当前位置: 仪器信息网 > 行业主题 > >

苄基咔唑

仪器信息网苄基咔唑专题为您提供2024年最新苄基咔唑价格报价、厂家品牌的相关信息, 包括苄基咔唑参数、型号等,不管是国产,还是进口品牌的苄基咔唑您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄基咔唑相关的耗材配件、试剂标物,还有苄基咔唑相关的最新资讯、资料,以及苄基咔唑相关的解决方案。

苄基咔唑相关的资讯

  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style=" text-align: center "   img src=" https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title=" 00.jpg" alt=" 00.jpg" style=" text-align: center " / /p p style=" text-align: center " 研究人员在观察胚胎培养情况。中科院神经科学研究所供图 br/ /p p   “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。 /p p   据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。 /p p   然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。 /p p   近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。 /p p   strong  难题: /strong /p p strong   如何有效检测基因编辑工具的安全性 /strong /p p   CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。 /p p   中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。 /p p   “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。 /p p   由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。 /p p   然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。 /p p    strong 突破: /strong /p p strong   GOTI技术精准捕捉“脱靶”逃兵 /strong /p p   要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。 /p p   为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。 /p p   同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。 /p p   随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。 /p p   实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。 /p p   杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。 /p p    strong 未来: /strong /p p strong   完善基因编辑治疗手段、建立行业标准 /strong /p p   杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。 /p p   中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。 /p p   “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。 /p p   中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。 /p p   针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。” /p
  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。   由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • 十年携手,共铸辉煌 行业大咖共讨环境发展新篇章
    2021年是我国“十四五”开局之年,又恰逢“国家环境分析测试中心-岛津企业管理(中国)有限公司环境研究合作实验室”成立十周年。在此之际,岛津携手国家环境分析测试中心,共同举办第七届环境研究合作实验室论坛。本次论坛共有150余人出席、参与。 现场实况 双方庆祝合作实验室成立十周年 国家环境分析测试中心POPs研究室主任董亮主持 国家环境分析测试中心主任黄业茹 岛津企业管理(中国)有限公司分析计测事业部市场部部长胡家祥 黄业茹主任和胡家祥部长共同回顾了双方首次从1996年联合国大学“东亚水环境监测与管理”项目接触开始,有了初步的了解与合作。2011年双方成立合作实验室,到2021年已经十个年头。合作实验室成立十年以来,国家环境分析测试中心使用岛津的质谱型号,从最早期的GCMS-QP5000,到后来的GCMS-QP2010系列,再到GCMS-QP2020系列,一直到现在的GCMS-TQ8050,LCMS-8040等串接质谱,发表了论文30多篇,环境标准6项。未来“十四五”双方还会在重点流域新污染物试点监测、国家履约监测、国家地下水环境质量考核监测质控、典型行业企业及周边土壤污染状况监测质控等方面开展更加深入的合作。中国科学院生态环境研究中心 杨敏研究员报告题目:建设美丽中国,我们还需要做什么? 杨敏介绍到,美丽中国建设是国家战略,要加快生态文明体制改革,要实现天蓝、地绿、水清、人和四大目标。目前,我国已建成全球最密集的水质监测网络,污水处理能力突飞猛进,黑臭水体治理等成效显著,城镇饮用水安全保障水平持续提升。杨敏表示,总体而言,我国的水处理能力持续提升,城市税生态环境改善显著,重点流域水质总体向好。但美丽中国建设任重而道远,在饮用水安全方面,重金属、高氯酸盐、全氟化合物、未知雌激素、臭味、工农业污水等仍是水源污染的主要因素和来源。未来,我国需以“三水”为指导思路,针对工业污水、农村农业污水等薄弱环节进行管控与加强,为实现美丽中国而努力。 中国环境科学研究院 马瑾研究员报告题目:荷兰土壤环境基准与标准理论方法及其对我国的启示 马瑾表示,荷兰土壤环境法起源于上世纪70年代,历经多次迭代,已经成为全球借鉴的榜样。由于我国土壤污染问题日益严重,借鉴荷兰等相关法规对我国土壤污染防治法实现从基准到标准有重要意义。通过多年对荷兰土壤环境基准的研究,马瑾介绍了以下启示:1. 基于标准的标准;2. 土壤类型校正;2. 实现创新;3. 参数决定结果;4. 更新和创新;5. 是否修复土壤;6. 建立土壤质量地图;7. 立法与执法等。 岛津企业管理(中国)有限公司事业战略室室长 端裕树报告题目:高分离耦合质谱技术在环境分析领域的应用 随着斯德哥尔摩公约的建立,人们逐渐重视POPs类物质对环境的危害,尤其是短链氯化石蜡(SCCPs)对高持久性,高生物富集潜力以及高毒性,对环境带来长期负面影响。由于短链氯化石蜡中氯原子的位置、取代等因素,难以使用常规方法对其检测。为此,岛津使用全二维气质联用技术(GC×GC-MS/MS)实现了SCCPs的多种同分异构体的分离与定量,得到了有效的分析方法。此外,针对POPs类物质,岛津也开发了多维LC-MS/MS通用分析方法,帮助实验室降低采购仪器成本,同时又能实现准确分析。 国家环境分析测试中心研究室副主任 杜兵报告题目:服务新污染物调查监测的非靶向筛查 杜兵表示,在“十四五”开局之年,生态环境部下达了要更加重视新污染物,如内分泌干扰物、POPs、抗生素、VOCs等治理的要求,要求2025年建立健全化学物质环境风险管理法规制度体系,2035年建成较为完善的新污染物环境风险评估和治理体系,并为此配套了相关的政策和资金。为此,国家环境分析测试中心通过高通量识别方法建立了新污染物非靶向筛查技术,对可能存在的化合物清单以及未知化合物的筛查提供了新方法。未来,团队将在方法标准化、数据库开源、合作共享等方面实现突破,力争实现完善的新污染物环境风险评估和治理体系。岛津企业管理(中国)有限公司分析计测事业部市场部 潘晨松报告题目:高分辨液质联用在新兴环境有机污染物非靶标分析及泛靶向筛查研究中的应用和特色 潘晨松表示,非靶向分析已经成为新兴环境污染物研究的技术热点,尤其是基于高分辨质谱的分析成为人们分析新污染物的利器。由于单一分析仪器已经无法提供最准确的分析结果,因此需要多种仪器的组合才能获得上述最理想结果。岛津作为多种分析仪器生产商,可以为用户提供包括GC-MS/MS、LC-MS/MS、ICP-MS、自动在线固相萃取、超临界流体自动提取在内的组合产品,帮助用户进行最前沿的科学探索。例如可以帮助用户实现水中抗生素的泛靶向筛查、水中多氟/全氟烷基酸类的泛靶向筛查和非靶向分析、食品中多农残检测等。 国家环境分析测试中心 周志广报告题目:典型地区土壤中卤代咔唑的分布特征研究 周志广表示,咔唑、卤代咔唑广泛用于光电材料、染料、医药等领域,其具有持久性、生物累积性、类二噁英毒性等特点,了解、识别这类化合物的环境风险对人类健康具有重要意义。为此,团队利用GC-MS/MS技术,建立了土壤中卤代咔唑的分析方法,并对我国土壤中卤代咔唑的分布进行了研究。 国家环境分析测试中心 杜祯宇报告题目:环境空气消耗臭氧层物质及氢氟碳化物检测技术研究 杜祯宇表示,为了保护地球臭氧层不被破坏殆尽,人们于1985年在维也纳签署《保护臭氧层维也纳公约》,并在此后的35年里不断制定新的公约。为了实现对消耗臭氧层物质及氢氟碳化物检测,团队开发了全新采样技术,和分离技术;在低温下,通过温度程序控制,配合岛津的GCMS-QP2020进行分析,实现了在中等吸附力辅助下的高精度、高灵敏度检测。 国家环境分析测试中心 刘金林报告题目:新型全氟化合物替代品在电镀行业的环境行为研究 刘金林表示,全氟化合物在电镀行业中起到至关重要的作用,尤其是作为铬酸雾的抑制剂,在环境保护以及健康防护中起到了重要作用。然而,由于全氟化合物(如PFOS)的持久性和生物富集性等问题,造成了新的危害。团队利用岛津XPS技术对全氟化合物替代品进行研究,发现PFOS的替代品6:2 Cl-PFAES具有更强的疏水性,同时相比PFOS更易在人体中聚集,因此在其替代PFOS后需更加注意6:2 Cl-PFAES的释放。 国家环境分析测试中心 朱超飞报告题目:土壤和沉积物中六溴环十二烷和四溴双酚A的高效液相色谱串联质谱分析 朱超飞表示,六溴环十二烷和四溴双酚A是常见的溴代阻燃剂。其具有高持久性和高生物富集性,对人体大脑、骨骼等发育有严重阻碍作用。针对这两类物质,团队采用样品富集和前处理方法,使用岛津的LCMS-8040,建立了基于LC-MS/MS的水质和土壤的同位素稀释法,预计这两项标准在2022年正式发布。岛津企业管理(中国)有限公司分析计测事业部市场部 石欲容报告题目:岛津无机质谱及联用技术在环境中的典型应用 石欲容表示,无机质谱仪是以电感耦合高温等离子体使元素离子化,主要用于无机元素的痕量、超痕量分析。岛津自1986年推出ICP-MS以来,经过三十多年发展,已经拥有丰富的技术积累。通过介绍ICP-MS在单纳米颗粒、单细胞分析领域的应用,证明岛津的ICP-MS已经可以满足最前沿科学探索的需求。此外,岛津特有的SPE-LC-ICP-MS系统可以在线富集、分离和测定汞形态,为用户带来全新的汞形态分析解决方案。 至此,第七届环境研究合作实验室论坛圆满落下帷幕。
  • 岛津成像质谱显微镜应用专题丨黄皮代谢物研究
    黄皮不同部位中代谢物分子空间分布的质谱成像分析 黄皮(Cluasena lansium(Lour.)Skeels)属于芸香科(Rutaceae)黄皮属(Clausena)中的一种特殊果树,分布在中国南方地区。黄皮以其果实闻名于世,是非常受欢迎的热带保健水果,其根、茎、叶和种子也被广泛应用于民间医药或中药中。 以往对该植物的化学研究主要集中在寻找具有药用价值的生物活性成分,到目前为止,已经分离和鉴定一系列天然产物,这些物质具有明显的抗肿瘤、抗炎、抗氧化及降血糖等作用,主要包括咔唑类生物喊、香豆素类化合物、酰胺类生物碱、萜类和黄酮等。其中咔唑类生物碱和单萜基香豆素为其特征性成分。有关黄皮中活性成分的分离和测定方法已得到广泛报道,然而,人们对黄皮特征代谢物在组织内的分布却知之甚少。对黄皮果中的化学成分进行研究,探究其中具有药用价值的生物活性成分空间分布信息,有助于理解植物代谢物合成的调控机制和功能基础,对黄皮保健食品的开发具有重要意义。 质谱成像技术是近年来受到关注的一种新型的分子成像技术。基于高灵敏、高分辨、高通量特性的质谱结合先进的显微成像技术,样品制备过程不需要组织粉碎,无需标记即可实现多种物质在组织中的原位分布,为多种代谢物的研究提供了更多的信息维度。 本研究通过优化样品前处理方法,采用基质辅助激光解吸/电离质谱成像技术(MALDI-MSI)对黄皮(Clausena lansium, Lour)的组织分布特征进行研究,为更好地开发、利用黄皮这一药食两用的水果资源提供理论基础。本研究是首次利用质谱成像技术实现对黄皮小分子代谢物的系统研究(见图1)。 图1 利用质谱成像技术可视化黄皮不同组织中内源性分子分布 1. iMScope TRIO 成像质谱显微镜测试条件将不同部位的组织块包埋在2%羧甲基纤维素(CMC)中进行冷冻切片,切片厚度为 25μm,将所得组织切片放置在 ITO 导电载玻片上(100 Ω/m2,日本大阪松浪玻璃),将载玻片在真空干燥箱中干燥20分钟。使用带有0.22 mm喷嘴的喷枪(PS-270,GSI Creos,日本东京)和基质升华设备iMLayer(Shimadzu,Kyoto,日本)进行基质涂敷。在喷枪法中,使用1mL 40mg/mL DHB溶液(0.1%TFA,70%甲醇水配置)作为基质,喷枪与载玻片保持250px的距离, 每喷雾10s后干燥5s,循环喷雾-干燥过程,直到将1 mL DHB溶液喷涂于切片并干燥完全。对于升华法,使用iMLayer设备将基质升华于组织切片表面,厚度为0.7μm DHB。所有数据都是在装有MALDI离子源的iMScope TRIO(Shimadzu,Kyoto,日本)上采集,质谱条件如下:正离子模式采集, 采集质量范围 m/z 100-1000, 激光强度50。 2. 基于 iMScope TRIO 成像质谱显微镜的组织成像研究采集黄皮植物不同部位作为研究样品,分别对应果实、小茎、叶片。采用iMScope TRIO 成像质谱显微镜对三个不同部位的横切面进行了生物碱、香豆素、糖及小分子酸等内源性分子的空间分布分析。 如图2所示,3-甲基咔唑和Murrastinin在果实全果均有分布,尤其在果核含量特别丰富。在黄皮小茎中,这两个物质主要存在于木质部和髓质部,表皮含量较低。此外,在叶片的上下表皮含量丰富。Murrayanine和heptaphylline这两种咔唑碱仅分布于果肉组织中,茎中含有少量,果皮、果核和叶片中几乎不存在。而Girinimbine只存在于黄皮果核外皮以及茎的外表皮。黄皮属植物咔唑类化合物通过直接细胞毒性、诱导肿瘤细胞凋亡和/或免疫增强作用抑制肿瘤生长,他们的抗癌潜力引起了越来越多研究的兴趣。通过定位该类物质的组织分布,可以有效提高活性成分的提取效率。图2 不同生物碱在黄皮果实、茎、叶片中空间分布的质谱成像图 此外,如图3所示,香豆素类化合物在黄皮中的分布是相似的,主要存在于果皮中。有报道称,香豆素类化合物的抗氧化、抗癌及抗炎症方面发挥重要作用。糖类广泛存在于植物中,是植物快速储能物质。 图3 不同香豆素在黄皮果实、茎、叶片中的空间分布的质谱成像图 如图4所示,己糖(葡萄糖和果糖)主要分布在黄皮果实的果肉当中,蔗糖分布在果皮、果肉以及果肉中纤维上。水果中产生的蔗糖由蔗糖转化酶水解成葡萄糖和果糖,黄皮切片中蔗糖的检测强度约为己糖的4.7±1.4倍,说明黄皮中糖类主要以蔗糖的形式存在。据文献报道,葡萄糖和果糖的甜度分别是蔗糖的0.75倍和1.7倍。因此,这很好地解释为什么黄皮果品尝比其他水果酸。图4 糖、有机酸及其他小分子在黄皮果实中空间分布的质谱成像图 本研究结果有助于更好的了解黄皮内源性生物活性物质在不同组织部位的分布,为黄皮成分识别、质量评价、高值化利用等提供参考。 本文相关内容由广东省农业科学院农业质量标准与监测技术研究所唐雪妹博士提供,详细研究内容已正式发表于Phytochemistry, 2021, 192:112930. 文献题目《Visualizing the spatial distribution of metabolites in Clausena lansium (Lour.) skeels using matrix-assisted laser desorption/ionization mass spectrometry imaging》 使用仪器岛津iMScope TRIO 作者Xuemei Tang a,b, Meiyan Zhao a, Zhiting Chen a, Jianxiang Huang a,b, Yan Chen a,Fuhua Wang a,b, Kai Wan a,b,* a Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Chinab Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China* Corresponding author. Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. 声 明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。
  • 基因编辑巨头Horizon Discovery与罗格斯大学合作开发碱基编辑技术
    p style=" text-indent: 2em text-align: justify " Horizon Discovery Group 基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。 /p p style=" text-indent: 2em text-align: justify " 获悉,2019年1月28日, Horizon Discovery Group plc(LSE:HZD),基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。该技术将应用于新细胞疗法的开发,同时也将丰富Horizon集团的现有技术,帮助拓展其服务范围。 /p p style=" text-indent: 2em text-align: justify " 本次合作将进一步开发Rutgers Robert Wood Johnson医学院药理学副教授Shengkan Jin博士实验室的新型碱基编辑平台。作为协议的一部分,Horizon已向Rutgers提供了独家许可的碱基编辑技术,以用于所有治疗应用。此外,该集团还将在罗格斯大学进行基础编辑的进一步研究,并在集团内部继续进行评估和概念证明研究。& nbsp /p p style=" text-indent: 2em text-align: justify " 碱基编辑是一种新颖的技术平台,用于在细胞中设计DNA或基因,并通过使用酶修饰基因,纠正DNA中的错误或突变。与目前可用的基因编辑方法(例如CRISPR / Cas9)相比,这种新技术可以更准确地进行基因编辑,同时减少意外的基因组变化,避免在基因中产生可能导致负面影响的“切割”。 /p p style=" text-indent: 2em text-align: justify " 该技术将对通过临床开发和商业化促进细胞疗法的发展产生重大影响。Horizon集团首席执行官Terry Pizzie说:“碱基编辑对于基因编辑技术领域来说就像一场潜在的革新,极有可能实现靶向治疗众多迄今无法医治的疾病的目标。此次Horizon集团与Jin博士和罗格斯大学的合作将帮助我们在研究与应用市场扩展科学和知识产权能力。作为我们五年投资战略的一部分,Horizon将致力于投资保持市场领导地位的高价值技术,碱基编辑技术就是一个很好的例子。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学的Shengkan Jin博士表示:“单独使用该技术的胞苷脱氨酶可用于开发离体疗法,如用于镰状细胞贫血和β地中海贫血的基因修饰细胞、用于艾滋病的HIV抗性细胞,用于白血病的现成CAR-T细胞以及遗传性疾病的治疗,可谓潜力巨大。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学研究与经济发展部的临时高级副总裁David Kimball博士认为:“基因编辑技术真正彻底改变了科学家们思考如何在疾病治疗方面寻求更好结果的方法。我们期待通过与Horizon合作,发展这一新型碱基编辑平台以改善人类健康。” /p p style=" text-indent: 2em text-align: justify " 美国早在2018年1月就宣布将在未来6年出资1.9亿美元支持体细胞基因编辑研究,以开发安全有效的基因编辑工具,治疗更多人类疾病。显然,美国政府也对基因编辑市场前景十分看好。 /p p style=" text-indent: 2em text-align: justify " 另据中商产业研究院最新报告,预计2020年,全球精准医疗市场规模将破千亿,达到1050亿美元,而基因编辑技术将是撬动千亿级大市场的一把钥匙。 /p p style=" text-indent: 2em text-align: justify " 关于Horizon Discovery Group plc /p p style=" text-indent: 2em text-align: justify " Horizon Discovery Group plc(LSE:HZD)是基因编辑和基因调控技术的全球领军者,总部位于英国剑桥。 /p p style=" text-indent: 2em text-align: justify " Horizon集团提供广泛的技术产品和相关研究服务,以支持医学界和生物学界更好地了解所有物种的基因功能、人类疾病的遗传驱动因素以及个性化分子、细胞和基因疗法的发展。这些技术和产品已经被全球10000多家学术机构、药物研发机构、药物制造商和临床诊断公司所采用。 /p p style=" text-indent: 2em text-align: justify " 关于罗格斯大学 /p p style=" text-indent: 2em text-align: justify " 罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey )是美国新泽西州的最大高等学府,也是一所公立研究型大学。罗格斯大学的主要校园位于新布朗斯维克和皮斯卡特维,另有两所分校在纽瓦克和肯顿。 /p
  • 一图解读:基因编辑原来如此
    p   11月26日,来自深圳的科学家贺建奎宣布,一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生。由于这对双胞胎的一个基因被编辑,她们出生后即能抵抗艾滋病。不过,“基因编辑婴儿”一事宣布后引来多方质疑,质疑的内容集中于该项研究涉及的伦理问题、必要性和安全性。 /p p    strong 截至目前各关联方回应汇总: /strong /p p   原稿《世界首例免疫艾滋病的基因编辑婴儿在中国诞生》:文章已检索不到 /p p   深圳和美妇儿科医院:没做过此项目 /p p   深圳医学伦理委:试验未经医学伦理报备,已启动事件调查 /p p   伦理审查文件“签字”者:不知情、未参会、没签字 /p p   南方科技大学:贺建奎已停薪留职,该研究未向学校报告。据中青报调查,贺建奎企业有南科大股份,临床试验获注册 /p p   超百位科学家联合声明:危害不可估量,强烈谴责 /p p   国家卫健委:高度重视,立即要求广东省卫生健康委认真调查核实。 /p p   贺建奎在一段团队视频中曾回应争议:我知道会有争议,但我愿意为有需要的家庭接受指责。 /p p   两家专业学会(中国遗传学会基因编辑研究分会和中国细胞生物学会干细胞生物学分会)联合发声:对这一严重违反中国现行的法律法规,违背医学伦理和有效知情同意的违规临床应用表示强烈反对并予以严厉谴责。 /p p    strong 一图解读:基因编辑原来如此 /strong /p p   虽然事件本身在网络上引起热烈讨论,但很多网友对基因编辑的原理或许并不熟悉。基因编辑抵抗艾滋病究竟是如何实现的?为什么伦理问题如此受到关注?在遥远的未来,基因编辑能为人类的生活作出贡献吗?看完下面这张图,你就了解了。 /p p style=" text-align: center " img width=" 468" height=" 1400" title=" 111.webp.jpg" style=" width: 521px height: 1403px " src=" https://img1.17img.cn/17img/images/201811/uepic/c5a8ccbb-19d5-49d8-a7d1-d69ca702b9b7.jpg" / /p p style=" text-align: center " img width=" 599" height=" 983" title=" 640.webp.jpg" style=" width: 520px height: 978px " src=" https://img1.17img.cn/17img/images/201811/uepic/3f3032f4-7a98-4b8b-9f60-55ad3e845a88.jpg" / /p p style=" text-align: center " img title=" 2222222222222.webp.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/e4110a92-2f64-44a1-88c5-ac78c97c7ad8.jpg" / /p p   实际上,目前人类对于基因的了解还很有限,没有几种人类疾病可以清晰明了地归咎于某一种基因。多数情况下,疾病通常是由两个或多个基因相互耦合的结果。未来,基因编辑需要探索与挑战的东西,还有很多。 /p p style=" text-align: center " /p p style=" text-align: center " /p p /p
  • 人类胚胎基因编辑实验首获许可
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 2月1日,英国人工授精与胚胎学管理局(HFEA)首次批准了“在人类胚胎上使用基因编辑技术”的实验。研究人员将能深入了解健康的人类胚胎发育过程中出现的各种变化,并在此基础上改善体外人工授精培养的胚胎的发育质量,为不孕患者提供更好的治疗方法。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据物理学家组织网报道,HFEA在一份声明中称,“我们的伦理委员会已经批准伦敦弗兰西斯· 克里克研究所凯茜博士更新其实验室有关研究的许可证,包括胚胎的基因编辑。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 凯茜花了数十年时间研究人类胚胎的发育过程,试图去了解最开始的那7天:一个受精卵如何发育成包含200到300个细胞囊胚。她说:“这些研究如此重要的原因是,流产和不孕非常常见,但具体原因尚不清楚。弄清楚这一过程中究竟发生了什么及哪里出了错,将对人类生命早期发展有更深入了解,或将提高体外受精成功率。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 凯茜博士打算使用CRISPR/Cas9技术对人类胚胎进行编辑,以减少研究中所需要的胚胎数量。CRISPR技术已经被证实比同类方法更加高效,她相信其团队能够使用该技术成功编辑10个胚胎中的8个。其研究使用的是生育诊所中体外受精后剩下的、捐赠于科学研究的人类胚胎。在经过研究后,这些胚胎会发育到7日后被销毁。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 此举可能会再度引发伦理问题,因为从去年4月开始,基因编辑人类胚胎在全球科学界就引起很大争议。爱丁堡大学动物生物技术教授布鲁斯· 怀特洛说,该项目应该可以“帮助不孕夫妇和减少流产的痛苦”。这所大学人口健康科学信息研究所的莎拉· 陈(音译)则指出,这项研究“触及到一些敏感性问题,因此,HFEA应仔细考虑到研究中的伦理问题。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 总编辑圈点 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 去年,中山大学科学家利用CRISPR技术,修改了几个胚胎的地中海贫血基因,引发广泛关注,成为去年最大科学事件之一。CRISPR这一利器用于人类,引发伦理争议,看来是无可避免了。科学家在何种情况下能被允许操作人类胚胎,还会有长期的讨论交锋。但就像干细胞研究显示的,即使胚胎实验受阻,仍会有别的办法推进基因编辑技术在人体应用。 /p p br/ /p
  • 2015技术展望之基因组编辑
    规律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,原本是细菌抵御病毒的重要武器,现在这一组合已经成为了最热门的基因组编辑利器。   2014年基因组编辑热潮在持续发酵,CRISPR/Cas9仍旧是最引人注目的话题之一,相关论文被大量下载和引用。纵观CRISPR/Cas9的发展我们可以看到,科学家们仍在追求最理想的基因组工程技术,而2015很有可能会成为基因组工程年。   这里我们不妨大胆预测一下,明年基因组工程领域会起那些波澜:   1. 大规模CRISPR/Cas9。2013年,麻省理工的CRISPR技术先驱张锋(Feng Zhang)和同事为我们展示了CRISPR/Cas9进行多重基因组编辑的能力。相信在2015年大规模CRISPR/Cas9全基因组操作将越来越多,同时新多重基因组编辑法会大量涌现,还很可能会出现大型的引导RNA数据库。在这样的趋势下,每个人都能在自己的基因组工程研究中用上CRISPR/Cas9。   2. CRISPR对簿公堂。2015年将有更多公司提供以CRISPR为基础的实验工具,基于CRISPR的药物也将离我们越来越近。在这种情况下,基础研究领域可能会迎来历史上最大的专利诉讼。目前有三个团队都宣称自己享有CRISPR/Cas9技术的部分专利权,他们很可能最终会对簿公堂,而专利权的归属将决定CRISPR/Cas9日后的命运。   3.用细胞来记录生命。假如细胞能将自己发生的所有事情记录下来,我们将会读到些什么呢?2014年Timothy K. Lu和Fahim Farzadfard在Science杂志上发表了一项令人振奋的成果。他们通过合成生物学技术,将细胞事件的模拟记忆编码在活细胞DNA中。虽然这类研究还处于早期阶段,但随着研究者们不断突破细胞工程的极限,我们期待在2015年看到更多的进展和应用。   当然了以上都只是我们的推测,基因组工程领域其实是很难预测的,因为相关技术发展得非常之快。你看,短短两三年CRISPR/Cas9系统就走了这么远。这些基因工程领域的预测是否过于保守,就让我们拭目以待吧。
  • 国家卫健委、科技部、中国科协、基因编辑国际峰会、NIH回应“基因编辑婴儿”事件
    p   span style=" text-indent: 2em " “基因编辑婴儿”事件一经公布,引起学界和社会广泛关注,特别引发了法律和伦理方面的争议。29日,国家卫生健康委员会、科学技术部、中国科学技术协会、基因编辑国际峰会、NIH、等部门负责人接受采访表示:此次事件性质极其恶劣,已要求有关单位暂停相关人员的科研活动,对违法违规行为坚决予以查处。以下为回应详细内容: /span /p p    span style=" color: rgb(0, 112, 192) " strong 国家卫健委 /strong /span :对违法违规行为坚决予以查处 /p p   国家卫健委高度关注近期有关“免疫艾滋病基因编辑婴儿”的信息,第一时间派出工作组赴当地和当地政府共同认真调查核实。 /p p   国家卫健委副主任曾益新在接受记者采访时表示,我们始终重视和维护人民的健康权益,开展科学研究和医疗活动必须按照有关法律法规和伦理准则进行。 /p p   “目前媒体所报道的情况,严重违反国家法律法规和伦理准则,相关部门和地方正在依法调查,对违法违规行为坚决予以查处。”曾益新说。 /p p   曾益新呼吁,当前科学技术发展迅速,科学研究和应用更要负责任,更要强调遵循技术和伦理规范,维护人民群众健康,维护人类生命尊严。 /p p    span style=" color: rgb(0, 112, 192) " strong 科技部 /strong /span :已要求有关单位暂停相关人员的科研活动 /p p   科技部副部长徐南平在接受记者采访时表示,开展以生殖为目的的人类胚胎基因编辑临床操作在中国是明令禁止的,此次媒体报道的基因编辑婴儿事件,公然违反国家相关法规条例,公然突破学术界伦理底线,令人震惊,不可接受,我们坚决反对。 /p p   徐南平介绍,科技部已要求有关单位暂停相关人员的科研活动。 /p p   “下一步,科技部将在全面客观调查事件真相的基础上,会同有关部门依法依规予以查处。”徐南平说。 /p p    strong span style=" color: rgb(0, 112, 192) " 中国科协 /span /strong :取消贺建奎第十五届“中国青年科技奖”参评资格 /p p   日前,中国遗传学会、中国细胞生物学会、中国科协生命科学学会联合体以及一批科技工作者已相继发出严正声明,表明中国科技界的鲜明立场和坚定态度,反对挑战科学伦理的任何言行。 /p p   中国科协党组书记、常务副主席怀进鹏在接受记者采访时表示,此次事件性质极其恶劣,严重损害了中国科技界的形象和利益。我们对涉事人员和机构公然挑战科研伦理底线、亵渎科学精神的做法表示愤慨和强烈谴责。 /p p   “中国科技界坚决捍卫科学精神和科研伦理道德的意志决不改变,坚决捍卫中国政府关于干细胞临床研究法规条例的决心决不改变,坚守科技始终要造福人类、服务社会持续健康发展的初心决不改变。”怀进鹏说。 /p p   据悉,中国科协将进一步加大面向科技界的科研伦理道德的教育力度,以“零容忍”的态度处置严重违背科研道德和伦理的不端行为,取消贺建奎第十五届“中国青年科技奖”参评资格。 /p p   “我们将继续加大在全社会弘扬科学家精神工作力度,为科技创新的持续健康发展和创新型国家建设营造良好的文化和生态环境。”怀进鹏说。 /p p    strong span style=" color: rgb(0, 112, 192) " 中国医学科学院的声明 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/6f37ae99-063c-4f6a-b9dc-a1d1156fdcc7.jpg" title=" 医学科学院声明.png" alt=" 医学科学院声明.png" / /p p style=" text-indent: 2em " strong style=" color: rgb(0, 112, 192) text-indent: 2em " 基因编辑国际峰会宣读组委会关于人类基因编辑声明 /strong /p p style=" text-indent: 2em " 声明第一部分 /p p   在2015年12月,美国国家科学院、美国国家医学院、英国皇家学会和中国科学院在美国华盛顿举办了一次国际峰会,峰会上讨论了人类基因编辑的科学、伦理和处理方法的问题。峰会组委会发表了一项声明,明确了能在现有规章和管理协议下进行的研究和临床应用领域。组委会同时强调,对任何可遗传的“生殖系”编辑进行临床使用都是不负责任的。另外,组委会也呼吁,对待这项飞速更新的技术,国际社会应该就它的益处、风险、前景进行更多的交流和讨论。 /p p   以在人类基因组编辑领域促进深刻的国际讨论为己任,香港科学院,英国皇家学会、美国国家科学院及美国国家医学院在香港举办了第二届人类基因组编辑国际峰会,以评估正在持续变化的科学前景、可能发生的临床应用,以及随之而来的、对人类基因组编辑的社会反响。作为第二届峰会的组织委员会,我们一方面为体细胞基因编辑进入临床试验阶段的飞速突破而喝彩,另一方面则继续认为任何将生殖系编辑引入临床应用的举措在目前仍是不负责任的。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " NIH对于贺建奎事件的声明 /span /strong /p p style=" text-indent: 2em " 美国国立健康研究院对贺建奎博士在香港举行的第二届人类基因组编辑国际峰会上刚刚提出的科研工作深表关注,他描述了在人类胚胎中使用CRISPR-Cas9来敲除CCR5基因。他声称这两个被编辑后的胚胎随后被植入母体,并且女婴双胞胎已经出生。这项科研工作表明了贺建奎博士及其团队在研究过程中对国际伦理规范的有意忽视,这种行为是非常令人不安的。该科研项目主要是秘密进行的,在这些婴儿中抑制CCR5基因的必要性完全不能令人信服,知情同意过程似乎也非常值得怀疑,并且破坏脱靶效应的可能性也没有得到充分的考虑和探讨。非常不幸的是,这种强有力的技术首次明显应用于人类生殖细胞系却是如此不负责任。 /p p   目前正在香港进行迫切讨论,是否需要就此类研究的限制制定具有约束力的国际共识。如果没有这种限制,世界将面临大量同样考虑不周和不道德的科研项目带来的严重风险。如果这种史诗般的科学不幸事件继续发生,那么对于预防和治疗疾病具有巨大潜力的技术将会被无可非议的公愤,恐惧和厌恶所掩盖。 /p p   为了避免出现任何疑问,正如我们之前所说,NIH不支持在人类胚胎中使用基因编辑技术。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 贺建奎临时不参与29号的报告 /span /strong br/ /p p style=" text-indent: 2em " span style=" color: rgb(0, 0, 0) " 11月28日晚23点24分左右,基因编辑国际峰会给参会者发送邮件,贺建奎将不会出席29日下午的会议。 /span /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/033e75d9-33a9-46a0-ab95-6d300d4d9414.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 289" height=" 510" style=" width: 289px height: 510px " / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/9058cbad-060e-458d-a820-90023ee6d8be.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " Science将基因编辑宝宝剔出2018年重大突破的评选 /span /strong /p p style=" text-indent: 2em " 2018年11月28日上午,Science评选了2018年重大突破的科研进展。基因编辑“中国宝宝& #39 强势入围,这也是众多参选的一匹大黑马。此消息一出,也是引来众多舆论,一时间满城风雨。11月29号上午,Science也悄悄把基因编辑宝宝剔出2018年重大突破的评选活动,并附上一则说明:“我们最初把基因编辑婴儿列为候选名单 现在我们删除了它,以避免给人一种错误的印象,认为Science杂志认可了这一有悖道德科学研究工作。” /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/ef1b2618-c7c0-4cc1-b9ba-4b8028c8b166.jpg" title=" 3.jpg" alt=" 3.jpg" / span style=" text-indent: 2em " /span /p
  • 天壤之别!胚胎基因编辑伦理不容,另一项基因编辑技术却在造福人类!
    p style=" text-indent: 2em text-align: justify " 近日刷爆朋友圈的不仅是抗癌“神药”Vitrakvi& reg 的问世,还有一则是首例基因编辑婴儿的诞生! /p p style=" text-align: justify text-indent: 2em " 来自中国深圳的科学家贺建奎向外界公布,一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生。 /p p style=" text-align: justify text-indent: 2em " 她们的基因已经经过人为修饰,能够天然抵抗艾滋病。消息一出,舆论哗然,遭到百余位中国科学家发表联署声明谴责,国家相关部委对此已经做出回应,对违法违规行为坚决予以查处! /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/bfe6a416-98de-499b-bf93-960d34dd0bf9.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 541" height=" 230" style=" width: 541px height: 230px " / /p p style=" text-align: justify text-indent: 2em " 人类生殖细胞的基因编辑可能诱发非常严重的伦理问题,即被改写的生殖细胞会影响其子孙后代,甚至随着现象的普及、改变整个人类的基因池。 /p p style=" text-align: justify text-indent: 2em " 因为存在高风险,基因编辑技术并未在人体上广泛应用。过去有少数科学家曾在人类早期胚胎上进行实验,但只是停留在胚胎阶段。& nbsp /p p style=" text-align: justify text-indent: 2em " 2003年颁布的《人胚胎干细胞研究伦理指导原则》规定,可以以研究为目的,对人体胚胎实施基因编辑和修饰,但体外培养期限自受精或者核移植开始不得超过14天,而此次“基因编辑婴儿”如果确认已出生,必将引起一场轩然大波!& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 引发轩然大波的基因编辑到底是一种什么技术? /strong /span /p p style=" text-align: justify text-indent: 2em " 中国农业大学生物化学与分子生物学系教授吴森向中新网记者介绍,DNA结构被发现之后,科学家需要通过一项技术去研究每个基因的功能,基因编辑技术便于上世纪80年代后期应运而生。& nbsp /p p style=" text-align: justify text-indent: 2em " 当时,基因编辑技术被称作基因打靶技术。科学家以小鼠作为模型,通过基因打靶的方法改变小鼠的特定基因,借由观察其表型或者行为变化,研究这个基因的功能。& nbsp /p p style=" text-align: justify text-indent: 2em " 基因编辑技术实际上是基因打靶技术的“升级换代”。“基因编辑是一种重构基因序列的手法,就像一个制作精良的橡皮擦,能针对出了毛病的基因,进行精准的‘擦除’。”同济大学医学院教授、同济大学丽丰再生医学研究院执行院长高正良这样评价基因编辑的作用。& nbsp /p p style=" text-align: justify text-indent: 2em " 吴森表示,在过去30年里,基因打靶技术在基础科学研究领域和生物医学领域的用途非常广泛,做出了很多有价值的研究,包括在肿瘤治疗领域中的CAR-T技术(嵌合抗原受体T细胞免疫疗法)等。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 为什么CAR-T不违背伦理? /strong /span /p p style=" text-align: justify text-indent: 2em " CAR-T技术实质上也是一种基因工程技术,但是为何不违背伦理?很重要的一点是,该技术是通过对体细胞(即免疫细胞)而非体细胞进行基因编辑,遗传基因不会发生改变,对于人类子孙后代不会造成影响。& nbsp /p p style=" text-align: justify text-indent: 2em " 据欧洲药品管理局资料,CAR-T疗法先后须经专利药品委员会、高级治疗委员会和欧盟委员会批准后方可获得临床应用。在中国,同样需要相关职能部门审核通过,才能进行临床试验及应用。我国的CAR-T细胞治疗研究虽然较国外整体起步较晚,但后期发展突飞猛进。& nbsp /p p style=" text-align: justify text-indent: 2em " 从2012年我国首次在clinicaltrial.gov上登记CAR-T细胞临床试验以来,我国每年新注册的CAR-T项目以数倍的速度爆发式增加,目前我国在clinicaltrial.gov上登记的CAR-T项目超过170项,已经超过美国的103项,成为世界上CAR-T细胞临床试验注册数量最多的国家,文末有招募信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/280c8040-d0e2-4a0e-84d7-d65c14acf8b6.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 457" height=" 374" style=" width: 457px height: 374px " / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " CAR-T是一种什么样的技术? /span /strong /p p style=" text-align: justify text-indent: 2em " CAR-T疗法是一种通过T细胞基因改造实现肿瘤靶向杀伤的免疫治疗技术。它通过基因转导技术,把识别肿瘤相关抗原的单链抗体和T细胞活化序列的融合蛋白表达到T细胞表面,经过纯化、体外扩增和活化,输注回患者体内,对抗肿瘤。& nbsp /p p style=" text-align: justify text-indent: 2em " 全称为(Chimeric antigen receptor T-cell therapy)嵌合抗原受体 T细胞疗法,本质上一种肿瘤基因疗法,也是免疫疗法。对于这个中文名您一定还是一头雾水,即便中文名也是看不懂。 /p p style=" text-align: justify text-indent: 2em " 首先,我们必须先对T细胞有初步的认识,T细胞是一种免疫细胞,负责保护身体免于外来病原的攻击。 /p p style=" text-align: justify text-indent: 2em " 而身体裡面的T细胞有又分很多种,其中一种名为细胞毒性T细胞(cytotoxic T cell),它的功能主要是辨识异常的细胞,分泌细胞毒素(如穿孔素、颗粒酶素B),并消灭这些异常细胞。 /p p style=" text-align: justify text-indent: 2em " CAR-T疗法,简单来说就是,我们在原本无法辨识癌细胞的T细胞上,装上一个名为CAR(嵌合抗原受体)的雷达。如此一来,经过改造的T细胞就会像导弹一样,精准的定位癌细胞位置,并将这些癌细胞杀死。 /p p style=" text-align: justify text-indent: 2em " 这样的技术,开启了细胞疗法新的扉页。将来,面对不同的癌症,只要找出适合的雷达-CAR,我们就能请T细胞代劳,替我们对抗癌症。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 原理讲完了,再给您介绍下CAR-T的治疗流程,很easy。 /strong /span /p p style=" text-align: justify text-indent: 2em " 1、分离:从癌症病人身上分离免疫T细胞。 /p p style=" text-align: justify text-indent: 2em " 2、修饰:用基因工程技术给T细胞加入一个能识别肿瘤细胞并且同时激活T细胞的嵌合抗体,也即制备CAR-T细胞。 /p p style=" text-align: justify text-indent: 2em " 3、扩增:体外培养,大量扩增CAR-T细胞。一般一个病人需要几十亿,乃至上百亿个CAR-T细胞(体型越大,需要细胞越多)。 /p p style=" text-align: justify text-indent: 2em " 4、回输:把扩增好的CAR-T细胞回输到病人体内。 /p p style=" text-align: justify text-indent: 2em " 5、监控:严密监护病人,尤其是控制前几天身体的剧烈反应。& nbsp /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/5f16e10d-c481-41a8-9337-3ed0d9b85536.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " 目前,已经有两项CAR-T技术获得美国FDA批准上市。 /p p style=" text-align: justify text-indent: 2em " 2017年8月,FDA批准诺华的CAR-T疗法Kymriah(tisagenlecleucel)上市,用于治疗罹患B细胞前体急性淋巴性白血病(ALL),且病情难治或出现两次及以上复发的25岁以下患者,这是人类历史上批准的首款CAR-T疗法。 /p p style=" text-align: justify text-indent: 2em " 紧接着,2个月后,FDA宣布批准了Kite Pharma公司开发的用于治疗特定类型大B细胞淋巴瘤成人患者的CAR-T疗法Yescarta(axicabtagene ciloleucel)上市。 /p p style=" text-align: justify text-indent: 2em " CAR-T疗法无疑已成为肿瘤免疫治疗领域中新的国际研究热点。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong CAR-T在肿瘤治疗领域有何贡献? /strong /span /p p style=" text-align: justify text-indent: 2em " 提到CAT-T治疗,最出名的就是在2012年被Carl June博士用来治愈了6岁的小女孩Emily Whitehead后,由此被认为是最有希望攻克肿瘤的手段之一,迅速引发了全球性的研发热潮。 /p p style=" text-align: justify text-indent: 2em " 2012年至今,6年过去了,6岁的小女孩已经长成12岁亭亭玉立的少女,那么,Emily的现状怎么样呢? /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/9fa16f1c-61a5-4c42-afe6-1d1af37da321.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 572" height=" 337" style=" width: 572px height: 337px " / /p p style=" text-align: justify text-indent: 2em " 今年8月份,家人刚刚为她庆祝了十二岁生日。除了曾经患过白血病之外,Emily与普通的孩子并无区别,脸色红润,头发蓬松,与小伙伴们在海滩上嬉戏,显得生气勃勃。根本无法想象在6年前,她是一名晚期癌症患者。& nbsp /p p style=" text-align: justify text-indent: 2em " 她是第一个接受CAR-T治疗的孩子,在治疗的早期临床试验中被认为是一种危险的治疗方法。而如今CAR-T已经获得FDA批准用于临床肿瘤治疗后,Emily成为治疗效果的象征,CAR-T疗法的新型癌症免疫疗法挽救了她的生命,并为数以千计的白血病患儿接受该治疗增加了信心。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 中国首例!CLL1新靶点CAR-T治疗10岁转化型急性髓系白血病女孩获成功 /strong /span /p p style=" text-align: justify text-indent: 2em " 广州市妇女儿童医疗中心血液肿瘤科张辉主任团队结合现有治疗手段和经验,并根据小慧白血病细胞的免疫分型特点,大胆尝试了CLL1新靶点的CAR-T临床试验性治疗。 /p p style=" text-align: justify text-indent: 2em " 据悉,CAR-T技术用于急性白血病治疗,已有多个成功案例,但针对CLL1靶点的CAR-T治疗,在全国尚属首次! /p p style=" text-align: justify text-indent: 2em " 治疗两个月后,小慧体内的大部分白血病细胞被成功清除,目前已进入观察期,只需定期复查即可。 /p p style=" text-align: justify text-indent: 2em " 如果顺利度过了18至24个月的观察期,小慧有望和美国的Emily(全球首位接受CAR-T治疗急性淋巴细胞白血病的儿科患者)一样被彻底治愈,恢复健康。(来源:金羊网)& nbsp /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 中、美CAR-T临床试验招募信息 /span /strong /p p style=" text-align: justify " strong span style=" color: rgb(192, 0, 0) " 美国 /span /strong /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 1、EGFR806 CAR T细胞免疫治疗儿童和青少年复发/难治性实体肿瘤 /span /p p style=" text-align: justify " 小儿实体肿瘤:生殖细胞肿瘤、视网膜母细胞瘤、肝母细胞瘤、Wilms肿瘤、横纹肌样瘤、骨肉瘤、尤文肉瘤、横纹肌肉瘤、滑膜肉瘤、透明细胞肉瘤、恶性周围神经鞘瘤、增生性小圆细胞肿瘤、软组织肉瘤、神经母细胞瘤 /p p style=" text-align: justify " 入组医院:西雅图儿童医院 /p p style=" text-align: justify " 入组人数:36 /p p style=" text-align: justify " 截止日期:2021年10月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 2、CD19 + CAR T细胞治疗淋巴恶性肿瘤 /span /p p style=" text-align: justify " 肿瘤类型:白血病、淋巴瘤 /p p style=" text-align: justify " 入组医院:MD安德森癌症中心 /p p style=" text-align: justify " 入组人数:30 /p p style=" text-align: justify " 截止日期:2021年12月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 3、EGFR-vIII CAR-T细胞用于复发性GBM治疗 /span /p p style=" text-align: justify " 肿瘤类型:脑胶质瘤 /p p style=" text-align: justify " 入组医院:杜克癌症研究所 /p p style=" text-align: justify " 入组人数:24 /p p style=" text-align: justify " 截止日期:2021年12月31日& nbsp /p p style=" text-align: justify " strong span style=" color: rgb(192, 0, 0) " 中国 /span /strong /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 1、CAR-T细胞在间皮素阳性实体瘤中的应用研究 /span /p p style=" text-align: justify " 肿瘤类型:成人实体瘤 /p p style=" text-align: justify " 入组医院:解放军总医院 /p p style=" text-align: justify " 入组人数:10 /p p style=" text-align: justify " 截止日期:2019年11月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 2、恶性肿瘤的自体CAR-T / TCR-T细胞免疫治疗 /span /p p style=" text-align: justify " 肿瘤类型:B细胞急性淋巴瘤、白血病淋巴瘤、骨髓性白血病、多发性骨髓瘤、肝癌、胃癌、胰腺癌、间皮瘤、结直肠癌、食道癌、肺癌、胶质瘤、黑色素瘤、滑膜肉瘤、卵巢癌、肾癌 /p p style=" text-align: justify " 入组医院:郑州大学第一附属医院 /p p style=" text-align: justify " 入组人数:73 /p p style=" text-align: justify " 截止日期:2023年3月1日 /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 3、研究评估CAR-T治疗儿童复发或难治性神经母细胞瘤的疗效和安全性 /span /p p style=" text-align: justify " 肿瘤类型:复发或难治性神经母细胞瘤 /p p style=" text-align: justify " 入组医院:南京儿童医院 /p p style=" text-align: justify " 复旦大学附属儿童医院 /p p style=" text-align: justify " 入组人数:22 /p p style=" text-align: justify " 截止日期:2020年9月 /p
  • 中科院PLOS发表RNA编辑新成果
    7月28日,来自中科院上海生命科学研究院植物生理生态研究所李轩研究组、上海巴斯德研究所郝沛研究组以及密歇根州立大学王红兵教授,在国际著名遗传学期刊《PLOS Genetics》发表一项合作研究,题为“The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection”。这项研究通过对多生物物种RNA编辑事件的系统发现和分析,首次揭示了RNA编辑表观遗传学位点的系统进化规律,以及其在动物神经功能和神经发育中发挥的主要作用。 自从20年前第一次被发现以来,RNA编辑已经成为多种生命形式的遗传编码变异的重要来源。RNA编辑的一个突出机制是,前体mRNA分子中腺苷的去氨基。脱氨基的事件,即A-to-I编辑,将特殊的腺苷(A)转换为肌苷(I)。在翻译中,肌苷被解码为鸟苷(G),从而导致密码子的变化,往往会引起蛋白质产物中的氨基酸替换。除了遗传再编码,A-to-I编辑已知也影响可变剪接,修改microRNA,和改变microRNA靶位点。A-to-I RNA编辑机械的主要组成部分,是作用于RNA(ADAR)家族酶的所谓的腺苷脱氨酶,ADAR酶作用于底物分子内的双链RNA(dsRNA)。关于底物靶向和编辑活性调节的细节,还是较少的;但是,有证据表明A-to-I编辑是共转录的,并且ADAR靶位点倾向于某些非随机的序列模式,并且很大程度上依赖于双链RNA的三级结构。 A-to-I RNA编辑生成的遗传变异,可扩展转录组的多样性和复杂性,它作为一个重要的机制可帮助支持关键的生物学功能。由于ADAR突变而缺乏A-to-I RNA编辑的动物模型,可导致小鼠胚胎或出生后致死,或在果蝇中显示神经缺陷。以前的研究在人类、小鼠、猴和果蝇中记录了许多A-to-I编辑靶基因。报道的编辑靶标情况,包括神经受体、离子转运蛋白和免疫反应受体。虽然多年来,科学家们都知道某些关键基因上A-to-I RNA编辑的例子,但是从进化的角度看,A-to-I编辑如何使转录组和蛋白质组多样化,以及到了何种程度,还是完全没有表征的。我们对于RNA编辑本身在进化中如何受到选择性力量的限制,还知之甚少。关于A-to-I RNA编辑提供的适应潜能,有各种不同的观点。 新一代测序技术和Model Organism ENCyclopedia Of DNA Elements (modENCODE)项目,成为模式生物的一种前所未有的资源,像果蝇和秀丽隐杆线虫,使得我们能够进行多基因组规模分析,以比较进化中的RNA编辑模式。 为了探讨RNA编辑的全景以及表征进化过程中施加在A-to-I编辑上的选择性限制,该研究小组基于modENCODE资源构建了一项研究,涉及这七种果蝇,它们有相应的参考基因组和转录组测序数据可用。该研究还补充了来自其他资源的数据,包括NCBI Sequence Read Archive (SRA)、NCBI Gene Expression Omnibus (GEO)、FlyBase和FlySNPdb数据库。 利用果蝇属作为一个模型系统——其代表了大约4500万年的进化时间,研究人员共确定了9281个A-to-I RNA编辑事件。通过与前人的研究成果,以及来自果蝇组织/发育样本或ADAR突变体的数据进行比较,并进行大规模阵列为基础的验证性实验,研究人员验证了这些事件。 通过系统发育分析,研究人员基于编辑位点的保守性,将A-to-I RNA编辑事件归类为三种不同类型。第一类位点发生在单基因家族基因上 第二类发生在多基因家族基因上,但位点不保守 第三类发生在多基因家族基因上,且位点保守。对这三类位点及其基因进行选择分析发现,第一和第二类位点均受到纯化选择(负选择)影响,而只有第三类位点受到正选择压力。重要的是,发现第三类位点高度富集于神经系统的元件和功能中。通过对这三类编辑位点进行不同组织、不同发育时期以及动物变态发育过程中的分布及变化分析,第一次发现了A-to-I RNA编辑在动物发育、交配(mating)等生理过程中动态变化的证据,进一步支持了三类不同编辑位点的重要功能。这些结果都指向神经系统功能,说明了RNA编辑表观遗传作用的适应性主要通过神经系统功能实现。神经系统功能是检验有益RNA编辑位点主要标准。以上发现,揭示了由RNA编辑表观遗传机制引入的编码可塑性,而产生一类新的二分变异。在二倍体有性生殖系统中,它是维持基因表达杂合性的一个重要机制,对克服等位杂合子分离有不可替代的优势。
  • 我国首个植物基因编辑安全证书下发
    近日,农业农村部发布《2023年农业用基因编辑生物安全证书批准清单》,下发全国首个植物基因编辑安全证书,该证书由舜丰生物获得。  基因编辑是世界生物育种领域的前沿技术。与转基因不同,基因编辑育种仅对作物自身基因进行修饰,并不转入其他物种的基因,其原理等同于常规诱变育种,培育出的品种也与常规育种培育出的品种无异。  “目前国际上诸如美国、日本、印度等地对于没有外源基因的编辑作物不是按照转基因作物管理,而是按照传统作物来对待。因为基因编辑的原理跟传统的诱变育种是一样的,和诱变作物相比,基因编辑产品并没有增加环境安全和食品安全风险。”中国科学院院士、著名水稻育种家刘耀光表示,“《细则》的发布和第一个安全证书的发放让我们看到了基因编辑作物产业化的希望。”  刘耀光院士提及的《细则》是指农业农村部刚发布的《农业用基因编辑植物评审细则(试行)》,进一步明确基因编辑植物的分类标准和简化评审的细则。  “基因编辑育种有着先天的优势,可以快速培育出高产高附加值的优良品种。”得知舜丰生物获得全国首个植物基因编辑安全证书,中国科学院院士许智宏表示,“《细则》的发布和第一个基因编辑安全证书的下发,让我们看到了民族种业振兴的希望。”  美国科学院院士、南方科技大学前沿生物技术研究院院长,舜丰生物首席专家顾问朱健康向记者表示:“此次《细则》的发布是继2022年《农业用基因编辑植物安全评价指南(试行)》发布后的又一个里程碑事件,它从分子特征、环境安全、食品安全三个方面界定评审细则,将已有文献或产业数据表明对环境安全和食品安全没有风险的基因编辑产品,予以简化安全评估流程,这无疑会加速基因编辑的产业化进程。”
  • 种业基因编辑技术引发创投机构关注
    自古以来,民以食为天,粮食安全一直被视为“国之大者”,而粮食安全的前提之一是种业安全。种业,被誉为农业的“芯片”,其发展的关键是种质资源的创制和高效育种技术的应用。当前,基因编辑技术正助力我国种业更具竞争力。  近年来,得益于第二代测序技术的商业化应用,测序成本不断降低,测序技术的应用更为广泛。业内人士表示,在畜牧业、农业等生物技术领域中,基因组编辑技术可以用来改良动植物品种,提供高产、优质、安全的食品。全基因组重测序和高通量测序技术的发展,促进了群体基因组学研究的进步,解决了许多重要的植物科学问题,并通过基因编辑、转基因、合成生物学等技术手段使得生物育种成为现实。  在此背景下,境内外资本市场颇为关注植物基因编辑技术的专利许可、新型工具的开发迭代、种质资源产品创制的创业公司,相关融资事件不断发生。  基因编辑生物育种赛道受到资本关注  公开资料显示,生物育种是现代农业生物技术育种的统称,生物育种是指利用基因工程、细胞工程和胚胎工程等现代生物技术,培育和推广一系列性能优良的动植物新品种的育种新技术和新产业。当前,现代生命科学和生物育种技术创新加快突破,孕育着新一轮农业科技革命。  此前,中国工程院院士万建民在接受媒体采访时表示,加快农业生物育种创新,构建现代种业创新体系,是贯彻落实中央决策部署实现种业科技自立自强的关键举措,是实现种源自主可控的根本路径。  近年来,植物基因编辑技术的专利许可、新型工具的开发迭代、种质资源产品创制的创业公司受到国际投资机构关注,融资事件不断发生:例如,美国某种子科技初创公司于2021年完成D轮2.08亿美元融资;总部位于美国的某农业基因编辑创业公司于2021年完成B轮9000万美元融资;此外,还有数家基因编辑公司相继获得超百万美元规模的融资,且部分公司已在资本市场上市。  国内方面,今年3月,基因编辑公司齐禾生科宣布完成了由杏泽资本领投的逾亿元种子轮融资,所募集资金将主要用于公司新一代基因编辑工具的开发,以及基因编辑技术在生物育种等各产业方向的应用。据了解,齐禾生科的联合创始人高彩霞,是中国科学院遗传与发育生物学研究所研究员。中国科学院遗传与发育生物学研究所官网显示,高彩霞主要从事植物基因组编辑技术、生物安全新型育种技术以及基因组编辑定向设计分子育种等方面的研究,致力于推动基因组编辑在分子设计育种中的应用。2013年,高彩霞团队在《自然生物技术》期刊(Nature Biotechnology)发表了世界首篇CRISPR基因编辑植物研究论文,率先将CRISPR基因编辑技术应用于植物研究。此后,高彩霞实验室陆续发表了数十篇基因编辑相关研究论文。  业内人士表示,不同于转基因技术,基因编辑技术在实现对基因组自身序列修改的同时,不会引入任何外源(其它非本物种)基因片段,具有商用领域广、安全性强、精准性高等特点,成为当下种业行业的发展焦点。私募投资机构正意识到,在国家粮食安全的大前提下,我国农业急需开发适合我国实际情况且拥有自主可控知识产权的种业“芯片”、减少粮食方面的进口依赖。  种业赛道投资需要坚持长期主义  中国科学院院士、中国科学院遗传与发育生物学研究所研究员李家洋曾公开表示,在生物育种技术中,诱变育种、杂交育种、分子标记辅助选择育种以及转基因育种都是“2.0”或“3.0”版本的技术,基因编辑技术才是当前最高的技术水平,也是全球育种业正在竞争的制高点,应该称为现代育种技术的“4.0”版本。  当前,生物育种发展得到了政策有力支持。2022年1月,农业农村部公布了《农业用基因编辑植物安全评价指南(试行)》,我国农作物基因编辑研发、应用有了更明确的规范,强化了我国基因编辑技术应用的制度保障,这对我国生物育种技术研发与产业推动具有里程碑意义。  业内人士表示,基因编辑应用于种业优势明显,具有研发周期短、成本较低、稳定性强、可以同时编辑多个性状等特点。在产品端,在保证高产、优质、多抗的前提下,更能兼顾各类营养物质的含量,实现产品订制化服务。可为产业链增效,如延长销售时间、产后保鲜和害病治理;为生产者提高粮食作物产量并获得新收益。  尽管在行业利好与需求增长的双重影响下,种业引发私募投资机构涌入,但投资人对种业赛道需要有更清晰的思考:我国种业行业集中度低,种业赛道具有周期长、投入高等特点,与资本的耐心可能形成错位,因此更需要资本与企业有共同抵抗风险的准备和耐心。  “产学研用”紧密结合是推动基因编辑育种向产业化迈进的关键。杏泽资本管理合伙人强静表示,杏泽资本秉承长期价值投资理念,将全力支持齐禾生科发展成为全球领先的解决基因编辑“卡脖子”难题的生物技术公司。“相信在国家对生物经济领域政策引领下,在我国科学家团队联合攻关的创新研发支持下,在以创新型生物企业为主体的投资产业化运营保障下,未来,我国生物经济领域战略科技力量将持续壮大,中国基因编辑技术一定会让中国饭碗端得更牢。”强静称。点击图片免费报名参加“第五届基因测序网络大会”
  • 农业用基因编辑植物评审细则(试行)
    各有关单位:   为更好指导农业用基因编辑植物安全评审工作,扎实做好安全管理,我办制定了《农业用基因编辑植物评审细则(试行)》,现予印发。   农业用基因编辑植物评审细则(试行)   一、分子特征   (一)靶基因编辑情况。提供覆盖编辑位点的PCR扩增测序或全基因组测序等资料,对于采用全基因组测序的,还应提供在编辑位点的覆盖度分析资料。相关数据应能够说明基因编辑植物中靶基因编辑情况。   (二)载体序列残留情况。提供全基因组测序及其在转化载体上的覆盖度分析等资料。相关数据应能够说明基因编辑植物中载体序列残留情况。   (三)脱靶情况。提供预期脱靶位点的PCR扩增测序或全基因组测序等资料,应采用生物信息学等方法分析预期脱靶位点,对于采用全基因组测序的,还应提供在预期脱靶位点的覆盖度分析资料。相关数据应能够说明基因编辑植物的脱靶情况。   二、环境安全   (一)可能直接改变物种关系的基因编辑植物,如抗病虫、耐除草剂性状。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   3.对生态系统群落结构和有害生物地位演化的影响。   4.抗病虫基因编辑植物还应提供对可能影响的非靶标生物的室内生物测定。   5.耐除草剂基因编辑植物还应提供对至少3种其他常用(非目标)除草剂耐受性的测定。   (二)其他基因编辑植物,如抗逆(抗旱、耐盐碱、抗冻、抗高温等)、品质改良、生理性状改良(养分高效利用、生育期改变、高产等)。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   三、食用安全   (一)可能改变关键成分的基因编辑植物,如品质改良、高产等。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.最大可能摄入水平对人群膳食模式影响评估。   3.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质的表达量及其与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   4.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质的表达量;(2)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(3)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(4)新蛋白质毒理学试验。   5.若上述数据资料(1—4项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   (二)不改变关键成分的基因编辑植物,如抗病虫、耐除草剂、抗逆(抗旱、耐盐碱、抗冻、抗高温等)、生理性状改良(生育期改变、养分高效利用等)。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   3.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(2)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(3)新蛋白质毒理学试验。   4.若上述数据资料(1—3项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   四、评审程序   上述分子特征、环境安全和食用安全评价都可在中间试验阶段进行,若中间试验阶段获得的数据资料表明目标性状不增加环境安全风险,经评价合格后可直接申请安全证书。   若中间试验阶段获得的数据资料表明目标性状可能增加环境安全风险,需开展环境释放或生产性试验,经安全评价合格后方可申请安全证书。环境释放或生产性试验应在试验植物的主要适宜生态区进行。申请生产应用安全证书,应在每个主要适宜生态区至少设一个试验点。 农业用基因编辑植物评审细则(试行).pdf
  • 你的朋友都收藏啦!卡拉洛尔残留测定前处理方法
    卡拉洛尔的危害及检测目的卡拉洛尔又名咔唑心安,化学名4- (3-异丙胺基-2-羟丙氧基) 咔唑,属β肾上腺受体阻断剂,在兽医临床中常用于消除动物紧张,特别是在运输过程中防止因应激导致的动物死亡。β肾上腺受体阻断剂目前已成为临床上常见的七类兽药残留之一,其代表性药物卡拉洛尔常在动物屠宰前数小时内注射使用,因此相对其他兽药可能对消费者造成的健康风险更高。因此我国农业农村部和国家市场监督管理总局2019年发布的GB 31650-2019《食品安全国家标准食品中兽药最da残留限量》中明确规定了卡拉洛尔在猪靶组织中的残留限量。本文阐述了如何将卡拉洛尔从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据行标SN/T 4144-2015,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡拉洛尔应用范围:猪肉、鱼肉、虾肉、肝脏、肾脏、脂肪、奶、鸡蛋和蜂蜜高效液相色谱-质谱/质谱法方法原理:试样中的卡拉洛尔用甲醇(脂肪用乙酸乙酯-正己烷溶解提取)提取,提取液经MCX柱净化(脂肪用GPC净化)后,供液相色谱-质谱/质谱仪测定,外标法峰面积定量。前处理仪器:凝胶净化色谱仪;电子天平(感量0.01 g 和0.1 mg);组织捣碎机;涡旋混匀器;氮吹仪;均质机(10000 r/min);离心机(6000 r/min);具塞塑料离心管(50 mL)。检测仪器:LC-MS/MS+ESI源 样品的制备与保存1.肌肉(猪肉)、内脏(肝脏、肾脏)、脂肪和水产品(鱼肉、虾肉):取代表性样品约500 g,用组织捣碎机捣碎,装入洁净容器作为试样,密封并做好标识,于零下18 ℃下保存。2.奶、蜂蜜、鸡蛋:取代表性样品约500 g,搅拌均匀后装入洁净容器内密封并做好标识,于4 ℃下保存。 前处理方法1.提取肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉称取5 g试样(精确至0.01 g)于50 mL具塞离心管中,加入15 mL甲醇,涡旋提取2 min,用均质器(10000 r/min)均质2 min,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用15 mL甲醇均质提取一次。离心合并有机相,用水定容至50 mL,待净化。 奶、蜂蜜、鸡蛋称取5 g试样(精确至0.01 g)于50 mL具塞离心管中,加入15 mL甲醇,涡旋提取2 min,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用15 mL甲醇涡旋提取一次。离心合并有机相,用水定容至50 mL,待净化。 脂肪称取2 g试样(精确至0.01 g)于50 mL具塞离心管中,加入20 mL乙酸乙酯-环己烷(1+1)溶解并混匀,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用20 mL乙酸乙酯-环己烷(1+1)溶解提取一次。离心合并有机相,用乙酸乙酯-环己烷(1+1)定容至50 mL,待净化。 2.净化肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉、奶、蜂蜜、鸡蛋MCX柱(60 mg/3 mL)依次用甲醇3 mL和水3 mL活化,加入5.0 mL待净化液,用3 mL水淋洗,用抽空3 min。用5 mL 5 %三乙胺-甲醇洗脱,收集洗脱液,于40 ℃氮气浓缩吹干,残渣用50 %乙腈水溶液1.0 mL溶解后,加2 mL乙腈饱和正己烷脱脂,下层清液过0.45 μm滤膜,供液质测定。 脂肪凝胶渗透色谱条件凝胶色谱净化系统:Accuprep(J2);凝胶净化柱:Bio-Beads S-X3(38 μm~75 μm),400 mm×25 mm(内径);流动相:乙酸乙酯-环己烷(1+1);流速:5 mL/min;收集时间:7 min~17 min。净化过程:取10 mL待净化液于GPC样品管中,用GPC柱净化,收集洗脱液,于40 ℃旋转蒸发至干,残渣用50 %乙腈水溶液1.0 mL溶解后,加2 mL乙腈饱和正己烷脱脂,下层清液过0.45 μm滤膜,供液质测定。 国标解读及注意事项1.卡拉洛尔标准物质用乙腈配成100 μg/mL的标准储备液,在0 ℃~4 ℃ 避光保存。2.本方法使用甲醇提取两次目标化合物,阳离子交换柱富集净化,相当于0.5 g试料进行上机检测(其中脂肪样品用乙酸乙酯-正己烷提取两次,再用GPC柱净化,相当于0.4 g试料进行上机检测)。3.MCX固相萃取过程中需要控制流速,使溶液一滴一滴地流下,以保证离子交换的效果。洗脱过程中洗脱溶剂少量多次加入,可以增加洗脱率。4.在GPC净化过程中配合紫外检测器使用,可以准确监测目标化合物及杂质的流出情况。 参考文献SN/T 4144-2015 出口动物源性食品中卡拉洛尔残留量的测定 液相色谱-质谱/质谱法 图1 肌肉、内脏和水产中卡拉洛尔残留量测定的前处理流程图图2 奶、蜂蜜和鸡蛋中卡拉洛尔残留量测定的前处理流程图图3 脂肪中卡拉洛尔残留量测定的前处理流程图
  • 工欲善其事,必先利其器——基因编辑工具的开发
    基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们梦寐以求的科研神器。我们熟知的CRISPR系统,最常听到、见到的是Cas9蛋白,但Cas蛋白并不是只有Cas9,下图中为Cas蛋白的分类。Cas蛋白功能分类图[1]在如此多的Cas蛋白中,发现如Cas9、Cas12a、Cas13a等可以作为基因编辑工具的,可谓凤毛麟角,少之又少。从1987年报道CRISPR重复序列,到2002年发现Cas4基因具有核酸外切酶功能,直到2012年发现Cas9可以通过RNA介导控制基因组编辑,历经20余年。在CRISPR风靡全球后,对于该系统的开发并未停止,技术大牛们又开发出: 基于CRISPR系统,通过sgRNA介导突变后不具有切割活性的Cas9蛋白(dCas9)对于基因表达进行激活或抑制的CRISPRa和CRISPRi技术; 将失去催化活性的Cas蛋白(dCas)或只有切割一条链活性的Cas蛋白(nCas)和可作用于单链DNA的脱氨酶进行融合,实现对靶点碱基替换的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)[2];工欲善其事,必先利其器。对于基因编辑而言,需要基因编辑工具这个金刚钻。对于基因编辑工具的开发,更需要一把“利器”。Beckman可以为科研工作者提供基因编辑技术与工具开发的整套解决方案。
  • 早报:RNA编辑为精确癌症治疗带来新希望
    这一研究成果公布在Cancer Cell杂志上,由MD安德森癌症中心生物信息学和计算生物学副教授梁晗博士以及Gordon Mills博士领导完成,梁晗博士研究组研究兴趣包括开发生物信息学工具,更好地分析癌症基因组数据,泛癌症基因组分析,RNA编辑和癌细胞的进化过程。 此前,梁晗博士研究组通过调查13种癌症类型,在分子水平上认识了性别对不同癌症的影响,也从一个方面指出了性别特异性治疗的需要。(从癌症基因组中寻找性别差异) 在最xin这项研究中,梁晗等人发现了一种特定类型的RNA编辑方法:A-to-I RNA编辑在癌细胞蛋白质变异过程中扮演了关键角色。 RNA编辑是RNA分子遗传信息发生改变的过程。之前科学家认为这个过程在人类和其他脊椎动物中很罕见,现在的研究表明RNA编辑在人类基因组中广泛存在。 由于癌症可能源自极其不同的蛋白质类型和突变,因此针对每位患者的个体化治疗需要有对蛋白质“基因组”更好的理解,后者也就是蛋白质组学了。了解促成蛋白质变异和多样性的分子机制是当今癌症研究的一个关键问题,在癌症治疗方面具有重要的临床应用。 梁晗博士表示,“利用来自癌症基因组图谱和美国国家癌症研究所临床蛋白质组肿瘤分析联盟的数据,我们的这项研究提出了许多直接证据,证明A-to-I RNA编辑是癌细胞中蛋白质组多样性的来源,因此,RNA编辑是一种理解癌症分子机制,研发精确癌症治疗的一种新模式。” “如果一种蛋白质只在肿瘤蛋白质中被高度编辑,而正常蛋白质不被高度编辑,那么就有可能被设计成为抑制编辑突变蛋白的特殊药物。” 很早之前,科学家们就知道A-to-I RNA编辑能帮助细胞调整RNA分子,从而产生能改变DNA“说明书”的核苷酸序列,这会影响蛋白质如何产生以及它们如何在细胞内组装。 在最xin研究中,研究人员发现了A-to-I RNA编辑如何通过改变氨基酸序列来促进乳腺癌蛋白质出现多样性的分子机制:一种称为衣被蛋白亚单位α(COPA)的蛋白质,在A-to-I RNA编辑后,能在体外增加了癌细胞增殖,迁移和侵袭的风险。
  • 如何投稿英文期刊,来自编辑的十条建议
    对于母语并非英语的我们,在写论文投稿英文期刊时,总是会遇到这样那样的问题。最近,BioTechniques杂志的编辑们介绍了一系列英文写作技巧,希望能够帮大家把稿件写得更好。这里向大家介绍的是,如何处理好关键一步&mdash &mdash 投稿。   本文基于投稿中的常见问题,以编辑视角给出了十条宝贵的建议。以下这些窍门虽然不能保证你的稿件一定被采用,但至少能让你的投稿对编辑和审稿人更有吸引力。   1. 了解想要投稿的刊物   每一份杂志都有自己的宗旨和覆盖领域,这样的信息在它们的网站上都有介绍。近年来,新刊物如雨后春笋一般冒出来,电子投稿又逐渐成为主流,作者们很容易忽视不同杂志的投稿指南,不进行有针对性的修改。说实话,再没什么比这样的事更令编辑心烦了,了解杂志是投稿之前的必修课。   2. 了解投稿程序和格式要求   所有杂志对稿件都有一些特殊的要求,比如稿件应采取什么格式,投稿需要提供什么材料等等。有些杂志甚至对不同类型的稿件会提出不同的要求,BioTechniques杂志就是这样。如果你忽视这些要求,编辑们可能就不会认真对待你的来稿。   3. 使用主动语态   听起来很简单是不是?实际上,使用主动语态是一种表达技巧。主动语态对于投稿而言是不是真的这么重要呢?让我们来举两个例子:   例1:被动语态   &ldquo Here we have demonstrated through a variety of experiments that when three additional amplification cycles are added to the existing protocol, the final product yield can often times be increased.&rdquo   例2:主动语态   &ldquo Here we show through a variety of experiments that adding three additional amplification cycles to the existing protocol often increases the final product yield. &rdquo   看到了吧,使用主动语态的句子要容易理解得多,这样的表述还提升了语句的影响力。   4. 避免冗长的表述   我们可以将上面的句子作进一步的修改,去掉含义模糊的表述(例如&ldquo a variety of experiments&rdquo )让句子说服力更强。   例3:浓缩   &ldquo Here we show that adding three amplification cycles increases final product yield. &rdquo   我们可以看到,句子越简练就越容易引起读者的注意。   5. 进行仔细的核查   每个人都免不了犯错误,你的论文稿也不会那么容易就毁在几个错别字上。不过,语法和格式漏洞百出的论文,很难博得编辑和审稿人的好感。我们在投稿前应该仔细检查整篇文章,甚至请&ldquo 外援&rdquo 来帮忙校对。因为对文章越熟悉的人,越容易忽略掉其中的问题。在使用特殊术语或缩写时,检查用词的准确性和一致性也很重要,尤其是论文不同部分由不同作者完成的时候。   6. 好好写投稿信   写投稿信是投稿的一个关键步骤,这封信往往是杂志编辑对你的第一印象。投稿信应当用1-2句话直截了当地概括你的研究和关键发现。这句话最好不要直接从摘要中复制,应该写的更简短但不那么正式。此外你还应当说明,这篇文章符合这个杂志的宗旨和范畴。   7. 全面了解参考资料   当编辑给你的研究定位时,简介部分用到的参考资料是非常重要的。前文已经说过,现在的期刊比十年前多得多,因此彻底的文献检索和适当的引用很有必要,只有这样读者才能正确理解这项研究在整个领域中的地位。此外,彻底的文献检索也能增强你对相关领域现状的理解,有助于写出更有影响力的投稿信。   8. 注意图片和说明的格式   对于图片和说明,所有杂志都有自己的特殊规定。然而这样的规定很容易被作者们忽视,尤其是我们被拒稿后再投给另一份杂志时。这样的疏忽只会毫无疑义地拖长整个审稿过程,而你的论文会因为格式问题被打回来。   9. 别怕向编辑提问   编辑和审稿人并不总是正确的,他们有时也会犯错误,在回信时给出不清晰的修改意见。这时你不必埋头苦想修改要求到底是什么意思,有没有必要进行额外的实验。更简单的解决方法是,直接联系编辑问一问他需要些什么,以及他提出修改意见的原因。编辑们是非常乐意进行解释的,这往往是缩短审稿时间提高效率的最好办法。   10. 如何有效地进行反驳   在收到拒稿或者修改建议之后,我们可能需要对此进行反驳,这时应当采取恭敬有礼的态度。一般来说,这样的回复都是两三个编辑和几个审稿人经过深思熟虑做出的决定。因此,email里简单说一句&ldquo 你们错了,重新考虑下&rdquo ,是不能让编辑们改变决定的。成功的反驳,需要解决编辑或审稿人所担心的问题。这一阶段不要发送修改后的论文稿,如果编辑们提出的主要问题没有解决,他们可能根本就不会去看。此外,就算你成功反驳了编辑们的意见,他们通常还是会要求你做出特定修改然后再提交稿件。   原文检索:   Special Series: Manuscript Tips
  • 专家称我国基因组编辑技术须破壁前行
    中国科协第114期新观点新学说学术沙龙专家称我国基因组编辑技术须破壁前行  本报讯(实习生曾云 本报记者潘希)近日,中国科协第114期新观点新学说学术沙龙以“基因组编辑新技术的兴起将带来的冲击”为主题,邀请相关专家讨论了基因组编辑技术在国内外的现状与发展。  近几年,由于CRISPR(规律成簇间隔短回文重复)等工具的不断问世,基因组编辑技术迎来了新的浪潮。“CRISPR能完成90%的工作,但核心的专利仍掌握在西方人手中。”中科院动物所研究员王皓毅直言,一定要开发新的工具,寻找比CRISPR效率更高的酶。  “国内科学家要协调合作,思考如何在坚持国际合作的同时,又保持国内优势。”中科院院士、华大基因研究院理事长杨焕明表示,同时应该加强科普避免重蹈转基因的覆辙,也不要在基因组编辑研究中一哄而上。  在杨焕明看来,现在可以考虑借CRISPR的东风讨论生命科学的服务问题。  目前,我国也处在CRISPR研究的前沿。例如在植物研究领域,中科院遗传与发育所运用TALEN和CRISPR技术在六倍体小麦中实现了3个同源等位基因的编辑,解决了小麦白粉病广谱持久抗性世界性难题,得到国际上的高度评价。  不过,专家也列出了目前基因组编辑技术面临的一些技术难题,例如如何提高敲除效率、减少脱靶效应、提高同源重组效率、实现基因定点替换或插入等。  华南农业大学教授刘耀光认为,对基因的定点替换以及插入等基因靶向修饰来说,技术上还有瓶颈,现在能够做到替换的例子很少。对植物来说,仍然需要提高效率达到实用性。“希望在不久的将来有实用突破”。  在讨论中,知识产权等问题也成为专家对国内基因组编辑发展的担忧。中科院遗传发育所研究员高彩霞表示,技术的推广需要强大的知识产权支撑,应分析哪些能做哪些不能做,利用自身优势加快推广速度。  “可以通过合作把专利的渠道拓宽。” 大北农生物科技有限公司专家杨进孝认为,企业要通过服务的方式参与进来,加强研究机构与企业的合作,促进产品落地。  杨焕明表示,基因组编辑应用的大门已经打开,国内要创造成熟的条件来推动我国基因组编辑技术的研究与推广。
  • 中美科学院院长就基因编辑准则在《科学》发文
    p style=" text-indent: 2em text-align: justify " 近日,中国科学院院长白春礼联合美国国家医学院院长Victor J. Dzau、美国国家科学院院长Marcia McNutt在《科学》上发表一篇题为《来自香港的警示》社论,呼吁全球各国科学院携起手来,就基因编辑研究及临床应用所应遵循的准则达成广泛的国际共识。 /p p style=" text-indent: 2em text-align: justify " 上月,在香港举办的第二届国际人类基因组编辑峰会引起了轩然大波。一名来自南方科技大学的研究者贺建奎爆出,他对一对健康胚胎进行了基因编辑,使其能抵抗艾滋病,并使这对基因编辑的双胞胎出生。 /p p style=" text-indent: 2em text-align: justify " 事件发生后,中科院学部科学道德建设委员会迅速发出声明称,坚决反对任何个人、任何单位在理论不确定、技术不完善、风险不可控、伦理法规明确禁止的情况下开展此类的临床应用。 /p p style=" text-indent: 2em text-align: justify " 社论作者在文章中指出,尽管峰会主办方、各国科学院以及有声望的科学领袖都在普遍谴责这项研究“令人深感不安”以及“不负责任”,中国也已启动了对该研究者行为的调查,但很显然,使用CRISPR-Cas9技术来编辑人类基因组,已经跑在了科学、医学共同体为应对复杂伦理及管理问题所进行的努力的前面。 /p p style=" text-indent: 2em text-align: justify " “当前,人类生殖系基因组编辑的指导方针和原则是基于充分的科学研究和伦理原则的。”社论称,“然而,此次事件突显出一种紧迫的需求,那就是我们需要加倍努力,赶在人类生殖系基因组编辑被认为是一件可容许的事之前,就更加明确的准则及标准达成国际共识。” /p p style=" text-indent: 2em text-align: justify " 文章作者呼吁,各国科学院应迅速召集国际专家及利益相关者形成一份快速报告,来推动完善用于生殖目的的人类胚胎所必须遵循的准则及标准。作者认为,在召集国际专家、推动就负责任的基因编辑研究及临床应用达成广泛科学共识方面,国家科学院具有很大的优势。 /p p style=" text-indent: 2em text-align: justify " “我们坚信,建立基因编辑标准的国际共识是十分重要的,这些标准能够避免研究者为从事危险和有违伦理的实验寻求借口,或寻找方便的实验场所。”文章作者同时强调,国际科学标准的建立,并不打算去替代各国的规章制度,反而可能会使各国的规章制度更加充实。 /p p style=" text-indent: 2em text-align: justify " 社论称,基因编辑有朝一日是能够治疗或预防疾病的,但想要维持公众对这一问题的信任,学术共同体现在就要采取措施,来证明这种新的工具可以在具备能力、正当及善行的前提下被使用。但不幸的是,此次基因编辑事件恐怕在各个方面都已失败,鲁莽而草率的行为,会置人类生命于危险之中。 /p p style=" text-indent: 2em text-align: justify " 作者认为,仅仅建立标准还不够,人们还需要建立一种国际机制,让科学家能够对不符合原则和标准的研究更加重视。他们提出了一系列政策建议,例如加快管理科学的发展、提供一个管理方案的“信息交换所”、致力于共同监管标准的长期发展,以及对计划及进行中的研究及临床应用实验,可以通过国际注册制度提升协调能力等。 /p p style=" text-indent: 2em text-align: justify " 文章最后援引了著名的阿希洛马会议案例。40多年前,当DNA重组还是一项革命性的生物医学新技术时,其安全性和效果也曾引发关注,为此科学家召开了阿希洛马会议。在那次会议上,科学家就这些问题进行了公开的讨论和辩论,最终,他们就一系列研究指导原则达成了共识,这些原则最终成为政府制定政策的基石。 /p p style=" text-indent: 2em text-align: justify " “阿希洛马会议至今仍能为我们带来重要的启示。”白春礼等人强调,人们需要就人类生殖系基因组编辑的研究和临床应用的具体标准及准则达成广泛的共识。并且,这种共识不仅涵盖科学和临床医学的共同体,也应当将全社会囊括进来。 /p p style=" text-indent: 2em text-align: justify " 在这篇文章中,统领美国国家科学院、国家工程院、国家医学院及国家科学研究委员会四大学术机构的美国国家学院(美国最高学术团体)也表态称,愿意牵头为推动此事作出贡献。 /p p style=" text-indent: 2em text-align: justify " 据了解,2015年12月,由美国国家科学院、美国国家医学院、英国皇家学会、中科院联合组织的人类基因编辑峰会在美国召开首次峰会。会后,包括中科院广州生物医药与健康研究院研究员裴端卿在内的22名学者组成了人类基因编辑研究委员会,历经14个月研究后,向全球发布了人类基因编辑基本原则。 /p p style=" text-indent: 2em text-align: justify " 其中,可遗传的生殖系基因组编辑的原则描述如下:有令人信服的治疗或者预防严重疾病或严重残疾的目标,并在严格监管体系下使其应用局限于特殊规范内,允许临床研究试验;任何可遗传的生殖系基因组编辑应该在充分的持续反复评估和公众参与条件下进行。委员会还特别就可遗传生殖系基因组编辑提出了10条规范标准。 /p
  • 两会声音——基因编辑立法箭在弦上
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 基因编辑婴儿事件让两会上基因编辑立法的呼声更高。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " “现阶段基因编辑在什么上能做,在什么上不能做,应该是法律要规范和解决的关键问题。”全国人大代表、山西医科大学第二医院血液科主任杨林花说,如果因为某个不良事件,将所有关于基因编辑的工作都叫停,那是不可取的。 /span br/ /p p style=" text-align: justify "   基因编辑仅仅是一种工具,不能因为它砍坏了一棵树就放弃它,而应善加利用得到整片森林。杨林花忧心,如果“一刀切”造成整个领域研究的停滞,未来我国新型医疗技术和产品的研发或许又会落后于其他国家很多年。 /p p style=" text-align: center " strong 基因编辑法规制度建设正稳步推进 /strong /p p style=" text-align: justify "   “应用上不太成熟的新兴技术一定要严格标准、依法管控,规范科研和临床行为。”全国人大代表、中国工程院院士、山东省肿瘤医院院长于金明在接受科技日报记者采访时也表示,基因编辑研究与临床应用相关立法很有必要。 /p p style=" text-align: justify "   此前,相关法规制度的建设正稳步推进。2月26日,国家卫健委发布《生物医学新技术临床应用管理条例(征求意见稿)》向全社会公开征求意见。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/121c6ccf-adbc-4e2d-acaa-6676ea08bc37.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify "   杨林花介绍,基因编辑被业界称为“神剪”,用它在体细胞中将突变基因剪掉,替换为正常基因。目前比较明确的单基因遗传病完全有可能就会被治好,CAR-T在国外也已经被批准临床了。 /p p style=" text-align: justify "   杨林花认为,对包括基因编辑技术等立法应体现对生殖细胞的基因编辑的管控,而对体细胞基因编辑、免疫细胞等的基因编辑(CAR-T治疗)应鼓励其规范应用。 /p p style=" text-align: justify "   在国家卫健委的征求意见稿中,将生物技术进行了分级,基因编辑被列为高危生物技术,将采用相应的管理。但并未对该技术的应用范围进行更细化的分类。 /p p style=" text-align: justify "   善加利用,意味着更细化、更多角度的法条、规则。“分级管理的思路是正确的。”于金明说。除了技术上的分级,还可以对试验申请单位实施分级:例如一个研究单位临床数据可信度一直非常高、有威信度高的专家参与,评级高一点 而如果经验不足、水平有限,需要降低评级,通过严格审查督促基因编辑临床试验的规范。 /p p style=" text-align: center " strong 立法前要充分吸纳专业意见 /strong /p p style=" text-align: justify "   如何做到在制定法律时,制定更细化、更有适应性的条款? /p p style=" text-align: justify "   “我对从事立法工作的专家说,一定要邀请这个行业资深的专家来参与法律的制定。”杨林花说,法律是“准绳”,必须要根据实际情况“划线”,需要充分地调研。 /p p style=" text-align: justify "   立法委员会掌握专业的生物学知识是非常必要的。人们对基因认知的深度也会左右“准绳”的位置。例如,人们最初认为对细胞线粒体DNA的编辑,不会遗传,但后来的研究表明,线粒体DNA的编辑也会遗传,进入人类基因库。因此基因编辑立法也会包括对线粒体基因的编辑。 /p p style=" text-align: justify "   “这个技术本身没有这么简单,催生出的研究领域就更加复杂,让专业的人参加,从专业角度上进行把关,帮助法律逐步完善、更符合实际,既规范了研究应用,又发挥了基因编辑工具的优越性。”杨林花说。 /p p style=" text-align: justify "   此外,也应该在广泛争取医学科研人员专业意见的基础上再出台,他们如果有合理的建议应该吸纳。杨林花表示:“征求意见截止前,我一定会抽出时间好好看一下征求意见稿,并提出自己深思熟虑的意见。” /p p style=" text-align: center " strong 伦理制度是立法“着力点” /strong /p p style=" text-align: center " strong 全国统管可能有难度 /strong /p p style=" text-align: justify "   没有把好“伦理关”是基因编辑婴儿事件最受诟病的地方。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/91468831-2eee-4e1e-a7dc-17e731bbd5d1.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify "   “现在有些伦理委员会的成员设置有些没有做过临床试验或基本知识的人也在内。没有科研基础的人员进入伦理委员会,不了解审查的内容究竟是什么,把关就有问题。”杨林花说,虽然对伦理委员会的设置有成员组成规定,但各地掌握的政策并不严格。 /p p style=" text-align: justify "   按照现在的法规,通过伦理审查,就能进行医学探索的临床研究,那么谁来监督伦理审查是否合规、合法呢? /p p style=" text-align: justify "   为此,在国家卫健委的征求意见稿中规定,由省级人民政府卫生主管部门完成低风险生物技术临床的学术审查和伦理审查,而高风险的将由省级初审后,交由国务院卫生主管部门60天内完成审查。 /p p style=" text-align: justify "   杨林花认为,如果全国的所有相关实验都要上报,可操作性就没有保障了。“全国目前约有100多家公司在做CAR-T,按每个公司相关项目计算,短时间完成审查工作也有一定困难。”杨林花说,CAR-T还仅仅是基因编辑应用中一个很细分的领域,全国会有多少的相关临床研究,全部由国家一级进行伦理审查,60天如何完成审核任务。 /p p style=" text-align: justify "   相关专家表示,政府部门应转变思路,坚持“放管服”,着力进行监督和检查工作。 /p p style=" text-align: right " strong span style=" color: rgb(127, 127, 127) " 科技日报记者 张佳星 /span /strong /p
  • 默克公司推进基于基因编辑的药物研发
    p style=" text-indent: 2em text-align: justify " 据悉,德国默克公司Merck KGaA目前已进一步推进基于基因编辑的药物研发,该公司与Vertex Pharmaceuticals已达成独家研发许可协议。Vertex的许可协议是Merck KGaA针对药物开发进行基因编辑的最新尝试。 /p p style=" text-indent: 2em text-align: justify " 为了加强其在DNA损伤和修复以及免疫肿瘤学领域的现有肿瘤学研发管线,Merck KGaA& nbsp 于2017年以2.3亿美元的价格从Vertex获得了许可的四种化合物中的两种。 /p p style=" text-indent: 2em text-align: justify " Vertex 目前已获得两款DNA依赖性蛋白激酶(DNA-PK)抑制剂和另外一种临床前化合物的研发许可,在基因编辑领域用于六种遗传疾病适应症,Merck KGaA透露说它们没有包括癌症。目前该许可协议的价值尚未公布。最新的许可协议加深了Vertex在基因编辑药物开发方面的影响力,已知涵盖了M9831(原VX-984)和另外一种临床前化合物。 /p p style=" text-indent: 2em text-align: justify " M9831和临床前化合物现在是Merck KGaA DNA损伤应答(DDR)抑制剂产品组合的一部分。M9831于去年完成I期临床试验(NCT02644278),这是一项首次人体研究,旨在评估该药与聚乙二醇化脂质体多柔比星(PLD)化疗联合的安全性,耐受性和药代动力学/药效学特征。 /p p style=" text-indent: 2em text-align: justify " Merck KGaA近日表示正在研究四种DDR分子,包括两种ATR抑制剂,一种ATM抑制剂和一种研究小分子DNA-PK。已知DNA-PK可以潜在地增强许多常用的DNA损伤剂如放疗和化疗的功效。还可以起到增强CRISPR / Cas9介导的基因编辑的作用。 /p p style=" text-indent: 2em text-align: justify " Merck KGaA的执行委员会成员Belé nGarijo在一份声明中表示:我们正迅速推进在肿瘤学方面领先的DDR产品组合,并很高兴通过增强CRISPR / Cas9介导的基因编辑,看到DNA-PK在遗传疾病中的潜在益处。 /p p style=" text-indent: 2em text-align: justify " Merd KGaA生命科学业务执行董事兼首席执行官Udit Batra博士本月早些时候表示:“我们共同提出了使用我们的CRISPR-Cas9技术来开发更具代表性的啮齿动物模型的想法。这促成了这笔交易。这将有助于我们应用技术开发改进的毒理学研究,以便通过诊所更快地获得越来越多的药物。这是对我们基因编辑能力的肯定。随着其他Cas系统的出现,Merck KGaA的技术将适用。 /p p style=" text-indent: 2em text-align: justify " 他还通过CRISPR-Cas9阐述了Merck KGaA在基因编辑方面的重点领域。它们包括开发更具体的切割和替换基因组相关部分的方法,同时避免脱靶效应 开发更接近模拟人体细胞的更好细胞系进行体外毒理学研究,例如,使用基因编辑修饰Madin-Darby犬肾(MDCK)细胞,看起来更像人类肠道,或增强生物生产。 /p
  • 盖茨、谷歌资助的基因编辑公司Editas将进行IPO
    受比尔盖茨(Bill Gates)和谷歌风投(Google Ventures)资助的基因组编辑制药公司Editas Medicine(以下简称“Editas”),已于周一向美国证券交易委员会(SEC)提交招股说明书,计划在纳斯达克证券市场挂牌交易。Editas也将成为首家采用新型技术来改写基因缺陷的上市公司。 Editas使用了名为“Crispr”的基因编辑技术。该公司在招股说明书中表示,计划募集1亿美元资金。不过募资规模可能属于占位符,用来计算上市手续费,未来可能会出现调整。 根据波士顿咨询公司提供的数据,自2013年创办以来,这家基因组编辑初创公司已经募集到超过10亿美元的风险投资。Editas的投资人希望全新、更精确的DNA编辑能力,能够量产用于临床治疗血液疾病、癌症、字体免疫系统疾病和遗传性眼科疾病。 总部位于马萨诸塞州坎布里奇市的Editas在招股说明书中称,该公司已经通过销售优先股募集到1.633亿美元资金。在进行首次公开招股之前,风险投资公司Flagship Ventures和Polaris Partners分别持有该公司超过15%的股权。Alphabet旗下的风险投资公司谷歌风投、盖茨以及风险投资公司Khosla Ventures,同样也持有该公司的部分股权。 另外一家基因组编辑制药公司Crispr Therapeutics的首席执行官罗杰诺瓦克(Rodger Novak)此前表示,该公司将考虑在今年进行首次公开招股。上述两家公司均表示,他们的第一次人体试验将会始于2017年。 Editas在招股说明书中称,该公司将把募集到的1500万美元至2000万美元资金用于犬莱伯先天性黑朦(Leber congenital amaurosis,即先天性视网膜失养症)的临床前研究和临床试验。此外,2200万美元募集资金将用于公司与癌症治疗公司Juno Therapeutics的合作。 Editas目前尚未通过产品销售产生任何营收,而且该公司也已表示,预计在“可预期的未来”无法获得营收。通过与Juno的合作,Editas获得了83.7万美元收入。在截至2015年9月30日的前三季度,Editas的净亏损为6030万美元。
  • 专家认为韩春雨基因编辑“不能重复不意味着是假的”
    近日,有关NgAgo基因编辑技术首篇论文实验的可重复性受到相关研究者质疑,该论文作者、河北科技大学副教授韩春雨在各类报告上回应这需要“高超的实验技巧”。对此,《中国科学报》记者在采访该领域专家时了解到,所谓“高超的实验技巧”实为实验“标准化”,目前多个实验室的重复实验结果即将出炉。  最近一个月,许多研究者在网络平台上声称无法重复韩春雨发表论文中的实验。科学网上,多名博主转发研究者的评论,参与了对此事的关注。  截至发稿前,韩春雨本人并未就此事细节向媒体进行回应。不过,据《中国科学报》记者了解,世界范围内有几家实验室正在对NgAgo-gDNA基因编辑技术的几项实验进行重复,并且已有从未与韩春雨联系过的研究者独立完成了重复实验,即将在学术刊物上发表论文公布结果。  “韩春雨所说的‘高超的实验技巧’并不准确。”国内一名从事基因技术研究的院士告诉《中国科学报》记者。他推测,无法重复的原因可能是实验过程的“标准化”出了问题,“在细胞生物学的历史上,不能重复的实验时有发生,甚至有时候只是换了一个实验室地点,也得不到相同的实验结果。”  例如,该院士曾亲历,使用不同生产厂家的血清,也会影响哺乳动物细胞培养。而当年基因克隆时,法国科学家一直无法复制加拿大科学家的实验,最终查明原因竟源于两家实验室使用的水的区别。  因此,上述院士表示:“韩春雨的实验其他人不能重复不能代表这一结果是假的。”  目前,已有研究者正在逐步发现“诀窍”。在专门讨论NgAgo的谷歌讨论小组中,一名无法证实身份的研究者“Jan Winter”表示,他因为替换了一项实验材料,取得了重复实验的成功。韩春雨的实验显示,NgAgo能够识别5’磷酸化的ssDNA并利用其作为向导,完成后续的编辑过程,而获得磷酸化的小段DNA是前提。  这名研究者则是在实验室用激酶磷酸化替代了从厂家直接订购,而取得了重复实验的成功。业内人士分析,磷酸化可能是实验中的技术要点之一。  哈尔滨工业大学生命学院教授黄志伟课题组向《中国科学报》记者证实,他带领的研究组正在重复这项实验。“结果还要再等一等。”他表示。  根据《中国科学报》记者调查,针对韩春雨论文的质疑集中在论文中的第四部分结果上,即证明NgAgo能否编辑内源人类基因组。  今天下午,一位来自印度基因与综合生物学研究所的Debojyoti Chakraborty博士向媒体确认“this system works”(这一系统奏效了)。Chakraborty博士表示,他们使用了NgAgo技术剪辑了海拉细胞中的相关序列,并观测到了细胞中的GFP减少的现象,这初步确认了剪辑技术发生了作用。他同时强调:“要判定韩教授的方法的可重复性,必须要等到基因测序结果出来以后才能下结论。”  对此,记者从可靠渠道了解到,韩春雨早在论文发表之初,便意识到,这一新技术目前并不稳定,他也一直致力于优化和改进该技术,并曾表示“很有信心”。目前,韩春雨已向相关研究者发放了质粒,用于NgAgo基因编辑技术的进一步研究。
  • 科技部回应基因编辑婴儿事件
    p style=" text-indent: 2em text-align: justify " 今天下午,在国务院新闻办举行的“部长茶座”活动中,科技部副部长徐南平对引起社会极大关注的基因编辑婴儿事件做出回应。徐南平表示,2003年颁布的《人胚胎干细胞研究伦理指导原则》规定,可以以研究为目的,对人体胚胎实施基因编辑和修饰,但体外培养期限自受精或者核移植开始不得超过14天,而本次“基因编辑婴儿”如果确认已出生,属于被明令禁止的,将按照中国有关法律和条例进行处理。 /p
  • 基因编辑10大公司榜单
    p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/uepic/8bc7001e-94f6-4c02-8845-6af9a4efc65c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify " & nbsp & nbsp 前段时间,CRISPR的负面新闻可谓是此消彼长,就在上个月,Wellcome Sanger研究所的科学家报告CRISPR诱导的基因重排,对CRISPR-Cas9基因编辑的精确性提出质疑,三家专注该技术的上市公司股价瞬间由云端跌入谷底,3月9日至8月20日期间: /p p style=" text-align: justify " § CRISPR Therapeutics在7月27日从56.72美元跌至47.01美元,然后回归48.92美元。 /p p style=" text-align: justify " § Editas Medicine在8月8日从44.08美元跌至27.65美元,然后反弹至30.41美元。 /p p style=" text-align: justify " § Intellia Therpeutics在8月1日从34.95美元跌至25.78美元,然后小幅上涨至27.74美元。 /p p style=" text-align: justify " & nbsp & nbsp 尽管他们发表声明说从未使用研究中提到的方法CRISPR Therapeutics,但股价的下跌仍然在所难免。 /p p style=" text-align: justify " & nbsp & nbsp 本文详细列举了专注于开发和应用基因编辑技术十大公司的名单,张锋的公司也位列其中。其中包含五家上市公司和五家私营公司。上市公司按其2017年的收入排名,私营公司按其筹集的资本总额进行排名。每家公司最近动态的简短说明也被囊括其中。 /p p /p p style=" text-align: justify " strong 顶级上市公司 /strong /p p style=" text-align: justify " 5、Editas Medicine /p p style=" text-align: justify " 2017年收入:1372.8万美元 /p p style=" text-align: justify " & nbsp & nbsp 收入完全由合作和其他研发活动组成,比2016年增加了一倍以上,增长了近127%。这一增长其实是其合作伙伴Allergan的功劳,Allergan 在2017年3月启动的研发合作伙伴关系下,针对Editas的5个眼科疾病的早期CRISPR基因组编辑计划持有许可权,目前正在计划开发和商业化。 /p p style=" text-align: justify " 4、Intellia Therapeutics /p p style=" text-align: justify " 2017年收入:2611.7万美元 /p p style=" text-align: justify " & nbsp & nbsp 收入完全由协作收入构成,比2016年增长58.5%,这主要得益于Regeneron Pharmaceuticals授权Intellia的CRISPR-Cas基因编辑技术,根据2016年启动的合作,开发可通过编辑肝脏基因治疗的疾病治疗方法。8月1日,Intellia报告其转甲状腺素蛋白淀粉样变性(ATTR)体内计划的进展,并计划在今年晚些时候与FDA进行研究前新药会议,并在2019年底前提交IND新药临床试验申请。 /p p style=" text-align: justify " 3、Sangamo Therapeutics /p p style=" text-align: justify " 2017年收入:3656.7万美元 /p p style=" text-align: justify " & nbsp & nbsp 去年,Sangamo Therapeutics的收入几乎翻了一番,比2016年增长了近89%,这主要归功于它与辉瑞的首次合作。2017年5月,两家公司同意为血友病A开发重组腺相关病毒(AAV)基因治疗,包括SB-525。8月8日,Sangamo公布了I / II期“Alta”试验(NCT03061201)的阳性初步数据,包括治疗性因子VIII活性水平的实现。这些公司在1月份同意开发基因疗法,使用锌指蛋白转录因子进行ALS和与C9ORF72基因突变相关的额颞叶变性。 /p p style=" text-align: justify " 2、 CRISPR Therapeutics /p p style=" text-align: justify " 2017年收入:40997万美元 /p p style=" text-align: justify " & nbsp & nbsp 合作计入了CRISPR Therapeutics的所有收入,去年这一收入增长了近700%。但在5月份,该公司与Vertex制药公司合作遭遇重创,当时FDA对镰状细胞病候选人CTX001的公司IND实施临床控制,等待该机构在审查申请时提出的未公开问题的解决。在8月7日,CRISPR Therapeutics公司表示它有明确渠道来解决这一问题,并补充说,这些公司仍然有望在今年晚些时候开始进行CTX001的输血依赖性β-地中海贫血的I / II期试验。 /p p style=" text-align: justify " 1、Horizon Discovery Group /p p style=" text-align: justify " 2017年收入:3650万英镑(4653.2万美元) /p p style=" text-align: justify " & nbsp & nbsp Horizon Discovery预计将通过RNAi和CRISPR终端市场实现蓬勃发展,预计2017年至2021年之间的复合年增长率约为18%。该公司去年的收入增长了52%,并且进行了转型通过收购 GE 的 Dharmacon,赋予Horizon Discovery基因调制功能,额外收入和全球销售机会。去年年底,Horizon Discovery通过推出其CRISPR激活(CRISPRa)试剂平台增加了其Edit-R产品组合,该平台旨在实现天然基因过表达,从而实现有意义的功能。 /p p style=" text-align: justify " strong 顶级私营公司 /strong /p p style=" text-align: justify " 5、Inari Agriculture /p p style=" text-align: justify " 筹集的资金总额:5500万美元 /p p style=" text-align: justify " & nbsp & nbsp Inari Agriculture于8月9日增加了4000万美元的B轮融资,其筹资总额不到一个月,此前专注农业的CRISPR基因编辑技术开发商脱颖而出。该公司成立于2016年,现已有80多位科学家,统计学家,工程师和学术顾问。Inari表示,收益将使其能够加速技术在作物中的部署,扩大工具的开发,并增加员工。 /p p style=" text-align: justify " 4、Inscripta /p p style=" text-align: justify " 总募集资金:84.5万美元 /p p style=" text-align: justify " & nbsp & nbsp 早在2月份,Inscripta获得5550万美元的C轮融资,该资本加速了其基因编辑工具(包括仪器,试剂和软件)的开发和商业化,公司的员工也日益增加。上个月,Inscripta获得了第一个使用MAD7的美国专利,该公司的第一个免费CRISPR酶,以及使用另一种MADzyme,MAD2的系统的专利保护。Inscripta去年更名为Muse bio。 /p p style=" text-align: justify " 3、Beam Therapeutics /p p style=" text-align: justify " 筹集的资金总额:8700万美元 /p p style=" text-align: justify " & nbsp & nbsp Beam Therapeutics成立于5月,迅速成为精准基因医学开发者,其共同创始人包括CRISPR先驱张锋博士。Beam宣布自己是第一家使用CRISPR基础编辑技术开发新疗法的公司,该公司于5月14日披露,它在F-Prime Capital Partners和ARCH Venture Partners的带领下筹集了高达8700万美元的A轮融资。 /p p style=" text-align: justify " 2、Pairwise Plants /p p style=" text-align: justify " 筹集的资金总额:1.25亿美元 /p p style=" text-align: justify " & nbsp & nbsp 孟山都投资了Pairwise Plants筹集的1.25亿美元中的大部分资产,这是一家农业创业公司,致力于利用植物的自然遗传多样性开发新的基因组编辑工具。3月20日,孟山都公司表示将捐赠1亿美元用于在农作物应用中获取和开发知识产权,包括将公司合作产生的产品商业化。孟山都公司的风险投资公司Monsanto Growth Ventures加入了迪尔菲尔德管理公司,共同促成了Pairwise公司2500万美元的A轮融资。 /p p style=" text-align: justify " 1、Precision BioSciences /p p style=" text-align: justify " 筹集的资金总额:1.3565亿美元 /p p style=" text-align: justify " & nbsp & nbsp Precision BioSciences在私营基因编辑公司中名列前茅,6月26日,它由ArrowMark Partners领导认购了1.1亿美元B轮融资 ,这是上半年获得风险投资的私人生物医院的第三大融资。 Precision表示,收益将用于基于其ARCUS® 基因组编辑平台的进一步产品开发工作,该平台源自称为归巢核酸内切酶的天然基因组编辑酶。 /p p style=" text-align: justify " & nbsp & nbsp 由以上名单,我们可以看出,CRISPR绝不会因为一些负面消息而“一蹶不振”,私营公司的投资者依然相信CRISPR的广阔前景。让我们期待未来的某一天CRISPR可以“重振雄风”。 /p p br/ /p
  • “基因编辑”新突破能对抗恶性肿瘤?
    【英国《独立报》网站7月27日报道】题:科学家宣布用DNA编辑技术Crispr对抗致命疾病有突破性进展  一项极其精确地“编辑”人类基因组的革命性技术,首次被用于“剪贴”一种关键类型的免疫细胞的基因。该型免疫细胞参与保护机体免受从糖尿病、艾滋病病毒到癌症等范围广泛的一系列疾病的侵害。  科学家相信,这一新进展最终能够带来对抗病毒感染和恶性肿瘤的新方法。  研究人员首先在实验室中对免疫系统的T细胞进行“基因编辑”,然后把它们放回患者体内来预防疾病。  医疗研究人员多年来一直尝试对血液中的T细胞进行精确的基因治疗。T细胞参与防范病菌入侵和癌症,以及免疫系统攻击机体自身组织的自体免疫性疾病,比如I型糖尿病等。  牵头进行这项最新研究的美国加利福尼亚大学旧金山分校的亚历山大弗朗西斯科说,此前,研究人员在切除突变,然后准确地用健康DNA链取而代之的技术上一直未能取得成功。
  • 超越韩春雨?新一代基因编辑技术南京大学问世
    2016年9月15日,《Genome Biology》报道了一种基于SGN的基因编辑新技术,以结构引导的内切酶(SGN,Structure-guided nuclease)实现体内外DNA任意序列的靶向和切割。论文一作为Shu Xu,论文通信作者为南京大学医学院附属金陵医院的周国华(Guohua Zhou)研究员、南京大学模式动物研究所的赵庆顺(Qingshun Zhao)教授和朱敏生(Minsheng Zhu)教授。做为基因编辑领域的从业者,读后很有感触,应BioArt主编之邀请,以半学术的方式、以随笔的形式写出,与各位分享,不严谨之处请大家各自消毒。  感触之一:构思巧妙,略有瑕疵,瑕不掩瑜。  论文中,作者巧妙地融合FEN1(Flap endonuclease-1,是一种可以特异性识别flap结构的核酸内切酶,参与DNA的复制,修复和重组过程 除此之外它还具有双链DNA特异的5‘-3’的核酸外切酶活性)和已经被成功用于ZFN和TALEN的DNA剪切结构域Fok I,结合标准化的linker(GS repeats),设计了一个chimeric protein,实现了可编程的基因编辑系统,具有以下特点:短链ssDNA导向的基因组特定位置 编辑结果是产生大片段的deletion(可以大于2.6kb) 可以在斑马鱼胚胎中成功编辑内源基因。这个构思,看得出包含ZNF以及TALEN的影子,其实这三者设计思路是一致的,其创新点在于靶向元件的选择十分巧妙,切割元件直接me too。令人惊喜的是,这种原创性工作出自我们中国科学家团队,略有遗憾的是,论文中体内靶点做的偏少,也没有以CRISPR或者TALEN为对照,导致尚不能够评估其相对低的编辑效率是来自位点特异性障碍还是来自技术本身(znf703基因编辑效率1/96≅ 1% cyp26b1基因编辑效率是3/29≅ 10%、这个位点还真不低)。另外一点,如果SGN系统编辑结果是产生大片段的deletion,那么后期的同源重组做起来要相对困难(冒昧的揣测一下:FEN-1外切酶活性是否可以dead?貌似大片段的deletion应该是5' -3' 的核酸外切酶活性引起的)。  感触之二:表述质朴谦逊,留下很大的优化空间。  通篇论文读下来,科学之外,还感觉到一种相对质朴的文风,措辞之间充盈着谦逊。这么讲,可能超出了学术范畴,所以称之为随笔,既然自己给自己开了这么一个后门,所以,干脆就谈出来,好在笔者与南京大学与作者没有关联,也就没有了套磁之嫌疑。例如,在基本术语上作者没有跟风:“SGN”而不是“ssDNA guided Nuclease”,“DNA editing”而不是“genome editing”,这些细节都能够体现出一种“独立性”。基因编辑技术的效率是极其重要的,目前看在这篇论文中,作者没有更多地报道相关的条件优化工作,例如效率瓶颈是存在于guide DNA与靶向区域的结合效率?还是存在于SGN的识别效率?整个生物学场景之中,目标区域的DNA melting究竟有多重要?是转录相关事件还是复制相关事件?(冒昧的揣测一下:是不是质粒编辑实验中采用可诱导启动子即可帮助判断?)当然,不应该要求一篇论文解决和回答这么多的科学或技术问题,但是可以预计,这个新工具可能还有较大优化空间,期待着他们更多的进一步报道。  感触之三:就是要挑战CRISPR,尽管它似乎难以逾越!  众所周知,今年5月2日《Nature Biotechnology》在线发表河北科技大学韩春雨博士“一鸣惊人”的论文,报告了一种NgAgo-gDNA基因编辑新工具,尽管因不可重复而使韩春雨“一波三折”地陷入学术诚信危机,但是,此文也算是高调地揭开了挑战CRISPR暗中竞赛的盖子。尽管CRISPR如日中天,甚至有“long live CRISPR”之类的戏言,但是,CRISPR并不完美,这种“不完美”不仅仅来自Off-target、PAM的限制性、难以实现单碱基精确编辑之类的技术瑕疵,更是来自人类对新技术的“天然贪婪”,来自根深蒂固的奥林匹克精神“更快、更高、更远”,来自我们骨子里的征服欲。正如哈佛大学医学院遗传学教授George Church所言:新技术都是脆弱的,随时可能被取代 加州大学圣迭戈分校的Prashant Mali 说的更直白“我们需要的不止这些”。所以,从技术使用者的角度看,CRISPR是大自然和几位先锋科学家送来的珍贵礼物,在欣然拥抱它的同时、当然也期待着更好的技术出现 从技术开发者的角度看,大红大紫般火热的CRISPR又是新的竞赛标杆,它令人嫉妒地、高傲地立在那里,挑逗和激发着人们超越它的冲动。  感触之四:源自天然、超越天然,从基因编辑技术演化史看“工程化”在技术工具开发中的重要性。  有人把基因编辑技术做了“断代工程”,给技术划代,很形象、也利于普及,但是有时候也比较困难。一般地,理论上可以在哺乳动物细胞中近乎任意位点切割并引发编辑的ZFN、TALEN以及CRISPR,它们在时间节点上依次出现、而且效率和便利性也越来越好,所以被称为第一代、第二代、第三代基因编辑技术(1G、2G、3G)。笔者愿意把他们称之为大众基因编辑工具,因为对应着的还有一些小众工具,鉴于其自身的技术局限和缺陷,并没有被大家普遍接受。今天,先聊一聊大众工具,随后加一些小花边,再聊聊那些正在被淘汰和被遗忘的小众工具,补充这些小众工具的演化史,可以更加清晰地看出技术发展脉络,或许从中获得另外的灵感和启发。  从大众工具看,“工程化”贯穿始终。现代中文语境中,一直有一种混淆科学与技术的“语义学”困境。科学与技术相关但不相同,有人形象地这样区分科学与技术:know what,know why是科学,know how是技术。基因编辑总体上是一种技术,其相关工具的开发,起步于科学发现,但是不止步于科学发现。例如,从现有公开文献看,CRISPR最重要的科学发现节点是2011年卡彭蒂艾(Emmanuelle Charpentier)对tracrRNA的生物学功能的阐明。但是,有时候,造物主很懒,他开辟了这个世界之随后可能置之不理了。所以,大自然留给我们的礼物,有时候配不上我们征服的野心,因此,就人类目标而言,我们从来都不吝啬和迟疑于改进和再造。果然,随后的2012年,卡彭蒂艾就会同詹妮弗刀娜(Jennifer A. Doudna)联合发表了划时代论文,把tracrRNA和guide RNA合二为一,做成了工程化的“chimeric single guide”,sgRNA由此诞生。而在CRISPR-Cas工程化、模块化方面贡献最大的,应该首推华人科学家张锋教授。除CRISPRi、 CRISPRa之外,早在2013年的综述中,张锋教授就展望了包括把Cas设计为光控模式在内的各类工程化方案。而就是在本月,又推出了两项以遥控sgRNA的方式对CRISPR实施即时控制的技术方案。哈佛和神户大学的团队先后发表了利用“工程化”措施将AID与dCas9做成chimeric protein实现了不依赖于同源重组的单碱基编辑。就在本月初,MIT的团队创建了光敏感的sgRNA技术 几乎与此同时,深圳的科学家团队报告了“化学控制”的sgRNA的控制技术。  让我们把视野再回望到ZFN和TALEN,更是工程化的杰出案例,直至今天讨论的SGN,其“动作模块”甚至“毫不动摇”地使用FokⅠ,所变换进化的是“GPS定位模块”。这堪称技术演化之中还留下了历史痕迹,好似“保守序列”一样,让人惊叹“自然进化”与“人工进化”异曲同工之奇妙。  所以,基因编辑工具开发工程化的基本方程式是:GPS定位模块+执行模块。话分两头说。  先聊“执行模块”。FokⅠ屡战屡胜,但是,一定还有其它选择,毕竟,造物主应该是慷慨的,地球生命演化了四十亿年,留下的自然遗产极为丰富。  再聊聊GPS定位模块。这个模块工作效率及操作便利性如何,是基因编辑工具“好不好使”的关键。ZFN和TALEN的主要特点是:以蛋白质特定结构域来完成靶向定位,其主要缺陷是:定位模块体外准备麻烦,工作量大成本高 相比之下,CRISPR-Cas却方便的多,所以在总体竞争中胜出。但是CRISPR-Cas还是或多或少存在Off-target的弊端,为了解决这个问题、进一步强化定位精准性,已有报道以dcas9为定位器,融合上FokⅠ,实现正义链和反义链双向定位、并形成FokⅠ二聚体造成DNA双链断裂(DSB)、引发编辑。本次讨论的南京大学的这篇文章,再一次创新了GPS定位模块,首次采用FEN-1(flap endonuclease-1)来执行定位功能,将定位指令转化为方便人工编程的guide-ssDNA,做的很巧妙。  聊到这里,下一个创新近似于呼之欲出:尽管NgAgo似乎失败了,但是它工程化改造的前景呢?pAgo做为基因组“GPS定位模块”的可能性,怎能不令工具开发者怦然心动,就连我那个简陋的实验室,都已经于几个月前就开始努力了,万一大牛们漏掉了某些创意呢?  总之,GPS定位模块+执行模块=基因编辑工具,两个模块的重点是定位模块。设计灵感源自天然存在的自然遗产、但不止步于天然存在。自然界留给我们很多的提示和启发,例如:位点特异重组酶(site specific recombinase)如何?整合酶(integrases)如何?转座酶(transpotase)如何?其它未知的recombinase如何?这个领域的干法和湿法挖掘竞赛应该一直在进行。张锋曾说到:“通过对多种酶进行探索,我们可以得到一个更强的基因组编辑工具箱。我们必须继续探索未知。”  最后的花边:从G0谈起,回顾一下“沦落”为小众的基因编辑工具。  上世纪七十年代末,利用限制性内切酶实现了质粒体外重组,标志着第一代基因工程的诞生。随后,基于同源重组的体内染色体水平的基因工程成为现实,但是由于重组率极低,必须使用抗生素抗性或营养缺陷等标记加以筛选,做不到无痕编辑。之后,尽管发展了反向筛选标记、cre位点预埋及抗性回收等技术措施,但是,还是繁琐和低效。业界对无标记的无痕基因编辑技术是十分期待的,无标记无痕的关键在于编辑效率,只要效率达到百分之一以上的数量级别,就有希望。这里让我们一起回顾一下两个小众工具,作为“绿叶”来衬托一下广为人知的大众工具。  其一,G0代的重组工程(Recombineering)。上世纪90年代末,基于λ 噬菌体的Red重组酶的重组工程(Recombineering)出现了,这个领域中,中国科学家于代冠(Daiguan Yu)跟随NIH的Donald L . Curt,做出了不少贡献,于代冠博士后来回到了中科院广州生物医药与健康研究院。基于Red系统,哈佛大学George Church于2008年在《Nature Biotechnology》上发表了改进版的MAGE,可以自动化地在数天内引发十亿计的突变 至2013年,Church又把基于ss-oligo的的重组工程从大肠杆菌扩展到酿酒酵母,这个过程还与rad51/rad54相关,被Church发展成YOGE技术,之所以特别强调Church,是因为这位伟大的科学家也是早期CRISPR的推进者之一,他采用Cas9编辑高等细胞基因组的论文,与张锋“同框”于2013年1月的Science。但是,重组工程最终没有能够再扩展到其它物种,特别是没有实现哺乳动物细胞的基因编辑。大肠杆菌的Red/ET系统,也是重组工程的重要实现工具,也是目前仍在普遍使用的分子生物学基本操作工具,这个系统源自中国科学家张友明在欧洲留学工作期间做出的开创性工作,张友明博士后来回到山东大学工作。总体上,基于寡核苷酸入侵的重组工程可扩展性不够好(局限于原核的细菌、真核最多跨到酿酒酵母),效率相对低下(在千分之一到百分之一之间),难以大幅度优化。  其二,G2.5代的Targetron。这个来自原核微生物防御机制的Targetron技术,笔者更愿意把它称之为2.5代技术,不是因为它的效率,而是因为它的GPS定位模块的工作方式,其方式是结合了“个别DNA位点的蛋白质识别”和“其它位点的RNA识别”,而且识别序列是可编辑的、可以“reprogrammable”的。这个编辑工具的大本营首推德克萨斯大学奥斯汀分校,他们有对外开放的设计软件及一些技术服务,但是,它编辑复杂、使用困难、物种可扩展性不高,梭状芽孢杆菌是可以用的,中科院微生物所李寅组和上海的杨晟组都有相关工作。总之,仍然是一个小众工具。  SGN将会如何?是小众工具还是能够发展成大众工具呢?pAgo能不能进一步W为NgAgo“正名”?能不能正名之后再发展成大众工具呢?前提是solid、可重复,并且用户友好。让我们拭目以待吧!  源于天然而超越天然,正道也!再次祝贺南京大学科学家在基因编辑领域的这项重大突破!
  • 教育部发文 要求高校自查基因编辑研究
    p style=" text-indent: 2em text-align: justify " 据华南农业大学、苏州科技大学、安徽中医药大学等多所学校官网,教育部科技司于近日印发《关于高等学校开展基因编辑相关研究项目自查工作通知》,要求高校组织开展基因编辑相关研究项目的自查工作。 /p p style=" text-indent: 2em text-align: justify " 《通知》中指出,此次自查主要针对2013年1月1日以来开展的涉及生物技术中与基因编辑相关的研究项目(包括非政府渠道),重点围绕是否遵守科研伦理和规范、是否存在违反相关法律法规的情况开展自查。附属医院科研活动、国际合作项目、涉及人类遗传资源的项目要作为自查重点。 /p p style=" text-indent: 2em text-align: justify " 教育部科技司要求,高校在认真梳理,严格查找的基础上,若自查中发现有违规情况,需如实填写附件并进行详细说明。附属医院相关自查工作在学校统组织和指导下进行。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制