当前位置: 仪器信息网 > 行业主题 > >

反转录酶

仪器信息网反转录酶专题为您提供2024年最新反转录酶价格报价、厂家品牌的相关信息, 包括反转录酶参数、型号等,不管是国产,还是进口品牌的反转录酶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合反转录酶相关的耗材配件、试剂标物,还有反转录酶相关的最新资讯、资料,以及反转录酶相关的解决方案。

反转录酶相关的论坛

  • 差示反转录PCR[mRNA差异显示技术]

    mRNA差异显示技术是由美国波斯顿Dena-Farber癌症研究所的Liang Peng博士和Arthur Pardee博士在1992年创立的。它也称为差示反转录PCR(differential display of reverse transcriptional PCR)简称DDRT-PCR。mRNA差异显示技术是将mRNA反转录技术与PCR技术二者相互结合发展起来的一种RNA指纹图谱技术,具有简便、灵敏、RNA用量少、效率高、可同时检测两种或两种以上经不同处理或处于不同发育阶段的样品,该方法自问世以来已被广泛用于差异表达基因的克隆鉴定研究中。其基本原理是,几乎所有的真核基因mRNA分子的3’-末端,都带有一个多聚的腺苷酸结构,即通常所说的poly(A)尾巴。因此,在RNA聚合酶的作用下,可按mRNA为模板,以oligo(dT)为引物合成出cDNA拷贝。根据mRNA分子3’-末端序列末端结构的分析可以看到,在这段poly(A)序列起点碱基之前的一个碱基,除了为A的情况之外,只能有C、G、T三种可能。根据这种序列结构特征,P. Peng等人设计合成三中不同的下游引物,它由11个或12个连续的脱氧核苷酸加上一个3’-末端锚定脱氧核苷酸组成,用5’-T11G、5’-T11C、5’-T11A表示,这样每一种此类人工合成的寡核苷酸引物都将能够把总mRNA群体的1/3分子反转录成mRNA-cDNA杂交分子。于是,采用这三种引物,可以将整个mRNA群体在cDNA水平上分成三个亚群体。然后用一个上游的随机引物和与反转录时相同的oligo(dT)引物对这个cDNA亚群体进行PCR扩增,因为这个上游的引物将随机结合在cDNA上 ,因此来自不同mRNA的扩增产物的大小是不同的,可以在测序胶上明显分辨开来,从而筛选出不同样品间基因差异表达的DNA片段。 随着mRNA差异显示技术的广泛应用,也逐渐显露出一些不足之处,如所得特异性cDNA片段克隆的假阳性的比例较高,差异条带分离困难,获得的差异扩增片段一般在100bp~600bp太短之间,包含大量的非编码序列,不利于同源性比较分析等。 以下是以红豆杉为例进行mRNA差异显示研究的具体操作。1实验材料1.1红豆杉细胞 未经MJ诱导处理的A和经MJ诱导处理的B红豆杉细胞。 1.2寡核苷酸引物 (1)3’锚定引物: ①H-T11A(2uM): 5’-AAGCTTTTTTTTTTTA-3’ ②H-T11C(2uM): 5’-AAGCTTTTTTTTTTTC-3’ ③H-T11G(2uM): 5’-AAGCTTTTTTTTTTTG-3’ (2)5’ 随机引物: Kit引物:①H-AP1(2uM): 5’-AAGCTTGATTGCC-3’ ②H-AP2(2uM): 5’-AAGCTTCGACTGT-3’ ③H-AP3(2uM): 5’-AAGCTTTGGTCAG-3’ ④H-AP4(2uM): 5’-AAGCTTCTCAACG-3’ ⑤H-AP5(2uM): 5’-AAGCTTAGTAGGC-3’ ⑥H-AP6(2uM): 5’-AAGCTTGCACCAT-3’ ⑦H-AP7(2uM): 5’-AAGCTTAACGAGG-3’ ⑧H-AP8(2uM): 5’-AAGCTTTTACCGC-3’ 生工引物:①H-AP1(2uM): 5’-AAGCTTCATTCCG-3’ ②H-AP2(2uM): 5’-AAGCTTCCACGTA-3’ ③H-AP3(2uM): 5’-AAGCTTCGGGTAA-3’ ④H-AP4(2uM): 5’-AAGCTTGAGTGCT-3’ ⑤H-AP5(2uM): 5’-AAGCTTCGGCATA-3’ ⑥H-AP6(2uM): 5’-AAGCTTGGAGCTT-3’ ⑦H-AP7(2uM): 5’-AAGCTTACGCAAC-3’ ⑧H-AP8(2uM): 5’-AAGCTTTAGAGCG-3’ 特异引物:①5ac: 5’-GAGTTTCCACCATGGTGT-3’ ②ck5: 5’- GGAGTGAGTTTCCACCAT-3’ ③10ac: 5’-TTGTTGTAGGGGTGAGTT-3’ ④10acb: 5’-CATGGTATATGTGATGGA-3’ ⑤2ben: 5’- GTTGTGGGCACAAGATTC-3’ ⑥3ben:5’- CATAGTGTATGTGATGGA-3’ ⑦Phen:5’-GGTAGTGCATGCGATGCA-3’1.3主要试剂(1)RNA提取 柠檬酸钠(Sodum citrate),十二烷基肌氨酸钠(N-lauryl sarcosine),巯基乙醇(β-mercaptoethanol),异硫氰酸胍(guanidine isothiocyanate), 焦碳酸二乙酯(DEPC),水饱和酚等购自上海生工生物工程有限公司。

  • 转炉煤气回收

    转炉煤气回收应用分析仪器哪家生产商的比较好,从稳定性,可靠性给以建议

  • 基因组编辑工具新星---转录激活子样效应因子核酸酶(TALEN)

    http://www.bioon.com/biology/UploadFiles/201112/2011121813583277.gifTALE第171位Ser删除后的三维构象模型也显现出非常类似的球状结构,图片篇来自Biochemical Journal, 2004, 382: 725-731.2011年6月,位于美国加利福尼亚州卡尔斯巴德市的生命科技公司(Life Technologies)获得美国伊利诺斯州埃文斯顿市双刀片基金会(Two Blades Foundation)和德国哈雷市马丁-路德大学一组植物学家的独占性许可以便对一种新的基因组编辑技术---转录激活子样效应因子(transcription activator like effector, TALE)进行商业化生产。随着生命科技公司新获得的许可,研究人员可能很快能够从几个设计物TALE商业来源中进行选择。而2011年1月,美国明尼苏达大学和爱荷华州立大学开发的类似技术已被许可给法国公司Cellectis,而且该公司已经提供定制的基因特异性的转录激活子样效应因子核酸酶(TALEN)。与此同时,几个研究小组就像学术界之前对ZFN那样正在建立大众都可获取的TALEN来源。当然,现在预测利用只在2007年发现的TALE进行基因组编译的最终影响仍嫌过早。相反,ZFN技术开发了将近15年,并且已经正在人临床试验中进行测试。但是这两种技术的差别是显而易见的。不同于ZFN---该技术的知识产权是由Sangamo生物技术公司和它的商业伙伴Sigma-Aldrich所有,TALE的使用、成本和可获得性则是完全不同的情形。TALEs首先是植物病原菌黄单胞菌(Xanthomonas)上发现的,特异性地结合到DNA,在该病原菌感染过程中对植物基因进行调控。

  • 炼钢转炉煤气柜前后氧含量超标的原因及解决方案

    1 煤气回收系统工艺流程 在转炉吹炼过程中,由于剧烈的氧化反应,会有大量的高温炉气从炉口逸出,炉气中含有86%左右的CO和少量的CO2。炉气出炉口后与少量空气(一般通过炉口微差压控制系统将空气过剩系数控制为0.1)发生燃烧,燃烧后的烟气中仍含有60%-70%的CO。为了回收烟气中的CO,已配备了转炉煤气净化及回收系统,主要包括炉口微差压自动调节、R-D喉口、三通阀、氧气及一氧化碳分析仪(三通阀阀前管道、煤气柜柜前管道、煤气柜中各有一套分析仪)等设备。 2 氧含量超标现象和原因分析 (1) 氧含量超标现象。超标现象大多是出现在煤气回收结束时,表现为三通阀前煤气中氧含量正常(氧含量小于2%),而到煤气柜柜前突然上升(达到2%-10%)。超标现象的出现具有不定期性,每月发生3-6次。 (2)氧含量超标原因。经过长时间的现场跟踪、分析,查明超标的原因是由于转炉吹炼后期铁水中碳含量较低,氧气与铁水中的碳反应不够剧烈,少量的氧气被一次风机直接吸走混入煤气中;另一方面,由于氧分析仪响应时间和三通阀动作时间过长,等三通阀接到分析仪氧含量超标指令从回收状态完全转换到放散时,已有一定量的含氧量很高的煤气进入煤气柜柜前管道,造成柜前管道氧含量超标。 3 解决方案 查明氧含量超标的上述原因后,我们便从煤气回收操作及设备所存在的缺陷上找到了解决方案。 (1)规范煤气回收操作。煤气回收开始后及时将活动烟罩降到位,防止大量空气被吸入烟罩内。煤气回收期严格控制氧枪位,氧枪的提升严禁超过开氧点,防止枪位过高造成氧气直接被一次风机吸走。煤气回收结束前先提升活动烟罩,30s后再提氧枪。由于三通阀动作与活动烟罩动作联锁,这样煤气回收以活动烟罩提升而结束,不受氧分析仪响应时间长的影响。除特殊情况外,煤气回收系统设备(三通阀等)必须自动控制。 另外,由于回炉钢中碳含量降低、吹氧时间短,碳、氧反应不剧烈,以致大流量的高纯度的氧气极容易被一次风机直接吸走,回收的煤气中氧含量超标严重,因此我们决定不回收回炉钢煤气。 (2)增加煤气回收连锁条件。原设计中煤气回收三通阀的动作只与活动烟罩连锁,为防止活动烟罩因意外故障无法动作,我们增加了氧枪的提示超过开氧点与三通阀从回收位置转放散位置的联锁,从而形成双保险。 (3) 缩短三通阀动作时间及氧分析仪响应时间。经分析,三通阀动作时间长达48s的原因是由于气缸的气源管通径太小(只有15mm)。我们将其扩大到25mm后,三通阀动作时间缩短为27s。另外,原设计三通阀的动作气源为压缩空气,而且压缩空气的压力偏低(0.6MPa),波动也很大,造成三通阀工况不稳。我们将三通阀的气源改为中压氮(压力为1.3-1.6MPa,减压后为0.7MPa),三通阀工况稳定,其动作时间又缩短了7s。与此同时又改进氧分析仪的性能,使其响应时间从48s缩短到36s。这样整个反应时间有缩短,滞后现象有所改善。 通过规范煤气回收操作和设备改造后,我厂煤气回收期间氧含量超标现象基本杜绝,消除了安全隐患,保证了转炉煤气回收系统能够连续运行,煤气回收约增加了5%。 4 其他造成氧含量超标的可能因素 除了上述因素外,还可能出一些其他造成氧含量超标的因素,例如烟道上人孔门泄漏、负压段管道泄漏、风机前管道上防爆膜破裂、三通阀关不死或三通阀突发故障不动作以及氧分析仪故障等。通常,转炉煤气回收氧含量超标属偶发现象,大多是炼钢操作不当所造成。如果转炉煤气回收氧含量超标连续发生,应检查煤气回收系统是否存在设备故障。 转炉煤气回收量的讨论 每个实现煤气回收的单位都有自己的一套煤气回收量增加的办法,但总结起来主要几点: 一 控制煤气回收时炉口的空气吸入量,使烟气中的CO、O2含量尽快达标。 二 在转炉生产时化好初渣对煤气回收的影响也很大,在转炉生产中,化渣的好坏直接影响到转炉生产的平稳性,也是衡量转炉操作水平的主要标志,它同时是影响到转炉煤气量在生产初期是否能够平稳上升的重要因素。从转炉煤气分析的曲线上就可以看出转炉开始吹炼时的加料对烟气CO的变化是相当大的。通过我们的现场试验,在转炉生产中的加料做到分批加料将缩短从转炉吹炼到烟气达标的时间。 三 转炉炼钢过程中的生产稳定对CO的稳定有很大的关系。由于转炉生产过程是个脱碳的过程,在转炉吹炼后期,一般生产厂的操作时供氧80%左右就是提活动烟罩,由于空气的迅速进入,CO、O2的浓度很快下降,从煤气分析曲线上可以证实CO的含量下降情况,提罩后基本上很快就使回收终止,从而影响煤气的回收量。总结我们的成功经验,在转炉钢水脱碳后期,虽然碳基本上没去了,但我们在操作中可以适当将提罩时间后延,控制住炉口空气暂时不让其进入,再从煤气分析曲线上可以看出,CO的含量曲线变成缓降,这就会延长回收时间,从而提高煤气的回收量。

  • RNA提取及逆转录protocol

    一、总RNA 提取 总RNA提取是分子生物学实验中常见的技术步骤,用于从细胞或组织样本中分离和纯化总RNA。以下是一个常见的总RNA提取流程及注意事项: 1、 一切使用器材(各种类枪头,ep管等)均需要无酶。可直接购买无酶器材或将器材在实验前一天浸泡于DEPC水中过夜,烘干使用。 2、 整个操作过程最好在冰上进行。 l 实验步骤: 1. 将细胞培养液倒掉,立即加入Trizol试剂,每瓶1ml,反复吹打,室温静置5-10min; 2. 将细胞吸入1.5ml EP管中,每管加 入200ul氯仿,旋窝振荡器剧烈震荡15s,冰上孵育5min; 3. 4℃、12000g离心15min,收集上层无色水相到新的1.5ml EP管中(此处离心后ep管中会分为3层,上层透明:RNA;中层乳白:DNA;下层红色:蛋白及细胞碎片,收集上清液切记不可贪多,切勿将DNA误吸) 4. 加入等量异丙醇(约500ul),轻柔颠倒混匀(沉淀RNA); 5. 4℃、12000g[font=微软雅黑]离心15min,弃上清; 6. 加入1ml 75%乙醇并震荡(将沉淀弹起即可,乙醇要用DEPC水配制,若提取miRNA建议乙醇浓度为80%,洗涤效果更好); 7. 4℃、12000g离心5min,弃上清; 8. 空气中(超净台内)干燥20-25min; 9. 加入20-30ul DEPC水溶解RNA; 10. 分装后,-80℃保存。 二、逆转录(包括miRNA逆转录) a) 总RNA逆转录 RT master mix 4ul 总RNA 2000ng Rnase-free water 补足至20ul https://ng1.17img.cn/bbsfiles/images/2024/10/202410120942275776_2548_3237657_3.png!w588x37.jpg 逆转录结束后cDNA可以长期保存于-20℃。 b) miRNA逆转录(加尾法)[/font] RT solution mix 10ul Enzyme mix 2ul 总RNA 2000ng Rnase-free water 补足至20ul https://ng1.17img.cn/bbsfiles/images/2024/10/202410120943331794_9571_3237657_3.png!w611x38.jpg 逆转录结束后cDNA可以长期保存于-20℃。

  • 【求助】DNA RNA有关的酶类

    [em0802] 请比较详细的介绍一下DNA聚合酶,DNA连接酶,RNA聚合酶.限制性内切酶,限制性外切酶,反转录酶,拓扑异构酶的结构,分类和功能.

  • 【实验】RACE技术的原理和操作

    近年来随着生物技术的不断发展,出现了许多克隆新基因的方法和手段,如图谱克隆技术、转座子标签技术、mRNA差异显示技术二基因组减法技术以及cDNA文库筛选技术等。但上述方法人多具有实验周期长、技术步骤烦琐且工作量大等特点。cDNA末端快速扩增技术(rapid amplification of cDNA ends,RACE)是一种基于PCR从低丰度的转录本中快速扩增cDNA的5'和3'末端的有效方法,以其简单、快速、廉价等优势而受到越来越多的重视。经典的RACE技术是由Frohman等(1988)发明的一项技术,主要通过RT-PCR技术由已知部分cDNA序列来得到完整的cDNA5'和3'端,包括单边PCR和锚定PCR。该技术提出以来经过不断发展和完善,克服了早期技术步骤多、时间长、特异性差的缺点(Frohman等,1995:Schaefer,l995: Chen,1998: Bespalova等,1998: Matz等11999)。对传统RACE技术的改进主要是引物设计及RT-PCR技术的改进:改进之一是利用锁定引物((lock docking primer)合成第一链cDNA,即在oligo(dT)引物的3' 端引入两个简并的核苷酸【5'-Oligo(dT)16-30MN-3',M=A/G/C;N=A/G/C/T】,使引物定位在poly(A)尾的起始点,从而消除了在合成第一条cDNA链时oligo(dT)与poly(A)尾的任何部位的结合所带来的影响;改进之二是在5' 端加尾时,采用poly(C),而不是poly(A);改进之三是采用RNase H-莫洛尼氏鼠白血。病毒(MMLV)反转录酶或选择嗜热DNA聚合酶可能在高温(60℃ -70℃)有效地逆转录mRNA,从而消除了5'端由于高CC含量导致的mRNA 二级结构对逆转录的影响;改进之四是采用热启动PCR (hot start PCR)技术和降落PCR(touch down PCR)提高PCR反应的特异性。随着RACE技术日益完善,目前己有商业化RACE技术产品推出,如CLONTECH的MarathoTM技术和SMARTTM RACE技术。邢桂春等(2001)先后使用上述两种试剂盒进行RACE反应,结果发现使用MarathonTM所得到的片断总是比采用SMARTTM RACE试剂盒到所得到的片断短。其原因在于MarathonTM技术反转录反应往往不能真正达到mRNA的5' 末端。所以认为,进行RACE反应应当优选SMARTTM RACE试剂盒。以下就国内目前应用最广的SMARTTM RACE试剂盒为例,简要概述RACE技术的原理和操作过程。SMARTTM 3'-RACE的原理利用mRNA的3'末端的poly(A)尾巴作为一个引物结合位点,以连有SMART寡核营酸序列通用接头引物的Oligo(dT)30MN作为锁定引物反转录合成标准第一链cDNA.然后用一个基因特异引物GSP1(gene specific primer,GSP)作为上游引物,用一个含有部分接头序列的通用引物UPM(universal primer,UPM)作为下游引物,以cDNA第一链为模板,进行PCR循环,把目的基因3' 末端的DNA片段扩增出来。(见Figure 1)http://tong.dxy.cn/upload/asset/2009/10/23/1256188568.jpgFigure 1.SMARTTM 5'-RACE的原理先利用mRNA的3'末端的poly(A)尾巴作为一个引物结合位点,以Oligo(dT)30MN作为锁定引物在反转录酶MMLV作用下,反转录合成标准第一链cDNA.利用该反转录酶具有的末端转移酶活性,在反转录达到第一链的5'末端时自动加上3-5个(dC)残基,退火后(dC)残基与含有SMART寡核苷酸序列Oliogo(dG)通用接头引物配对后,转换为以SMART序列为模板继续延伸而连上通用接头(见Figure 2 )。然后用一个含有部分接头序列的通用引物UPM(universal primer,UPM)作为上游引物,用一个基因特异引物2(GSP 2 genespecific primer,GSP)作为下游引物,以SMART第一链cDNA为模板,进行PCR循环,把目的基因5'末端的cDNA片段扩增出来。最终,从2个有相互重叠序列的3'/ 5'-RACE产物中获得全长cDNA,或者通过分析RACE产物的3'和5'端序列,合成相应引物扩增出全长cDNA。http://tong.dxy.cn/upload/asset/2009/10/23/1256188569.jpgFigure 2.实验中发现,做RACE反应实验实际操作中仍存在不少困难。因此,对RACE反应条件进行反复摸索是十分必要的。这是因为:第一,在5'-RACE包含了有3个连续的酶反应步骤(反转录、同聚物加尾和PCR扩增),每一步都可能导致失败;第二,扩增DNA末端的特异性完全依赖锚定引物及扩增DNA模板样品的不均一性,因而特异性一般很低,常呈现不清晰的成片条带或截短的产物背景。因此,使用RACE技术扩增得到的特异末端片段,所获得的重组克隆最好能够全部测序,以排除RACE实验结果中扩增产物假阳性和假阴性,最终有可能获得新基因的全序列。随着RACE的不断改进和完善,优化条件下PCR扩增效率和忠实性的提高及PCR产物克隆技术的迅速发展,RACE必将在基因克隆及基因表达研究中发挥越来越大的作用。RACE的另一种代表方法-Self-Ligation法1. 反转录(RT)反应。2. Hybrid RNA的分解。3. 单链cDNA的自身连接。4. PCR扩增5'未知区域。5. 目的DNA片段的切胶回收。6. DNA序列测定。原理见Figure 3。http://tong.dxy.cn/upload/asset/2009/10/23/1256188570.jpgFigure 3.

  • 基因芯片实验操作流程图

    基因芯片实验操作流程包括样本DNA或RNA制备、标记、杂交及洗涤等步骤http://img1.jiansuo.net/trademd/upload/asset/meeting/2010/12/02/1291289644.JPG 基因芯片实验操作流程图 1、样本DNA或RNA制备 芯片实验中核酸的抽提没有特殊之处,参照常规的分子生物学实验手册就可以。但对于RNA样本,由于RNA的稳定性很差,在活体内的半衰期也很短,因此取材一定要新鲜,取材后迅速保存在液氮中,在整个处理过程中要非常小心,以免降解,影响实验成功率或结果的可靠性。 2、核酸标记方式 分子生物学常用的标记方法有同位素标记和非同位素标记方法,常用的同位素有33 P、32 P、125 I及3 H等化学发光标记和荧光标记,非同位素标记方法又分为化学发光法和荧光法。常用的化学发光物质有碱性磷酸酶和辣根过氧化物酶,它们能催化相应的底物产生有颜色的沉淀物;生物素和地高辛是最常用的非同位素标记物。很多荧光染料、碱性磷酸酶和辣根过氧化物酶可直接同抗地高辛抗体及亲和素偶联。而目前常用的荧光染料种类有德克萨斯红(Texasred)、荧光系、罗丹明、Cy3、Cy5等。生物芯片中的标记方法普遍采用荧光方法,很少采用化学发光法和同位素标记方法。 核酸样本通常采用酶反应法进行标记,蛋白质样本采用化学方法或抗体―抗原间接标记的方式。核酸中常用的酶反应方法有:反转录法、随机引物法、切口平移(nicktranslation)、PCR、体外转录等。在酶反应过程中掺人带荧光的dNTP,从而标记新合成的核酸分子。如果酶反应中需要引物,如PCR、随机引物法和反转录法,也可以将荧光基团通过化学反应加到引物的末端。 3、样品标记方法 样本标记方法很多,这里仅举几种常用的方法。 (1) RNA标记方法:对于表达谱基因芯片和RNA不同剪切体的研究,是针对RNA样本进行标记。最常见的标记方式是用Cy3或Cy5荧光,通过反转录标记法,选择不同激发波长的荧光标记不同的样本。如Cy3或Cy5标记的dNTP,通过酶反应掺人到待测样品中,便可以在一张片子上同时检测两份标本的信息,做到平行性比较,数据更可靠。另外,由于反转录法所需RNA样本量大,一般需要20fig的总RNA。对于微量的组织样本很难制备足够的RNA,这时可以采用RNA线性扩增方法,最普遍采用的RNA扩增方法是RNA体外线性扩增方法。 (2) DNA样本的标记方法:当对样本进行CGH分析、SNP、分子分型或甲基化研究时,主要选用DNA作为样本。对于CGH,可以进行全基因组标记,通常采用随机引物标记方法。这种方法需要的DNA量大,一般在2pg以上的基因组DNA。虽然有人发明了全基因组DNA的线性扩增技术以减少对样本量的需求,但效果上都不很理想,很难真正做到全基因组及完全的线性扩增。对于SNP研究,可以采用类似CGH的标记方式进行全基因组标记。由于SNP检测的是DNA的“质”,而不像表达谱或CGH质检测核酸的“量”,因此不必要考虑标记时DNA的线性关系,可以采用其他的全基因组的扩增方法。但由于杂交条件的限制,一般难以做到真正意义上的高通量。因此,一般只是选择少数目的基因的少数SNP位点进行研究,可以采用多重PCR标记方法标记目的片段代替全基因组标记。甲基化研究有两种方案,一种采用SNP的检测原理,另一种类似CGH的方法。

  • 上海药物所PGC-1α转录调节剂研究取得进展

    过氧化物酶体增殖活化受体γ共激活因子-1α(PGC-1α)是能量代谢途径中众多转录因子的共激活因子,在能量代谢平衡中起到至关重要的作用,且PGC-1α的表达和活性异常与代谢型疾病之间存在紧密关联。发现骨骼肌中PGC-1α活性调节剂可能成为改善代谢综合症的新策略。 中科院上海药物所李佳研究组联合沈竞康研究组针对PGC-1α小分子调节剂进行了合作研究。建立了人PGC-1α启动子驱动的萤光素酶报告基因高通量筛选模型,通过对国家化合物样品库48000个化合物的随机筛选和数据挖掘,发现小分子化合物ZLN005能显著提高大鼠L6肌管细胞中PGC-1α的mRNA水平,并刺激L6肌管细胞对葡萄糖的摄取和对棕榈酸的氧化能力。ZLN005长期给药可显著上调自发性2型糖尿病db/db小鼠骨骼肌中PGC-1α的mRNA水平、线粒体生物合成基因的表达和线粒体数目;ZLN005慢性治疗可改善肝脏中PGC-1α的mRNA水平及肝糖异生关键基因的表达。动物体内药效学研究表明PGC-1α转录调节剂ZLN005慢性治疗可显著降低db/db小鼠的高血糖和高血脂症状、有效改善db/db小鼠的胰岛素抵抗、丙酮酸耐受以及葡萄糖耐受能力。作用机制研究表明ZLN005促进PGC-1α的mRNA水平以及下游基因的表达是依赖于转录因子MEF2以及AMPK信号通路。 该项研究成果首次证实靶向基于PGC-1α共激活因子的转录水平调节,可有效促进骨骼肌线粒体生成从而改善代谢综合症,已于2012年12月18日在线发表于美国糖尿病学会杂志Diabetes。该项研究主要由李静雅研究员的博士研究生张丽娜在李静雅研究员、李佳研究员和沈竞康研究员共同指导下完成。 文章链接  http://www.cas.cn/ky/kyjz/201301/W020130104435028565064.jpgAMPK是调节剂ZLN005促进大鼠L6骨骼肌PGC-1α转录调控的关健信号通路

  • 【分享】关于征求《广西拟水龟繁殖技术规范》等12项广西地方标准意见的通知

    各有关单位:  根据《关于下达2010年第二批广西地方标准制定项目计划通知》(桂质监函〔2010〕342号)精神,由自治区水产畜牧兽医局组织起草的《广西拟水龟繁殖技术规范》等12项地方标准征求意见稿已完成。依据《中华人民共和国标准化法》有关规定,现在网站上公开征求意见,欢迎提出宝贵意见。请将意见于2011年1月30日前,以E-mail或传真的形式反馈我局。  联系人:温艳玲  电话:0771-5360200转249  传真:0771-5360248  E-mail: gxjbzhc@gxqts.gov.cn  附件:  1.《广西拟水龟繁殖技术规范》2.《大水面养殖技术规范》3.《黄颡鱼网箱养殖技术规范》4.《广西拟水龟》5.《吉富罗非鱼养殖技术规范》6.《猪场生物安全体系建立技术规范》7.《牛病毒性腹泻病毒的检测反转录聚合酶链反应法(RT-PCR)》8.《尿液中盐酸克仑特罗、莱克多巴胺、沙丁胺醇的测定 胶体金免疫层析法》9.《优良鸡品种禽白血病净化技术操作规程》10.《融水香鸭》11.《猪脑心肌病毒(EMCV)的检测 反转录聚合酶链反应法(RT-PCR)》12.《山羊痘病毒、羊传染性脓疮病毒的检测 二重聚合酶链反应法》

  • 需要维修PCR仪?PCR常见问题解答

    PCR仪常见问题及回答1. cDNA产量的很低可能的原因:*RNA模板质量低*对mRNA浓度估计过高*反应体系中存在反转录酶抑制剂或反转录酶量不足*同位素磷32过期*反应体积过大,不应超过50μl2. 扩增产物在电泳分析时没有条带或条带很浅*最常见的原因在于您的反应体系是PCR的反应体系而不是RT-PCR的反应体系*与反应起始时RNA的总量及纯度有关*建议在试验中加入对照RNA*第一链的反应产物在进行PCR扩增时,在总的反应体系中的含量不要超过1/10*建议用Oligo(dT)或随机引物代替基因特异性引物(GSP)用于第一链合成。由于RNA模板存在二级结构,如环状结果,有可能导致GSP无法与模板退火;或SSⅡ反转录酶无法从此引物进行有效延伸。*目的mRNA中含有强的转录中止位点,可以试用以下方法解决:a. 将第一链的反应温度提高至50℃。b. 使用随机六聚体代替Oligo(dT)进行第一链反应。3. 产生非特异性条带*用RT阴性对照检测是否被基因组DNA污染。如果RT阴性对照的PCR结果也显示同样条带,则需要用DNase I重新处理样品。*在PCR反应中,非特异的起始扩增将导致产生非特异性结果。在低于引物Tm 2至5℃的温度下进行退火,降低镁离子或是目的DNA的量将减少非特异性结果的产生。*由于mRNA剪切方式的不同,根据选择引物的不同将导致产生不同的RT-PCR结果。4. 产生弥散(smear)条带*在PCR反应体系中第一链产物的含量过高*减少引物的用量*优化PCR反应条件/减少PCR的循环次数*在用DNase处理被DNA污染的RNA样品时,其产生的寡核苷酸片段会产生非特异性扩增,一般会显示为弥散背景。5. 产生大分子量的弥散条带*大多数情况下是由于退火温度过低而导致的非特异性的起始及延伸产生的*对于长片段的PCR,建议将反应体系中cDNA的浓度稀释至1:10(或1:100-1:200)6. 在无反转录酶的情况下,对照RNA获得扩增结果*通常是由于对照RNA中含有痕量DNA而导致的。由于进行体外转录时不可能将所有的DNA模板消除。建议可将第一链cDNA稀释1:10、1:100、1:1000倍以消除DNA污染所造成的影响。*有可能是引物二聚体的条带7. 扩增产物滞留在加样孔中*有可能是由于模板量过高而导致PCR结果产生了高分子量的DNA胶状物。建议将第一链结果至少稀释100倍再进行二次扩增。*另外,在二次PCR时使用的退火温度如果比引物的Tm值低5℃,可以将退火温度适当增高或进行热启动以提高特异性。8. SSⅢ与SSⅡ有何不同?*具有更高的热稳定性(达50℃)*具有更长的半衰期(达220分钟)*对PCR无抑制*干冰运输*Tdt活性更低9. 为什么有人更喜欢用SSⅢ而不是ThermoScript?ThermoScript如果保存不当会引起活性很快降低,SSⅢ则更稳定。10. 为什么使用基因特异性引物(GSP)?GSP在扩增低丰度的转录本时是最好的。OligodT引物建议用于高质量RNA及全长转录本的逆转录;随机引物用于mRNA片段的逆转录。11. 什么情况下需要使用RNase H?在第一轮PCR中RNA/DNA杂合体不能正常变性时12. 根据不同的目的选择不同的系统:目的 建议RT与PCR使用不同的引物或需要灵活选择PCR DNA聚合酶 两步法RT-PCR系统高灵敏度 一步法或两步法RT-PCR系统高特异性 含有适当的DNA聚合酶的两步法RT-PCR系统或具有高保真Platinum Taq酶的一步法RT-PCR系统高保真度 含有Pfx Taq酶的两步法RT-PCR系统长的反转录结果 通常使用两步法RT-PCR系统可达到最佳结果含Elongase酶的一步法RT-PCR系统二、Generacer1. 如何针对Generacer试剂盒设计基因特异性引物(GSP)?使用5’或3’RACE试剂都需要至少一条基因特异性引物,您在设计引物时需要注意以下几点要求:*50-70%的GC含量,以提高引物熔点(Tm)*23-28个碱基长度,以提高引物特异性*降低3’端GC含量,将引物非特异性结合的可能性降至最低2. 为什么得不到RACE产物?*加入Hela对照*低质量的RNA模板*逆转录失败,SSII和SSIII非常适用于长模板cDNA的合成*目的基因丰度太低,可以通过提高PCR的循环次数来解决,建议使用巢式PCR*目的基因没有表达,可以通过使用两条GSPs来分析cDNA中是否含有目的基因*目的基因太长而不适合进行反转录,建议使用GeneRacer试剂盒中的Oligo dT来得到全长cDNA,使用随机引物或与模板的5’端尽可能近的GSP进行PCR。*cDNA模板属于困难模板,可以通过以下方法解决:优化PCR反应参数及反应体系;降低退火温度;使用5-10%的DMSO帮助通过高GC含量区;使用高保真度和高延伸能力的酶进行PCR反应。3. RACE的PCR结果有杂带RACE PCR杂带或非特异性PCR条带可能是由于以下原因:*GSP与其他cDNA的非特异性结合会导致在扩增目的产物时得到无关产物。*GeneRacer引物和cDNA的非特异性结合会导致产生一端带有GeneRacer引物序列的PCR产物。*RNA降解。*PCR管或试剂污染。注意:杂带一般是因为没有优化PCR条件,可以加入阴性对照来确定。4. 得不到全长的5’RACE PCR产物*CIP反应后的RNA降解产生了新的带有5’磷酸的断裂模板,可以同GeneRacer RNA Oligo连接。一定要小心操作,保证RNA无降解。*CIP脱磷酸不完全,可以增加反应中CIP的量或减少RNA的量。*PCR产生了杂带,并不是真正的连接产物,可以使用上述建议优化PCR。二、Generacer1. 如何针对Generacer试剂盒设计基因特异性引物(GSP)?使用5’或3’RACE试剂都需要至少一条基因特异性引物,您在设计引物时需要注意以下几点要求:*50-70%的GC含量,以提高引物熔点(Tm)*23-28个碱基长度,以提高引物特异性*降低3’端GC含量,将引物非特异性结合的可能性降至最低2. 为什么得不到RACE产物?*加入Hela对照*低质量的RNA模板*逆转录失败,SSII和SSIII非常适用于长模板cDNA的合成*目的基因丰度太低,可以通过提高PCR的循环次数来解决,建议使用巢式PCR*目的基因没有表达,可以通过使用两条GSPs来分析cDNA中是否含有目的基因*目的基因太长而不适合进行反转录,建议使用GeneRacer试剂盒中的Oligo dT来得到全长cDNA,使用随机引物或与模板的5’端尽可能近的GSP进行PCR。*cDNA模板属于困难模板,可以通过以下方法解决:优化PCR反应参数及反应体系;降低退火温度;使用5-10%的DMSO帮助通过高GC含量区;使用高保真度和高延伸能力的酶进行PCR反应。3. RACE的PCR结果有杂带RACE PCR杂带或非特异性PCR条带可能是由于以下原因:*GSP与其他cDNA的非特异性结合会导致在扩增目的产物时得到无关产物。*GeneRacer引物和cDNA的非特异性结合会导致产生一端带有GeneRacer引物序列的PCR产物。*RNA降解。*PCR管或试剂污染。注意:杂带一般是因为没有优化PCR条件,可以加入阴性对照来确定。4. 得不到全长的5’RACE PCR产物*CIP反应后的RNA降解产生了新的带有5’磷酸的断裂模板,可以同GeneRacer RNA Oligo连接。一定要小心操作,保证RNA无降解。*CIP脱磷酸不完全,可以增加反应中CIP的量或减少RNA的量。*PCR产生了杂带,并不是真正的连接产物,可以使用上述建议优化PCR。三、PCR在进行PCR时:*请确保您没有使用过量的起始DNA或者过高浓度的引物,也没有加入过量的Mg++*请确保您使用了恰当的退火温度*请确保您没有使用过量的DNA聚合酶四、引物1. 应该选择哪种纯化方法?取决于实验目的和引物的长度2. 为什么我订购了50nmol,但是收到却只有40nmol?50nmol是起始量3. 怎样制备100μM的储液?体积(μl)=质检报告上的nmol数目×104. 怎样设计引物?*一般长度20-30bp;*至少50%的GC含量;*避免引物二聚体和二级结构;*引物对的Tm值应该接近。5. 引物序列有插入或缺失?*使用上游和下游引物多测几个克隆。*请选择正确的纯化方法。6. PCR无结果?*请检查引物设计是否正确;*请检测OD读数是否正确;*做一个阳性对照和一个阴性对照

  • 请教反转门控实验

    请教各位大侠,反转门控实验的脉冲序列是zgig,除此之外,其他做法是否和质子宽带去偶碳谱的做法一样?驰豫时间怎样设置?如浓度足够大,时间大约多长?谢谢指教。

  • “提供保护人工记录和转录准确性的条件”怎么实现?

    各位大佬,求助啊啊如题,7.11.3条款中:[table=973][tr][td]“实验室信息管理系统应:[/td][/tr][tr][td]c) 在符合系统供应商或实验室规定的环境中运行,或对于非计算机化的系统,提供保护人工记录和转录准确性的条件?”这个条款应该怎样理解呢?具体应该制定什么程序,怎么做才能实现呢?[/td][/tr][/table]

  • 温度冲击试验箱之制冷压缩机反转的危害

    温度冲击试验箱制冷压缩机停机后严禁发生反转。当压缩机转子静止后,此时管路当中尚残存很大容量的工艺气体,并具有一定的压力,而此时压缩机转子停止转动,温度冲击试验箱压缩机内压力低于管路压力。这时如果压缩机出口管路上没有安装逆止阀门或者逆止阀门距压缩机出口很远的话,管路中的气体便会倒流,使压缩机发生反转,同时也带动汽轮机或电动机及齿轮变速器等转子反转。压缩机组转子发生反转会破坏轴承的正常润滑,使止推轴承受力状况发生改变,甚至会造成止推轴承的损失,干气密封也会因为温度冲击试验箱压缩机的倒转而损坏。

  • 你的温压测控装置是否和消解罐随转盘360度正转一周,反转一周?

    你的温压测控装置是否和消解罐随转盘360度正转一周,反转一周?看到某微波资料介绍: 温压测控装置和消解罐随转盘同方向同步旋转,通过专利的接线盒技术让转盘始终朝一个方向不停顿地旋转,无需360度来回旋转,旋转过程中无停顿,微波加热更均匀;温压测控电缆很短,运转中没有任何缠绕扭曲,安装拆卸方便;转盘电机负荷小,使用寿命长。我用得CEM的是360度正转一周,反转一周的

  • 翻转式振荡器的优势

    JRY翻转式振荡器的优势:1、全封闭的护罩,是您安全的保障。2、活动推拉门,装卸瓶轻松自如。3、开关连锁,清晰明了;微创开关,确保误动作安全。4、全不锈钢制作,超常的使用寿命和稳定性能。5、数字显示,定时、转速,翻转状态一目了然。6、温度设置恒定,振荡效果佳。7、上扣下托,样品瓶固定完美。8、独具匠心的防渗液微孔,即使溶液渗漏整机正常工作。9、高科技的转速调节数显,正转、反转、正反转,高速、低速运转自如。 10.刹车装置,连续翻转无故障,同类产品中的

  • 【实战宝典】RNA 中含有逆转录抑制剂时,怎么处理?

    问题描述:RNA 中含有逆转录抑制剂时,怎么处理?解答:[font=宋体]逆转录抑制剂包括:[/font][font=&]SDS[/font][font=宋体]、[/font][font=&]EDTA[/font][font=宋体]、甘油、焦磷酸钠、亚精胺和胍盐,可将质控[/font][font=&] RNA [/font][font=宋体]与样品核酸混合作为实验组(同时质控[/font][font=&] RNA [/font][font=宋体]同比稀释做为对照组),对比对照组与实验组[/font][font=&] Ct [/font][font=宋体]值以检测是否存在[/font][font=&]RNA [/font][font=宋体]抑制剂;若质控[/font][font=&] RNA [/font][font=宋体]与样品核酸混合后[/font][font=&] Ct [/font][font=宋体]变大([/font][font=&]ΔCt[/font][font=宋体]>[/font][font=&]2[/font][font=宋体]),则说明样品中存在逆转录抑制剂,可用[/font][font=&] 70%[/font][font=宋体]([/font][font=&]v/v[/font][font=宋体])乙醇对[/font][font=&] RNA [/font][font=宋体]沉淀进行清洗,以除去抑制剂。[/font]以上内容来自仪器信息网《PCR实战宝典》

  • 【求助】关于荧光定量PCR加样量问题

    我的cdna样品浓度都是用900ng 的RNA反转录做成的20ul的溶液,那么请问我在加入cdna样品时应该加入多少体积的量?我看到SYBR Premix ex taq(perfecct real time)编号drr041a的试剂盒里面说20ul的荧光定量体系cdna模板加入2ul,但是没有注明浓度是多少,只是说dna模板添加量在100ng以下,而且说反转录反应液作为dna模板时添加量不要超过pcr反应总体积的10%,我用的荧光定量pcr反应总体积是20ul,那么cdna的体积应该不大于2ul了,但是浓度应该多少为好呢?还有引物浓度我该用多少为好呢,试剂盒上20ul的荧光定量体系是10uM的加入0.4ul。我的实际浓度和体积可能跟试剂盒上的不一样,但是我该怎么按照自己的900ng 的RNA反转录做成的20ul的溶液来改动试剂盒上的数据呢?如果做浓度梯度来确定cdna浓度和引物浓度,该怎么浓度梯度为好呢?我是用900ng的RNA来反转录做成20ul体系,然后不稀释直接取2ul来荧光定量PCR(20ul体系),即我用于荧光定量PCR的cdna模板含量是90ng

  • 关于pcr和ung酶的一个疑问

    请问大家一个问题,逆转录PCR反应体系可以用UNG酶防污染吗?逆转录的初始模板中就含有U,如果加入UNG酶会不会被破坏掉?

  • 病毒是如何产生的?

    [color=#cc0000][b]到目前为止,人来还没真正研究清楚病毒是如何形成的,当前主要有三种学说,解释病毒的进化。[/b][/color][color=#cc0000][b]一、病毒起源于自主复制的RNA分子 [/b][/color][color=#cc0000][b]核糖核酸(RNA)具有自主复制的信息和能力,并研究发现RNA分子具有酶的催化能力,这促使RNA为病毒的起源学说变得更具说服力。RNA分子至少具备下列可以进行复制和进化三种相关功能:1、核糖核酸酶的活性 2、能自我拼接去掉内部的核酸序列(核酸) 3、有实验表明,以RNA作引物可以合成依赖于模板的多聚胞嘧啶核酸。 [/b][/color][color=#cc0000][b]二、病毒起源于宿主细胞中的DNA或RNA成分的学说 这个学说可以解释所有病毒的起源:DNA病毒起源于质粒或转移因子,反转录病毒起源于反转座子,RNA病毒起源于自主复制的mRNA。 该学说的核发心内容是:病毒是正常的细胞成分获得了自主复制的能力,进化而来的。[/b][/color][color=#cc0000][b]三、退化性起源学说 该学说认为病毒是细胞内寄生物的退化形式。在细胞内,这类寄生物可以在不影响其生存的情况下逐渐丢失部分生物学功能。它们所必需保留的功能是具有可进行自主复制的DNA复制原点(顺式元件)、可以对复制进行调控的反式调控蛋白,以及能与宿主生物合成及复制系统相互作用的顺式和反式功能。最终,就可产生一种专性细胞内寄生的DNA分子或质粒。[/b][/color]

  • 【金秋计划】分子生物学实验中9种常用酶的作用原理解析

    (1)限制性核酸内切酶 一种内切酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA,俗称“分子手术刀”。内切酶是重组DNA技术和基因诊断中重要的一类工具酶。 (2)DNA连接酶 DNA酶能利用ATP或NAD+水解提供的能量催化DNA链的5'-磷酸末端与另一DNA链的3'-OH生成3',5'-磷酸二酯键,从而把两个DNA链连接起来。常见实验室常用的DNA连接酶,包括T4 DNA连接酶和Taq DNA连接酶等。 (3)DNA聚合酶 DNA聚合酶主要是催化脱氧核苷酸之间的聚合反应,连接DNA片段与单个脱氧核苷酸之间的磷酸二酯键,在DNA复制中起到关键作用。 DNA聚合酶与DNA连接酶的区别:DNA聚合酶只能将单个核苷酸加到已有的核酸片段的3'末端的羟基上,形成磷酸二酯键;而DNA连接酶是在两个DNA片段之间形成磷酸二酯键,不是在单个核苷酸与DNA片段之间形成磷酸二酯键。 此外,DNA聚合酶是以一条DNA链为模板,将单个核苷酸通过磷酸二酯键形成一条与模板链互补的DNA链;而DNA连接酶是将DNA双链上的两个缺口同时连接起来,因此,DNA连接酶不需要模板。 (4)RNA聚合酶 RNA聚合酶以完整的双链DNA为模板,转录时DNA的双链结构部分解开,转录后DNA仍然保持双链的结构。常见RNA聚合酶:rRNA、mRNA、tRNA和其它小分子RNA,在RNA复制和转录中起作用。 (5)逆转录酶 逆转录酶具有三种酶活性,即RNA指导的DNA聚合酶、RNA酶、DNA指导的DNA聚合酶。在分子生物学实验中,广泛用于建立基因文库、获得目的基因等工作。 (6)解旋酶 解旋酶是一类解开氢键的酶,通过水解ATP供能,并识别复制叉的单链结构,因此,大部分解旋酶都具有ATP酶的活性。解旋酶大部分移动方向是5'→3'。 (7)核酸酶 核酸酶是指能降解核酸的酶,与聚合酶的功能相反,通过水解或打开在多核苷酸链中的相邻核苷酸的磷酸二酯键内的酯键发挥作用。核酸酶分为内切核酸酶和外切核酸酶,内切核酸酶能水解多核苷酸链中的内部键,而外切核酸酶则必须从末端开始水解反应。 (8)蛋白酶K 蛋白酶K是一种从白色念珠菌分离出来的蛋白溶解酶,具有很高活性,用于质粒或基因组DNA、RNA的分离和抽提。 (9)UNG酶 UNG酶可以选择性水解断裂含有dUTP的双链或单链DNA中的尿嘧啶糖苷键,破坏形成的有缺失碱基的DNA链,从而降低非特异性扩增。

  • 美设计出可在活细胞内进行计算的基因器件

    美国斯坦福大学的生物工程团队设计出一种基因器件,可在个体活细胞中像晶体管一样起作用,从而将计算从机械和电子带入到生物学活细胞领域。研究团队在28日出版的《科学》杂志上详细描述了这种由遗传物质DNA(脱氧核糖核酸)和RNA(核糖核酸)制成的生物晶体管,并称之为“转录器”。  论文第一作者、生物工程博士后杰罗姆·博内特表示,与晶体管和电子器件相类似,转录器是对基因逻辑进行放大的关键组成部分。转录器的创建将允许工程师们在活细胞内进行计算和记录。当细胞暴露于某些外部刺激或环境因素,就能按需打开和关闭。  在电子设备中,晶体管控制电子沿着电路流动。同样地,在生物设备中,转录器控制特定蛋白——RNA聚合酶沿着DNA链的流动。研究团队已利用该转录器创建出电子工程中熟知的逻辑门。研究人员将这种以转录器为基础的逻辑门称为“布尔聚合酶逻辑”(BIL)门。  所有的现代计算机尽管存在外在差异,但都具有3个共同的基本功能:信息的存储、传输和逻辑运算。基于转录器的门单独并不能构成一台计算机,但它们是可在单个活细胞内运行的生物计算机的第三个、也是最后一个器件。  在生物环境中,逻辑的可能性像在电子学中一样是无限的。研究人员可测试一个给定细胞是否接触到任何数量的外部刺激,如葡萄糖和咖啡因的存在。BIL门将决定是否将这些信息进行存储,如此即可简单地识别出细胞是否与外部刺激接触。同样,在某些因素下,也可告诉细胞开始或停止繁殖。将BIL门与研究团队的生物学网络进行连接,就有可能实现从细胞到细胞的遗传信息交流,从而协调一组细胞的行为。  为了创建转录器和逻辑门,研究团队使用了经过仔细校准的酶组合,其能控制RNA聚合酶沿着DNA链的流动。DNA相当于电线,RNA聚合酶相当于电子。对6个基本逻辑门的设计和构建是基于2种丝氨酸重组酶的活性基础之上的。每个逻辑门由3个基因组成:2个为编码输入的基因,一个为输出基因,该基因含有不同的转录控制元件(启动子,终止子),而这些转录控制元件在其侧面上具有重组酶识别位点。  该转录器获得了介于生物学晶体管和半导体晶体管之间的一些类似重要功能:信号放大。聚合酶表达的微小变化,即可引起其他两个基因表达的很大变化。此一结果或将成为构建更大、更复杂基因电路的进身之阶。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制