 仪器信息网讯 /strong 2016年10月17日,日立高新携手天美科学仪器在北京举办“球差校正透射电镜HF5000新品发布会”,给用户分享日立最新球差透射电镜HF5000的技术以及最新应用,近50位来自各高校、研究所的专家代表出席了本次会议。 br/ /p p style=" TEXT-ALIGN: center" img title=" IMG_3800_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/e273dc70-e599-40a8-99fc-2cba3f76a98f.jpg" / /p p style=" TEXT-ALIGN: center" img title=" IMG_3810_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/7ad0c998-579e-4cf0-91a1-30e8bafc60b5.jpg" / /p p style=" TEXT-ALIGN: center" strong 会议现场 /strong /p p   日立高新技术公司北京分公司总经理加藤先生和天美中国副总裁赵薇女士分别致辞,除了表示对到会人员的欢迎和感谢之外,两位均表示HF5000将是大家非常期待的产品。 /p p style=" TEXT-ALIGN: center" img title=" IMG_3797_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/ed72b854-c3c1-4591-b256-e0967281922a.jpg" / /p p style=" TEXT-ALIGN: center" strong 日立高新技术公司北京分公司总经理加藤先生致辞 /strong /p p style=" TEXT-ALIGN: center" img title=" IMG_3814_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/2a2c8e2c-6e9f-4ef4-9ea0-47187cdea288.jpg" / strong br/ /strong /p p style=" TEXT-ALIGN: center" strong 天美中国副总裁赵薇女士致辞 /strong /p p   赵薇女士介绍到,相对于市场上的其它产品,虽然日立的球差校正透射电镜HF5000推出的时间不算早,但是其独特的设计和优异的特性可谓是日立200kV透射电镜的旗舰产品。 /p p   据悉,日立高新在200kV透射电镜方面有一段时间的空档期,而此次,200kV透射电镜,外加日立高新自主研发的全自动球差校正器,不仅完善了产品线,更可谓是最朴实而最华丽的回归。说“朴实”,是指这款产品可以实现自动调节,使用起来特别方便 而“华丽”当然是因为其具有很多优秀的特质。 /p p style=" TEXT-ALIGN: center" img title=" webwxgetmsgimg.jpg" style=" HEIGHT: 315px WIDTH: 350px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201610/insimg/207caffe-b769-49d0-8a70-e468361eae7c.jpg" width=" 350" height=" 315" / /p p style=" TEXT-ALIGN: center" strong 球差校正透射电镜HF5000 /strong /p p   接下来,日立高新透射电镜专家章效锋博士给大家详细介绍了HF5000的技术特点。章效锋博士2006年起受聘于日立高新技术,担任资深经理及透射电镜专家,其曾参与了HF5000的设计。 /p p style=" TEXT-ALIGN: center" img title=" IMG_3823_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/043b6595-40c9-4b30-adf6-d97337490e18.jpg" / /p p style=" TEXT-ALIGN: center" strong 日立高新透射电镜专家章效锋博士 /strong /p p   高稳定冷场发射电子枪,自动球差校正器,可一键操作实现自动球差校正,HAADF-STEM分辨率可以达到0.78埃;可配置EDS双探头,固体角最大可达2.0sr;具备TEM、STEM,SEM和电子衍射等多种图像观测模式;镜筒和样品台经过了重新设计,显著提升了仪器的性能和稳定性......HF5000将是材料学、生命科学、半导体制造、石油煤炭等研究领域的可靠助手。 /p p   对于HF5000的技术优势,章效锋博士总结了以下几个方面: /p p span style=" COLOR: rgb(255,0,0)"   1、高度自动化球差校正,尽量减少人员介入,适用于繁忙的分析测试中心或设备平台 /span /p p span style=" COLOR: rgb(255,0,0)"   2、三位一体呈现(TEM、STEM、SEM),内部结构成像和表面结构成像可同时进行同时获取 /span /p p span style=" COLOR: rgb(255,0,0)"   3、EDS超大球面角,无窗口探头。可实现快速,高灵敏度化学成分分析 /span /p p span style=" COLOR: rgb(255,0,0)"   4、前瞻性平台总体设计,为性能扩增预留选项,例如可扩增为气体环境电镜。 /span /p p   除此之外,章效锋博士还详细介绍了HF5000的配置、指标、以及应用案例等,并详细解答了与会代表提出的问题。 /p p style=" TEXT-ALIGN: center" img title=" IMG_3820_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/7b2995e6-9001-4a48-bc45-5d6433cbddb0.jpg" / /p p style=" TEXT-ALIGN: center" strong 中国科学院理化技术研究所公共仪器服务平台主任孟祥敏研究员 /strong /p p   作为用户代表,中国科学院理化技术研究所公共仪器服务平台主任孟祥敏研究员对日立的这款球差校正透射电镜给予充分的肯定。孟祥敏研究员说,最近几年,国内已经有60-70台球差校正透射电镜了,而且这个需求还在不断增加,日立高新HF5000的推出给大家又多了一个选择。 /p p   当然,孟祥敏研究员也指出,现在球差透射电镜的市场竞争也是蛮激烈的,希望日立可以在价格方面更优惠一些,在服务方面做的更到位一些,以尽快在这个市场中站稳脚跟。 /p p   发布会之后,章效锋博士还特别介绍了日立原位环境透射电镜以及日立40-120KV材料科学透射电镜的特点和应用案例。据介绍,目前,日立公司具有三款环境透射电镜平台:H-9500 ETEM、HF-3300 ETEM/STEM/SEM、HF-3300S Cs-corrected ETEM/DTEM/SEM。其中,H-9500 ETEM已经入驻浙江大学、西安交大、北京化工大学等学校。 /p p style=" TEXT-ALIGN: center" img title=" IMG_3842_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/632bd6df-1fd0-46d5-8705-ea66f018a147.jpg" / /p p style=" TEXT-ALIGN: center" strong 西安交通大学微纳尺度材料行为研究中心的解德刚博士 /strong /p p   而此次,日立高新还特别邀请到了西安交通大学微纳尺度材料行为研究中心的解德刚博士(西安交大-日立高新联合研发中心副主任)进行题为《环境透射电镜在研究氢与金属交互作用中的应用》的学术交流。据介绍,利用日立H9500环境透射电子显微镜和SU6600可变气压场发射扫描电镜,解德刚博士所在的课题组在金属的氢损伤和与氢脆;热处理对微纳尺度材料力学行为的影响;锂电池、钠电池等原文位研究等方面取得了系列研究成果。 /p
  • 直播预告!新能源材料检测技术发展与应用网络会议之储能材料检测技术专场
    新能源材料是解决能源危机的根本途径,是国家关注的重点领域,也是《中国制造2025》重要部分。新能源材料作为新能源开发利用的关键,目前仍处于发展阶段,还存在转换效率低、能量密度低以及成本高等诸多问题。进一步拓展新能源材料的种类,深入研究其结构、组成、性能之间的关系,对新能源材料的发展与广泛应用都具有重要意义。2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。一、 主办单位仪器信息网日本分析仪器工业协会二、 协办单位北京普天德胜科技孵化器有限公司三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webin a r/meetings/xny2023/ 四、 “储能材料检测技术”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾储能材料检测技术(11月30日 下午)14:00储能相变材料关键技术研究及应用张江云广州工业大学 副教授14:30Agilent 5800在储能电池行业的应用及技术优势赵志飞安捷伦科技(中国)有限公司 应用工程师15:00锂离子电池硅基负极粘结剂进展仲皓想中国科学院广州能源研究所 研究员15:30岛津XPS在新能源材料分析中的应用王文昌岛津企业管理(中国)有限公司 应用工程师16:00基于金属热反应硫化锂正极材料的制备邢震宇华南师范大学 副研究员16:30动力电池安全性多维参数的测评与仿真林春景重庆理工大学 副教授五、 嘉宾简介及报告摘要(按分享顺序)张江云 广州工业大学 副教授【个人简介】张江云,博士后,英国赫特福德大学访问学者,广东工业大学副教授。研究方向主要为动力电池及电化学储能系统的热管理,热安全和热灾害防控,具备热能工程与材料学交叉学科专业知识。目前主持/参与国家级,市厅级动力电池热管理领域科研项目20余项。发表相关学术论文20余篇,获授权发明专利8件,参与技术标准编制7件,获得东莞市科学技术进步奖二等奖。【摘要】电池的热安全已经成为制约新能源汽车及电化学储能系统的重大技术瓶颈问题。储能相变材料由于具有高潜热等优势而在热管理领域具有光明的应用前景,尤其是有机相变材料石蜡。本报告以提升电池热安全问题为宗旨,主要从相变材料(高导热型,电绝缘和阻燃型)的制备,性能检测和表征,热管理性能评估几方面系统阐述储能相变材料关键技术研究及应用。赵志飞 安捷伦科技(中国)有限公司 应用工程师【个人简介】安捷伦原子光谱应用工程师,主要负责环境、制药、食品等行业无机元素分析技术支持。【摘要】随着全球能源短缺和气候变化问题日益突出,水能、风能、太阳能等可再生能源技术发展迅速,其中发展低成本、高能量密度的能量储存技术是实现可再生能源技术增长、促进电动汽车及电网等大规模用电系统发展的关键。本报告以电化学储能中的液流电池为例,介绍ICP-OES在储能行业的应用及技术优势。仲皓想 中国科学院广州能源研究所 研究员【个人简介】仲皓想研究员, 硕士生导师,南京大学博士,中山大学博士后,2012年进入中科院广州能源所工作,2017-2018美国劳伦斯伯克利国家实验室访问学者。目前主要从事锂离子/锂硫电池(高分子粘结剂,高容量正负极材料)及锂金属等新能源材料基础及其产业化研究。主持国家自然科学基金面上项目、广东省自然科学基金、博士后基金等数项,参与多项国家及广东省项目;发表SCI论文50余篇;申请发明专利10余项,其中7项已授权、1项美国专利授权。【摘要】现有正负极材料的动力电池比能量已逐渐逼近理论极限,要想提高比能量,必须使用具有更高容量的新一代正负极材料。理论比容量是商业石墨十倍以上的硅材料多年来一直被寄予厚望,但始终未能实现在高容量负极中大规模应用,其根本原因在于硅嵌锂时发生巨大的体积膨胀,及由此引发的一系列负面作用,导致高容量硅基负极无法实现长期稳定循环。 如何消除或者缓解体积膨胀导致的负面作用是让硅基负极走向实用化的研究重点。粘结剂在电极中的比重虽小(质量分数≤10%),但是在减小体积膨胀和保持硅基负极结构稳定性方面发挥着关键作用。开发功能粘结剂是抑制硅基负极膨胀,提升硅基电池性能的有效方法。基于此我们开发了一系列高粘结力粘结剂,高弹性粘结剂及高电子/离子导电粘结剂等,显著提升硅的循环稳定性和倍率性能。王文昌 岛津企业管理(中国)有限公司 应用工程师【个人简介】岛津分析中心应用工程师,2015年毕业于北京科技大学材料专业,曾先后在首钢技术研究院分析中心工作,在英国Kratos总部交流学习,负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展新型材料表征相关研究,在国内外期刊合作发表多篇SCI论文,熟悉XPS数据处理及解析。【摘要】岛津XPS技术特点及其在新能源材料分析领域的应用邢震宇 华南师范大学 副研究员【个人简介】邢震宇,副研究员,香江学者。于2012年在吉林大学化学学院取得化学学士学位(导师:杨柏),于2016年在美国俄勒冈州立大学取得化学博士学位(导师:纪秀磊&陆俊),于2017年在加拿大滑铁卢大学陈忠伟院士课题组从事博士后研究,于2018年被引进到华南师范大学化学学院。 邢震宇担任中国化工学会化工新材料专业委员会委员和广东省材料研究学会青年工作委员会委员。此外,邢震宇还同时担任国家自然科学基金通讯评审专家,广东省自然科学基金通讯评审专家和会议评审专家。此外,还担任材料研究与应用的副主任编委,Batteries (IF=5.938)的Editorial Board ,Energy & Environmental Materials (IF=15.122)、Nano Research (IF=10.269)、Renewable (IF20)、Carbon Research (IF20)、Materials Futures (IF20) 的青年编委。 目前,邢震宇的研究方向包括:(1)金属热反应制备功能材料;(2)碳材料的合成和应用;(3)锂硫电池和钾离子电池电极材料。共发表40篇SCI论文,总引用次数4500,H-index为27。其中,以第一作者/通讯作者在Nature Energy(1篇)、Advanced Materials(1篇)、Nano Energy (4篇)、Energy Storage Materials(1篇)、Small Methods (1篇)、Chemical Engineering Journal(1篇)等国际权威期刊上发表SCI论文24篇。 在产学研方面,邢震宇与宁德新能源展开合作,并在多个创新创业大赛获奖。【摘要】近些年,传统锂离子电池已经无法满足电动汽车对于高比能的需求,而典型的高比能锂硫电池由于锂枝晶带来的安全隐患又无法真正市场化,因此,作为一种同时兼顾高比能和高安全性要求的硫化锂-硅新型电池体系开始成为能源领域的研究重点。但是相对于日益成熟的硅负极材料制备,硫化锂正极材料受限于活化电势高、倍率性能差和容量衰减快等问题,严重阻碍了硫化锂-硅这一电池体系的发展。报告人基于金属热反应制备功能材料一系列系统性的工作积累(Chem. Commun., 2015, 51, 1969 Nano Energy 2015, 11, 600 ChemNanoMat2016, 2, 692 Carbon 2017, 115, 271 Small Methods 2018, 2, 1800062),在对金属热反应瞬时高温性、强还原性和物相分离特殊性的深刻理解基础上,首次通过金属热反应制备了高容量循环稳定的石墨烯包覆的硫化锂纳米胶囊正极材料(Nature Energy 2017, 2, 17090)。除此之外,报告人基于金属热反应首次制备了过渡金属/硫化锂纳米复合物并系统研究了过渡金属对硫化锂电化学行为的影响(Advanced Materials 2020, 32, 2002403)。林春景 重庆理工大学 副教授【个人简介】工学博士,长期从事动力电池热管理与热安全性研究,参与完成多项国家级863、973、重点研发计划项目及省部级研发课题。发表论文近40篇,授权发明专利10余项,参与编写专著5部,参与标准法规制订7项。曾获中国汽车工业科学技术进步奖一等奖、天津市科技进步二等奖等。【摘要】待定六、 会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 共议分析检测技术|第二届江西省锂电产业技术交流会在宜春召开
    仪器信息网讯 2023年8月25日,由瑞士万通中国有限公司联合江西赣锋检测咨询服务有限公司、江西康帕斯科技有限公司共同举办的第二届江西省锂电产业技术交流会在江西宜春成功举办。会议旨在持续推进江西省锂电产业技术创新水平,着力体现和提高各锂电产业在分析技术创新,分析仪器升级及先进分析设备应用方面的最新成果,进一步提高相关分析检测人员的技术能力和水平。会议吸引200余位江西锂电行业相关企业、高校、科研单位、检测机构的专家及相关人员代表参会,仪器信息网作为支持媒体参会报道。会议现场会上,应对锂电行业的最新发展局面,十四位锂电产业、仪器技术专家分别分享了主题报告,分享了各自研究及工作的最新成果,并共同探讨了锂电行业发展现况及趋势,交流了锂电行业分析检测过程中遇到的相关问题及最前沿的技术手段。江西康帕斯科技有限公司总经理涂云峰致辞江西理工大学宜春锂电新能源产业研究院执行副院长 张骞报告题目:磁性异物对电池性能的影响锂离子电池中微量金属杂质会影响其安全性与使用寿命,动电池制造全过程须对金属磁性异物进行严格管控。张骞首先分享了磁性异物的来源和常见控制方法,接着重点介绍了磁性异物的分析检测方法。除了已有国标规定的电感耦合等离子体原子发射光谱法和扫描电镜能谱法,还结合案例分别介绍了光学显微镜-异物检测、工业CT技术、耐压测试、老化工艺检出金属异物等其他分析检测方法。瑞士万通高级应用工程师黄月华(左)、离子色谱产品经理李致伯(右)报告题目:瑞士万通在锂电产业上下游应用介绍首先,黄月华结合案例分别介绍了瑞士万通电位滴定仪和水分仪在锂电产业上下游的相关应用。电位滴定仪检测方面应用包括氢氧化锂/碳酸锂含量、残碱含量、磷酸铁锂中铁含量、镍钻锰三元材料的总量及分量等;水分仪应用包括微量水分测定、电解液水分测定、六氟磷酸锂水分测试等。接着,李致伯分享了瑞士万通离子色谱在锂电行业的应用及技术。表示,锂电池生产各阶段的质控方面,瑞士万通可提供全自动化的阴阳离子检测解决方案;抑制器作为阴离子分析的核心组件,其性能和寿命需要重点关注;瑞士万通燃烧炉离子色谱可用于电解液有机溶剂中阴离子的测定。江西赣锋检测咨询服务有限公司总经理 李强报告题目:锂电材料系列检测中的难点及方案李强首先从产业维度分析了锂电产业链各环节对检测分析的需求现状,如中上游材料供应产品检测、锂电池生产管理、废旧锂电回收利用等环节的相关检测需求等。接着依次介绍了锂原材料测试、锂盐产品测试、正极材料相关仪器测试技术应用现状、技术难点与应用展望。并结合锂电磁性异物含量测定、锂盐粒度测试、锂盐水分含量测试、磁性颗粒测试、三元材料测试、磷酸铁锂样品分析等实际案例进行了逐一探讨。赛默飞世尔科技(中国)有限公司工程师 贺静芳 报告题目:痕量元素助力电池产业分析技术及高效应用赛默飞拥有完整的锂电池行业解决方案,贺静芳主要介绍了赛默飞AA/ICPOES/ICPMS技术方面的锂电解决方案。接着结合赛默飞iCAP PRO系列ICP-OES的诸多优势,分别介绍了短期重复性-主量元素摩尔比、磷酸铁锂材料主量元素的测试、三元材料杂质元素测试、硫酸镍 电镍铅的检测、石墨烯负极杂质元素测试、锂电电解液测试等应用案例。江西银汇新能源有限公司/湖南省银峰新能源有限公司 胡俊平博士报告题目:钒电解液检测解析全钒液流电池具有安全性高、灵活配置、长时储能、资源丰富、易于管理、深度充放等特点。全钒液流电池储能广泛应用于社会生产生活各个方面。胡俊平主要介绍了钒电解液相关检测项目、检测标准及检测中遇到的问题及方法优化。如针对硫酸根检测方法优化方面,主要解决过滤杯壁底部残留、移液不准等问题。珠海真理光学仪器有限公司区域经理 苏琼报告题目:激光粒度仪在新能源电池材料中的应用 粒度检测是电池正负极粉体材料的重要技术指标,激光粒度仪成为新能源电池材料检测的必备仪器。LT3600系列是真理光学基于多年的科研成果开发的新一代超高速智能激光粒度分析系统,苏琼首先介绍了LT3600的多项技术优势,分享了锂电正极材料磷酸铁锂粒度测量的应用案例以及干法颗粒分散的机理与技术特点。江西省生态环境监测中心 乔支卫报告题目:锂电产业特征污染物排放监管要求及监控技术锂电产业的特征污染物主要包括氟化物、铊,乔支卫首先介绍了针对这两类特征污染物国内和国外的监管、监测要求及监管标准情况。接着分别介绍了两种特征污染物对应的监控技术情况,如氟化物常用分析方法包括分光光度法、离子选择电极法、离子色谱法等;铊的常用分析技术有原子吸收光谱法、分光光度法、电化学分析法、荧光光谱法、发射光谱法或质谱法等。北京普瑞赛司仪器有限公司技术总监 张鹏报告题目:光学及电子显微镜在锂电材料检测中的应用 普瑞赛司为蔡司材料显微镜中国总经销商,蔡司显微镜产品线提供从光镜到电镜及X射线显微镜等产品,为锂电研发与生产提供多尺度研究与表征的解决方案。张鹏结合蔡司显微镜产品特点,依次介绍了蔡司光学显微镜、电子显微镜以及X射线显微镜产品技术产品技术在锂电产业中的广泛应用及案例。北京莱伯泰科科技有限公司产品经理 周思佳报告题目:聚集前处理-锂电池产业链元素分析解决方案周思佳介绍了莱伯泰科全面前处理技术在锂电行业中的应用,从创新的湿法石墨消解4.0全自动消解,到创新的无机分析-超级微波消解系统,再到Minilab3000全自动标准液体处理等,最后也分享了莱伯泰科ICP-MS多元素分析LabMS 3000的锂电解决方案。九江天赐高新材料有限公司 韩玉英报告题目:绿色、安全、高效--含氟电解液生产链产品监测技术服务优化韩玉英首先介绍了九江天赐电解液产业链布局,接着分别介绍了布局中电解液原料测试、正极材料及再生回收、电解液的测试。电解液原料测试主要是针对溶剂、添加剂、锂盐、新型锂盐的测试;正极材料及再生回收测试项目主要包括磷酸铁、磷酸锂/硫酸锂、碳酸锂、氟化锂等;电解液的测试常规检测项目包括水分、游离酸、色度、密度、导电率等。北京普析通用仪器有限责任公司客服经理 邹志伟(左)、周鹏(右)报告题目:原子吸收和数字化软件在实验室的应用 邹志伟首先介绍了普析原子吸收光谱法在锂电行业检测中的应用,包括锂矿石中的氧化锂、氧化钾、氧化钠的测定等。接着分享了如何提高锂元素检测的稳定性和准确性,并解析了普析原子吸收常见的问题与故障排查。打通实验室数字化、智能化最后一公里,接着,周鹏介绍了普析实验室数字化技术与自动检测工具包 (DLabs),并从实验室数字化智能能化需求与方案、实验室数字化硬件搭建、青岛某实验室应用系统搭建案例与效果、DLabs系统关键性能能与可靠性指标等方面进行了详细介绍。安东帕中国有限公司应用工程师 宋薇琪报告题目:安东帕产品在新能源材料行业的应用宋薇琪分别介绍了安东帕主要产品技术在锂电制造流程中的应用进展。数字式密度计应用如测量正极材料前驱物固含量、测量负极浆料抗沉降性,黏度产品应用如对锂电三种材料黏度测量,拉曼光谱应用如对锂电进行元素分析。其他锂电解决方案相关仪器技术还包括多功能样品制备平台、超级微波消解系统等。展商一角
  • 【拉曼学院最前线】人气爆棚,HORIBA讲师团队率先登场
    2014年届拉曼学院终于在7月28日华丽登场了,纷至沓来的学员出乎了大家的意料,也让小伙伴们忙得不亦乐乎,让我们感动的是,有些老师更是放弃了节假日而赶来听课。今天,由HORIBA Scientific组成的讲师团队首先给大家带来了拉曼技术原理、历史、挑战,以及光谱仪、滤光片、探测器、拉曼成像等内容,这是一个可以透彻了解拉曼基础知识的好机会,也将会接下来的课程打下基础。“神秘嘉宾”亮相 还记得我们预告过的“神秘嘉宾”吗?它们就是HORIBA新推出的Nano-XploRA,及XploRA PLUS全自动拉曼光谱仪。前者可以获取物质在纳米尺度下的化学/物理信息,而后者则可以轻松应对实验室的需求变化。至于如何实现?它们还有其它什么功能?那就要请教现场的应用工程师了。拍大片活动“揽人气” 枯燥的学习之余还是需要放松的,这不,我们的拍大片区域挤满了人,大家都希望在海报前留下自己的倩影。大家一时兴奋,可能忘了:用手机拍摄并上传到微信后才有机会获取小礼品,抓紧机会哦。贴心的Service Center 这是售后部门专门开辟的服务角。考虑到此次活动中有不少是HORIBA用户,我们的售后团队们希望借此机会了解大家在使用仪器中碰到了哪些问题,这样也便于我们不断地完善工作。大家在使用中有什么问题,或有任何建议,尽管过来,我们的Service团队还是很贴心的。更多活动信息,请关注我们的官方平台:邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 美国科学家首次造出双层硼烯材料
    美国西北大学工程师首次创造出一种双层原子厚度的硼烯,打破了硼在单原子层限制之外形成非平面团簇的自然趋势。研究结果发表在《自然材料》杂志上。  硼烯是一种单原子厚的硼薄片,是由硼原子构成的单原子层厚的二维材料,比石墨烯更强、更轻、更柔韧。单原子层硼烯的合成是具有挑战性的。要获得硼烯通常需要制备生长,因此需要衬底作为载体或者支撑。  5年前,来自同一研究团队的科学家们首次创造了只有单原子厚度的硼烯。理论研究预测认为,制备双层硼烯是可能的,但由于块状硼不像石墨那样是层状的,超出单原子层的生长会导致形成团簇,而不是平面结构,试图生长多层硼烯的关键就在于找到阻止团簇形成的生长条件。此次研究发现,关键在于用来生长硼烯的衬底。研究人员在平面的银质衬底上培养硼烯。当暴露在高温下,银会在原子级台阶结构之间形成异常平坦的“梯田”。在这些“梯田”上“种植”硼烯时,研究人员看到第二层硼烯的形成。这种双层材料既保持了硼烯的电子性能,又存在新的优点,如由两层原子层厚的薄片黏合在一起,中间有空间,可用来储存能量或化学物质。
  • 大连化物所实现半导体光催化硼化反应
    近日,大连化学物理研究所精细化工研究室有机硼化学与绿色氧化创新特区研究组(02T6组)戴文研究员团队在多相光催化硼化方面取得新进展。团队选用易于制备的硫化镉纳米片作为多相光催化剂,利用光生电子—空穴的协同氧化还原作用,通过选择性硼化反应,实现了烯烃、炔烃、亚胺以及芳(杂)环的高值转化,合成了硼氢化和硼取代产物。氮杂环卡宾硼烷(NHC-BH3)由于其化学性质稳定且制备方法简单,近年来作为一种新型硼源,被应用于自由基硼化反应中。然而,大量有害的自由基引发剂或昂贵且无法回收的均相光催化剂的使用仍然阻碍其广泛应用。因此,发展一种通用、廉价且可循环的催化体系对NHC-BH3参与的自由基硼化反应的发展具有重要意义。在上述研究背景下,戴文团队发展了一种简单、高效的多相光催化体系。该体系利用易于制备的硫化镉纳米片作为多相光催化剂,NHC-BH3为硼源,在室温光照的条件下,实现了多种烯烃、炔烃、亚胺、芳(杂)环以及生物活性分子的选择性硼化反应。由于该转化过程充分利用了光生电子—空穴对,从而避免了牺牲剂的使用。进一步研究发现,该催化体系不仅能够实现克级规模放大,且催化剂多次循环后依旧保持稳定的收率,同时,该催化体系作为一个可循环的通用平台,回收后的催化剂仍可继续催化不同种类底物的硼化反应,这些结果可为以NHC-BH3为硼源的自由基硼化反应的发展提供新思路。此外,该工作还对所得到的有机硼化物进行了衍生化,合成了含有羟基,硼酸酯和二氟硼烷反应活性位点的合成砌块。  戴文团队一直致力于多相催化大宗化学品(烯烃、炔烃、有机硫化物和醇等)的高附加值转化并取得了一系列研究成果:在前期的工作中,分别发展了钴基氮掺杂介孔碳催化醇的氧化酯化制备酯(Angew. Chem. Int. Ed.,2020)、廉价锰氧化物催化醇的氧化氨化制备酰胺和腈(Chem,2022)、铁单原子纳米酶催化酮的氧化氨化制备腈(Science Advances,2022)、锰氧化物催化不饱和碳氢资源的氧化氨化制备酰胺和腈(JACS Au,2023)、钴纳米颗粒和钴单原子协同催化有机硫化物制备酰胺和腈(Nat. Commun., 2023)。  相关研究成果以“Facile Borylation of Alkenes, Alkynes, Imines, Arenes and Heteroarenes with N-Heterocyclic Carbene-Boranes and a Heterogeneous Semiconductor Photocatalyst”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)上,并被选为热点文章(Hot Paper)。该工作的共同第一作者是大连化学物理研究所02T6组博士后谢复开和科研助理毛展。上述工作得到了辽宁省优秀青年基金的资助。
  • 岛津合作研究:成功将硼的分析强度提高至少3倍
    东北大学多元物质科学研究所,尖端测试开发中心教授寺内正己以及助教羽多野忠、量子科学技术研究开发机构客座研究员小池雅人、株式会社岛津制作所、日本电子株式会社,对电镜联用软X射线发射光谱仪(SXES)※1进行了改良,成功将硼※2的分析强度提高至少3倍。众所周知,微量硼对钢铁材料和半导体器件的性能影响很大。为了提升电镜联用SXES的性能,上述四个机构(企业)开发了新型SXES并实施了验证试验。微量硼的分析有望为轻量且高强度钢板的生产和半导体器件的高效化研究开发做出贡献。 此外,2018年8月8日,东北大学多元物质科学研究所,尖端测试开发中心在美国马里兰州巴尔的摩市召开的美国显微镜学会(Microscopy & Microanalysis 2018)上,发表了这项研究成果。【详细说明】 东北大学多元物质科学研究所 尖端测试开发中心教授寺内正己、量子科学技术研究开发机构客座研究员小池雅人、株式会社岛津制作所、日本电子株式会社,通过产官学协作,开发出电子显微镜用软X射线发射光谱仪(SXES)的发光分析系统,2013年日本电子株式会社实现该产品的产品化。自该设备上市以来,鉴于对提高硼(影响钢铁材料和半导体器件性能)分析强度的需求很高,因此共同进一步推进深化研究。 为了进一步提高SXES的性能,量子科学技术研究开发机构客座研究员小池雅人进行了优化光谱分布※3和在关键部件衍射光栅上形成增反膜的设计,旨在提高硼的分析强度。基于这一设计,株式会社岛津制作所制作衍射光栅,东北大学多元物质科学研究所,尖端计测开发中心教授寺内正己以及助教羽多野忠,在衍射光栅表面完成了稀土元素的成膜。 为了优化光谱分布,在经过改造的东北大学的原始SXES上组装了新的衍射光栅,并完成试制品,通过测试结果确认了硼的信号强度至少增强3倍。今后,该产品将搭载到日本电子株式会社发售的通用SXES,并开始实用测试。另外,理论上硼强度预计可以进一步提高,因此有望开发出一款SXES,可以检测钢铁材料和半导体材料中添加浓度在10ppm※4以下的硼并可观察其光谱分布。 如果该设备实现通用化,可以期待通过钢板的轻量化和高强度化提高汽车的燃料经济性,以及通过半导体器件的高效率为实现节能型社会做出贡献,也有助于提高日本的工业实力。【术语说明】※1. SXES:Soft X-ray Emission Spectrometer※2. 硼素:也称硼。已知硼是提高钢铁材料强度的重要元素,调整硼的添加量非常重要。另外,硅半导体器件通过添加局部硼来实现其功能,硼是极其重要的元素。在任何情况下,硼的添加量都是0.01%左右的微量,硼检测和分布的可视化是钢铁材料和半导体器件的高品质和高性能的关键。※3. 光谱分布:构成分光器光源、衍射光栅、检测器的位置、角度等的设置条件※4. ppm表示浓度的单位。10ppm表示0.001%。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 明天播!赠书|新能源之储能、清洁能源检测技术专场预告
    2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。明天(11月30日),将为大家直播储能材料检测技术专场、清洁能源检测技术专场。直播间还将设置分享赠书、发红包等活动,欢迎报名参会!一、 主办单位仪器信息网日本分析仪器工业协会二、 协办单位北京普天德胜科技孵化器有限公司三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/xny2023/ 四、 分享赠书活动将会议直播间分享朋友圈集赞10个,即可获得由袁志刚编著的《碳达峰碳中和:国家战略行动路线图》书籍一本,具体兑换方式见直播间管理员通知,欢迎参与活动。五、 “清洁能源检测技术”专场预告时间报告题目演讲嘉宾清洁能源检测技术(11月30日上午)09:30天然气水合物渗流特性测定方法及进展张郁中国科学院广州能源研究所 研究员10:00JEOL新一代高性能双束系统及环境颗粒检测系统(PCI)的介绍张玮捷欧路(北京)科贸有限公司 应用工程师10:30非铅钙钛矿的瓶颈问题肖立新北京大学 教授11:00聚合物矩阵网络在钙钛矿太阳能电池中的应用魏静北京理工大学 特别副研究员六、“储能材料检测技术”专场预告时间报告题目演讲嘉宾储能材料检测技术(11月30日 下午)14:00储能相变材料关键技术研究及应用张江云广州工业大学 副教授14:30Agilent 5800在储能电池行业的应用及技术优势赵志飞安捷伦科技(中国)有限公司 应用工程师15:00锂离子电池硅基负极粘结剂进展仲皓想中国科学院广州能源研究所 研究员15:30岛津XPS在新能源材料分析中的应用王文昌岛津企业管理(中国)有限公司 应用工程师16:00基于金属热反应硫化锂正极材料的制备邢震宇华南师范大学 副研究员七、 嘉宾简介及报告摘要(按分享顺序)张郁 中国科学院广州能源研究所 研究员【个人简介】张郁研究员主要从事天然气水合物领域的相关工作,包括复杂沉积物体系天然气水合物实验与理论、天然气水合物高效开采技术、天然气水合物钻采安全等方面,获2018年国家技术发明二等奖,2019年广东省自然科学一等奖,2013年广东省科学技术一等奖,入选2019年“广东特支计划”本团创新团队。主持国家自然科学基金,广东省促进经济发展专项资金项目课题等项目11项。共发表SCI论文85篇,获授权国家发明专利36件,美国专利7件,参与编制标准2项。担任可再生能源学会天然气水合物专业委员会与中国计量测试学会热物性专业委员会委员。【摘要】与传统油气藏不同,天然气水合物以固体的形式赋存于沉积物的孔隙或者裂隙,因此其不能像天然气或者原油直接依赖于自身的流动性而实现流动,必须吸收由储层、外界环境、或者人工提供的能量,将其分解成甲烷和水,方可能在沉积物中流动。沉积物的渗流能力决定了气水在储层中的流动,对水合物开采效果具有重要的影响,是天然气水合物开采模拟与方案制定中必须的关键基础物性。水合物存在时沉积物的渗流规律与孔隙空间的微观几何结构密切相关,水合物样品的合成以及在孔隙结构中复杂的赋存形式造成了含水合物沉积物渗流实验相对困难。本报告介绍了天然气水合物体系渗流特性测定的相关技术方法以及取得的部分研究进展与结果。张玮 捷欧路(北京)科贸有限公司 应用工程师【个人简介】现任日本电子应用工程师,主要负责FIB-SEM双束系统及氩离子截面抛光仪的样品测试、技术应用以及培训工作,具有丰富的聚焦离子束、双束系统、扫描电镜等理论基础和应用经历。硕士毕业于新南威尔士大学材料科学专业,主研方向为天然生物材料的压电性质和实际应用,积累了丰富的测试样品制备、超微切片、扫描电镜、原子力显微镜等测试研究经验。本科毕业于河北科技大学金属材料工程学系,主要学习方向为合金钢的热处理方案设计和力学性能优化。【摘要】本报告将从TEM设备联用、STEM快速检测、硬件更新,三个方面介绍JEOL年初发布的新一代高性能FIB-SEM双束系统。同时将介绍JEOL专门针对新能源汽车电池制造业开发的PCI颗粒物监测软件系统。肖立新 北京大学 教授【个人简介】肖立新,日本东京大学博士毕业,现为北京大学物理学院教授,博士生导师。英国皇家化学学会会士,中国材料学会太阳能分会秘书长、国际信息显示学会(SID) 中国北区执委会学术副主席、中国光学工程学会光显示专业委员会常务委员。 长期从事光电功能材料及器件方面的研究,如有机发光材料及其器件,光伏材料及其器件物理等。主持过多次国家自然科学基金,承担973项目子课题。发表国际学术论文160余篇及申请专利共30余件,入选2020全球前2%顶尖科学家“年度影响力”榜单。编著《钙钛矿太阳能电池》(第一、二版),译著《有机电致发光-从材料到器件》,参与编著《锂离子电池》。2015年度教育部自然科学一等奖(第一完成人)。【摘要】从介绍钙钛矿太阳能电池的关键问题出发,阐述非铅钙钛矿材料的重要性,继而介绍非铅钙钛矿材料的研究进展,通过分析目前存在的问题,进一步阐述非铅钙钛矿太阳能电池的瓶颈所在,从而阐述如何突破瓶颈。魏静 北京理工大学 特别副研究员【个人简介】北京理工大学材料学院,特聘副研究员,2012年于电子科技大学集成电路设计与集成系统专业获得学士学位,2017年于北京大学微电子与固体电子专业获得博士学位。2019年7月加入北京理工大学材料学院材料物理与化学系。主要从事新能源材料与器件、钙钛矿光电材料与器件等研究。以第一或通讯作者身份在Nat.Commun., Adv. Mater., Adv. Energy Mater. Nano Energy等杂志发表论文20余篇,其中ESI高被引论文3篇,热点论文3篇,总被引次数超过2000。研究领域:新型能源材料与器件;钙钛矿光电材料与器件。【摘要】钙钛矿太阳能电池(PSCs)的光电转换效率已经超过26%,但寿命远低于工业所需的25年,严重限制了其商业应用。目前报道的多数钙钛矿电池在水分、光照、热或其他因素的干扰下都会严重失效。对此,我们通过设计新型电子传输材料和结构来提高钙钛矿器件的稳定性。本工作首先研究了钙钛矿薄膜的退化机理,之后通过优化电子传输层(ETL),特别是开发新型紫外惰性电子传输材料及基于聚合物矩阵网络的低温介孔结构,来提高PSCs在潮湿环境或光照下的工作稳定性。我们制备了ITO/UV惰性ETL/ Cs0.05FA0.81MA0.14PbI2.55Br0.45/Sprio-MeOTAD/Au结构的太阳能电池,其功率转换效率达到21%,光稳定性得到明显改善。优化后的器件在一个太阳光强下持续光照,最大功率点电压下工作600小时后,保持99%以上的初始性能。在进一步的工作中,需要深入研究PSCs的复杂降解机理,在此基础上开发更具针对性的薄膜改性方法和新型器件结构。张江云 广州工业大学 副教授【个人简介】张江云,博士后,英国赫特福德大学访问学者,广东工业大学副教授。研究方向主要为动力电池及电化学储能系统的热管理,热安全和热灾害防控,具备热能工程与材料学交叉学科专业知识。目前主持/参与国家级,市厅级动力电池热管理领域科研项目20余项。发表相关学术论文20余篇,获授权发明专利8件,参与技术标准编制7件,获得东莞市科学技术进步奖二等奖。【摘要】电池的热安全已经成为制约新能源汽车及电化学储能系统的重大技术瓶颈问题。储能相变材料由于具有高潜热等优势而在热管理领域具有光明的应用前景,尤其是有机相变材料石蜡。本报告以提升电池热安全问题为宗旨,主要从相变材料(高导热型,电绝缘和阻燃型)的制备,性能检测和表征,热管理性能评估几方面系统阐述储能相变材料关键技术研究及应用。赵志飞 安捷伦科技(中国)有限公司 应用工程师【个人简介】安捷伦原子光谱应用工程师,主要负责环境、制药、食品等行业无机元素分析技术支持。【摘要】随着全球能源短缺和气候变化问题日益突出,水能、风能、太阳能等可再生能源技术发展迅速,其中发展低成本、高能量密度的能量储存技术是实现可再生能源技术增长、促进电动汽车及电网等大规模用电系统发展的关键。本报告以电化学储能中的液流电池为例,介绍ICP-OES在储能行业的应用及技术优势。仲皓想 中国科学院广州能源研究所 研究员【个人简介】仲皓想研究员, 硕士生导师,南京大学博士,中山大学博士后,2012年进入中科院广州能源所工作,2017-2018美国劳伦斯伯克利国家实验室访问学者。目前主要从事锂离子/锂硫电池(高分子粘结剂,高容量正负极材料)及锂金属等新能源材料基础及其产业化研究。主持国家自然科学基金面上项目、广东省自然科学基金、博士后基金等数项,参与多项国家及广东省项目;发表SCI论文50余篇;申请发明专利10余项,其中7项已授权、1项美国专利授权。【摘要】现有正负极材料的动力电池比能量已逐渐逼近理论极限,要想提高比能量,必须使用具有更高容量的新一代正负极材料。理论比容量是商业石墨十倍以上的硅材料多年来一直被寄予厚望,但始终未能实现在高容量负极中大规模应用,其根本原因在于硅嵌锂时发生巨大的体积膨胀,及由此引发的一系列负面作用,导致高容量硅基负极无法实现长期稳定循环。 如何消除或者缓解体积膨胀导致的负面作用是让硅基负极走向实用化的研究重点。粘结剂在电极中的比重虽小(质量分数≤10%),但是在减小体积膨胀和保持硅基负极结构稳定性方面发挥着关键作用。开发功能粘结剂是抑制硅基负极膨胀,提升硅基电池性能的有效方法。基于此我们开发了一系列高粘结力粘结剂,高弹性粘结剂及高电子/离子导电粘结剂等,显著提升硅的循环稳定性和倍率性能。王文昌 岛津企业管理(中国)有限公司 应用工程师【个人简介】岛津分析中心应用工程师,2015年毕业于北京科技大学材料专业,曾先后在首钢技术研究院分析中心工作,在英国Kratos总部交流学习,负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展新型材料表征相关研究,在国内外期刊合作发表多篇SCI论文,熟悉XPS数据处理及解析。【摘要】岛津XPS技术特点及其在新能源材料分析领域的应用邢震宇 华南师范大学 副研究员【个人简介】邢震宇,副研究员,香江学者。于2012年在吉林大学化学学院取得化学学士学位(导师:杨柏),于2016年在美国俄勒冈州立大学取得化学博士学位(导师:纪秀磊&陆俊),于2017年在加拿大滑铁卢大学陈忠伟院士课题组从事博士后研究,于2018年被引进到华南师范大学化学学院。 邢震宇担任中国化工学会化工新材料专业委员会委员和广东省材料研究学会青年工作委员会委员。此外,邢震宇还同时担任国家自然科学基金通讯评审专家,广东省自然科学基金通讯评审专家和会议评审专家。此外,还担任材料研究与应用的副主任编委,Batteries (IF=5.938)的Editorial Board ,Energy & Environmental Materials (IF=15.122)、Nano Research (IF=10.269)、Renewable (IF20)、Carbon Research (IF20)、Materials Futures (IF20) 的青年编委。 目前,邢震宇的研究方向包括:(1)金属热反应制备功能材料;(2)碳材料的合成和应用;(3)锂硫电池和钾离子电池电极材料。共发表40篇SCI论文,总引用次数4500,H-index为27。其中,以第一作者/通讯作者在Nature Energy(1篇)、Advanced Materials(1篇)、Nano Energy (4篇)、Energy Storage Materials(1篇)、Small Methods (1篇)、Chemical Engineering Journal(1篇)等国际权威期刊上发表SCI论文24篇。 在产学研方面,邢震宇与宁德新能源展开合作,并在多个创新创业大赛获奖。【摘要】近些年,传统锂离子电池已经无法满足电动汽车对于高比能的需求,而典型的高比能锂硫电池由于锂枝晶带来的安全隐患又无法真正市场化,因此,作为一种同时兼顾高比能和高安全性要求的硫化锂-硅新型电池体系开始成为能源领域的研究重点。但是相对于日益成熟的硅负极材料制备,硫化锂正极材料受限于活化电势高、倍率性能差和容量衰减快等问题,严重阻碍了硫化锂-硅这一电池体系的发展。报告人基于金属热反应制备功能材料一系列系统性的工作积累(Chem. Commun., 2015, 51, 1969 Nano Energy 2015, 11, 600 ChemNanoMat2016, 2, 692 Carbon 2017, 115, 271 Small Methods 2018, 2, 1800062),在对金属热反应瞬时高温性、强还原性和物相分离特殊性的深刻理解基础上,首次通过金属热反应制备了高容量循环稳定的石墨烯包覆的硫化锂纳米胶囊正极材料(Nature Energy 2017, 2, 17090)。除此之外,报告人基于金属热反应首次制备了过渡金属/硫化锂纳米复合物并系统研究了过渡金属对硫化锂电化学行为的影响(Advanced Materials 2020, 32, 2002403)。八、 会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 罗维朋/罗威邦发布英国罗维朋 Model Fx 全自动罗维朋比色计新品
    Model Fx 全自动罗维朋比色计Lovibond® Model Fx 仪器为高精度分光光度计,专为透明液体的客观颜色分析而研发设计。仪器自动化、操作简单,可避免目视方法的主观性等缺点。操作者在菜单系统的引导下选择设置参数。之 后一键启动测量,不到 5 秒即可完成。Lovibond® Model Fx 分光光度计,采用喷粉涂层铝制外壳, 对仪器内部进行良好保护,坚固耐用。Lovibond® Model Fx 可作为实验室的 QC 仪器使用或在过程控 制环境下 24 小时工作。Lovibond® Model Fx 作为一款专业的高精度自动色度分析仪,内置标准光源和准直器、测量槽、检 光器、分光器以及处理器板。■可测量Lovibond® RYBN罗维朋色泽、AOCS RY、Lovibond RY10:1, 叶绿素,β胡萝卜素■确保符合相关国际标准和行业标准 ■可测量高温样品(内置加热器),实时显示样品温度,避免结晶所引起的误差 ■方便简易的集成操作系统 ■耐化学腐蚀外壳,适于食用油精炼厂长期、连续使用 ■铝制外壳,100%可循环利用,符合可持续发展要求 ■密封、易更换的样品测量池 ■新技术让仪器具有更高的分辨率、重复性、可靠性和精确性创新点:1. 相对于传统目视罗维朋比色计,这款全自动罗维朋比色计采用高精度分光光度法,使得测量结果不再依赖于人为主观性。 2. 食用油的颜色与温度息息相关,相对目视手动款,增加了内置加热器和实时监测样品温度功能,避免了食用油结晶而造成的结果误差。 3. 传统目视罗维朋比色计,测量所需时间较长,要花费大量时间进行颜色匹配,而全自动罗维朋比色计,只需简单操作,几秒钟即可显示结果。 4. 除了测量罗维朋色泽外,增加了AOCS色标,叶绿素和β 胡萝卜素测量功能,一机多用,为食用油检测分析提供了更多有效数据。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制