当前位置: 仪器信息网 > 行业主题 > >

醛基吡啶

仪器信息网醛基吡啶专题为您提供2024年最新醛基吡啶价格报价、厂家品牌的相关信息, 包括醛基吡啶参数、型号等,不管是国产,还是进口品牌的醛基吡啶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合醛基吡啶相关的耗材配件、试剂标物,还有醛基吡啶相关的最新资讯、资料,以及醛基吡啶相关的解决方案。

醛基吡啶相关的资讯

  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0
  • 中国化工学会关于《工业用2-氯-6-三氯甲基吡啶》等 4项团体标准征求意见的通知
    各有关单位及专家:由中国化工学会组织制定的《工业用2-氯-6-三氯甲基吡啶》等4项团体标准已完成征求意见稿,现公开征求意见。请于2023年4 月21日之前将征求意见表(见附件5)以电子邮件的形式反馈至中国化工学会。联系人:张颖 电话:010-64455951邮箱:zhangy@ciesc.cn附 件1.《工业用2-氯-6-三氯甲基吡啶》征求意见稿2.《电子级丙二醇甲醚》征求意见稿3.《电子级丙二醇甲醚醋酸酯》征求意见稿4.《啶氧菌酯原药》征求意见稿5. 征求意见表 中国化工学会2023年3月21日附件3《电子级丙二醇甲醚醋酸酯》征求意见稿.pdf附件1《工业用2-氯-6-三氯甲基吡啶》征求意见稿.pdf附件2《电子级丙二醇甲醚》征求意见稿.pdf附件5 征求意见表.doc《工业用2-氯-6-三氯甲基吡啶》等4项团体标准征求意见通知.pdf附件4《啶氧菌酯原药》征求意见稿.pdf
  • 江西省生态环境厅公开征求《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》等五项地方生态环境标准意见
    各有关单位:根据《江西省市场监管局关于下达2023年第六批江西省地方标准制修订计划的通知》(赣市监标函〔2023〕20号)要求,我厅组织编制了《生态环境监测质量管理技术规范》等五项地方生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登陆我厅网站“政务公开-公示公告”(http://sthjt.jiangxi.gov.cn)栏目检索查阅。请于2024年7月12日前将意见建议书面反馈我厅,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:邓 磊、刘燕红;电 话:0791-86866660、0791-86866791;邮 箱:Fenzc2023@163.com。附件:1.生态环境监测质量管理技术规范(征求意见稿)2.《生态环境监测质量管理技术规范(征求意见稿)》编制说明3.水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)4.《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》编制说明5.水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)6.《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)》编制说明7.水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)8.《水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)》编制说明9.土壤和沉积物 碲的测定 酸溶/原子荧光法(征求意见稿)10.《土壤和沉积物 碲的测定 酸溶/原子荧光法》(征求意见稿)》编制说明11.意见反馈表12.征求意见单位名单江西省生态环境厅2024年6月11日(此件主动公开)
  • 江西省市场监督管理局发布《水质 吡啶的测定 顶空/气相色谱-质谱法》等6项江西省地方标准征求意见稿
    各有关单位及专家:《生态环境监测质量管理技术规范》《水质 吡啶的测定 顶空/气相色谱-质谱法》《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法》《水质 高锰酸盐指数的测定 氧化还原自动滴定法》《土壤和沉淀物 碲的测定 酸溶原子荧光法》《危险废物全过程监管物联网终端技术规范》地方标准现已形成征求意见稿,欢迎各有关单位及专家对标准进行审阅,并于2024年7月13日前返回具体的修改意见。审评中心联系人:高汉、胡昭君、刘磊联系电话:0791-85773380 电子邮箱:jxbzhy@126.com起草单位联系人:罗木根联系电话:18507000681地址:江西省标准技术审评中心,南昌市南昌县金沙二路1899号。 2024年6月13日附件:附件 (1).zip1.标准文本和编制说明2.省地方标准(征求意见稿)意见汇总表
  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿
    国家标准计划《保健食品中吡啶甲酸铬含量的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中吡啶甲酸铬含量的测定》编制说明.pdf国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿.pdf
  • 【新案例】产能700倍提升!不可不知的醇醛氧化新工艺!
    背景介绍酮类和醛类化合物在生物化学和香料工业中占有重要地位,通常是有机合成的关键中间体。最常见的是将醇直接氧化产生酮和酯。常用的氧化剂包括氯铬酸吡啶(PCC)、Jones试剂、重铬酸吡啶(PDC)、Swern、TEMPO、TPAP和Collins试剂。这些试剂或具有毒性或对环境不友好,与之相比,在相转移催化剂(PTC)作用下,使用次氯酸钠氧化醇类化合物具有以下优点:原料成本低;反应条件温和;能快速、高产地氧化伯、仲醇和醛;无重金属污染。应用该试剂氧化醇类的可行性很早之前就得到了证实,Lee和Freedman是最先利用次氯酸钠进行醇的两相催化氧化研究的人。该类反应使用间歇反应器进行放大有较多问题由于反应速率受反应器的大小、形状和搅拌速率等影响,通常收率较低;换热效率较低,局部的热量很容易导致氧化剂的热降解;氧化反应,存在安全隐患。缓解上述挑战的有效方法之一是使用连续流微反应器(图1a)连续流微反应器可以提供更好的传质和传热;无放大效应(康宁反应器具有);持液量相对较低,安全性高。Yanjie Zhang等人使用康宁微通道反应器,选择了三个PTC催化次氯酸盐氧化反应来验证该氧化反应从微量到中试级别的放大效果。结果显示:从流速每小时几微升的反应器放大到每分钟几十毫升的康宁反应器均能获得较好的反应效果;氧化反应的生产效率得到显著提高,得到一种安全有效的连续放大生产的方法 从螺旋微反应器优化条件通过康宁反应器放大通量提高了700倍,无明显放大效应。 一. 实验简介Yanjie Zhang等人使用康宁公司生产的低流量反应器(LFR)和高通量反应器G1(AFR)(图1b、c)进行实验.,选择了三个PTC催化次氯酸盐氧化反应来验证该氧化反应从微量到中试级别的放大效果。图1、 各种微反应结构(a)螺旋设计微反应器和螺旋反应器内丁醇/水的流动模式(b)康宁LFR套装(c)康宁AFR装置和AFR模块内正己烷/水的流动模式结果显示:在康宁微反应器中,从小试到中试其传质和传热效率并未发生明显改变 氧化反应的生产效率得到显著提高,得到一种安全有效的连续放大生产的方法  数据表明在从螺旋微反应器到LFR再到AFR的不同型号的反应器,生产效率提高了700倍,而没出现明显放大效应。关于传质传热的分析:在康宁微通道反应器独有的心形混合通道内反应物料快速流动,进行有效的非均相混合,有机相在水相中迅速分散成小液滴,从而产生较高的传质速率,所以其非均相流体的效率比螺旋盘管反应器更高(见图2)。图2、用水从正丁醇中提取丁二酸得到的液-液流动中单个模块停留时间与传质系数(kLa)的关系在这些反应模块中,反应区夹在两个玻璃传热板之间,传热路径变短,传热性能得到了很大的改善。图3. 康宁反应器反应模块结构 二、实验过程作者在小范围内进行了PTC催化的次氯酸钠溶液氧化反应的尝试(方案1),• 在螺旋微型反应器(图1a)中进行反应条件优化;• 随后将反应工艺条件在到康宁LFR和G1反应器中进行放大研究;图4. 方案1:(a)1-苯乙醇、(b)3-硝基苯甲醇、(c)苯甲醛氧化反应条件的优化1-苯基乙醇的氧化初步试验表明,最有效的加速反应的方法是将水相的pH值调整到9.3-9.5(图5a)。在该pH范围内,大多数次氯酸盐阴离子被质子化并形成次氯酸,然后用相转移催化剂将其萃取到含有次氯酸盐阴离子的有机相中,从而显著提高反应速率。使用14.6%次氯酸钠溶液与饱和碳酸氢钠,很容易获得pH 9.3~9.5的反应体系,这是一个比氢氯酸和乙酸效率更高的反应体系。饱和次氯酸钠溶液具有较高的离子强度,有助于有机盐从水相萃取到有机相 在相同的停留时间下,由于比表面积的增加,水相流速和有机相流速的比值(QA/QO)在控制整个反应速率方面也起着重要作用,因此随着QA/QO 的增加,传质速率有所提高(见图3b)。与螺旋反应器相比,康宁LFR系列具有更高的生产率,因为LRS持液体积较大,在相同的停留时间内,它的流量更高。图5. (a) 螺旋微反应器中1-苯乙醇在不同反应条件下的停留时间与转化率的关系(方案1a)。(b) 康宁AFR和螺旋微反应器中1-苯乙醇停留时间为1分钟的氧化转化率与流量比(QA/QO)的关系。1-苯乙醇浓度为0.8 M,NaOCl浓度为2 M。菱形,螺旋微反应器(pH 9,τ=1 M in);方块,康宁LFR(pH 9,τ=1 min)。3-硝基苄醇的氧化在甲醇存在下,3-硝基苄醇可以直接氧化成其甲酯(方案1b)。在此反应中,醇首先被氧化成相应的醛,醛与甲醇迅速形成半缩醛,并进一步氧化成相应的甲酯。 该反应受pH影响大,实验最优pH是9?9.5,最佳的水相与有机相比为2:1,浓度和停留时间分别为0.8M和1.5min。在康宁LRS和AFR反应器上,3-硝基苄醇氧化反应的停留时间在1min时产能达到最大,效率明显优于螺旋微反应器。图6. 不同反应物在康宁反应上的生产效率苯甲醛的氧化 在甲醇存在下,苯甲醛可以直接氧化为苯甲酸甲酯,而不需要经过酸的过渡态( 方案1c)。但Leduc和Jamison研究发现,一旦转化率达到60%,反应会停止。用甲醇取代乙酸乙酯作为溶剂,反应能够完全进行反应是均相,无需相转移催化剂苯甲醛的氧化在2.7min内在康宁反应器中可以100%转化,而在螺旋微反应器中3min后转化率仅为90%(图6c)图7. 螺旋微反应器与康宁LFR和AFR氧化(A)1-苯乙醇、(B)3-硝基苄醇和(C)苯甲醛的转化率和收率比较;蓝色,转化率(%);红色,产品收率(%)实验总结• 作者使用次氯酸钠溶液做了三种底物的氧化反应,从螺旋微反应器优化到康宁LFR和AFR系统均获得了较好的结果;• 这些物质的氧化反应为非均相反应,通过微反应器增强传质可以提高反应效果;• 工艺过程中替换溶剂或者使用传质更好的反应结构单元都可以起到提高传质的作用;• 和传统微反应器相比,康宁反应器可以实现更高的转化率且单台反应器可以获得更高的通量(生产效率);• 从螺旋微反应器到康宁G1反应器通量提高了700倍,同时保持了良好的传质传热效果。参考文献:dx.doi.org/10.1021/op500158h | Org. Process Res. Dev. 2014, 18, 1476?1481
  • 岛津应用:矿泉水中氰化物和氯化氰的检测
    2014年12月22日,日本颁布了牛奶和奶制品成分标准的相关指令,以及食品、添加物等规格基准的部分修订指令(日本厚生劳动省令第141号、厚生劳动省告示第482号;同日实施),还规定了有关试验方法(食安发1222第4号)。指令中规定,矿泉水中的氰标准值为0.01 mg/L(氰化物离子和氯化氰的总值),试验方法为离子色谱柱后衍生化法。 本文向您介绍按照修订后的清凉饮料水试验方法(以下称为“指令”),使用岛津氰化物分析系统对矿泉水中的氰化物离子和氯化氰进行分析的示例。 按照指令规定,使用离子排斥柱将氰化物离子和氯化氰分离,然后使用4-吡啶羧酸吡唑啉酮法进行柱后衍生化,在波长638nm处进行检测。柱后衍生化反应分两步进行,第一步利用氯胺T 溶液进行氯化,第二步利用 1-苯基-3-甲基-5-吡唑啉酮/4-吡啶羧酸溶液进行显色。 按照指令规定的岛津氰化物系统流路图 了解详情,敬请点击《使用离子色谱柱后衍生化法分析矿泉水中的氰化物和氯化氰》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 长春应化所在全高分子太阳能电池领域取得系列进展
    p   在光能转化为电能方面,全高分子太阳能电池采用p型高分子半导体(给体)和n型高分子半导体(受体)的共混物作为活性层,与传统的无机太阳能电池相比,具有柔性、成本低、重量轻的突出优点,已成为太阳能电池研究的重要方向之一。但是,n型高分子半导体的种类和数量远远少于p型高分子半导体,因此开发n型高分子半导体材料是发展全高分子太阳能电池的核心。 /p p   中国科学院长春应用化学研究所高分子物理与化学国家重点实验室刘俊课题组,提出采用硼氮配位键(B←N)降低共轭高分子的LUMO/HOMO能级,发展n型高分子半导体的策略,并发展出两类含硼氮配位键的n型高分子半导体受体材料,其全高分子太阳能电池器件效率与经典的酰亚胺类n型高分子半导体相近。 /p p   该课题组首先阐明了硼氮配位键降低共轭高分子LUMO/HOMO能级的基本原理,首次将硼氮配位键引入到n型高分子半导体的分子设计中(Angew. Chem. Int. Ed., 2015, 54, 3648)。进而提出了两种用硼氮配位键设计n型高分子半导体受体材料的分子设计方法:一是在共轭高分子的重复单元中,用一个硼氮配位键取代碳碳共价键,使共轭高分子的LUMO/HOMO能级同时降低0.5–0.6eV,将常见的p型高分子半导体给体材料转变为n型高分子半导体受体材料(Angew. Chem. Int. Ed., 2016, 55, 5313) 二是先设计基于硼氮配位键的新型缺电子单元——双硼氮桥联联吡啶,再用于构建n型高分子半导体受体材料(Angew. Chem. Int. Ed., 2016, 55, 1436)。 /p p   研究表明,硼氮配位键n型高分子半导体具有LUMO轨道离域、LUMO能级可调的特点(Chem. Sci., 2016, 7, 6197)。基于该独特的电子结构,在得到全高分子太阳电池器件效率6%的同时,实现了光子能量损失0.51 eV,突破了传统有机太阳能电池光子能量损失最小值0.6eV的极限,也是已知文献报道的最低值(Adv. Mater., 2016, 28, 6504)。 /p p   该工作获得了科技部“973”项目、国际自然科学基金、中组部“青年千人计划”和中科院先导计划等项目的资助。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201611/insimg/4e516292-452d-47ca-ae56-f629db3e32c9.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center "   长春应化所在全高分子太阳能电池领域取得系列进展 /p p br/ /p
  • 《土壤和沉积物 9种酯类化合物的测定》6项团标征求意见
    按照青海省标准化协会团体标准工作程序,标准起草单位已完成《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》等6项团体标准征求意见稿的编制工作,现公开征求意见。《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:试样经前处理后有电感耦合等离子体全谱直读光谱仪测定。将待测溶液引入高温等离子炬中,待测元素被激发成离子及原子,在特定的波长处测量各元素离子及原子的发射光谱强度,特征光谱的强度与试样中待测元素的浓度在一定范围内呈线性关系而进行定量关系。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10μL、25μL、100μL、250μL和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2 μg/kg-1.5μg/kg,测定下限为4.8μg/kg -6μg/kg ,见附录A。《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定水质样品中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 ml 棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5ml的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5ml,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2g/L -1.5g/L,测定下限为4.8g/L -6.0g/L ,见附录A。《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL甲醇(1:1甲醇和水溶液)振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:不小于 60 ml 具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.振荡器:水平振荡器或翻转振荡器。5.恒温振荡器:温度精度为±2℃。6.天平:感量为 0.01 g。7.提取瓶:不小于40ml,具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。8.平底烧瓶:1000 ml,具塞平底玻璃烧瓶。9.离心机:转速≥3500r/min。本标准适用于土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。当样品量为10g,定容体积为20mL时,目标物的方法检出限为、测定下限见附录A。《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL空白试剂水振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:500mL具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.天平:精度为0.01g。5.平底烧瓶:1000 mL,具塞平底玻璃烧瓶。本标准适用于饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。直接进样法,目标物的方法检出限为0.01mg/L,测定下限为0.04mg/L,见附录A 。《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中水质中22种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 mL棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5mL的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中22种挥发性有机物(二氯二氟甲烷、氯甲烷、氯乙烯、溴甲烷、氯乙烷、三氯氟甲烷、碘甲烷、二硫化碳、乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、2-丁酮、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、甲基异丁基酮、乙酸异丁酯、2-己酮、1,1,2-三氯丙烷、甲基丙烯酸丁酯、乙酸戊酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5mL,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.5-5.0g/L,测定下限为6.0g/L -20.0g/L,见附录A。《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中13种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标物标准质谱图相比较和保留时间进行定性,内标法定量。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10、25、100、250和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中13种挥发性有机物(乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、氯丁二烯、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、顺-1,3-二氯丙烯、乙酸异丁酯、反-1,3-二氯丙烯、乙酸戊酯、甲基丙烯酸丁酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.6 μg/kg -2.2μg/kg,测定下限为6.4 μg/kg -8.8μg/kg,见附录A。
  • 新品 | 全自动无人值守完成样品制备全流程-ISP600多功能样品制备工作站
    在人类享受科技带来的快速发展的同时,也同样面临着其带来的惩罚,越来越严峻的环境问题,以及频繁的食品安全问题。严峻的势态,人们的忧虑及国家的重视,导致需要监控、分析的样品种类及数量迅速增加,对分析实验室的要求也越来越高。样品制备是现代色谱分析中最重要的过程,这一过程占据了整个色谱分析61%的时间以及30%的误差来源。另外,操作人员技术水平的参差不齐让分析结果的准确性与精密度无法得到保证,随着样品数量的增加,操作人员的作业负荷也随之增加,并且长时间接触有机溶剂也危害着实验人员的健康。安全隐患及人力成本的增加,未来分析实验室势必朝着自动化、信息化、智能化方向发展,如何让样品前处理更加自动化,信息化,智能化是睿科一直在努力的。此次由睿科研究院产学研研制出的新品-ISP600多功能样品制备工作站就能全自动的完成QuEChERS方法样品制备全流程,实验室实现无人值守不再是梦想。点击在线观看ISP600在:北京BCEIA展会现场操作视频睿科ISP系列多功能样品制备工作站建立在六轴机械手平台上,集合样品管理,液体处理,开关盖,震荡提取,离心分离等五大模块,使其达到样品制备过程无人化,而人工只需承担简单的制样与称样的工作,大大减少了样品制备过程中人工操作带来的影响,解放实验人员劳动力及提高分析结果准确度。高通量每批次六个样品同时运行,批次间步骤交叠运行,一天最少处理120个样品全自动完全无人化工作,人工只需完成样品称量以及色谱上样的工作精确性机械化运行,无人工干扰,保证处理过程一致性以及数据的精密性与准确性安全性节约溶剂,避免实验人员与溶剂接触应用领域农业:植物源性食品中以农残为主的农药检测应用举例GB23200.108-2018 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法GB23200.109-2018 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法GB23200.110-2018 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法GB23200.111-2018 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法GB23200.112-2018 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法GB23200.113-2018 植物源性食品中208种农药及其代谢物残留量的测定气相色谱-质谱联用法GB23200.115-2018 鸡蛋中氟虫腈及其代谢物残留量的测定 液相色谱-质谱联用法
  • 百灵威维生素标样 品种全 保平安 促健康
    维生素(vitamin)是人和动物为维持正常的生理功能而必需从食物中获得的y类微量有机物质,对生命机体的新陈代谢、生长发育和保持健康具有j重要作用。目前,市场上很多食品均含有维生素,其添加种类和成分的多寡,对身体健康与否显然起到举足轻重的关系。因此,百灵威为食品检测提供品种齐全的维生素标样,可协助相关部门快速精确地检测食品中维生素的营养成分及其比例,以保障人们的饮食安全与营养均衡。百灵威作为分析l域行业引l者,拥有全球化大型标样库,产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照物质都达到或c过了美g化学会z新的分析试剂规格标准,符合ACS 标准、NIST/NVLAP、ISO9001 认证的要求,可满足z高质量控制体系要求,每份标准样品均附带原批次质检报告、材料安全数据卡,确保实验可溯源,并且可以为用户提供专业标样的定制服务。 ■ 水溶性维生素系列标样 产品编号 产品名称 CAS 包装 目录价 VIT-001N 维生素B1盐酸盐 / 硫胺素 Vitamin B1 hydrochloride 67-03-8 1 g ¥195 C 17455500 硝酸硫胺 / 维生素B1硝酸盐 Thiamine mononitrate 532-43-4 0.25 g ¥432 C 17561000 硫代硫胺素 Thiothiamine 299-35-4 1 g ¥540 VIT-002N 维生素B2 / 核黄素 Vitamin B2 83-88-5 1 g ¥195 C 16813610 核黄素磷酸钠 Riboflavine-5 phosphate sodium 130-40-5 0.25 g ¥432 VIT-003N 维生素B6 / 盐酸吡哆辛 / 盐酸吡哆醇Vitamin B6 58-56-0 1 g ¥195 VIT-004N 抗坏血酸 / 维生素C Vitamin C 50-81-7 1 g ¥195 C 10303100 抗坏血酸钙盐 Ascorbic acid calcium salt 5743-28-2 0.25 g ¥432 C 10303900 抗坏血酸钠盐 / 维生素C钠盐 L-Ascorbic acid sodium salt 134-03-2 0.25 g ¥396C 10303930 维生素C棕榈酸酯 / L-抗坏血酸棕榈酸酯Ascorbyl palmitate 137-66-6 0.25 g ¥432 VIT-005N 烟酸 / 吡啶-3-羧酸 / 尼克酸 Vitamin B3 59-67-6 1 g ¥195 VIT-006N 烟酰胺 / 尼克酰胺 / 维生素B3 Nicotinamide 98-92-0 1 g ¥195 C 15521030 烟酸苄酯 Nicotinic acid-benzyl ester 94-44-0 0.25 g ¥360 VIT-007N 叶酸 Vitamin M 59-30-3 1 g ¥195 VIT-008N D-泛酸 / 维生素B5 D-Pantothenic acid 79-83-4 0.1 g ¥370 C 15844500 D-泛酰醇 D-Panthenol 81-13-0 0.5 g ¥936 CA15845000 泛酸钙单水合物 Pantothenic acid calcium salt 63409-48-3 0.25 g ¥360 VIT-009N-R1 D-生物素 / 维生素H / 辅酶R Vitamin H 58-85-5 0.1 g ¥195 VIT-010N-R1 维生素B12 Vitamin B12 68-19-9 0.025 g ¥234 VIT-WSK-R1-SET 水溶性维生素套装,包括:VIT-001N to VIT-010N 10 units ¥1,264 ■ 脂溶性维生素系列标样产品编号 产品名称 CAS号 规格 目录价 VIT-012N 维它命E Vitamin E 10191-41-0 0.1 g ¥273 CA17924320 维生素E醋酸酯 Vitamin E acetate 7695-91-2 0.5 g ¥540 VIT-013N 胆骨化醇 / 维生素D3 Vitamin D3 67-97-0 0.1 g ¥273 CA17924100 骨化二醇 Vitamin D3 25-hydroxy monohydrate 63283-36-3 0.05 g ¥1,134 VIT-014N 维生素A棕榈酸酯 Vitamin A palmitate79-81-2 0.1 g ¥1,206 VIT-015N 维生素E醋酸酯 Vitamin E acetate 7695-91-2 0.1 g ¥273 VIT-016N 维生素K1 / 2-甲基十六碳烯-1,4-萘二酮 Vitamin K1 84-80-0 0.1 g ¥273 VIT-017N 维生素K2 Vitamin K2 11032-49-8 0.1 g ¥1,556 VIT-018N 维生素K3 / 甲萘醌 Vitamin K3 58-27-5 0.1 g ¥273 VIT-019N BETA-胡萝卜素 b-Carotene 7235-40-7 0.01 g ¥389 CA10290900 beta-阿扑-8' -胡萝卜醛 8' -Apoaldehyde 1107-26-2 0.05 g ¥936 VIT-020N 维生素 E 琥珀酸酯 Vitamin E succinate 4345-03-3 0.1 g ¥273 VIT-022N 维生素D2 Vitamin D2 50-14-6 0.1 g ¥273 VIT-FSK-R2-SET 脂溶性维生素套装,包扩:VIT-012N to VIT-022N 10 units ¥2,457 ■ 相关分析耗材产品 产品编号产品名称 规格 目录价 116481 甲醇 99.9% [HPLC/ACS] 4 L ¥180 134752 乙腈 99.9% [HPLC/ACS] 4 L ¥400 187553 水 [HPLC] 4 L ¥375 904802 乙醇 95% 500 mL ¥22 S02001 C18 柱,150 mm× 4.6 mm, 5 &mu m 1 支¥2,500 S02302 C18 柱,250 mm× 4.6 mm, 5 &mu m 1 支 ¥2,800 S010125-3002 AB-1气相柱,30 m × 0.25 mm × 0.25 &mu m 1 支 ¥3,960 S010525-3002 AB-5气相柱,30 m × 0.25 mm × 0.25 &mu m 1 支 ¥3,960 ZTLMGL-4.1 针筒式滤膜过滤器 Ф13 0.2 &mu m(有机相) 100 片/包 ¥150 WKLM-4.2 微孔滤膜 Ф50 0.45 &mu m (有机相) 100 片/包 ¥210 901275 J&K 瓶口分配器(5.0-50.0 mL) 1 支 ¥2,000 958945 J&K单道手动可调移液器(100-1000 &mu L) 1 支 ¥645 928429 J&K磁力搅拌器(数显、加热、不锈钢) 1 台 ¥3,112 5182-0553 螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫) 100 个/包 ¥527 5182-0728 聚丙烯螺纹瓶盖(无隔垫) 100 个/包 ¥109 5183-4759 高j绿色隔垫(带预穿孔) 50 个/包 ¥699 CER-001-1 1.5 mL标准毛细储存瓶 1 个 ¥240 5183-2086 400 &mu L 脱活的玻璃平底内插管 500 个/包 ¥1,441 5183-4696 单细径锥不分流衬管 25 个/包 ¥6,030 5183-4693 单细径锥,带玻璃毛不分流衬管 5 个/包 ¥1,460 5188-5365 衬管O形圈 10 个/包 ¥143 5188-5367 进样口密封垫(配备垫圈,*金属铸模工艺,镀金密封工具包) 1 个 ¥389
  • 山东农药企业发展理念超前—浙江省农药工业协会赴山东考察纪实
    作者:姜书凯 浙江省农药工业协会 2016年10月8~11日,浙江省农药工业协会由24个会员单位的33位董事长(总经理或副总等)组成的赴山东考察团,在王伟理事长的带领下,到山东省农药行业考察学习。这是我协会距2004年第一次到山东省考察学习12年之后,再次赴山东省向同行取经。本次活动在山东省农药工业协会的大力支持、张昊秘书长和侯常青副秘书长陪同下,到山东中农联合生物科技股份有限公司(简称“中农联合”)、山东滨农科技有限公司(简称“滨农科技”)、山东绿霸化工股份有限公司(简称“山东绿霸”)、海利尔药业股份有限公司(简称“海利尔药业”)等4家一流的农药企业以及山东省农药检定所实地参观交流。 10月8日下午,考察团全体团员在山东泰安市集中,由山东省农药工业协会名誉理事长、中农联合许辉总经理宴请了浙江考察团。10月9日上午,到范镇中农联合参观学习。中农联合隶属中农集团,公司主要原药产品有啶虫脒、吡虫啉、哒螨灵、霜霉威盐酸盐、噻虫啉、联苯菊酯、唑螨酯、腈菌唑、乙霉威等原药、农化中间体及百余种农药制剂,目前已建立了全球最大的新烟碱类杀虫剂和重要的杂环类杀螨剂生产基地,在2015年中国农药百强榜上排名第35位,农药收入10.33亿元。公司占地2,000亩,其中原药生产占地300余亩,制剂加工生产占地400余亩,还有1,300亩土地还在规划建设之中。其制剂加工区有大片的绿化区和大片的水域,湖中放养鸭子,湖边建有亭子,环境十分优美,达到了花园式企业的标准。粉剂加工车间设备先进,粉碎采用日本技术,计量采用德国技术,包装设备全封闭,已经完全消除了粉尘和气味,达到了国内一流水平。在绿树丛中还建有大型温室,培养了各种作物,供药效试验用。 中农联合的研发中心建在济南,仪器设备非常先进,令我们大开眼界。尤其是安全工程实验室花费了1,000多万元配备了从英国赫尔公司进口的“快速筛选量热仪(Tsu)”、“绝热加速量热仪(Phi-TECI)”、“全自动等温反应量热仪(Simular)”;从瑞士梅特勒-特利托公司进口的“差视扫描量热仪(DSC)”;从美国康宁公司进口的“G1微通道反应器”等一批先进仪器设备。应用这批仪器可以测出放热反应的温度突变起始点;反应失控的压力突变起始点;放热的最高温度和最大压力;能够获得放热反应的放热总量;放热反应的起始点;全过程温度和压力的变化;可以提高收率、减少杂质、优化反应时间,测量反应所释放的总能量,评估反应的危险性,使反应过程优化和安全。可以致力于“连续流”化学合成反应工艺方面的研究和开发,传质效率是普通反应釜的10~100倍,单位面积的换热效率是普通釜式反应釜的1,000倍以上,可以精确控制反应的温度;可以实现-60~+230℃温度范围内,压力小于18 bar的合成反应;实现大部分液液非均相及气液相条件下的反应,也可用于气液固三相反应;可以安全合成危险性物质,平稳控制强放热反应;可以在一个反应器中实现多步合成;研究出的工艺条件,可在大规模生产设备上无缝放大,同时确保反应安全性。 由于引进了这批仪器设备,使中农联合的科技人员在研发中如虎添翼,加快了研发新农药的进程,而且大大增加了试验的安全性,对公司今后的快速发展将起到至关重要的作用。 10月9日中午,山东省农药工业协会在济南宴请了考察团。下午考察团参观了山东省农药检定所,杨理健所长还与考察团进行了座谈。 10月9日傍晚,考察团赶赴滨州,山东省农药工业协会理事长、滨农科技董事长黄延昌宴请了考察团。滨农科技是我国最大的选择性除草剂生产企业,国内除草剂制剂市场占有率第一。公司现拥有除草剂、杀虫剂、杀菌剂三大类农药产品,能够合成农药原药30余个,加工制剂产品100多个,公司的酰胺类、三嗪类、二硝基苯胺类、有机磷类、苯氧羧酸类除草剂原药均已规模化和系列化生产,年合成能力在9万吨以上。滨农科技在2015年中国农药百强榜上排名第9位,农药收入23.72亿元,出口农药产品9亿多元人民币。 10月10日上午,参观滨农科技的主厂区,进厂区前,考察团在录像室观看了安全培训录像,接受了5分钟的安全教育。该主厂区占地面积1,000亩(另有副厂区600亩),由于厂区大、时间紧,考察团在企业陪同人员的讲解下,乘坐大巴绕行了整个厂区,实地参观了智能生测温室、检测中心,并在检测中心会议室进行了座谈交流。 10月10日中午,参观团抵达潍坊,山东绿霸董事长赵焱宴请了大家。山东绿霸是全球主要的吡啶生产企业之一,已形成吡啶—吡啶类中间体—农药原药—农药制剂的全产业生产链,老厂区吡啶产能18,000吨,农业部农药检定所登记在册的农药产品140多个,在2015年中国农药百强榜上排名第32位,农药收入12.89亿元。下午,考察团在赵焱董事长的陪同下,参观了山东绿霸新厂区。新厂区占地720亩,已经建成24,000吨/年吡啶项目(实际产能达30,000吨/年),生产工艺采用国际最先进的技术,物料在不锈钢反应釜反应完毕后,进入13个精馏塔进行分离提纯,吡啶质量可达99.99%。5,000立方米厌氧生化处理罐3个,焚烧炉投资3,000万元,日处理6,000立方米废气,消除了“三废”对环境的影响。正在建43,000吨/年的氯化吡啶装置,用33个精馏塔进行分离提纯。新厂区还准备建设20,000吨/年草铵膦项目。新厂区三大项目全部采用DCS控制,整个厂区工作人员将不超过200人。新厂区总投资预计为13亿~15亿元。 10月10日傍晚,考察团抵达青岛,海利尔药业总裁葛家成宴请了考察团。海利尔药业在青岛城阳、莱西姜山、潍坊滨海拥有3个大型生产基地,主要生产嘧菌酯、苯醚甲环唑、啶虫脒、呋虫胺、噻虫胺、噻虫嗪、吡虫啉、甲氨基阿维菌素苯甲酸盐、氟虫腈、烯啶虫胺等原药,在2015年中国农药百强榜上排名第37位,农药收入10.16亿元。10月11日上午,由海利尔药业制剂研究所所长司国栋陪同考察团到海利尔药业研发中心参观,研发大楼内有检测中心、制剂研发中心、原药研发中心及生测中心。生测中心内智能养虫室(饲养22种虫)、真菌培养室、人工气候箱、生测药效喷雾塔、盆栽试验精准喷雾等设备一应俱全,对新农药产品的研发起了极大的支撑作用。 浙江省农药工业协会二赴山东省同行考察学习时间短,但安排紧凑,到山东省最好的一批农药企业去取经,团员们都感到收获很大。 首先,大家感慨山东省地方政府对农药行业的全力支持,从我们考察的企业厂区占地面积动辄上千亩,便可以看出山东省地方政府的态度,相比之下,浙江省对本省的农药企业采取了限制政策,使我省农药企业被迫外迁,到苏北、山东、安徽、江西等省建厂;温州市甚至准备把当地农药企业赶尽杀绝,全部限期搬迁,温州市将没有农药企业的立足之地! 其次,山东省农药企业发展理念超前,与12年前我协会首次到山东同行考察时,已经不可同日而语了!我们考察的4家企业,年农药收入全部在10亿元以上,滨农科技更是达到23亿以上;4家企业全部入选中国农药百强榜,并且排名均靠前。山东绿霸从农药上溯到中间体,其吡啶生产区大型的不锈钢罐、反应釜、精馏塔群,完全是石油化工企业的气势,传统小打小闹的农药企业的影子不复存在,对我们来说,有种令人震撼的感觉! 三是,山东企业在科研投入上的大手笔,值得我们学习:中农联合花1,000多万元进口国外的先进仪器和设备,建立了“安全工程实验室”,从根本上改变了农药研发和放大中的安全风险,大大降低了事故发生的可能性,保证了科研人员的人身安全;同时使用先进的仪器设备,加快了开发新农药产品的进程,为企业进一步发展赢得了主动。 四是,注重环境保护,生化处理装置和焚烧炉已经普及,中农联合的粉剂加工采用了世界上最先进的设备,完全消除了粉尘,厂区已经建成花园式工厂;滨农科技诺大一个厂区,集中了30余个农药原药的生产,却闻不到农药气味,这也是山东省农药企业能得到地方政府大力支持的道理之一。 如果说2004年我们首次赴山东考察交流时,浙江省农药行业总体上还是超过山东的,那么这次赴山东考察,大家明显觉得浙江省农药行业已经大大落后于山东同行。根据王伟理事长的建议,我协会将于11月上旬组织一次研讨会,在研讨会上详细介绍山东省农药行业的发展情况,找出浙江省农药行业的不足之处,寻求我省农药行业如何发展的办法,这也是这次赴山东省考察所得到的成果之一。 AgroPages世界农化网独家稿件,转载请注明版权!在线阅读本文: http://cn.agropages.com/News/NewsDetail---12907.htm来源:Agropages.com网站:www.agropages.com联系:info@agropages.com关于AgroPages:AgroPages 是全球农化领域领先的网络媒体,我们为行业提供专业的市场调研,报告定制,媒体宣传,以及品牌推广等服务。
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x
  • HPLC级叔丁基甲醚促销
    货号:CAEQ-4-018397-4000 HPLC级叔丁基甲醚 规格:4L 报价:540元 促销价:整箱起订432元/瓶,4瓶/箱 促销时间:2011年5月3日至2011年5月31日 高效液相色谱法已经在产品检测、研发以及药物质量控制和环境分析领域成为首要的技术方法,因而对所使用的溶剂提出了更高的要求。 CNW液相色谱溶剂具有以下优点:1)低紫外吸收,确保最佳灵敏度;2)严格控制非挥发性物质、游离酸、游离碱和水分含量至最低;3)严格的梯度测试以检测干扰峰和基线漂移情况;4)可用于荧光检测。我们可以为您提供满足不同分析需求的溶剂,如UV-IR表示可满足紫外可见吸收光谱、红外光谱等分析;HPLC preparative表示可满足制备色谱分析;HPLC isocratic表示可满足等度洗脱分析;HPLC gradient表示可满足梯度洗脱分析;GPC表示可满足大分子化合物凝胶渗透色谱分析;另外我们还可以为您提供满足所有现代LC/MS精确检测分析用的溶剂。 订货信息: 产品货号 产品名称 品牌 规格 报价(元) 4.003302.4000# HPLC级甲醇 CNW 4L 180.00 4.003306.4000# HPLC级乙腈 CNW 4L 420.00 4.003513.2500# HPLC级水 CNW 2.5L 200.00 4.003513.4000 HPLC级水 CNW 4L 320.00 4.012256.0500# HPLC级苯CNW 500ml 400.00 4.012256.1000 HPLC级苯 CNW 1L 600.00 4.012256.4000# HPLC级苯 CNW 4L 1360.00 4.012783.0500# HPLC级吡啶 CNW 500ml520.00 4.012783.1000# HPLC级吡啶 CNW 1L 860.00 4.012783.4000 HPLC级吡啶 CNW 4L 2800.00 4.010734.0500 HPLC级二甲基亚砜 CNW 500ml 360.00 4.010734.4000# HPLC级二甲基亚砜 CNW 4L 1150.00 4.011410.0250# HPLC级1,4-二氧六环 CNW 250ml 480.00 4.010410.0500 HPLC级1,4-二氧六环 CNW 500ml 860.00 4.010410.1000# HPLC级1,4-二氧六环 CNW 1L 1360.00 4.014077.4000 HPLC级N,N-二甲基甲酰胺 CNW 4L 520.00 4.014080.0500# HPLC级N,N-二甲基乙酰胺 CNW 500ml 360.00 4.014080.1000# HPLC级N,N-二甲基乙酰胺 CNW 1L 480.00 4.014080.2500 HPLC级N,N-二甲基乙酰胺 CNW 2.5L 800.00 4.011556.4000# HPLC级环己烷 CNW 4L 520.00 4.011406.0500# HPLC级N-甲基吡咯烷酮 CNW 500ml 320.00 4.011406.4000 HPLC级N-甲基吡咯烷酮 CNW4L 980.00 4.012001.4000# HPLC级二氯甲烷 CNW 4L 600.00 4.011408.0500 HPLC级1-氯丁烷 CNW 500ml 450.00 4.011408.1000# HPLC级1-氯丁烷 CNW 1L 750.00 4.011412.0500# HPLC级氯苯 CNW 500ml 560.00 4.011412.1000 HPLC级氯苯 CNW 1L 960.00 4.011404.1000 HPLC级1,2-二氯苯 CNW 1L 750.00 4.011414.0500# HPLC级1,2,4-三氯苯 CNW 500ml 520.004.011414.1000 HPLC级1,2,4-三氯苯 CNW 1L 860.00 4.018397.4000# HPLC级叔丁基甲醚 CNW 4L 540.00 4.011321.4000# HPLC级四氢呋喃 CNW 4L 720.00 4.014048.4000# HPLC级乙酸乙酯 CNW 4L 450.00 4.016362.4000# HPLC级乙醇 CNW 4L 520.00 4.013493.4000# HPLC级异丙醇 CNW4L 420.00 4.010893.1000# HPLC级异丁醇 CNW 1L 560.00 4.010893.4000 HPLC级异丁醇CNW 4L 1800.00 4.010566.4000# HPLC级异辛烷 CNW 4L 860.00 4.019067.1000 HPLC级正丙醇 CNW 1L 300.00 4.019067.2500 HPLC级正丙醇 CNW 2.5L 640.004.014508.1000# HPLC级正丁醇 CNW 1L 360.00 4.014508.4000# HPLC级正丁醇 CNW 4L 860.00 4.019030.4000# HPLC级正庚烷 CNW 4L 800.00 4.011518.4000# HPLC级正己烷 CNW 4L 450.00 4.019028.4000# HPLC级正戊烷 CNW 4L 800.00 4.011402.1000 HPLC级叔丁醇 CNW 1L 640.00 4.011401.0500 HPLC级正辛醇 CNW 500ml 480.00 4.011405.0250 HPLC级1,2-二氯乙烷 CNW 250ml400.00 4.011405.1000 HPLC级1,2-二氯乙烷 CNW 1L 600.00 4.011403.1000 HPLC级4-甲基-2-戊酮 CNW 1L 560.00 4.000306.4000 LS-MS甲醇 CNW 4L 600.00 4.000308.4000 LS-MS乙腈CNW 4L 840.00 4.000302.4000 LS-MS水 CNW 4L 600.00 了解更多产品请进入安谱公司网站 http://www.anpel.com.cn/
  • 残留溶剂专题②|岛津SH-I-624Sil MS助力高效分析
    第二期 II类B残留溶剂上期回顾第一期I类残留溶剂和II类A残留溶剂的分析在残留溶剂专题①中我们介绍了I类残留溶剂和II类A残留溶剂的分析,我们对比了岛津SH-I-624Sil MS和市面某品牌624,岛津SH-I-624Sil MS对I类残留溶剂苯和1,2-二氯乙烷分离度更优,II类A残留溶剂整体峰形和灵敏度更好,同时溶剂峰DMSO和异丙基苯也展现出了更好的分离度。本期我们从II类B残留溶剂进一步展开介绍。方案设计参考方法:II类B:USP载气:N2色谱柱:适合顶空进样的残留溶剂:G43色谱柱(624) 适合直接进样的残留溶剂:G16色谱柱(PEG)溶剂:DMSO进样方式:顶空检测器:FIDII类B实验结果II类B残留溶剂标准溶液分离数据(岛津SH-I-624Sil MS)对于II类B残留溶剂,SH-I-624Sil MS整体分离效果良好。特别注意!# 吡啶容易出现响应不好的问题这是因为吡啶易与熔融石英表面硅羟基形成分子间氢键,从而导致吸附、拖尾、响应差等问题的出现。与此同时我们也发现甲苯和吡啶同时检测时容易共流出,干扰彼此定量。对于吡啶检测我们建议使用胺类专用柱SH-Volatil Amin(碱改性100%二甲基聚硅氧烷),碱处理色谱柱可有效改善胺类柱上吸附和峰形拖尾问题。(点击查看更多胺类专用柱相关)对甲苯和吡啶检测我们给出针对性测试方案:上:使用岛津SH-I-624Sil MS之前下:使用岛津SH-I-624Sil MS之后测试结果表明:使用岛津SH-I-624Sil MS之前甲苯和吡啶分离度仅为1.4,使用后该柱子后甲苯和吡啶分离度提升到1.9,吡啶响应良好。为提升吡啶响应,提供大家一种优化思路:小内径提升吡啶响应和灵敏度完整实验结果请查看“岛津实验器材”微信公众号或直接访问:https://mp.weixin.qq.com/s/PdHRKm8wcgxZrH-ItHEIEg 产品信息点击立即查看最新药斯卡排行榜
  • MALDI-FTICR-MS评估除草剂在蔬菜中吸收代谢行为
    小白菜活体微毛细管采样和快速分析示意图。研究团队 供图 近日,广东省化学测量与应急检测技术重点实验室科研团队研究建立了一种活体微量毛细管采样(MCS)结合基质辅助激光解吸/电离傅里叶变换离子回旋共振质谱(MALDI-FTICR-MS)分析新技术。相关研究发表于《食品化学》(Food Chemistry)。  百草枯和敌草快均为联吡啶类阳离子季铵盐,具有高水溶性和低挥发性,属于非选择性触杀灭生型除草剂,因其价格低廉,曾在全球范围内作为除草剂被广泛使用。百草枯和敌草快对人和动物具有很强的毒性,易对生态环境造成危害并通过食物链威胁人体健康。  研究发现,小白菜对百草枯和敌草快的吸收能力有显著性差异,相对更容易吸收敌草快,且两者在不同小白菜个体之间也存在显著性的吸收差异。研究人员开发出MCS活体采样和MALDI-FTICR-MS快速分析技术。该技术具有成本低、样本用量少、快速、高通量、高灵敏等特点,全分析流程20分钟内完成。  长时间的暴露实验发现,一组小白菜根系持续暴露在百草枯和敌草快污染(初始浓度均为100 μg/L)的水环境中,该组小白菜根系会持续吸收该两种污染物,当两者在小白菜茎内汁液的浓度分别达到约500 μg/kg时,会使植株枯萎死亡。  进行消除实验时,将吸收有百草枯和敌草快的活体小白菜根系浸泡在空白培养液中培养,小白菜茎内汁液的两种除草剂浓度逐渐降低,而空白培养液中会检出百草枯和敌草快,说明除草剂会被小白菜通过根系以原型的形式排出体外。  依据消除跟踪实验测试结果,计算出百草枯和敌草快的半衰期分别为1.32d和1.86 d。在消除实验的第18天,百草枯和敌草快在活体小白菜体内仍有检出,说明两者均难以通过小白菜自身的正常代谢达到完全清除和降解。  该研究技术可实时监测活体植物体内联吡啶季铵盐类除草剂的浓度,评估其在植物体内的吸收和消除行为,为农业生产中因除草剂使用而带来的人体暴露风险提供了有价值的依据。
  • 科研人的鼻子也是鼻子,如何减少溶剂蒸发工作中的异味?
    Genevac溶剂蒸发工作站Odour Reduction“减少气味”功能Genevac溶剂蒸发工作站的Odour Reduction“减少气味”功能,在工作程序的最后增加了反复的排气和真空循环,清除蒸发室中的残留溶剂蒸汽,防止操作人员暴露在有毒有害异味环境中。可以将蒸发设备放置于开放的工作台上,不必占用通风柜空间。为什么会有气味产生?我们需要了解的首件事是,如果样品是干燥的,并且系统已经收集了冷凝器中的所有蒸汽,为什么还会出现溶剂气味?让我们通过一个典型场景来解释这一点。场景介绍吡啶这种溶剂的气味令人无法忍受,暴露在其中对人体有害。我们在全真空下完成了干燥过程,样品已经被干燥。运行快要结束时,我们尽可能地抽真空。腔室中的空气早就被排除干净,并且因为系统不泄漏,所以系统中存在的唯一气体就是吡啶。在-45℃(冷凝器温度)时,吡啶的蒸汽压约为0.3毫巴,因此系统压力不会低于该数值。当运行结束时,我们给系统通风。我们让999.7mbar的空气进入腔体,因为现在腔体内的总压力是1个大气压,而腔体中的气体是3000份空气1份吡啶的混合物。当门/盖子打开时,这个气体混合物中吡啶含量并不低,会散发浓重的气味。我们还能怎么做?当干燥程序运行结束时,我们可以添加更多的程序阶段,降低吡啶含量。● 首先,我们将系统排气至50毫巴。这用空气稀释吡啶150:1。重要的是,在50mbar下,吡啶的BP仅上升到37℃,并不会在室壁冷凝;● 然后我们继续下一个阶段,该阶段真空下降到1毫巴。此时吡啶的沸点约为-28℃,因此捕集器中的液体将保持液化状态。室中的气氛现在是每150份空气1份吡啶;● 运行结束时,再放入999毫巴的空气,浓度将达到十万分之一;● 如果这还不够好,我们可以再次重复这个循环。真空升到50毫巴(不能再高了,否则可能会冷凝),拉低到1毫巴,然后结束运行并完全排气。当门打开时,这可以将浓度降低到1:7,500,000。其他溶剂呢?对于每种溶剂,为了防止在室内冷凝和冷凝器回流,理想的压力值是不同的。一般情况下,挥发性溶剂的排放压力可高达100mbar,较高BP的溶剂可能需要限制在20mbar。如果您不确定要使用什么设置,请联系Tegent德祥,可拨打咨询热线400-006-9696或留言咨询Genevac溶剂蒸发工作站Genevac溶剂蒸发工作站具有可选的“减少气味”功能只需突出显示所需的方法,选择“减少气味”,然后从可用选项中选择:↑100 mbar用于低沸点溶剂,↑50 mbar或↑20 mbar用于高沸点溶剂。Genevac EZ-24.0溶剂蒸发工作站 英国 Genevac EZ-2 4.0溶剂蒸发工作站专为生命科学、药物化学相关的移除溶剂设计。● 一体式设计,适用高、低沸点等各种溶剂;● 抗盐酸,耐腐蚀;● 适配容器:96孔板至500ml烧瓶;● 防暴沸、避免样品交叉污染和损失。Genevac S3i HT系列溶剂蒸发工作站 英国 Genevac S3i HT系列溶剂蒸发工作站拥有全新触摸屏技术、多层转子设计与高性能系统,充分优化蒸发过程,缩短蒸发耗时。● 通量高,一个批次处理最多5L样品;● 适用沸点≤220℃各类溶剂(比如DCM、DMF、DMSO、NMP、TFA等);● 辅助浓缩方案优化,一键运行。Genevac Rocket蒸发系统 英国 Genevac Rocket蒸发系统可多位处理,自动平行的处理大体积的溶剂蒸发。● 一次能蒸发6×450ml溶剂,最大可处理5L;● 加热速度快,效率高;● 采用Dri-pure技术防爆沸,防止交叉污染;● 能将样品直接定量浓缩到GC小瓶中,蒸发停止后,可以直接将GC瓶取出,样品无需进行二次转移。Genevac英国Genevac是德祥集团资深合作伙伴之一。英国Genevac公司成立于1990年,隶属SP Scientific旗下,一直专注于研究和生产各种离心蒸发浓缩设备,其产品广泛应用于生命科学、制药、化学、分析等领域。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • "高灵敏电化学发光检测方法"获国家专利
    近日,中科院长春应用化学研究所徐国宝等科研人员的一项发明专利“环境友好的高灵敏电化学发光检测方法”获得了国家知识产权局的授权(专利号:200510016848.4)。   联吡啶钌电化学发光标记分析是继放射分析、酶联分析、荧光分析和化学发光分析之后的新一代标记分析技术。它是基于高浓度的三丙胺与低浓度的联吡啶钌标记物发生电化学发光反应来进行生物分析,该技术由于具有灵敏度高、线性范围宽、抗干扰能力强、试剂稳定、重现性好等优点,被广泛应用于临床分析和科学研究。但联吡啶钌/三丙胺体系需要很高浓度的三丙胺才能实现高灵敏检测 且在不同工作电极上发光强度差别较大,铂电极上的发光强度仅约为金电极上的十分之一。因此十几年来人们一直在寻找替代三丙胺的新型共反应物,但一直没有找到发光效率高于三丙胺的共反应物。   该研究小组针对标记分析的特定条件,调研了一系列含有不同链长和基团如羟基、羧基和氨基等的共反应物的发光情况,找到一种高效的新型共反应物二丁基乙醇胺。在浓度为20 mM时,它在金电极和铂电极上的发光强度分别约是目前效率最好的三丙胺的十倍和一百倍。与一般采用外加增敏剂提高发光效率不同,二丁基乙醇胺是通过自身的羟乙基的催化来显著提高发光效率。由于羟乙基是一个吸电子基,因此该研究表明不是所有吸电子基团都是抑制电化学发光的,为寻找更加优良的试剂提供了新途径。二丁基乙醇胺具有优良的分析性能,在浓度只有三丙胺的五分之一时检测联吡啶钌比三丙胺的检测限好一个数量级。该研究对联吡啶钌电化学发光标记分析具有重要意义。
  • 吉林大学材料学院能源化学研究综述:MOFs衍生的过渡金属单原子电催化剂用于高效氧还原反应
    电化学储存与转换系统主要包括金属离子电池、双离子电池、超级电容器、金属-空气电池和燃料电池等。后两种是清洁、安全、可靠的能源装置,具有环境友好、能量密度高、原料来源丰富、工作时间长等优点。氧还原反应(ORR)作为燃料电池的阴极反应,具有缓慢的反应动力学。因此,需要电催化剂来增强反应过程。近年来,过渡金属单原子电催化剂(TM-SACs)因其优异的催化活性(FeCoMnCuNi)、低成本和优异的稳定性而蓬勃发展。由于单原子在制备过程中容易团聚,因此载体材料的选择对于TM-SACs的形成尤为重要。载体也会影响催化反应中的电子输运和物质输运过程。MOFs具有结构可调、改性方法多样等优点,在TM-SACs的制备方面具有很大的潜力。图1. 基于MOFs的TM-SACs的制备策略和表征方法02成果展示金属有机骨架材料(Metal-organic frameworks, MOFs)由于其独特的结构和组成,在燃料电池和金属-空气电池的氧还原反应中得到了广泛的应用。近年来,以MOFs为前驱体或模板制备过渡金属单原子电催化剂(TM-SACs)的研究取得了很大进展。近期,吉林大学材料科学与工程学院郑伟涛团队对MOFs衍生的TM-SACs的制备方法和表征手段进行概述,并在此基础上归纳了TM-SACs的结构与性能的关系 (图1)。该综述旨在阐明大量的最新研究进展,来指导高活性、高负载量、高稳定性的TM-SACs的实现。第一作者为吉林大学材料科学与工程学院硕士生宋可心,通讯作者为张伟教授和郑伟涛教授。03图文导读1.ORR反应机制与优化原则ORR的反应过程如图2所示。由于反应条件的不同,导致酸性和碱性条件下的反应机制存在一定的差异。研究表明,酸性条件下较差的ORR性能主要是由于反应过程中吡啶-N质子化为吡啶-N-H结构,所以可以通过以下方式改善酸性条件下的ORR性能:1)防止质子和吡啶-N在酸性环境中快速结合;2) 增加本征活性和活性位点的数量。然而,在碱性条件下,大多数研究证明吡啶-N在催化过程中起着积极的作用。因此,增加吡啶-N的含量和增加金属活性中心数量是改善碱性条件下ORR性能的重要手段。此外,O2分子在活性位点上的吸附方式主要分为以下三种:Griffiths模式、Pauling模式和Yeager模式。不同的吸附模式也对催化机制产生一定的影响。图2.(a)酸性条件下ORR反应示意图。(b)碱性条件下ORR反应示意图。(c)O2在金属活性位点的三种吸附模式示意图2. 单原子催化剂的表征手段由于SACs的金属的尺寸很小,对表征技术提出了更高的要求。电镜技术和谱学技术的有效结合可以实现SACs的定性和定量分析。球差电镜利用其超高的空间分辨率可以直接观察到单原子的存在。结合EELS和EDS可以准确地确定材料的元素分布,有利于结构分析和物相识别。谱学技术,如(原位)X射线精细结构分析、穆斯堡尔光谱、红外光谱、原位拉曼光谱和原位漫反射红外傅里叶变换光谱(DRIFTS),有助于准确表征SACs并探究催化机理。这些表征技术从不同角度证实了SACs的存在,形成了完整的SACs表征体系。表征技术如图所示:图3.(a)FeSAC@FeSAC-N-C的不同放大倍数的像差校正STEM图像和EDS图像。(b)Co-pyridinic N-C的不同放大倍率的像差校正STEM图像和EELS光谱。(c) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像。(d) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像图4.(a)不同电位下Au L3边和Cu K边的XANES光谱和EXAFS拟合分析.(b)不同电位下的Pt1-N/C的XANES光谱和EXAFS拟合分析3. 基于MOFs制备TM-SACs的五大策略由于MOFs独特的空间结构,是制备TM-SACs的良好前驱体。在这一部分中,详细总结了使用MOFs制备TM-SACs的五种策略,并探讨了TM-SACs的结构特征和性能之间的相关性。所有这些策略都集中于如何保护过渡金属原子在热解过程中不发生团聚。由于MOFs后处理的方式不同,保护机制也存在一些差异。根据保护机制的不同,本部分将其分为以下五种策略:1) 表面限域策略:由于MOFs提供高度分散的金属位点,是制备TM-SACs的理想前驱体或模板。通过使用牺牲金属(SMs)的“空间栅栏”效应,可以调整过渡金属之间的距离,从而有效地避免高温下过渡金属原子的聚集。因为SMs的熔点相对较低,它们在热解过程中挥发。根据过渡金属的掺杂数量,主要可分为以下几类:1)单金属掺杂;2) 双/多金属掺杂。图5.(a)Fe掺杂ZIF-8衍生催化剂的合成过程示意图和不同粒径的Fe掺杂ZIF-8的SEM图像。(b)ZIF-8前驱体中Fe掺杂量对催化剂结构和活性影响示意图。(c)NC吸附铁离子的模型催化剂示意图及反应路径图。(d)通过调节Zn/Co的摩尔比制备Co-SAC/N-C的示意图。(e)负压热解法制备三维石墨烯骨架上的SACs示意图2) 空腔限域策略:利用MOFs独特的空腔结构优势,对金属前驱体进行封装。这种封装效应可以最大程度地减少热解过程中金属前驱体的聚集。对于ZIF结构,ZIF-8是一个具有菱形十二面体结构的三维空间纳米笼,由锌离子和二甲基咪唑配体组装而成。其具有孔径为3.4Å、空腔直径为11Å的空腔结构,金属前驱体可封装在里面来实现金属前驱体的空间隔离。高温碳化后,ZIF-8变成氮掺杂碳骨架,为金属位点的负载提供了载体。常见的金属前驱体可分为以下几类:1)金属无机化合物,如金属盐和金属氢氧化物;2) 金属有机化合物,如乙酰丙酮化合物和二茂铁;3) 金属大环化合物,如酞菁、卟啉和菲咯啉。图6.(a)Mn-SAS/CN催化剂的制备示意图和原位XANES光谱。(b)基于Kirkendall效应制备的(Fe,Co)/N-C催化剂示意图。(c)基于ZIF-8前驱体制备C-Cu(OH)2@ZIF-8-10%-1000的原理图。(d)Fe-ISA/CN催化剂制备示意图。(e)微孔限制和配体交换法制备Co(mIm)-NC催化剂示意图3) 外层保护策略:对MOFs的外层采取一些保护措施,以避免在热解过程中结构坍塌和金属原子的聚集。未热解MOFs表面的金属离子呈现高度分散的单原子态。但是在热解后由于单个原子的高比表面能,会发生团聚,这大大降低了金属活性位点的利用效率。此外,高温热解后,MOFs的孔结构坍塌,不利于催化剂传质过程和更多活性位点的暴露。因此,应采取措施对MOFs的外层进行保护,以促进高密度TM-SACs的形成,并保持热解后结构的稳定性。常用的保护策略主要分为以下两类:1)有机化合物(如表面活性剂、酶和聚合物)的保护策略;2) 主客体策略。图7. (a)原位约束热解法制备核壳结构的Co-N-C@surfactants催化剂示意图。CoN2+2活性位点构型和反应自由能演化图。(b)酚醛树脂辅助策略制备核壳结构1.0-ZIF-67@AF催化剂示意图。(c) CoNi-SAs/NC催化剂制备示意图。(d)配体交换策略制备C-AFC© ZIF-8催化剂示意图。(e) Fe-SAs/NPS-HC催化剂制备示意图4)相扩散策略:湿化学合成法通常用于制备以MOFs为前驱体的TM-SACs,即金属前驱体的合成在溶剂中完成。此外,由于单原子与其载体之间的弱相互作用,单原子在随后的制备和催化反应过程中不可避免地会团聚。如果使用MOFs衍生的碳载体作为前驱体,金属原子在高温下的扩散特性将被捕获并在碳载体上还原。这种强烈的相互作用可以提高催化剂的高温稳定性,也为TM-SACs的制备提供了一条新的途径。相扩散策略主要分为以下两种方法:1)球磨法(固相扩散法);2) 气相扩散法。图8.(a)固相合成法制备Fe掺杂ZIF-8的原理图。(b) M15-FeNC-NH3催化剂制备示意图。(c) Fe-N/C催化剂制备的示意图及ORR性能曲线。(d)气相扩散法制备Cu-SAs /N-C催化剂示意图。(e)金属氧化物热扩散法制备Cu ISA/NC催化剂原理图和Cu-N3-C、Cu-N3-V自由能演化图5)双模板策略:模板策略可以通过模板本身的空间约束效应来控制合成材料的形态、结构和几何尺寸。MOFs是合成TM-SACs的最佳前驱体或模板。外来模板的引入可以对MOFs的形态和尺寸进行一定的限制。三维骨架上的金属原子可以得到很好的保护,有效地避免了热解过程中单个原子的团聚。根据热解后是否需要额外繁琐的步骤去除外来模板,这种双模板策略主要分为以下两类:1)一步模板法:PS和盐模板法;2) 多步骤模板法:介孔SiO2、SiOX和有序介孔硅。图 9.(a)利用KCl模板制备了SCoNC催化剂的制备图和不同放大率的HAADF-STEM图像。(b)PS模板法制备具有分级多孔结构的FeN4/HOPC催化剂的制备示意图。(c)PS模板法制备Fe/Ni-NX-OC催化剂示意图04小结MOFs材料的优异特性为高负载量、高稳定性、高催化活性的单原子催化剂的制备提供了丰富的平台。目前还有许多需要解决的问题,主要包括以下几个方面:1)充分发挥MOF材料的结构多样性的优势,探索一些新的策略来制备TM-SACs。目前主要以ZIF结构为主来制备TM-SACs,可以充分挖掘其他结构的MOF材料来进行制备。2)TM-SACs的单原子活性位点通常以TM-N4为主,这种配位结构被认为具有良好的ORR活性。对活性中心的配位结构进行调整,可以使得它们的活性得到进一步提高。目前已有的调整方式主要包括构建双原子活性中心、引入非金属(S,P,B)、纳米粒子与单原子协同催化、构建客体基团等。3)提高过渡金属单原子的负载量。催化剂的活性与催化位点数目和本征活性息息相关。对于TM-SACs,在合成过程中最大程度地避免单原子的聚集,提高过渡金属的利用效率,将MOF前驱体中的金属位点最大程度地转变为TM-NX结构。 4)实现TM-SACs的大规模制备和通用策略制备。金属浓度过高会导致单原子催化剂在制备过程中极易发生团聚, 并且由于不同种类的金属的配位环境和物理化学性质不同,难以实现制备策略的通用化。因此,开发一种新的策略去实现TM-SACs的大规模制备和通用化制备显得尤为重要。5)利用先进的表征手段和原位技术,在原子水平上对催化剂的结构进行剖析,从而探究结构与性能的关系。这些技术为MOF材料为目标明确的TM-SACs的设计提供了指导。6)结合理论计算去探究TM-SACs的氧还原反应动力学和最佳反应路径,确定催化剂的真实活性位点和反应过程的决速步。这为催化剂的结构设计提供了理论支撑,从而更好地提高TM-SACs的性能。
  • 【实验人员都要看】3.15晚会曝光违禁添加药物如何检测
    昨晚的央视315晚会各位都看了吗?晚会曝光,有的养殖户、厂家,为了一己之私,竟然偷偷给獭兔等动物喂食各种不该喂食的喹乙醇、氯羟吡啶等违禁药物,是不是觉得又不能愉快的吃肉肉了,本宝宝表示不开心。那么,问题来了,喹乙醇、氯羟吡啶到底是什么?有什么危害?我们如何检测饲料中是否添加的喹乙醇呢?晚会还澄清谣言:饮料颜色变浅不是因为色素超标,竟是检测方法不对,那正确的检测方法又是什么呢?不要着急,听小编来为你一一解读。喹乙醇喹乙醇(olaquindox)又称喹酰胺醇,违规喂食喹乙醇会导致其蓄积在动物体内,诱变细胞染色体畸形,此外还会造成耐药性,给人类身体健康带来潜在危害。参考标准:《农业部2086号公告-5-2014 饲料中卡巴氧、乙酰甲喹、喹烯酮和喹乙醇的测定 液相色谱-串联质谱法》、《gb/t 8381.7-2009 饲料中喹乙醇的测定 高效液相色谱法》前处理耗材:博纳艾杰尔 cleanert pep 固相萃取柱150 mg/6 ml前处理仪器:博纳艾杰尔 qdaura 卓睿全自动固相萃取仪spe-40氯羟吡啶氯羟吡啶(clopidol),其商品名为克球粉,具有广泛的抗球虫作用。但是,长期或过量的用药会造成氯羟吡啶在动物体内和组织中的残留和在食物链中的蓄积,对环境及公众健康构成严重的潜在危害。前处理耗材:cleanert alumina-n固相萃取柱:500 mg/6 ml净化方法:先将小柱用10 ml乙腈活化,取备用液过柱,控制流速为1 ml/ min,收集上样流出液;用10 ml乙腈分两次冲洗放置备用液的离心管,再以相同流速洗脱小柱,并收集洗脱液;将所有流出液与洗脱液于50℃氮气吹至近干;最后用1 ml 10%甲醇水溶液溶解残留物,然后涡旋振荡2 min,再超声2 min,过0.22 μm滤膜,待测。合成着色剂检测合成着色剂又称合成色素,广泛用于各种食品中用于改善商品外观,增加商品的市场竞争力,只要添加计量在国家规定范围里就是安全的,可以放心食用的。博纳艾杰尔开发的检测方法中使用cleanert pwax固相萃取柱(150 mg/6 ml)进行样品净化,可同时检测9种合成着色剂,净化效果好,样品回收率高。样品净化方法活化:6ml甲醇,6ml水上样:提取液全上样;淋洗:6ml水(ph值约4)6ml甲醇;洗脱:6ml 2%氨化甲醇;希望以上信息能帮助到您!欲获得完整应用方法可与博纳艾杰尔科技当地销售员联系或来电咨询:400-606-8099(全国统一客服热线)
  • 我国科学家设计新探针可实现对蛋白质N-端组学深度富集检测
    2月29日,中国科学院上海药物研究所研究员黄河、柳红合作,研究设计合成了一种含有吡啶甲醛片段的可断裂分子探针2PCA-Probe,可实现对蛋白质N-端的深度富集检测。相关研究发表于《美国化学会志》。蛋白质水解是一种广泛存在的翻译后修饰方式,在多种生物过程中发挥重要作用。在正常组织中,大多数蛋白酶的活性受到严格调控,而在肿瘤组织中则往往被异常激活,并通过介导免疫逃逸、肿瘤细胞侵袭等多个途径促进肿瘤的发生发展。通过对蛋白质N-端进行系统检测可获得蛋白水解断裂信息,但现有的N-端组学检测方法存在操作复杂、检测深度不高等缺陷,限制了蛋白水解相关研究的进展。研究团队发现,吡啶甲醛片段与N-端氨基酸可以选择性发生环化反应形成咪唑烷酮结构,还可发生羟醛缩合反应,并由此发现该类标记方法生成的新诊断片段。通过该诊断片段信息,可以规避以往此类探针标记时遇到的限制,即无法标记2位氨基酸为脯氨酸的多肽。利用该方法,研究团队对三对结直肠癌组织和癌旁组织的N-端组进行了深度富集检测,共鉴定到了4686种N端多肽。进一步分析显示,肿瘤组织中的蛋白水解过程较癌旁组织更活跃,且肿瘤组织中发生水解的蛋白主要富集在代谢通路和免疫通路,这可能与肿瘤组织的代谢重编程和免疫逃逸过程相关。该研究建立了一种全新的N-端组深度检测方法,为疾病发病机制中的蛋白质水解过程研究提供了有力的新工具。2PCA-Probe探针结构及标记检测流程 图片来源于《美国化学会志》
  • 关注染发剂成分标签标识,检测技术来确认
    染发是化妆常见的手段之一,不单是满足白发染黑的需求,以此解决白发带来的烦恼。染发也是美妆的一种方式,现代人追求时尚,随心情改变头发的颜色,配合服饰和妆容,彰显个性等。因而催生了五颜六色的染发剂的上市。 染发剂普遍含有对苯二胺类物质,对苯二胺类是染发剂中必须用到的一种着色剂;这类化合物是《化妆品安全技术规范(2015年版)》中规定准用组分,但是要求添加的组分要在化妆品成品上标识出来。如果产品中检测组分与标识组分不符合,相关部门会监管处罚。 2021年11月10日国家药监局发布了33批次不合格化妆品的通告,涉及多个批次染发膏,出现的问题是“标签标识”,一种是检出标签未标识的染发剂,如间氨基苯酚等。另一种是未检出标签标识的染发剂,如4-氨基-2-羟基甲苯等。 图片截自国家药监局网站 2021年3月2日,国家药监局发布通告(2021年 第17号),公布了新修订的《化妆品中对苯二胺等32种组分检验方法》,并将检测方法纳入化妆品安全技术规范(2015年版)。在修订后的方法增加了LC-MS/MS的确证方法,以解决目前面临的复杂样品缺少很有效的确证方法的问题。岛津参与了标准的修订工作。 三重四极杆串联液质联用仪LCMS-8045● 优异的速度,超高的灵敏度● 卓越的稳定性,值得信赖的准确性● 功能丰富的软件,丰富的化妆品分析方法包 岛津应用工程师建立了岛津三重四极杆液质联用仪LCMS-8045测定化妆品中对苯二胺等32种染发剂的分析方法,供广大化妆品检测客户参考。下图是32种染发剂的MRM色谱图。 32种染发剂标准溶液MRM色谱图(0.02 mg/L,上图是ESI+,下图是ESI-) 32种染发剂MRM色谱图峰表测试某品牌染发剂,检测出3种化合物,其中间氨基苯酚和2-氨基-3-羟基吡啶是标签上标识出添加的化合物,2-氨基-3-羟基吡啶是未标识出的,但是检出浓度为1.64 μg/g,小于标准规定的检出限(32 μg/g)。因此,检测的成分与产品标识基本吻合。 经过验证,LC-MS/MS作为32种染发组分定性确证方法,满足标准检测需要,可为化妆品标签标识确认和质量风险监测等相关从业人员参考使用。 欲知仪器或检测方法详情,请不吝与岛津工作人员联系! 本文内容非商业广告,仅供专业人士参考。
  • 文献解读丨可见光促进Katritzky盐通过脱氨烷基化反应合成β ,γ -不饱和酯类
    本文由中国科学院大学协同创新实验室所作,文章发表于Oganic Letters (Org. Lett.2021, 23, 5, 1577–1581)。 可见光促进的脱氨烷基化反应已经成为一个化学合成的重要研究方向,从廉价易得的原料出发合成羰基化合物是现代合成科学的重要目标,而β,γ-不饱和羰基化合物因其独特的活性特征,日益成为有价值的合成砌块。传统方法合成β,γ-不饱和羰基多建立在过渡金属催化的交叉偶联反应,如钯、镍或铜催化下的烯醇和烯基卤代物、烯基磺酸化合物等反应(图1A)。近年来,可见光促进的脱氨烷基化反应已经成为多样化烯烃制备的重要手段(图1B), 而利用弱相互作用EDA形成的策略,该课题组发现仅仅通过碱金属盐(例如,NaI, NaOAc, K2CO3等)便可以与N-羟基邻苯二甲酰亚胺酯(NHPI esters)以及系列吡啶盐等形成EDA复合物(图1C)。据此,作者推测仅仅通过碘化钠和Katritzky盐就可以直接形成EDA复合物,产生的烷基自由基与双键偶联,再生成相应的产物(图1D)。通过可见光促进EDA复合物引发的Katritzky盐与烯烃的脱氨基烷基化反应,成功实现了β,γ-不饱和酯类化合物的构建,该方法原料简单、条件温和,无需过渡金属催化和额外的添加剂,具有通用性。图1 首先进行反应条件的优化,分别以1a和2a为原料,在45℃的LED光照条件,DMA为溶剂,加入NaI(20% mol%)反应过夜后得到的偶联产物3a,获得了最优收率95%(图3)。由于这种弱相互作用形成的复合物是很难直接分离表征的,UV-vis光谱表征技术的发展为我们研究这种弱相互作用的形成提供了有利的检测手段。利用岛津UV-2550对反应中的各底物之间,底物与催化剂之间以及底物自身的紫外可见光谱进行表征测试,明确了碘化钠和Katritzky盐直接形成EDA复合物的猜想,为实验的机理研究提供了有力的证据(图2)。进一步对1a和NaI的EDA复合物进行了DFT计算,发现其溶剂化的络合自由能为9.6 kcal/mol。 除此之外,在实验条件优化过程中,作者还使用了GC-2010 plus,GCMS-TQ8040用于制作反应产率的标准曲线。对反应产物不易分离或者分离后难以提纯而又对产率有严格要求的反应体系,利用绘制的标准曲线,不仅能够得到准确快速的每次优化条件的产率值,而且大大减轻实验操作者工作量,能够提高实验效率,减少实验耗材的使用(图3)。 图2图3 随后,作者对于底物的适用性进行了扩展,对于系列苯丙氨酸衍生的含吸电子基或者供电子基的吡啶盐(3a-g)均可以顺利反应。此外,该方法可耐受多种官能团(3h-n)(图4)。同时,二苯乙烯上取代基的影响(3o-s)也被一并考虑,亦具有较好的结果;苯乙烯(3t)的反应也得到了相应的β,γ-不饱和产物,尽管产率有所降低,其具有很好的E/Z比率,取代的苯乙烯(3u-x)也得到相应的产物,但是E/Z比率出现降低。该方法也适用于肉桂酸(3t)为原料和吡啶盐的反应,各种取代肉桂酸(3y-b’)也容易发生反应,可以得到高E/Z比例的β,γ-不饱和酯(图5)。 图4图5 同时,对于反应机理,作者进行了详细的DFT计算并进行了阐释(图6)。 图6 本研究开发了一种更为简单的合成β,γ-不饱和羰基化合物的方法,只需要NaI和Katritzky盐即可实现。DFT计算研究表明二者间的弱相互作用力加速催化EDA的产生,并揭示了自由基反应的机理。该反应从廉价易得的原料出发,不使用过渡金属催化剂和任何添加剂,操作性强,通用性良好。 关联仪器 文献题目《Photoinduced α‑Alkenylation of Katritzky Salts: Synthesis of β,γ-Unsaturated Esters》 使用仪器岛津UV、GC、GCMS 作者Chao-Shen Zhang,† Lei Bao,† Kun-Quan Chen, Zhi-Xiang Wang,* and Xiang-Yu Chen*Corresponding Authors:Zhi-Xiang Wang − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Xiang-Yu Chen − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Authors:Chao-Shen Zhang − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaLei Bao − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaKun-Quan Chen − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China †C.-S.Z. and L.B. contributed equally. 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3. 文中涉及最优,最佳类描述,限于实验组别对比结果。4. 本文内容非商业广告,仅供专业人士参考。
  • 中关村材料试验技术联盟发布《船舶防污漆中禁用防污剂含量的测定 第2部分:气质联用法》等3项标准征求意见稿
    各位专家、委员及相关单位:中国材料与试验标准化委员会决定对《船舶防污漆中禁用防污剂含量的测定 第2部分:气质联用法》《生物基粉末涂料》《涂料中多种禁限用生物杀伤剂的测定 第1部分:吡啶硫酮锌》团体标准征求意见稿公开广泛征求意见。请登录CSTM官网http://www.cstm.com.cn/channel/details/biaozhunzhengqiuyijian查看征求意见通知并下载相关资料附件。CSTM团体标准《船舶防污漆中禁用防污剂含量的测定 第2部分:气质联用法》征求意见的资料.rarCSTM团体标准《生物基粉末涂料》征求意见的资料.rarCSTM团体标准《涂料中多种禁限用生物杀伤剂的测定 第1部分:吡啶硫酮锌》征求意见的资料.rar
  • 日本修订食品添加剂法规
    据日本厚生省消息,8月6日日本厚生劳动省将3-乙基吡啶和嘧霉胺增补至食品添加剂法规:指定添加物列表及使用标准(包含最大使用量),至此指定添加物列表共计食品添加剂436种。   日本食品添加剂列表与使用标准见:   http://www.ffcr.or.jp/zaidan/FFCRHOME.nsf/7bd44c20b0dc562649256502001b65e9/5c2f5445d31454e54925690b0006ccdb/$FILE/13.8.6E.pdf   http://www.ffcr.or.jp/zaidan/FFCRHOME.nsf/7bd44c20b0dc562649256502001b65e9/8a4352b95978b195492569990007fbaa/$FILE/Standards%20for%20Use%2013Aug.06.pdf
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制