当前位置: 仪器信息网 > 行业主题 > >

硼氢化钙

仪器信息网硼氢化钙专题为您提供2024年最新硼氢化钙价格报价、厂家品牌的相关信息, 包括硼氢化钙参数、型号等,不管是国产,还是进口品牌的硼氢化钙您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硼氢化钙相关的耗材配件、试剂标物,还有硼氢化钙相关的最新资讯、资料,以及硼氢化钙相关的解决方案。

硼氢化钙相关的资讯

  • 赫施曼助力萤石中氟化钙含量的测定
    萤石的主要成分是氟化钙,萤石中还含有二氧化硅、碳酸钙、碳酸镁、磷、硫等杂质,萤石作为一种重要的冶金熔剂在钢铁工业中大量使用。根据GB/T 5195.1-2017,测定萤石中氟化钙含量的方法有EDTA滴定法,其原理是:试料以含钙的稀乙酸浸取,过滤,通过下列两种方法之一进行分解:1.经含钙乙酸浸取试料分离碳酸钙后的不溶物灼烧后以碳酸钠-硼酸混合熔剂熔融,以盐酸-硼酸混合酸浸取分解,定容。2.经含钙乙酸浸取试料分离碳酸钙后的不溶物以盐酸-硼酸-硫酸混合酸加热分解,定容,过滤除去不溶物。 分取部分滤液于pH大于12.5的条件下,用EDTA标准滴定溶液滴定钙,计算氟化钙的质量分数。滴定内容如下:分取25.00mL试液于250mL锥形瓶中,用瓶口分液器加25mL水,用Miragen电动移液器加2滴硫酸镁溶液(5g/L),用瓶口分液器加5mL三乙醇胺(1+2),加0.1g盐酸羟胺,用瓶口分液器加20mL氢氧化钾溶液(5g/L),加0.1~0.2g混合指示剂,用EDTA标准滴定溶液(0.015moL/L)经过赫施曼光能滴定器或opus电子滴定器滴定至试液绿色荧光消失(在黑色背景的衬垫上观察)为终点。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的常规液体(酸、碱、有机试剂等)的移取,而实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,还有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转硅胶轮控制滴定速度和体积;opus电子滴定器可通过触屏来进行灌液、预滴定(先加入一定体积后再滴定)、快速滴定和半滴滴定等功能。两种滴定器均为屏幕直接读数,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。赫施曼助力萤石中氟化钙含量的测定
  • 氢化物发生法测定环境水中的硒Se含量
    氢化物发生法:通过一些元素在一定条件下与还原剂形成气态的自由原子或氢化物或易挥发的气态化合物,与介质分离,然后导入石英管原子化器进行原子化。日立火焰原子吸收法和氢化物发生器联用,可实现独家的偏振塞曼背景校正,从而保证基线稳定,得到更准确的结果,这种原子化法适用于As、Se、Sb等元素。采用氢化物发生法对硒Se进行微量分析,可以达到相当于自来水水质基准值或环境基准值的 1/10,即1 μg /L附近的范围。 硒的预处理硒在河流中以4价或6价形式存在,但6价的硒不生成氢化物,所以要在预处理时统一为4 价的硒,然后进行测定。下面采用JIS K0102 62.7所述硒分析样品的前处理方法,将河水中6价的硒还原为4价。日立氢化物发生器HFS-4下面是测定硒的HFS-4流路图。测定硒时不需要添加预还原剂,所以在HFS-4中流动的是样品、盐酸、硼氢化钠三种液体。样品中的4价硒和硼氢化钠反应,生成硒化氢(H2Se),将其导入到加热石英池中进行分析。分析河流中的硒将河流水认证标准物质稀释2倍,按照 JIS K 0102 67.2 基准方法进行测定。如果在测定砷后再进行硒的测定,由于流路中有碘化钾残留,会造成硒的吸光度降低。所以如果要进行两种元素的测定,请先测定硒。实验方法及结果如下图所示:综上所述,日立原子吸收分光光度计在采用氢化物发生法测定硒时,拥有独家的偏振塞曼背景校正技术;并且日立HFS-4氢化物发生器装载了有8根滚轴的蠕动泵,不需要添加预还原剂,利用3液混合流路就可进行测定。该方法基线稳定,灵敏度高,干扰少,可得到准确可靠的结果。关于日立偏振塞曼原子吸收分光光度计ZA3000系列热分析仪详情,请见: https://www.instrument.com.cn/netshow/SH102446/C170248.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 【视频】杂化钙钛矿材料及其纳米光学应用
    钙钛矿电池的光吸收层是一种有机-无机杂化的材料,而极化激元是黄昆原始在研究光子与声子相互作用时提出的概念实现了钙钛矿纳米结构(纳米线、纳米片、量子点)的高质量制备,为实现钙钛矿激光器的制备奠定了物质基础 将杂化钙钛矿材料和等离激元纳米金属两者结合,形成SPP纳米激光器,这是未来光通讯和信息产业中一个重要的研究方向,即将激光器小型化,小型化意味着可以更高密度、更大范围的集成,是下一代器件应用的重要趋势。  研究通过各种手段实现了金属结构的SPP模式的调控 制备了SPP模式的钙钛矿纳米线激光器,其激射阈值室温最低,并且首次实现了高于室温的激射。视频选自2020年半导体材料与器件研究与应用网络会议(报告人:中科院半导体所研究员 王智杰)
  • 瀚时仪器发布WHG-630B氢化物发生器新品
    1.1 本型氢化物发生器属流动注射型, 必须与原子吸收分光光度计( 主机 )配合使用, 用氢化物原子吸收法测定试样中砷、硒、锑、铋、铅、 锡、 碲和冷原子吸收法测定汞。 1.2 工作情况:用载气压力和电子元器件作为自动化能源, 按下启动键, 自动定量吸入3 种溶液(硼氢化钾、试样、载液), 吸满后发出读数信号, 载带试样溶液的载液和硼氢化钾溶液开始稳流流动, 汇合后发生反应,生成物被载气带入气液分离管, 混合气进入电热石英吸收管原子化器进行原子化吸收,废液自动排出,原吸主机软件设置为“峰高”(或峰面积)读数,积分时间15~40s( 根据不同制造厂商的原子吸收光谱仪而所需设置的读数时间有所不同)。 1.3 本系列发生器所拥有的优特点: ⑴. 独特的吴氏气动自动化专有技术:包括自动进液(取代蠕动泵)系统、量液系统(定量进样)、独立多通道开关气阻、稳流器呼吸管等,是利用载气气源压力和电子元器件进行工作的自动化体系,电子程序——时间控制器等都装置精巧, 性能优于全电动自动化体系。 ⑵. 自动化程度高:只用一个启动键,轻按一下即可完成进样、发生、测定、清洗全过程,可以与主机联机自动读数(主机须有此功能)。 ⑶. 独特的电热石英吸收管(原子化器):装置小巧(可用于塞曼型主机上的吸收管),升温快速, 安装方便,温度稳定,随意调节,使用寿命比火焰加热长10倍以上, 免去燃料消耗,只要温度降下来即可迅速改变分析方式。新型材料安全保护套,牢固可靠。 ⑷. 分析性能( 灵敏度、检出限、稳定性、工作效率 )优越:灵敏度,大部分可测氢化物元素优于1ng/mL/1%A,例如砷优于0.15ng/mL/1%A;相对标准偏差(RSD):厂控指标小于3%;单次测定时间约25-35秒。 ⑸. 适应性强:所有国内外新老型号原子吸收主机都可配用。 ⑹. 可靠性高:故障率低,基本没有易损件。 ⑺. 重量轻体积小:净重约2.5kg, 长250mm、宽175mm、高m190m。 ⑻. 可适用多种读数方式:峰高读数(推荐采用此种方式), 峰面积读数,连续读数。 ⑼. 溶液用量少-试样溶液1-2.5mL( 包括清洗 );硼氢化钾溶液1-1.5mL;载液4-7mL。创新点:北京瀚时仪器有限公司(原北京瀚时制作所)新研制生产的WHG-630B型全自动氢化物发生器(中国专利:201721197105.6 ),是在原“WHG-103A WHG-630A”等多种型号流动注射氢化物发生器基础上进行了较大的改进,将WHG-630B型氢化物发生器内部电路进行整合优化,从而使外观也进行了更新,在操作过程中实验人员更变于操作和查看实验数据,避免了因注水不当和水质不好带来的流量计进水和毛细管堵塞等系列问题,仪器故障率大大降低的同时有效延长了仪器的使用寿命。原有的灵度度高、稳定性好、自动化程度高、优越的分析性能、适应性强等多种优点保持不变。
  • 卫生部关于再次公开征求撤销食品添加剂过氧化苯甲酰和过氧化钙意见的函
    各有关单位:   根据《食品安全法》关于食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠的要求,随着我国小麦粉加工工艺的改进,面粉加工不再需要使用过氧化苯甲酰和过氧化钙。经研究并商相关部门,拟撤销食品添加剂过氧化苯甲酰和过氧化钙。现再次公开征求意见,请于2010年12月30日前按以下方式反馈意见:传真010-68792408或电子信箱gb2760@gmail.com.   附件:   1.关于拟撤销食品添加剂过氧化苯甲酰和过氧化钙的公告   2.关于拟撤销食品添加剂过氧化苯甲酰和过氧化钙的相关情况   二〇一〇年十二月十四日   附件1   公 告   (征求意见稿)   根据《食品安全法》关于食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠的要求,随着我国小麦粉加工工艺的改进,面粉加工不再需要使用过氧化苯甲酰和过氧化钙。经研究,决定撤销食品添加剂过氧化苯甲酰和过氧化钙。现公告如下:   一、自2011年12月1日起,禁止在面粉生产中使用过氧化苯甲酰和过氧化钙。此前按照相关标准使用过氧化苯甲酰和过氧化钙的面粉及其制品,可以销售至产品保质期结束。   二、各级食品安全监管部门要加大执法力度,切实做好过氧化苯甲酰和过氧化钙监督管理,加强面粉生产经营和餐饮服务单位的食品安全监督检查。对面粉中违法使用过氧化苯甲酰和过氧化钙的,要依法予以查处。   特此公告。   二〇一〇年十二月日   附件2   关于拟撤销食品添加剂过氧化苯甲酰和过氧化钙的相关情况   一、关于过氧化苯甲酰   过氧化苯甲酰,化学式[C6H5C(O)O]2,是一种有机过氧化物,白色至微黄色斜方结晶或结晶粉末,常用作乙烯系、丙烯酸系等单体的聚合引发剂、硅树脂及不饱和聚酯的固化剂、食品添加剂等。   二、国内外食品添加剂过氧化苯甲酰的使用规定   国际食品法典委员会(CAC)和美国、加拿大、日本等国家和我国台湾、香港地区允许在面粉加工中使用过氧化苯甲酰。欧盟等地区未允许使用过氧化苯甲酰。国际食品法典委员会规定的面粉中过氧化苯甲酰最大使用限量为75mg/kg.   1986年,根据粮食部门的申请,经全国食品添加剂标准化技术委员会(以下简称标委会)安全评审通过,将过氧化苯甲酰列入《食品添加剂使用卫生标准》(GB2760),允许作为面粉处理剂、漂白剂在小麦粉加工中使用,最大使用限量为60mg/kg.   三、关于食品添加剂过氧化苯甲酰的安全性   据联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品添加剂专家委员会(JECFA)评估,过氧化苯甲酰在面粉中75mg/kg、在乳清粉中100mg/kg的使用限量,不会对人体健康造成危害。   四、我国面粉加工工艺已不再需要使用过氧化苯甲酰   随着我国小麦品种改良和面粉加工工艺水平的提高,现有的加工工艺能够满足面粉白度的需要,很多面粉加工企业已不再使用过氧化苯甲酰。我国粮食主管部门经过调查研究,提出我国面粉加工业已无使用过氧化苯甲酰的必要性,且消费者普遍要求小麦粉能保持其原有的色、香、味和营养成分,追求自然健康,尽量减少化学物质的摄入,普遍不接受含有过氧化苯甲酰的小麦粉。同时,在现有国家标准规定的添加限量下,现有加工工艺很难将其添加均匀,容易造成含量超标,带来质量安全隐患。   根据《食品安全法》第四十五条规定,食品添加剂的使用必须同时符合两个条件,一是技术上确有必要,二是安全可靠。尽管过氧化苯甲酰按规定使用未发现安全性问题,但由于面粉加工行业已无使用过氧化苯甲酰的技术必要性,因此,建议撤销食品添加剂过氧化苯甲酰。   五、撤销食品添加剂过氧化苯甲酰后,加强面粉食品安全监管的措施   为防范撤销过氧化苯甲酰后可能出现的继续添加,甚至添加其他非食用物质或滥用添加剂的情况,我部已向社会公布了四批可能违法添加的非食用物质和易被滥用的食品添加剂“黑名单”,要求各级食品安全监管部门加大对面粉及其制品的食品安全监管,严厉打击违法犯罪行为。相关部门也制定了面粉中钛白粉、吊白块、滑石粉、过氧化苯甲酰等漂白物质的配套检测方法,并且正在研究其他违法添加物质的检验方法,为食品安全监管工作提供技术支持。   六、撤销过程将设置过渡期限   为尽可能降低撤销过氧化苯甲酰对产业影响,我们将设置1年左右的政策调整实施时间,主要考虑面粉生产、销售以及进口周期等情况,同时允许在政策调整日期前生产的、添加了过氧化苯甲酰的食品继续在保质期内销售。   七、关于过氧化钙   过氧化钙,化学式CaO2,是一种白色无气味结晶性粉末,常用作杀菌剂、解酸剂、氧化物阴极材料、食品添加剂、化妆品等。过氧化钙与过氧化苯甲酰作用相似,我国现行GB2760允许其作为面粉处理剂、漂白剂在小麦粉中使用,最大使用限量为500mg/kg.鉴于已无使用的技术必要性,拟在撤销过氧化苯甲酰的同时一并撤销过氧化钙。
  • 卫生部等7部门关于撤销食品添加剂过氧化苯甲酰、过氧化钙的公告(2011年 第4号)
    卫生部等7部门关于撤销食品添加剂过氧化苯甲酰、过氧化钙的公告(2011年 第4号)   根据《食品安全法》关于食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠,方可列入允许使用范围的规定,经审查,食品添加剂过氧化苯甲酰、过氧化钙已无技术上的必要性,现决定予以撤销并公告如下:   一、自2011年5月1日起,禁止在面粉生产中添加过氧化苯甲酰、过氧化钙,食品添加剂生产企业不得生产、销售食品添加剂过氧化苯甲酰、过氧化钙 有关面粉(小麦粉)中允许添加过氧化苯甲酰、过氧化钙的食品标准内容自行废止。此前按照相关标准使用过氧化苯甲酰和过氧化钙的面粉及其制品,可以销售至保质期结束。   二、面粉生产企业和食品添加剂生产企业要按照本公告要求依法组织生产经营,做好自查自纠工作。相关行业协会要加强行业管理和行业自律,引导企业不断规范面粉和食品添加剂生产经营活动。   三、各级食品安全监管部门要加大监督执法力度,加强食品安全监督检查,依法查处将过氧化苯甲酰、过氧化钙作为食品添加剂进行生产、销售和使用的违法行为。   特此公告。   卫生部   工业和信息化部   商务部   国家工商总局   国家质检总局   国家粮食局   国家食品药品监管局   二○一一年二月十一日
  • 青海省标准化协会公开征求《工业氯化钙中钠镁 钾含量的测定电感耦合等离子体原子发射光谱法》等3项团体标准意见
    各相关单位及专家:按照青海省标准化协会团体标准工作程序,标准起草单位已完成《工业氯化钙中钠镁钾含量的测定电感耦合等离子体原子发射光谱法》《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》3 项团体标准征求意见稿,根据《青海标准化协会团体标准管理办法》的要求,现在网上公开征求意见,欢迎提出宝贵意见。征求意见截止时间为2023年11月15日,请您在截止日期之前将您的意见反馈至青海标准化协会。协会联系方式协会秘书处:刘伟朝:18297212652、韩建华:13909712796协会邮箱:qhsbzhxh@163.com意见征求涵15.pdf工业氯化钙中钠镁钾含量的测定-文本.pdf附件2:意见反馈表.doc硫酸钾镁肥中钙镁钠含量的测定-文本.pdf工业盐中10种金属离子含量的测定 -文本.pdf
  • 化学实验室的废液怎么处理,倒哪里去?
    废液应根据其化学特性选择合适的容器和存放地点,通过密闭容器存放,不可混合贮存,容器标签必须标明废物种类、贮存时间,定期处理。一般废液可通过酸碱中和、混凝沉淀、次氯酸钠氧化处理后排放,有机溶剂废液应根据性质进行回收。废液处理原则对高浓度废酸、废碱液要经中和至中性时排放。对于含少量被测物和其他试剂的高浓度有机溶剂应回收再用。用于回收的高浓度废液应集中储存,以便回收 低浓度的经处理后排放,应根据废液性质确定储存容器和储存条件,不同废液一般不允许混合,避光、远离热源、以免发生不良化学反应。废液储存容器必须贴上标签、写明种类、储存时间等。废液处理方法含汞、铬、铅、镉、砷、酚、氰的废液必须经过处理达标后才能排放,实验室处理方法如下:1、含铜废液的处理实验用过的硫酸铜废液通过加适量铁粉回收金属铜,母液再经沉淀、过滤、稀释排放。2、含汞废液的处理排放标准:废液中汞的最高容许排放浓度为0.05mg/L(以Hg计)。处理方法:①硫化物共沉淀法:先将含汞盐的废液的pH值调至8-10,然后加入过量的Na2S,使其生成HgS沉淀。再加入FeS04(共沉淀剂),与过量的S2-生成FeS沉淀,将悬浮在水中难以沉淀的HgS微粒吸附共沉淀.然后静置、分离,再经离心、过滤,滤液的含汞量可降至0.05mg/L以下。②还原法:用铜屑、铁屑、锌粒、硼氢化钠等作还原剂,可以直接回收金属汞。3、含镉废液的处理①氢氧化物沉淀法:在含镉的废液中投加石灰,调节pH值至10.5以上,充分搅拌后放置,使镉离子变为难溶的Cd(OH)2沉淀.分离沉淀,用双硫腙分光光度法检测滤液中的Cd离子后(降至0.1mg/L以下),将滤液中和至pH值约为7,然后排放。②离子交换法:利用Cd2+离子比水中其它离子与阳离子交换树脂有更强的结合力,优先交换.4、含铅废液的处理在废液中加入消石灰,调节至pH值大于11,使废液中的铅生成Pb(OH)2沉淀.然后加入Al2(S04)3(凝聚剂),将pH值降至7-8,则Pb(OH)2与Al(OH)3共沉淀,分离沉淀,达标后,排放废液。5、含砷废液的处理在含砷废液中加入FeCl3,使Fe/As达到50,然后用消石灰将废液的pH值控制在8-10。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。放置一夜,分离沉淀,达标后,排放废液。6、含酚废液的处理酚属剧毒类细胞原浆毒物,处理方法:低浓度的含酚废液可加入次氯酸钠或漂白粉煮一下,使酚分解为二氧化碳和水。如果是高浓度的含酚废液,可通过醋酸丁酯萃取,再加少量的氢氧化钠溶液反萃取,经调节pH值后进行蒸馏回收.处理后的废液排放。7、综合废液处理用酸、碱调节废液PH为3-4、加入铁粉,搅拌30min,然后用碱调节p H为9左右,继续搅拌10min,加入硫酸铝或碱式氯化铝混凝剂、进行混凝沉淀,上清液可直接排放,沉淀于废渣方式处理。8、含 铬废液的处理含铬废液中加入还原剂,如硫酸亚铁、亚硫酸钠、铁屑,在酸性条件下将六价铬还原成三价铬,然后加入碱,如氢氧化钠、氢氧化钙碳酸钠等,使三价格形成Cr(OH)3沉淀,清液可排放。沉淀干燥后可用焙烧法处理,使其与煤渣一起焙烧,处理后可填埋。9、含 氰废液的处理低浓度废液可加入氢氧化钠调节PH为10以上,再加入高锰酸钾粉末(3%),使氰化物分解。若是高浓度的,可使用碱性氯化法处理,先用碱调至PH为10以上,加入次氯酸钠或漂白粉。经充分叫板,氢化物分解为二氧化碳和氮气,放置24小时排放。含氰化物费也不得乱倒或与酸混合,生成挥发性氰化氢气体有剧毒。10、三氯甲烷的回收将三氯甲烷废液一次用水、浓硫酸(三氯甲烷量的十分之一)、纯水、盐酸羟胺溶液(0.5% AR)洗涤。用重蒸馏水洗涤两次,将洗好的三氯甲烷用污水氯化钙脱水,放置几天,过滤,蒸馏。蒸馏速度为每秒1~2滴,收集沸程为60~62摄氏度的馏出液(标框下),保存于棕色试剂瓶中(不可用橡胶塞)。11、实验室废液处理注意事项1)、尽量回收溶剂,在对实验没有妨碍的情况下,把它反复使用2)、为了方便处理,其收集分类往往分为:a)可燃性物质b)难燃性物质c)含水废液d)固体物质等。3)、可溶于水的物质,容易成为水溶液流失。因此,回收时要加以注意。但是,对甲醇、乙醇及醋酸之类溶剂,能被细菌作用而易于分解。故对这类溶剂的稀溶液经,用大量水稀释后,即可排放。4)、含重金属等的废液,将其有机质分解后,作无机类废液进行处理。12、生物实验室废液处理生物实验室产生的废液污染主要是化学性污染和生物性污染,另外还有放射性污染,化学性污染包括有机物污染和无机物污染。有机物污染主要是有机试剂污染和有机样品污染。在大多数情况下,实验室中的有机试剂并不直接参与发生反应,仅仅起溶剂作用,因此消耗的有机试剂以各种形式排放到周边的环境中,排放总量大致就相当于试剂的消耗量。日复一日,年复一年,排放量十分可观。有机样品污染包括一些剧毒的有机样品,如农药、苯并(α)芘、黄曲霉毒素、亚硝胺等。无机物污染有强酸、强碱的污染,重金属污染,氰化物污染等。其中汞、砷、铅、镉、铬等重金属的毒性不仅强,且有在人体中有蓄积性。生物性污染包括生物废弃物污染和生物细菌毒素污染。生物废弃物有检验实验室的标本,如血液、尿、粪便、痰液和呕吐物等 检验用品,如实验器材、细菌培养基和细菌阳性标本等。生物实验室的通风设备设计不完善或实验过程个人安全保护漏洞,会使生物细菌毒素扩散传播,带来污染,甚至带来严重不良后果。2003年非典流行肆虐后,许多生物实验室加强对SAS病毒的研究,之后报道的非典感染者,多是科研工作者在实验室研究时被感染的。注意事项:废液的浓度超过规定的浓度时,必须进行处理。但处理设施比较齐全时,往往把废液的处理浓度限制放宽。最好先将废液分别处理,如果是贮存后一并处理时,虽然其处理方法将有所不同,但原则上要将可以统一处理的各种化合物收集后进行处理。处理含有络离子、螯合物之类的废液时,如果有干扰成份存在,要把含有这些成份的废液另外收集。以下所列废液不能相互混合:①过氧化物与有机物 ②氰化物、硫化物、次氯酸盐与酸 ③盐酸、氢氟酸等挥发性酸与不挥发性酸 ④浓硫酸、磺酸、羟基酸、聚磷酸等酸类与其它的酸 ⑤铵盐、挥发性胺与碱。要选择没有破损及不会被废液腐蚀的容器进行收集。将所收集的废液的成份及含量,贴上明显的标签,并置于安全的地点保存。特别是毒性大的废液,尤要十分注意。对硫醇、胺等会发出臭味的废液和会发生氰、磷化氢等有毒气体的废液,以及易燃性大的二硫化碳、乙醚之类废液,要把它加以适当的处理,防止泄漏,并应尽快进行处理。含有过氧化物、硝化甘油之类爆炸性物质的废液,要谨慎地操作,并应尽快处理。含有放射性物质的废弃物,用另外的方法收集,并必须严格按照有关的规定,严防泄漏,谨慎地进行处理。小 结实验室每天都会产生很多含有酸、碱、有机等有毒有害废液。如果随意排放或处理必将会对水质和环境产生危害,所以作为实验室的分析人员,小编认为大家有必要强化自身安全意识,不随意倾倒化学废液,减少有毒有害废液对人体、环境的伤害。
  • 超高效液相色谱领军者科诺美完成近亿元A轮融资,华盖资本领投,爱博清石、元生创投跟投,凯乘资本担任独
    超高效液相色谱领军者科诺美完成近亿元A轮融资华盖资本领投,爱博清石、元生创投跟投,凯乘资本担任独家财务顾问近日,超高效液相色谱领军企业科诺美(北京)科技有限公司(以下简称“科诺美”)宣布完成近亿元A轮融资,本轮融资由华盖资本领投、爱博清石基金跟投,老股东元生创投继续追加投资,凯乘资本担任本次交易的独家财务顾问。本轮募集的资金主要用于科诺美完全自主知识产权的液相色谱各条产品线的技术升级、扩展产品领域的系列化研发、自建工厂的产能扩张与精益改善、全球市场营销网络拓展与服务应用体系完善。完全自主可控,实现真正的国产替代国产化浪潮势在必行,但要做到自主可控,倪光南院士曾总结了五要素标准:1、知识产权标准,要自主可控;2、技术能力,要自主可控;3、发展主动权,要自主可控;4、供应链,自主可控;5、要具备国产资质。真正的核心技术是买不来的,国产替代也无法通过贴牌方式来解决,必须要从底层技术上不断积累自主创新,同时在生产品控上下苦功,自建生产线并精益改善,研发和生产高品质的产品,才有可能实现真正的国产替代。中国分析仪器市场每年的进口额在1000亿美元左右,仅次于石油和半导体。其中,液相色谱是第一大单品,在制药、食品、生物、农林畜牧等化学分析与生命科学领域及精准医疗与临床检验领域应用极为广泛,市场规模达数百亿元。一直以来,我国液相色谱仪高度依赖进口,尤其是技术水平更高的超高效液相色谱仪。随着国际形势日益复杂,科学仪器进口垄断严重、核心技术卡脖子的问题日益凸显。2018年后,国家政策大力鼓励科学仪器国产替代,液相色谱成为重中之重。科诺美,正是在此背景和趋势下成立,立志要从根本上打破进口垄断,公司在核心技术上完全自主可控,实现真正的国产替代;同时不断提升效率,降低成本,打造具有国际竞争力和超值体验的超高效液相色谱系列产品。引领技术趋势,全面掌握核心关键技术科诺美是国内唯一,掌握正向研发超高效液相色谱(UHPLC)关键技术的公司,立志成为国产超高效液相色谱引领者,解决液相色谱中高端产品的“卡脖子”问题。科诺美创始团队在行业深耕多年,曾创造了多个“业内第一”:如中国首款准超高效级液相色谱、中国最早全面掌握超高效液相色谱技术且获得国家级重大专项支持、中国首款自主研发全自动进样配置的液相色谱系统、中国首款自主研发数据库和网络版液相色谱工作站等等。科诺美汇集了包括光学、机械、结构、电子、软件工程、自动化、嵌入式、分析化学、临床检验等各类跨学科领域人才;设立在北京的研发中心,拥有业内极少的完整的交叉学科集合体,从而实现能够完全自主的正向研发,全面掌握超高效液相色谱技术。在积极转化所积累的硬科技核心技术的基础上,还不断与人工智能、自动化、大数据等交叉创新,进行快速的产品迭代与技术扩展。2022年9月,科诺美正式启动自建的苏州生产基地,实现规模化、现代化、体系化的生产装配;拥有一流的生产工艺及严格的质量保证体系,通过了ISO9001、ISO13485双体系认证,拥有一类和二类医疗器械的生产资质,拥有全面ERP与精益改善体系流程。可实现从模块到整机、从耗材到试剂的完整自主化生产体系,确保产品准时、保质出厂。纵横两大领域,提供领先的全面解决方案在化学分析与生命科学领域,液相色谱是基础性设备,在生物制药、食品安全、环境监测等行业有着广阔的市场。科诺美已经陆续布局了超高效液相色谱Leaps系列、Leaps2D系列、LeapsBio系列、LeapsPrep系列、Frontier系列等;实现了目前国产化最完整的液相色谱产品线,可完整覆盖常规分析、复杂样品分析、快速分析以及制备分析;耗材色谱柱已布局从1.8μm超高效分析,到3~5μm常规分析,到7~20μm制备纯化的全面覆盖。科诺美,使广泛的行业用户用更低的成本,就可以使用超高效级别的液相色谱及配套产品。精准医疗与临床检验领域,是液相色谱的潜在蓝海市场。针对临床检验领域,科诺美布局有Voyager系列IVD全自动二维超高效液相色谱、EpoStar系列全自动样品前处理平台、以及各类配套试剂耗材,形成了一站式全自动临床解决方案。截至当前,已取得了13项医疗器械备案与注册证,让其在临床检验端真正变得简单易用,实现多快好省,促进中国医疗普惠事业,满足精准医疗需要。其中,Voyager系列是国内唯一拥有UHPLC性能级别,完全基于自主关键技术,并获得二类医疗注册证的液相色谱系统。科诺美今年在两大业务领域板块同步布局,不断强化市场投入并提升客户满意度,打造业内一流的市场营销体系与客户服务体系团队,汇集了诸如来自Waters、Agilent、ThermoFisher等跨国公司及优秀企业的各类人才。自2022年下半年产品正式发布后,已经收获了众多客户的订单,并在持续高速增长中。未来,科诺美将进一步布局全球业务市场,InChinaforGlobal,有望打破全球液相色谱固有市场格局,让中国智造享誉全球!科诺美联合创始人&CEO张欣表示:“感谢华盖资本、爱博清石及老股东元生创投在本轮的鼎力支持,也感谢全体股东们的持续赋能与助力。更感谢时代赋予科诺美的使命,感谢用户们对于科诺美的认可与支持。科诺美的使命是让分析检测更高效精准且易用,愿景是成为推动世界和人类健康安全进步的中国科技公司。科诺美将持续创新,基于完全自主可控,实现真正的国产替代,改变全球行业市场格局”。华盖医疗早期基金主管合伙人张翼表示:“华盖资本一直关注能为生物医药行业赋能的生命科学工具企业,科诺美拥有一批在科学仪器、分析检测和生命科学行业里领先的人才,具有强大的研发能力和创新精神。液相色谱在生物医药乃至有机分析都是极为重要的基础设备,市场前景广阔;同时公司结合超高效与复杂样品处理技术,开发了多维色谱分析系统和体外诊断试剂,助力精准医疗。相信科诺美可以为中国生物医药产业的快速发展进一步赋能,并探索生命科学工具在临床中的转化应用”。爱博清石基金合伙人王子聪表示:“液相色谱在制药、食品、农林畜牧等通用检测领域及维生素、血药浓度监测等临床医疗领域广泛应用。科诺美创始团队长期深耕色谱等科学仪器市场,具有丰富的产品研发和销售经验。面向通用和医疗两大领域,科诺美率先推出了高性能的液相色谱产品系列,实现自主可控,有望打破进口垄断的市场格局,发展潜力巨大”。元生创投管理合伙人林艺博士表示:“元生创投持续看好科诺美团队的产品化和商业化能力,也很高兴元生创投能在早期就参与投资支持科诺美,科诺美是国内唯一掌握正向研发超高效液相色谱UHPLC关键技术的公司,创造了多个“业内第一”。科诺美已经在通用检测和临床诊断两大领域同步布局,公司自主研发生产的超高效液相色谱预期会被快速推广应用,真正实现高端分析仪器在化学分析、生命科学及临床诊断领域的国产自主可控”。凯乘资本创始合伙人邹国文博士表示:“科学仪器行业具有广阔的行业纵深,需要长期耕耘,从核心部件到整机生产,进口垄断和卡脖子现象都非常严重。近年来,国产仪器公司正在迎来历史性机遇。但同时,有能力自主正向研发高水平仪器的公司,却又非常稀缺。我们非常看好科诺美的核心团队,凭借二十余年完整的研发、产业化、商业化经验,紧握超高速液相色谱的技术升级趋势;以稳定的产品性能、优越的性价比,正在吹响科学仪器国产替代的冲锋号”。
  • 河北废物倾倒致死 重金属污染已成隐患
    近日,河北省石家庄市无极县发生了一起因违法倾倒废弃物而导致五人中毒死亡的事件,这次事件再一次引起了人们对土壤中重金属污染的关注。,总体来说,我国土壤中重金属污染防治情况并不乐观,在2014年公布的《全国土壤污染状况调查公报》显示,我国土壤环境总超标率为16.1%,其中镉、砷、铅、铬、汞等重金属污染已经成为土壤中长期存在的“毒瘤”。而2016年发布的 “土十条”,预示着我国土壤中重金属污染治理的大幕正式拉开。而后在2017年6月22日,《中华人民共和国土壤污染防治法(草案)》的提出,这些充分显示出我国对土壤中重金属污染的关注程度。临床试验已经证实了汞、砷、铅、镉等重金属元素对人体产生很大危害。例如:人体铅含量超标容易引起贫血,损害神经系统;砷含量超标会使中枢神经系统发生紊乱,并有致癌的可能;长期摄入微量镉容易引起骨痛病;如果急性汞中毒,则可能诱发肝炎和血尿。所以,为了更好地防治土壤中重金属污染,国家制定了一系列的相关标准来规范土壤检测。例如《GB/T 22105-2008 土壤质量 总砷、总汞、总铅的测定》明确了应用原子荧光法检测土壤中总砷、总汞、总铅的相关操作步骤。应用原子荧光法检测这三种元素的原理是:将被测样品消解后与硼氢化钾发生氢化反应,然后将生成的成被测元素的气态氢化物气体由载气导入原子化器进行原子化,得到的被测元素的基态原子,在特定的空心阴极灯的激发下产生荧光,再根据荧光强度来判断被测元素的含量。氢化法原子荧光光谱仪因着它检出限低、灵敏度高、干扰少,同时仪器使用简单,性价比高等优势在土壤中重金属检测方面得到了越来越多的应用。尤其是近几年,随着国家对国产仪器扶植力度的加大,原子荧光光谱仪发展很快,特别是由北京金索坤技术开发有限公司研发生产的新一代原子荧光光谱仪,检测元素多、检测速度快、技术指标好、安装省事操作省心。同时北京金索坤技术开发有限公司也是市面上唯一一家只专注原子荧光技术发展的高新技术企业,是我国原子荧光技术的领跑者,所以对于土壤样品中的重金属检测时显的更加得心应手。因为专注,所以专业,金索坤公司的这份自信源自于研发团队三十多年对原子荧光技术的不住探索。为了提高仪器的技术指标,金索坤的研发团队几乎在原子荧光光谱仪的每个系统都做出了革命性的改进。例如:原子荧光光谱仪的光学系统有两种,即色散型和无色散型。其中色散系统由激发光源、原子化器、单色器及接收放大器组成;无色散系统由激发光源、原子化器、滤光片(也可以不加滤光片)及日盲光电倍增管组成。与色散系统相比,无色散系统更为简便,而且不存在波长漂移,检测限低。虽然无色散系统干扰较大,但氢化物发生系统刚好弥补了不足,所以,金索坤公司选择了无色散光路系统。特别值得注意的一点是,新一代原子荧光光谱仪采用的是独具金索坤特色的短焦不等距无色散光路系统,它比传统的短焦等距光路系统接收的荧光信号强度提高了2.8 倍。大大加强了仪器的灵敏度,为复杂的土壤样品的检测奠定基础。在2017年6月30日。国务院印发了关于《土壤污染防治法(草案)》征求意见函,向广大群众征求意见,在“草案”明确要求建立土壤污染防治标准体系,规定每十年组织一次土壤环境状况普查。金索坤公司在应用原子荧光法检测土壤中的总砷、总汞、总铅的检测做了大量的实验,总结出许多宝贵经验。例如在应用SK-乐析原子荧光光谱仪检测土壤样品时应当注意这几点:检测砷的注意事项(1)在盐酸中一般都存在着一定含量的砷,因此采用优级纯HCL可减少空白。但也有个别情况分析纯中砷含量低于优级纯,以及不同生产厂或不同的生产批号砷的含量差别也很大, 因此建议在使用前先用少量的HCl配制成10%(V/V)条件下进行对比检验。(2)将所使用前的各种器皿必须用(1+1)HNO3浸泡24小时,然后认真清洗干净,防止砷的污染。(3)因为砷标准贮备液为三价状态,为防止在保存期间砷被氧化,仍建议加入硫脲+抗坏血酸,碘化钾预先还原砷(Ⅴ)至砷(Ⅲ),还原速度受温度影响,室温低于或小于15℃,至少应放置30分钟,样品也必须同样进行预还原。(4)配置标准溶液的容量瓶必须长期固定不变,不能任意变动。(5)配制标准溶液时宜采用固定的一支5mL刻度的移液管,可直接用于配制全部标准系列。检测汞的注意事项(1)在检测汞的时候要特别注意容器的污染问题,使用前应认真用20% HNO3浸泡及清洗。(2) KBH4溶液最好现用现配,如果放置时间稍长,其还原能力下降,从而导致灵敏度下降。(3在气温较高时(≥30℃),信号不稳定,因此在夏季测定时,宜在有空调的实验室内进行。检测铅的注意事项 (1)铅的氢化反应只有在氧化剂存在下才有较高的反应效率。铁氰化钾-盐酸是一种很有效的铅烷发生体系。由于铁氰化钾溶液不稳定性,加入在标准溶液中,放置时间稍长就会有靛蓝色沉淀生成,不仅会污染器皿, 而且还使燃烧发生效率降低。将铁氰化钾加入硼氢化钾溶液中。然后与铅的酸性溶液进行氢化反应,获得较好效果。(2)含有铁氰化钾的硼氢化钾溶液与酸性溶液反应过程中,在气液分离器中废液还产生靛蓝色溶液,因此当测定完毕后及时将两道泵管放入去离子水中冲洗。(3)铅的氢化物发生条件要求比较苛刻。因此要特别注意严格按照建议条件操作,反应完后的废液pH值应在8~9之间。土壤监测制度的实施离不开技术指标过硬的检测仪器,金索坤新一代原子荧光光谱仪以其优异的技术指标得到了广大用户的认可和好评,在今后的时间里,金索坤公司会一如既往的为原子荧光技术的发展探索乾坤,助力我国的土壤检测。 金索坤SK-乐析原子荧光光度计
  • 微反应、固定床、釜式反应器杂化,实现硝化、加氢、环化、还原全连续
    个前言在化学合成中,每一步反应都有其独特性。对应于其独特性,化学化工研究者需要寻找合适的反应器来研究其工艺参数,实现放大生产。今天给大家介绍一篇多步反应全连续的文章。作者应用微反应器、固定床反应器以及釜式反应器杂化,实现硝化、加氢、环化、还原全连续操作,实现了Afizagabar (S44819)关键中间体的连续生产。研究背景Afizagabar (S44819) 是一种首创的、有竞争性和选择性的 α5-GABAAR 拮抗剂。由于临床研究需要相对较高的剂量,在产品的开发阶段需要生产约150kg的Afizagabar。然而,在釜式工艺放大的过程中,特别是在硝化和氢化的步骤中,安全及放大问题阻碍了产品生产的进程。图1. Afizagabar方程式研究过程Afizagabar(S44819)的合成,涉及了两个关键中间体INT15和INT23 ,如图2所示,两者经过一系列反应最终合成产品S44819。图2. Afizagabar(S44819)合成路线INT15的合成过程:原料STM1先硝化后得到中间体11,中间体11经过Dakin−West反应、还原得到中间体13,中间体13关环、再经过硼氢化钠还原得到关键中间体INT15。本文主要介绍INT15的多步串联合成研究过程。一. 硝化工艺过程研究1. 釜式硝化工艺研究合成INT15的第一步硝化,釜式工艺是以硝酸-硫酸混酸为硝化剂,反应时间50−90分钟。但当温度升高,会生成危险的二硝基衍生物而安全风险大。硝化反应放热量大,步骤本身的反应热存在安全风险。而且后续步骤的反应热也存在安全风险。从DSC数据可知(图3),中间体11和中间体12的分解能量非常的高, (ΔHINT11 = −745 J/g, onset: 205 °C ΔHINT12 = −1394 J/g, onset: 187 °C),如果发生分解那么后果将会变得非常严重。图3. 中间体11和中间体12的DSC谱图2. 微反应连续硝化工艺研究作者对传统的硝化工艺进行了重新设计,使用微反应器代替间歇釜来实现硝化过程。图4.连续流硝化反应作者选用硝酸(HNO3)和冰醋酸(AcOH)作为硝化剂,对连续反应条件做了优化。通过实验得到硝化步骤的操作参数范围为:温度为35~45℃,停留时间30S,流速范围为1-6mL/min,反应转化率接近100%。该连续流工艺与传统釜式工艺相比:连续流微反应反应时间大大缩短(由釜式50−90分钟缩短到30秒);连续流无低温操作,节省能耗(微反应可以在35~45℃下进行,釜式在-65°C下进行);反应可控性好,易于放大;消除了二硝的产生,生产的安全性大大提升。二. 固定床加氢过程研究图5. 氢化步骤反应方程式针对INT12加氢的过程,作者采用了固定床工艺。作者选用Pd/Al2O3做为催化剂,在固定化床式加氢反应器中进行反应,通过加入HCL将INT13分批成盐的方式解决其不稳定的问题。并且,作者打通了微反应器硝化和固定床反应器氢化的两步连续过程。同时,为了减少单元操作和溶剂置换工序,作者对氢化、关环以及还原步骤的溶剂进行了优化。表1.不同溶剂对氢化和环化反应的影响研究发现,使用四氢呋喃/二氯甲烷/乙腈体系不仅有很高的氢化以及环化的转化率,而且可以将硝化、氢化、环合以及还原工序串联,实现连续化生产。多步反应全连续,溶剂的选择往往是成败的关键。三. 多步串联合成中间体INT15图6. 连续串联合成中间体INT5工艺流程图作者选用微通道反应器、固定化床加氢反应器、釜式反应器杂化的方式,经过溶剂筛选、工艺条件优化,将硝化、氢化、环化、还原反应步骤串联,中间不经过分离,实现了多步反应的全连续(图6)。多步全连续工艺不仅可以减少操作步骤,而且生产效率大幅度提高。串联后,实验室规模稳定运行5小时,并以11.95g/h的通量得到97.1%纯度的INT15。实验小结连续流技术改变了药物研究的时空产率,有了更广的参数窗口。与在线分析仪器的良好的兼容性,可以更好地实现自动化和智能化,有助于提高研发效率和快速转化,从而获得更好的技术优势;微通道连续流技术,由于其较低的持液量、强大的传质和换热能力,对于在传统间歇生产模式下具有安全风险的反应,例如涉及剧毒试剂、不稳定中间体的反应,具有较好的优势;此外,连续流生产是降低API合成工艺放大的有效工具,可以更快地应对市场变化,节省中试放大成本,提升企业的竞争力。参考文献:Org. Process Res. Dev. 2022, 26, 1223−1235编者语康宁反应器模块化的组装方式和开放的接口,非常适合与其他类型的反应器、在线检测设备以及后处理装置联用。康宁反应器无缝放大的技术,可以帮助客户实现更高效的工业化生产,尤其是硝化、加氢、重氮化、卤化等危险反应工艺。在过去的几年中,康宁已实施了多套杂化的多步连续工艺,帮助客户实现了传统间歇反应釜工艺向连续流技术的升级和改造,取得了非常好的社会效应和经济效应。
  • 临床质谱企业瑞莱谱获数千万元A轮融资,君联资本、华盖资本联合投资
    p style=" text-align: justify text-indent: 2em " strong 近日,据投资界消息,瑞莱谱(杭州)医疗科技有限公司完成数千万元A轮融资,本轮融资由君联资本、华盖资本联合投资,老股东辰德资本追加投资。 /strong /p p style=" text-align: justify text-indent: 2em " 据了解,瑞莱谱医疗位于浙江省杭州市,是一家致力于临床质谱设备和配套试剂盒的研发、生产和销售的IVD企业,旨在为临床医学客户提供质谱仪器、自动化配套设备、体外诊断试剂盒、应用方法学及服务的一站式整体解决方案。 /p p style=" text-align: justify text-indent: 2em " 作为临床质谱领域的平台型公司,瑞莱谱拥有齐全的质谱产品管线,包括电感耦合等离子体-质谱仪(ICP-MS)、气相色谱-质谱仪(GC-MS)、液相色谱-串联质谱仪(LC-MS/MS)三大类质谱平台及配套自动化前处理设备和检测试剂盒。 /p p style=" text-align: justify text-indent: 2em " 据瑞莱谱创始人郑毅介绍, strong 目前,美国临床质谱检测服务市场规模约在90亿美元/年,约占临床检测总市场份额的15%;与之对标的国内临床质谱检测市场的潜在市场规模,有望达到300亿人民币/年。 /strong strong 当前国内临床质谱发展方兴未艾,但市场占比却不足1%,未来发展潜力极为可观。 /strong 临床质谱技术已然成为体外诊断领域最具发展前景的方向之一,是检验医学的新热点。 /p p br/ /p
  • 原子荧光光谱法 同时测定食盐中砷、锑、铋和汞的含量
    摘要: 本文应用北京吉天仪器有限公司(以下简称:吉天仪器)的Kylin S18四通道双光束原子荧光光度计同时测定食盐中砷、锑、铋和汞元素的含量,并对方法进行了验证。实验结果表明:参考国标方法,用微波消解食盐样品,同测砷、锑、铋和汞四种元素,方法检出限为As 0.0004μg/g,Sb 0.0005μg/g,Bi 0.0003μg/g,Hg 0.0001μg/g,加标回收率在94.4%~114.9%。采用Kylin S18可以同时测定食盐中砷、锑、铋和汞四种元素的含量,结果真实可靠。1.前言食盐是人们日常生活中不可替代的特殊调味品,但如果食盐中含有砷、锑、铋、汞等重金属,便会危害人们的身体健康。GB2762-2017《食品安全国家标准 食品中污染物限量》中明确规定了食盐中砷、汞、铅、镉等元素的限量指标,并且指明了砷和汞的检验方法,按GB 5009.11和GB 5009.17规定的方法测定。目前,砷、锑、铋和汞的测定方法主要有原子吸收光谱法、原子荧光光谱法和电感耦合等离子体质谱法等。其中,原子荧光光谱法因其灵敏度好、重复性好、准确度高等优点而被广泛使用。国标采用原子荧光光谱法测食品中砷、锑、铋和汞元素均单独检测。本研究参考GB5009,采用微波消解前处理,原子荧光光谱法四通道同时测定食盐中砷、锑、铋和汞四种元素。该方法操作简单,准确可靠,且检测效率高,为食盐中重金属元素含量的测定提供了较好的参考方法。2.仪器设备表1:实验所用仪器/设备/耗材/试剂#仪器/设备/耗材#试剂1Kylin S18 四通道双光束原子荧光光度计(北京吉天仪器有限公司)1砷标准溶液(GBW(E)080117)2微波消解仪2锑标准溶液(GBW(E)080545)3智能控温电加热器3铋标准溶液(GBW(E)080271)4分析天平(万分之一)4汞标准溶液(GBW(E)080124)5超纯水仪5硝酸(优级纯)6氩气(纯度≥99.99%)6盐酸(优级纯)7容量瓶7氢氧化钾(优级纯)8比色管8硼氢化钠(分析纯)9离心管9硫脲(分析纯)10抗坏血酸(分析纯)1130%过氧化氢(分析纯)3. 测试原理样品经微波消解后,加入硫脲使五价砷和五价锑预还原为三价砷和三价锑,再加入硼氢化钾(或硼氢化钠)使其进一步还原生成砷化氢和锑化氢,铋被还原为铋化氢,汞被直接还原为原子态汞,由氩气载入石英原子化器中分解为原子态砷、锑和铋。在高强度砷、锑、铋和汞空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测溶液中砷、锑、铋和汞的浓度成正比,与标准系列比较定量。多道原子荧光同时检测砷、锑、铋和汞元素的含量。4.分析方法4.1 试样制备4.1.1 试剂溶液盐酸溶液(1+1):量取50mL盐酸,缓缓加入到50mL去离子水中。5%盐酸(V/V):量取50mL盐酸,用去离子水定容至1000mL。1.05%硼氢化钠(W/V,或1.5%硼氢化钾,溶于0.5%氢氧化钾溶液):先称取5g氢氧化钾,放入1000mL去离子水中,待完全溶解后,再加入称好的10.5g硼氢化钾,溶解后摇匀。10%硫脲+10%抗坏血酸混合溶液(W/V):称取10g硫脲和10g抗坏血酸,加去离子水定容至100mL,搅拌、超声或加热,使其溶解。4.1.2 标准品溶液砷标准使用溶液(1μg/mL):精确吸取100μg/mL砷标准贮备液1mL至100mL容量瓶中,用5%盐酸稀释至刻度。锑标准使用溶液(1μg/mL):精确吸取100μg/mL砷标准贮备液1mL至100mL容量瓶中,用5%盐酸稀释至刻度。铋标准使用溶液(1μg/mL):精确吸取100μg/mL砷标准贮备液1mL至100mL容量瓶中,用5%盐酸稀释至刻度汞标准使用溶液(1μg/mL):精确吸取100μg/mL汞标准贮备液1mL至100mL容量瓶中,用5%盐酸稀释至刻度。 测定用砷、锑、铋和汞混合标准溶液: 准确吸取砷标准使用液1mL、锑标准使用液1mL、铋标准使用液1mL、汞标准使用液0.1mL于100mL容量瓶中, 加入5mL浓盐酸,加入10mL 10%的硫脲+10%的抗坏血酸混合溶液,用去离子水定容至刻度(混合标准溶液中砷、锑和铋的浓度为10.0 ng/mL、汞的浓度为1.0 ng/mL)。4.1.3 样品溶液称取样品1g,精确至0.0001g,置于消解罐中,加入硝酸和过氧化氢,按照微波消解条件(表2)进行微波消解。消解完毕,待消解罐冷却后打开,用少量去离子水将消解罐的盖子进行冲洗,并入到消解罐内罐中。将消解罐内罐放入智能电加热器中,130℃加热赶酸至约2~4mL。用少量去离子水分三次冲消解罐内罐,将溶液移至25mL比色管,加入2.5mL盐酸溶液(1+1),加入2.5mL10%的硫脲+10%的抗坏血酸混合溶液,用去离子水稀释定容,摇匀,预还原30min后上机测定As、Sb、Bi和Hg元素的含量。同时做试剂空白试验和样品加标实验。 表2:微波消解条件步骤温度/℃保温时间/min压力/atm11205202150535318054042002540 4.2 仪器工作条件表 3:仪器工作条件仪器北京吉天仪器有限公司kylin S18 原子荧光光度计通道A道(As)B道(Sb)C道(Bi)D道(Hg)灯电流(主阴极/辅阴极)80/40 mA80/40 mA60/30mA35/0 mA负高压280V灯双光束扣漂移是载气400 mL/min屏蔽气800 mL/min原子化器温度200 ℃原子化器温度高度12 mm5 实验结果5.1 重复性连续进样7次测定用混合标准溶液1.0 mL,重复性统计见表4。 表4:砷、锑、铋和汞四种元素的重复性#信号值A道(As)B道(Sb)C道(Bi)D道(Hg)13398.093581.324146.192106.4623382.683597.364129.802108.9933402.693601.064164.762118.9343359.803572.504177.612086.2553359.873582.684185.082098.3063361.893590.254128.902078.0573364.463575.624151.212095.27RSD0.55%0.30%0.53%0.66%5.2 标准曲线和方法检出限将混合标准溶液依次进样0.1 mL,0.2 mL,0.4mL,0.8 mL和1.0mL,以元素浓度为横坐标,信号值为纵坐标绘制标准曲线,砷、锑、铋和汞的线性见图1、图2、图3和图4,线性及相关系数见表5。连续进11次标准空白溶液,计算方法检出限,结果见表6。 图1 As的标准曲线 图2 Sb的标准曲线图3 Bi的标准曲线 图4 Hg的标准曲线 表5:线性范围、线性回归方程及相关系数元素线性范围(ng/mL)线性方程相关系数rA道(As)1.0~10.0Y=319.66X+1.260.9998B道(Sb)1.0~10.0Y=356.71X-21.780.9995C道(Bi)1.0~10.0Y=410.20X-11.510.9999D道(Hg)0.1~1.0Y=2071.6X-23.080.9998 表6:方法检出限元素11次空白信号值方法检出限(μg/g)A道(As)1.77,3.26,0.39,2.16,4.31,1.85,0.49,-0.51,3.53,1.74,-1.200.0004B道(Sb)3.73,5.79,1.59,3.72,6.24,2.71,0.19,4.22,1.08,1.02,-0.060.0005C道(Bi)-2.15,-3.01,-1.43,-2.02,-2.23,-1.35,1.44,0.02,-0.10,-3.26,-0.870.0003D道(Hg)15.65,18.21,15.80,21.49,19.13,24.16,26.30,23.14,21.57,19.78,20.430.00015.3 样品测试结果及准确度表7:样品测量浓度及准确度结果表样品名称测定值(mg/kg)加标回收率(%)A道(As)B道(Sb)C道(Bi)D道(Hg)A道(As)B道(Sb)C道(Bi)D道(Hg)海藻盐未检出未检出未检出未检出97.194.5103.3103.0未检出未检出未检出未检出96.399.5100.799.4井盐未检出未检出未检出未检出94.499.2103.5101.7未检出未检出未检出未检出97.0100.7101.595.8湖盐未检出未检出未检出未检出101.7105.8105.1103.7未检出未检出未检出未检出114.9112.1104.0101.2腌制盐未检出未检出未检出未检出94.899.599.9101.5未检出未检出未检出未检出99.8 102.4 106.0 103.3 6 结论  应用北京吉天仪器有限公司的Kylin S18四通道双光束原子荧光光度计四通道同时测定食盐样品中砷、锑、铋和汞四种元素的含量。实验结果表明,采用该方法可以准确地测定食盐样品中砷、锑、铋和汞元素的含量,测量重复性好,线性好,加标回收率较好。该方法参考了GB5009,结果准确可靠,值得推广。
  • 震后后话-精密仪器的保养和维护
    2017年08月08日21时19分46秒在四川阿坝州九寨沟县(北纬33.2度,东经103.82度)发生7级地震,震源深度20千米。至2017年8月9日,地震已经造成19人死亡,343人受伤。看到震后的满目疮痍,每个人的心都在颤抖!愿天佑华夏,不要再添伤亡;愿福杯倾撒,抚平震后伤痛。实际上,像地震、台风、强降雨、雷暴等极端恶劣天气对实验室的危害也很大。所以就像我们需要参加一些演习来增强我们在恶劣环境中的求生技能一样,实验室的维护人员也需要了解一些基本的仪器的维护和检修常识。在《实验室常规仪器的日常维护及管理注意事项》中就有对于电子设备要按要求检查自身保护装置,控制环境温度、湿度、连续工作时间、电源电压等,注意防潮、防尘、防腐,定期对电子仪器进行通电检查;对于玻璃仪器需要及时清理等。而对于不同的仪器,又有一些具体的要求。以金索坤公司生产的原子荧光光谱仪为例,它在实验室环境变动下可能产生下述问题:测试中荧光值异常、测试线波动大;氢化法原子化器无火焰;测试没有测试线以及蠕动泵不转等情况。一、如果出现测试中荧光值异常、测试线波动大的情况,原因可能是两方面:一种是实验室环境不佳,比如室内空气湿度过大或者空气流动过大、工作台震动、排风量过大以及光线直射等,这就需要我们采取相应的措施,比如添加除湿机、避免仪器空气扰动、远离振动源、控制排风量在600-1200m3/h同时避免光线直射。另一种原因可能是氢化反应不稳定,解决这种问题就需要进行排查:1)器皿污染。用10%的硝酸浸泡1-2小再用去离子水洗净。2)进样泵管、毛细尖嘴堵塞。这就需要进行下面的操作:1.关闭蠕动泵开关,停止进样;2.将固定螺栓从多功能反应模块上拧下;3.将进样毛细尖嘴从进样管上取下,更换新的进样毛细尖嘴。3)硅胶管变形。进样泵管在使用一段时间后会产生变形,影响溶液稳定吸入。如果测试时出现异常,需要更换。更换胶管变的操作是:1.将毛细进样尖嘴的反应模块专用接头从多功能反应模块上拧下;2.将毛细进样尖嘴的反应模块专用接头从多功能反应模块上拧下;3.将进样毛细尖嘴与蠕动泵进样泵管分开;4.将进样泵管定位环和进样管卸下,更换一段新的进样泵管;5.重新安装整套进样管。二、如果氢化法原子化器无火焰,可能的原因有:点火炉丝上出了问题、进样不正常或者硼氢化钾失效。1)点火炉丝未上电,这时候只需要检查点火炉丝的连线和插头。如果发现点火炉丝烧断就需要更换新的点火炉丝。步骤如下:1.旋开固定螺丝1,分别取下固定圈2和陶瓷帽3;2.松开炉丝接口螺丝,小心取下损坏的炉丝;3.将新炉丝两端先穿过固定孑L,然后拉紧两端,使炉丝圈外端紧贴固定孔,炉丝两端伸出部分旋在螺丝上,拧紧螺丝后把炉丝圈均匀套在内部石英管的外面;4.盖上陶瓷帽和固定圈,旋上固定螺丝。2)进样不正常没有氢化反应发生。遇到这种情景首先需要检测蠕动泵转速,泵卡调节棘轮。如果没有效果,问题就可能出现在进样泵管、毛细尖嘴堵塞或硅胶管变形上。(具体的操作方法可以按照一中的2)进样泵管、毛细尖嘴堵塞和3)硅胶管变形解决)3)硼氢化钾失效。这时的解决方法也简单,更换硼氢化钾。三、测试没有测试线。出现这种情况一般都是仪器通讯异常或是阴极灯选择错引起的。1)仪器通讯异常。1.检查主机与计算机通讯线连接是否正常;2.检查分析软件设定通讯端口与连接计算机通讯端口是否一致。2)阴极灯选择错误。检查分析软件选择测试元素与使用阴极灯灯元素是否相符。四、蠕动泵不转。出现这种情景首先需要检查泵开关是否打开,其次就是要检查氩气阀门是否打开以及次级压力是否大于0.2Mpa随着检测行业的兴起,各种实验仪器为检测工作者带来了极大地便利。各类仪器已经成为检测工作者的好朋友、得力助手。所以,这些仪器的维护也就成了实验室工作者的必修科目,毕竟,防患于未然总好过于事情发生时手忙脚乱。金索坤SK-880火焰原子荧光光谱仪
  • 李刚团队优化钙钛矿太阳能电池效率提升逾25%,突破19.5%
    前言近年来,钙钛矿和有机太阳能电池(PSCs和OSCs)因其高效率和低成本的潜力而备受关注。然而,界面缺陷和非理想的能级排列等问题仍然限制着器件性能的进一步提升。香港理工大学李刚团队在《Nature Communications》(1 Sep. doi.org:10.1038/s41467-024-51760-5)上发表了一项研究成果,他们利用界面工程技术,通过共吸附自组装单分子层(SAMs)成功提升了太阳能电池的性能。该团队采用PyCA-3F和2PACz分子进行共吸附,形成了一层功能化的超薄层,有效减少了SAMs的自聚集现象,并改善了界面特性。这种方法不仅提高了钙钛矿太阳能电池的结晶度,还降低了陷阱态密度,增强了空穴的提取和传输能力,最终使光电转换效率(PCEs)突破了25%。此外,采用CA策略的器件也实现了19.51%的PCE。導讀目錄: 前言 研究方法 表面形貌与结构分析 光电性能与界面特性分析 結論研究方法:通过调整钙钛矿和有机太阳能电池活性层材料的比例,优化器件性能。例如,钙钛矿电池使用CsI、MACl、FAI、PbI2和MAPbBr3调配1.6 M溶液;有机电池使用PM1:PTQ10混合物并添加1-氯萘优化形貌。表面形貌与结构分析:表面形貌分析:使用原子力显微镜(AFM)和扫描电子显微镜能谱(SEM-EDX)来观察和分析ITO、2PACz和2PACz+PyCA-3F表面的形貌和元素分布。 结晶结构分析:利用X射线绕射(XRD)研究钙钛矿薄膜在不同基底上的生长结构。红外光谱学(AFM-IR):分析2PACz分子在ITO表面的分布和组成异质性,特别是通过识别1460 cm^-1特征峰来研究2PACz的聚集行为。 扫描电子显微镜-能量色散X射线分析(SEM-EDX):用于分析ITO、2PACz和CA样品的微观结构和元素组成,以评估这些材料的质量和均匀性。光电性能与界面特性分析:光伏參數測量:包括开路电压(Voc)、短路电流密度(Jsc)、填充因子(FF)、最大功率(Pm)和能量转换效率(Er)。这些参数提供了关于太阳能电池在特定条件下的性能信息,研究人员使用SourceMeter测量太阳能电池的电流-电压(J-V)曲线,测量在手套箱中进行,使用的是Enlitech的太阳能模拟器SS-F7-3A,模拟AM 1.5 G的标准光照条件(100 mW cm^-2)。 光电转换效率测试:在不同光照条件下测量太阳能电池的性能,包括光电转换效率(PCE)、电流密度(Jsc)、电压(Voc)和填充因子(FF)。 外量子效率(EQE)的测量则使用Enlitech Co., Ltd.的太阳能电池光谱响应测量系统QE-R3011进行,并在交流模式下进行测量。光强度在每个波长下都使用标准单晶硅光伏电池进行校准。这些设备和测量方法确保了测量结果的准确性和可靠性,从而能够精确评估太阳能电池的光电转换效率和其他关键性能参数。 界面能级分析:计算费米能级、势能和功函数,了解界面特性。时间分辨光致发光(TRPL):测量发光寿命,评估激子、载流子动态。空间电荷限制电流(SCLC):计算陷阱密度,评估缺陷和载流子传输。Kelvin探针力显微镜(KPFM):测量表面电位分布,了解其对电池性能的影响。X射线光电子能谱(XPS):分析表面化学组成和电子结构,了解元素分布受2PACz和PyCA-3F的影响。结论共吸附策略(CA)修饰自组装单层(SAM)基空穴传输层(HTL),可显着提升钙钛矿/有机太阳能电池的稳定性和光电转换效率(PCE)。PyCA-3F与2PACz共吸附形成平滑表面,优化能带排列,降低界面能量势垒,平整钙钛矿埋藏界面,增强异质界面能量,减少缺陷,最终提高器件效率和稳定性。此研究为高效溶液加工光伏器件的发展提供了简单、合理、有效的SAM基HTL层改性方法。共吸附SAM形成更平滑均匀的表面,减少2PACz分子聚集,改善界面特性。 减少界面陷阱和非辐射中心,提升器件稳定性。使用CA作为阳极修饰层,可获得与PEDOT相当甚至更高的FF和Jsc。CA基太阳能电池表现出优异的运行稳定性:
  • 原子荧光光谱法测定食品添加剂中砷元素
    GB 5009.76-2014 食品安全国家标准 食品添加剂中砷的测定代替GB/T 5009.76-2003 食品添加剂中砷的测定,将于2016年3月1日正式实施。标准中将原子荧光光谱法作为食品添加剂中砷的测定方法之一。原子荧光作为检测砷、汞、铅等重金属的常规分析仪器具有灵敏度高、操作简便等特点,而作为中国氢化法原子荧光技术发源地的北京金索坤推出的新一代原子荧光光度计更是具有“多、快、好、省”四大特色。下面为各位实验室检测同行分享下如何应用原子荧光光度计测试食品添加剂中的砷元素。 按照新标准,应用原子荧光光度计测试食品添加剂中的砷元素需要准备以下试剂:氢氧化钠(NaOH)(优级纯)、硼氢化钠或硼氢化钾(NaBH4或KBH4)、硫脲(CH4N2S)、硝酸(HNO3)(优级纯)、硫酸(H2SO4)(优级纯)、高氯酸(HCIO4)(优级纯)、盐酸(HCl)(优级纯)、硝酸镁[Mg(N03)2.6H2O]、氧化镁(MgO)、过氧化氢(H2O2)。 试剂的配制1、氢氧化钠溶液(2 g/L):称取2.0 g氢氧化钠,溶于1 000 mL水中,混匀。2、硼氢化钠溶液(10 g/L):称取10.0 g硼氢化钠,溶于1 000 mL氢氧化钠溶液中,混匀。临用现配(也可称取14 g硼氢化钾代替硼氢化钠)。3、硫脲溶液(50 g/L):称取50 g硫脲,溶于1 000 mL水中,混匀。4、硫酸溶液(1+9):量取100 mL硫酸,小心倒入水900 ml。中,混匀。5、氢氧化钠溶液(100 g/L):称取1.0 g氢氧化钠,溶于10 mL水中。6、盐酸溶液(1+1):量取100 mL盐酸缓慢倒入100 mL水中,混匀,冷却后使用。7、硝酸镁溶液(150 g/L):称取150 g硝酸镁,溶于1 000 mL水中,混匀。 标准溶液的配制1、砷标准储备液(0.1 mg/mL。):精确称取于100℃干燥2h以上的三氧化二砷0.1320 g,加100 g/L氢氧化钠溶液10 mL溶解,用水定量转入1 000 mL容量瓶中,加硫酸溶液(1+9)25 mL定容至刻度。2、砷标准使用液(1/μg/mL):吸取1.00 mL砷储备标准液于100 mL容量瓶中,用水稀释至刻度。 分析步骤以湿法消解为例称取固体试样1 g~2.5 g(精确至0.001 g),液体试样5 g~10 g(精确至0.001 g),置于100 mL锥形瓶中,加硝酸20 mL~40 mL,硫酸1.25 mL,放置过夜。次日置于电热板上加热消解(主气流量:为定值,500mL/min左右 辅气流量:800~1000mL/min泵速:70~80转/min检出限(参考值):0.01ng/mL 注意事项:(1)在盐酸中一般都存在着一定含量的As,因此采用优级纯HCL可减少空白。但也有个别情况分析纯中As含量低于优级纯,以及不同生产厂或不同的生产批号As的含量差别也很大, 因此建议在使用前先用少量的HCl配制成10%(V/V)条件下进行对比检验。(2)将所使用前的各种器皿必须用(1+1)HNO3浸泡24小时,然后认真清洗干净,防止As的污染。(3)本说明所配制的砷标准贮备液为三价状态,为防止在保存期间砷被氧化,仍建议加入硫脲+抗坏血酸,碘化钾预先还原As(Ⅴ)至As(Ⅲ),还原速度受温度影响,室温低于或小于15℃,至少应放置30分钟,样品也必须同样进行预还原。(4)配置标准溶液的容量瓶必须长期固定不变,不能任意变动。(5)配制标准溶液时宜采用固定的一支5mL刻度的移液管,可直接用于配制全部标准系列。(6)硼氢化钾溶液浓度对As测定有较大影响。
  • Kylin S1原子荧光光谱法 四道同测自来水中硒,汞,砷和锑
    简介工业和生活用水中砷、硒和汞的污染来源于天然矿床,工业排放,水源流经采矿区,垃圾填埋和农业活动。食用被污染的水会引起皮肤损害(砷),肾脏和神经系统损伤(汞)以及手指和脚趾的麻木(硒),同时(锑)也可以造成皮肤黏膜、心脏、肝脏、肺及神经系统等多个组织器官的损害。原子荧光法是近10年来发展较快的一种新的分析技术。该方法具有检测操作简单、易行,分析结果准确、可靠,应用范围广等特点。应用北京吉天仪器有限公司生产的kylin s1四通道原子荧光光谱仪同时测定自来水中硒、汞、砷和锑的含量。符合国家标准。吉天仪器kylin s1系列原子荧光光谱仪为生活用水,水质分析提供了高效准确的分析方法。方案优势原子荧光(afs)是中国具有自主知识产权的分析仪器,广泛应用于环境监测,食品安全,地质矿产等领域,具有灵敏度高、线性范围宽、光谱干扰及化学干扰少、仪器结构简单、成本低等优点。可以发生氢化反应的元素,在酸性介质中,硼氢化钾(硼氢化钠)生成的新生态氢,作为还原剂,发生氢化反应,生产氢化物(汞为汞蒸气),通过氩气将氢化物(汞蒸气)导入原子化器中,在氢火焰中发生原子化,被测元素空心阴极灯作为激发光源,被测元素原子受光辐射激发产生电子跃迁,当激发态的电子返回基态时即发出特征荧光,荧光强度在一定范围内与被测元素含量成正比。硒、汞、砷和锑元素的主要荧光谱线介于200~290nm之间,正好是日盲光电倍增管灵敏度最好波段,处于最佳检测波长范围之内。硒、汞、砷和锑作为水质分析的主要指标,同时测定各类水质样品中这四种元素可以很大程度节约分析时间和试剂成本。本文对于自来水样品中的硒、汞、砷和锑的含量进行了四道同时测定并进行了方法学考察。表一:实验所用仪器/设备/耗材/试剂序号仪器/设备/耗材序号试剂1北京吉天仪器有限kylin s1 原子荧光光度计1硒标准溶液(gbw(e)080215)2水浴锅2汞标准溶液(gbw(e)080124)3分析天平(万分之一)3砷标准溶液(gbw(e)080117)4超纯水仪4锑标准溶液(gbw(e)080545)5超声仪5盐酸(优级纯)6氩气(纯度≥99.99%)6氢氧化钾(优级纯)7烧杯(1000ml)7硼氢化钾(优级纯)8容量瓶(100ml)8硫脲(优级纯)9比色管(25ml和100ml) 1、测试原理样品中硒、汞、砷和锑经浓盐酸提取后,用硫脲将五价砷还原为三价砷,六价硒被还原成四价硒,五价锑还原为三价锑,kbh4在酸性环境下产生新生态氢,与样品中元素发生氢化反应,生成氢化物(汞为汞蒸气),通过氩气将氢化物(汞蒸气)导入原子化器中并在氢火焰中发生原子化,被测元素空心阴极灯作为激发光源,被测元素原子受光辐射激发产生电子跃迁,当激发态的电子返回基态时即发出特征荧光,荧光强度在一定范围内与被测元素含量成正比,外标法定量。2 、实验结果12 2.1、标准曲线将混合标准使用液依次进样0 ml,0.1 ml,0.2 ml,0.5 ml,0.8 ml和1.0ml,以元素浓度为横坐标,峰面积为纵坐标绘制标准曲线,硒,砷和锑的线性图见图一,汞的线性图见图二,线性及相关系数见表二。 图一:硒,砷和锑的标准曲线 图二:汞的标准曲线 表二:线性及相关系数元素线性方程相关系数ra道(se)y=122.23x+78.2950.9983b道(hg)y=847.5x+0.77890.9994c道(as)y=300.19x+81.8760.9990d道(sb)y=176.66x+-23.7940.99942.2 、重复性连续进7针标混合标准溶液0.4ml,重复性统计见表三。表三:硒、汞、砷和锑四种元素的重复性#峰面积(mv.s)a道(se)b道(hg)c道(as)d道(sb)11246.17829.412967.891623.7721239.25847.942926.031605.3031231.58844.902955.481609.8141231.01843.212912.411605.0351251.12835.912973.341636.6461213.90840.462908.381607.0271230.81830.152921.931589.58rsd0.99%0.86%0.92%0.94%2.3 、样品及加标回收率样品的浓度见表四,加标回收见表五。表四:样品浓度样品名称含量(mg/kg)a(se)b(hg)c(as)d(sb)样品-10000样品-20000表五:加标回收率样品名称回收率(%)a(se)b(hg)c(as)d(sb)加标-187.22%98.57%95.41%93.11%加标-289.92%99.30%94.22%91.06%3 、 结论测试结果显示:应用北京吉天仪器有限公司设计的kylin s1原子荧光光度计可以很好的测定自来水样品中的痕量砷、锑、硒和汞四种元素,线性关系良好;重复性好;各待测元素回收率良好。
  • 《水俣公约》来了,吉天仪器为四海八荒出份力!
    2017年8月16日,《关于汞的水俣公约》(以下简称《水俣公约》)正式生效。2013年1月19日,联合国环境规划署通过了旨在全球范围内控制和减少汞排放的国际公约《水俣公约》,就具体限排范围做出详细规定,以减少汞对环境和人类健康造成的损害。  我国于2013年10月在外交全权代表大会上签署了《水俣公约》。2016年4月,全国人大常委会批准了该公约。2016年8月,我国向联合国交存公约批准文书,因此,在2017年8月16日,我国与其他74个国家一起成为首批缔约方。  事件背景:水俣是日本的一座城市,20世纪中期,在日本水俣的汞污染事件是最早出现的由于工业废水排放污染造成的公害病。日本至少有5万人受到不同程度的影响,因此《水俣公约》以其“水俣病”事件为背景命名,此公约是近十年来环境与健康领域内订立的一项新的全球性公约,针对使用、释放或排放汞的一系列产品、工艺和行业制定了各种控制和减排措施,还对汞的直接开采、汞金属的进出口及汞废物的安全储存等做出了相应的规定。  吉天仪器为四海八荒出份力!  汞及其化合物具有高毒性,是常见的典型污染元素。中国作为最大的发展中国家,汞排放量占全球1/4以上,是汞生产、使用大国,履约任务艰巨。各行业对于公约中涉及的各项产品、污染源及改进技术需要最具科学有效的检测手段。目前,国内外分析行业用于汞元素测定的技术颇多,方法也各不相同,是可谓“四海八荒,各显神力”。同时北京吉天仪器有限公司(以下简称“吉天仪器”)也为汞污染防治方面提供了全面的分析方法和检测方式。1、 原子荧光分析仪(Atomic Fluorescence Spectrometry,AFS)Kylin系列原子荧光分析仪  测试样品中的总汞,样品经酸提取加热消解后,在酸性介质中,样品中汞被还原剂(硼氢化钾或硼氢化钠)还原成气态汞化合物,由载气(氩气)带入原子化器中,在特制空心阴极灯照射下,使基态汞原子被激发至高能态,再去活化回到基态的同时,发出特征波长的荧光,荧光的强度在一定范围内与汞含量成正比。检测限为ppb级。2、 液相色谱-原子荧光联用仪(Liquid Chromatography Atomic Fluorescence Spectrometry,LC-AFS)SA-50液相色谱-原子荧光联用仪  应用液相色谱-原子荧光联用仪测试样品中的汞形态,将样品经酸提取后,经C18色谱柱分离。分离液再经紫外消解将有机汞转化为易于氢化物发生的无机汞,然后被原子荧光检测。同时可配备吉天仪器自主研发的恒温混悬离心集成系统,可在短时间内完成样品的提取,无需浸泡过夜,超高效的紫外消解装置,不需要通入辅助氧化剂,简化了管路,减小柱后扩散的风险。3、 直接进样汞(镉)测试仪(Direct Cadmium and Mercury Analyzer,DCMA)DCMA-300直接进样汞镉测试仪  应用直接进样汞镉测试仪测试样品中的总汞,无需任何样品前处理。仪器原理为通过高温热解释放样品中的汞,以金丝捕集完成基质分离,再加热金丝完全释放捕集的汞,用原子荧光检测器检测汞的浓度。整个测试过程,最大程度保留样品中汞含量,避免了前处理带来的误差,并且无二次污染。该方法可快速、准确、稳定测试样品中汞,省时省力,检出限达0.02ng。
  • 天瑞仪器提供“血铅” 专项检测方案
    近日,社会公共安全事件频频发生,威胁着人民的生命健康。 随着工业化和城市化进程加快,铅毒正在日益严重地污染着儿童的血液,残害儿童的智力,毁损儿童的骨骼,紊乱儿童的神经。血铅,已是伸向儿童健康的一只魔爪。3月中旬,从湖南郴州传来令人揪心的消息,郴州市上百名儿童查出血铅超标,其中近半数已经呈现中毒迹象。 作为国内分析检测仪器的领导者,始终将社会责任作为企业的发展宗旨之一,在为&ldquo 毒豇豆&rdquo 事件提供解决方案后,天瑞仪器立即组织专家对&ldquo 血铅&rdquo 提出预案,迅速出台相应的解决方案。 详情请登陆天瑞仪器官网或者拨打服务热线,我们会为您排忧解难,热忱服务! 公司网址:www.skyray-instrument.com 服务热线:800-9993-800 400-7102-888 血铅,即血液中铅的含量,各种铅毒,像幽灵一样环伺在孩子们的周围。有关调查显示,儿童血铅中毒主要来源于工业污染、含铅汽油、学习用品和玩具、食物、水和土壤等方面。 针对这种情况,天瑞仪器利用原子荧光仪器对血铅检测得出具体方法: 原子荧光对血铅的测定 1 Pb标液配置 使用铅(Pb)标准使用溶液(0.1ug/ml),优级纯盐酸(HCL) ,去离子水(电阻率&ge 10M 欧姆)等试剂。 1.1 载流液的配制   载液流通常选用与标液基体相一致的等浓度酸溶液,用于推动样品至反应系统参与反应并清洗整个仪器管路。   2%HCL(体积分数) :准确量取 20ml 浓盐酸,用去离子水定容至 1000ml。 1.2 还原剂的配制   1%氢氧化钾(KOH) 、2%硼氢化钾(KBH4)和 1%铁氰化钾(K3Fe (CN)6)混合溶液。   配制方法如下:先准确称取 5g 氢氧化钾溶于去离子水中,请确定氢氧化钾完全溶解后,再准确称取 20g 硼氢化钾和 10g铁氰化钾放入该溶液中,用去离子水定容到 1000ml,溶解后摇匀。建议用时现配,最好不要过夜保存,配制流程不可颠倒。 因 K 与 Na 的原子量不同,故改用 NaOH 作为稳定介质时应进行浓度换算,换算系数为 0.7,即1%KOH 相当于 0.7%NaOH。 2 Pb的样品处理 从样品中称量0.20g左右于消解罐中,加入8ml HNO3和2mlH2O2。微波消解,然后蒸干。冷却后定容于100ml容量瓶中,加入2mlHCl,0.2%草酸1ml(备注:如果样品中加入草酸,标准溶液里面也要加入同等浓度的草酸)。(同时做样品空白)。 3 仪器操作条件:   负高压(V):270;灯电流(mA):40/40;氩气流量(ml/M):300/800 灯丝亮暗度:3 ;读数时间:14s;延迟时间:4s;空白判别值:10 4 仪器配置 原子荧光仪器一台;电脑一台。 了解天瑞仪器更多请点击:www.skyray-instrument.com
  • 金索坤新一代原子荧光产品的保养与维护
    氢化法原子荧光光谱仪也被称为原子荧光光度计,是拥有我国自主知识产权的光谱仪器,由于其检出限低、灵敏度高、抗干扰力强,在重金属检测方面占有重要位置。作为精密仪器,只有注重日常的保养和维护才能更好地发挥检测作用。北京金索坤技术开发有限公司是市面上唯一一家只专注原子荧光光谱仪的研发以及生产的高新技术企业。公司生产的原子荧光产品是新一代原子荧光光谱仪的代表,所以了解SK系列氢化法原子荧光光谱仪的维护是十分必要的。氢化法原子荧光光谱仪(AFS)在使用过程中可能会出现荧光强度异常、氢化法原子化器无火焰以及没有测试线等问题。一、荧光强度异常出现测试中荧光值异常、测试线波动大的情况很有可能是因为实验环境不佳或是氢化反应不正常引起的。氢化法原子荧光光谱仪(AFS)对于实验环境是有一定的要求的,室内空气湿度过大或者空气流动过大、工作台震动、排风量过大以及光线直射等都可能影响AFS的测试结果。所以就需要我们为仪器提供一个适宜的工作环境,如添加除湿机、避免仪器空气扰动、远离振动源、控制排风量在600-1200m3/h同时避免光线直射。如果是氢化反应不稳定,则可能是器皿污染,进样泵管、毛细尖嘴堵塞或是硅胶管堵塞造成的。如果是器皿污染造成的,仅需要用用10%的硝酸浸泡1-2小再用去离子水洗净即可;如果是进样泵管、毛细尖嘴堵塞或是硅胶管变形引起的,就需要及时更换。二、原子化器无火焰如果原子化器无火焰可能的原因有:点火炉丝上出了问题、进样不正常或者硼氢化钾失效。如果是点火炉丝出现问题首先要检查点火炉丝的连线和插头,如果都没有问题,那就可能是点火炉丝烧断这时就需要更换点火炉丝;另外,进样不正常或者硼氢化钾失效致使氢化反应不能正常进行也是导致原子化器无火焰的原因。此时,就需要检查并更换进样泵管、毛细尖嘴或重新配制硼氢化钾溶液。三、测试过程中没有测试线。出现这种情况一般都是仪器通讯异常或是阴极灯选择错引起的。检查主机与计算机的连接以及分析软件设定通讯端口与连接计算机通讯端口是否正常以及检查分析软件选择测试元素与使用阴极灯元素是否相符。原子荧光光谱仪是分析实验室必不可少的分析仪器之一,也是检测工作者的得力助手,只有使用正确的保养和维护方法才可以更好地发挥这些仪器的作用,检测出更加真实可靠地数据。金索坤公司也会一如既往的原子荧光技术的发展探索乾坤,用更加优质的重金属检测仪器助力我国的检测行业的发展。 金索坤SK-盛析氢化法原子荧光光谱仪(原子荧光光度计)
  • 仪器表征,科学家首次提出钙钛矿材料表面处理新策略!
    【科学背景】随着太阳能技术的快速发展,钙钛矿太阳能电池(PSCs)因其高效能和低成本制造引起了广泛关注。钙钛矿材料作为下一代光伏材料,单结PSCs的转换效率已经超过了26%,显示出巨大的潜力。然而,钙钛矿太阳能电池在商业化应用中仍面临许多挑战,其中最关键的是操作稳定性问题。尽管当前的研究在提高初始效率方面取得了显著进展,但要实现与硅基太阳能电池相媲美的使用寿命,还有许多技术难题需要克服。钙钛矿材料存在许多离子缺陷,这些缺陷在制造和使用过程中会影响器件性能和稳定性。为了解决这些问题,科学家们开发了多种表面处理策略,如铅氧盐、离子液体、自组装单分子层和二维钙钛矿层等。这些方法在一定程度上提高了钙钛矿太阳能电池的性能和稳定性。然而,这些处理方法通常仅在制造阶段有效,难以在设备操作和储存过程中处理新生成的缺陷。而环境应力因素(如湿度、热量和光照)会加剧这些缺陷的形成,进一步影响设备的长期稳定性。为此,香港城市大学冯宪平教授与牛津大学Henry J. Snaith教授等科学家们提出了一种“活性处理剂”的概念,通过包含动态共价键(DCBs)的材料来实现钙钛矿的动态修复。这种方法不仅在制造过程中对钙钛矿薄膜进行处理,还能在设备操作和储存期间持续发挥作用。具体来说,科学家们利用一种含有阻滞尿素/硫代氨基甲酸酯键(HUBLA)的Lewis酸碱材料,这种材料在水和热的作用下能够生成新的活性剂,动态钝化钙钛矿中的缺陷,从而提高设备的性能和稳定性。本研究中,HUBLA材料被用于钙钛矿太阳能电池的表面处理。在暴露于湿气或热量时,HUBLA会生成新的活性剂,进一步钝化钙钛矿中的缺陷。实验结果表明,这种处理策略显著提升了钙钛矿太阳能电池的性能,器件的转换效率达到了25.1%。此外,在氮气环境下85°C的条件下,经过约1500小时的老化测试,HUBLA处理的设备保持了其初始PCE的94%;在空气中85°C和相对湿度30%的条件下,经过1000小时的老化测试,设备保持了其初始PCE的88%。【科学亮点】1. 实验首次提出了实时响应的钙钛矿表面处理策略:利用含有动态共价键(DCBs)的HUBLA材料,该材料在水和热的激活下可以动态修复钙钛矿,从而增强器件的性能和稳定性。这种策略不仅在制造过程中对沉积的钙钛矿薄膜进行处理,还在器件制造后继续发挥作用。2. 实验通过HUBLA及其生成物实现了高效能器件:&bull 通过HUBLA材料与钙钛矿光电活性层中的离子缺陷发生反应,生成新的钝化剂,从而钝化缺陷并提高器件性能。&bull HUBLA材料在暴露于湿气或热量的情况下,可以释放额外的Lewis碱,进一步钝化钙钛矿中的缺陷。这一特性使得器件能够在环境应力下自我修复,保持高效能。3. 实验结果表明,使用HUBLA的钙钛矿太阳能电池(PSC)性能显著提高:&bull 实验实现了转换效率(PCE)达到25.1%的高性能钙钛矿太阳能电池。&bull HUBLA设备在氮气环境中85°C下经过约1500小时的老化测试,仍能保持其初始PCE的94%。&bull 在空气中85°C和相对湿度30%的条件下,经过1000小时的老化后,HUBLA设备仍能保持其初始PCE的88%。4. 提出了一种新型的“活性处理剂”概念:HUBLA材料通过动态共价键技术,在器件操作和存储期间响应环境应力动态修复钙钛矿,从而提升了器件的稳定性和长期性能。这种方法为解决钙钛矿太阳能电池中因环境应力导致的性能衰退问题提供了一种有效的新途径。【科学图文】图1:HUBLA 的动态反应、水解和氧化还原穿梭。图2. 钙钛矿薄膜上HUBLA的动态反应和钝化。图3. 钙钛矿薄膜的稳定性。图4:钙钛矿光伏电池的性能和稳定性。【科学结论】本文开发并应用了一种新型的动态共价键材料——阻滞尿素/硫代氨基甲酸酯键(HUBLA),用于改善钙钛矿太阳能电池(PSC)的性能和稳定性。传统上,钙钛矿材料由于其在湿热环境下易于形成缺陷而限制了其长期稳定性,这对其商业化应用构成了挑战。HUBLA的引入不仅使得钙钛矿能够在制造过程中得到更好的控制,还能在器件使用后动态地修复新生成的缺陷。通过与水和热的相互作用,HUBLA能够释放出新的活性剂,进一步钝化钙钛矿中的离子缺陷,从而显著提升了器件的长期稳定性和性能。具体来说,实验结果显示,经过HUBLA处理的钙钛矿太阳能电池在高温和潮湿条件下的长期老化测试中,保持了高达94%的初始转换效率(PCE),表明其在应对恶劣环境条件下的优越性能。未来,基于动态共价键的表面处理策略可能不仅局限于太阳能电池领域,还有望在其他光电器件以及功能性材料的设计和性能优化中发挥重要作用,推动能源技术的进步和应用拓展。原文详情:Wang, WT., Holzhey, P., Zhou, N. et al. Water- and heat-activated dynamic passivation for perovskite photovoltaics. Nature (2024). https://doi.org/10.1038/s41586-024-07705-5
  • 赫施曼助力食品中锡含量的测定
    锡是机体必须的微量元素,能促进蛋白质及核酸的合成,适量的锡能促进机体生长发育。但摄入过量的锡会引起呕吐、痉挛和中枢神经错乱,还可能会促使肝脏脂肪性变及肾血管变化,肝及肾功能异常。根据GB 5009.16-2023,测定食品中锡含量的第一法为:氢化物原子荧光光谱法。其原理为:试样经消解后,在硼氢化钠(或硼氢化钾)的作用下生成锡的氢化物(SnH₄ ),并由载气带入原子化器中进行原子化,在锡空心阴极灯的照射下,基态锡原子被激发至高能态,在去活化回到基态时,发射出特征波长的荧光,其荧光强度与锡含量成正比,与标准系列溶液比较定量。实验中标准溶液配置步骤如下:1.锡标准溶液(1.00mg/mL):准确称取0.1000g金属锡标准品,置于小烧杯中,用瓶口分液器加入10.0 mL硫酸,盖以表面皿,加热至锡完全溶解,移去表面皿,继续加热至出现浓白烟,冷却,慢慢加入50mL水,移入100mL容量瓶中,用硫酸溶液(1+9)多次洗涤烧杯,洗液并入容量瓶中,并稀释至刻度,混匀。2.锡标准中间液(10.0mg/L):用Miragen电动移液器准确移取锡标准溶液(1.00mg/mL)1.00mL于100mL容量瓶中,用硫酸溶液(1+9)定容至刻度,混匀。于0℃~5℃保存,有效期4周。3.锡标准使用液(1.00mg/L):用Miragen电动移液器准确移取锡标准中间液(10.0mg/L)10.0mL于100mL容量瓶中,用硫酸溶液(1+9)定容至刻度,混匀。于0℃~5℃保存,有效期4周。4.采用20mL规格的opus电子瓶口分配器,stepper模式设置5个体积分别为0.500、2.00、3.00 、4.00、5.00mL,然后按分液键,将5个体积的锡标准使用液(1.00mg/L)分别加入25mL容量瓶中,另设一个不加的做空白对照;同样用opus电子瓶口分配器向容量瓶中分别加入硫酸溶液(1+9)5.00(空白)、4.50、3.00、2.00、1.00mL;再用瓶口分液器加入硫脲+抗坏血酸溶液2.0mL,最后用水定容至25 mL。此锡标准系列溶液的质量浓度分别为0μg/L、20.0μg/L、80.0μg/L、120μg/L、160μg/L、200μg/L。临用现配。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的液体移取。其中ceramus痕量分析瓶口分配器,采用极耐腐蚀的材质,以及可以阻断试剂挥发进主机的专利密封阀设计,使其适用于除氢氟酸以外的几乎所有溶剂的液体分配工作,包括浓硝酸、浓盐酸和王水等强腐蚀性或挥发性的特殊试剂。实验室移取几微升到几毫升的液体,一般采用移液器。Miragen电动移液器,接头和内腔为不锈钢,相对于常见的橡胶和塑料,更适合有机试剂。电枪的数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。赫施曼的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加;大体积的型号可代替烧杯、玻璃棒、洗瓶,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 土壤重金属检测仪【竞道光电新款发布】
    土壤重金属检测仪【竞道光电新款发布】JD-ZSBเครื่องวัดโลหะหนักในดิน,近年来环境污染越来越受到公众的关注。大量重金属通过污水,大气沉降,固体废弃物等沉积富集在土壤中,重金属具有较强的迁移性和生物毒性,对人类及动植物均会产生较大威胁和危害。目前,土壤中重金属检测国标方法多采用混酸加热进行湿法消解后的原子光谱法测定金属含量,该方法操作复杂,重复性较差,偶然误差大。  食品、土壤、水质逐渐被工业废气、废水、废渣所污染,甚至有些人直接用工业废水浇灌庄稼,造成土壤耕作层内的镉、铜、砷、铬、汞、镍、铁、铝、锌、锰、铜等 重金属大量富积、积累,特别是城市郊区现象更为严重 加上大量使用无机化学农药等致使蔬菜和鱼类体内的重金属含量严重超标的情况,不断在人体内积累,导致 消费者重金属慢性中毒现象发生,国内已发生多起重金属集体中毒事件,已引起政府的高度重视和社会各界的广泛关注,但是当前重金属测定方法测定速度慢、步骤 繁琐且仪器昂贵。基于这种形势,我们开发出了重金属快速测定方法,可对蔬菜、食品、土壤、有机肥、烟叶等样品中的铅、砷、铬、镉、汞等进行快速联合测定。  一、土壤重金属检测仪检测原理:  (一)样品经消化后,所有形态的重金属(包括砷、铅、镉、铬、汞、镍、铁、铝、锌、锰、铜等)都转化为离子型态,加入相关检测试剂后显色,在一定浓度范围内溶液颜色的深浅与重金属的含量呈比例关系,服从朗伯--比尔定律,再通过仪器进行测定得出含量值,与国家标准农产品安全质量无公害蔬菜安全要求允许限量的标准进行比较,来判断蔬菜样品重金属含量。  (二)各项重金属的检测原理及采用标准  1、重金属砷的检测原理及采用标准  采用国家标准(GB/T5009.11-2003)硼氢化物还原比色法,即样品经消化后,加入碘化钾-硫脲并加热,将五价砷还原为三价砷,在酸性条件下硼氢化钾将三价砷还原为负三价,形成砷化氢导入吸收液中呈黄色,经仪器检测得出砷含量。  2、重金属铅的检测原理及采用标准  采用国家标准(GB/T5009.12-2003)二硫腙比色法,即样品经消化后,在弱碱性条件下,铅离子与二硫腙生成红色络合物,溶于三氯甲烷后,比色测定。  3、重金属铬的检测原理及采用标准  样品经消化后,在二价锰存在条件下,铬离子与二苯碳酰二肼反应生成紫红色络合物,络合物颜色的深浅与六价铬含量呈正比,比色测定可得出铬含量。  4、重金属镉的检测原理及采用标准  采用国家标准(GB/T5009.15-2003)比色法,即样品经消化后,在碱性条件下,镉离子与6-溴苯丙噻唑偶氮萘酚生成红色络合物,溶于三氯甲烷后,比色测定。  5、重金属汞的检测原理及采用标准  采用国家标准(GB/T5009.17-2003)二硫腙比色法,即样品经消化后,在酸性条件下,汞离子与二硫腙生成橙红色络合物,溶于三氯甲烷后,比色测定。
  • 《Nature》刊发!多种科研仪器助力破解钙钛矿电池寿命基因难题!
    中国科学院合肥物质科学研究院固体物理研究所、中国科学院光伏与节能材料重点实验室潘旭研究员和田兴友研究员团队与韩国成均馆大学Nam-Gyu Park教授、华北电力大学戴松元教授合作,成功在反式钙钛矿太阳电池研究方面取得新突破。研究团队首次发现钙钛矿阳离子面外分布不均匀是影响电池性能的主要原因,并通过设计1-(苯磺酰基)吡咯(PSP)作为添加剂均匀化钙钛矿薄膜相分布,获得了26.1%的光电转换效率(PCE)。相关成果于2023年11月2日加速在线发表(AAP)在《自然》(Nature)杂志上。 钙钛矿太阳电池是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于新概念太阳能电池,经过多年发展,传统的界面钝化及结晶调控方法很大程度上推动了电池效率的提升,但近年来相关研究中该电池效率的提升速度明显放缓,相关研究遇到了“瓶颈”。科研人员发现,钙钛矿薄膜内往往不可避免的会发生相分离现象,研究团队前期工作表明有效管理卤素相分离有助于提高器件性能(Angew. Chem. Int. Ed., 2022, 2213932)。高效率钙钛矿材料往往通过采用纯碘体系下的阳离子掺杂组分获得,尤其是FA1-xCsxPbI3体系,不同的阳离子组分在钙钛矿体相面外方向的分布对钙钛矿体相载流子扩散及界面抽取至关重要。深入研究阳离子面外方向分布,不但有助于理解钙钛矿体相载流子动力学过程,更有望推动钙钛矿太阳电池效率的进一步提升。但是钙钛矿体相的不同阳离子组分分布、以及影响电池稳定性和效率损失的原因目前尚不清楚。 基于此,研究团队从FA1-xCsxPbI3体系出发,通过元素定量分析研究了甲脒(FA)与铯(Cs)阳离子的纵向分布,结合飞行时间二次离子质谱(ToF-SIMS)与X射线光电子谱(XPS),深度剖析发无机Cs阳离子倾向于沉积在薄膜底部,有机FA阳离子在薄膜上界面处富集。在此基础上,研究团队对钙钛矿薄膜晶相分布进行了深度剖析,通过掠入射X射线衍射(GIXRD)与薄膜截面的透射电镜(TEM)分析,证明了在薄膜底部存在面间距较小的晶相,并且在薄膜底部显示出与富Cs钙钛矿相关的特征信号。这些实验充分说明阳离子面外方向的梯度不均匀分布,这也是首次可视化验证了钙钛矿薄膜的阳离子组分在面外不均匀分布。 研究团队通过原位试验方法进一步分析了这种梯度不均匀分布的原因,发现不同阳离子在结晶及相转变过程中的速率差过大是导致组分不均匀的主要原因。进而,团队设计了PSP分子以弥补不同阳离子间的结晶与相转速率差,制备出均匀化的钙钛矿薄膜。这种阳离子组分均匀分布的钙钛矿薄膜有效抑制了由底部富Cs相带来的准I型能级排列,极大程度上提升了载流子寿命及扩散长度,加强了载流子界面抽取。 研究团队利用PSP策略制备的反式钙钛矿太阳电池获得了26.1%的最高效率,认证效率为25.8%。此外,经2500小时最大功率电追踪后(MPPT),未封装的器件仍保持其初始 PCE 的 92% 的可靠运行稳定性。该研究工作表明,通过均匀化钙钛矿组分面外分布可获得优异电池性能,开辟了提升电池器件稳定性的新途径,有望打破钙钛矿太阳电池的效率瓶颈,为进一步提升高效、稳定的钙钛矿太阳电池提供了明确的方向,对推动PSCs走向商业化发展具有重要意义。 中国科学院合肥物质院固体所博士研究生梁政为该论文第一作者,南方科技大学章勇博士、固体所博士研究生徐慧芬为共同第一作者,固体所潘旭研究员为论文的第一通讯作者,固体所叶加久博士、成均馆大学Nam-Gyu Park教授和华北电力大学戴松元教授为论文的共同通讯作者。该工作得到了国家重点研发计划、国家自然科学基金、安徽省杰出青年基金、合肥物质院院长基金等项目资助。 文章链接:https://www.nature.com/articles/s41586-023-06784-0 科研人员在检测电池器件性能(图片来源于中国科学院合肥物质科学研究院)
  • 食品中元素形态分析方法与标准简述
    元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态分为物理形态和化学形态,物理形态是指元素在样品中的物理状态,如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。   元素在食品中以不同的形态存在,元素对于人体的作用和元素的形态密切相关。这里所说形态是指该元素在不同种类化合物中的表现或分布。比如铬,三价铬是人体耐糖因子的组成部分,很多糖尿病和人体缺乏三价铬有关,而六价铬则是比较强的致癌物。不同形态砷之间的毒性差异也很大,如以有机砷形式存在的砷糖、砷甜菜碱几乎没有毒性,而无机砷化物的毒性却很高。所以,对于某些元素,只了解某元素在食品中的总量还是不够的,我们在了解总量的同时,更希望了解某元素在食品中的形态组成。   测量元素的形态,可以通过以下一些方法来实现:   分光光度法:在显色时对元素的形态有特定要求,可以利用这一特性,进行形态分析。比较典型的例子是水中六价铬的测量。这一方法通常干扰大、灵敏度不是很高,在简单基质有一定应用的范围。   原子荧光法(AFS):由于产生氢化物对元素的形态有一定的要求,可以利用这一特点进行形态分析。比如说有机砷几乎不会和硼氢化物生成氢化砷,氢化物-原子荧光法不能直接检测有机砷,而无机砷则能和硼氢化物进行反应而被探测到。利用这一特点可以测量某些元素的不同形态。该方法的特点是灵敏度很高。不足之处是特异性强,只能分析有限几种元素中某些形态,应用不广。   色谱法:采用色谱柱分离不同形态,然后用分光光度或电导等检测器测量。比如离子色谱法就是比较常用的方法。这一方法由于有预分离处理,干扰比分光光度法小,灵敏度也好一些。   预分离法:对试样先根据元素不同形态的特点,进行预分离,如有机萃取、离子吸附和交换等手段,将某特定形态和其它形态分离后收集,再采用一些光谱的分析方法测量。这种方法灵敏度比较高,但前处理比较复杂,也容易受到干扰。   色谱-光谱(质谱)联用法:该方法采用在线色谱分离,分离后各组分直接进入光谱仪器测量。结合了色谱和光谱技术的优点,具有分离效果好、灵敏度高、应用广泛等优点。缺点是设备较为昂贵,从色谱到光谱的接口技术需要解决,前处理方法也有待加强研究。不同的色谱和光谱联用技术都有文献报道,主要集中在色谱和等离子体质谱仪(ICP-MS)的联用上。目前常见的有以下几种联用方法。   1、液相色谱-ICP-MS联用   液相色谱(HPLC)-ICP-MS联用技术适用于食品样品中难挥发的化合物的分析。由于液相色谱的流速和ICP-MS 进样速度一致,所以联接非常简单方便,其联用接口非常简单。另外,由于液相色谱的特点,具有进样量小、分析速度快、分离效果好等优点。因此,HPLC与ICP&mdash MS联用技术在各类食品中砷、硒、锡、汞等元素形态分析领域得到了越来越多的应用,相关的研究也最多。在使用该技术时,要注意液相流动相的成分是否符合ICP-MS的进样溶液要求。如果有机相比例过高,则需要辅助氧化技术。   2、离子色谱-ICP-MS联用   离子色谱法(IC)作为一种有效的分离和检测技术,已经在金属和非金属离子的测定中得到了较多应用,已成为成为解决复杂机体中超痕量离子形态分析的有效工具,也是ICP&mdash MS相关联用技术研究的热点之一,在食品分析领域有着越来越多的应用。其联用方法和液相色谱一样,也很简单。目前相关文献集中在铬、砷、锑、溴、碘等形态的检测研究上。同样的,使用该技术时,要注意离子色谱流动相和ICP-MS进样要求的匹配性,流动相的可溶性固体含量不能太高。   3、气相色谱-ICP-MS   气相色谱(GC)适用于易挥发或中等挥发的有机金属化合物的分离,而且分离之前的衍生化步骤不仅使分离与分析过程复杂化,而且增加了待测形态丢失或玷污的可能性。而且气相和ICP-MS联接需要一个专用的接口。因此,GC与ICP&mdash MS联用应用于元素的形态分析具有一定局限性。目前,GC-ICP-MS技术仅限于烷基铅、烷基锡和烷基汞等形态的分析上。   4、毛细管电泳-ICP-MS   相对与气相和液相色谱,毛细管电泳(CE)具有分离效率高、消耗样品量少、分离时间快等特点适用范围广,可分离从简单离子、非离子性化合物到生物大分子等各类化合物。但是在分离过程中,样品中分析物的原始形态可能由于电解质或pH值的调节而发生变化,样品的组成也是影响CE分离的一个重要因素,由于CE与ICP&mdash MS的接口没有HPLC成熟,在一定程度上制约了CE-ICP&mdash MS联用技术的应用。但相关的研究还是不少,主要集中在食品中砷、硒、汞等元素形态的分析。   5、液相色谱-AFS   由于中国AFS的技术领先于世,所以该研究在国内发展也很快。由于AFS对某些元素,如As、Se、Hg等的检测灵敏度很高,而且这些元素也是形态分析所最关注的元素,所以AFS在元素形态分析上大有用武之地。如前所述,单用AFS能进行一些特定的形态分析,而要完成更好的分离和检测,就需要和色谱联用。现在主要是和液相色谱联用,已经有多款HPLC-AFS仪器上市。该技术的优势在于具备了液相分离的优点,也能利用AFS的高灵敏度和元素特异性,仪器的整体价格也不高。其缺点在于,检测元素受到AFS的限制,而且AFS检测状态的稳定性也较难保证。   食品中元素形态分析的标准:   1、砷的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中无机砷的限量标准,所以也有相关的检测方法:   GB/T 5009.11-2003 食品中总砷及无机砷的测定 :无机砷检测采用原子荧光法,前处理和总砷不一样。   GB/T 23372-2009 食品中无机砷的测定 液相色谱-电感耦合等离子体质谱法:该标准采用HPLC-ICP-MS联用技术,分离和检测能力都很强。   有机砷农药的检测方法有一个行业标准:SN/T 2316-2009 进出口动物源性食品中阿散酸、硝苯砷酸、洛克沙砷残留量检测方法 离子色谱-电感耦合等离子体质谱法   2、汞的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中有机汞(以甲基汞计)的限量标准,所以也有相关的检测方法:   GB/T 5009.15-2003 食品中总汞及有机汞的测定: 有机汞采用气相色谱法和预分离&mdash 冷原子光度法。   无机砷和有机汞的检测方法都有缺陷,修订的新方法(草案)采用液相-原子荧光联用法,但也有问题,到现在没有颁布为更新方法。   3、溴酸盐的形态分析标准   由于溴酸盐是2B类致癌物,所以已不允许作为添加剂使用。食品中溴酸盐的形态分析有两个标准,都用离子色谱法:   GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法   SN/T 3138-2012 出口面制品中溴酸盐的测定 柱后衍生离子色谱法   水中溴酸盐也有限量标准和检测方法,在相关水检测标准中,也是离子色谱法。   4、铬的形态分析标准   六价铬的检测方法有一个行业标准:   SN/T 2210-2008 保健食品中六价铬的测定 离子色谱-电感耦合等离子体质谱法   水中的六价铬也有相应标准检测方法,采用经典的比色法。在水的检测标准中。     (撰稿人:上海出入境检验检疫局 杨振宇 博士)   注:文中观点不代表本网立场,仅供读者参考
  • ThalesNano和德克萨斯大学推出了适合全球高校的本科氢化实验课程
    旨在为全球的学院重新引入氢化教学实验,今天ThalesNano 和O'Brien集团在Arlington德克萨斯大学宣布完成了开发安全和科学有趣的氢化实验课程。该课程被设计成完全使用 ThalesNano 的 H-Cube® 和 H-Cube Tutor&trade 连续流动氢化反应系统,这个 H-Cube 连续流动氢化反应系统能消除使用氢气的危险和易燃催化剂的危险。这样就导致氢化反应不只是停留在大多数本科实验教学大纲中,从今天起 H-Cube 连续流动氢化反应系统 可以作为常规实验室类的一部分。 最初 ThalesNano 提供的中英文课程可允许教育工作者通过多媒体和传统课程介绍氢化反应,然后在 H-Cube 连续流动氢化反应系统上直接进行几个工业上普遍的氢化和氢解的反应。 阿灵顿德克萨斯大学的Chris O'Brien教授评论说:&ldquo 在UTA,我们很长时间都希望在本科生实验室中教授氢化反应技术,但出于安全的考虑令我们一直无法执行此想法。多亏了 H-Cube 连续流动氢化反应系统,研究生和本科学生在好几年前就已经能够熟练操作 H-Cube 连续流动氢化反应系统和氢化反应。基于这么多年的经验,我们提出了一门正式的氢化反应课程,我们认为其他学校也可以很轻松地接受。令人兴奋的是可以看到更多的 H-Cube 连续流动氢化反应系统 在教育体系中使用,很公平地说有 H-Cube 连续流动氢化反应系统实践经验的毕业生将在申请工作时占有优势。&rdquo &ldquo ThalesNano承认学术界在帮助建立创新性的技术作为新的行业标准中所发挥的重要性&rdquo ,Laszlo Urge博士, ThalesNano公司首席执行官说,&ldquo 这项倡议预计将对教育工作者产生巨大的吸引力,正如 H-Cube 连续流动氢化反应系统 的系列产品不只是重新把氢化实验引入到了教学实验室,而且也将带给他们流动化学的实践经验。众所周知,流动化学当前在化学合成工业中正呈现出快速增长的趋势。&rdquo Official ThalesNano website: www.thalesnano.com Official ThalesNano contact email: flowchemistry@thalesnano.com Official website: www.pynnco.com Contact Information: 美国培安公司 地址:朝阳区吉庆里14号佳汇国际A202 Email: sales@pynnco.com, Tel:010-65528800
  • 聚焦氢化植物油反式脂肪酸 标准或20日前公布
    一则关于“植物奶油”的报道,好似一场速成的化学课,让消费者一夜之间认识了“氢化油”这个名词。   随着“问题”氢化植物油频频被媒体曝光,有关食品安全的话题再度牵动了人们敏感的神经。   同时,在部分企业人士看来,氢化植物油暗藏食品灾难的说法并不能完全“站得住脚”。有企业人士表示:“反式脂肪酸在天然食品里也存在,只要量控制得好,就没什么健康问题。”   江南大学油脂专家王兴国表示,中国粮油协会油脂分会正在起草一份关于氢化油的说明文件,将具体就其定义和在国内的生产、使用量进行公布,具体时间在本月20日前。届时,有关氢化油的真相才可能真正呈现在大众面前。   11月10日,《每日经济新闻》记者调查发现,国内能够生产氢化油的企业并不如人们想象的那么多。   同时,氢化油即植物奶油的说法也遭到专家质疑。“植物奶油与氢化油不是一个概念,将两者混为一谈是一种误导。”11月10日,江南大学食品学院博导、油脂专家王兴国告诉《每日经济新闻》记者,“氢化油只是植物奶油、植脂末中可能的一个成分,不能混为一谈,也有一些不添加氢化油的植物奶油。”   氢化油厂商难觅踪迹   自CCTV2曝光了植物奶油的乱象之后,氢化油“一夜成名”。   不过,记者调查发现,在全国范围内,氢化油的生产商上并没有想象中的那么多。“你要的氢化油我们没有。”11月10日,上市公司安徽丰原生化的一位油脂销售人员如此告诉《每日经济新闻》记者,“我们从来没生产过。”   “我们没有氢化油。”11月10日,记者咨询了多家从事油脂生产、加工的上市企业,对方均表示不生产该产品。   为何日前报道中“大量存在于各种食品当中”的氢化油却在上游市场难觅踪迹?是企业想避避风头,还是确有其事?湖南金健植物油有限责任公司一位工作人员表示,“事实上,制造氢化油的成本很高,对生产机器有着较高的要求,我们不生产。”   王兴国在接受媒体采访时也表示:“中国一年消耗的食品专用油和烹饪油在2300万吨左右,其中90%是用棕榈油做的,氢化油只占很小一部分。”   一位广州地区的油脂企业的技术人员说,“据我所知,国内生产氢化油的企业只有几家。”   聚焦“反式脂肪酸”   为何氢化油又成为媒体眼中的恶魔?有学术界人士认为,将植物奶油与氢化油画上等号是一种误读。真正对人体造成危害的元凶,是“反式脂肪酸”。   “植物奶油与氢化油不是一个概念,将两者混为一谈是一种误导。”王兴国表示,“氢化油只是植物奶油、植脂末中的一个成分,不能混为一谈,也有一些不添加氢化油的植物奶油。”   一位上海主要生产植脂奶油企业的人士表示,“植物奶油并不等于氢化油,但是在某些植物奶油的生产中,需要加入氢化油,而氢化油中则含有少量的反式脂肪酸。”   不过,在部分媒体报道中,认为植物奶油又称为氢化油,两者为一种物质。   王兴国告诉《每日经济新闻》记者,中国粮油协会油脂分会正在起草一份关于氢化油的说明文件,将具体就其特质和在国内的使用量进行公布,具体时间在本月20日前。届时,关于植物奶油、氢化油的争论或将有一个定论。   资料显示,反式脂肪酸才是对人体造成损害的“元凶”。其最常见存在于速溶咖啡伴侣、奶精之中,还包括如方便面、饼干、酥皮面包、薯片这样的速食品。反式脂肪酸的大量摄入,会导致心血管疾病的几率是饱和脂肪酸的3~5倍,甚至还会损害人们的认知功能。此外,人造脂肪还可能诱发肿瘤(乳腺癌等)、哮喘、2型糖尿病、过敏等疾病。   在11月9日卫生部召开的新闻发布会上,卫生部有关人士表示,正组织开展反式脂肪酸风险监测评估工作。   值得关注的是,卫生部于昨日公布了《食品安全国家标准管理办法》,规定了食品安全国家标准规划和制(修)订计划的内容及制订程序、标准起草过程要求、公开征求意见要求、标准审查程序、标准批准发布形式及实施后的管理等。根据这一规定,自今年12月1日起,任何公民、法人和其他组织都可以提出食品安全国家标准立项建议。
  • 国强标《生活饮用水用聚氯化铝》报批公示 多项分析方法有变动
    p   3月11日,工业和信息化部科技司发布关于《生活饮用水用聚氯化铝》强制性国家标准报批公示的通知,公示时间:2019年3月11日-2019年4月12日,建议批准发布后6个月实施。 /p p   内容显示,《生活饮用水用聚氯化铝》(GB 15892—201X)按照GB/T1.1-2009给出的规则起草,规定了生活饮用水用聚氯化铝的要求、试验方法、检验规则、标志、包装、运输和贮存,适用于生活饮用水用聚氯化铝,该产品主要用于生活饮用水的净化。 /p p   本标准代替GB 15892-2009《生活饮用水用聚氯化铝》,与GB 15892-2009相比主要技术变化如下: /p p    span style=" color: rgb(255, 0, 0) " strong 修改了生活饮用水用聚氯化铝的指标 /strong /span (见表1,2009年版表1) /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/128e68b0-9c53-44a8-a30e-efad1eb8bc7e.jpg" title=" 表1.png" alt=" 表1.png" width=" 600" height=" 396" border=" 0" vspace=" 0" style=" width: 600px height: 396px " / /p p    span style=" color: rgb(255, 0, 0) " strong 增加了铁含量的测定 /strong /span (见6.7) /p p   按GB/T 22596规定执行。 /p p    span style=" color: rgb(255, 0, 0) " strong 将砷含量测定中的砷斑法改为 a href=" https://www.instrument.com.cn/zc/36.html" target=" _blank" 原子荧光光谱法 /a (仲裁法) /strong /span (见6.8.1,2009年版5.6.2) /p p    strong 方法提要: /strong 试样经加酸处理后,加入硫脲使五价砷预还原为三价砷,再加入硼氢化钠或硼氢化钾使还原生成砷化氢,由氩气载入石英原子化器中分解为原子态砷,在砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测溶液中的砷浓度成正比,与标准系列比较定量。 /p p    span style=" color: rgb(255, 0, 0) " strong 铅、镉含量测定中增加了 a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" 火焰原子吸收光谱法 /a /strong /span (见6.9.2、6.10.2) /p p    strong 方法提要: /strong 向试样中加入二乙基二硫代胺基甲酸钠溶液使铅螯合,用4-甲基-2戊酮萃取,用原子吸收光谱法在波长283.3nm处测定吸光度,求出铅含量。 /p p    span style=" color: rgb(255, 0, 0) " strong 将汞含量测定中的分光光度法改为 a href=" https://www.instrument.com.cn/zc/36.html" target=" _blank" 原子荧光光谱法 /a (仲裁法) /strong /span (见6.11.1,2009年版5.9.1) /p p    strong 方法提要: /strong 试样经酸加热消解后,在酸性介质中,试样中的汞被硼氢化钾(KBH4)还原成原子态汞,由载气(氩气)带入原子器中,在特制汞空心阴极灯照射下,基态汞原子被激发至高能态,在去活化到基态时,发射出特征波长的荧光,其荧光强度与汞含量成正比,与标准系列比较定量。 /p p   strong   span style=" color: rgb(255, 0, 0) " 删除了六价铬含量的测定 /span /strong (见2009年版5.11) /p p strong    span style=" color: rgb(255, 0, 0) " 增加了铬含量的测定 /span /strong (见6.12) /p p    strong 方法提要: /strong 采用电加热 a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" 原子吸收光谱法 /a ,在波长429.0nm处测定铬原子的吸光度,求出铬含量。 /p p   附件1: a href=" https://img1.17img.cn/17img/files/201903/attachment/1620f8ff-5714-4c18-83b6-05f57d3db5f0.doc" title=" 《生活饮用水用聚氯化铝》强制性国家标准主要内容等一览表.doc" style=" font-size: 12px color: rgb(0, 102, 204) " 《生活饮用水用聚氯化铝》强制性国家标准主要内容等一览表.doc /a /p p   附件2: a href=" https://img1.17img.cn/17img/files/201903/attachment/487bee2e-4339-42a1-a9ce-3af5c9fc9eec.zip" title=" 标准报批稿及编制说明.zip" style=" font-size: 12px color: rgb(0, 102, 204) " 标准报批稿及编制说明.zip /a /p
  • 美国FDA拟议消除加工食品中的部分氢化油
    2013年11月8日,美国食品药品监督管理局(FDA)发布一项措施,该措施将减少加工食品中的反式脂肪。有关该提案的评论截止期为2014年1月7日。   美国FDA已作出初步确定,部分氢化油(Partially Hydrogenated Oils ,PHOs)是反式脂肪的主要来源,不应该再是“通常被认为是安全的”(Generally Recognized As Safe,GRAS)。如果一种成分的GRAS状况被撤销,那么含有这种成分的产品将要求移除该成分,或请愿该成分作为食品添加剂并批准其使用含量的安全性。当美国FDA要求反式脂肪列入营养成分表时,声称无论何种含量的反式脂肪都是不安全的,因此作为食品添加剂的申请不可能被批准。   一些地区,如加州、马里兰州的巴尔的摩和蒙哥马利县,以及纽约市已对一些产品中的反式脂肪实施限制。其他国家如丹麦和加拿大政府也对含有PHOs产品的反式脂肪容许含量加以限制。美国FDA也承认,消费者从含有PHOs的产品中摄入的反式脂肪含量已从2003年的4.6克/天减少到了2012年的1.0克/天。FDA表明,若PHOs从食品供应中移除,这将能防止每年7000例死亡和超过2万起心脏病的发生。美国FDA正在寻求科学证据证明是否一定含量的PHOs可用于一些产品,以及如果移除PHOs的 GRAS状况,含有这种成分的产品多快能够进行重新修改配方。 文章转载自:宁波检验检疫总局
  • 宝德原子荧光助力环境新标准HJ 1133-2020
    近日,我国生态环境部发布了《环境空气和废气 颗粒物中砷、硒、铋、锑的测定 原子荧光法》(HJ 1133-2020)的环境标准,这是我国首次采用氢化物发生原子荧光光谱法测定空气颗粒物中砷、硒、铋、锑,进一步完善了国家生态保护标准体系,扩大了原子荧光光谱仪的应用领域。标准解读本标准的主要技术内容包括样品采集、样品前处理、仪器的校准,方法的准确度、精密度和方法的验证,为该项目的分析方法、技术准则提供了重要依据,确保了分析结果的准确性和可比性,推动了我国环境监测工作的不断发展。其方法原理是通过用滤膜或滤筒采集环境空气、无组织排放监控点空气和固定污染源有组织排放废气中颗粒物,所采集的样品用混合酸消解处理后,导入原子荧光光谱仪,经过预处理后的溶液在酸性条件和硼氢化钾的还原作用下,生成气态氢化物,氢化物在氩氢火焰中形成基态原子,在特征光的激发下产生原子荧光,在一定浓度范围内原子荧光强度与试液中被测元素的含量成正比。 标准还规定了检测不同空气来源时方法的检出限和测定下限(见表1)。 表1 HJ 1133-2020标准方法检出限项目砷硒铋锑 环境空气(ng/m3)方法检出限0.10.40.10.8对应上机液中浓度(μg/L)0.2881.1520.2882.304测定下限0.41.60.43.2对应上机液中浓度(ug/L)1.1524.6081.1529.216无组织排放监控点空气(ng/m3)方法检出限0.41.10.32.4对应上机液中浓度(μg/L)0.3841.0560.2882.304测定下限1.64.41.29.6对应上机液中浓度(μg/L)1.5364.2241.1529.216有组织排放废气(μg/m3)方法检出限0.10.20.10.5对应上机液中浓度(μg/L)0.61.20.63测定下限0.40.80.42.0对应上机液中浓度(μg/L)2.44.82.412宝德BAF系列原子荧光检出限(μg/L)≤0.01≤0.01≤0.01≤0.01 该标准为首次发布,自2020年8月15日起实施。该标准的发布旨在建立健全国家生态保护体系,推动环保事业的可持续发展,为赢得蓝天保卫战打下了坚实的基础。同时,也对原子荧光技术提出了更高要求,加快了原子荧光技术的创新发展,未来原子荧光光谱必将在大气监测行业发挥越来越重要的作用。 宝德原子荧光光谱仪特点宝德原子荧光光谱仪采用倾斜式光学系统,与传统光路相比,降低了杂散光背景,提高了灵敏度,对超低浓度的待测元素依然有很好的响应。拥有可自动切换的双进样系统。实现四元素同时测定,提高了测试效率,非常适合应用于砷(As)、硒(Se)锑(Sb)、铋(Bi)、汞(Hg)等多元素同测。还可升级为液相色谱-原子荧光联用仪,实现对As、Hg、Se、Sb等元素的价态检测。智能化的工作平台,如元素灯免调节、进样针自动探测液面等多功能系统使得工作更简洁轻松。该系列仪器杰出的性能和出色的指标,赢得了专家的肯定与客户认可。未来,宝德BAF系列原子荧光光谱仪将继续助力HJ-1133-2020标准的实施,满足各环境监测站及第三方检测单位的相关需求。 图1 宝德原子荧光用户使用现场和部分获奖证书
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制