当前位置: 仪器信息网 > 行业主题 > >

白蜡树素

仪器信息网白蜡树素专题为您提供2024年最新白蜡树素价格报价、厂家品牌的相关信息, 包括白蜡树素参数、型号等,不管是国产,还是进口品牌的白蜡树素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合白蜡树素相关的耗材配件、试剂标物,还有白蜡树素相关的最新资讯、资料,以及白蜡树素相关的解决方案。

白蜡树素相关的论坛

  • 坛墨质检-国家标准物质目录(532)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。 产品编号 产品名称 标准值 BW5507香叶木素-7-葡萄糖苷对照品,有报告HPLC≥98%BW5508水仙苷对照品,有报告HPLC≥98%BW5509芍药内酯苷,HPLC=91%对照品,有报告HPLC≥98%BW5511白蜡树素; 涔皮素; 二甲基白蜡树亭对照品,有报告HPLC≥98%BW5512环氧泽泻烯对照品,有报告HPLC≥98%BW5513N-甲基野靛碱;N-甲基金雀花碱对照品,有报告HPLC≥98%BW5514硫酸金雀花碱对照品,有报告HPLC≥98%BW5515百蕊草素I对照品,有报告HPLC≥98%BW5516草质素;蜀葵苷元对照品,有报告HPLC≥98%BW5517菝葜皂苷元; 知母皂苷元对照品,有报告HPLC≥98%BW5520梣酮对照品,有报告HPLC≥98%BW5524白头翁皂苷B4对照品,有报告HPLC≥98%BW5526次野鸢尾黄素对照品,有报告HPLC≥98%BW5532汉黄芩素对照品,有报告HPLC≥98%BW5533松萝酸; 松罗酸对照品,有报告HPLC≥98%BW55358-姜酚对照品,有报告HPLC≥98%BW553610-姜酚对照品,有报告HPLC≥98%BW5537石斛碱对照品,有报告HPLC≥98%BW5538雷公藤内酯酮(雷藤酮)对照品,有报告HPLC≥98%BW5543牡荆素葡萄糖苷对照品,有报告HPLC≥98%BW5544毛蕊异黄酮对照品,有报告HPLC≥98%BW5546黄柏碱对照品,有报告HPLC≥98%BW5548莪术二酮; 姜黄二酮; 莪二酮对照品,有报告HPLC≥98%BW5549氧化槐果碱对照品,有报告HPLC≥98%BW5550杨梅苷对照品,有报告HPLC≥98%BW5552银杏内酯J; 白果苦内酯J对照品,有报告HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 各位有做过虫白蜡的熔点吗

    最近用WRS-1B数字熔点仪做虫白蜡,毛细管怎样都压不实,无论干燥前干燥后装样高装样低还是过筛再做熔点都是79.8~81.5附近,药典要求81~85,做完后的毛细管样品是一段透明一段不透明这样间隔着,还有,我这个样品拿过来的时候就是粉碎的

  • 坛墨质检-国家标准物质目录(129)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。BW5506 脱水穿心莲内酯对照品,有报告 HPLC≥98% BW5507 香叶木素-7-葡萄糖苷对照品,有报告 HPLC≥98% BW5508 水仙苷对照品,有报告 HPLC≥98% BW5509 芍药内酯苷,HPLC=91%对照品,有报告 HPLC≥98% BW5510 山奈素对照品,有报告 HPLC≥98% BW5511 白蜡树素; 涔皮素; 二甲基白蜡树亭对照品,有报告 HPLC≥98% BW5512 环氧泽泻烯对照品,有报告 HPLC≥98% BW5513 N-甲基野靛碱;N-甲基金雀花碱对照品,有报告 HPLC≥98% BW5514 硫酸金雀花碱对照品,有报告 HPLC≥98% BW5515 百蕊草素I对照品,有报告 HPLC≥98% BW5516 草质素;蜀葵苷元对照品,有报告 HPLC≥98% BW5517 菝葜皂苷元; 知母皂苷元对照品,有报告 HPLC≥98% BW5520 梣酮对照品,有报告 HPLC≥98% BW5524 白头翁皂苷B4对照品,有报告 HPLC≥98% BW5526 次野鸢尾黄素对照品,有报告 HPLC≥98% BW5532 汉黄芩素对照品,有报告 HPLC≥98% BW5533 松萝酸; 松罗酸对照品,有报告 HPLC≥98% BW5534 7-羟基香豆素,伞形花内酯; 伞形酮对照品,有报告 HPLC≥98% BW5535 8-姜酚对照品,有报告 HPLC≥98% BW5536 10-姜酚对照品,有报告 HPLC≥98% BW5537 石斛碱对照品,有报告 HPLC≥98% BW5538 雷公藤内酯酮(雷藤酮)对照品,有报告 HPLC≥98% BW5539 异阿魏酸; 3-羟基-4-甲氧基肉桂酸对照品,有报告 HPLC≥98% BW5540 豆甾醇对照品,有报告 HPLC≥98% BW5541 刺芒柄花苷; 芒柄花苷对照品,有报告 HPLC≥98% BW5542 没食子儿茶素(棓儿茶酸、没食子酰儿茶素)对照品,有报告 HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 坛墨质检-国家标准物质目录(283)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。 BW5497川续断皂苷VI; 木通皂苷D对照品,有报告HPLC≥98%BW5498大波斯菊苷( 芹菜素-7-葡萄糖苷)对照品,有报告HPLC≥98%BW5499辽东楤木皂苷V对照品,有报告HPLC≥98%BW5500辽东楤木皂苷X对照品,有报告HPLC≥98%BW5501辽东楤木皂苷VII对照品,有报告HPLC≥98%BW5502阿魏酸乙酯对照品,有报告HPLC≥98%BW5507香叶木素-7-葡萄糖苷对照品,有报告HPLC≥98%BW5508水仙苷对照品,有报告HPLC≥98%BW5509芍药内酯苷,HPLC=91%对照品,有报告HPLC≥98%BW5511白蜡树素; 涔皮素; 二甲基白蜡树亭对照品,有报告HPLC≥98%BW5512环氧泽泻烯对照品,有报告HPLC≥98%BW5513N-甲基野靛碱;N-甲基金雀花碱对照品,有报告HPLC≥98%BW5514硫酸金雀花碱对照品,有报告HPLC≥98%BW5515百蕊草素I对照品,有报告HPLC≥98%BW5516草质素;蜀葵苷元对照品,有报告HPLC≥98%BW5517菝葜皂苷元; 知母皂苷元对照品,有报告HPLC≥98%BW5520梣酮对照品,有报告HPLC≥98%BW5524白头翁皂苷B4对照品,有报告HPLC≥98%BW5526次野鸢尾黄素对照品,有报告HPLC≥98%BW5532汉黄芩素对照品,有报告HPLC≥98%BW5533松萝酸; 松罗酸对照品,有报告HPLC≥98%BW55358-姜酚对照品,有报告HPLC≥98%BW553610-姜酚对照品,有报告HPLC≥98%BW5537石斛碱对照品,有报告HPLC≥98%BW5538雷公藤内酯酮(雷藤酮)对照品,有报告HPLC≥98%BW5543牡荆素葡萄糖苷对照品,有报告HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 坛墨质检-国家标准物质目录(127)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。BW5448 2”-O-没食子酰基金丝桃苷对照品,有报告 HPLC≥98% BW5450 盐酸石蒜碱;石蒜碱盐酸盐对照品,有报告 HPLC≥98% BW5451 光甘草定对照品,有报告 HPLC≥98% BW5452 橙黄决明素对照品,有报告 HPLC≥98% BW5453 荷叶碱对照品,有报告 HPLC≥98% BW5454 鹰嘴豆芽素A,鸡豆黄素A对照品,有报告 HPLC≥98% BW5455 10-羟基喜树碱对照品,有报告 HPLC≥98% BW5456 可可碱对照品,有报告 HPLC≥98% BW5457 D-松醇95%对照品,有报告 HPLC≥98% BW5458 8-甲氧基补骨脂素(花椒毒素)对照品,有报告 HPLC≥98% BW5459 白花前胡醇对照品,有报告 HPLC≥98% BW5462 矢车菊素-3-O-葡萄糖苷; 花青素对照品,有报告 HPLC≥98% BW5464 5-羟色胺酸; 5-羟基色氨酸对照品,有报告 HPLC≥98% BW5465 亥茅酚苷对照品,有报告 HPLC≥98% BW5466 异鼠李素-3-O-新橙皮糖苷对照品,有报告 HPLC≥98% BW5467 紫蓳灵; 紫堇醇灵碱对照品,有报告 HPLC≥98% BW5468 高丽槐素; 马卡因对照品,有报告 HPLC≥98% BW5469 秦皮苷;白蜡树苷对照品,有报告 HPLC≥98% BW5470 奇任醇;奇壬醇对照品,有报告 HPLC≥98% BW5471 比枯枯灵(山乌龟碱)对照品,有报告 HPLC≥98% BW5472 异槲皮苷对照品,有报告 HPLC≥98% BW5473 乙酰紫堇灵;乙酰紫堇醇灵碱对照品,有报告 HPLC≥98% BW5474 红车轴草根苷(三叶豆根苷)对照品,有报告 HPLC≥98% BW5475 山奈苷对照品,有报告 HPLC≥98% BW5476 去氢二异丁香酚对照品,有报告 HPLC≥98% BW5477 利卡灵-B;利卡灵B对照品,有报告 HPLC≥98% BW5478 肉豆蔻木脂素对照品,有报告 HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 坛墨质检-国家标准物质目录(530)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。 产品编号 产品名称 标准值 BW5432青阳参甙元A; 青阳参苷元A对照品,有报告HPLC≥98%BW5433青阳参苷元B对照品,有报告HPLC≥98%BW5434补骨脂酚对照品,有报告HPLC≥98%BW5438草乌甲素对照品,有报告HPLC≥98%BW5440亚麻木酚素对照品,有报告HPLC≥98%BW5441α-倒捻子素; 曼果斯廷对照品,有报告HPLC≥98%BW5444菊苣酸对照品,有报告HPLC≥98%BW5446地肤子皂苷Ic对照品,有报告HPLC≥98%BW5447大蓟苷: 柳穿鱼叶苷对照品,有报告HPLC≥98%BW54482”-O-没食子酰基金丝桃苷对照品,有报告HPLC≥98%BW5450盐酸石蒜碱;石蒜碱盐酸盐对照品,有报告HPLC≥98%BW5451光甘草定对照品,有报告HPLC≥98%BW5452橙黄决明素对照品,有报告HPLC≥98%BW5453荷叶碱对照品,有报告HPLC≥98%BW545510-羟基喜树碱对照品,有报告HPLC≥98%BW5459白花前胡醇对照品,有报告HPLC≥98%BW5462矢车菊素-3-O-葡萄糖苷; 花青素对照品,有报告HPLC≥98%BW54645-羟色胺酸; 5-羟基色氨酸对照品,有报告HPLC≥98%BW5465亥茅酚苷对照品,有报告HPLC≥98%BW5466异鼠李素-3-O-新橙皮糖苷对照品,有报告HPLC≥98%BW5467紫蓳灵; 紫堇醇灵碱对照品,有报告HPLC≥98%BW5468高丽槐素; 马卡因对照品,有报告HPLC≥98%BW5469秦皮苷;白蜡树苷对照品,有报告HPLC≥98%BW5470奇任醇;奇壬醇对照品,有报告HPLC≥98%BW5471比枯枯灵(山乌龟碱)对照品,有报告HPLC≥98%BW5473乙酰紫堇灵;乙酰紫堇醇灵碱对照品,有报告HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 坛墨质检-国家标准物质目录(282)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。 BW5465亥茅酚苷对照品,有报告HPLC≥98%BW5466异鼠李素-3-O-新橙皮糖苷对照品,有报告HPLC≥98%BW5467紫蓳灵; 紫堇醇灵碱对照品,有报告HPLC≥98%BW5468高丽槐素; 马卡因对照品,有报告HPLC≥98%BW5469秦皮苷;白蜡树苷对照品,有报告HPLC≥98%BW5470奇任醇;奇壬醇对照品,有报告HPLC≥98%BW5471比枯枯灵(山乌龟碱)对照品,有报告HPLC≥98%BW5473乙酰紫堇灵;乙酰紫堇醇灵碱对照品,有报告HPLC≥98%BW5474红车轴草根苷(三叶豆根苷)对照品,有报告HPLC≥98%BW5476去氢二异丁香酚对照品,有报告HPLC≥98%BW5477利卡灵-B;利卡灵B对照品,有报告HPLC≥98%BW5478肉豆蔻木脂素对照品,有报告HPLC≥98%BW5479泽泻醇B-23-醋酸酯(泽泻醇B醋酸酯)对照品,有报告HPLC≥98%BW5481人参皂苷F1对照品,有报告HPLC≥98%BW5482人参皂苷F2对照品,有报告HPLC≥98%BW5483人参皂苷CK对照品,有报告HPLC≥98%BW5484异鼠李素-3-O-葡萄糖苷对照品,有报告HPLC≥98%BW5485草质素苷; 草质素甙对照品,有报告HPLC≥98%BW5486科罗索酸; 2-alpha-羟基熊果酸对照品,有报告HPLC≥98%BW5488白桦脂醇; 桦木醇对照品,有报告HPLC≥98%BW5489白桦脂醛对照品,有报告HPLC≥98%BW5490延龄草苷; 地索苷对照品,有报告HPLC≥98%BW5491异乌药内酯; 异乌药醚内酯对照品,有报告HPLC≥98%BW5046巴豆苷; 异鸟苷对照品,有报告HPLC≥98%BW5493(R型)原人参二醇对照品,有报告HPLC≥98%BW5494文多灵(长春刀灵)对照品,有报告HPLC≥98%BW5495长春质碱对照品,有报告HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 【分享】物候与环境污染监测

    环境污染已成为当前世界上引人注目的社会问题。空气受到毒化,垃圾成灾,河流、海洋遭到污染,影响动植物的生长繁殖,阻碍了经济的发展,严重威胁和损害了广大人民的身体健康。环境污染也引起物候现象的变化。如西南某城市的一般植物,市内比郊区的发芽早,落叶要提前一个月;夹竹桃、大叶黄杨、法国梧桐等的叶形变小(比原来小三分之一到二分之一);法国梧桐不开花等。还有的化工区,由于污染以致慈竹在这些地方不能成活;葡萄、杏、李、苹果不开花结果等。物候学主要是研究物候现象的周期变化,以及这些变化与环境因素关系,以达到为农业生产服务的目的。污染造成的物候变化规律的紊乱,这将影响物候资料的准确性和代表性,因此需对污染造成的物候影响进行研究。另一方面,还可从污染造成的物候变化以及植物的损害情况,来掌握污染的程度。所以竺可桢就指出:物候观测可以起到监测环境污染的作用。下面列举一些监测主要大气污染物质的指示植物及其受害时的症状:二氧化硫 植物叶片受二氧化硫危害的症状是,叶片出现白色“烟斑”而逐渐枯萎和提早落叶,如丁香、玉兰、(图45,46)。果树中李、葡萄、桃比较敏感,受害时叶片大多数出现白色或褐色斑点,葡萄在叶片的中部会出现赤褐色斑点。针叶树中的落叶松,对二氧化硫特别敏感,很容易出现受害症状,而且稍一受害就会落叶。氟化物 雪松是一种有希望的氟气监测植物,特别是在春季新叶萌发时,如果针叶出现枯黄,说明已发生污染了,刺槐、白蜡树对它也较敏感(图47,48)。在果树中的杏、樱桃、李、玫瑰香葡萄对它比较敏感,果树受害表现在叶缘部分,若氟气的侵袭是分阶段相继发生,则坏死部分表现为同心圆圈。通常坏死部分很少脱落,很容易卷曲,坏死部分能逐步蔓延到整个叶面,仅在沿叶片的主脉处留下一小块绿色的组织。光化学烟雾 其中的二氧化氮、臭氧,过氧酰基硝基盐等对植物都有危害。二氧化氮和臭氧产生的危害症状是叶表面出现斑点和漂白区。过氧酰基硝基盐的危害,会使植物叶片的背面变成古铜色、银白色和透明状。烟草广泛地被用作光化学烟雾的监测植物,特别是用来指示臭氧的污染。在整个生长季节中,烟草能连续长出新叶,不同叶龄的叶子对臭氧的敏感程度不一,新的伤害很容易与旧的伤痕区别开来,人们可以在离污染源不同距离的地点种上烟草,用来监测光化学烟雾的分布、发生次数和危害程度。氯和氯化氢 植物受其毒害的症状是叶片出现脱绿斑点或叶变成浅黄色、灰白色,成漂白状以至透明。利用植物受害症状监测氯气污染,应观察对氯气伤害最敏感的中龄叶,其次为老叶,幼叶对氯气污染不太敏感。根据工厂附近栽种的法国梧桐、杨树和刺柏的生长状况,也可监测氯气污染情况。长期污染会使枯枝增多,有时仅顶部新叶保持绿色。虽然利用指示植物作为大气污染的警报器,是比较粗糙的,但是植物监测法简便易行,不化钱物,便于在群众中推广,因此也是受群众欢迎的方法之一。

  • 【分享】常见的大气污染与一些监测植物

    大气是人类及一切生物赖以生存必不可少的物质和基本环境要素之一,是自然环境的重要组成部分。成年人每天要吸入10 ~12m3 空气, 质量约为13 ~15kg,总计要呼吸两万多次。人离开空气5 分钟就会死亡。人类生存需要的是新鲜、清洁的空气,通常认为海平面附近的空气是干燥洁净空气,其组成成分基本不变。但是,随着经济和社会的不断发展,大气却正在不断受到污染,而且越来越严重。 如今,大气污染是人类面临的最严峻问题之一。我国城市的大气污染现状随着工业及交通运输业的迅速发展而加剧。如燃烧矿石、火力发电、合成化学物质、汽车尾气排放等等,使大气中一些有害气体的浓度成倍甚至几百倍地增高。调查研究表明:大气污染物浓度的增加,不仅会引发人的呼吸道疾病、心脏病、皮肤病等,还会引起多种癌症,甚至导致死亡。 目前,城市的主要大气污染包括SO2、HF、CI2、O3、NH3、光化学烟雾等。我国的大气污染主要集中在城市和工业区域,大气污染的危害程度居于其他环境污染之首,成为急遽解决的重要问题之一。 我国政府正在努力采取一系列强有力的措施减少污染源的数量,控制污染气体的排放量,同时也在采取一系列有效措施监测大气中的有害气体的含量。例如,有些植物不仅具有净化作用,同时还具有监测作用。因此,利用这些植物来净化与监测大气是最经济,最有效的措施之 一。 所谓监测作用,就是利用某些植物对有害气体的敏感性,当有害气体在空气中达到一定的含量且此状况持续一段时间后,不同的植物就会表现不同程度的伤害特性,反映出有害气体的大概浓度,作为大气污染程度的指示,这就是监测作用。这些植物就称为监测植物。 目前,主要采用观察植物外观伤害症状(通常观察植物叶片)来判断植物的受害程度。伤害因伤斑的部位、形状、颜色和受害叶龄等特征的不同而相互区别。下面就几种常见的有害气体对一些植物的伤害加以分析:(1) SO2  当植物吸收SO2 后,叶脉间出现黄白色点状“烟斑”,轻者只在叶背气孔附近,重者从叶背到叶面均出现“烟斑”。随着时间推移,“烟斑”由点扩展成面。危害严重时,叶片萎缩,叶脉褪色变白,植株萎蔫,甚至死亡。 植株受害的顺序:  先期是叶片受害,然后是叶柄受害,后期为整个植株受害。叶片受害与叶龄的关系:在一定浓度的SO2 范围内,叶片的受害与叶龄有关。其受害的先后顺序是成熟叶,然后是老叶,最后是幼叶。这是因为幼叶的抗性最强,成熟叶最敏感,老叶介于两者之间。 对SO2 敏感的植物:落叶松、向日葵、梨、雪松、苹果、复叶槭等。对SO2 抗性强的植物:大叶黄杨、夹竹桃、女贞、臭桐、凤仙花、菊花、一串红、牵牛花、金盏菊、石竹、西洋白菜花、紫背三七、青蒿、扫帚草等。较强者: 温州蜜柑、广玉兰、香樟、棕榈、海桐、蚊母、珊瑚树、龙柏、罗汉松、梧桐、石榴、白蜡、泡桐、白杨、八仙花、美人蕉、蜀葵、蓖麻等。 (2) FH 当植物吸进FH后,常在叶片尖端和边缘积累,到足够浓度时,使叶肉细胞产生质壁分离而死亡。故它引起的伤斑大多是在叶尖、叶缘,少脉间。其伤斑成环带分布,然后逐渐向内扩展,颜色呈暗红色。严重时叶片枯焦脱落。叶片受害与叶龄的关系: 先幼叶受害,再老叶受害。对FH敏感的植物:雪松、菖兰、郁金香、杏、葡萄、榆叶梅、紫薇、复叶槭等。对FH抗性强的植物:夹竹桃、龙柏、罗汉松、小叶女贞、桑、构树、无花果、丁香、木芙蓉、黄连木、竹叶椒、葱兰等。较强者:大叶黄杨、珊瑚树、蚊母树、海桐、杜仲、胡颓子、石榴、柿、枣等。 (3) Cl2  Cl2 对叶肉细胞有很强的杀伤力,进入叶肉细胞后很快破坏叶绿素,产生点、块状褪色伤斑,叶片严重失绿,甚至全叶漂白脱落。其伤斑部位大多在脉间,伤斑与健康组织之间没有明显界限。对CI2 敏感的植物: 圆柏、垂柳、加拿大杨、油松、紫薇、栾树等。对CI2 抗性强的植物:樱花、丝棉木、臭椿、小叶女贞、接骨木、木槿、乌桕、龙柏等。较强者:海桐、大叶黄杨、小叶黄杨、女贞、棕榈、丝兰、香樟、枇杷、石榴、构树、泡桐、刺槐、葡萄、天竺葵等。 (4)NO2  它所引起的主要症状为黄化现象。主要发生在叶脉间或叶缘处,成条状或斑状不一,幼叶在黄化现象产生之前就可能先脱落。但与其他原因所产生的黄化现象较难区分开。对NO2 敏感的植物:榆叶梅、连翘、复叶槭等。对NO2 抗性强的植物:圆柏、侧柏、刺槐、臭椿、旱柳、紫穗槐、桑树、毛白杨、银杏、栾树、白榆、五角枫等。 较强者:加拿大杨、核桃、泡桐、油松、北京杨、白蜡树、杜仲等。 (5)O3  它由气孔进入叶子,与叶肉细胞接触后首先破坏其细胞膜,因而造成细胞死亡。其伤斑大多数叶面,少脉间。黄化斑点及白色斑纹是最常见的病症,也可能出现叶面完全漂白者。其受害叶最先为中龄叶。对O3 敏感的植物:悬铃木、连翘等。对O3 抗性强的植物:圆柏、侧柏、刺槐、旱柳、紫穗槐、桑树、毛白杨、栾树、白榆、五角枫、垂柳、加拿大杨、核桃等。较强者:苹果、泡桐、金银木、油松、复叶槭等。 NH3  当空气中的NH3 达到一定浓度时,植物叶片首先会受到伤害。其部位大多为叶脉间,伤斑点、块状,颜色为黑色或黑褐色,与正常组织之间界限明显。另外,症状一般出现较早,稳定的也快。对NH3 敏感的植物:悬铃木、杜仲、龙柏、旱柳等。对NH3 抗生强的植物:臭椿、银杏、紫薇、女贞、木槿等。 (7)光化学烟雾 它使叶片下表皮细胞及叶肉中海绵细胞发生质壁分离,并破坏其叶绿素,从而使叶片背面变成银白色、棕色、古铜色或玻璃状。叶片正面还会出现一道横贯全叶的坏死带,受害严重时会使整片叶变色,很少发生点块状伤斑。对光化学烟雾敏感的植物:紫薇、连翘、白蜡树、复叶槭等。对光化学烟雾抗性强的植物:圆柏、侧柏、刺槐、臭椿、旱柳、紫穗槐、桑树、毛白杨、银杏、栾树、白榆、五角枫等。 以上的这些植物虽然能在一定程度从宏观上监测与净化大气污染,但不能彻底根除大气污染。故而,我们要有效地控制污染物的排放,控制污染的源头,且还要利用现代科学技术手段对城市空气进行进一步监测与净化。

  • 杉树同位素标准物

    北京晨蕾科技开发有限公司可提供杉树同位素元素标准物,如有需求,可随时与我站短联系!

  • 【分享】不同环境污染物的吸附类植物或敏感性植物

    1.二氧化硫: ①抗性强的植物:大叶黄杨、雀舌黄杨、瓜子黄杨、海桐、蚊母、山茶、女贞、小叶女贞、枳橙、棕榈、凤尾兰、夹竹桃、枸骨、枇杷、构树、无花果、枸杞、白蜡、木麻黄、相思树、榕树、十大功劳、九里香、侧柏、银杏、广玉兰、北美鹅掌楸、柽柳、梧桐、重阳木、合欢、皂荚、刺槐、国槐等。 ②敏感的植物:苹果、梨、羽毛槭、郁李、悬铃木、雪松、油松、马尾松、云南松、落叶松、白桦、樱花、毛樱桃、贴梗海棠、梅花、玫瑰、月季等。 2.氯气: ①抗性强的植物:龙柏、侧柏、大叶黄杨、海桐、蚊母、山茶、女贞、夹竹桃、凤尾兰、棕榈、构树、木槿、紫藤、无花果、樱花、枸骨、臭椿、榕树、九里香、小叶女贞、丝兰、广玉兰、柽柳、合欢、皂荚、国槐、黄杨、白榆、丝棉木、正木、沙枣、苦楝、白蜡、杜仲、厚皮香、桑树、柳树、枸杞等。 ②敏感的植物:池柏、薄壳山核桃、枫杨、小锦、樟子松、紫椴、赤杨等。 3.氟化氢: ①抗性强的植物:大叶黄杨、海桐、蚊母、山茶、凤尾兰、瓜子黄杨、龙柏、构树、朴树、花石榴、石榴、桑树、香椿、丝棉木、青冈栎、侧柏、皂荚、国槐、柽柳、木麻黄、白榆、正木、沙枣、夹竹桃、棕榈、红茴香、杜仲、细叶香桂、红花油茶、厚皮香等。 ②敏感的植物:葡萄、杏、山桃、榆叶梅、紫荆、梓树、金丝桃、慈竹、池柏、白千层等。 4.乙稀: ①抗性强的植物:夹竹桃、棕榈、悬铃木、凤尾兰、女贞、榆树、枫杨、重阳木、乌桕、红叶李等。 ②敏感的植物:月季、十姐妹、大叶黄杨、苦栎、刺槐、臭椿、合欢、玉兰等。 5.氨气: ①抗性强的植物:女贞、樟树、丝棉木、腊梅、柳杉、银杏、紫荆、杉木、石楠、石榴、朴树、无花果、皂荚、木槿、紫薇、玉兰、广玉兰等。 ②敏感的植物:紫藤、小叶女贞、杨树、虎杖、悬铃木、薄壳山核桃、杜仲、珊瑚树、枫杨、芙蓉、栎树、刺槐等。

  • 古村古树 ?朴素民风

    古村古树?朴素民风[img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307280836389585_1728_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307280836390272_8258_1642069_3.png[/img]

  • “激素”豆浆与早熟?

    “激素”豆浆与早熟?

    “激素”豆浆与早熟?谣言:小孩喝豆浆会早熟  大家都知道大豆中含有大豆异黄酮,被称为“植物雌激素”,一提到“激素”这个字眼,大家往往都很敏感,尤其担心孩子喝了豆浆,会不会性早熟?解答:不会。http://ng1.17img.cn/bbsfiles/images/2015/11/201511281917_575405_1751239_3.png因为植物雌激素在人体内的作用微乎其微,大约只有雌激素的千分之一,至今极少有儿童因为喝豆浆引起性早熟。而且豆浆中大豆异黄酮的含量极低,大约为100ug/100ml,每天一杯200毫升,也就200微克。而目前婴幼儿、儿童大豆异黄酮的推荐量为每日25毫克。所以说适量进食豆浆,是绝对不会引起孩子性早熟的。很多性早熟的孩子,深究起来,大部分孩子是饮食不合理、营养过剩、能量过剩、乱吃补品有关。  所以要真的担心孩子性早熟,还不如来点实际的:  1.避免孩子在生活中接触超越其心理年龄的内容;  2.尽量不给孩子吃营养保健品(包括牛初乳);  3.不要让孩子吃过多油炸、膨化食品,尽量不喝饮料,避免能量摄入过多;  4.减少塑料制品使用;  5.避免让孩子接触到含性激素的药物、化妆品。讨论:这些谣言您是怎么理解的?请结合您的专业知识和检测技能,谈谈您的观点,发挥您的想象力,参与互动,赢取积分奖励

  • 【转帖】蔬菜也有天然毒素

    蔬菜也有天然毒素 出处: 中国食品产业网 作者:         春节后,各种新鲜的蔬果纷纷上市,但由此引发的食物中毒事件也频频发生。有些蔬菜和水果本身含有天然毒素,应小心食用。  1.豆类,如四季豆、红腰豆、白腰豆等  毒素:植物血球凝集素病发时间:进食后1—3小时内。  症状:恶心呕吐、腹泻等。红腰豆所含的植物血球凝集素会刺激消化道黏膜,并破坏消化道细胞,降低其吸收养分的能力。如果毒素进入血液,还会破坏红血球及其凝血作用,导致过敏反应。研究发现,煮至80℃未全熟的豆类毒素反而更高,因此必须煮熟煮透后再吃。  2.竹笋  毒素:生氰葡萄糖苷  病发时间:可在数分钟内出现。  症状:喉道收紧、恶心、呕吐、头痛等,严重者甚至死亡。食用时应将竹笋切成薄片,彻底煮熟。  3.苹果、杏、梨、樱桃、桃、梅子等水果的种子及果核  毒素:生氰葡萄糖苷 病发时间:可在数分钟内出现。  症状:与竹笋相同。此类水果的果肉都没有毒性,果核或种子却含有毒素,儿童最易受影响,吞下后可能中毒,给他们食用时最好去核。  4.鲜金针  毒素:秋水仙碱 病发时间:一小时内出现。  症状:肠胃不适、腹痛、呕吐、腹泻等。秋水仙碱可破坏细胞核及细胞分裂的能力,令细胞死亡。经过食品厂加工处理的金针或干金针都无毒,如以新鲜金针入菜,则要彻底煮熟。  5.青色、发芽、腐烂的马铃薯  毒素:茄碱 病发时间:一小时内出现。  症状:口腔有灼热感、胃痛、恶心、呕吐。  马铃薯发芽或腐烂时,茄碱含量会大大增加,带苦味,而大部分毒素正存在于青色的部分以及薯皮和薯皮下。茄碱进入体内,会干扰神经细胞之间的传递,并刺激肠胃道黏膜、引发肠胃出血。  另外还需注意:  鲜蚕豆:有的人体内缺少某种酶,食用鲜蚕豆后会引起过敏性溶血综合征,即全身乏力、贫血、黄疸、肝肿大、呕吐、发热等,若不及时抢救,会因极度贫血死亡;  鲜木耳:含有一种光感物质,人食用后会随血液循环分布到人体表皮细胞中,受太阳照射后,会引发日光性皮炎。这种有毒光感物质还易于被咽喉黏膜吸收,导致咽喉水肿;  腐烂变质的白木耳:它会产生大量的酵米面黄杆菌,食用后胃部会感到不适,严重者可出现中毒性休克。  未成熟的青西红柿:它含有生物碱,人食用后也会导致中毒。

  • 化学元素趣闻(二)

    化学元素趣闻(二) ][size=20px][color=#4d6df3][b]生命的基础——氮[/b][/color][/size]在空气中占总体积78.16%的是氮气。氮是在1771年被瑞典化学家舍勒发现的。纯净的氮气,在常温下是无色无味的气体,此空气略轻;在摄氏零下195.5度时成无色的液体。如果温度低至摄氏零下240度以下,液体氮就凝结为雪花般的白色晶体。氮气在平常的温度下,化学性质很不活泼,既不助燃,也不能帮助呼吸。这样,社勒最初把它命名为“无用的空气”。有离态的氮气,用途并不很广--人们只是利用它的孤独的脾气:在电灯泡里灌有氮气,可以减慢钨丝的挥发速度。在博物馆里,那些贵重而罕有的画页、书卷,常常保存在充满氮气的圆筒里,因为蛀虫在氮气中不能生存,当然也就无法捣乱了。医治肺结核的“人工气胸术”,也是把氮气(或空气)打进肺结核病人的胸腔里,压缩有病灶的肺叶,使它得到休息。我国还应用氮气来保存粮食,叫做“真空无氮储粮”。然而,氮气真的是“无用的空气”吗?不,恰恰相反!氮气在高温下十分活泼,能与许多东西化合。例如,在高温、高压与催化剂的作用下,氮气能与氢气化合变成氨。氨是制造氮肥的重要原料。氨与硫酸化合,便制成最常用的化肥--硫酸铵(浴称肥田粉)。氨与二氧化碳化合可制成尿素--碳酸酰胺。氨溶解在水中。便成了氨水。氨水是成本低廉、肥效很好的速效氮肥。其他氮肥如氯化铵、硝酸氨、碳酸按,磷酸按(氮磷复合肥料)等都是以氨为原料的。不过,氨具有强烈的刺激性,对人体是有毒的。空气中如果含有0.5%的氨,便会强烈刺激人的鼻黏膜。严重氨中毒时,会使人气喘,发生眼睛和呼吸系统的疾病,以至使人昏迷。氨经氧化以后,可制造著名的强酸--硝酸。硝酸是无色的液体,具有很强的酸性与氧化性。稀硝酸能迅速腐蚀铁,而浓硝酸却可装在铁器中--因为浓硝酸会氧化铁器的表面,生成一层氧化膜,而使内部的铁不被腐蚀。用硝酸可制造黄色炸药--梯恩梯(三硝基甲苯)、五光十色的各种染料、著名的消炎药物--磺胺。这样,氮成了氮肥、炸药、染料、制药工业的“主角”。氮还是“生命的基础”!一切生命现象,都离不了蛋白质,而氮就是组成蛋白质的重要成分。羊毛、蚕丝、头发、指甲、羽毛以及人体中的各种酶、激素、血红蛋白,都是蛋白质。牛奶、鸡蛋、黄豆等都含有大量的蛋白质。蛋白质则是由氨基酸组成的。味精,就是一种氨基酸--麸氨酸(常用的是它的钠盐)。蛋白质是与生命现象紧密联系在一起的:不论在什么地方,只要我们遇到生命,那里就有蛋白质;不论在什么地方,只要我们遇到不处于解体过程的蛋白质,我们也无例外地可发现生命现象。恩格斯在《反杜林论》中指出:“如果化学有一天能够用人工方法制造蛋白质,那末这样的蛋白质就一定会显示出生命现象……”研究人工合成蛋白质,具有重要的意义。1965年我国在世界上第一次人工合成了具有生物活力的蛋白质--结晶牛胰岛素。在无产阶级文化大革命中,成功地用x光衍射法完成了分辨率为2.5艾的猪胰岛素晶体结构的测定工作。现在正为进一步揭开生命现象的本质而努力。正因为氮是“生命的基础”,所以植物也离不了氮。缺少了氮,庄稼便长得又瘦又小,叶子发黄,花小而不易受孕,果实小而不饱满。因为氮不仅是庄稼制造叶绿素的原料。而且是庄稼制造蛋白质的原料。据统计,全世界的庄稼,在一年之内,要从土壤里摄取四千多万吨氮!也正因为这样,被誉为庄稼生长的“三大要素”--氮、磷、钾--中的一个。氮不仅在工业上很重要,在农业上也很重要。在豆科植物的根部,常常长着许多小疙瘩--根瘤。根瘤里住着根瘤菌。根瘤菌能够直接从空气中吸取氮气,制造氮肥。正因为这样,在种植豆科作物时,常不需施用太多的氮肥。目前,在我国农村广泛使用的“5406”菌肥,也是一种固氮菌肥。在大自然中,氮约占地壳总重量的0.04%,共中绝大部分集中在空气中。另外,硝石(即硝酸钠)中也含有很多氮。氮的希腊文原意,便是“来自硝石”。拉丁美洲的智利盛产硝石。在土壤中,一般也含有微量的硝酸钾、硝酸钠、硝酸钙等氮化物。[align=center][/align][align=center][size=20px][color=#4d6df3][b]与“鬼火”相关的元素---磷[/b][/color][/size][/align][align=left]磷有白磷、红磷、黑磷三种同素异构体。白磷又叫黄磷为白色至黄色蜡性固体。熔点44.1°C,沸点280°C,密度1.82克/厘米[sup]3[/sup];白磷活性很高,必须储存在水里,人吸入0.1克白磷就会中毒死亡。白磷在没有空气的条件下,加热到260°C或在光照下就会转变成红磷,而红磷在加热到416°C变成蒸汽之后冷凝就会变成白磷。红磷无毒,加热到240°C以上才着火。在高压下,白磷可转变为黑磷,它具有层状网络结构,能导电,是磷的同素异形体中最稳定的。[/align][align=left]如果氧气不足,在潮湿情况下,白磷氧化很慢,并伴随有磷光现象。白磷可溶于热的浓碱溶液,生成磷化氢和次磷酸二氢盐;干燥的氯气与过量的磷反应生成三氯化磷,过量的氯气与磷反应生成五氯化磷。磷在充足的空气中燃烧可生成五氧化二磷,如果空气不足则生成三氧化二磷。[/align]约三分之二的磷用于磷肥。磷还用于制造磷酸、烟火、燃烧弹、杀虫剂等。三聚磷酸盐用于合成洗涤剂。关于磷元素的发现,1669年德国汉堡一位叫布朗特(Brand H)的商人在强热蒸发人尿的过程中,他没有制得黄金,却意外地得到一种像白蜡一样的物质,在黑暗的小屋里闪闪发光。这从未见过的白蜡模样的东西,虽不是布朗特梦寐以求的黄金,可那神奇的蓝绿色的火光却令他兴奋得手舞足蹈。他发现这种绿火不发热,不引燃其它物质,是一种冷光。于是,他就以“冷光”的意思命名这种新发现的物质为“磷”。磷在食物中分布很广,无论动物性食物或食物性食物,在其细胞中都含有丰富的磷,动物的乳汁中也含有磷,磷是与蛋白质并存的,瘦肉、蛋、奶、动物的肝、肾含量都很高,海带、紫菜、芝麻酱、花生、干豆类、坚果粗粮含磷也较丰富。但粮谷中的磷为植酸磷,不经过加工处理,吸收利用率低。 [align=center][b][size=20px][color=#4d6df3]雄黄和砒霜里的元素——砷[/color][/size][/b][/align]按照我国民间习俗,人们常在酒中放些雄黄,喷洒在屋角墙角,用来杀菌、驱虫、驱蛇。我国人民早在四千多年前,便知道雄黄了。在云南、广西、四川一带,盛产雄黄。雄黄,是桔黄色的粉末,不溶于水。按照化学成分来说,是四硫化砷。在古代,雄黄被我国的炼丹家用作炼制“长生丹”的原料,也用作黄色的颜料。除了雄黄外,还有一种人们不常听说的雌黄。雌黄也是鲜黄色的粉末,化学成分为三硫化二砷。雌黄和雄黄都是重要的砷矿,它们在大自然共生在一起。在地壳中,砷的含量约为百万分之一。我国人民早在四千多年前,便知道雄黄了。在云南、广西、四川一带,盛产雄黄。雄黄,是桔黄色的粉末,不溶于水。按照化学成分来说,是四硫化砷。在古代,雄黄被我国的炼丹家用作炼制“长生丹”的原料,也用作黄色的颜料。除了雄黄外,还有一种人们不常听说的雌黄。雌黄也是鲜黄色的粉末,化学成分为三硫化二砷。雌黄和雄黄都是重要的砷矿,它们在大自然==生在一起。在地壳中,砷的含量约为百万分之一。纯净的砷,是德国炼丹家阿尔别尔特·玛卡诺斯在1250年制得的。砷,是灰色的晶体。它是非金属,却具有金属般的光泽,并善于传热导电,只是此较脆,易被捣成粉末。砷很容易挥发,加热到610℃,便可不经液态,直接升华,变成蒸气。砷蒸气具有一股难闻的大蒜臭味。砷除了灰色的砷以外,还有黑色无定形的砷和黄砷。黑砷加热到285℃时会变成灰砷;黄砷在暗处会发光,受到光线照时,也很易变成灰砷。砷不溶于水。在常温下,砷在空气中会缓慢地氧化,但是加热时,会迅速地燃烧,生成白色的亚砷酐——三氧化二砷,也有股大蒜的臭味。在高温下,砷还能和硫、氯、氟等元素直接化合。纯砷的用途很有限。在铅中加入0.5%的砷,可增加铅的硬度,常用来铸造弹丸。砷最重要的化合物是三氧化二砷,俗称砒霜。谁都知道, 砒霜是剧烈的毒药。砷的化合物,都是有毒的。正因为这样,在古代、炼金家们用毒蛇作为代表砷的符号(图22)。我国有句成语叫“饮鸩止渴”,意即自寻灭亡。这“鸩酒”,便是指放了砒霜的酒。现在,砒霜成了著名的无机农药。在我国农村,特别是华北一带,每年下种以前,总是先往田里撒些“信谷”、“信米”,来诱杀田里的蝼蛄、田鼠之类的害虫害兽。这“信谷”、“信米”,其实就是用砒霜稀溶液浸过的谷子、小米。当田鼠、蝼蛄之类吃了信谷、信米,很快就中毒死了。砒霜对人畜剧毒,如果人畜因不慎而误中砷毒,可服用氧化镁和硫酸亚铁溶液强烈摇动而生成的新鲜的氢氧化亚铁悬浮液来解毒。砷的其他化合物,如亚砷酸钠、亚砷酸钙、砷酸铅、砷酸钙、砷酸锰等,也都是常用的农药。亚砷酸钠对害虫有剧烈的胃毒作用,常用来配制毒饵,毒杀蝼蛄、地老虎、粘虫、蝗虫、白蚁等;亚砷酸钙常用来防治森林毛虫、草地螟、柞卷叶蛾、松叶蜂等咀嚼口器害虫,砷酸铅和砷酸钙,用来防治金龟子、棉卷叶虫、棉铃虫等食叶害虫;砷酸锰用来防治烟草、马铃薯或棉花上的一些害虫。由于砷的化合物剧毒,在制造这些含砷农药的工厂里,空气中的含砷量必须低

  • “激素蔬菜”现身市场

    中国食品饮料网(www.40777.cn)讯 肯德基“速成鸡”事件将药物激素鸡暴露在人们眼前。近日,激素蔬菜又被曝光。 据了解,近日,神奇蔬菜频出:广州某市民从菜市场买回几根黄瓜,拿出一根咬了几口后放进冰箱。没想到几天后,那根被咬过的黄瓜竟然长长了一截。中国食品饮料网(www.40777.cn)荔湾区的周先生也遇买了两根苦瓜,第二天全部变黄并开始腐烂。 这些蔬菜如此“神奇”的原因就源自于一种叫920的农药。这种农药催熟蔬菜,使其蔬菜长得大,卖相好,不仅能增产,还能提前上市。而在菜农、菜贩眼中,这已是公开的“秘密”。 专家表示,920属于植物生长调节剂的一种,人们常吃的无籽西瓜、无籽葡萄、无籽橘子,大多数都是在920的作用下变成无籽。植物生长调节剂种类有很多种,有用于增长的“助长剂”,用于矮化的“矮壮素”,促进成熟的“催熟剂”,还有促使落叶的“脱叶剂”等。 而这些植物生长调节剂的结构和功能不同于动物激素,对人体的生长发育没有副作用。 众所周知,短期没有副作用,但如果长期大量食用激素农药又是否安全呢?中国食品饮料网(www.40777.cn)科学技术的迅速发展,使得肉鸡“速成”,蔬菜速成不再是梦,但由此而带来的不可预测的隐患又该如何解决?我们强烈呼吁有关行业回归原来的养殖、种植规律,勿用人工手段助长动植物。

  • 某些元素特殊问题?

    大家在测试一些重金属元素时候,是否发现一些元素稀释前后变化很大,比如某个涂层样品含Zn,结果是1000ppm,浓度超出了工作曲线最高点,按比例稀释到工作曲线范围内,结果变化很大,提高好几百个PPm,明显不是成比列,或者更大倍数,针对这些元素,你是如何确定结果的?

  • 【求助】怎样抗生素分离纯化上树脂

    大家好:我现在在做一个化学药物的合成,是抗生素的,酰化反应,反应完全后,有2个副产物,根据液相,用ph8的缓冲液:乙腈=95:5时,底物在5分钟出峰,产物在4分钟出峰,副产物在2.5分钟出峰,不懂怎么样分离纯化,这个物质可能是成了盐了,因为在这过程中我加入碳酸氢钠来做酰化反应的缚酸剂,产物和副产物易溶于水、乙醇、甲醇少量不溶解,真不懂该怎么办,我想上树脂,上了一下硅胶柱,氯仿:甲醇=5:5时,好像都出来了,真不懂该怎么办啊,如果上树脂的话,还有什么树脂可以选择的啊?请高手指点一下!!!不胜感激!

  • 【转帖】吸附树脂分离纯化柚核中的柠檬苦素

    柠檬苦素及其类似物属于三萜类物质,是植物次生代谢的产物,它们主要存在于芸香科和楝科的多种植物中,迄今为止已发现300多种柠檬苦素类似物。虽然很早以前含有柠檬苦素的中草药已用于中医治疗,如含柠檬苦素及其降解产物的狭叶白藓皮的根,在中医上认为有清热除湿、祛风止痒的作用,但人们并不知道起作用的成份是哪些物质。近年来的研究发现,柠檬苦素及其类似物具有抗癌、镇痛、除虫和杀虫、调节体内胆固醇水平,防止动脉粥样化等方面作用,因此也越来越受到人们的重视。柠檬苦素广泛地存在于柑桔属的多种植物中,在果实中的含量因品种、发育阶段等不同而有差别,而在果实中的不同部位的柠檬苦素类化合物含量以种子最高,其中又以柠檬苦素含量最高我国的柑桔种植面积和产量都居世界前列,每年产生的柑桔皮渣等废弃物造成的环境污染也不容忽视,从这些废渣废弃物中提取一些生物活性物质,并加以利用,是提高柑桔产业效益,减少柑桔皮渣废弃物污染的重要途径。目前对柠檬苦素的提取纯化方法局限于溶剂法提取,然后结晶出产品或者用硅胶层析的方法。这些方法仅适用于小试,而要大规模生产或者大量处理柑桔产业的废弃物,成本太高。本实验采用大孔吸附树脂来分离纯化柠檬苦素,具有成本低、效率高、能循环利用等优点。

  • 塑料、树脂缩写代号

    英文简称 英文全称 中文全称 ABA Acrylonitrile-butadiene-acrylate 丙烯腈/丁二烯/丙烯酸酯共聚物 ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物 AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物 AMMA Acrylonitrile/methyl Methacrylate 丙烯腈/甲基丙烯酸甲酯共聚物 ARP Aromatic polyester 聚芳香酯 AS Acrylonitrile-styrene resin 丙烯腈-苯乙烯树脂 ASA Acrylonitrile-styrene-acrylate 丙烯腈/苯乙烯/丙烯酸酯共聚物 CA Cellulose acetate 醋酸纤维塑料 CAB Cellulose acetate butyrate 醋酸-丁酸纤维素塑料 CAP Cellulose acetate propionate 醋酸-丙酸纤维素 CE Cellulose plastics, general" 通用纤维素塑料 CF Cresol-formaldehyde 甲酚-甲醛树脂 CMC Carboxymethyl cellulose 羧甲基纤维素 CN Cellulose nitrate 硝酸纤维素 CP Cellulose propionate 丙酸纤维素 CPE Chlorinated polyethylene 氯化聚乙烯 CPVC Chlorinated poly(vinyl chloride) 氯化聚氯乙烯 CS Casein 酪蛋白 CTA Cellulose triacetate 三醋酸纤维素 EC Ethyl cellulose 乙烷纤维素 EEA Ethylene/ethyl acrylate 乙烯/丙烯酸乙酯共聚物 EMA Ethylene/methacrylic acid 乙烯/甲基丙烯酸共聚物 EP "Epoxy, epoxide" 环氧树脂 EPD Ethylene-propylene-diene 乙烯-丙烯-二烯三元共聚物 EPM Ethylene-propylene polymer 乙烯-丙烯共聚物 EPS Expanded polystyrene 发泡聚苯乙烯 ETFE Ethylene-tetrafluoroethylene 乙烯-四氟乙烯共聚物 EVA Ethylene/vinyl acetate 乙烯-醋酸乙烯共聚物 EVAL Ethylene-vinyl alcohol 乙烯-乙烯醇共聚物 FEP Perfluoro(ethylene-propylene) 全氟(乙烯-丙烯)塑料 FF Furan formaldehyde 呋喃甲醛 HDPE High-density polyethylene plastics 高密度聚乙烯塑料 HIPS High impact polystyrene 高冲聚苯乙烯 IPS Impact-resistant polystyre ne 耐冲击聚苯乙烯 LCP Liquid crystal polymer 液晶聚合物 LDPE Low-density polyethylene plastics 低密度聚乙烯塑料 LLDPE Linear low-density polyethylene 线性低密聚乙烯 LMDPE Linear medium-density polyethylene 线性中密聚乙烯

  • 熟吃会损失多少维生素

    每当人们说起加热食物,总是会说“这样会损失维生素”。尤其是那些提倡生食的人,避免因为加热损失维生素更是一个最常见的理由。更有“养生大师”语出惊人:超过40度维生素就要分解,所以要生着吃才有用。历史发展到今天,人类是唯一会把食物做熟了吃的生物。蔬菜熟吃,到底会损失多少维生素呢?  首先需要说明的一点,维生素不是一种物质,而是一大类物质。每一种维生素的特性各不相同,面对各种条件的稳定性也不一样。维生素C很容易溶于水,一些B族维生素例如叶酸、B6、B12等也溶于水,那么用水煮的话就比较容易失去。从保留水溶性维生素的角度来说,蒸是比煮更好的方式。这几种不稳定的维生素和维生素E、K在光照的条件下也会损失。此外,它们所处的环境,比如酸碱性也会影响它们的稳定性。而某些金属,比如铁和钴,能导致维生素E和B12失去活性。严格说来,维生素“失去活性”也并不是“生”和“死”两种状态,而是损失了多少的问题。  加热对于不同维生素的影响不一样,各种食物“加热”的温度和时间也不一样,所以“熟吃会损失多少维生素”并不是一个容易回答的问题。美国农业部的数据库里有 常见食物的各种维生素含量。有人统计了各种食物在“生”和“熟”状态下的数据,剔除含水量变化的影响,得出了各种维生素经过加热之后的损失比例。虽然这些数字不一定非常准确,但是足够我们得到一个有意义的印象:维生素A和E受温度影响不大,做熟之后损失10%左右,维生素C损失16%的样子,而维生素B1最不稳定,损失26%,其他的维生素也基本上在这个范围之内。总体而言,把食物做熟,维生素的损失大致在10-25%之间。  但是加热对维生素也有积极意义。有些食物中含有所谓的“反维生素物质”,它们能与维生素结合,而加热会破坏这些物质,从而增加维生素的吸收率。b-胡萝卜素是另一个例子,它存在于多种蔬菜中,比如胡萝卜、菠菜、红薯、西兰花等等。到了人体内它能转化成维生素A,是素食者获得这种维生素的主要途径。但是生的蔬菜中b-胡罗卜素的吸收率很低,而加热就可以使它的吸收率大大增加。有趣的是,超高温长时间加热的话,它会从有生物活性的反式结构转化成没有活性的顺式结构,所以这些蔬菜做成罐头之后b-胡罗卜素的损失就会比较大。不过,通常的蒸煮达不到那个温度,所以日常烹饪也就不用担心了。  加热损失的10-25%,不算很多,也不算少。不过,考虑到生吃蔬菜可能带来的问题,比如致病细菌,以及一些需要加热破坏的毒素,很难简单地说蔬菜应该生吃还是熟吃。其实对于维生 素来说,与其过多地关注“损失”,不如把注意力集中在来源上。不同的食物所富含的维生素不同,如果所吃的食物比较多样化,那么各种卫生素的总量就可能都会 比较多,损失一点也就没有什么关系了。毕竟,我们的身体需要的是各种维生素都达到某个需求量,而不是某一两种越多越好。baoanbaikang.soxsok.com/ zhongpengyi.soxsok.com/ whhaicheng.soxsok.com/ cmipma.soxsok.com/

  • 蔬菜的色素对色谱柱有何影响?

    近几年来做蔬菜的农药残留,前处理方法用NY761-2008,处理后绿色蔬菜的色素较重,随进样进入色谱柱,色谱柱的柱效越来越差,标液的峰面积越来越小,拖尾增加,这样的分析对吗?一根色谱柱做几百个样品后就废了,有什么好的方法,前处理简单也不污染色谱柱。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制