当前位置: 仪器信息网 > 行业主题 > >

普拉诺柳

仪器信息网普拉诺柳专题为您提供2024年最新普拉诺柳价格报价、厂家品牌的相关信息, 包括普拉诺柳参数、型号等,不管是国产,还是进口品牌的普拉诺柳您都可以在这里找到。 除此之外,仪器信息网还免费为您整合普拉诺柳相关的耗材配件、试剂标物,还有普拉诺柳相关的最新资讯、资料,以及普拉诺柳相关的解决方案。

普拉诺柳相关的资讯

  • 拉普拉斯光伏及半导体设备项目落户西咸新区
    近日,拉普拉斯光伏及半导体工艺设备研发制造基地项目签约落户西咸新区泾河新城。项目主要涉及太阳能光伏电池工艺装备(热制程、镀膜及配套产品)及核心零部件的研发及制造,计划投资15亿元,该项目建成达产运营后,预计年营业收入20亿元。西咸新区党工委书记杨仁华 党工委副书记、管委会主任姜建春 党工委委员,泾河新城党委书记、管委会主任张宏伟 隆基绿能科技股份有限公司董事长钟宝申 深圳市拉普拉斯能源技术有限公司常务副总裁刘群共同鉴签。泾河新城党委委员、管委会副主任寻心乐与拉普拉斯副总裁张武代表双方共同签约。据悉,拉普拉斯光伏及半导体工艺设备研发制造基地项目分两期投资建设,一期为研发中心项目,投资约6000万元,2022年底运营 二期为生产基地项目,投资约14.4亿元,2023年底启动建设。项目投产达效后,将进一步助力泾河新城秦创原两链融合“促进器”示范区建设,助推千亿级光伏产业集群持续释放集聚效应,提升国际竞争力。该项目将重点瞄准光伏行业前沿尖端技术,在提升光伏电池转换效率和生产效率、降低制造成本等方面持续发力。此外,项目将围绕光伏电池制造过程中的热制程、镀膜等关键核心设备不断研发创新 同时,还将致力于攻克一批“卡脖子”关键零部件研发制造技术,进一步提高光伏和半导体设备的国产化率,不断提升和巩固我国光伏行业在国际上的领先地位。拉普拉斯是一家高端装备研发制造企业,拥有近300项知识产权,填补了国内该行业高端装备技术领域的多项空白。主要产品涵盖低压水平扩散系统、低压化学气相沉积水平镀膜系统、等离子体增强化学气相沉积水平镀膜系统等高端制造装备,其核心TOPCon设备市场占有率超过95%,2021年在光伏电池新技术部分设备市场占有率超过90%,位居国内第一。
  • 山东科大与赛普拉斯公司联合建实验室
    美国赛普拉斯公司是全球著名的通信集成电路供应商,长期以来致力于推动世界通信技术的发展,其产品广泛应用于移动电话、数据通信、汽车、工业和军事等多种领域。赛普拉斯公司一直支持和关心世界高等教育事业的发展和进步,在全球制定了赛普拉斯大学计划,通过与著名大学建立战略伙伴关系,将最前沿的通信技术引入教学实验和科研中。   山东科技大学与美国赛普拉斯公司PSOC联合实验室成立后将为山东科技大学通信技术等领域的教学工作和学科建设发展提供有力的技术支撑和设备保障,为该领域的专家学者提供一个新的科研交流合作平台,向山东科技大学师生及业内工程师传授PSOC技术,使山东科技大学成为教学、科研及商用PSOC技术的中心。实验室建成后,赛普拉斯公司将向山东科技大学捐赠1万美元PSOC设备以及相关的技术信息、文献以及操作手册,以后还将不定期向山东科技大学提供赛普拉斯公司新型产品的模型或样机,提供经费进行联合科学项目研究。
  • 普拉勒校园行之东南大学
    2018年1月9日普拉勒校园行活动之东南大学,普拉勒HYDROGEN-500E新款氢气发生器将在2018年全线登陆中国市场,此次校园行活动就是针对新款氢气发生器做推广,此型号的氢气发生器具有高性价比、体积小、产气量大、自动化程度高、实现人机对话、等特点,普拉勒发生器仪器实需深入立足高校市场,为高校实验室安全工作多做贡献。
  • 国际检测行业龙头艾普拉斯落子西部(重庆)科学城
    6月3日,记者从西部(重庆)科学城获悉,国际检测行业龙头企业——Applus+ (艾普拉斯认证公司)汽车零部件及医疗器械检测项目近日签约落户科学城,将助力重庆检验检测服务业高质量发展。检验检测服务业是国家重点支持发展的高技术服务业、科技服务业、生产性服务业和战略性新兴产业,在提升产品质量、推动产业升级、保护生态环境、促进经济社会高质量发展等方面发挥着重要作用。去年12月出台的《重庆市检验检测服务业发展规划(2023—2027年)》提出,到2027年,重庆检验检测服务业全产业链规模达到千亿级。到2035年,基本建成国家中西部检验检测服务业高地。此次项目的投资主体,艾普拉斯认证公司来自西班牙,是一家致力于认证、检测和测试服务的商业集团、国际性认证公司,业务遍布五大洲,是西班牙质量认证体系及技术服务公司中的领军企业,也是汽车零部件检验检测细分领域的头部企业,其Applus+ Auto的汽车检测业务已成为西班牙国内乃至国际上的领先者。目前,其业务范围涵盖汽车电子电气、零部件、材料、网络安全、碳足迹、远程解决方案等。根据协议,艾普拉斯汽车零部件及医疗器械检测项目总投资2亿元,选址西部科学城重庆高新区直管园的科创二期厂房,将新建艾普拉斯汽车零部件及医疗器械检测实验室,主要业务包括汽车座椅、安全带等汽车零部件检测,牙科、骨科植入材料、皮肤粘合剂等医疗器械及产品检测,后期还将增加网络安全、碳中和、认证检测等业务板块。记者了解到,项目计划于今年内在汽车座椅、安全带方面取得CMA(检验检测机构)和CNAS(中国合格评定国家认可委员会)等行业主管部门认定的检测认证资质,与东风李尔、长安、赛力斯等知名主机厂和零部件供应商开展车辆出口认证、整车EMC等汽车检验检测领域的合作。“艾普拉斯项目的落户,是不断优化营商环境,积极开展以商招商、产业链招商、大数据精准招商等各项重要举措的集中体现。”科学城相关负责人表示,这将进一步完善科学城汽车检验检测产业链条,同时将为重庆新能源汽车在欧洲出口“牵线搭桥”,拓展国际“朋友圈”,吸引全球优质外资企业落户。记者了解到,目前,科学城已成立专项工作推进小组,专门负责该项目的协调服务工作,如协助项目办理工商注册、项目建设、部门协调、消防环评等相关行政性审批手续,全力支持项目落地及后续服务、政策兑现。“后续,我们还将积极协助项目争取相关国家级、市级政府财政支持,如《重庆高新区促进西部(重庆)科学城高技术服务业发展办法(试行)》提到的各项政策,包括租金补贴、装修补贴、设备补贴、资质认证补贴等产业扶持政策,为项目建设运营等提供持续支持。”科学城该负责人表示。
  • 普拉瑞思中标甘肃省县级食品安全快速检测车车载设备
    文章来源:甘肃政府采购网文章基本信息采购类别: 中标公告招标编号:采购人: 甘肃省食品药品监督管理局代理机构: 甘肃省公共资源交易局采购预算:(万元) 4892.000000 甘肃省公共资源交易局受甘肃省食品药品监督管理局的委托对 甘肃省县级食品安全快速检测车车载设备政府采购项目以公开招标方式进行采购,评标小组于2018年9月28日确定结果。现将结果公布如下:1.招标文件编号:GJGK2018169 项号货物名称品牌规格型号制造商产地商品属性单价计量单位1仪器主机普拉瑞思Polaris-R80普拉瑞思科学仪器(苏州)有限公司苏州自主知识产权产品包含在仪器主机价格中台2软件普拉瑞思仪器配套普拉瑞思科学仪器(苏州)有限公司苏州自主知识产权产品包含在仪器主机价格中套3配件箱普拉瑞思仪器配套普拉瑞思科学仪器(苏州)有限公司苏州自主知识产权产品包含在仪器主机价格中个4试剂普拉瑞思仪器配套普拉瑞思科学仪器(苏州)有限公司苏州自主知识产权产品包含在仪器主机价格中套5实验耗材普拉瑞思仪器配套普拉瑞思科学仪器(苏州)有限公司苏州自主知识产权产品包含在仪器主机价格中套 一包中标金额:(21台)/205.80万元(贰佰捌拾壹万柒仟叁佰贰拾元整) 一包中标单位:普拉瑞思科学仪器(苏州)有限公司
  • 主推绿色环保仪器——访英国普拉勒公司销售经理尹春峰
    p style=" text-indent: 2em text-align: justify margin-top: 10px " 英国普拉勒(南京)科技有限公司是实验室前处理设备(气体发生器、降噪设备、纯水设备)的主要供应商,其产品广泛应用于制药、食品、环保、生物、石化、烟草、出入境检验检疫、疾病控制、科研院所等分析实验室。为分析实验室提供前处理系统解决方案。在中国仪器发展年会期间,仪器信息网编辑在英国普拉勒展位前采访到英国普拉勒(南京)科技有限公司销售经理尹春峰先生,他向编辑介绍了英国普拉勒今年的一些主打绿色环保的新产品。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 详细内容请点击视频观看: /p script src=" https://p.bokecc.com/player?vid=1033861368A4360B9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p style=" text-indent: 2em text-align: justify margin-top: 10px " 尹春峰先介绍一款普拉勒2019年力推的一款新的产品:质谱泵隔音罩。这款隔音罩可以消除质谱泵在工作时发出的噪音,通过这个隔音罩可以消除80%的噪音,让实验室变得更清静,更环保。另一款就是一台全新的氢气发生器500s,它更环保,机型更小巧,而且保持着大流量,可以达到500-1000ml/min,在市面上属于比较领先的技术。而且英国普拉勒公司还针对中国市场推出一款更经济型的氢气发生器,售价在3w左右。 /p p br/ /p
  • 普拉勒气体发生器南京大学校园行
    2017年12月14-15日英国普拉勒携新款氢气发生器 HYDROGEN-500E登陆南京大学化工学院、环境学院。英国普拉勒氢气发生器 HYDROGEN-500E将在2018年全线登陆中国市场,此款氢气发生器具有体积小、产气量大、自动化程度高、实现人机对话,性价比高等特点,普拉勒发生器仪器实需深入立足中国市场,结合本土仪器市场,与时俱进,将最先进的技术及产品引进中国仪器产业,方可在险峻的经济形势下寻求发展契机,与国内广大仪器同行共襄全球仪器盛宴。
  • 创新和突破 普拉瑞思发布RamanOS操作系统及拉曼光谱仪等系列新品
    p style=" text-align: justify "    strong 仪器信息网讯 /strong 2020年9月16-17日,中国科学仪器行业的“达沃斯论坛”——2020 (第十四届)中国科学仪器发展年会(ACCSI 2020)在天津东丽湖恒大酒店召开。会议同期(9月16日),普拉瑞思科学仪器(苏州)有限公司(以下简称:普拉瑞思)隆重召开主题为“创新和突破:RamanOS操作系统及系列拉曼光谱仪新品”线下发布会,吸引了近百位业内专家出席。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202009/uepic/7996ef88-44e5-458b-b6ee-175b4a3b2b21.jpg" title=" 01.jpg" alt=" 01.jpg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 会议现场 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 250px height: 323px " src=" https://img1.17img.cn/17img/images/202009/uepic/7e483656-678d-4052-a074-b053cd0fc951.jpg" title=" 潘涛.jpg" alt=" 潘涛.jpg" width=" 250" height=" 323" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国仪器仪表学会近红外光谱分会常务理事、“广东省工作站”主任委员、暨南大学潘涛教授致辞 /strong /p p style=" text-align: justify "   本次发布会,普拉瑞思创始人马宁先生携总经理倪天瑞、研发总监常化仿、销售总监王亮、产品总监尧伟峰、软件经理洪刚等同事联袂登场,现场介绍了系列拉曼光谱仪产品,包括785nm、1064nm的手持式拉曼光谱仪,显微便携拉曼光谱仪,旗下Optotrace品牌的小型便携拉曼光谱仪等。特别值得一提的是,本次普拉瑞思在国内首发了532nm便携箱式气体拉曼光谱仪,以及RamanOS操作系统。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/5f880938-132c-4b18-b557-085a788b7ac8.jpg" title=" IMG_1860 (1).jpg" alt=" IMG_1860 (1).jpg" / /p p style=" text-align: center " strong 普拉瑞思创始人 马宁 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/e38302b7-4d0b-436c-a143-3d1b44e643fb.jpg" title=" IMG_1839 (1).jpg" alt=" IMG_1839 (1).jpg" / /p p style=" text-align: center " strong 普拉瑞思总经理 倪天瑞 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 250px height: 333px " src=" https://img1.17img.cn/17img/images/202009/uepic/35e3593f-9229-4427-be9e-df85398a64a7.jpg" title=" 软件 (1).jpg" alt=" 软件 (1).jpg" width=" 250" height=" 333" border=" 0" vspace=" 0" / & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/202009/uepic/acea027a-1e7c-41b8-a7c9-6bed73a2ffe7.jpg" title=" 研发与数据 (1).jpg" alt=" 研发与数据 (1).jpg" width=" 250" height=" 333" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 250px height: 333px " / /p p style=" text-align: center " strong 产品总监尧伟峰、研发总监常化仿 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 250px height: 333px " src=" https://img1.17img.cn/17img/images/202009/uepic/2d4c017c-aec4-45f6-8113-28a3e865ceb7.jpg" title=" 商务合作 (1).jpg" alt=" 商务合作 (1).jpg" width=" 250" height=" 333" border=" 0" vspace=" 0" / & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/202009/uepic/bc23af94-328a-40ed-a9a5-0fa1e067317c.jpg" title=" IMG_1835 (1).jpg" alt=" IMG_1835 (1).jpg" width=" 250" height=" 333" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 250px height: 333px " / /p p style=" text-align: center " strong 销售总监王亮、软件经理洪刚 /strong /p p strong /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/SH104326/C434795.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 300px height: 314px " src=" https://img1.17img.cn/17img/images/202009/uepic/3500aefc-3789-4196-84fd-8c757b40770d.jpg" title=" Polaris-GasRaman100型.png" alt=" Polaris-GasRaman100型.png" width=" 300" height=" 314" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH104326/C434795.htm" target=" _blank" strong 便携箱式气体拉曼光谱仪Polaris-GasRaman100 /strong /a /p p style=" text-align: justify "   据介绍,首发的便携箱式气体拉曼光谱仪Polaris-GasRaman100,可同时检测多种气体,适合于工业现场监测、危险气体检测和机场、地铁、车站、卡口等公共区域的危险、有毒有害气体的实时监测,检测限最低可达1ppm。 /p p style=" text-align: center" img style=" width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/202009/uepic/ba5c4ba3-56b9-4d2c-b089-cd7325480dd3.jpg" title=" RamanOS应用软件.png" width=" 450" height=" 253" border=" 0" vspace=" 0" alt=" RamanOS应用软件.png" / /p p style=" text-align: center" img style=" width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/202009/uepic/f1f2aec5-66e8-4286-89a0-6a1302f2272f.jpg" title=" RamanOS应用软件2.png" width=" 450" height=" 253" border=" 0" vspace=" 0" alt=" RamanOS应用软件2.png" / /p p style=" text-align: center " strong RamanOS操作系统 /strong /p p style=" text-align: justify "   同时,发布会还正式推出了重磅软件产品——RamanOS操作系统,据介绍,该系统是一款基于云计算的通用软件平台,可以帮助光栅光谱仪制造商或已有拉曼光谱仪用户快速建立拉曼光谱应用场景,推广实际检测应用。同时,其开放的平台特性也鼓励方法和算法的开发者加入,从而为拉曼技术的健康可持续发展提供了可能。 /p p style=" text-align: justify "   特别值得一提的是,RamanOS可安装在任何一款便携拉曼光谱仪,从而完成在特定行业场景的应用,拥有超过10000张普通拉曼和增强拉曼光谱谱图,多种算法适配。比如,加载RamanOS毒品毒物版的手持式拉曼光谱仪可实现对传统毒品、新精神活性物质的常量及微痕量检测,拥有超过500种数据库,其中芬太尼类的谱库数量超过30种,并可持续升级超过150种。据悉,目前RamanOS已实现300+套的销售。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 328px " src=" https://img1.17img.cn/17img/images/202009/uepic/d41a17f3-043e-4a39-9f41-fc61de2a153f.jpg" title=" RamTracer-200.png" alt=" RamTracer-200.png" width=" 300" height=" 328" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong RamTracer-200系列拉曼光谱仪 /strong /p p style=" text-align: justify "   2019年,普拉瑞思收购了Optotrace品牌及其全部知识产权 2020年,普拉瑞思推出旗下Optotrace品牌的RamTracer-200系列拉曼光谱仪,主打高性价比,并预装RamanOS食品安全版软件。据悉,收购完成后,普拉瑞思在中国拥有超过1000个便携拉曼用户。 /p p style=" text-align: justify "   除了发布新品之外,普拉瑞思这次还公布了其公司发展理念及商务合作政策:该公司将继续推进以拉曼光谱技术相关产品为核心,“RamanOS平台软件+国产光谱仪”的开放合作模式,不断拓展其色谱、质谱等门类的分析仪器产品,力争四年内成为国内“智慧实验室”领先的整体解决方案提供商。同时,为了快速拓展市场,普拉瑞思将在渠道经销,OEM/ODM服务和设立子公司等合作模式上全面发力,现阶段正在招募经销商和子公司职业经理人或合作伙伴。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/52f2023f-ddf3-4f5f-8c4d-1c698cf35de1.jpg" title=" IMG_1892 (1).jpg" alt=" IMG_1892 (1).jpg" / /p p style=" text-align: center " strong 团队合影 /strong /p
  • 普拉勒仪器携新款实验室气体发生器出战ESEE 2017
    2017年4月16日——18日,普拉勒仪器携精品实验室气体发生器在第十四届南京科仪展上绽放光彩,赢得仪器用户纷纷驻足参观。
  • 顺应半导体行业需求,加大氮氢空一体机产品布局——访普拉勒(英国)仪器科技有限公司总经理尹春峰
    近两年全球经贸摩擦形势严峻,世界各国在高端制造领域的比拼、博弈日趋激烈,以美国为首的发达国家对我国实施技术封锁,”卡脖子“问题愈发凸显。而在分析仪器制造领域我国目前进口依赖度较高,产业发展与转型都面临严峻的挑战,因而突出高端制约的重围任重道远。宏观来看,政策规划牵引、地方政策支持、国产采购倾斜,支持国产仪器发展似乎已经成为政府、市场以及公众的共识。普拉勒(英国)仪器科技有限公司是实验室前处理设备(气体发生器、降噪设备、纯水设备)的主要供应商,其产品广泛应用于制药、食品、环保、生物、石化、烟草、出入境检验检疫、疾病控制、科研院所等分析实验室。近期仪器信息网特别采访了普拉勒(英国)仪器科技有限公司总经理尹春峰。采访中,尹春峰向我们分享了普拉勒 2022年的亮眼成绩以及对于2023年的业绩预期,新产品创新技术、以面对半导体行业的产业发展,普拉勒将进行的战略规划等。完整采访内容请点击下方视频。
  • 普拉瑞思科学仪器(苏州)有限公司推出 新精神活性物质(NPS)快速检测解决方案 ——让毒pin无处遁行
    背景信息 1、1996年我国公布的麻醉药品品种目录将阿芬太尼等12种芬太尼类物质列入麻醉药品 品种目录...... 2、2015年,我国新出台了《非药用类麻醉药品和精神药品增补目录》,亦将芬太尼列入其 中...... 3、2018年底,中美两国元首在二十国集团首脑峰会间进行会晤,会后白宫发布的声明中, 位列首位的是双方表示就管控芬太尼达成共识,令“芬太尼”一词突然曝光于大众...... 4、中国公安部、国家卫生健康委、国家药监局三个部门2019年4月1日联合发布公告, 引入了“类物质”的概念,从5月1日起将芬太尼类物质列入《非药用类麻醉药品和精神药品 管制品种增补目录》...... 近期芬太尼的密集曝光,标志着该类化合物正式进入了国内、国际禁毒部门管理的严控 范围之内。芬太尼是一种强效麻醉剂,药理作用与吗啡类似,但药效是吗啡的80倍,因此 该类物质不仅是药品,还是实验室毒pin中的重要成分,因其可产生强烈的精神依赖和兴奋感, 导致该类药物在全球范围内滥用严重。但是芬太尼的一大特征就是变化极快、衍生品众多, 截止目前报道的芬太尼类化合物约70种,最主要的特征就是结构式和基团的细微差别,对 检测设备和方法的准确性提出了极高要求,让缉毒部门防不胜防;此外不法分子会通过混合 物、掺杂如面粉等物质、溶解在饮料中等手段逃避监管。 技术现状 拉曼技术作为一种分子光谱技术可有效检测毒pin毒物等,但由于拉曼光谱的光源波长和 信号灵敏度成指数反比,即偏红外(1064nm)光源的拉曼信号通常较弱,造成采用高功率 激光照射而增加了使用的危险性,不过这类光谱仪可以有效的避免样品荧光干扰,而短波长 (785nm,532nm)光源的拉曼信号虽然较强,但却往往受到样品荧光的影响,像海洛因、芬 太尼等物质无法获得有效拉曼信号,且上述技术只能筛查常量状态下存在的毒pin,对样品的 纯度有较高要求,一旦样品基质组成复杂,误判率极高;另外,在面对饮料、溶液、糖、面 粉、盐等基质掺毒样品的快速侦查时往往束手无策,让不法分子有机可乘,逍遥法外。 解决方案 基于上述检测技术的不足,普拉瑞思科学仪器(苏州)有限公司专注于拉曼光谱仪及表 面增强拉曼光谱技术在毒pin检测领域的创新开发,依靠强大的产品研发能力和专业的技术人 才队伍,迅速建立起了一系列检测方法,面向海关、公安等推出了完整的毒pin、新型毒pin、 麻醉及精神药品的常量及微痕量检测解决方案,其中对芬太尼类、卡西酮类、苯丙胺类等毒pin不仅可实现常量检测,同时也可借助表面增强拉曼光谱,使用自主研发的增强基底和前处 理方法,有效去除荧光基底干扰,不仅可以实现饮品、污水、尿液等样品中毒pin的准确识别, 也可以在混合的复杂固体基质如面粉、咖啡、巧克力等常见固体粉末类食品中实现ng级别 毒pin的高灵敏检测。图1 表面增强拉曼光谱可实现单分子浓度水平的检测 表面增强拉曼光谱属于分子振动光谱,可利用相似结构化合物中不同的分子基团和细微 的结构式变化,在激发光源的作用下会产生不同的振动模式和散射光谱,实现结构类似物的 准确识别,只可检测至单分子水平。我司自主研发的高性能拉曼光谱仪和专用的毒pin类快速检测试剂盒,配有自主研发的深度学习识别算法和高效提取试剂,可快速分辨芬太尼类物 质中不同分子基团的细微区别,准确判断化合物结构式的归属。 图2 芬太尼、瑞芬太尼、舒芬太尼的高灵敏检测和有效区分 如图2所示,ppb级别的芬 太尼、瑞芬太尼、舒芬太尼等结构类似化合物可明显、快速区分,相关技术和方法填补了国 内及国际市场空白,且相较于实验室方法,极大的缩短了检测时间,简化了样品处理流程。 图3 甲卡西酮的高灵敏检测 图3即为1ppb甲卡西酮(卡西酮类中的一种)的表面增强拉曼光谱对照图 目前,普拉瑞思解决方案可针对芬太尼类、卡西酮类、吗啡类、大麻素类、苯胺类、色 胺类、哌嗪类、氯胺酮类、苯环利定类等数百种毒pin及新型毒pin实现常量及微痕量的快速检 测,相关产品及技术可广泛应用于海关、公安、边防等多种应用场景。 我司愿与政府和社会各单位共同携手,推进新精神活性物质检测技术的完善和发展,让毒pin无所遁形,使我们的社会更加和谐安宁!
  • 普拉勒氮气发生器-M30 入驻连云港产品质量监督检验所
    普拉勒氮气发生器-M30主要技术参数 ◎ 流量:0-200L/min @100-110psi(7bar,0.7Mpa) ◎ 露点:-55℃ ◎ 纯度:99.5% ◎ 颗粒:0.01μm ◎ 滞留液体:无 ◎ 邻苯二甲酸:无 ◎ 噪声:54dB(A) ◎ 尺寸:1000×700×850mm(Nitrogen-M-30) ◎ 净重:约 125Kg(Nitrogen-M-30)应用实例
  • 多款新品齐亮相,让实验室纯水机更方便——访英国普拉勒公司欧洲技术总监NICO
    p style=" text-indent: 2em " 2019年10月23日-26日,第十八届北京分析测试学术报告会暨展览会(BCEIA 2019)在北京国家会议中心召开。会议期间,仪器信息网采访了英国普拉勒公司欧洲技术总监NICO。请其就本次展会推出的多款实验室纯水机产品进行了详细介绍: /p script src=" https://p.bokecc.com/player?vid=27111C3588A1B8B89C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script
  • 盘点诺贝尔化学奖:共发104次 4女性获奖
    2013年诺贝尔物理学奖10月8日在瑞典揭晓,美国科学家马丁· 卡普拉斯、迈克尔· 莱维特及亚利耶· 瓦谢尔因给复杂化学体系设计了多尺度模型而共享奖项。诺贝尔奖官方网站用数字解读了诺贝尔化学奖百年来的历史:   104次颁奖   自1901年至2012年,诺贝尔化学奖项已颁发104次。其中,1916年、1917年、1919年、1924年、1933年、1940年、1941年和1942年这几年未颁奖。这是因为这些年份恰逢第一次和第二次世界大战,化学领域没有足够重要的发现和突破,奖项顺延至下一年。   63人单独获奖   截止2012年,化学奖颁发给单独个人的为63次 23次该奖项为两人同得,18次该奖项由三人共享。   4名女性   在获得过诺贝尔化学奖的163人中,有4名女性。其中一位是著名物理学家、化学家居里夫人。   最年轻:35岁   弗雷德里克· 约里奥· 居里是迄今获得物理学奖最年轻的人,1935年,35岁的约里奥与妻子共同获得诺贝尔化学奖。值得一提的是,其妻伊雷娜· 约里奥· 居里是曾获得两项诺贝尔奖的居里夫人的长女。   最年长:85岁   2002年,85岁的约翰· B· 芬获诺贝尔化学奖奖。这使他成为目前获得诺贝尔化学奖年龄最大的人。   平均年龄57岁   诺贝尔物理学奖的获奖者平均年龄为57岁。
  • 从诺贝尔科学奖看我国科学界的短板
    一年一度的诺贝尔奖日前揭晓,中国科学家今年依然缺席科学类奖项。早在2001年,杨振宁曾预言,20年内,中国在自然科学领域肯定能有人获奖。而今,如何看待这一预言?我国自然科学领域何时能实现零的突破?   诺奖与国家整体科研实力密切相关   去年莫言斩获诺贝尔文学奖后,公众对于中国人冲击诺贝尔科学奖的信心有所提振。对于国人之于诺贝尔奖的这种急切的渴望,中国科学院院士郭光灿教授认为,这种关注可以理解,但不必太过。   &ldquo 一个国家获诺奖者越多,表明这个国家对国际科学群体大家庭的贡献越大。但诺奖仅是国家实力的标志之一,有的国家偶尔出现一位诺奖获得者,并不意味该国科研实力有多强大,例如巴基斯坦。&rdquo 他认为,更重要的是该关注国家整体科研实力,实力强大,诺奖获得者自然会不断涌现。   &ldquo 科研是一个积累的过程,欲速则不达。一项研究成果需要十年甚至几十年才能得到验证和认可。&rdquo 长江学者、北京大学化学与分子工程学院高毅勤教授说,纵观历年诺贝尔奖成果,无不如此。他认为,诺贝尔奖不应被看得过重,&ldquo 它只是一个激励科学家进步的奖项&rdquo ,从历史上看,许多优秀的研究成果也并未都获颁诺贝尔奖,这并不影响其本身的研究价值和深远影响力。   生命科学专家、曾任北京大学生命科学院院长的饶毅教授则认为,公众对于诺贝尔奖的急切关注是一件好事,&ldquo 能够意识到自身的差距,有所警醒&rdquo 。他也提出了自己的忧虑,如不改变现状,&ldquo 到2049年,中国自然科学仍可能落后于欧美、日本等发达国家&rdquo 。   国内科学界的短板在哪?   诺贝尔奖虽然不代表科研整体实力,但毕竟是比较重要的指标。不少专家指出,要想培养出诺贝尔奖级的科研人才,国内科学界尚有不少需要克服的弊端。   中国科学院生物物理所研究员刘平生认为,诺贝尔科学奖原则上注重开创性,一般是基础性研究的重大突破,或是具体某一领域成果的应用效果突出。今年荣获诺贝尔生理学或医学奖的美、德科学家所发现的细胞囊泡转运调控机制正是如此。&ldquo 这个成果是典型的基础性研究成果,首次破解了细胞内物质运输的&lsquo 密码&rsquo ,对于整个生命医学研究有着&lsquo 面面俱到&rsquo 的重大影响力。&rdquo   他说:&ldquo 由此可见,开创性和基础性是诺贝尔奖所看重的主要因素。&rdquo 这正是当前中国科学界的短板。与欧美、日本等国相比,我国科学界开创性的研究还太少。他认为,这种现象与现行的科研人员考评体系有着很大关系,&ldquo 做那些以他人开创性研究为基础的科研,比较容易发表学术论文,更符合现在以发表科研文章为标准的考评规则。&rdquo   郭光灿则认为,这一现行量化的科研考评体制亟待改善。追逐名利之下,科研价值成为次要问题,很少能有足以引领世界的原创性成果出现。另外,我国长期以来更倾向于发展应用性更强的科技学科,投入大、周期长、见效相对较慢的基础学科被排在后面,近年来才逐渐得到更多的关注。   科技部部长万钢近日也明确表示:&ldquo 从国家整体上看,对基础研究的投入还远远不够,政府支持的持续时间也不够长,我们还没有一个创新项目能持续到十年以上。&rdquo 这与往年诺贝尔奖得主动辄几十年的基础研究周期相比有差距。   在制度层面的改革也同样重要。高毅勤认为,科学家需要思考的自由,允许一部分人能够相对自由地做长期的探索,这需要一个更加成熟的科研环境,而不是被单一化的评价标准和过多的评估束缚住手脚。如何从科研经费配比、考评标准设计等方面进行改变是必要的。   静下心来做科研最重要   10月11日,万钢表示,预测中国何时能在诺贝尔科学奖方面有所突破,确实是一个难题。不过我们现在也看到了一些重要成果,比如中微子振荡、量子反常霍尔效应、高温超导等方面已经有些苗头。但是,绝不能心浮气躁,拔苗助长。   郭光灿也认为,我国近10多年来,科学和技术迅速发展,已具备诞生诺贝尔奖的硬件条件,静下心来做科研最为重要,&ldquo 多数诺奖获得者并不知道他能获奖,甚至感到意外。他们从事某个课题的研究并不是为了获奖,而是一种追求与探索的强烈驱动。&rdquo   而作为本年度诺贝尔化学奖得主之一的马丁· 卡普拉斯的学生,高毅勤透露,马丁曾告诉他,在多年前这项获奖研究开始的时候,许多人认为根本不值得做,但他和同伴凭着兴趣坚持了下来。&ldquo 科学家最应该有对自然科学的好奇心和对自然规律的敬畏心,这是本质的东西,也是应该从诺贝尔奖获得者身上学习的东西。&rdquo   高毅勤表示,我国学生的能力和水平不用怀疑,&ldquo 我既带过中国学生也带过外国学生,我国的年轻人在科研方面的天赋绝对不比任何国家差,而且更勤奋&rdquo 。他相信,只要给这些年轻学生足够的机会和环境,经过长期的积累,一定会有问鼎诺奖的科研人才出现。
  • 诺贝尔化学奖得主在浙大建立生物纳米工作室
    日前,市委书记阎立在市行政中心长谊轩亲切会见2013年诺贝尔化学奖得主迈克尔· 莱维特(Michael Levitt)先生一行。   迈克尔· 莱维特毕业于剑桥大学冈维尔与凯斯学院,是著名的生物物理学家,1987年至今一直在美国斯坦福大学担任结构生物学教授。2013年,他与另外两位美国科学家马丁· 卡普拉斯(Martin Karplus)和亚利耶· 瓦谢尔(Arieh Warshel)因建立&ldquo 发展复杂化学体系多尺度模型&rdquo 而获得诺贝尔奖,最大贡献是引进电脑进入化学研究,并打通了链接经典物理学与量子物理学的桥梁。   迈克尔· 莱维特此次来常将在浙江大学常州工业技术研究院建立工作室,并担任纳米药物研究中心首席科学家。纳米药物研究中心由浙江大学思源讲座教授周如鸿和中国科学院院士唐孝威领衔建设,重点关注石墨烯及其衍生物在生物纳米技术上的应用。   阎立在会见时表示,常州长期推行科教兴市战略,与国内外大学大院大所广泛开展产学研合作。其中,常州高新区与浙江大学合作,共同成立了浙大常州工业研究院。阎立希望迈克尔教授加盟研究院后,能把生物领域的先进理论和技术带到常州,充分发挥浙大的技术、人才和科研优势,尽早在常州结出硕果,推动常州新材料产业和生物医药产业更好更快发展。
  • RamanOS操作系统助力拉曼光谱技术在食品安全、公共安全领域的新应用
    RamanOS 是普拉瑞思科学仪器(苏州)有限公司旗下拉曼光谱应用软件产品,是“拉曼光谱操作系统”的简称,是一款基于云计算的通用软件平台,可以帮助光栅光谱仪制造商或已有拉曼光谱仪用户快速建立拉曼光谱应用场景,推广实际检测应用。 RamanOS具有完整的功能套件,覆盖从硬件连接到检测分析全流程软件方法包,包括:仪器性能评测及仪器驯化组件、试剂有效性评估组件、样品前处理方法(SOP)组件、数据库和基础套件等,其中基础套件包含客户端软件(Windows&Android)和云控制台。 RamanOS的购买和使用:RamanOS V1.0包括零售版和大客户版,此次发布的食药安全检测系统的零售版售价为4.8万元/套,允许授权使用在一台拉曼光谱仪上;大客户版为签约企业用户专属,拥有批量授权和更优惠的价格。用户通过在RamanOS电商平台上购买软件后,可自动获得软件授权激活码,RamanOS工程师会在约定时间内与用户取得联系,沟通硬件通信、性能测试、软件安装调试等一系列工作,并根据通用验收标准验收,保证用户可以基于云端数据库完成全部检测工作。首次次购买到使用的时间一般只需一周,二次购买即可做到随购随用。 RamanOS可匹配国内外各种拉曼光谱设备,其推广及使用将弥补现有光栅光谱仪制造商在应用市场的短板,也将对已有拉曼光谱仪用户在实际使用中出现应用不完善的情况得到良好的补充。点击以下报名链接: RamanOS操作系统助力拉曼光谱技术在食品安全、公共安全领域的新应用讲师:马宁从2008年开始从事表面增强拉曼光谱技术及相关产品的开发与设计,先后主持设计开发数款应用在食品安全和公共安全领域的小型拉曼光谱仪产品,累计实现市场应用近2000台套;2017年创办普拉瑞思科学仪器,实现销售额超5000万元,拉曼光谱产品线在食品安全检测市场占有率近四成。
  • 诺贝尔化学奖花落2位女科学家,历届获奖女科学家盘点
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/a3c2dbc3-ef35-4bc3-bbe8-921005556bb3.jpg" title=" 7440CA75-E13F-4F1F-8F42-9BF46D78D9CB.jpeg" alt=" 7440CA75-E13F-4F1F-8F42-9BF46D78D9CB.jpeg" / /p p style=" text-align: justify text-indent: 2em " 法国科学家埃马纽埃尔· 卡彭蒂耶(Emmanuelle Charpentier)与美国科学家詹妮弗· 杜德纳(Jennifer A . Doudna)。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 据诺贝尔奖官方网站消息,2020年诺贝尔化学奖于北京时间10月7日17时45分许正式揭晓,由法国科学家埃马纽埃尔· 卡彭蒂耶(Emmanuelle Charpentier)与美国科学家詹妮弗· 杜德纳(Jennifer A . Doudna)获得。以表彰她们“开发出一种基因组编辑方法”。两位获奖者将分享1000万瑞典克朗奖金(约合760万人民币)。 /span /p p script src=" https://p.bokecc.com/player?vid=27570E61F0EADE909C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script br/ /p p style=" text-align: justify text-indent: 2em " 埃马纽埃尔· 卡彭蒂耶,就职于德国柏林马克斯· 普朗克病原学研究室;詹妮弗· 杜德纳,美国生物学家,加州大学伯克利分校的化学和分子生物学与细胞生物学教授。 /p p style=" text-align: justify text-indent: 2em " CNN称,诺贝尔化学奖颁给了开发出能够“改写生命密码”的CRISPR基因编辑工具的科学家。 /p p style=" text-align: justify text-indent: 2em " 2020年诺贝尔奖六大奖项,包括诺贝尔生理学或医学奖、诺贝尔物理奖、诺贝尔化学奖、诺贝尔文学奖、诺贝尔和平奖、诺贝尔经济学奖,于10月5日至12日陆续揭晓。诺贝尔基金会首席执行官拉尔斯· 海肯斯滕此前表示,受新冠疫情影响,今年12月将不再举行传统的诺贝尔奖颁奖典礼,颁奖仪式将改为线上举行。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 历史上的女性诺贝尔奖获得者 /strong /span /p p style=" text-align: justify text-indent: 2em " 5位女性获奖者:截至2019年,在183位诺贝尔化学奖得主中,女性有5位,其中居里夫人(玛丽· 居里)和英国科学家多萝西· 克劳福特· 霍奇金分别在1911年和1964年独享这一奖项。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 近10年这些人曾获奖 /strong /span /p p style=" text-align: justify text-indent: 2em " 诺贝尔化学奖首次颁发于1901年,截至2019年,共颁奖111次,有183人获奖。 /p p style=" text-align: justify text-indent: 2em " 其中,最年轻的化学奖得主是法国物理学家弗雷德里克· 约里奥-居里,他在35时与其妻子因对人工放射性的研究,共同获得诺贝尔化学奖。 /p p style=" text-align: justify text-indent: 2em " 最年长的化学奖得主是美国科学家约翰· 古迪纳夫,他因对锂电池研发领域做出的贡献,在97岁时与另外两位科学家共同获得了2019年诺贝尔化学奖,古迪纳夫也是目前所有诺奖获得者中,年龄最大的一位。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 以下是近10年以来诺贝尔化学奖得主名单,及其主要成就: /span /strong /p p style=" text-align: justify text-indent: 2em " 2019年: /p p style=" text-align: justify text-indent: 2em " 约翰· 古迪纳夫(美)、斯坦利· 惠廷厄姆(美)和吉野彰(日),因在锂电池研发领域做出的贡献分享诺奖。 /p p style=" text-align: justify text-indent: 2em " 2018年: /p p style=" text-align: justify text-indent: 2em " 诺贝尔化学奖授予弗朗西斯· 阿诺德(美)、乔治· 史密斯(美)和格雷戈里· 温特利(英),以表彰他们在酶的定向演化,以及用于多肽和抗体的噬菌体展示技术方面取得的成果。 /p p style=" text-align: justify text-indent: 2em " 2017年: /p p style=" text-align: justify text-indent: 2em " 约阿希姆· 弗兰克(德/美),理查德· 亨德森(英),雅克· 杜博歇(瑞士)发展了冷冻电子显微镜技术,以很高的分辨率确定了溶液里的生物分子结构。 /p p style=" text-align: justify text-indent: 2em " 2016年: /p p style=" text-align: justify text-indent: 2em " 让-皮埃尔· 索维奇(法)、弗雷泽· 斯托达特(英)和伯纳德· 费林加(荷)三位科学家因“设计和合成分子机器”获奖。 /p p style=" text-align: justify text-indent: 2em " 2015年: /p p style=" text-align: justify text-indent: 2em " 托马斯· 林达尔(瑞典)、保罗· 莫德里奇(美)、阿齐兹· 桑贾尔(土耳其/美),因在基因修复机理研究方面所做出的贡献获奖。 /p p style=" text-align: justify text-indent: 2em " 2014年: /p p style=" text-align: justify text-indent: 2em " 埃里克· 贝齐格(美)、威廉· 莫纳(美)、斯特凡· 黑尔(德),因“研制出超分辨率荧光显微镜”获奖。 /p p style=" text-align: justify text-indent: 2em " 2013年: /p p style=" text-align: justify text-indent: 2em " 马丁· 卡普拉斯(美/奥地利)、迈克尔· 莱维特(英/美)、阿里耶· 瓦谢勒(美/以色列)分享诺奖,三人在开发多尺度复杂化学系统模型方面做出贡献。 /p p style=" text-align: justify text-indent: 2em " 2012年: /p p style=" text-align: justify text-indent: 2em " 罗伯特· 莱夫科维茨(美)、布莱恩· 克比尔卡(美),因“G蛋白偶联受体研究”获奖。 /p p style=" text-align: justify text-indent: 2em " 2011年: /p p style=" text-align: justify text-indent: 2em " 达尼埃尔· 谢赫特曼(以色列)因发现准晶体获奖。 /p p style=" text-align: justify text-indent: 2em " 2010年: /p p style=" text-align: justify text-indent: 2em " 理查德· 赫克(美)、根岸英一(日)、铃木章(日),因“有机合成中钯催化交叉偶联”研究,分享诺贝尔化学奖。 /p p br/ /p
  • 刘昌孝院士:全球生物医药研发多点开花
    p style=" text-align: left text-indent: 2em " 2017年对于全球生物医药研发来说是多点开花的一年,多个新药研发创里程碑式纪录。2017年也是中国的“新药元年”,在政策扶持下大批新药获批上市,中国药企走向世界的步伐正在提速。在春节来临之际,中国工程院院士、天津药物研究院研究员刘昌孝为读者献上了一份含金量十足的“新春贺礼”,这也是他第七年在中国科学报发布全球生物医药发展述评研究结果。 /p p style=" text-align: center " strong span style=" color: rgb(153, 153, 153) " img alt=" " src=" http://img1.17img.cn/17img/images/201802/uepic/2559f3bf-af49-4aee-bc1f-85692f201cf6.jpg" / br/ /span /strong /p p style=" text-indent: 2em " 刘昌孝,中国工程院院士,天津药物研究院研究员,从事新药研发和新药评价研究53年。是我国药物代谢研究的学科带头人和开拓者之一,创建了我国第一药代动力学实验室,出版了国内第一本药物代谢动力学专著。在中药研究中提出中药转化研究、中药代谢组学、复方中药代谢标志物、中药质量标志物和网络毒理学等新概念。从研以来获得科技奖成果奖励50多项/次。发表研究论文400多篇,中英文学术专著20本。 /p p style=" text-indent: 2em " 从技术创新、研发管线到临床审批、上市销售,2017年可谓是全球新药研发多点开花之年,也为新药市场给出了更高的期望值。 /p p style=" text-indent: 2em " 2017年,美国食品药品监督管理局(FDA)共批准46个新药,其中35个为全球首次获批;欧盟批准了51个新药,其中4个为全球首次获批;日本也批准了23个新药,其中3个为全球首次获批。全球欧美日一共获准120个新药。 /p p style=" text-indent: 2em " 2018年有望上市的新药将超过40~50个,其中包括处在审评阶段的新药及计划在今年上半年提交上市申请的新药。根据美国药品评价和研究中心(CDER)2017年12月发布的“新药审评报告”分析,处在审评阶段的新药将为率先在欧盟、日本、中国等提交上市申请奠定基础。 /p p style=" text-indent: 2em " strong 2017全球医药研发丰收年 /strong /p p style=" text-indent: 2em " 2017年,美国FDA批准的46个新药中,小分子药物34个、生物大分子药物12个,总数创下20年来最高纪录,这也是继2016年22个低谷数之后的强势反弹。 /p p style=" text-indent: 2em " 美国获批新药以抗肿瘤和罕见病药物为主,其中有18个新药获得孤儿药资格,占批准新药的39%。欧盟批准19个罕见病治疗新药,占批准新药的38%,其一为患者人数少(如欧盟定为属于万分之五的疾病),其二为危及生命和健康的严重疾病,如果美国确定药品有潜力对医疗保健作出实质性推动,药品将获得优先审评。在治疗领域方面,2017年抗肿瘤药占多数,占比约26%。此外,抗感染药物也获得较大进展,其中抗菌药物4个,抗病毒药物3个。青光眼、丙肝、银屑病、糖尿病等治疗领域也获得突破。 /p p style=" text-indent: 2em " 2017年获批新药中有20个被认定为优先审评,占获批新药的43.5%。美国还应用多种监管方法加快新药研发和审批,包括快速通道、突破性治疗认定等。加快审评和罕见病新药批准比例大也与去年上市新药丰收有关。从临床安全有效角度来看,发达国家对加快审评审批也有不同声音,如美国医学会志(JAMA)2016年发表专家评论,认为2009~2014年上市的83个抗癌药物基本不靠谱。2017年发表文章统计的222个上市新药有三分之二存在安全隐患,其中71个有安全问题,61个需要用黑框警示其安全性。因此新药使用者(医生和患者)必须高度重视安全性、可用性和可及性。 /p p style=" text-indent: 2em " 2017年第一个获FDA审批的是Synergy Pharmaceuticals公司的新药Trulance,用于治疗慢性特发性便秘。另有四款治疗中枢神经系统疾病新药,分别为治疗多发性硬化症的Ocrevus、治疗“渐冻人症”的Radicava、控制帕金森病的Xadago以及改善亨廷顿病症状的Austedo。FDA批准的新药中,各企业上市的35个新药都是全球首批。如2017年12月11日,FDA批准了Medimetriks制药公司的Ozenoxacin上市,该药是一种新型抗生素,用于治疗两个月以上的脓疱疮患儿。 /p p style=" text-indent: 2em " strong 新药研发创里程碑式纪录 /strong /p p style=" text-indent: 2em " 2017年全球新药研发称得起为创里程碑式纪录的一年,有3个里程碑事件值得铭记。 /p p style=" text-indent: 2em " 其一,2017年5月23日,FDA批准默沙东Keytruda用于携带高度不稳定性或者错配修复缺陷实体瘤患者的治疗,意味着Keytruda成为首款不是基于肿瘤发病位置,而是基于肿瘤标记物的癌症治疗方法,在癌症史上具有划时代的意义。 /p p style=" text-indent: 2em " 其二,2017年8月30日,FDA批准诺华的Kymriah上市,用于治疗25岁以下青少年难治或复发急性淋巴白血病。Kymriah由此成为全球第一款上市的CAR-T疗法。Kymriah是一种基因修饰的自体T细胞免疫治疗,是使用患者自己的T细胞产生的定制化治疗,其安全性和有效性在临床试验中已得到证实。但是,Kymriah仅对治疗三个月内的缓解率有较高疗效,治疗仍具有潜在的严重副作用,可能会产生细胞因子释放综合征(CRS)的风险警告,甚至可能因CRS和神经系统事件危及生命,其他严重副作用还包括严重感染、低血压、急性肾损伤、发热和缺氧,也会破坏产生抗体的正常B细胞,存在长时间感染增加的风险。 /p p style=" text-indent: 2em " 其三,2017年12月19日,FDA批准Spark Therapeutics的基因疗法Luxturna上市,用于治疗遗传性视网膜病变。Luxturna直接在患者体内矫正基因,属于真正意义上的基因疗法,标志着基因治疗时代的正式来临。从Luxturna的安全性和有效性证据来看,一次注射Luxturna后,试验组患者在暗光下避开障碍的能力得到了显著提高。但最常见的不良反应如结膜充血、白内障、高眼压、视网膜撕裂也不可无视。 /p p style=" text-indent: 2em " strong 我国新药审批新政促使新药批件激增 /strong /p p style=" text-indent: 2em " 2017年是中国的“新药元年”,新药临床和上市的审批政策频出,中国食药监总局(CFDA)进入史上快速跑道,大批新药批准进入临床试验。2017年批准临床试验在研新药9个品种,数量也是近年峰值。中国医药工业信息中心的数据显示,截至2017年底,药品审评中心(CDE)承办企业申请临床的1类化药数量达199个,较2016年增长42%。2017年获批上市的药物品种达48个。根据目前能够确认的药品治疗领域的品种,抗肿瘤药数量高居榜首,抗感染药物和神经系统用药分列第二、三位。 /p p style=" text-indent: 2em " 我国自主创新品种明显不足。从新药申报情况看,国内创新药正处于发展的初期,获批上市品种还相对较少。国产化学新药在2017年获批生产的受理号数量为16个,9家企业申请,覆盖了5种药物活性成分。目前,每年新申报的国产新药IND数量已经达到300个以上,这些申报的品种预计将于3~5年以后逐步获批上市。在生物药品上,2017年仅一个国产品种批准上市,即军事医学科学院生物工程研究所和天津康希诺生物股份公司联合研发的重组埃博拉病毒病疫苗产品,已于2017年10月获我国CFDA批准上市。 /p p style=" text-indent: 2em " 加快新产品的上市速度,才能更好地满足我国患者的临床需求。从最近爆发的“医保亏空”舆论风暴来看,创新药未来的市场前景也许并不乐观,医改希望在满足临床需要和医保基金统筹之间找到平衡点。未来5到10年,大批疗效相似的创新药上市后,将极有可能面临价格厮杀的局面,如继续沿用当今的药品招标办法,新药与仿制药面临的招标困境如出一辙。 /p p style=" text-indent: 2em " 随着“优先审评”制度在国内正式落地,使“吸收外来”的速度加快,进口药物开始扎堆进入中国市场。据不完全统计,2017年已经有20家左右的外企新药获批在国内上市,包括拜耳、诺华、赛诺菲、强生、阿斯利康等跨国公司的产品,治疗领域包括丙肝、糖尿病、帕金森病、艾滋病、高血压、抑郁症等。在这些新药中,肿瘤药物约为35%、丙肝药物约为20%、糖尿病药物约为10%。其中,丙肝药物除了百时美施贵宝(中国)投资有限公司的两个新药获批,申报上市的吉立亚索磷布韦片也进入了CDE“纳入优先审评品种名单”之中,由此,已在欧美证实疗效显著的丙肝新药之战正在上演。 /p p style=" text-indent: 2em " strong 国产药物走出国门成绩喜人 /strong /p p style=" text-indent: 2em " 2017年,国内共有5个单克隆抗体药物申报美国临床试验成功。至此,成功申报美国临床试验的国内单克隆抗体药物达到9个。在生物类似药研发,基本集中于阿达木单抗、曲妥珠单抗、贝伐珠单抗、利妥昔单抗等重磅品种。生物类似药研发的成本降低,继而药物价格降低,使患者的药物可及性得以提高。还有国内6家企业的中药产品正在美国的临床试验之中。 /p p style=" text-indent: 2em " 国内企业恒瑞医药、正大天晴、和黄医药三家企业的创新药小分子替尼类靶向药物,虽然作用机理和适应症不尽相同,但都属Me-too类新药。丽珠集团发布公告称,公司的注射用艾普拉唑钠申报生产的注册申请,以及艾普拉唑钠原料申报生产的注册申请状态均变更为“审批完毕—待制证”,意味重磅品种近期有望获批。 /p p style=" text-indent: 2em " 截至目前,华海药业已有17个自主研发的处方药在美国上市,有20多个ANDA仿制药得到FDA批准,30个产品在等待FDA批准,成为中国第一家大规模制剂出口美国的制药企业。齐鲁制药的原料药也实现了制剂出口国外,相继实现了8个产品的对美出口,涵盖抗肿瘤、抗感染等领域,数量和金额均呈现井喷式增长。制剂出口转型发展也使恒瑞、石药欧意、绿叶制药、华安制药、新华制药、深圳致君、深圳立健等在欧美高端市场表现突出并卓有成效。 /p
  • 《红薯粉丝中苋菜红的测定 表面增强拉曼光谱法》征求意见
    由中国粮油学会立项的《红薯粉丝中苋菜红的测定 表面增强拉曼光谱法》团体标准已完成征求意见稿,现公开征求意见。意见反馈邮箱liuxiaonan@ccoaonline.com,截止时间2022年2月22日前。  近年来市场监督管理局公布的抽检结果表明,苋菜红经常被商家超范围超限量使用,2021年6月广州市场监督管理局例行抽检发现某批次乌梅超量使用苋菜红,添加量为100 mg/kg,2021年7月广州市场监督管理局例行抽检发现某批次蓝莓李果超量使用苋菜红,添加量为220 mg/kg,2021年10月浙江市场监督管理局例行抽检发现某批次乌梅超量使用苋菜红,添加量为330 mg/kg。而苋菜红具有高遗传毒性、细胞毒性,并且可以抑制细胞生长,转换成致癌物质或引起儿童的行为改变,这种合成色素也不能为人体提供营养,苋菜红的过量使用已成为一个令人关切的问题[2]。有关苋菜红的毒理学数据为:LD50小鼠口服大于10 g/kg体重 大鼠腹腔注射大于1 g/kg体重。出于食品安全考虑,联合国粮农组织和世界卫生组织食品添加剂专家委员会建议苋菜红的每日允许摄入量应在0~0.5 mg/kg体重。  多个案例和毒性数据表明,有必要建立苋菜红快速检测方法对相关食品进行有效监管。本方法主要工作包括样品前处理方法的研究、仪器条件的优化和定性筛查方法的建立、实验室比对提供同行验证报告。  本标准按照GB/T1.1—2020给出的规则起草。本标准由中国粮油学会提出。本标准由全国粮油标准化技术委员会(SAT/TC 270)归口。本标准主要起草单位:江南大学、普拉瑞思科学仪器(苏州)有限公司、苏州市食品检验检测中心、苏州市产品质量监督检验院。  本标准参考GB 5491 粮食、油料检验 扦样、分样法 GB/T 6682-2008 分析实验室用水规格和试验方法 GB/T 27404-2008 实验室质量控制规范 食品理化检测编制而成。本标准规定了红薯粉丝中苋菜红的表面增强拉曼光谱检测方法。本标准适用范围主要为红薯粉丝中违禁添加苋菜红的检测。  方法原理:  采用超纯水提取红薯粉丝中的苋菜红着色剂,过滤后,与拉曼增强基底金溶胶混合进行拉曼光谱测定。  仪器及设备:  除实验室常规仪器设备外,应注意下列仪器设备。1.天平。感量0.1 mg和0.01 g。2.粉碎机。电机转速≥1000 r/min。3.涡旋混合器。转速≥100 r/min。4.超声波清洗器。5.便携式拉曼光谱仪。6.油浴锅。  待测溶液制备:  分别准确称取两份5 g样品,置于15 mL具塞离心管中,其中一份加入3 mL苋菜红标准工作溶液,再加入7 mL超纯水,震荡,摇匀,超声提取30 min。取上清液定容至10 mL,以12000 r/min,-4℃,离心10 min,重复两次,然后用0.45 μm滤膜过滤。另一份样品不加色素溶液,直接加入10 mL超纯水,随后重复上述步骤,提取液作为空白参照。  定性测定:  依次滴加 20 μL金纳米粒子、10 μL待测溶液到锡箔纸上,混匀后开始检测,根据图谱989 cm-1(±3 cm-1)、1357cm-1(±3 cm-1)、1439cm-1(±3 cm-1)、1554 cm-1(±3 cm-1)处特征拉曼光谱,对红薯粉丝中是否存在苋菜红进行鉴定分析。如同时存在上述特征峰,可判定样品中含有苋菜红 否则,不能证明样品中含有苋菜红,需要进一步实验验证。  分析结果的表述:  如果在989 cm-1(±3 cm-1)、1357cm-1(±3 cm-1)、1439cm-1(±3 cm-1)、1554 cm-1(±3 cm-1)处附近同时出现特征拉曼峰,则认为样品中含有过量苋菜红,否则认为样品中苋菜红含量低于检测限60 mg/kg。
  • 拉曼市场热度不减 便携仪器“扶摇”直上
    2015年以来,仪器信息网编辑多次盘点了中国拉曼光谱仪市场的发展态势,可喜的是该市场持续走高。这一点在很多方面都有所体现:招中标项目数量的增加、新产品和新技术的层出不穷、相关标准的不断完善、国内外仪器厂商的“排兵布阵”等。  中标结果显示:我国拉曼市场连续走高  基于仪器信息网编辑对近年来中国政府采购网发布的有关拉曼光谱仪中标信息的不完全统计,中国拉曼光谱仪器市场呈现持续增长态势。  基于“拉曼”关键词搜索统计,2014及2015年1-6月份仅有10多个涉及拉曼光谱仪的项目公布中标结果,而2016年1-6月份有29个涉及拉曼光谱仪的项目公布中标结果,2017年1-6月份涉及拉曼光谱仪中标的项目达到了40个,2018年该数值持续增长,中标项目数量达46个,2018年上半年拉曼光谱仪中标数量同比去年增长达15%!  从采购金额上来看,据不完全统计,2015年1-6月份公布的中标信息不足2000万元 2016年1-6月份中标金额估算超过3000万元 2017年1-6月份中标金额预估超过5000万元 2018年1-6月份该值预估近9000万元!  以上数据仅基于中国政府采购网1-6月份发布的有关拉曼光谱仪的中标情况,虽然不能完全覆盖所有涉及拉曼光谱的采购项目,但是趋势已然十分明了:不管从项目数量,还是金额方面,这几年来该市场始终没让大家失望。值得一提的是,在2018年上半年的中标统计中,便携/手持拉曼光谱仪贡献明显,初步统计中标额超过3500万,而同等搜索条件下去年同期便携/手持拉曼光谱仪中标额不足500万元,增长幅度可谓“扶摇”直上。在这还必须要说明的是,今年上半年一些食药监县级食品快检车项目采购便携拉曼的中标信息并未在中国政府采购网上发布,暂未列入统计中,所以今年实际便携拉曼光谱仪中标金额要远高于3500万元。  鉴于2016年国家食药总局下达的《关于做好县级食品快速检验车配备工作的通知》,按照计划,2018年底前为全国2862个县(市区)各配备一辆食品快速检测车(含车载设备)。目前已经公布的招中标结果显示,便携拉曼光谱仪已经成功“入驻”了很多地区,成为食药监县级食品快检车项目的核心产品,由此掀起的采购热潮也让便携拉曼仪器厂商大单频发。江西、湖北、浙江、云南、贵州、四川等地数十台甚至百余台的批量采购已经让不少仪器厂商大单频发,同时各地食药监县级食品快检车车载仪器的采购也给便携拉曼在食品领域的应用推广创造了非常好的机会。  产品、技术、标准等方面亮点不断  除却招中标取得的增长,上半年拉曼光谱技术、产品、标准等方面也是亮点不断,这里我们简要举例:  1月23日,北京理工大学材料学院刘吉平教授主持的中央在京高校重大成果转化项目“高灵敏度手持式拉曼光谱探测仪制造”顺利通过结题验收。据报道,通过与北京华泰诺安探测技术有限公司合作,推进产业化进程,已经建立了一套年产2000台的生产装配线。  在产品发布及推广方面,各大仪器厂商也是不遗余力,便携/手持拉曼的仪器厂商表现的尤为突出。仅6月在北京召开的“第七届中国食品与农产品安全检测技术与质量控制国际论坛(CFAS 2018)”中,就有十余家主营或者拥有拉曼光谱产线的仪器厂商参展。其中,南京简智在现场展示了最新推出的便携式差分拉曼光谱仪SERDS portable-base;一直以来专注安检行业的同方威视也带来了RT6000S手持式物质识别仪、RT5000食品安全检测仪、以及RT2000科研级便携式拉曼光谱仪等。此外,必达泰克、欧普图斯、普识纳米、卓立汉光、普拉瑞思等仪器公司也在现场展示了自己的仪器产品。  另据仪器信息网收录信息,上海星必光电科技有限公司在今年上半年推出了3款手持式拉曼光谱仪,分别是专注于制药工业原辅料快速鉴别的手持式拉曼物质真伪鉴别仪(TruNumen)、专注于危险品等违禁物及其他物质快速检测的手持式拉曼安检仪HazaDefender和NarcSeeker;如海光电的如海光电 Portman-532 便携式拉曼光谱还申报了仪器信息网2018年度新品评选。  在过去的一段时间里,瑞士万通、安东帕、安捷伦等不少仪器公司都选择通过收购/并购的手段拓展或加强拉曼光谱产线。其中,瑞士万通的在拉曼光谱方面的布局可谓“步步为营”,今年还宣布收购了IPS公司,进一步加强瑞士万通手持拉曼在工业领域的领导地位。而经过收购之后的整合,各大公司成果也逐渐显现出来,2018上半年都有不少进展:3月1日,瑞士万通发布了一款专用于非法物质和有害物质鉴别的手持拉曼光谱仪Mira DS;安捷伦凭借Resolve手持式拉曼光谱系统荣获了ADS安全创新奖;安东帕推出流变仪-拉曼光谱仪联用方案,可实现Cora 7X00或Cora 5X00光纤拉曼光谱仪和MCR 旋转流变仪的组合......  随着仪器技术的创新及应用的拓展,联用也成为拉曼光谱近来的一个热点,其中今年年初HORIBA宣布收购美国顶尖扫描探针显微镜制造商AIST-NT,这次收购意味着扫描探针显微镜与拉曼光谱技术的耦合,并为客户提供一个完整的HORIBA NANO Raman解决方案;而TESCAN电镜-拉曼一体化系统RISE显微镜还获得“电子显微镜类”“2017年度科学仪器行业最受关注仪器”奖项......  此外,标准方面也在逐渐落地。对拉曼光谱而言,相关标准的滞后也在一定程度上限制了该类仪器的推广应用,不过现在情况已经有了一定的改观,相关的标准制定工作正在加紧进行中。其中,2018年4月15日,由福建省计量科学研究院起草的《便携式拉曼光谱快速检测仪校准规范》JJF (闽) 1085-2018正式批准发布,2018年6月15日起实施,本规范为首次制定。其归口单位为福建省质量技术监督局,主要起草单位为福建省计量科学研究院,厦门市普识纳米科技有限公司、福州康泰生物科技有限公司参加起草。  虽然手持/便携拉曼仪器目前在火热的采购中,相比之前在销售量上有很大的提升,特别是在食品快速检测领域简直“扶摇”直上,但是我们也必须思考的是,此轮采购在很大程度上依赖于国家相关文件的推动,而本次采购热潮结束之后,手持/便携拉曼光谱下一个采购热潮会在哪里?各大仪器厂商一直致力于的制药市场何时才能打开?市场如何才能保持并持续增长?我们一起期待。
  • 2018诺贝尔化学奖授予三位科学家 附历年得主盘点
    p   当地时间10月3日,瑞典皇家科学院宣布,将2018年诺贝尔化学奖授予2018年诺贝尔化学奖得主为Arnold,Smith,Winter。 br/ /p p   奖项的一半授予美国科学家阿诺德(Frances H. Arnold),表彰她实现了酶的定向演化 另一半授予给美国科学家史密斯(George P. Smith)和英国科学家温特(Gregory P. Winter),表彰他们实现了多肽和抗体的噬菌体呈现技术。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/8f1c90ac-2aec-4857-aa84-f43b6f2ce6aa.jpg" title=" 2018100318181296422.png" alt=" 2018100318181296422.png" / br/   2018年诺贝尔化学奖授予3位科学家。 /p p   根据诺贝尔奖官方网站介绍,诺贝尔化学奖由瑞典皇家科学院负责颁发,始于1901年,以表彰“在化学领域做出最重要发现或发明的人”。 /p p   化学是诺贝尔奖创始人阿尔弗雷德· 诺贝尔一生中最依赖的科学,他的发明和积累的巨额财富都得益于化学知识。1895年,诺贝尔立下遗嘱,从个人财富中拿出3100万瑞典克朗作为基金,设立诺贝尔奖,用以奖励在几大科学领域中做出重要贡献的人。遗嘱中,他把化学奖放在了第二位,仅次于物理学奖。 /p p   从1901年至2017年间,诺贝尔化学奖已颁发过109次,拥有178位获奖者。1911年,居里夫人获得诺贝尔化学奖,成为史上第一个两次获得诺贝尔奖的人。英国学者弗雷德里克· 桑格则是唯一一位两次获得诺贝尔化学奖的生物化学家。 /p p   2017年10月4日,2017年诺贝尔化学奖授予了瑞士科学家雅克· 杜博歇、美国科学家约阿希姆· 弗兰克以及英国科学家理查德· 亨德森,以表彰他们在冷冻显微术领域的贡献。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/c5171abc-dec5-4086-9143-053758daaed5.jpg" title=" u=364030801,3274004624& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=364030801,3274004624& amp fm=173& amp app=25& amp f=JPEG.jpg" / br/ 诺贝尔奖颁奖仪式 br/ /p p   诺贝尔化学奖是瑞典化学家阿尔弗雷德诺贝尔遗嘱中设立的原始四大奖项之一,首次颁发于1901年,截至2017年,共颁奖109次,有178人次获奖,化学奖得主的平均年龄是58岁。 /p p   其中,最年轻的化学奖得主是法国物理学家弗雷德里克约里奥-居里,他在1935年与其妻子因对人工放射性的研究共同获得诺贝尔化学奖时年仅35岁。值得一提的是,他妻子的母亲是两获诺奖的居里夫人,两人的一对儿女也是著名的科学家。 /p p   最年长的化学奖得主是美国化学家约翰贝内特芬恩,他因对生物大分子的鉴定和结构分析质谱法方法的研究,与日本化学家田中耕一、瑞士化学家库尔特维特里希共同获得了2002年诺贝尔化学奖,时年85岁。 /p p   百年间,诺贝尔化学奖仅有4位女性得主。分别是1911年因放射化学方面的成就而获奖的法国化学家玛丽居里 上文中提到的法国物理学家伊雷娜约里奥-居里 1964年因解析了一些重要生化物质结构而获奖的英国生物化学家多萝西霍奇金 及2009年因对核糖体结构和功能方面的研究而联合获奖的以色列晶体学家阿达约纳特。 /p p   截至今年,诺贝尔化学奖一共停发过8次,分别在1916, 1917, 1919, 1924, 1933, 1940, 1941和1942年。多数发生在一战二战时期。此外,据诺贝尔奖官网称,如果当年没有符合条件的候选人,该年的诺贝尔奖也将延后颁发。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/30f8da35-fcd8-47dd-b075-c066286f62b8.jpg" title=" u=3104463671,3442817358& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=3104463671,3442817358& amp fm=173& amp app=25& amp f=JPEG.jpg" / br/ 诺贝尔奖奖章 br/ /p p   strong  最后,附上21世纪以来诺贝尔化学奖得主名单: /strong /p p   2000年:艾伦黑格(美)艾伦麦克迪尔米德(美/新西兰)白川英树(日)对导电聚合物的研究。 /p p   2001年:威廉诺尔斯(美)野依良治(日)手性催化还原反应,巴里夏普莱斯(美)手性催化氧化反应。 /p p   2002年库尔特维特里希(瑞士)约翰贝内特芬恩(美)田中耕一(日)对生物大分子的鉴定和结构分析方法的研究。 /p p   2003年:彼得阿格雷(美)罗德里克麦金农(美)对细胞膜中的水通道的发现以及对离子通道的研究。 /p p   2004年:阿龙切哈诺沃(以)阿夫拉姆赫什科(以)欧文罗斯(美)发现了泛素调解的蛋白质降解。 /p p   2005年:罗伯特格拉布(美)理查德施罗克(美)伊夫肖万(法)对烯烃复分解反应的研究。 /p p   2006年:罗杰科恩伯格(美)对真核转录的分子基础所作的研究。 /p p   2007年:格哈德埃特尔(德),在“固体表面化学过程”研究中作出的贡献。 /p p   2008年:下村修(日)、马丁查尔菲(美)、钱永健(美),发现并发展了绿色荧光蛋白(GFP)。 /p p   2009年:万卡特拉曼拉玛克里斯南(英)、托马斯斯泰茨(美)、阿达约纳什(以色列),在核糖体结构和功能研究中做出贡献。 /p p   2010年:理查德赫克(美)、根岸英一(日)、铃木章(日),发明新的连接碳原子的方法。 /p p   2012年:罗伯特莱夫科维茨(美)、布莱恩克比尔卡(美),因“G蛋白偶联受体研究”获奖。 /p p   2013年:马丁卡普拉斯(美)、迈克尔莱维特(英、美)、阿里耶瓦谢勒(美、以色列),在开发多尺度复杂化学系统模型方面做出贡献。 /p p   2014年:埃里克贝齐格(美)、威廉莫纳(美)、斯特凡黑尔(德),为发展超分辨率荧光显微镜做出贡献。 /p p   2015年:托马斯林达尔(瑞典)、保罗莫德里奇(美)、阿齐兹桑贾尔(土耳其、美),因“DNA修复的细胞机制研究”获奖。 /p p   2016年:让-皮埃尔索维奇,J弗雷泽斯托达特和伯纳德L费林加三位科学家因“设计和合成分子机器”获奖。 /p p   2017年,约阿希姆弗兰克(瑞士),理查德亨德森(英),雅克杜博歇(瑞士),他们发展了冷冻电子显微镜技术,以很高的分辨率确定了溶液里的生物分子的结构。 /p p br/ /p
  • 这款“全能”软件为何可以服务任何一款拉曼仪器?
    p   ACCSI同期(9月16日),普拉瑞思科学仪器(苏州)有限公司(以下简称:普拉瑞思)隆重召开主题为“创新和突破:RamanOS操作系统及系列拉曼光谱仪新品”线下发布会。期间, 普拉瑞思总经理倪天瑞接受了仪器信息网的采访。据介绍,本次会议中普拉瑞思带来了3款新产品,包括RamanOS操作系统、便携箱式气体拉曼光谱仪Polaris-GasRaman100以及智慧实验室的相关产品等。 /p p   其中,RamanOS操作系统吸引了不少同行的关注。据悉,过去的软件都是和硬件绑定在一起的,而RamanOS可以安装在任何一款便携拉曼光谱仪上,从而完成在特定行业场景的应用。那么,是什么样的特质让其可以如此“全能”?更多内容请查看如下视频: /p script src=" https://p.bokecc.com/player?vid=AB05EB49293AF1F29C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p br/ /p p br/ /p
  • 重磅出炉:冷冻电镜技术摘得2017年诺贝尔化学奖
    p   北京时间10月4日下午5点45分,2017年诺贝尔化学奖揭晓,Jacques Dubochet, Joachim Frank和Richard Henderson获奖,获奖理由是“研发出冷冻电镜,用于溶液中生物分子结构的高分辨率测定”。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/625c0b71-5e7f-41ad-9d31-c320ca1bbc44.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " 2017年诺贝尔化学奖授予三位冷冻电镜领域的学者 /p p span style=" color: rgb(255, 0, 0) " strong   获奖人简介 /strong /span /p p style=" text-align: center " strong 约阿基姆· 弗兰克(Joachim Frank) /strong /p p   德裔生物物理学家,现为哥伦比亚大学教授。他因发明单粒子冷冻电镜(cryo-electron microscopy)而闻名,此外他对细菌和真核生物的核糖体结构和功能研究做出重要贡献。弗兰克2006年入选为美国艺术与科学、美国国家科学院两院院士。2014年获得本杰明· 富兰克林生命科学奖。 /p p style=" text-align: center " strong 理查德· 亨德森(Richard Henderson) /strong /p p   苏格兰分子生物学家和生物物理学家,他是电子显微镜领域的开创者之一。1975年,他与Nigel Unwin通过电子显微镜研究膜蛋白、细菌视紫红质,并由此揭示出膜蛋白具有良好的机构,可以发生α-螺旋。近年来,亨德森将注意力集中在单粒子电子显微镜上,即用冷冻电镜确定蛋白质的原子分辨率模型。 /p p style=" text-align: center " strong 雅克· 迪波什(Jacques Dubochet) /strong /p p   Jacques Dubochet, 1942年生于瑞士,1973年博士毕业于日内瓦大学和瑞士巴塞尔大学,瑞士洛桑大学生物物理学荣誉教授。Dubochet 博士领导的小组开发出真正成熟可用的快速投入冷冻制样技术制作不形成冰晶体的玻璃态冰包埋样品,随着冷台技术的开发,冷冻电镜技术正式推广开来。 /p p    span style=" color: rgb(255, 0, 0) " strong 冷冻电镜技术为何摘得2017年的诺贝尔化学奖 /strong /span /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 撰文 | 何万中(北京生命科学研究所研究员) /span /p p   ● ● ● /p p   2013年,冷冻电镜技术的突破给结构生物学领域带来了一场完美的风暴,迅速席卷了结构生物学领域,传统X射线、传统晶体学长期无法解决的许多重要大型复合体及膜蛋白的原子分辨率结构,一个个被迅速解决,纷纷强势占领顶级期刊和各大媒体版面,比如程亦凡博士、施一公博士、杨茂君博士、柳正峰博士所解析的原子分辨率重要复合体结构,震惊世界。 /p p   这场冷冻电镜革命的特点是:不需要结晶且需要样品量极少,即可迅速解析大型蛋白复合体原子分辨率三维结构。这场电子显微学分辨率革命的突破有两个关键技术:直接电子相机(其中算法方面程亦凡博士和李雪明博士有重要贡献)和三维重构软件。 /p p   引领这些技术突破的背后离不开三位冷冻电镜领域的开拓者:理查德· 亨德森(Richard Henderson)、约阿希姆· 弗兰克(Joachim Frank)和 Jacques Dubochet分别在基本理论、重构算法和实验方面的早期重要贡献。 /p p   我本人与这三位科学家都有曾过面对面的交流,也是读他们的文章进入这个领域的,下面简要谈谈他们的贡献。 /p p   电子显微镜于1931年发明,但在生物学领域的应用滞后于材料科学,原因在于生物样品含水分才会稳定,而电子显微镜必须在高真空下才能工作,因此如何制作高分辨率生物电镜样品是个技术瓶颈。传统的重金属负染技术,可以让重金属包被蛋白表面,然后脱水干燥制作适合真空成像的样品,但这会导致样品分辨率降低(至多保存1.5纳米)。 /p p   1968年,英国剑桥大学MRC实验室的Klug博士和他的学生DeRosier开创了基于负染的噬菌体病毒的电镜三维重构技术(Klug 博士获1982年诺贝尔化学奖)。但如何保持生物样品原子分辨率结构又适合电镜成像呢?加州大学伯克利分校的Robert Glaeser博士和他学生Ken Taylor 于1974年首次提出并测试了冷冻含水生物样品的电镜成像,可以有效降低辐照损伤对高分辨率结构破坏和维持高真空,实现高分辨率成像的新思路,这就是冷冻电镜(CryoEM)的雏形。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/442c7203-8a0f-4566-88dc-f8fb79e6316a.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center " 冷冻电镜样品制作流程,图片来自creative-biostructure.com /p p   1982年,Dubochet 博士领导的小组开发出真正成熟可用的快速投入冷冻制样技术制作不形成冰晶体的玻璃态冰包埋样品,随着冷台技术的开发,冷冻电镜技术正式推广开来。 /p p   在Klug博士提出的三维重构技术基础上,MRC实验室的Richard Henderson博士(物理学及X射线晶体学背景)跟同事Unwin 博士1975年开创了二维电子晶体学三维重构技术,随后应用该技术技术解析了第一个膜蛋白细菌视觉紫红质蛋白的三维结构,1990达到3.5埃,这是一个非常了不起的工作,但是第一个类似的膜蛋白结构的诺贝尔奖还是被X射线晶体学家米歇尔于1988年夺走了。二维晶体最大问题在于很难长出二维晶体,因而应用范围很窄,且容易被X射线晶体学家抢了饭碗(本人刚入行第一个薄三维晶体项目就被抢了)。 /p p   上世纪90年代,Henderson博士转向了刚兴起的另一项CryoEM三维重构技术,即Joachim Frank 博士发展的单颗粒分析重构技术,无需结晶就可以对一系列蛋白或复合体颗粒直接成像,对位平均分类,然后三维重构。Henderson 博士凭借他深厚的物理学及电子显微学功底,以及非凡的洞察力,提出实现原子分辨率CryoEM技术的可行性,在理论上做了一系列超前的预见,比如电子束引起的样品漂移必须解决才能实现原子分辨率,为后期直接电子相机的突破指明了方向,他本人也投身于直接电子相机的开发。 /p p   因此,在这场电镜分辨率的革命中,Henderson博士是个不折不扣的发起者。另外,三维重构新算法的突破也有Henderson 博士的独具慧眼有关,Sjors Scheres博士在没有很强论文情况下被他看中招募到MRC后因为开发经典的Relion 三维重构算法大放异彩。 /p p   最后,我们再介绍一下发展冷冻电镜单颗粒三维重构技术的Joachim Frank博士,他也是物理学背景。Frank 博士是单颗粒分析鼻祖,单颗粒三维重构算法及软件Spider的作者。 /p p   Frank 师从德国著名的电子显微学家Hoppe博士,Hoppe学派主张对任意形状样品直接三维重构,后来的电子断层三维重构及cryoEM三维重构技术都与他的早期思想有关。Frank博士提出基于各个分散的全同颗粒(蛋白)的二维投影照片,经过分类对位平均,然后三维重构获得蛋白的三维结构,发展了一系列算法并编写软件(SPIDER)实现无需结晶的蛋白质三维结构解析技术。尤其在核糖体三维重构方面有一系列的重要开创性工作,可惜当年核糖体结构诺贝尔奖没有给他。现在给他在cryoEM单颗粒三维重构的一个诺贝尔奖,实至名归。 /p p    span style=" color: rgb(255, 0, 0) " strong “不务正业”的诺贝尔化学奖 /strong /span /p p   诺贝尔化学奖是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德· 贝恩哈德· 诺贝尔的部分遗产作为基金创立的5个奖项之一,从1901年至2016年,共颁发了108次,拥有175位获奖者。 /p p   2007年-2016年的诺贝尔化学奖的获奖情况如下: /p p   2007年:诺贝尔化学奖授予德国科学家格哈德· 埃特尔,以表彰他在“固体表面化学过程”研究中作出的贡献。 /p p   2008年:美国Woods Hole海洋生物学实验室的下村修、哥伦比亚大学的Martin Chalfie和加州大学圣地亚哥分校的钱永健因发现并发展了绿色荧光蛋白(GFP)而获得该奖项。 /p p   2009年:英国生物学家万卡特拉曼· 拉玛克里斯南(Venkatraman Ramakrishnan)、美国科学家托马斯· 斯泰茨(Thomas A. Steitz)和以色列女生物学家约纳什(Ada E. Yonath)因在核糖体结构和功能研究中的贡献共同获该奖。 /p p   2010年:美国德拉威尔大学的Richard F. Heck、普渡大学的Ei-ichi Negishi以及日本仓敷艺术科学大学的Akira Suzuki,他们发明了新的连接碳原子的方法,获得2010年诺贝尔化学奖。 /p p   2011年:以色列科学家达尼埃尔· 谢赫特曼因准晶体的发现而获得2011年的诺贝尔化学奖。 /p p   2012年:美国科学家罗伯特· 莱夫科维茨和布莱恩· 克比尔卡因“G蛋白偶联受体研究”获诺贝尔化学奖。 /p p   2013年:诺贝尔化学奖授予美国科学家马丁· 卡普拉斯、迈克尔· 莱维特和阿里耶· 瓦谢勒,以表彰他们在开发多尺度複杂化学系统模型方面所做的贡献。 /p p   2014年:诺贝尔化学奖授予了美国科学家埃里克· 贝齐格、威廉· 莫纳和德国科学家斯特凡· 黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 /p p   2015年:瑞典科学家托马斯· 林达尔、美国科学家保罗· 莫德里奇和土耳其科学家阿齐兹· 桑贾尔因在DNA修复的细胞机制研究上的贡献而获得2015年的诺贝尔化学奖。 /p p   有意思的是,自1901年首次颁奖以来,诺贝尔化学奖被多次颁发给生物、生物化学、生物物理、物理等领域,可谓是“不务正业”。据统计,2001年至2016年,在已颁发的15个诺贝尔化学奖中,与生物相关的化学奖达10次之多。 /p
  • 2021国际肿瘤精准医疗大会
    论坛官网:www.bagevent.com/event/7265277?bag_track=instrument 2021年10月22-23日,由中国生物工程学会、上海商图信息BIOMAP主办,中国生物工程学会精准医学专业委员会、中国医疗器械行业协会体外诊断(IVD)分会合作支持的P4 China 2021 第五届国际肿瘤精准医疗大会将在北京市朝阳区悠唐皇冠酒店盛大召开。 集院士权威/临检中心/中检院监管/肿瘤临床/领先诊断产业/精准药企专家等50余位重磅嘉宾出席会议,围绕肿瘤精准诊疗,从防到诊到治,从早期筛查、分期分型,预后检测、伴随诊断、生物标志物、精准免疫/靶向药物开发及转化等方面,展开深入的探讨分享!参会群体:体外诊断所属法规监管机构(卫健委/药监局/中检院等)专家医院:肿瘤临床/病理/药理/科研/转化等专家药企:肿瘤免疫/靶向药物企业转化医学/医学/生物标志物/临床转化等专家体外诊断/第三方检验机构:液体活检、基因检测/测序服务企业技术研发、医学等专家肿瘤诊断防治相关协会、园区、科研院校(生命科学、药学PI/转化)专家上游仪器设备开发制造企业与试剂耗材企业实验室设备、数据服务、投资/咨询机构其他A会场 肿瘤早筛/辅助早诊/分型/预后等技术创新与应用DAY1(10月22日)DAY2(10月23日)解读最新申报注册合规政策及临床建议跟进最新单细胞/RNA测序筛诊技术应用跟进肿瘤筛查诊断发展前景及市场机遇解析MRD/MSI等检测及产品开发评价学习创新早筛标志物/方法前瞻性研究等前沿进展探讨肿瘤分型/预后等标志物检测及技术革新聆听肿瘤早筛/辅助诊断的液体活检革新技术了解多组学/免疫组学/质谱等新兴检测技术聆听肿瘤早筛/辅助诊断的液体活检革新技术了解多组学/免疫组学/质谱等新兴检测技术【A会场部分精彩议题抢先看】• 最新医疗器械监管条例下:LDT合规化解读• HRD临床检测应用及标准化进展• 肺癌微小残留病灶临床检测应用及意见• 多组学液体活检技术在肝癌早检中的应用探索• 圆桌讨论:肿瘤早筛/早期检测技术开发落地的挑战与机遇几何?......更多精彩议题咨询组委会:180 1793 9885(同微信)A会场已确认嘉宾(嘉宾阵容持续更新中)李金明,国家卫健委临床检验中心研究员黄杰,中检院体外诊断试剂检定所非传染病诊断试剂室主任姚树坤,中日友好医院原副院长,中国生物工程学会精准医学专委会主任委员支修益,首都医科大学肺癌诊疗中心主任兼宣武医院胸外科首席专家姜艳芳,吉林大学第一医院基因诊断中心主任,中国生物工程学会精准医学专委会秘书长于津浦,天津医科大学肿瘤医院分子诊断中心主任范建兵,基准医疗创始人兼CEO(TBD)邵阳,世和基因创始人、董事长、首席执行官贾士东,慧渡医疗创始人兼董事长姜傥,迪安诊断高级副总裁,董事汪笑男,世和基因创始人、首席技术官吴琳,和瑞基因CTO揣少坤,燃石医学COO汪宇盈,华大数极CTO阮力,厦门艾德生物副总经理、技术总监于晓天,诺辉健康医学总监刘晓,泛因医学创始人阎灼辉,浚惠生物创始人兼CEO董增军,鲲鹏医疗投资合伙人,中国生物工程学会精准医学专委会副主任委员何逖,吉凯基因医学检验事业部总经理张开山,杭州华得森生物技术有限公司创始人、总经理薛良,格诺生物研发副总裁范万鸿,杭州华得森生物技术有限公司临床医学总监曹振,翌圣生物NGS研发总监王玉萍,碧迪医疗生物科学,单细胞多组学应用经理董天晖,纳昂达生物科技NGS产品经理B会场 肿瘤创新药物疗法与标志物/伴随研究的精准开发转化联合策划人:杨宏钧,中国生物工程学会精准医学专委会名誉主任DAY1(10月22日)DAY2(10月23日)探讨生物标志物指导下的免疫/靶向药物开发案例学习伴随诊断检测标准/产品开发与药物转化学习最新免疫疗法/免疫联合及标志物研究进展解锁伴随诊断模式下的药物精准临床及转化剖析通路/靶点研究以加速靶向药物转化分析生物标志物与细胞疗法/联合与双抗开发探索探索生物标志物指导下的药物精准临床开发转化深挖基因检测与超个性化免疫疗法药物开发中国生物工程学会精准医学专委会专场姚树坤,中日友好医院原副院长,中国生物工程学会精准医学专委会主任委员杨宏钧,中国生物工程学会精准医学专委会名誉主任李为民,四川大学华西医院/华西临床医学院院长王向东,复旦大学附属中山医院临床医学研究院首席专家,中国生物工程学会精准医学专委会副主任委员姜艳芳,吉林大学第一医院基因诊断中心主任于津浦,天津医科大学肿瘤医院分子诊断中心主任董增军,鲲鹏医疗投资合伙人,中国生物工程学会精准医学专委会副主任委员【B会场部分精彩议题抢先看】• 新型肿瘤免疫治疗药物研究新进展• 生物标志物/伴随诊断加速肿瘤免疫药物研发——MSI/TMB开发案例• RET变异与普拉替尼精准开发案例• PARP抑制剂及联合疗法中的生物标记物与伴随诊断开发• 圆桌讨论:临床视角—肿瘤创新药物疗法及伴随诊断精准开发转化应用......更多精彩议题咨询组委会:180 1793 9885(同微信)B会场更多已确认嘉宾(嘉宾阵容持续更新中)贺福初,中国科学院院士石远凯,国家癌症中心副主任、中国医学科学院肿瘤医院副院长叶斌,盛诺基医药临床生物标志物与药物开发副总裁殷晓璐,阿斯利康精准医学部中国区负责人苏欣莹,辉瑞转化医学负责人李培麒,基石药业早期开发副总裁李懿,广东香雪精准医疗技术有限公司总裁兼CSO,中科院广州生物医药与健康研究院的研究员罗文,杭州索元生物医药创始人、董事长华烨,烨辉医药创始人兼CEO邹灵龙,复宏汉霖生物分析科学部副总经理(TBD)张韵,百济神州临床生物标志物总监王钧源,葆元医药联合创始人兼CEO覃灏,阿斯利康精准医学中国诊断发展部分子诊断副总监鲁丽敏,默沙东中国研发中心生物标志物研究副总监转化医学专家,天境生物胡志远,北京中科纳泰生物科技有限公司董事长,国家纳米科学中心教授王涛,瑞普基因副总经理兼CTO陈初光,北京阅微基因技术股份有限公司董事长/创始人苏小凡,裕策生物高级副总裁兼裕泰抗原事业部总经理张宪,世和基因集团首席医学官茅新如,燃石医学药企合作高级总监高嵩,罗氏诊断中国生命科学副市场总监现在四人报名立享75折团购优惠论坛官网:www.bagevent.com/event/7265277?bag_track=instrument扫描下方二维码即可报名【更多福利优惠】10月10日前报名注册P4 China 2021赠送GMR 2021免费参会票一张(不含餐)票数有限,先到先得!详情可查看官网链接:https://www.bmapglobal.com/gmr2021 即日起同时参加P4 China 2021 & IGC 2021可享受联动票8折优惠详情可查看官网链接:https://www.bmapglobal.com/igc2021 更多论坛资讯欢迎咨询P4组委会:电话:180 1793 9885(同微信)邮箱:p4china@bmapglobal.com网站:www.bagevent.com/event/7265277?bag_track=instrument
  • 拉曼光谱技术“闪耀”CFAS 2018 机遇和问题同在
    p    strong 仪器信息网讯 /strong 2018年6月6-7日,在北京国际会议中心召开的“第七届中国食品与农产品安全检测技术与质量控制国际论坛(CFAS 2018)”聚焦食品与农产品安全检测与质量控制技术及科学仪器技术的展示和交流,涉及多类别的检测仪器,而作为当前发展非常迅猛的拉曼光谱技术,此次的表现也非常突出。 /p p   据不完全统计,此次参展商中,有十余家主营或者拥有拉曼光谱产线的仪器厂商参展,多家公司将产品带到了展会现场,向观众展示最新的产品和技术。 /p p   其中,南京简智在现场展示了最新推出的便携式差分拉曼光谱仪SERDS portable-base 而一直以来专注安检行业的同方威视也带来了RT6000S手持式物质识别仪、RT5000食品安全检测仪、以及RT2000科研级便携式拉曼光谱仪等。此外,必达泰克、欧普图斯、普识纳米、卓立汉光、普拉瑞思等仪器公司也在现场展示了自己的仪器产品。 /p p style=" text-align: center " img width=" 300" height=" 226" title=" IMG_5925-1.jpg" style=" width: 300px height: 226px " src=" http://img1.17img.cn/17img/images/201806/insimg/51d7117a-39de-4a70-ab54-74bb0abfeccf.jpg" border=" 0" vspace=" 0" hspace=" 0" / img width=" 300" height=" 200" title=" IMG_5928-1.jpg" style=" width: 300px height: 200px " src=" http://img1.17img.cn/17img/images/201806/insimg/9434ce02-b3b2-4afc-86c1-ea9290d4d077.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 南京简智 便携式差分拉曼光谱仪SERDS portable-base /strong /p p style=" text-align: center " img width=" 200" height=" 133" title=" IMG_5872-1.jpg" style=" width: 200px height: 133px " src=" http://img1.17img.cn/17img/images/201806/insimg/dcd79182-8478-4aa9-be80-b7634cf93540.jpg" border=" 0" vspace=" 0" hspace=" 0" / img width=" 200" height=" 133" title=" IMG_5874-1.jpg" style=" width: 200px height: 133px " src=" http://img1.17img.cn/17img/images/201806/insimg/b4575de1-f79a-404c-a42e-2a2b9347d91b.jpg" border=" 0" vspace=" 0" hspace=" 0" / img width=" 200" height=" 133" title=" IMG_5881-1.jpg" style=" width: 200px height: 133px " src=" http://img1.17img.cn/17img/images/201806/insimg/45f535b0-d90d-4c53-9e7e-c45c0bf9d826.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 同方威视 RT5000食品安全检测仪、RT6000S手持式物质识别仪、RT2000科研级便携式拉曼光谱仪 /strong /p p style=" text-align: center " img title=" IMG_5935-1.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/503ffceb-e4b4-4e1d-8c5f-7021a54b1718.jpg" / /p p style=" text-align: center " strong 必达泰克 BWS497-785移动式食品安全快检仪 /strong /p p style=" text-align: center " img title=" 微信图片_20180607182150-1.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/320e6912-668f-436e-8f20-784c718174fb.jpg" / /p p style=" text-align: center " strong 欧普图斯 /strong /p p style=" text-align: center " img title=" 微信图片_20180607182055-1.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/777deb10-8800-40c7-8fbf-2ed690251001.jpg" / /p p style=" text-align: center " strong 普识纳米 仪器及增强试剂 /strong /p p style=" text-align: center " strong img title=" 微信图片_20180607182143-1.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/76e8e28e-6b09-4e14-89c6-ccbf2d6535de.jpg" / /strong /p p style=" text-align: center " strong 卓立汉光 /strong /p p style=" text-align: center " img title=" 微信图片_20180607182129-1.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/c0c608be-850d-4c40-b3f3-922b7168aa7a.jpg" / /p p style=" text-align: center " strong 普拉瑞思 Polaris-P80 拉曼光谱集成多功能食品安全检测仪 /strong /p p   随着技术的逐步发展及市场需求的推动,拉曼光谱技术的应用也越来越广泛。除了安检行业之外,当前拉曼光谱技术在食品安全检测领域的前景也已经吸引了业界的目光。特别是近来全国食药监系统区县快检仪器设备(车载仪器设备)的采购将手持/便携拉曼光谱的热度再一次提升,各大拉曼仪器厂商,特别是国产拉曼仪器厂商也受益匪浅,出货量较之前有大幅提升。 /p p   虽然手持/便携拉曼采购火热进行中,但是仪器采购之后什么时候能用起来?同时,手持/便携拉曼在食品安全检测中的应用解决方案是否完善?增强试剂的普适性怎么样?相关的快检标准何时出炉?此轮采购热潮结束之后,手持/便携拉曼光谱下一个采购热潮会在哪里?这一系列的问题值得大家思考! /p p   小编认为,目前手持/便携拉曼光谱市场可谓是契机与问题共存,机遇与挑战同行,未来市场如何发展,我们拭目以待! /p
  • P4 China 2021国际肿瘤精准医疗大会
    论坛官网:www.bagevent.com/event/7265277?bag_track=instrument 2021年10月22-23日,由中国生物工程学会、上海商图信息BIOMAP主办,中国生物工程学会精准医学专业委员会、中国医疗器械行业协会体外诊断(IVD)分会合作支持的P4 China 2021 第五届国际肿瘤精准医疗大会将在北京市朝阳区悠唐皇冠酒店盛大召开。集院士权威/临检中心/中检院监管/肿瘤临床/领先诊断产业/精准药企专家等50余位重磅嘉宾出席会议,围绕肿瘤精准诊疗,从防到诊到治,从早期筛查、分期分型,预后检测、伴随诊断、生物标志物、精准免疫/靶向药物开发及转化等方面,展开深入的探讨分享!参会群体:体外诊断所属法规监管机构(卫健委/药监局/中检院等)专家医院:肿瘤临床/病理/药理/科研/转化等专家药企:肿瘤免疫/靶向药物企业转化医学/医学/生物标志物/临床转化等专家体外诊断/第三方检验机构:液体活检、基因检测/测序服务企业技术研发、医学等专家肿瘤诊断防治相关协会、园区、科研院校(生命科学、药学PI/转化)专家上游仪器设备开发制造企业与试剂耗材企业实验室设备、数据服务、投资/咨询机构其他A会场 肿瘤早筛/辅助早诊/分型/预后等技术创新与应用DAY1(10月22日)DAY2(10月23日)解读最新申报注册合规政策及临床建议跟进最新单细胞/RNA测序筛诊技术应用跟进肿瘤筛查诊断发展前景及市场机遇解析MRD/MSI等检测及产品开发评价学习创新早筛标志物/方法前瞻性研究等前沿进展探讨肿瘤分型/预后等标志物检测及技术革新聆听肿瘤早筛/辅助诊断的液体活检革新技术了解多组学/免疫组学/质谱等新兴检测技术【A会场部分精彩议题抢先看】• 最新医疗器械监管条例下:LDT合规化解读• HRD临床检测应用及标准化进展• 肺癌微小残留病灶临床检测应用及意见• 多组学液体活检技术在肝癌早检中的应用探索• 圆桌讨论:肿瘤早筛/早期检测技术开发落地的挑战与机遇几何?......更多精彩议题咨询组委会:180 1793 9885(同微信)A会场已确认嘉宾(嘉宾阵容持续更新中)李金明,国家卫健委临床检验中心研究员黄杰,中检院体外诊断试剂检定所非传染病诊断试剂室主任姚树坤,中日友好医院原副院长,中国生物工程学会精准医学专委会主任委员支修益,首都医科大学肺癌诊疗中心主任兼宣武医院胸外科首席专家姜艳芳,吉林大学第一医院基因诊断中心主任,中国生物工程学会精准医学专委会秘书长于津浦,天津医科大学肿瘤医院分子诊断中心主任范建兵,基准医疗创始人兼CEO(TBD)邵阳,世和基因创始人、董事长、首席执行官贾士东,慧渡医疗创始人兼董事长姜傥,迪安诊断高级副总裁,董事汪笑男,世和基因创始人、首席技术官吴琳,和瑞基因CTO揣少坤,燃石医学COO汪宇盈,华大数极CTO阮力,厦门艾德生物副总经理、技术总监于晓天,诺辉健康医学总监刘晓,泛因医学创始人阎灼辉,浚惠生物创始人兼CEO董增军,鲲鹏医疗投资合伙人,中国生物工程学会精准医学专委会副主任委员何逖,吉凯基因医学检验事业部总经理张开山,杭州华得森生物技术有限公司创始人、总经理薛良,格诺生物研发副总裁范万鸿,杭州华得森生物技术有限公司临床医学总监曹振,翌圣生物NGS研发总监王玉萍,碧迪医疗生物科学,单细胞多组学应用经理董天晖,纳昂达生物科技NGS产品经理B会场 肿瘤创新药物疗法与标志物/伴随研究的精准开发转化联合策划人:杨宏钧,中国生物工程学会精准医学专委会名誉主任DAY1(10月22日)DAY2(10月23日)探讨生物标志物指导下的免疫/靶向药物开发案例学习伴随诊断检测标准/产品开发与药物转化学习最新免疫疗法/免疫联合及标志物研究进展解锁伴随诊断模式下的药物精准临床及转化剖析通路/靶点研究以加速靶向药物转化分析生物标志物与细胞疗法/联合与双抗开发探索探索生物标志物指导下的药物精准临床开发转化深挖基因检测与超个性化免疫疗法药物开发中国生物工程学会精准医学专委会专场姚树坤,中日友好医院原副院长,中国生物工程学会精准医学专委会主任委员杨宏钧,中国生物工程学会精准医学专委会名誉主任,帝基生物伴随诊断高级副总裁李为民,四川大学华西医院/华西临床医学院院长王向东,复旦大学特聘教授,上海临床生物信息学研究所所长姜艳芳,吉林大学第一医院基因诊断中心主任,中国生物工程学会精准医学专委会秘书长于津浦,天津医科大学肿瘤医院分子诊断中心主任董增军,鲲鹏医疗投资合伙人,中国生物工程学会精准医学专委会副主任委员【B会场部分精彩议题抢先看】• 新型肿瘤免疫治疗药物研究新进展• 生物标志物/伴随诊断加速肿瘤免疫药物研发——MSI/TMB开发案例• RET变异与普拉替尼精准开发案例• PARP抑制剂及联合疗法中的生物标记物与伴随诊断开发• 圆桌讨论:临床视角—肿瘤创新药物疗法及伴随诊断精准开发转化应用......更多精彩议题咨询组委会:180 1793 9885(同微信)B会场更多已确认嘉宾(嘉宾阵容持续更新中)贺福初,中国科学院院士石远凯,国家癌症中心/中国医学科学院肿瘤医院国家药物临床试验机构副主任叶斌,盛诺基医药临床转化医学及开发副总裁殷晓璐,阿斯利康全球研发(中国)有限公司精准医学部中国区负责人苏欣莹,辉瑞转化医学负责人李培麒,基石药业早期开发副总裁李懿,广东香雪精准医疗技术有限公司总裁兼CSO,中科院广州生物医药与健康研究院的研究员罗文,杭州索元生物医药创始人、董事长王正毅,天境生物VP Discovery王景,第一三共(中国)转化医学负责人华烨,烨辉医药创始人兼CEO邹灵龙,复宏汉霖生物分析科学部副总经理(TBD)张韵,百济神州临床生物标志物总监王钧源,葆元医药联合创始人兼CEO覃灏,阿斯利康精准医学中国诊断发展部分子诊断副总监鲁丽敏,默沙东中国研发中心生物标志物研究副总监胡志远,北京中科纳泰生物科技有限公司董事长,国家纳米科学中心教授王涛,瑞普基因副总经理兼CTO陈初光,北京阅微基因技术股份有限公司董事长/创始人苏小凡,裕策生物高级副总裁兼裕泰抗原事业部总经理张宪,世和基因集团首席医学官茅新如,燃石医学药企合作高级总监高嵩,罗氏诊断中国-生命科学部市场副总监现在四人报名立享75折团购优惠论坛官网:www.bagevent.com/event/7265277?bag_track=instrument 扫描下方二维码即可报名【更多福利优惠】9月10日前报名注册P4 China 2021赠送GMR 2021免费参会票一张(不含餐)票数有限,先到先得!详情可查看官网链接:https://www.bmapglobal.com/gmr2021 即日起同时参加P4 China 2021 & IGC 2021可享受联动票8折优惠详情可查看官网链接:https://www.bmapglobal.com/igc2021 更多论坛资讯欢迎咨询P4组委会:电话:180 1793 9885(同微信)邮箱:p4china@bmapglobal.com网站:www.bagevent.com/event/7265277?bag_track=instrument
  • 牛奶中喹诺酮类药物残留的测定
    喹诺酮类药物是人工合成的含有4-喹酮母核的一类抗菌药,通过抑制DNA旋转酶的活性杀死细菌,因其有抗菌谱广、吸收好、半衰期长、能制成各种剂型等特点而得到迅速推广,被广泛用于家畜的疾病防治中。但喹诺酮对人体有一定的副作用,如皮肤并发症、中枢神经系统并发症、胃肠毒性、心脏毒性等,因而牛奶、肉类中的喹诺酮残留量已引起人们的广泛关注。欧盟早在90年代就对肉类中喹诺酮药物的最大残留量进行了限制,由此产生很多检测喹诺酮类残留的方法。目前喹诺酮残留的检测方法主要有酶联免疫吸附法、液相色谱法等。酶联免疫吸附法,测定方法简单快速,可同时筛选大量样品,但精确度不高,目前常将其作为筛选法。液相色谱法可实现精准的测定,是国标指定的方法。日立采用液相色谱法对牛奶中的喹诺酮残留进行测定,结果优异,显示了日立液相色谱仪的高性能。 图1. 色谱分析条件 图2. 标准品的色谱图(1. 环丙沙星 2. 达氟沙星3. 恩诺沙星4. 沙拉沙星 5. 双氟沙星) 图3. 标准曲线 从实验结果可以看到,在0.004 ~ 0.5 mg/L的浓度范围内,五种标准品的线性相关系数均是0.9999-1.0000,结果优异。 图4. 保留时间和峰面积的重现性 重复测定六次,五种标准品的保留时间和峰面积的精密度分别在0.02%-0.04%和0.29%-0.46%,重现性优异。 图5. 实际样品前处理流程 图6. 实际样品测定结果(1. 环丙沙星 2. 达氟沙星 3. 恩诺沙星 4. 沙拉沙星 5. 双氟沙星)对牛奶样品按图5前处理后进行测定,结果显示未检出喹诺酮类药物。对牛奶样品进行加标回收率实验,在0.01~0.05 mg/kg的添加浓度下,牛奶中喹诺酮类药物的加标回收率在79.72%~99.07%之间。 本实验所用方法可用于测定牛奶中的喹诺酮类药物残留,分析时间35min,标准曲线线性良好,回收率在预期范围内,可用于质检、品控、生产等部门。 日立高效液相色谱仪兼具性能优异、操作简便、结实耐用等优点,可让您获得高分离度和高灵敏度。 关于日立高效液相色谱仪的信息,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm
  • 他是没有诺奖荣誉而有接近诺奖成果的科学家——我公司科技顾问胡文祥教授
    他是没有诺奖荣誉而有接近诺奖成果的科学家 —记我国知名航天军事医学、有机药物化学与微波化学专家胡文祥教授 胡文祥大校考察新疆喀纳斯湖自然资源 他18岁解决了一道世界科学难题,推导出宇宙中最多只有138个元素;他创立了9大胡氏公式:胡氏约等式、胡氏不等式、胡氏方程式、胡氏自由能方程、胡氏近平衡态动力学方程、胡氏生物最长寿命公式、胡氏周期元素数量计算公式、胡氏心理力学第四定律公式和胡氏公式,后者被编入中国科学院院士赵玉芬教授编著的清华大学研究生教科书《元素有机化学》中;他创建了有机微波化、比较化学、经济力学、心理力学等一系列交叉边缘新学科;荣获国家和军队一系列成果奖励,所获国务院、中央军委和北京市政府奖励现价值数额已超过两个诺贝尔奖的奖金,在全军全国凤毛麟角!  他鞠躬尽瘁彰显着两弹一星精神:热爱祖国、无私奉献、自力更生、艰苦奋斗、大力协同、勇于攀登;他身先士卒践行着载人航天精神:特别能吃苦、特别能战斗、特别能攻关、特别能奉献;他坚持姓军为兵、以军为主,围绕军事核心能力,为提升我军科技创新能力,开展引领科技发展的基础性、前瞻性、先导性、探索性、颠覆性等重大技术研究项目,取得了一系列骄人业绩。这个人就是蜚声世界的国防科技专家、被人们称为、胡因斯坦和胡牛顿的胡文祥教授,一位被誉为、科技英雄和托起宇宙飞船的人!在中华科技史上占有一席之地!中央电视台、新华社、《人民日报》和《解放军报》等多家中央重要新闻媒体多次报道他和他率领的国防科研团队的先进事迹。中央军委委员、总装备部部长李继耐上将热诚勉励胡文祥博士多出国防科研成果追逐诺奖梦想 拉近诺奖距离   美国哈佛、斯坦福和南加州大学的三位计算化学家马丁· 卡普拉斯、迈克尔· 莱维特和亚利耶· 瓦谢尔是2013年度诺贝尔化学奖的获得者,他们发展多尺度模型,运用经典与量子联合计算方法模拟复杂化学分子反应等系列问题。  早在20世纪80年代末和90年代初,胡文祥刚从中国科学院上海有机化学研究所获得博士学位,进入军事医学科学院工作,就遇到了伯乐恽榴红教授,在他的大力支持下,开始较大分子的分子力学与量子化学联算课题的攻关。期间,胡文祥率领课题组开创了全新的计算过程,从经典的分子力学计算分子的低能构型构象等几何参量入手,再输入量子化学程序计算分子的轨道能量和电荷密度等电子参数,或者使用分子力学计算整个分子骨架几何参量,用量子化学计算活性中心的电子参数,如此一来计算效率得到了极大提高。其中的一个课题胆碱能药物的分子力学研究获得了1996年度军队科技进步二等奖;关于分子力学与量子化学联算程序的学术论文简报于1992年发表在军事医学科学院院刊上。这充分表明了胡文祥科研团队的研究成果离诺贝尔奖的距离真的很近!计算化学,包括分子力学与量子化学联算、量子参数与反应性关系、药物分子二维和三维定量构效关系、分子动力学模拟和分子对接研究等,始终是胡文祥教授实验室的一大特色。不仅如此,他的实验室还具有微波化学、比较化学、组合化学和交叉边缘学科研究的鲜明特色。 北京祥鹄的创始人杨萱平代表公司领取中国产学研合作创新成果奖一等奖没有诺奖荣誉 满园诺奖成果   2017年10月2日,诺贝尔生理学或医学奖颁给了三位美国科学家:杰弗里霍尔、迈克尔罗斯巴殊和迈克尔杨,以表彰他们发现了控制睡眠的分子机制。  早在二十多年前的20世纪90年代初期,为解决载人航天工程急需,胡文祥教授被调往中国人民解放军原总装备部军事医学研究所任所长。茫茫太空,浩瀚宇宙,给人类带来了无限遐想。从嫦娥奔月到万户飞天,中国人自古就有飞天的梦想。要发展载人航天,就得保障航天员的健康,确保航天员在太空环境中安全健康,保持良好工作状态。为了解决航天员的太空睡眠问题,胡文祥成功研发了航天牌眠尔康、用微波催化合成的内源性分子松果体素(褪黑素)等巧妙组方来调节生物钟,解决太空睡眠和地球不同时区时差不适问题,成为了国家相关部门批准的全国唯一一个航天牌保健品,产生了显著的军事社会经济效益。科研成果&ldquo 褪黑素的合成及其在生物钟调控中的应用,荣获2018年度中国发明协会发明创业成果一等奖。这毫无疑义地表明:胡教授率领的实验室研究成果接近诺贝尔奖水准!虽然没有如愿获得诺贝尔奖章,但是他为我国伟大的航天事业做出了突出的贡献。遵循诺奖标准 破解科研难题   胡文祥教授领导的实验室不止上述两项研究成果已经基本达到了诺贝尔奖的水平,他在核磁共振波谱学和微波化学领域的成就,很有可能再次叩响诺奖大门!  回顾以往,胡文祥之所以能于1985年在世界上首创有机微波化学,不仅源于其数理基础比较好,更是由于他对物理波的十分热爱和着迷!惠更斯波、电磁波、德布罗意物质波、引力波令人目不暇接。波谱奥秘多,三波(核磁共振波谱学、微波化学、预言五种力场波)当自强。  传统观点认为,核磁共振屏蔽效应主要由电子云密度决定,其化学位移的高低场取决于核外电子云密度的大小。胡文祥在中国科学院上海有机化学研究所做博士论文期间发现,对许多重核核磁共振化学位移来说,许多情形与此不一致,甚至是相反。经过深入探讨,他总结了有机磷化合物31P核磁共振化学位移变化的五条经验规律,进一步发现了决定重核磷化学位移变化的不是磷核外电子云密度,而是磷核外的电子云球对称性,据此建立了计算各类有机磷化合物化学位移的统一方程。这一方程被称为胡氏公式得到了广泛应用,并被知名有机化学家、中国科学院院士赵玉芬教授编进清华大学研究生教材《元素有机化学》一书中。科研成果有机磷酸酯31PNMR化学位移及谱构关系研究于1996年获得了军队科技进步二等奖。由于对核磁共振波谱学研究的突出贡献,他于1996年荣获中国物理学会颁发的天王眷波谱学奖,成为历次获奖者中唯一一位非波谱专业的获奖专家。中国科学院院长白春礼院士与胡文祥及其战友合影 胡文祥首创有机微波化学及其组合化学,建立的微波催化不等式,及大力支持北京祥鹄科技发展有限公司成功研发了二十多种祥鹄微波化学系列仪器与组合仪器,满足国内外市场需求,产生了良好的经济社会效益,有力推动了相关领域的科技进步。科研成果 微波化学系列仪器研制及其应用研究,于2015年荣获中国产学研合作创新成果一等奖。在此之前,釆用微波化学方法进行的相关开创性研究成果,已分别荣获国家科技进步二等奖和军队科技进步一等奖及省部级技术发明一等奖共5项。2017年,在汉斯出版社的大力支持下,创办了中文国际网上学术期刊《比较化学》《交叉科学快报》《微波化学》。2019年出版《微波化学进展一一胡文祥教授实验室微波化学领域相关研究成果目录及部分论文集》。  在宇宙学方面,胡文祥建立和推广了九大宇宙学原理:微宇自旋普存原理、宇宙成团普存原理、宇宙易感普存原理、天体液滴原理、宇宙相对性原理、宇宙不完备性原理、宇宙重演律、宇宙差异律和广义马赫原理。尤其是2016年大年初五,美国宣布引力波的发现激发胡文祥教授大胆地预言了人类尚不知道的五大力场波:弱力波、强力波、斥力波和超弦波及第五种力场波的存在,就像爱因斯坦预言的引力波那样,百年内有可能被人类探测到并引发相关领域的革命性变化。三波相关研究重大进展,有可能多次荣登诺贝尔奖领奖台。登上世界讲坛 传播微波方法   2019年6月20日,北京正迎来酷暑,新闻早班车报道:最新的2020 QS世界大学排名发布,麻省理工学院第8年蝉联世界第一,斯坦福大学、哈佛大学随后。中国大陆高校今年表现不俗,清华、北大两所顶尖大学在此次排名中取得了史上最高名次,分别排名全球大学第16位、第22位。  胡文祥教授于1999年在世界排名第一的美国麻省理工学院访问进修过,并就微波催化及组合催化方法做了学术报告。胡文祥教授还应邀在世界排名第16的清华、排名第22的北大多次演讲;从他的教育经历上看:有四进北京大学;他还曾担任清华大学等九所高校客座或兼职教授!回顾胡文祥早在大二就攻克了一道世界难题,他的母校武汉工程大学现全国排名第126位。  20世纪80年代中期,胡文祥是在有机化学全国排名第一的中国科学院上海有机化学研究所攻读博士学位的,有幸师从著名有机化学家袁承业院士,努力学习,勤奋积累,开拓进取,不断收获。在以下四个方面做出了开创性的贡献:一、归纳总结了31P核磁共振化学位移变化的五条经验规则,建立了重核屏蔽核外电子云球对称性新原理,创立了其化学位移统一计算公式。二、设计合成了一系列分离稀土的有机磷酸酯萃取剂,分离了有机磷化合物取代基极性与空间效应,建立了稀土萃取分离的线性自由能方程,为物理有机化学和稀土的湿法冶金提供了重要基础,在今天的中美贸易战决战阶段显示了强大的生命力。三、创立了有机微波化学,之后支持北京祥鹄科技制造微波化学系列仪器供应国内外市场,有力推动了相关领域的科技进步。四、提出了比较化学、广义组合化学、广义有机化学、经济力学等一系列交叉科学概念,之后不断产生广泛深远的影响。 北京祥鹄燕郊生产基地 胡文祥博士是北京神剑天军医学科学院院长,北京市特聘教授,博士研究生导师。曾为中国工程院院士正式候选人,曾任首都师范大学物理有机与药物化学研究所所长、中国人民解放军总装备部军事医学研究所所长,兼任武汉工程大学有机药物化学研究所所长,我国知名航天军事医学、微波化学与有机药物化学专家,在自然哲学和交叉学科等诸多领域也有独到的见解。   因著作《邱吉尔: 第二次世界大战回忆录》于1953 年唯一一位获得诺贝尔文学奖的英国杰出政治家、军事家温斯顿丘吉尔(Winston Churchill,1874-1965)曾经指出:创造历史最好的办法就是将它书写出来!胡文祥博士辛勤耕耘,勤奋写作,著作等身。撰写或主编《协同组合化学》《比较化学》《载人航天工程火箭推进剂安全科学概论》《火箭推进剂损伤应急救援工程》《航天与健康》《分析样品制备》《阿片受体分子药学》《微波卫生防护概论》《反恐技术方略》《心理战和反心理战》《微波化学进展》《Catalytic Synthesis and Substituent Effect》等专著和培训教材30部,深受军内外广大读者欢迎。化学工业出版社出版的《反恐技术方略》一书获2014年中国石油和化学工业优秀出版物奖一等奖。   胡博士不仅在撰写著作,也在书写历史和未来!更难能可贵的是胡文祥教授还常年利用自家的经费,补贴培养研究生科研工作及反恐科研事业!比较交叉组合 创立九大公式   组合得好的石头能形成宏伟的建筑,组合得好的音符能形成美妙的乐章,组合得好的色彩能形成传世的画卷,组合得好的词句能形成不朽的诗篇,组合得好的原子能形成新奇的物质,组合得好的人群能形成无穷的力量,组合得好的想象能形成蓬勃的激情,组合得好的灵感能形成伟大的创新。——胡文祥   游人可以按图索骥直达目的地,而探险者却只能一边开辟新路,一边寻找心中的目标。胡文祥说:“只有经过未知物的折磨,才能享受发现的快乐。”在胡文祥的诸多成就中,令人瞩目的是胡文祥创立的九大公式。 1.胡氏公式(核磁共振波谱学领域)   有机磷化合物31PNMR化学位移计算方程   δ = α⊿X + β?Eg + γ   式中δ为化学位移,⊿X为取代基电负性和差值⊿X =(X1+X2)-(X3+X4), Eg为取代基范德华参数,α和β为系数,γ为常数。 2.胡氏方程式(不对称合成热力学领域)   有机不对称合成热力学方程式   ⊿⊿S = RlnQmax   ⊿⊿G = -RT㏑Q   与伟大的玻耳兹曼公式 S = klnΩ 几乎类似(Ω为微观状态数)。   式中⊿⊿S和⊿⊿G分别为两立体异构体熵变和自由能之差,Q为两立体异构体比例,R为气体常数,T为绝对温度。全国人大副委员长周光召院士向胡文祥颁发求实杰出青年实用工程奖奖金3.胡氏不等式(微波化学或催化化学领域)   微波等物理技术催化有机化学或催化化学中温度关系表达式。分子温度Tm是单个分子的动能的标志,是一个微观的物理量;局域温度Tl是局部分子平均动能的体现;体系温度Ts是整个体系分子平均动能的体现,是一个宏观的物理量。在一个热平衡的体系里三种温度数字相等;在不平衡的体系里,例如在微波反应体系里,被微波激活的分子温度Tm大于热点处的局域温度Tl大于体系温度Ts,可表示为   Tm Tl Ts   推而广之,若在光化学领域,用Tn代表振动、转动、电子能级状态温度,光作用状态下反应物温度大于未作用的温度,即有   Tn1 Tn0   若对于化学催化和生物催化情况下,用Tt代表过渡态温度,催化情形下过渡态的温度小于未催化过渡态的温度,即有   Tt1 < Tt0   这一组不等式通常称为胡氏不等式,这能帮助阐明微波或超声波等物理催化手段、化学催化、生物催化和光等加快化学反应的机理,在催化化学中具有重要意义。 4.胡氏自由能方程(物理有机化学及湿法冶金领域)   ㏒Kex = с + ρ?σ + δ?Es + γ㏒ Kd   式中Kex为湿法冶金过程或萃取过程平衡常数,σ和Es分别为萃取剂取代基极性和空间参数,Kd为萃取剂溶解度因素;ρ,δ和γ是系数,с为常数。 5.胡氏近平衡态动力学方程(近平衡态动力学领域)   宇宙中许多靠近平衡态的变化,对于能表明与平衡的距离的任一变数X来说都是一级的,即   dx/dt = kx 6.胡氏约等式(社会生物学领域)   社会生物学等领域许多参量大约相等(H数),胡氏约等式(胡文祥约等式)可以表述为:   现代交往朋友人数 ? 猿人洞里的人数 ? 原始部落的人数 ? 母系氏族人数 ? 早期村落的人数 ?动物单群里的个数 ? 现代学术交流会议最佳人数 ? 现代军事单位连队的人数 ? 现代村组(过去的生产队)的平均人数 ?社会基层组织平均人数 ? 人类理想平均寿命 ? 精细结构常数的倒数 ? 宇宙中原子序数的上限 ? 哈勃时间 ?宇宙年龄(亿年) ? 黎曼猜想特征值 ? 138。   上述胡氏约等式中138 称为胡氏数(胡文祥数,或称为H 值),胡氏数是笔者推导出的宇宙中原子序数的上限,接近精细结构常数1/137 的倒数,精细结构常数是物理学中一个非常重要的无量纲数,表示电子在第一玻尔轨道上的运动速度和真空中光速的比值,是微观世界的一个常数,却在数学世界、无机世界、有机世界、生物和人类社会中扮演了重要角色。英国杰出数学家阿提亚指出:黎曼猜想可与精细结构常数(?1/137)建立联系。   上述胡氏约等式中16 个约等号(还可以更多)蕴含了丰富的内容,充分表明:H 值138 是宇宙中的一个特征数值,是通向微观、介观、宏观和宇观世界的伟大桥梁! 数学世界、原子世界、无机世界、有机世界和生物社会界及人类社会界乃至整个宇宙等都遵守共同的宇宙基本规律。这些研究成果再次印证了伟大的物理学家伽利略曾说过的一句至理名言:数学是上帝用来书写宇宙的文字。 7.胡氏生物最长寿命公式(寿命生物学领域)   胡文祥教授提出了一个估算人类与动物等生物物种个体最长极限寿命(Y)的公式,主要由生物的生长发育期(性成熟期)(T)来决定。 T(生长发育期) × 15(太阳系系数) = Y(生物物种个体最长寿命) 从上述公式可以看出:唯有改变基因减慢生长发育期,或者改变环境在无病害、无污染、安全寒冷环境下减慢新陈代谢反应速度,才能达到长寿之目标!胡锦涛总书记亲切接见胡文祥大校等优秀科技工作者代表8.胡氏周期元素数量计算公式(化学元素周期表)   Nn=[2n+3+(-1)n]2/8   式中,n为周期数,Nn为第n周期元素的数目。   曾记得这一公式胡文祥虽在大二就推导出来了,但是直到1985年北京化学会年会上才报告面世。 9.胡氏心理力学第四定律公式(心理学领域)   心理力学第四定律包含了三个重要观点:一是人类之间存在情绪情感的传递作用;二是越亲密关系(用Q 表示亲密程度)的人这种传递作用越快越强;三是易感人群(用E 来表示易感程度)这种传递影响更快更强。用数学公式表示为   F = g?Q?E/R2   式中 F 表示传递力的强度,g 表示情绪情感传递作用的一个系数,R 表示空间距离。由于这类“情绪波”是球形向外传播的,因此符合距离平方呈反比定律。   共产主义远大梦想的构建者、伟大革命导师马克思早就指出:“一种科学只有在成功地运用数学时, 才算达到真正完善的地步。” 胡博士创立的数学方程式,对于推动相关领域的完善和发展具有重要意义!   从化学到物理学,从生物学到哲学,从航天军事医学到社会科学,都有胡文祥跨界研究的忙碌身影。跨界研究,不仅给人以许多新启迪,而且给人带来许多新乐趣,可以斩获许多新结果。在互联网和移动互联网的冲击下,经济领域跨界大潮正在扑面而来,最彻底的竞争是跨界竞争,常常不知道竞争对手是谁。创新者以前所未有的迅猛,从一个领域进入另外一个领域,门缝正在裂开,边界正在打破。学术研究领域的跨界,不像经济领域跨界那样汹涌澎湃,但借用相邻领域的方法为我所用,很久以来就为科学家所掌握。但从自然科学到社会科学之间大的跨界行动还比较少见。难能可贵的是,胡文祥早在20世纪80年代学生时代就开始跨度很大的跨界研究,提出了经济力学、社会力学、政治力学和心理力学等一系列新概念,已公开出版的三卷本《千桥飞梦》就是其跨界研究成果的一个缩影。   胡文祥特别重视比较学和组合学及统一论方法的灵活运用,重视自然科学与社会科学甚至宇宙学、哲学的交叉、跨界与融合,善于运用广角镜并用大视野、长视距观察分析问题,强调从联系的观点、发展的观点、变化的观点把握宇宙事物发展变化的规律,从哲学、宇宙学、自然科学和社会科学的结合上寻找和阐明复杂社会和自然现象之因,他的许多新思想、新观点、新理论,在岁月的打磨中,历久弥新,日渐臻醇。   胡文祥和同事们积极响应中央的号召,加强互联互通工作,凝练科学和社会问题,坚持深入开展交叉、跨界研究工作,为推动科技进步和人类文明发展不断做出新贡献!   回顾胡文祥的科研人生,会让人想起法国17世纪伟大的哲学家、数学家、物理学家、散文家帕斯卡,他说“人是一根会思考的芦苇”。胡文祥和同事们全部的尊严就在于思想。人是自然界中最脆弱的东西,所以他是一根芦苇,但他因为会思考,可以囊括宇宙,可以通向无穷,这就是人在宇宙中的全部尊严。古罗马著名学者塞涅卡说:“真正的伟大,即在于以脆弱的凡人之躯而具有神性的不可战胜的力量。”胡文祥以凡人之躯涉足世界奥秘的诸多方面,以一种不可战胜的力量彰显“一根芦苇”的尊严,令人敬仰。各个时代的胡文祥教授END
  • 对生命进行远程控制:无线生物工程学成为医学研究的前沿领域
    据英国《新科学家》周刊网站近日报道,随着纳米技术、生物技术以及无线通讯技术等领域的迅猛发展和交叉融合,现在,科学家们已经能够使用无线电信号来对细胞、药品甚至动物等进行控制了。尽管远程无线控制医学这一前沿领域可能面临着安全性等问题,但是,其发展潜力和蕴藏的好处都让人不容小觑。   无线生物工程学方兴未艾   美国纽约州立大学水牛城分校的阿诺德普拉勒制造出的线虫看起来与其他蠕虫毫无二致,体长约为1毫米。接着,当普拉勒打开一个磁场,这些滑溜的、不断蠕动的蠕虫会停止动作,随后,在犹豫了片刻之后,接着开始向后退。然后,普拉勒将磁场关闭,再打开,一遍又一遍地重复这个动作,蠕虫会随着他的拍子跳舞,协调一致地前后移动。   这些都是可以进行远程控制的蠕虫。此前,普拉勒和同事已经将纳米大小的接收器植入线虫头部的神经细胞中。无论何时,只要该接收器探测到高频磁场,神经细胞就会通电,蠕虫也因此会转动。   普拉勒的远程控制蠕虫仅仅只是个开始。目前,生物学家们正在研究对其他宿主进行控制 也在研究将接收器植入离子通道、DNA片段和抗体中。他们的目标是使用比无线电更小的电波来控制活体细胞。   这个方兴未艾的无线电远程医学技术融合了纳米技术、生物技术和无线电物理学技术,该领域目前正在为研究人员提供一个强大的研究工具,而且也在创造一类新科学:科学家们将其称为无线生物工程学或者电磁药理学。不管叫什么名字,该领域目前正吸引着很多科学家为之而倾倒,而且,其应用潜力也非常大。   美国西北大学的物理学家贝纳尔多巴尔别利尼-阿米德去年帮助美国国家科学基金会组织了一场与这个课题有关的研讨会。巴尔别利尼-阿米德指出,一个新的医学领域正慢慢向我们走来。很多疗法,包括基于免疫系统、基因甚至干细胞的疗法都有潜力被远程控制。   与传统药物需要经过几小时才会起作用而且会一直停留在身体里不同,使用无线方法激活的药物几乎能立刻起作用或者随时关闭。美国洛克菲勒大学的萨拉史坦利表示:“使用无线电场能诱导细胞提供具有治疗效果的蛋白质,而采用其他方法做到这一点的成本很高。”   他所在的研究团队也已经找到了使用无线电波来控制胰岛素的生产和释放的方法。我们甚至能够大胆设想:下一代用智能手机应用程序激活并起作用的药物距离我们并不遥远了。巴尔别利尼-阿米德说:“纳米无线系统在医学治疗领域拥有巨大的应用潜力。”   电磁场能“遥控”体内细胞   在很多疗法中,科学家们和医生都会使用强大的磁场来作为治疗手段。例如,名叫经颅磁刺激(TMS)的技术通过诱导大脑内的电流来工作,鉴于其具有一定的疗效,使用该技术治疗抑郁症在美国已经获批。   但是,TMS并非一种十分精确的方法,而且,目前,很多科学家正在研发其他专门使用磁场进行疾病治疗的方式。2005年,加拿大蒙特利尔综合理工大学纳米机器人实验室的西尔万马特尔就想出了一个点子:使用磁感应细菌来制造“迷你型”的药物递送系统。   马特尔的具体想法是,使用一种名为MC-1的菌株作为小拖船。MC-1会沿着地球磁场的磁力线游动——它们使用嵌入身体内名为磁小体的结构中的氧化铁粒子链来感应地球的磁场。马特尔解释道:“每个磁小体就像一根指南针或者一个纳米导航系统。”   2007年,马特尔的团队将细菌同大小为其数倍的塑料小珠连接在一起,并且使用由一台MRI扫描仪产生的、由计算机控制的磁场证明,细菌会遵循精确的路线行进,并且,将它们身上负载的东西铺展在特定的目标上。随后,该研究团队用像细胞一样的胶囊(脂质体)替换下这种塑料小珠子,接着,再让脂质体胶囊负载抗癌药物,该计算机控制的磁场能引导该脂质体胶囊通过血管到达肿瘤所在地。   科学家们已经使用这种方法,引导了很多同纳米尺度的磁体依附在一起的抗癌药物阿霉素通过一只实验老鼠的肝脏的动脉到达肿瘤。科学家们认为,最新方法可以让健康的细胞尽量少暴露在强大的药物下,因此,在治疗时副作用应该可以达到最低。马特尔团队目前正在研究如何使用这一方法治疗直肠癌。   科学家们表示,这一方法真的好处多多,电磁场或许可以通过操控身体内细胞的生物化学特性,从而直接干预身体内的这些内部细胞。这样的无线控制方法提供的精确度很少有药物能够做到。   2002年,美国麻省理工学院的约瑟夫雅各布森领导的科研团队证明了这一点。在研究中,他们认识到,金属纳米粒子能够像天线一样并从以无线电频率振动的磁场那儿吸收能量。这些能量可以被转化为热,而且,雅各布森还认为,这或许对触发细胞内部的生物化学变化非常有用。   随后,他和同事决定用DNA来测试这一想法。他们制造出了DNA片段,其中的碱基对相互依附在一起形成一个像束发夹一样的圆环。接下来,他们让一个个金纳米粒子依附到每个DNA片段上。当他们打开一个高频磁场时,来自于纳米粒子的热量会破坏这些碱基对之间的链接,而且,这个束发夹一样的圆环也会弹开。随后,他们将磁场关闭,分子冷却下来,链接也重新形成。这个循环能够一遍一遍地重复进行,而且,雅各布森也表示,它或许会成为一个有用的工具,可以用它来控制基因的功能。   普拉勒则认为,这种方法还有其他用途:打开和关闭细胞壁上的小孔。这些以蛋白质为基础的小孔调节着离子进出细胞的通道,如果能对这一关键的过程进行很好的控制,会有非常大的用处。   作为美国加州大学伯克利分校的博士后研究员,普拉勒已经研究了一个名为TRPV1的离子通道,疼痛感应神经元中经常会发现这个离子通道。在身体体温为正常的37摄氏度时,这个离子通道是关闭着的,但是,如果温度上升到43摄氏度,TRPV1会打开,而且,钙离子会通过该通道,触发一个会制造出热感的神经脉冲。具体到人体上,辣椒等产生的灼热感也同TRPV1通道脱不了干系。   刚开始,普拉勒考虑使用一个红外激光器来打开该通道,但随后,他无意中看到了雅各布森的研究。他说:“我开始思考另外一个方法,那就是我们能够使用温度来直接刺激TRPV1。”计算结果显示,单个纳米粒子无法聚集到足以打开离子通道那么多的能量。但是,他推断,固定到嵌入有TRPV1的细胞膜上的一小撮纳米粒子提供的热量足以将小孔加热到43摄氏度。   为了测试这一想法,普拉勒和同事修改了位于细胞膜内的TRPV1附近的一个蛋白质,使得该蛋白质同几个由铁锰制成的磁纳米粒子依附在一起。随后,事情果然按照普拉勒他们所想象的那样进行:他们打开一个强大的40兆赫兹的磁场,在短短的10秒钟内,通道的温度上升了6摄氏度,并且,细胞壁上的小孔张开了。   普拉勒的团队使用秀丽隐杆线虫(现代发育生物学、遗传学和基因组学研究重要的模式材料)进行了同样的测试。他们将他们制造出的TRVP1天线系统添加到线虫对热敏感的“鼻子”内,果然不出所料,当鼻子内经过修改的神经细胞探测到磁场时,线虫避开了对它们来说像热源一样的事物。   科学家们几个月前才开始关注这个开关并研究这个开关的应用前景(《科学》杂志第336期第604页)。由美国洛克菲勒大学的杰弗瑞弗里德曼领导的科研团队制造出了经过遗传修改的细胞,在这些细胞中,由TRVP1通道释放出的钙离子触发了胰岛素的产生。接着,科学家们直接将铁纳米粒子添加到TRVP1通道内,并将细胞直接注射进入实验老鼠体内。当他们开启一个以无线电频率震动的磁场时,实验老鼠的血糖浓度下降,这意味着胰岛素已经生成并开始在老鼠体内“发威”。   弗里德曼的团队甚至想出了方法让细胞制造出自己的铁纳米粒子,他们的方法就是赋予细胞合成铁蛋白(铁蛋白是一种将铁原子收集成簇的蛋白质)所必需的遗传机制。科学家们表示,他们也可以对这一方法稍作改变,使用其来远程触发诸如依靠钙离子的肌肉收缩等过程。它甚至可以用来处理大脑内的肿瘤,这里的肿瘤很难对付,因为血脑屏障让血液中的大分子无法进入大脑中。   史坦利表示,他们可以通过修改病人自己的干细胞,制造出一种对无线电信号做出反应的重组抗体,而且,他们也可以将其植入中央神经系统中以递送治疗抗体。普拉勒表示:“很多无线控制方法都有望通过这种方法或者其他方法来实现,这很酷。”   如果这类远程加热方法能起作用,那么,这种方法也不必破坏铁通道中的蛋白质或者伤害附近的分子。普拉勒认为,其中一个原因在于它使加热过程变得更有效。如果他能够在接下来的研究中,找到方法减少提高离子通道的温度所耗费的时间,那么,让附近的分子受到影响的热能也会相应减少。为此,他正在设计更好的纳米大小的热吸收器。   无线拉伸细胞可诱使肿瘤细胞凋亡   科学家们发现,除了可以使用热来对细胞进行远程控制之外,还有其他方法也能对细胞进行远程控制。美国哈佛医学院的唐因格伯进行的研究表明,细胞会通过使用自己身体的扭转来相互交流。他的团队发现,他们可以仅仅通过采用特别的方式来拉伸细胞,从而改变细胞内的基因活动的模式甚至触发细胞自杀——也就是所谓的细胞凋亡。   因格伯的研究团队采用的方法是,将具有磁性的纳米小珠依附到整联蛋白上,整联蛋白是一种出现在细胞的外膜内的蛋白质,其会将纳米小珠锚定到细胞的外基质上。打开一个磁场会对塑料小珠施加一种力,这个力会拖动整联蛋白并将细胞拉变形。   2007年,因格伯就已经证明,他能够将细胞拖成扁平的形状,而且,当磁场关闭时,细胞会死亡。他表示:“这表明,我们可以通过磁场的关闭这种方式来控制细胞的命运。”而且,他和他的团队也已经发现,让一个干细胞变形可以决定它会发育成为哪类身体组织。因格伯解释道:“力学在发育过程中和基因一样重要。”   使用磁场拖拉细胞也能影响我们的免疫系统。在另外一套实验中,因格伯团队让磁性纳米粒子依附到肥大细胞表面的抗体受体上,这种抗体受体会对特定抗原产生过敏免疫反应。在一个磁场中,纳米粒子形成一簇,将这些抗体受体聚拢到一起,其采用的方式与抗原依附于其上一样。在一般情况下,这个聚簇行为会触发一系列的生物化学事件,导致组织胺释放出来——这是一种免疫反应。结果表明,磁场是这一切事件背后的幕后推手。因格伯说:“磁场在这方面表现得非常好。”   因格伯表示,这样通过无线触发方法释放出的组织胺可以更好地控制炎症。组织胺影响血管扩张、肌肉收缩以及肠道内的胃酸分泌。它也能像神经传递素一样影响人的清醒和睡眠状态。而且,这种聚簇效应也能同细胞表面的其他分子结合在一起以制造抗癌药物,例如,制造能触发肿瘤细胞死亡的抗癌药物。   目前,普拉勒打算厘清一个问题,那就是,这种远程加热技术是否能通过激活动物嗅球内特定的神经元(嗅球是大脑内与处理气味有关的组织)来刺激老鼠的触觉。实际上,也就是通过这种方法,让老鼠“闻到”并不存在的物质。去年,他的团队接受了美国国立卫生研究院(NIH)提供的130万美元的资助来研发这项技术。他说:“嗅觉提供了一个大的实验场地,因为嗅球能够从外面送达,因此,递送纳米粒子相对来说也比较容易。”   细胞自身或许就拥有无线机制   要想对细胞进行无线控制,小磁铁可能并非最好的接收器。据《科学美国人》杂志报道,早在2007年,美国加州大学伯克利分校的物理学家亚历克斯策特尔就已经证明,纳米管完全可以作为无线电接收机来使用:可以被当做一个配备了放大器和谐调器的天线来使用。   为了制造出一个能对无线电波做出反应的纳米管,策特尔团队在该碳纳米管的尖端施加了一个电荷。当出现无线电波时,电荷会在管内制造出振动,这种振动能被转化回来成为一个震动的电磁信号。通过改变碳纳米管的长度可以改变其共振频率——策特尔发现,采用这种办法能让纳米管与特定的无线电频率保持一致。策特尔甚至也证明,他的碳纳米管无线电接收机能够通过播送与披头士乐队齐名的沙滩小子乐队的歌曲《Good Vibrations》来重复产生传送信号。在纳米管接收器的音频输出那儿,很容易看到这种谐调。   策特尔宣称,纳米收音机可以被“轻松嵌入一个活细胞中,届时,科学家们可以制造出一个与大脑或肌肉功能接口的装置,用无线电控制在血管中游动的器件也将不再只是梦想”。   然而,甚至纳米无线电接收机可能也并不是必须要有的。科学家们表示,细胞或许拥有自己的无线机制。2009年,法国免疫学家、2008年诺贝尔生理学或医学奖获得者之一吕克蒙塔尼断言,DNA分子可以使用无线电波来传送信息,他之所以做出这一判断是因为,他找到了从富含细菌的水中传来的无线电信号,而且,即使当细胞被杀死时,只要他们的DNA完好无损,信号就会保持。   不过,很少有科学家接受这个观点。但是,去年,美国西北大学的物理学家阿兰维多姆计算出,这样的信号可能源于细菌染色体内的DNA环周围的电子,此前,科学家们就认为,循环的电荷能产生电磁波。维多姆指出,人们很早就知道,有些古老的细菌能够通过导电的纳米线将其同电网相连。维多姆预测道:“那么,或许会有很多现代细菌会使用无线电来做事。”   安全问题首当其冲   然而,尽管一切看上去都很美好,这项技术的应用潜力似乎也非常大,但是,我们仍然不能忽视可能会存在的问题。其中一个关键的挑战是,如何将所有这些功能(包括感应无线信号并将其变成有用的反应)整合为一个安全的集成系统。很多科学家们也认为,手机等发射出的电磁信号对细胞具有危险的影响,其会改变基因表达甚至诱发癌症。因此,迄今为止,无线生物工程学这一理念还存在诸多争议。   安全问题则紧随其后。今年2月,西雅图信息安全测试公司McAfee的主管巴纳比杰克表示,他找到了一种方法,可以用无线信号探测糖尿病患者所携带的胰岛素泵,同时控制这些胰岛素泵。他随后进行的初步研究也证明,依靠无线连接的胰岛素递送系统、起搏器、除纤颤器有可能受到黑客的攻击或者被修改。有鉴于此,美国政府问责局目前正着手进行调查,以弄清楚是否应该为医疗设备工业制定更加严苛的安全规则,研究报告预计今年出炉。   显然,不管是无意的还是有意为之的,任何这样的干扰和破坏都会带来令人担忧的问题。巴尔别利尼-阿米德表示:“我们应该关注纳米世界内计算机和通讯领域的安全问题。未来的医用无线纳米设备必须包含更加严谨的安全机制。”   科学家们也表示,尽管面临着一定的风险,但是,我们应该花大力气来解决目前面临的挑战。这是值得的,因为,无线生物工程学具有非常巨大的应用潜能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制