当前位置: 仪器信息网 > 行业主题 > >

氢氧化锰

仪器信息网氢氧化锰专题为您提供2024年最新氢氧化锰价格报价、厂家品牌的相关信息, 包括氢氧化锰参数、型号等,不管是国产,还是进口品牌的氢氧化锰您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氢氧化锰相关的耗材配件、试剂标物,还有氢氧化锰相关的最新资讯、资料,以及氢氧化锰相关的解决方案。

氢氧化锰相关的资讯

  • 关于水质分析不得不说的秘密
    近年来,伴随着工业自动化程度的不断提高;人力资源成本的不断攀升;国家十二五规划对饮用水安全、重点流域水污染防治等一系列因素都将在不同程度上推动中国水质分析仪表以较快速度发展。未来几年,对于中国的水质分析仪器产业而言,随着国家食品、药品安全以及环保政策的落实推动,全民不断提高的环保意识以及不断攀升的备件、耗材、服务需求,水质分析仪表依旧会有较快增长。 回顾中国水处理行业的发展历史,从上世纪五、六十年代就有一批国有、军工、科研院所背景的企业开始从事水处理工程以及水质分析仪表的生产制造。直到1995年,整个中国水处理行业市场容量仅仅只有5000万人民币左右。从1995年至今,伴随着中国经济的飞速发展,2013年,中国整个水处理行业规模快速发展至约600亿元人民币。 溶氧(DO)是溶解氧(Dissolved Oxygen)的简称,溶解于水中的分子态氧,天然水中的溶解氧含量取决于水体与大气中氧的平衡。溶解氧是水生生物生存和水质的重要指标。水中溶解氧的饱和含量和空气中氧的分压、大气压力、水温、水中含盐量等有密切关系。清洁地面水中溶解氧一般接近饱和,20℃清洁水中饱和溶解氧含量约为9mg/L。水体受有机、无机还原性物质污染,会使溶解氧降低,当水中溶解氧低于2mg/L时,水体即产生恶臭。目前,测定DO的方法有多种:如化学Winkler法、电化学法、光学法等。 滴定碘量法应用历史最为悠久,该法由文科勒(Winkler)教授于1888年首次提出,其基本操作过程为:向一定量的样品中加入硫酸锰和碱性碘化钾然后生成氢氧化锰Mn(OH)2。 由于Mn2+ 不稳定,在加入硫酸酸化时,Mn2+和水中的氧发生反应生成Mn4+,然后Mn4+和KI发生反应,将碘离子氧化成游离碘,游离碘的量与水样中的溶解氧的量成比。接着,再采用硫代硫酸钠对溶液进行滴定,选择淀粉作为滴定终点指示剂,最后根据硫代硫酸钠的消耗量来计算水中的溶解氧含量。碘量法的所有反应步骤如下:MnSO4+2NaOH= Mn(OH)2↓+Na2SO42Mn(OH)2+O2 = 2H2MnO3↓2H2MnO3+2H2SO4 = 2Mn(SO4)2↓+3H2O2KI+ Mn(SO4)2 = Mn(SO4)2+K2SO4+I22Na2S2O3+I2 = Na2S4O6+4NaI 该滴定法用于测量水中的溶解氧,尽管在100多年的实际应用过程中,该方法经过不断修正,但是由于受限于取样过程、试剂配制、滴定操作、周围环境以及分析样品存在的诸如亚铁离子、亚硝酸盐、有机物、不稳定性易氧化物等多种干扰物质的影响,碘量滴定法在测量溶解氧时存在一定局限性,该方法不适宜进行ppb级的低氧测量。滴定法测量水中溶解氧的方法适用于市政污水、工业废水、养殖、天然水源等溶解氧含量水平较高的水处理应用场合。 那么大家对于滴定碘量法是否有了更加深入的了解了呢?随着技术不断地革新,更为先进的溶氧测量技术已经被投放使用在水质分析中,小编将在下期为您继续介绍现代水质分析三大处理方法。
  • 土壤重金属有效态浅析
    p   土壤重金属污染风险不仅与重金属全量有关,更与其存在形态密切关联。重金属的生物有效性一般是指环境中重金属元素在生物体内的吸收、积累或毒性程度,从某种角度上讲,形态分析是生物有效性的基础,而生物有效性是形态分析的延伸。目前大多数生物有效性的研究方法都是通过确定污染物在环境中的形态和分布,再将这些形态分布与生物体中污染物的富集量通过单元回归或多元回归等进行统计分析。 /p p   根据IUPAC(国际纯粹与应用化学联合会)的定义,形态分析是指表征与测定一个元素在环境中存在的各种不同化学形态与物理形态的过程。广义上讲,重金属形态是指重金属的价态、化合态、结合态和结构态四个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。狭义上的重金属形态是指用不同的化学提取剂对土壤中重金属进行连续的浸提,并根据所使用的浸提剂对重金属的形态进行分组。一般分为水溶及可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态以及残渣态。因浸提剂系列和浸提方法的不同,上述分组方法也有变化。 /p p    strong 水溶及可交换态 /strong :是指交换吸附在土壤粘土矿物及其它成分,如氢氧化铁、氢氧化锰和腐殖质上的重金属。该形态对土壤环境变化最敏感,最易被作物所吸收,对作物危害最大。 /p p    strong 碳酸盐结合态 /strong :是指与碳酸盐沉淀结合的重金属,该形态对土壤环境条件敏感,特别是对pH最敏感,随着土壤pH值的降低,离子态重金属可大幅度重新释放而被作物所吸收。 /p p    strong 铁锰氧化物结合态 /strong :是指与Fe2O3和MnO2等生成土壤结核的部分。土壤环境条件变化可使其中部分重金属重新释放,对农作物存在潜在危害。此形态的最大特点是在氧化还原条件下稳定性差。 /p p    strong 有机物结合态 /strong :是指以不同形态进入或包裹于有机质中,同有机质发生鳌合作用而形成鳌合态盐类或硫化物。该形态较为稳定,一般不易被生物所吸收利用 但当土壤氧化电位发生变化时,可使少量重金属溶出而对作物产生危害。 /p p    strong 残渣态 /strong :在连续提取法中,上述各形态重金属被提取后,剩余部分的重金属均可称为残渣态重金属。对这部分重金属的结合方式很难给出明确的概念。大部分学者认为,稳定存在于石英和粘土矿物等晶格里的重金属即为残渣态重金属。残渣态的重金属很稳定,对土壤重金属迁移和生物可利用性影响不大。 /p p   就提取剂而言,有多种类型,美国、欧洲和日本等国家标准中的提取剂包括:王水、NH4NO3、HCl、HNO3、NaNO3、HCl-HNO3-HF和水等。我国当前土壤重金属有效态的标准方法主要有:《土壤有效态锌、锰、铁、铜的测定》(NY/T 890-2004)、《土壤质量有效态铅和镉的测定》(GB/T 23739-2009)、《土壤检测 第9部分 土壤有效钼的测定》(NY/T 1121.9-2012)、《森林土壤有效锌的测定》(LY/T 1261-1999)、《森林土壤有效钼的测定》(LY/T 1259-1999)、《森林土壤有效铜的测定》(LY/t 1260-1999)和《土壤 8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法》(HJ 804-2016)等,基本都采用二乙基三胺五乙酸(DTPA)或0.1M盐酸浸提剂,也有部分采用硝酸-高氯酸-硫酸、草酸-草酸铵或EDTA浸提剂。 /p p   DTPA分子结构为: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/insimg/e7a061cf-0596-44cc-85b9-9fc8ae5c57b3.jpg" title=" 8be6fee55d73b8c347db15cdec21b8a5.jpg" /    /p p   DTPA能迅速与钙、镁、铁、铅、铜和锰等离子生成水溶性配合物,尤其对高价态显色金属配合能力强,因此能浸提出土壤中水溶及可交换态、碳酸盐结合态和部分铁锰氧化物结合态的重金属,相对于其全量而言,这些被认为是高度生物有效的形态。 /p p   表征农田重金属生物有效性的方法包括: /p p   (1 strong )实验模拟法 /strong :根据重金属在土壤—水相互作用过程中的释放速率和释放机理,预测自然风化条件下土壤中重金属的潜在环境效应。 /p p   (2) strong 植物指示法 /strong :生活在重金属污染土壤中的植物都能够不同程度地吸收一些重金属。通过分析这些植物体内重金属的含量,可以判断污染土壤中重金属的生物可利用性,从而判断土壤受重金属污染的程度。 /p p   (3) strong 化学浸提法 /strong :即采用一种适当组成与组成量度的试验溶液(一种或几种试剂) 按照一定的土液比与浸提方法进行浸提, 然后测定浸提液中重金属的含量。如前所述的DTPA,虽然能在一定程度上表征重金属的生物有效性,但由于多种因素(土壤类型、酸度、多金属间的作用、金属在不同植物不同部分的迁移)对生物提取剂的影响,使其很难对多种金属的生物有效性准确表征。 /p p   影响重金属生物有效性的因素包括: /p p   (1) strong 土壤pH值 /strong :土壤pH值对土壤中的重金属的形态有很大的影响,其发生变化时,土壤重金属的形态也会动态波动。 /p p   (2) strong 重金属之间综合作用 /strong :土壤中重金属之间及与其他大量元素之间的复合污染也会影响其生物有效性,即重金属元素间的拮抗作用和协同作用影响重金属形态分布。 /p p   (3) strong 植物根际环境 /strong :植物根的生长改变了土壤的某些物理、化学和生物性质 根际( rhizosphere) 是距离根毛大约0.22 mm 厚的土壤层,根际环境是一个复杂的、动态的微型生态系统。土壤中的微生物能够改变重金属生物有效性,从而影响他们在土壤-植物系统中的迁移和转化。 /p
  • 卤素水分测定仪应用于红枣水分测定的作用
    禾工HM-105L水份测定仪是一款高精度,多功能的水份分析仪器。用于替换早期采用烘箱进行加热烘干等失重法检测样品的最佳水份测定仪器,完全避免了传统烘干法检测水份时的长时间等,样品重复性不好等现象,HM快速水份测定仪实现快速测定,大大提高了水份测定的工作效率,经严格的测试完全符合我国的计量标准。现已广泛应用于实验室、食品工业、饲料工业、茶叶加工业、烟草制造业、化学工业、制药行业、中草药加工业、造纸业、农副产品加工业等行业。 适用领域:塑料粒子类:木塑,母料,PA,云母,聚乙烯,聚丙烯,PVC,PS,ABS,聚甲醛, PC, PET,聚苯硫醚(PPS),LCP,聚醚醚酮(PEEL),聚醚酮(PEK),聚醚砜(PES), PSF,硅胶,塑胶粉, 橡胶、轮胎,保丽龙,木粉,塑胶填充剂,珍珠棉,色母粉; 粮食干果饲料:玉米,大米,花生,大豆,棉籽,菜籽,谷物,燕麦,莲子,薏米,荞麦面,酒糟, 八角,魔芋,淀粉(面粉,豆粉,藕粉等),豆粕,麸皮,饲料添加剂,动物饲料,食盐, 咖啡豆, 酵母粉, 腊肉,辣椒、辣椒粉,挂面,月饼馅料,燕窝,红枣, 粉条粉丝, 脱水蔬菜,奶粉,豆奶粉, 米粉,饼干,干果、干货,茶叶,种子,食用菌类,农作物,烟草; 海鲜肉类:海参,虾米,海带,裙带菜,紫菜,鱿鱼干,鱼粉, 琼脂,猪肉,牛肉(羊肉、鸡肉),肉干,鱼干,鱼糜等; 无机化工品:胶水,乳胶,肥皂,洗洁精洗衣粉,颜料染料涂料,润滑油,硫磺,氢氧化钾,氢氧化铝,石墨,电池,玻璃纤维,陶瓷, 氧化锰, 矿石,煤粉,硝安硝石,胚土,磁粉,铁粉,硝化棉,二氧化硅,氧化铁,氧化锌,硅粉,重钙、纳米钙,碳酸钙,硫酸钡,高岭土,滑石粉,石膏,耐火材料,活性炭,造纸,肥料,煤炭等等; 制药保健品类:西药类,保健品(冬虫夏草,人参、西洋参,鹿茸,山药,花粉等); 建筑材料类: 玻璃,水泥,陶泥,沙土沙石,淤泥,防火门材料,淤土,混凝土,瓦片,木材水分仪 / 木板,石英沙,瓷砖原料,白玉石,型砂等; 下面是几种红枣的生产地及其生长环境的介绍和特点:1、沧州金丝小枣:沧州金丝小枣含糖量高达65%。2、阿克苏红枣:阿克苏地区有“塞外江南”、“瓜果之乡”之称,阿克苏实验林场被誉为“中国枣园中的枣园”。由于独特的地理气候,生产的干灰枣均是在树上自然风干的吊干枣,具有皮薄、肉厚、质地较密、色泽鲜亮、含糖量高、口感松软、纯正香甜的特点。3、若羌灰枣:楼兰红枣新疆若羌地区(塔里木楼兰丝路)的“若羌红枣”冰川融水灌溉,最高温差28度左右,华夏第一栆。4、和田玉枣:新疆和田地区的“和田玉枣”。和田玉枣的营养和保健价值极高。它含蛋白质、脂肪、糖类、纤维素;红枣营养十分丰富。5、临泽小枣:甘肃临泽小枣,肉质致密,多汁,鲜枣可溶性固形物含量35~43%,维生素C含量高一般为662.7mg/100g,制干率56%,含糖分72~80%:果皮韧性强,极耐贮藏运输。 主产地新疆、山西、河北、甘肃、山东水份含量干制小红枣水分不高于28%干制大红枣水分不高于25%湿枣水分在35~45% 用户案例:新疆天海绿洲、塔里木大漠枣业、思维特果业、天昆百果、刀郎枣业、驼玲红果业、穗峰绿色农业等 历史据史料记载,红枣是原产中国的传统名优特产树种。经考古学家从新郑斐李岗文化遗址中发现枣核化石,证明枣在中国已有8000多年历史。早在西周时期人们就开始利用红枣发酵酿造红枣酒,作为上乘贡品,宴请宾朋。红枣的营养保健作用,在远古时期就被人们发现并利用。 上海禾工科学仪器有限公司 上海市复华路33号复华高新技术园区 B4-1 电话:021-51001666 传真:021-62607656 禾工分析仪器网:www.hg17.com
  • 葛老师话说实验室第十九期:玻璃仪器洗涤液的配制2
    大家好,欢迎来到葛老师话说实验室。之前我们讲到了玻璃仪器的常规清洗,那么本期就大致介绍下实验室洗涤液的配制。洗涤,简称洗液,多用于不便于用刷子洗刷的仪器,如滴定管、移液管、容量瓶、蒸馏瓶等特殊形状的仪器,也用于洗涤长久不用的杯皿器具和刷子刷不下的结垢。洗液洗涤仪器的原理是,利用洗液本身与污物起化学反应,然后将污物去除,因此,在洗涤仪器时,需将仪器浸泡在洗液中一定时间,以便于充分作用。根据不同的实验要求,有各种不同的洗液,较常用的有一下几种。1、铬酸洗液铬酸洗液,又称强酸氧化剂洗液,是用重铬酸甲(K2Cr2O7)和浓硫酸(H2SO4)配成。K2Cr2O7在酸性溶液中,有很强的氧化能力,对玻璃仪器又极少有侵蚀作用,所以这种洗液在实验室内使用最广泛。铬有致癌作用,因此配制和使用洗液时要极为小心,常用两种配制方法如下:(1)取100mL工业浓硫酸置于烧杯内,小心加热,然后慢慢加入5g重铬酸钾粉末,边加边搅拌,待全部溶解并缓慢冷却后,贮存在磨口玻璃塞的细口瓶内。(2)称取5g重铬酸钾粉末,置于250mL 烧杯中,加5mL 水使其溶解,然后慢慢入100mL 浓硫酸,边倒边用玻璃棒搅拌,并注意不要溅出,混合均匀,待冷却后,待其冷却后贮存于磨口细玻璃瓶内。配好的溶液,应贴好标签,注明溶液名称、配制人、配制时间。新配制的洗液为红褐色,氧化能力很强。当洗液用久后变为黑绿色,即说明洗液无氧化洗涤力。这种洗液在使用时切忌注意不能溅到身上,以防“烧”破衣服和损伤皮肤。洗液倒入要洗的仪器中时,应使仪器周壁全浸洗后稍停一会再倒回洗液瓶。第一次用少量水冲洗刚浸洗过的仪器后,废水不要倒在水池里和下水道里,防止长久会腐蚀水池和下水道,应倒在废液缸中,如果无废液缸,倒入水池时,要边倒边用大量的水冲洗。2、碱性洗液碱性洗液用于洗涤有油污物的仪器,用此洗液是采用长时间(24小时以上)浸泡法,或者浸煮法。从碱洗液中捞取仪器时,要戴乳胶手套,以免烧伤皮肤。常用的碱洗液有:碳酸钠液(Na2CO3,即纯碱),碳酸氢钠(NaHCO3,小苏打),磷酸钠(Na3PO4,磷酸三钠)液,磷酸氢二钠(Na2HPO4)液等。3、碱性高锰酸钾洗液用碱性高锰酸钾作洗液,作用缓慢,适合用于洗涤有油污的器皿,其二氧化锰残渣可用浓硫酸或亚硫酸钠溶液洗掉。配法:取高锰酸钾(KMnO4)4克,加少量水溶解后,再加入10%氢氧化钠(NaOH)100mL。4、纯酸纯碱洗液根据器皿污垢的性质,直接用浓硫酸(HCl)或浓硫酸(H2SO4)、浓硝酸(HNO3)浸泡或浸煮器皿(温度不宜太高,否者浓酸挥发刺激性强)。纯碱洗液多采用10%以上的浓烧碱(NaOH)、氢氧化钾(KOH) 或碳酸钠(Na2CO3)液浸泡或浸煮器皿(可以煮沸)。5、有机溶剂带有脂肪性污物的器皿,可以用汽油、甲苯、二甲苯、丙酮、酒精、三氯甲烷、乙醚等有机溶剂擦洗或浸泡。但用有机溶剂作为洗液浪费较大,能用刷子洗刷的大件仪器尽量采用碱性洗液。只有无法使用刷子的小件或特殊形状的仪器才使用有机溶剂洗涤,如活塞内孔、移液管尖头、滴定管尖头、滴定管活塞孔、滴管、小瓶等。6、洗消液检验致癌性化学物质的器皿,为了防止对人体的侵害,在洗刷之前应使用对这些致癌性物质有破坏分解作用的洗消液进行浸泡,然后再进行洗涤。在食品检验中经常使用的洗消液有:1%或5%次氯酸钠(NaOCl) 溶液、20%HNO3和2% KMnO4溶液。1%或5%NaOCl溶液对黄曲霉素有破坏作用。用1%NaOCl溶液对污染的玻璃仪器浸泡半天或用5%NaOCl溶液浸泡片刻后,即可达到破坏黄曲霉毒素的作用。配法:取漂白粉100克,加水500mL,搅拌均匀,另将工业用Na2CO3 80克溶于温水500mL中,再将两液混合,搅拌,澄清后过滤,此滤液含NaOCl为2.5%;若用漂粉精配制,则Na2CO3 的重量应加倍,所得溶液浓度约为5%。如需要1%NaOCl溶液,可将上述溶液按比例进行稀释。20% HNO3溶液和2%KMnO4溶液对苯并(a)芘有破坏作用,被苯并(a)芘污染的玻璃仪器可用20%HNO3浸泡24小时,取出后用自来水冲去残存酸液,再进行洗涤。被苯并(a)芘污染的乳胶手套及微量注射器等可用2%KMnO4溶液浸泡2小时后,再进行洗涤。以上就是本期人和《葛老师话说实验室》的全部内容,我们将陆续为您推送各类精彩定评与文章,希望能给您的实验室生活带来些许帮助。 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 郝吉明院士:控制氮氧化物排放是改善空气质量关键
    中国许多城市目前正遭受着严重的空气污染,而氮氧化物被认为是导致空气污染的罪魁祸首。原因在于,氮氧化物排放造成的二次污染可以产生多种环境影响:酸沉降、水体富营养化、臭氧、PM2.5、气候变化……   “因此,NOx(氮氧化物)排放控制是改善我国环境空气质量的关键。”近日,中国工程院院士、清华大学教授郝吉明在贵阳“第七届全国环境化学”大会报告上如此表示。   氮氧化物主要来自电厂燃煤烟气和汽车尾气。郝吉明说,仅通过锅炉优化燃烧和机内净化控制氮氧化物远不能满足日益严格的排放标准,“而选择性催化还原(SCR)氮氧化物为氮气是最有效的净化方法”。   该方法要用到脱硝催化剂——其功能在于促使还原剂选择性地与烟气中的氮氧化物发生化学反应。郝吉明说,关键在于高效低成本脱硝催化剂的设计,目前该领域主要聚焦在“高性能催化体系设计和复杂环境下技术适应性”两个方面。   SCR催化剂可以分为金属氧化物和分子筛两类催化剂,前者主要应用于燃煤烟气脱硝,后者用在柴油车尾气氮氧化物控制。   郝吉明说,我国燃煤烟气脱硝主流技术为NH3-SCR,但这一技术存在高温选择性差、抗中毒能力弱、工作温度窗口窄等问题,难以满足我国电厂复杂烟气排放特征(高灰高钙高硫),及不同负荷宽工作温度下脱硝的需求。   而影响催化剂选择性及抗中毒和温度窗口的关键因素是脱硝催化剂的氧化还原性和酸性。   因此,郝吉明提出通过合理调控催化剂的氧化还原性和酸性,设计新的催化剂体系,从而最终解决上述难题的思路。   我国2003年前建设的电厂,由于没有预留脱硝空间,烟气脱硝装置被安装在除尘或脱硫之后,此时烟气温度已经降到200℃以下。要在如此低温条件下,将氮氧化物还原为氮气,对国内外学术界和工业界都是一个挑战。   郝吉明认为,解决这一问题的关键,仍然是探索新的活性组分。由于锰具有很好的低温活性,研究人员将二氧化锰应用到低温脱硝领域,最终发明了锰铈锡三元复合氧化物催化剂体系。目前该团队已完成了从原材料到脱硝催化剂制造的整个产业链工作,相继完成了小试、中试和产业化应用全过程。   在分子筛研究方面,当前国际上主要聚焦在小孔高硅CHA分子筛上。郝吉明研究团队发现,Cu/CHA分子筛具有优异的脱硝活性和氮气选择性,铜含量的增加会有效提高低温活性,且具有优异的抗水热老化和抗积碳能力,成为柴油车尾气净化的关键催化材料。   郝吉明说,下一步需要对不同排放源的氮氧化物开展污染控制,但关键的脱硝催化剂材料研究及应用仍然面临着三个方面的挑战。   一是再生及废弃催化剂如何资源化利用。“十二五”期间将大规模安装脱硝装置,脱硝催化剂市场良莠不齐,很难保证所有的脱硝催化剂都能够达到设计寿命,所以脱硝催化剂寿命和稳定性仍然是一个挑战。此外,将来大量的废旧催化剂如何再利用是下一阶段的研究课题。   二是推动烟气多污染物的协同控制。零价汞是全球性的大气污染物,燃煤烟气是汞的主要排放源之一,燃煤烟气汞的排放控制成为需要迫切解决的问题,研究如何能够在高效脱硝的同时氧化汞。   三是研发高效低成本分子筛脱硝催化剂。对于柴油车尾气中氮氧化物控制,虽然小孔分子筛负载铜的催化剂体系具有良好的脱硝性能及高热稳定性和抗积碳特性,但针对国内的劣质柴油,仍然需要解决催化剂的抗硫性能。   此外,替代燃料车尾气排放控制也面临难题。含氧替代燃料会造成尾气中氮氧化物排放量增加,提高了脱硝难度 不同燃料车尾气中非常规污染物(醛类、酸类等)的排放和危害也成为环境化学家必须关注的问题。
  • 麻雀虽小,五脏俱全——奥豪斯与电池世界的不解之缘
    作为人类活动的物质基础,能源就如一只扼住人类社会发展咽喉的手,我们的日常生活处处离不开能源的使用。而在这个能源有限的蓝色星球,能源的发展,能源和环境,能源的存储和再生,是全世界、全人类共同关心的问题。随着科学技术的不断发展,诸如多晶硅太阳能电池,电动汽车,生物质能等新能源技术如同雨后春笋般在我们的生活中流行开来,人们对便携式能源存储设备的需求比以前更加庞大,并继续保持指数级增长。 为了顺应这种潮流,电池技术的发展和生产变得越来越多样化,以满足人们对电池全面功效的需求。小到随身携带的电子设备,大到出行的交通工具,电池几乎遍布于我们生活的每一个角落。今天,小编就来给大家说道说道这小小电池世界里的大学问! 步入有趣的电化学世界 在电池世界里面,首先要提到的就是使用普遍的且有着近150年发展历史的铅酸电池,其广泛应用于交通、通信、电力、军事、航海、航空等领域。从结构上来说,铅酸电池的电极主要由有毒的重金属铅及其氧化物制成,电解液是腐蚀性很强的硫酸溶液。铅酸电池在放电状态下,正极主要成分为二氧化铅,负极主要成分为铅;充电状态下,正负极的主要成分均为硫酸铅。 铅酸电池在耐用性、便携性和环保性方面有比较大的局限。一般深充深放电在300次以内,且有记忆,寿命在两年左右,并且电池内的液体在消耗一段时间后,如果发现电池发烫或者充电时间变短,就需要补充液体;同时,一般铅酸电池的重量是16~30公斤,体积较大,不易携带;此外,电池在生产过程或回收过程容易造成环境污染。 为了倡导可持续发展,对环境无毒害的绿色电池技术正在成为主流。最常见的有碱性电池和锂电池。碱性电池也称碱性干电池、碱性锌锰电池、碱锰电池,是锌锰电池系列中性能最优的电池品种,适用于需放电量大及长时间使用。相比铅酸电池,碱性电池在某些应用中被证明是一种更有效率和安全的替代品,因为它们不含有剧毒和腐蚀性的成分。 碱性电池在结构上采用了与普通电池相反的电极结构,采用二氧化锰与石墨粉的混合物为正极,锌和其他添加物为负极,增大了正负极间的相对面积,而且用高导电性的氢氧化钾溶液替代了氯化铵、氯化锌溶液为电解液,允许离子在两极间移动。特别是负极锌也由片状改变成粉末状,增大了负极的反应面积,加之采用了高性能的电解锰粉,所以电性能得以很大提高。 总的电池反应式为:Zn+MnO2+2H2O+4OH-=Mn(OH)42-+Zn(OH)42- 碱性电池是成功的高容量干电池,也是最具性价比的电池之一。由于它的防漏性相当好,所以可被使用在任何环境。 最后来带大家来看看目前电子设备中流行最广泛的锂电池。锂系电池可分为锂金属电池和锂离子电池。由于金属锂非常活泼的化学性质导致的安全问题尚未完全突破,因此目前广泛使用的锂系电池均为锂离子电池,而非锂金属电池。 锂离子电池是一种充电电池。一般是使用锂合金金属氧化物为正极材料,石墨为负极材料,使用非水电解质的电池。主要依靠锂离子在正负极之间的往返嵌入和脱嵌来工作,实现能量的存储和释放。锂离子电池常见的正极材料主要有钴酸锂、锰酸锂、镍酸锂、磷酸铁锂等。在这里,我们拿拥有较好安全性的磷酸铁锂电池举例。 磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充时也不会像钴酸锂一样结构崩塌发热或是形成强氧化性物质。电池分左右两边,左边是橄榄石结构的LiFePO4组成的电池正极,由铝箔与电池正极相连,中间是把正、负极隔开的聚合物隔膜,锂离子Li+可以通过而电子e-不能通过;右边是由石墨组成的电池负极,由铜箔与电池的负极相连。电池的上下端之间是电池的电解质,主要成分是六氟磷酸锂LiPF6,整个电池由金属外壳密闭封装。充电时,正极中的Li+通过聚合物隔膜向负极迁移;放电时,负极中的Li+通过隔膜向正极迁移。 锂电池耐用性较强,消耗慢,寿命长,且无记忆,同时便于携带。虽然价格相对比较昂贵,但是非常绿色环保,是一款清洁的能源存储设备,是电池行业的发展趋势。 水分仪跟电池也能扯上关系? 看完了上面对电池知识的普及,是不是有种回到了似曾相识的化学课堂的感觉?其实在电池生产过程中,还有一项指标对电池的性能和可制造性起到至关重要的作用,这就是电池的水分含量。有人会觉得匪夷所思了吧~ 拿碱性电池来说,电池正负极材料成分被混进一种黏性物质,形成并产生合适的形状以构造电池。黏性混合物必须符合严格而又精确的水分含量规定,如果水分含量过多,导电性就会变差,因而电池容量就会不足;反之,如果水分含量不足,电池就很难成形。 全国乃至全球许多的电池生产商都信任奥豪斯的水分测定仪用来测定电池中的水分含量。下面拿来自我国华东地区的一家生产磷酸铁锂电池的客户举例。据相关实验显示,锂电池循环性能及倍率性能与电极水分含量密切相关,当电极水分含量超过0.06%时,电池循环性能和倍率性能降低,放电比容量严重衰减,循环200周后容量衰减近40%,且电池内阻增大,电化学阻抗增加。同时,电池极片在实际生产中的专配环节也会吸收水分,导致其电化学性能衰减。【1】因此在锂电池的生产当中,电极材料需要极其严格地控制水分。 奥豪斯MB 120水分测定仪配有全新的加热腔设计,同时精确控制的卤素加热系统可快速升温并均匀加热,结合高精度称重传感器可确保样品水分测试可读性达到0.01%/1mg。客户在电池生产过程中,每次仅需对电极材料粉末取样3~5g,根据样品的特性选择合适的温度进行测定,很快就能显示精准而又稳定的测定结果。整个过程不仅大大提升了测量的准确性,更节约了时间并提高了产能。 奥豪斯的设备不仅能在实验室中提供快速和重复性的结果,而且也能在工业环境中提供值得信赖的日常测量服务。如果你有更多关于工业生产中原料及成品水分测定方面的疑难咨询,或正在寻求更专业细致的水分仪选型指导,请及时联系我们,我们专业的工程师们届时将会在第一时间为您提供最满意的解答! 参考文献:【1】牛俊婷,孙琳,康书文,赵政威,马紫峰. 电极水分对磷酸铁锂电池性能的影响[J]. 电化学,2015,21(5):465-470.
  • 实验室玻璃仪器使用指南!
    实验室的玻璃器皿各种各样,尤其是化学实验室,每天都要跟这些瓶瓶罐罐打交道,使用它们该注意些什么呢? shou先将化学实验室仪器按是否可以加热简单归一下类: A.不能加热:量筒、集气瓶、漏斗、温度计、滴瓶、表面皿、广口瓶、细口瓶等; B.能直接加热:试管、蒸发皿、坩埚、燃烧匙; C.间接加热:烧杯、烧瓶、锥形瓶;玻璃器皿用途(1)试管常用做:①少量试剂的反应容器;②也可用做收集少量气体的容器;③或用于装置成小型气体的发生器。(2)烧杯主要用于:②解固体物质、配制溶液以及溶液的稀释、浓缩;②也可用做较大量的物质间的反应。(3)烧瓶(圆底烧瓶,平底烧瓶):①常用做较大量的液体间的反应;②也可用做装置气体发生器。(4)锥形瓶常用于:①加热液体;②也可用于装置气体发生器和洗瓶器;③也可用于滴定中的受滴容器。(5)蒸发皿通常用于溶液的浓缩或蒸干。(6)胶头滴管用于移取和滴加少量液体。注意:①使用时胶头在上,管口在下(防止液体试剂进入胶头而使胶头受腐蚀或将胶头里的杂质带进试液);②滴管管口不能伸入受滴容器(防止滴管沾上其他试剂);③用过后应立即洗涤干净并插在洁净的试管内,未经洗涤的滴管严禁吸取别的试剂;④滴瓶上的滴管必须与滴瓶配套使用。(7)量筒用于量取一定量体积液体的仪器。①量筒内稀释或配制溶液,决不能对量筒加热;②在量筒里进行化学反应。注意:在量液体时,要根据所量的体积来选择大小恰当的量筒(否则会造成较大的误差),读数时应将量筒垂直平稳放在桌面上,并使量筒的刻度与量筒内的液体凹液面的最低点保持在同一水平面。(8)托盘天平是一种称量仪器,一般精确到0.1克。注意:称量物放在左盘,砝码按由大到小的顺序放在右盘,取用砝码要用镊子,不能直接用手,天平不能称量热的物体, 被称物体不能直接放在托盘上,要在两边先放上等质量的纸,易潮解的药品或有腐蚀性的药品(如氢氧化钠固体)必须放在玻璃器皿中称量。(9)集气瓶①用于收集或贮存少量的气体;②也可用于进行某些物质和气体的反应。(瓶口是磨毛的)(10)广口瓶(内壁是磨毛的)常用于盛放固体试剂,也可用做洗气瓶。(11)细口瓶:用于盛放液体试剂,棕色的细口瓶用于盛装需要避光保存的物质,存放碱溶液时试剂瓶应用橡皮塞,不能用玻璃塞。(12)漏斗用于向细口容器内注入液体或用于过滤装置。(13)长颈漏斗用于向反应容器内注入液体,若用来制取气体,则长颈漏斗的下端管口要插入液面以下,形成“液封”,(防止气体从长颈斗中逸出)。(14)分液漏斗主要用于分离两种互不相溶且密度不同的液体,也可用于向反应容器中滴加液体,可控制液体的用量。(15)试管夹用于夹持试管,给试管加热,使用时从试管的底部往上套,夹在试管的中上部。(16)铁架台用于固定和支持多种仪器,常用于加热、过滤等操作。(17)酒精灯:①用前先检查灯心,绝对禁止向燃着的酒精灯里添加酒精;②也不可用燃着的酒精灯去点燃另一酒精灯(以免失火);③酒精灯的外焰最高,应在外焰部分加热先预热后集中加热;④要防止灯芯与热的玻璃器皿接触(以防玻璃器皿受损);⑤实验结束时,应用灯帽盖灭(以免灯内酒精挥发而使灯心留有过多的水分,不仅浪费酒精而且不易点燃),决不能用嘴吹灭(否则可能引起灯内酒精燃烧,发生危险);⑥万一酒精在桌上燃烧,应立即用湿抹布扑盖。(18)玻璃棒用做搅拌(加速溶解)转移,如pH的测定等。(19)燃烧匙。(20)温度计刚用过的高温温度计不可立即用冷水冲洗。(21)药匙用于取用粉末或小粒状的固体药品,每次用前要将药匙用干净的滤纸揩净。玻璃器皿的基本操作(1)药品的取用:“三不准”①不准用手接触药品;②不准用口尝药品的味道;③不准把鼻孔凑到容器口去闻气味。注意:已经取出或用剩后的药品不能再倒回原试剂瓶,应交回实验室。A.固体药品的取用取用块状固体用镊子(具体操作:先把容器横放,把药品放入容器口,再把容器慢慢的竖立起来);取用粉末状或小颗粒状的药品时要用药匙或纸槽(具体操作:先将试管横放,把盛药品的药匙或纸槽小心地送入试管底部,再使试管直立)。B.液体药品的取用取用很少量时可用胶头滴管,取用较多量时可直接从试剂瓶中倾倒(注意:把瓶塞倒放在桌上,标签向着手心,防止试剂污染或腐蚀标签,斜持试管,使瓶口紧挨着试管口)。(2)物质的加热给液体加热可使用试管、烧瓶、烧杯、蒸发皿;给固体加热可使用干燥的试管、蒸发皿、坩埚。A.给试管中的液体加热试管一般与桌面成45°角,先预热后集中试管底部加热,加热时切不可对着任何人。B.给试管里的固体加热:试管口应略向下(防止产生的水倒流到试管底,使试管破裂)先预热后集中药品加热。注意:被加热的仪器外壁不能有水,加热前擦干,以免容器炸裂;加热时玻璃仪器的底部不能触及酒精灯的灯心,以免容器破裂。烧的很热的容器不能立即用冷水冲洗,也不能立即放在桌面上,应放在石棉网上。(3)过滤是分离不溶性固体与液体的一种方法(即,一种溶,一种不溶,一定用过滤方法)如,粗盐提纯、氯化钾和二氧化锰的分离。操作要点:“一贴”、“二低”、“三靠”;“一贴” 指用水润湿后的滤纸应紧贴漏斗壁;“二低”指②纸边缘稍低于漏斗边缘;②滤液液面稍低于滤纸边缘;“三靠”指①烧杯紧靠玻璃棒;②玻璃棒紧靠三层滤纸边;③漏斗末端紧靠烧杯内壁。(4)仪器的装配装配时,一般按从低到高,从左到右的顺序进行。(5)检查装置的气密性先将导管浸入水中,后用手掌紧物捂器壁(现象:管口有气泡冒出,当手离开后导管内形成一段水柱。(6)玻璃仪器的洗涤如仪器内附有不溶性的碱、碳酸盐、碱性氧化物等,可加稀盐酸洗涤,再用水冲洗。如仪器内附有油脂等可用热的纯碱溶液洗涤,也可用洗衣粉或去污粉刷洗。清洗干净的标准是:仪器内壁上的水即不聚成水滴,也不成股流下,而均匀地附着一层水膜时,就表明已洗涤干净了。(7)常用的意外事故的处理方法A.使用酒精灯时,不慎而引起酒精燃烧,应立即用湿抹布。B.酸液不慎洒在桌上或皮肤上应用碳酸氢钠溶液冲洗。C.碱溶液不慎洒在桌上应用醋酸冲洗,不慎洒在皮肤上应用硼酸溶液冲洗。D.若浓硫酸不慎洒在皮肤上千万不能先用大量水冲洗。气体的制取、收集(1)常用气体的发生装置A.固体之间反应且需要加热,用制O2装置(NH3、CH4);一定要用酒精灯。(2)常用气体的收集方法A.排水法适用于难或不溶于水且与水不反应的气体,导管稍稍伸进瓶内,(CO、N2、NO只能用排水法);B.向上排空气法适用于密度比空气大的气体(CO2、HCl只能用向上排空气法);C.向下排空气法适用于密度比空气小的气体。排气法:导管应伸入瓶底。(3)气体的验满:O2的验满:用带余烬的木条放在瓶口。CO2的验满:用燃着的木条放在瓶口。证明CO2的方法是用澄清石灰水。注意事项(1)试管夹应夹在的中上部,铁夹应夹在离试管口的1/4处。(2)加热时试管内的液体不得超过试管容积的1/3,反应时试管内的液体不超过试管容积的1/2。(3)使用烧瓶或锥形瓶时容积不得超过其容积的1/2,蒸发溶液时溶液的量不应超过蒸发皿容积的2/3;酒精灯内的酒精不得超过其容积的2/3,也不得少于其容积的1/4。(4)在洗涤试管时试管内的水为试管的1/2(半试管水);在洗气瓶内的液体为瓶的1/2;如果没有说明用量时应取少量,液体取用1-2毫升,固体只要盖满试管的底部;加热试管内液体时,试管一般与桌面成45°角,加热试管内的固体时,试管口略向下倾斜。
  • 哪些方法可以测定柴油的氧化性?
    1、按SH/T0175方法进行测定  方法概要:将以过滤过的350mL试样,注入氧化管,通入氧气,速率为50 mL /min在93℃的温度下氧化16h。然后将氧化后的试样冷却到室温,过滤得到的可过滤的不溶物。用三合剂把粘附性不溶物从氧化管上洗下来,把三合剂蒸发除去,得到的粘附性不溶物。可过滤不溶物和粘附性不溶物的量之和为总不溶物量硫含量2、按GB/T 380方法进行测定  方法概要:将适量样品在灯中燃烧,用0.3%碳酸钠水溶液吸收燃烧生成的二氧化硫,并用0.05N的盐酸标准溶液滴定吸收液,用溴甲酚绿甲基红作滴定指示剂酸度3、按GB/T 258方法进行测定  方法概要:容量法,本方法系用沸腾的乙醇抽出轻柴油中的有机酸,然后趁热用0.05N氢氧化钾乙醇溶液滴定,中和100亳升石油产品所需氢氧化钾的毫升数称为酸度十六烷值4、按GB/T 386方法进行测定  十六烷值是指与柴油自燃性相当的标准燃料中所含正十六烷的体积百分数。标准燃料是用正十六烷与2-甲基萘按不同体积百分数配成的混合物。其中正十六烷自燃性好,设定其十六烷值为100,α-甲基萘(1-甲基萘)自燃性差,设定其十六烷值为0。也有以2、2、4、4、6、8、8-七甲基壬烷代替α-甲基萘(1-甲基萘),设定其十六烷值为15,十六烷值测定是在实验室标准的单缸柴油机上按规定条件进行的。十六烷值高的柴油容易起动,燃烧均匀,输出功率大;十六烷值低,则着火慢,工作不稳定,容易发生爆震。一般用于高速柴油机的轻柴油,其十六烷值以40-55为宜;中、低速柴油机用的重柴油的十六烷值可低到35以下。柴油十六烷值的高低与其化学组成有关,正构烷烃的十六烷值高,芳烃的十六烷值低,异构烷烃和环烷烃居中。当十六烷值高于50后,再继续提高对缩短柴油的滞燃期作用已不大;相反,当十六烷值高于65时,会由于滞燃期太短,燃料未及与空气均匀混合即着火自燃,以致燃烧不完全,部分烃类热分解而产生游离碳粒,随废气排出,造成发动机冒黑烟及油耗增大,功率下降。加添加剂可提高柴油的十六烷值,常用的添加剂有硝酸戊酯或已酯。
  • 盘点! 2024年63项光谱新标准已正式实施
    7月1日,作为全国标准发布实施的重要节点,仪器信息网特地对2024年正式实施的光谱国家标准、行业标准及地方标准进行梳理,共63项。这些标准覆盖了近红外光谱、拉曼光谱、电感耦合等离子体原子发射光谱、X射线荧光光谱法、原子吸收光谱、傅立叶变换红外光谱、红外吸收光谱、原子荧光光谱法等等分析方法。这些标准的实施,旨在提升我国光谱分析技术的准确性和可靠性,进一步保障和促进社会各领域的发展。并且他们的应用范围极为广泛,涉及食品、环境、材料、石油、制造业、农业、林业、牧业、渔业、水利、公共设施管理、科学研究和技术服务业等重要领域。具体新实施的标准整理如下:近红外光谱相关标准标准号标准名称实施日期NY/T 4427-2023饲料近红外光谱测定应用指南2024-05-01DB37/T 4708—2024沉积物中有机碳含量的测定 可见-近红外光谱法2024-05-11FZ/T 01057.10-2023纺织纤维鉴别试验方法 第10部分:近红外光谱法2024-07-01DB15/T 3461—2024毛绒纤维回潮率试验方法 近红外光谱法2024-07-14拉曼光谱相关标准标准号标准名称实施日期SN/T 5643.2-2023出口食品中化学污染物的快速检测方法 第2部分:碱性嫩黄O的测定 拉曼光谱法2024-05-01SN/T 5643.3-2023出口食品中化学污染物的快速检测方法 第3部分:苋菜红的测定 拉曼光谱法2024-05-01SN/T 5643.4-2023出口食品中化学污染物的快速检测方法 第4部分:西布曲明的测定 拉曼光谱法2024-05-01GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-01SN/T 5644.1-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第1部分:总则2024-07-01SN/T 5644.2-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第2部分:孔雀石绿和结晶紫2024-07-01SN/T 5644.3-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第3部分:恩诺沙星和环丙沙星2024-07-01SN/T 5644.4-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第4部分:多菌灵2024-07-01SN/T 5644.5-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第5部分:噻菌灵2024-07-01SN/T 5644.6-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第6部分:腈菌唑2024-07-01SN/T 5644.7-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第7部分:毒死蜱2024-07-01SN/T 5644.8-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第8部分:三唑磷2024-07-01SN/T 5644.9-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第9部分:地虫硫磷2024-07-01SN/T 5644.10-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第10部分:亚胺硫磷2024-07-01原子发射光谱法相关标准标准号标准名称实施日期DZ/T 0452.1-2023稀土矿石化学分析方法 第1部分:二氧化硅、三氧化二铝、三氧化二铁、氧化钙、氧化镁、氧化钾、氧化钠、二氧化钛、氧化锰、五氧化二磷、锶和钡含量的测定 偏硼酸锂熔融—电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0452.2-2023稀土矿石化学分析方法 第2部分:铝、铁、钙、镁、钾、钠、钛、锰、磷及15个稀土元素含量测定 混合酸分解―电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0453.1-2023铌钽矿石化学分析方法 第1部分:铌、钽和钨含量的测定 封闭酸溶-电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0453.3-2023铌钽矿石化学分析方法 第3部分:铌、钽、铁、锰和钨含量的测定 酸溶-电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0454.3-2023钛铁矿化学分析方法 第3部分:铝、钙、镁、钾、钠、钛、锰、铬、锶、钒和锌含量的测定 混合酸分解-电感耦合等离子体原子发射光谱法2024-01-01GB/T 11064.16-2023碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第16部分:钙、镁、铜、铅、锌、镍、锰、镉、铝、铁、硫酸根含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 6730.84-2023铁矿石 稀土总量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 42906-2023石墨材料 当量硼含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 3884.18-2023铜精矿化学分析方法 第18部分:砷、锑、铋、铅、锌、镍、镉、钴、铬、氧化铝、氧化镁、氧化钙含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 42794-2023镍铁 碳、硫、硅、磷、镍、钴、铬和铜含量的测定 火花源原子发射光谱法2024-03-01GB/T 43861-2024微波等离子体原子发射光谱方法通则2024-04-25GB/T 3260.11-2023锡化学分析方法 第11部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-01GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-01GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-01GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法2024-06-01YB/T 6157.1-2023铌铁分析方法 第1部分:钽、磷、铝和钛含量的测定 电感耦合等离子体原子发射光谱法2024-07-01YB/T 4174.2-2023硅钙合金分析方法 第2部分:磷含量的测定 电感耦合等离子体原子发射光谱法2024-07-01GB/T 43607-2023钯锭分析方法 银、铝、金、铋、铬、铜、铁、铱、镁、锰、镍、铅、铂、铑、钌、硅、锡、锌含量测定 火花放电原子发射光谱法2024-07-01GB/T 43603.1-2023镍铂靶材合金化学分析方法 第1部分:铂含量的测定 电感耦合等离子体原子发射光谱法2024-07-01GB/T 43574-2023化学纤维 重金属含量的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法2024-07-01X射线荧光光谱相关标准标准号标准名称实施日期GB/T 6730.87-2023铁矿石 全铁及其他多元素含量的测定 波长色散X射线荧光光谱法(钴内标法)2024-03-01SN/T 5643.1-2023出口食品中化学污染物的快速检测方法 第1部分:砷、镉、汞、铅含量的测定 X射线荧光光谱法2024-05-01NY/T 4435-2023土壤中铜、锌、铅、铬和砷含量的测定 能量色散X射线荧光光谱法2024-05-01GB/T 43309-2023玻璃纤维及原料化学元素的测定 X射线荧光光谱法2024-06-01GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)2024-06-01DB36/T 1919-2023水质 无机元素的现场快速测定 便携式单波长激发-能量色散X射线荧光光谱法2024-07-01HG/T 6227-2023催化裂化催化剂化学成分分析方法 X射线荧光光谱法2024-07-01原子吸收光谱相关标准标准号标准名称实施日期GB/T 8151.26-2023锌精矿化学分析方法 第 26 部分:银含量的测定 酸溶解-火焰原子吸收光谱法2024-03-01GB/T 6150.10-2023钨精矿化学分析方法 第10部分:铅含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法2024-03-01GB/T 6150.15-2023钨精矿化学分析方法 第15部分:铋含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法2024-03-01NY/T 4433-2023农田土壤中镉的测定 固体进样电热蒸发原子吸收光谱法2024-05-01NY/T 4434-2023土壤调理剂中汞的测定 催化热解-金汞齐富集原子吸收光谱法2024-05-01GB/T 3286.12-2023石灰石及白云石化学分析方法 第12部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-01GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-01GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-01GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-01其他光谱相关标准标准号标准名称实施日期DB42/T 2120-2023土壤中氨氮、亚硝酸盐氮和硝酸盐氮的测定 气相分子吸收光谱法2024-01-29GB/T 20150-2023红斑基准作用光谱及标准红斑剂量2024-03-01GB/T 35306-2023硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法2024-03-01GB/T 29057-2023用区熔拉晶法和光谱分析法评价多晶硅棒的规程2024-03-01YY/T 1896-2023光谱辐射治疗设备波长范围界定方法2024-05-01GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1部分:红外吸收光谱法2024-06-01GB/T23947.3-2023无机化工产品中砷测定的通用方法 第3部分:原子荧光光谱法2024-06-01GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-01GB/T 19502-2023表面化学分析 辉光放电发射光谱方法通则2024-07-01为了展现最新的光谱仪器技术及相关的应用,促进中国科学仪器行业健康快速发展,进一步提升光谱技术及相关应用的专业水平,促进各相关单位的交流与合作,仪器信息网将于2024年7月16-19日举办“第十三届光谱网络会议, 简称iCS2024)”。点击报名》》》报名后,再成功邀请3人报名,即可领取纸质书《光电光谱分析技术与应用》一本或《近红外光谱实战宝典》一本,数量仅限20本,每人仅限参加一次,先到先得!(领取方式:联系助教微信13260310733)福利活动时间:6月25日-7月15日24:00会议地址:https://www.instrument.com.cn/webinar/meetings/ics2024/
  • 关注“碳中和”,助推二氧化碳监测大市场
    今年全国两会,“碳达峰”“碳中和”备受关注。其实早在去年9月,我国政府在第七十五届联合国大会上就提出:“中国将提高自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争取于2030年前达到峰值,努力争取2060年前实现碳中和。” 首先先来了解一下“碳达峰”“碳中和”这两个词是什么意思。碳达峰:在某一个时刻,二氧化碳排放量达到历史高值,之后逐渐回落。碳中和:通过植树造林、节能减排等形式,抵消自身产生的二氧化碳或温室气体排放量,实现正负抵消,达到相对“零排放”。10年内碳达峰,40年内碳中和。这个目标对于我们来说,时间紧、任务重二氧化碳的 “生命线”很长,想要在2030年实现碳达峰,需要提早的进行能源结构转型。根据清华大学气候变化与可持续发展研究院最近的研究报告,在新的气候目标下,碳强度在2030年相比2015年的下降幅度要超过65%,2025年末非化石能源在一次能源消费占比至少要到20%、2030年末至少要到25%。业内指出,这一模型数据尚属于相对保守。气候变化是全球工业化以来地球生态系统面临的严峻挑战,地球生态系统和地球气候系统已经达到临界点。2019年5月,全球大气中CO2月平均浓度达到414.7×10-6,创下1958年人类有观测记录以来的新纪录,超过了过去23年的较高记录,导致全球平均气温升高、冰川消融、海平面上升、极端天气频繁等环境和生态问题。“碳中和”目标的出台,为我国未来绿色低碳发展擘画了宏伟蓝图。但要看到,与世界主要碳排放国家的历史进程相比,我国实现“碳中和”目标面临着巨大的压力与挑战。那我们如何才能知道空气中有多少二氧化碳,如何监测全国各地的碳排放情况呢?这就需要通过相关仪器设备来对温室气体的浓度或体积进行连续测量,实时监测和测算二氧化碳排放量。二氧化碳测量有哪些方法?1、非色散红外吸收法二氧化碳对红外线具有选择性的吸收,在一定范围内,吸收值与二氧化碳浓度呈线性关系。根据吸收值确定样品二氧化碳的浓度。2、气相色谱法气相色谱法是利用气体作流动相的色层分离分析方法。二氧化碳在色谱柱中与空气的其他成分完全分离后,进入热导检测器的工作壁。在线性范围内,信号大小与进入检测器的二氧化碳浓度成正比。从而进行定性与定量测量。3、容量滴定法用过量的氢氧化钡溶液与二氧化碳作用生成碳酸钡沉淀,采样后剩余的氢氧化钡用标准草酸溶液滴定至酚酞试剂红色刚褪。由容量法滴定结果除以所采集的空气样品体积,即可测得空气中二氧化碳的浓度。4、红外线吸收法二氧化碳在4. 3um红外区有一个吸收峰,在此波长下,氧、氮、一氧化碳、水蒸汽都没有明显的吸收,因此红外线吸收法是测量空气中二氧化碳的理想方法。由于空气中二氧化碳的含量低为0. 03 % ,吸收池的长度有几厘米便可。所以利用红外线吸收原理,可制成便携式空气中二氧化碳传感器,用来检测二氧化碳浓度。
  • 我国科研人员实现“原电池法超高纯氧化镁”技术突破
    p style=" text-indent: 2em " 12月2日,“原电池法超高纯氧化镁/电力联产项目技术成果发布会”在河北省唐山市海港经济开发区举行。由北京理工大学(唐山)转化研究中心自主研发的“原电池法超高纯氧化镁”技术实现突破。 /p p br/ /p p style=" text-indent: 2em " 高纯度氧化镁是精细化工产品和高温耐火材料,大量用于航空航天电子等各个高端领域。目前,国内外获取氧化镁生产工艺主要为矿石煅烧法和海水/卤水提纯法,矿石煅烧法氧化镁纯度最高仅有98.5%,已无法完全满足我国冶金等高端制造产业需求 而日、美、欧洲海水合成法则长期处于垄断地位。 /p p br/ /p p style=" text-indent: 2em " 12月1日,中国科学院唐山高新技术研究与转化中心组织相关专家,在唐山市对由唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心完成的“原电池法超高纯氧化镁/电力联产的技术研究”项目举行了成果评价会。 /p p br/ /p p style=" text-indent: 2em " 与会专家形成评价意见为:该项目基于电化学原理,开发了以纯镁材料为阳极、自主开发的纳米级碳/非贵金属基催化剂为复合阴极、中性溶液为电解液的化学原电池。通过外接储电介质、用电装置或并入电网,既实现了清洁电能的输出,又得到超高纯氢氧化镁产物。该氢氧化镁煅烧后可制得纯度高达99.95%的超高纯氧化镁。项目在电化学反应池构造、阴极高效催化加快电化学反应速率、电力和产物的高效联产等方面有鲜明的自主创新性。 /p p br/ /p p style=" text-indent: 2em " 项目实现了超高纯氧化镁的高效和清洁生产,为超高纯氧化镁的获得提供了新技术途径,对氧化镁基和含氧化镁的合成原料以及高温材料的进一步高性能化和功能化有重要的现实意义。 /p p br/ /p p style=" text-indent: 2em " 项目的工艺路线和生产方式已得到充分的实验室验证和一定规模的实际生产验证,产品质量稳定,技术先进、成熟,可以规模化生产。该成果具有良好的社会、经济和环保效益,应用前景广阔,对不同行业的联合互惠和融合发展有示范带动作用。 /p p br/ /p
  • 煤中碳氢氮含量检测标准方法比对
    目前,市场上关于煤中煤中碳氢氮含量检测的标准方法,主要采用《GBT476-2008 煤中碳和氢的测定方法》和《GBT30733---2014煤中碳氢氮的测定仪器法》,二者分别有何优劣,今天就让小编来给大家做一个全面的比对。1.测试原理《GBT476-2008 煤中碳和氢的测定方法》:采用俗称的二节炉或三节炉,通过吸收剂将煤中碳元素燃烧产生的二氧化碳吸收、氢元素燃烧产生的水蒸气吸收,由吸收剂的增量来确定煤中碳元素的含量。《GBT30733---2014 煤中碳氢氮的测定仪器法》:采用红外光谱法和热导法,煤样完全燃烧后,煤中碳元素转化为二氧化碳、氢元素转化为水蒸气、氮元素转化为氮氧化物,燃烧后的气体根据朗伯-比尔定律(不同气体在红外区有不同的吸收波段,而在特定波段,气体吸收红外光强与其浓度成一定的函数关系),计算得到被测煤样的碳氢元素含量。取一定量的气体进行还原后,进入热导池测试得到氮元素含量。2.自动化程度《GBT476-2008 煤中碳和氢的测定方法》:仪器主要包括净化系统、燃烧系统、吸收系统三大部分,每个系统均需在使用前填充试剂或其他材料,操作繁琐,若试剂或材料填充不好,将直接影响测试结果。测试结束后,需仔细、小心进行U型吸收管表面的干燥、擦拭及称量操作,稍有不慎,则会导致测试结果异常。从空白样测试(空白试验不成功则无法进行测试样的测定)、气体收集、冷却、称量到计算均需人工操作,过程繁琐、难度大,且测试结果的准确度无法保证。《GBT30733---2014 煤中碳氢氮的测定仪器法》:每次测试前开启计算机及仪器,点击升温后仪器自动恒温、控温,操作人员只需将当天需测试的所有煤样一次性称量好后放入放样盘即可(预留空白样测试孔位),录入空白样及测试样信息后,点击开始实验,仪器将自动完成所有样品的测试。3.主要试剂及材料《GBT476-2008 煤中碳和氢的测定方法》:铬酸铅(需用蒸馏水调成糊状,挤压成型,放入高温炉中,在850℃下灼烧2h,取出冷却备用)、银丝卷、高锰酸银、二氧化锰、无水高氯酸镁、铜丝卷、氧化铜、氧气、三氧化钨、碱石棉、真空硅脂、硫酸等。三节炉:需用铬酸铅和银丝卷消除硫和氯对碳测定的影响;二节炉:需用高锰酸银热解产物消除硫和氯对碳测定的影响;三节炉/二节炉:需用粒状二氧化锰消除氮对碳的测定的影响。《GBT30733---2014 煤中碳氢氮的测定仪器法》:氧气、氮气、氦气、氧化钙、无水高氯酸镁、碱石棉、线状铜、铜线、氮催化剂。4.测试时间《GBT476-2008 煤中碳和氢的测定方法》: 约30min/个《GBT30733---2014 煤中碳氢氮的测定仪器法》:约5min/个5.测试示意图《GBT476-2008 煤中碳和氢的测定方法》: 三节炉和二节炉碳氢测定示意图《GBT30733---2014 煤中碳氢氮的测定仪器法》:三德科技SDCHN536碳氢氮元素分析仪测试气路示意图结论《GBT30733---2014煤中碳氢氮的测定仪器法》与《GBT476-2008 煤中碳和氢的测定方法》相比,具备以下显著优势:01自动化程度高,操作步骤简单;02所需试剂及材料种类少;03测试速度快。《GBT30733---2014煤中碳氢氮的测定仪器法》是煤中碳元素测定的优选方法。
  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • 聚焦3.15,海能在行动:食品酸价和过氧化值的检测解决方案
    消费者权益日3.15黑名单之夜刚刚过去,消费安全不容忽视。无论你来自何方,从事什么样的职业,我们都有一个共同的名字——消费者。今年央视3.15晚会的主题是:“信用让消费更放心”。消费领域一些失信和侵犯消费者权益的情况在很大程度上影响着消费者的满意度和消费信心,制约着消费潜力的进一步扩大。从晚会曝光的情况来看,各类食品安全问题依旧层出不穷:生产车间“辣眼睛”的辣条、“化妆”出来的“土鸡蛋”……针对以上问题,海能实验室迅速做出反应,为各位消费者总结了最新解决方案,希望对大家有所帮助。辣条是近年来非常热销的小零食,但很多三无辣条的生产车间是真的“辣眼睛”,不仅卫生毫无保障,还存在违规使用添加剂的情况。晚会中曝出的一家辣条厂商,生产车间内满地的粉尘与机器渗出的油污交织在一起,水桶、水瓢都被厚厚的污垢所覆盖,这样的辣条你还敢吃吗?不合格辣条怎样识别? 其实大家可以发现辣条一般都含有大量的油脂,这些油脂的品质在一定程度上可以反映辣条的品质。油脂品质一般体现在酸价和过氧化值两项检测指标上。酸价即酸值,是脂肪中游离脂肪酸含量的标志,酸价越小,说明油脂质量越好,新鲜度和精炼程度越好。过氧化值则是衡量油脂酸败程度的指标,一般来说过氧化值越高其酸败程度越高。那么,这两项指标怎么测呢?莫慌,我们已经为您准备好了检测方案。当当当当~海能实验室电位滴定法检测食品中的酸价和过氧化值仪器与试剂1、仪器T960电位滴定仪,Hamilton pH复合电极 铂复合电极,10mL滴定管单元T960电位滴定仪2、试剂氢氧化钾滴定液(0.0991mol/L,滴定液的浓度用邻苯二甲酸氢钾基准物质标定);硫代硫酸钠滴定液(0.01mol/L,滴定液浓度用重铬酸钾基准物质标定);异丙醇:乙醚=1:1(v:v);异辛烷:冰醋酸 =2:3(v:v);碘化钾。实验方法1、样品制备食品样品按照国标要求经过干燥、粉碎,使用石油醚浸提或者抽提,得到待测油脂试样。如果样品为液态澄清食用油脂,也可充分混匀后直接取样。2、实验过程2.1 酸价准确称取20g左右制备好的油脂样品,置于滴定杯中,加入异丙醇-乙醚混合溶液50mL溶解,搅拌均匀,用氢氧化钾滴定液,以pH非水电极为工作电极,滴定至终点。2.2 过氧化值准确称取5g左右样品,置于滴定杯中,加入冰醋酸-异辛烷混合液50mL溶解,搅拌均匀,向滴定杯中准确加入0.5mL饱和碘化钾溶液,搅拌反应60s,立即向滴定杯中加入40mL去离子水,插入电极和滴定头,用硫代硫酸钠滴定液,以铂复合电极为工作电极,滴定至终点。数据分析与讨论1、实验数据2、酸价实验典型谱图3、过氧化值实验典型谱图4、讨论由酸价实验谱图可知,不同的样品走势不同,所以需要根据国标中提供的参考图仔细分辨。另外,酸价图谱前端均出现高突跃量的杂峰,所以应设置相应的预控pH值,以免影响最终结果的判定。过氧化值图谱明显,但由于滴定体积较小,建议使用0.01mol/L的硫代硫酸钠溶液进行滴定。结果表明,T960对两种指标测试的结果平行良好,且手工的结果无明显差异,能够满足实验需求。另外,煎炸油的酸价明显高于普通食用油,而辣条中若使用类似的劣质油、地沟油,会给消费者带来健康隐患。
  • 大气降水氢氧稳定同位素测试方法
    一、研究背景与意义大气降水作为内陆水循环的重要水分输入项,其形成过程中,伴随着地表蒸发、植物蒸腾以及水汽凝结等平衡分馏或动力分馏过程,使降水中的氢氧稳定同位素组成有不同的特征。因此降水氢氧稳定同位素常被视为良好的示踪剂,被广泛应用于水汽源地示踪、古气候重建、蒸发量及局地水汽再循环的估算等研究。降水氢氧稳定同位素的研究始于上世纪五十年代,以国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素观测网(Global Network of Isotopes in Precipitation, GNIP)为标志,开始了全球性的降水氢氧稳定同位素的长期监测;随后研究者们在国家、区域或单站点尺度上也开展了大气降水氢氧稳定同位素的监测,这些观测数据促进了我们对于复杂水循环过程的认识。因此,高时间和空间分辨率的降水氢氧稳定同位素的监测是一项非常重要的工作。二、测量原理降水氢氧稳定同位素组成的测定采用的是基于光腔衰荡光谱(Cavity Ring-Down Spectrospecopy, CRDS)技术的Picarro高精度水同位素分析仪。同其它光谱技术相同,CRDS技术也是基于气态分子独特的红外吸收光谱来量化稳定同位素组成的方法,但不同于其它光谱技术基于吸收强度的测量,CRDS技术是基于时间的测量,其测量结果对激光源本身的变动不敏感,从而可以保证仪器的噪声更小,且精度更高。Picarro高精度水同位素分析仪的光腔采用三镜片小光腔(体积约35 ml,长度约为25 cm)的设计,可以保证更快的腔室内气体更新速率,使仪器的响应时间更快;同时小光腔的设计可以实现对光腔内温度和压强的控制(温度:± 0.005 ℃;压强:±0.0002 大气压),使仪器具有更好的漂移性能。光腔内采用高反射率镜面可以有效的减少由于激光透射所引起激光强度的减弱,从而可以使激光穿过的更大的气体厚度,即更大的有效长光程( 10公里),从而使仪器拥有更低的检测下限。三、仪器介绍基于CRDS技术的Picarro高精度水同位素分析仪可以用于液态水样品中稳定氢氧同位素比率(δ2H,δ17O和δ18O)的测量,如降水、河水、湖水、地下水、冰川水、土壤水和植物水等液态水。仪器的典型精度:δ2H: <0.1‰,δ17O: <0.025‰,δ18O: <0.025‰;测量速度:每9分钟可以完成一针测量,每天可以完成160针(即27个样品)的测量;测量范围:满足同位素标记的重氘样品测量,δ2H的测量上限≥50000‰(或≥8500ppm);取样温度:0-50 ℃;样品体积:<2 μL/针(可调)。四、取样方法根据国际原子能机构和世界气象组织的要求,采用标准雨量器进行降水样品的收集。如需测定月尺度上的降水氢氧稳定同位素组成,可在室内准备一个足够大的容器,每次降水后,将在室外通过雨量器收集到的降水倒入该容器,低温密封保存,每个月的最后一天取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。如需测定降水事件尺度上的降水稳定氢氧稳定同位素,则在每次降水后取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。各观测点收集的降水样品可寄送至北京松盛华嘉检测技术有限公司使用基于CRDS技术的Picarro高精度水同位素分析仪进行集中测试。五、公司介绍北京松盛华嘉检测技术有限公司,为北京理加联合科技有限公司的全资子公司,致力于为用户提供更高质量的稳定同位素样品测试服务。已先后为中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院西北生态环境资源研究院、中国林业科学研究院林业研究所、中国科学院植物研究所、中国科学院遗传与发育生物学研究所和中国水利水电科学研究院等近百家单位提供快速、精确的稳定同位素测试服务和技术咨询服务。北京松盛华嘉检测技术有限公司拥有专业的测试团队,提供快速、精确的测试服务,可以为您提供及时的数据测样服务,助力您科研成果的尽快发布。
  • 大连化物所傅强和慕仁涛团队在表面氢溢流原子可视化研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究组研究员傅强和慕仁涛团队在表面氢溢流原子可视化研究中取得进展,发现氧化物表面结构对氢溢流的有效调控,利用表面晶格限域效应提升氢溢流速率。氢活化和氢溢流是诸多涉氢反应的重要基元过程,对其进行有效调控是提高涉氢催化反应性能的关键。该团队在前期研究中通过构筑氧化物表界面活性中心调控H2活化(ACS Catal. ),利用氢溢流形成的表面氢物种提升反应选择性和催化剂稳定性(Angew. Chem. Int. Ed. 、ACS Catal. 、J. Phys. Chem. Lett. ),并通过氢溢流再生“Ni-O路易斯酸碱对”活性中心实现H2O的有效活化(J. Phys. Chem. Lett. )。本工作在Pt(111)衬底表面构建MnO(001)和Mn3O4(001)单层结构。近常压扫描隧道显微镜(NAP-STM)原位成像显示,在MnO(001)表面氢物种沿着晶格条纹一维扩散,而在Mn3O4(001)表面上呈现出二维扩散特征,且在MnO(001)上的扩散速率是Mn3O4(001)上的4倍。理论研究表明,氧化锰表面晶格中合适的O-O间距利于氢扩散,而存在低配位表面O原子则抑制氢扩散。该研究揭示了氧化物表面晶格限域效应对氢溢流的促进作用。相关研究成果以Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中科院碳中和光子科学中心等的支持。大连化物所表面氢溢流原子可视化研究获进展
  • 公开征求氧化铁铬等4种食品相关产品新品种意见
    根据《食品相关产品新品种行政许可管理规定》和《食品相关产品新品种申报与受理规定》要求,氧化铁铬等4种食品相关产品新品种已通过专家评审委员会技术评审(具体情况见附件)。现公开征求意见。请于2024年1月21日前将书面意见反馈至我中心,如在截止日期前未反馈相关意见,视为无不同意见。邮 箱:biaozhun@cfsa.net.cn 一、氧化铁铬1.背景资料:该物质在常温下为黑色粉末,不溶于水。 美国食品药品管理局和日本化学研究检验所均允许该物质 作为着色剂用于食品接触用塑料材料及制品。2.工艺必要性。该物质为黑色无机着色剂,具有较好的 耐候性、耐温性、化学稳定性等性能,并可用于黑色塑料制 品的红外线识别。二、(1R,2R,3S,4S)-rel-二环[2.2.1]庚烷-2,3-二羧酸钙盐 (1:1) 1.背景资料:该物质在常温下为白色粉末,极微溶于水。 美国食品药品管理局和欧盟委员会均允许该物质用于聚丙 烯(PP)、聚乙烯(PE)塑料材料及制品。2.工艺必要性:加入该物质的 PP、PE 具有较低的水蒸 气渗透率和氧气透过率。三、聚丁二酸-己二酸丁二酯1.背景资料:该物质在常温下为白色颗粒,不溶于水, 可溶于氢氧化钠和氯仿。美国食品药品管理局和欧盟委员会 均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该树脂较易熔融,加工性能良好。以该 物质为原料生产的塑料薄膜,具有较好的透明度和光泽度。四、1,3-苯二甲酸与 1,4-苯二甲酸和 1,4-二(羟甲基)环己烷的聚合物 1.背景资料:该物质在常温下为固体,不溶于水和乙醇。 美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方 共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该物质为基础树脂,相较于其他聚酯材 料密度低,可以制造较轻便的产品;有较低的吸水性,能更 好的保持尺寸稳定性,可应用于透明板材、薄膜等产品生产。
  • 样品测试 | 氢氧稳定同位素样品采集及预处理方法
    氢(δD)、氧(δ18O)稳定同位素是广泛存在于自然水体中的环境同位素。在测量氢氧稳定同位素之前,样品采集和预处理是主要的任务, 样品运输应当保证样品性质稳定,避免污染和同位素分馏。如您不清楚样品采集和预处理的具体方法、不确定样品储存的适宜条件和运输注意事项,请看本文介绍。水样品1、野外采集样品封口膜密封,低温保存:取样后(取样量根据老师研究需要自行决定)立即在瓶口处用封口膜密封并且低温保存(如样品暂时不测情况下,可以冰冻储存(如需冰冻储藏则建议用塑料瓶盛装样品,玻璃瓶会被冻裂),以防止蒸发。2、送样前分装封口膜密封,阿拉伯数字编号:用1ml的一次性注射器来取水样品(取一次即可),经过一次性0.45μm滤器(滤器分水系和有机系,根据样品不同来选择)过滤至2ml样品瓶里,盖好瓶盖并用封口膜密封,样品用阿拉伯数字编号,(不是数字编号的话需要您提供电子版样品清单)。3、低温储存OR运输冰箱冷藏储存,顺丰冷链寄送:密封好的样品可放置在冰箱冷藏储存;样品邮寄建议顺丰冷链寄送,并嘱咐快递小哥多放几个冰袋,以防止样品蒸发分馏,来保证数据准确。发送样品和快递信息给小编(以便及时接收您的样品):单位名称:样品数量:测试指标:是否回收:快递单号:接收样品后我们及时和您核对样品相关信息土壤/植物样品1、野外采集样品封口膜密封,低温保存:采集的土壤/植物样品需要装在12ml的样品瓶(规格:19mm*65mm或18mm*66mm)里,样品量可根据样品具体情况适当增减,原则为保证能抽提的水量不少于1ml,如果样品含水量特别低,需要准备两瓶或者多瓶样品,样品装好后,瓶口处用脱脂棉塞紧,然后拧紧瓶盖,样品瓶盖外需用封口膜密封以保证密封性良好来防止分馏。样品用数字编号(不是数字编号的话需要您提供电子版样品清单)2、低温储存OR运输冷链寄送,冷冻储存:密封好的样品可放置在冰箱冷冻储存;样品邮寄建议顺丰冷链寄送,并嘱咐快递小哥多放几个冰袋,防止样品蒸发分馏,以保证数据准确。发送样品和快递信息给小编(以便及时接收您的样品):单位名称:样品数量:测试指标:是否回收:快递单号:接收样品后我们及时和您核对样品相关信息提示一、对于植物样品和土壤样品来说,建议直接用12ml样品瓶采样和储存样品,能有效减少分馏情况发生,不建议用密封袋采集和储存样品,因为:1、如样品在密封袋中储存,抽提前就需要将样品从密封袋中腾装进样品瓶,这个过程会增加样品与空气接触时间,增加蒸发分馏的可能;2、植物样品冰冻储存过程中会冻出水分,水分会附着在密封袋上,腾装样品的这个过程不可能把粘在袋子上的水汽完全收集到进样瓶中,这种情况下将直接影响数据准确性。二、关于植物样品采样部位:根据不同的研究目的,植物样品的采集部位会有差异,为了研究植物水分来源,乔木和灌木应采集植物非绿色的枝条,而草本则应尽可能采集根茎结合处的非绿色部分。因为这些植物器官没有气孔,不会因蒸腾作用而导致目标同位素的分馏。附:相关耗材和测试过程照片:1.即将进行抽提的植物样品2.抽提工作正在进行3.抽提结束冷凝水收集4.收集完毕并密封好的待测样品5.氢氧同位素测试中以上内容仅供参考,如您有任何建议,欢迎与我们联系,非常荣幸能和您讨论学习。
  • 《重磅新闻:新国标GB5009.34-2022 食品中二氧化硫的测定发布》济南盛泰科技推出专用机
    2022年7月28日国家卫生健康委颁布了新的食品二氧化硫国家标准《GB5009.34-2022 》,并定于2022年12月30日实施。新国标与原GB 5009.34-2016比较,其主要变化有以下几点:(1)修订了原滴定法为酸碱滴定法。(2)增加分光光度法、离子色谱法。第一法 酸碱滴定法,前处理使用充氮蒸馏方法,试样酸化后在加热条件下亚硫酸盐等系列物质释放二氧化硫,使用过氧化氢溶液吸收,二氧化硫被氧化为硫酸根离子,采用氢氧化钠标准溶液滴定,根据消耗量计算二氧化硫的含量。第二法 分光光度法,样品使用甲醛缓冲吸收液浸泡或加酸充氮蒸馏使其中的二氧化硫释放被甲醛溶液吸收,生成稳定的羟甲基磺酸加成化合物,酸性条件下与盐酸副玫瑰苯胺生成蓝紫色络合物,通过测定该络合物的吸光度得到二氧化硫的浓度。第三法 离子色谱法,前处理通过将试样中的亚硫酸盐系列物质进行酸处理后转化为二氧化硫,采用充氮-水蒸气蒸馏方法随水蒸气馏出,被过氧化氢吸收并氧化为硫酸根离子,使用离子色谱仪进行测定。在标准附录B中,对水蒸气蒸馏装置(图5)进行了要求。相比于前两种方法,离子色谱法的水蒸气蒸馏装置更加复杂,对检测机构和食品企业出厂检测的效率提出了挑战。同时存在占用实验室空间、蒸气与氮气流量不易控制、装置气密性难以保证等问题,最终影响到检测结果。在新标准中,上述第一法与第二法的前处理过程均使用了玻璃充氮蒸馏器装置(图2)济南盛泰电子科技有限公司继为《GB5009.34-2016》国标研制了全国第一台型号为:ST106-1RW的智能一体化蒸馏仪(又名:食品二氧化硫测定仪),具有:远红外自动加热+自动称重计量蒸馏+内置压缩机冷却水自循环系统+自动清洗等特色功能,深受国内各级食药检验检测单位、海关、高等院校、科研院所等单位的喜爱。这次新国标的修订,济南盛泰科技全程参与了新国标数据的验证,并为此次新国标研发了四款全新配套仪器,ST109A/ST109B/ST109C/ST109D。可适用于第一法、第二法的全自动化检测或充氮蒸馏预处理;第三法离子色谱法的水蒸气蒸馏。这四款产品的型号分别为:ST109A全自动食药二氧化硫分析仪ST109B智能食药二氧化硫测定仪ST109C智能食药二氧化硫测定仪ST109D智能一体化水蒸气蒸馏仪欢迎大家做更多的了解!济南盛泰电子科技有限公司
  • LI-2100 | 叶片水氢氧同位素的控制因素
    太白山,是秦岭山脉最高峰,也是青藏高原以东第一高峰,如鹤立鸡群之势冠列秦岭群峰之首,以高、寒、险、奇、富饶、神秘的特点闻名于世、称雄华中。李白的“西上太白峰,夕阳穷登攀”,“西当太白有鸟道,可以横绝峨眉巅”,形象地将太白山的雄峻高耸烘托而出。如今,更是有不少中外游客慕名前来,一览拔仙绝顶和云海奇观,领略太白峰的险峻神秘。2020年,来自中国科学院地球环境研究所的研究团队分别于5月、7月和9月登上太白山,在奇观景象之中收集土壤和植物,开启了叶片水氢氧同位素的相关研究。叶片水氢氧同位素的控制因素氢氧稳定同位素(δ2H和δ18O)常被用作示踪剂来跟踪水从降水输入运移到土壤,最终通过土壤蒸发和叶片蒸腾释放的过程。叶片水蒸腾对于调节各种尺度的水平衡至关重要。陆地植物叶片水通过气孔蒸发分馏导致重同位素富集,这在很大程度上取决于等大气条件(温度和相对湿度等)以及生物生理过程。叶片水同位素信号整合到植物有机物中,例如纤维素和叶蜡,成为研究古气候重建的新方法。然而,尽管叶片水同位素在生态水文学和有机生物合成中很重要,但人们对叶片水同位素的控制因素以及源水和水文气候在确定叶片水同位素中的作用仍然缺乏了解且叶片内同位素分馏所涉及过程的复杂性使得准确预测和测量变得困难。基于此,在本研究中,来自中国科学院地球环境研究所的研究团队于2020年5、7和9月在太白山(33.96°N,107.77° E)收集了土壤和植物(枝条和叶片)样品,同时获取了温度、相对湿度和降水量等相关气象参数。利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和植物中的水分。利用Picarro L2130-i水同位素分析仪确定土壤水稳定同位素组成。并测定其他水体的稳定同位素组成。通过对土壤水、枝条水和叶片水的δ18O和δ2H测量值与叶片水的δ18O和δ2H C-G模型预测值进行综合分析,确定δ18OLeaf和δ2HLeaf值的控制因素,以增进我们对与叶片水相关的植物有机生物标志物中提取的δ18O和δ2H中所保存的环境信号的理解。【结果】叶片水δ18O和δ2H值与潜在源水δ18O和δ2H值(枝条水、土壤水和降水δ18O和δ2H)以及气象参数(例如、MAP、MMP、MAT、MMT、MARH、MMRH)相关性(r)热图。叶片水同位素测量值与C-G模型预测值比较。叶片水δ18O和δ2H值的结构方程模型(SEM)。【结论】沿黄土高原高程样带,对降水、土壤水、枝条水和叶片水进行重复采样,探索δ18OLeaf和δ2HLeaf值与气象参数和源水的控制关系。气象参数和源水对δ18OLeaf和δ2HLeaf值的影响不同,δ18OLeaf和δ2HLeaf双图生成同位素线。作者发现δ2HLeaf值与源水同位素的相关性比δ18OLeaf更密切,而高程样带沿线δ18OLeaf和δ2HLeaf值与气象参数具有相似的相关性。观测结果表明,源自δ18OLeaf和δ2HLeaf值的植物有机同位素(例如叶蜡和纤维素)可以提供中国黄土高原相对的气候信息。此外,双同位素分析表明δ18OLeaf和δ2HLeaf值由于相似的海拔和季节响应而密切相关。源水(即降水)主导δ18OLeaf和δ2HLeaf值,气象参数对δ18OLeaf和δ2HLeaf值的影响相当,且随黄土高原样带海拔和季节的变化而变化。未来,作者将研究交叉角与水文气候和生化因素的关系。
  • 斯坦福团队突破水系电池瓶颈, 液晶相引领新方向!
    【研究背景】水系电池是一种具有安全性优势的电化学储能技术,已在多个领域获得广泛应用,如电动汽车和可再生能源存储。与传统的锂离子电池相比,水系电池具有成本低、环境友好等优点。然而,水系电池的能量密度和循环寿命相对较低,限制了其应用范围。因此,提升水系电池的能量密度和延长其循环寿命成为了当前的研究挑战。近日,来自美国斯坦福大学材料科学与工程系崔屹教授团队的课题组在水系电池的研究中取得了新进展。他们设计了一种新的液晶相,利用微量非离子表面活性剂实现了电极材料的沉积和晶体结构的控制。该研究表明,通过原位形成的液晶相,可以有效地引导锌和二氧化锰的沉积,显著增强了电池的电化学循环稳定性。具体而言,该团队的液晶相在电池充放电过程中展现出高度可逆的沉积行为,使得双电极无电池(DEFB)在长达950个循环后保留了80%的容量。通过这一创新的方法,成功获取了高达213 Wh/kg的能量密度,显示出液晶相在电池制造过程中的广泛应用潜力。该研究不仅解决了锌和二氧化锰沉积过程中的可逆性问题,还为未来的电池技术提供了新的方向,推动了电化学设备性能和寿命的提升。【表征解读】本文通过多种表征手段深入探讨了液晶相的形成及其在水系电池中的应用,揭示了液晶相对锌/二氧化锰沉积行为的影响。作者使用了扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、接触角测量、椭偏仪等仪器,对电极材料的微观结构和表面特性进行了全面的表征。首先,利用SEM观察到电极表面沉积的形貌变化,表明在表面活性剂的作用下,锌和二氧化锰的沉积更为均匀。该现象反映了液晶相的存在,促使沉积过程更加有序和可控,从而提高了材料的电化学性能。随后,通过XRD分析,作者证实了沉积材料的晶体结构和取向,液晶相的形成促进了锌和二氧化锰晶体沿c轴的对齐,进一步提高了电池的循环稳定性。针对液晶相形成过程中的微观机制,作者通过TEM观察到了液晶模板在电极表面上的动态变化。具体而言,在沉积前,表面活性剂形成了一层有序的分子双层,沉积后则转变为梯度液晶相,包括层状液晶和六角液晶,这一过程的动态切换为电极材料的沉积提供了理想的模板。这一发现不仅解释了高可逆性的镀层/剥离行为,还揭示了液晶相在电池应用中的潜在优势。在此基础上,作者通过结合上述表征手段,进一步探讨了液晶相对电池性能的促进作用。通过电化学阻抗谱(EIS)测试,作者发现,液晶相显著降低了电池的界面阻抗,提高了离子传输速率。这一结果强调了液晶相在改善电极界面特性方面的重要性,表明其在电池制造中的应用前景广阔。总之,经过SEM、XRD、TEM等多种表征手段的深入分析,作者揭示了液晶相在水系电池中的形成机制和作用,最终实现了新型电极材料的制备。该新材料不仅提高了电池的能量密度和循环寿命,还为电池技术的进一步发展提供了新的思路。作者的研究为推动电化学设备的性能提升和实际应用打下了坚实基础,展示了液晶相作为电池界面层的巨大潜力。【图文速递】图1:表面活性剂添加剂通过原位形成的液晶相界面促进Zn/MnO2沉积的设计框架。图2:原位沉积Zn金属的沉积形态和晶体结构。图3:原位形成的液晶相界面用于模板化沉积图4: 液晶相界面策略用于MnO2沉积和DEFB的电化学性能。文献信息:Li, Y., Zheng, X., Carlson, E.Z. et al. In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01638-z
  • 把烟囱“搬”进显微镜,浙大制出不会“中毒”的催化剂
    p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮氧化合物是最主要的大气污染物之一,如何“减排”至关重要,工业上称之为脱硝。但是,目前广泛的SCR脱硝法存在一处“软肋”:在450-523K的中低温区间,哪怕废气中存在一丁点儿的二氧化硫,都会导致催化剂失效。浙江大学材料科学与工程学院教授王勇和杨杭生研究团队通过原位环境电子显微技术,首次在原子尺度实时观察到了脱硝反应过程中催化剂的动态行为,解码了催化剂中毒的微观机理,在此基础上成功设计制备出一种新型催化剂,它能在低温下持续、稳定、高效地脱硝,达到了准工业级水平。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) font-size: 16px " strong span style=" color: rgb(0, 112, 192) font-size: 16px text-indent: 2em " 看——把烟囱“搬”进显微镜 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮气是空气的主要成分,在工业上,通常有燃烧的地方就有氮氧化合物产生。这是一类对人类很不友好的气体,可引起光化学烟雾、酸雨、臭氧层破坏等环境问题,也是人类健康的威胁因素,人们一直在想办法去掉它们,保护大气。上世纪八十年代,选择催化还原技术(SCR)开始用于工业现场,对于火电厂等产生的高温废气,它们有着优秀的脱硝能力,但对于钢铁、陶瓷、玻璃等工业过程中产生的中低温尾气,它们却束手无策。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 科学界称催化剂失效的现象为“中毒”。低温工业尾气净化往往先脱硫,再脱硝,在脱硫阶段残余的二氧化硫会严重影响脱硝阶段的成效。催化剂为何中毒?科学家希望通过电子显微镜在原子尺度观察“中毒”现象,帮助它们认识其深层机理。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 研究团队在球差校正透射电镜里构建了一个人工“烟囱”,里面的气压和温度与真实工业线保持一致。“这里模拟了工业线上的脱硝环境,在原子层级实时呈现催化剂的‘中毒’过程。”王勇说。通过实验,科研人员得到了世界上第一张原子分辨级的催化剂中毒照片。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在催化剂氧化铈晶体的部分表面,我们看到它的晶格结构已经模糊,二氧化硫与催化剂反应形成硫酸盐颗粒,表面覆盖累积,形成许多不均匀的小凸起。“正是这些凸起遮蔽了催化剂与废气的接触,束缚了催化效力的发挥。”王勇说。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/201909/uepic/a39f3b22-860e-4d0a-8ed1-fe370db5bcc3.jpg" title=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" alt=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿” /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 如何破解中毒难题?科学家在电子显微镜的“烟囱”里,继续探索催化剂“解毒”的过程。他们发现,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”了,“这是催化剂的‘解毒’的过程。”杨杭生说,“‘消肿’后的催化剂,可以恢复催化能力。”“氨气本来是参与SCR催化反应的气体,通过原位电镜研究,我们意外的发现在合适的实验条件下氧化铈可以实现硫酸盐的沉积与分解的动态平衡,这个信息对我们“解毒”至关重要。”王勇补充说。 /span /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " img style=" max-width: 100% max-height: 100% width: 450px height: 393px " src=" https://img1.17img.cn/17img/images/201909/uepic/5b16ca19-0219-41c7-ac0e-99e84cd079d3.jpg" title=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" alt=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" width=" 450" height=" 393" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" text-indent: 2em " 算——“白马”“黑马”最佳配比 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在脱硝催化剂领域,氧化锰是催化性能优异的“白马”,而氧化铈是表现一般的“黑马”。但是,“白马”容易受到二氧化硫的干扰,一遇到二氧化硫,其性能就直线下降。氧化铈虽然催化效力差氧化锰很远,但它自带的“解毒”本领,让科学家看到了它的潜力。王勇说,氧化铈能让硫酸盐的沉积与转化实现动态的平衡,这是其“解毒”机制的核心。“下一步是希望怎样把两者的优点结合,扬长避短。” /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 根据电子显微镜提供的信息,理论计算科学家通过第一性原理模拟,试图去寻找“白马”与“黑马”的最佳配比方案。这种复合催化剂的思路,该研究团队并不是第一个想到的。但他们发现,常见的混合方法容易在催化剂表面形成硫酸(氢)铵网络结构,导致氮氧化物和氨气分子无法靠近锰离子并与之发生反应,造成催化剂活性下降。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 334px " src=" https://img1.17img.cn/17img/images/201909/uepic/ebd9855f-f73c-48d5-8d08-f935b9636cba.jpg" title=" 理论计算理解位阻效应.png" alt=" 理论计算理解位阻效应.png" width=" 450" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 理论计算理解位阻效应 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “通过原位环境透射技术的观察和第一理论计算,我们得到了一种全新的设计方案。”王勇介绍,这是一种新型的氧化铈、氧化锰复合催化剂,两者以全新的方式混合,形成一定的微观结构。“氧化锰颗粒形成团簇,分布于棒状的氧化铈晶体上,氧化锰团簇的尺寸在1纳米左右。”杨杭生补充道:“这些都是通过精密的理论计算得出的。” /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " 测 /span /strong /span span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " —— /span span style=" text-indent: 2em " 1000小时耐力测试 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 新型的催化剂的“减排”能力究竟如何?需要有接近工业现场的实验验证。研究团队在实验室构建了一个仿真的烟气处理装置,新型催化剂在进行真实场景的考验。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 193px " src=" https://img1.17img.cn/17img/images/201909/uepic/f0dad4cd-8d6c-4218-9ef4-2826072f4f45.jpg" title=" 持续稳定的抗中毒性能.png" alt=" 持续稳定的抗中毒性能.png" width=" 450" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 持续稳定的抗中毒性能 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在“起跑”的最初几个小时,传统的氧化锰催化剂与新型催化剂齐头并进,共同处于催化能力的高位。但不到24小时,氧化锰的催化能力锐减,迅速跌破“黑马”氧化铈的能力线。而新型催化剂则一路“笑到最后”,实验持续进行了1000小时,其能力线一直平稳的处于高位。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “可以说,这种催化剂达到了准工业级的应用要求。”杨杭生说,这一氧化铈氧化锰的复合催化剂,解决了低温尾气持续高效净化的难题。在此之前,科学界曾尝试用添加“牺牲剂”的方法去消除二氧化硫的干扰,但王勇认为,牺牲剂虽然在短时间内能消除二氧化硫,但需要不断补充添加才能得以实现“抗毒”效果,否则将很快中毒失效,因此应用于工业现场并不现实。“我们的方法是既维持了硫酸盐的沉积与转化的动态平衡,又保持了催化剂的高效催化。” /span /p
  • 部分扣式电池进出口将实施汞含量专项检测
    进出口锌-氧化银、锌-空气、锌-二氧化锰扣式电池(下称扣式电池)将于7月1日起实施汞含量专项检测。   此前,进出口扣式电池尚无汞含量限值国家标准,因此暂不实施汞含量检测,但必须办理备案手续。2009年9月30日,国家质检总局和国家标准委联合发布《锌-氧化银、锌-空气、锌-二氧化锰扣式电池中汞含量的限制要求》,该标准将于2010年7月1日实施,含汞量小于等于0.005毫克每克属于无汞电池,含汞量小于等于20毫克每克属于含汞电池,超出此标准限值属于不合格电池。   根据《进出口电池产品汞含量检验管理办法》规定:检验检疫机构对进出口电池产品实行备案和汞含量专项检测制度,未经备案或汞含量检测不合格的电池产品,不准进口或出口。
  • 环氧树脂的羟值测定
    环氧树脂优良的物理机械和电绝缘性能、与各种材料的粘接性能、以及其使用工艺的灵活性是其他热固性塑料所不具备的。因此它能制成涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料,在国民经济的各个领域中得到广泛的应用。5月份,我们带来了环氧树脂水分含量检测的应用方案,现在我们带着环氧树脂羟值测定的应用方案与您见面了! 一、背景介绍羟值是指1g样品中羟基所相当的氢氧化钾的毫克数,以mgKOH/g表示。目前胶黏剂中的环氧树脂、聚酯多元醇和聚醚多元醇及聚氨酯等对羟值有要求。羟值是环氧树脂羟基含量的量度,可以直接反映出环氧树脂分子量的大小;在聚酯多元醇的合成过程中,利用羟值与酸值的测试来监控合成反应程度,用来检验树脂分子量是否符合产品出厂要求;在聚氨酯胶黏剂生成时,羟值与酸值大小,是异氰酸酯加入改性的重要依据。故我们需要对羟值进行检测。依据标准:GB/T 12008.3-2009 塑料 聚醚多元醇 第3部分:羟值的测定。 二、羟值测定方法1、测试原理用过量酸酐与产品中羟基反应生成酯和酸,多余的酸酐水解成酸,再用碱进行中和滴定。根据氢氧化钠的消耗量,可计算出产品的羟值。由于滴定终点颜色变化不易观察,因此通过电位来指示终点。 2、仪器及试剂:● ZDJ-5B型自动滴定仪● 231-01 pH玻璃电极+232-01参比电极● 咪唑、吡啶、邻苯二甲酸酐、0.5mol/L氢氧化钠标定滴定溶液 3、测试(1)样品前处理:● 向试料和空白锥形瓶中准确移取25ml邻苯二甲酸酐酰化试剂。摇动瓶子,至试料溶解,每个锥形瓶接上空气冷凝管,放在115+2℃油浴里30min。● 加热后,将装置从油浴中拿出并冷却至室温。用30ml吡啶冲洗冷凝管并取下冷凝管。将溶液定量转移到250ml烧杯中,用20mL吡啶冲洗锥形瓶。(2)空白测定:将空白样品置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。(3)样品测定:将试样置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。注意事项图1 样品测定曲线 (1)过量的水会破坏酯化试剂而干扰测定,试剂需要保持干燥,酰化试剂吸潮后需要重新配置。(2)酯化完成,冷却后,可以先加少量水,使过量的酸酐直接水解,在用氢氧化钠标准溶液进行滴定。(3)样品的取样量要进行估算,尽可能的使试料质量与理论计算值相近。 三、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 又一批行业标准报批公示 这些有变化
    p   7月23日,工信部发布行业标准修改单报批公示,此次涉及电子、化工、冶金、有色、纺织、石化领域。 /p p   具体来说包括:《品牌培育管理体系实施指南 电子信息行业》等6项电子行业标准、《合成氨行业绿色工厂评价导则》等3项化工行业标准、《钢渣集料混合料路面基层施工技术规程》等13项冶金行业标准、《岩土工程勘察报告编制规程》等11项有色行业标准、《涂层织物 低温耐折性能试验方法》等48项纺织行业标准和《石油化工钢制管法兰》1项石化行业标准修改单。 /p p   其中,有多项涉及检测: /p p & nbsp /p table cellspacing=" 0" cellpadding=" 0" width=" 600" border=" 1" uetable=" null" tbody tr class=" firstRow" td width=" 83" p style=" TEXT-ALIGN: center" strong 标准编号 /strong /p /td td width=" 104" p style=" TEXT-ALIGN: center" strong 标准名称 /strong /p /td td width=" 258" p style=" TEXT-ALIGN: center" strong 标准主要内容 /strong /p /td td width=" 75" p style=" TEXT-ALIGN: center" strong 代替标准 /strong /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4708-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化锰含量的测定& nbsp 火焰原子吸收光谱法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了火焰原子吸收光谱法测定氧化锰含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化锰含量的测定,测定范围(质量分数):0.50%~10.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4709-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化锰含量的测定& nbsp 高碘酸钾(钠) 分光光度法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了高碘酸钾(钠)分光光度法测定氧化锰含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化锰含量的测定,测定范围(质量分数):0.50%~10.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4710-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化亚铁含量的测定& nbsp 重铬酸钾滴定法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了重铬酸钾滴定法测定氧化亚铁含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化亚铁含量的测定,测定范围(质量分数):2.00%~20.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4711-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化钾和氧化钠含量的测定 火焰原子吸收光谱法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了采用火焰原子吸收光谱法测定氧化钾和氧化钠含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化钾和氧化钠含量的测定,测定范围:氧化钾0.02%~0.10%。(质量分数);氧化钠0.02%~0.10%(质量分数)。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4716-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 轧钢铁鳞& nbsp 含水量和含油量的测定 热重法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了热重法测定轧钢铁磷含水量和含油量的原理、仪器和设备、取样、分析步骤、分析结果的计算等。 br/ & nbsp & nbsp & nbsp 本标准适用于轧钢铁鳞含水量和含油量的测定。含水量测定范围(质量分数):0.50%~45.00%;干基含油量测定范围(质量分数):0.10%~30.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center"   /p /td /tr /tbody /table p & nbsp /p p   附件: /p p   a title=" " href=" http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057497/n3057502/c6269664/part/6269672.doc" target=" _blank"  1.81项行业标准主要内容.doc /a /p p    a title=" " href=" http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057497/n3057502/c6269664/part/6269673.doc" target=" _blank" 2.1项石化行业标准修改单.doc /a /p p & nbsp /p
  • 中国科大提出纳米胶束电解质新思路并用于高性能水系锌锰二次电池
    近日,中国科学技术大学闫立峰教授课题组通过利用两亲性甲基脲分子,设计了一种新型结构的水基纳米胶束电解质。这一工作打破了以往对于电解质连续溶剂相的认识,通过纳米胶束结构包裹了自由移动的离子,建立了局部/界面相互作用网络,通过金属离子的控制释放,有效地维持了离子的三维扩散形式和有利的界面成核反应,实现了金属枝晶和电极副反应的有效抑制。相关研究成果率先在锌-锰电池体系中得到了证实,并发表于化学专业知名期刊《美国化学会志》(Journal of the American Chemical Society)。   锌离子电池由于锌阳极的高理论比容量(820 mA h g-1)、高储量、成本低、氧化还原电位低(-0.762 V vs. SHE)等优势,被认为是下一代清洁能源存储的有前途的候选者。然而,锌离子电池的寿命受到锌阳极不可逆电化学反应的严重限制,如析氢反应(HER)、“死锌”的持续积累以及不受控制的枝晶生长等。同时,以二氧化锰为正极材料代表的一系列锌离子电池普遍具有低的工作电压(1.5 V)和难以匹配锌阳极的电极容量。如何通过电解质的设计优化来调控锌电池的电化学性能是至关重要的问题。   该文提出了一种独特的纳米胶束电解质设计思路,由ZnSO4、MnSO4和高浓度甲基脲(Mu)分子通过自组装策略构建,水溶剂环境被划分为亲水区和疏水区,阳离子和阴离子则被封装到纳米域中(图1)。纳米胶束阻断了连续的水基体相,打破了水分子之间氢键网络并在胶束内部和胶束/水界面上重构了局部氢键。此外,Mu分子参与了Zn2+/Mn2+离子的溶剂鞘结构,排斥了溶剂化水分子,降低了脱溶剂化能垒,抑制了水分解反应。更重要的是,Zn2+/Mn2+离子可以可控地从胶束团簇中释放出来,以三维扩散方式扩散并在电极表面均匀沉积。此外,在锌阳极表面一种新的固体电解质界面(SEI)保护层Znx(Mu)ySO4∙nH2O得以原位生成,以避免水分子持续渗入造成的锌腐蚀。 图1.胶束电解质的自组装示意图   动态光散射结果表明电解质A3Mu中存在约14nm左右的纳米胶束,核磁结果证实了胶束内部的多重氢键相互作用,DFT计算结果也表明Zn2+/Mn2+和Mu分子上的羰基和具有更强的结合能力,进而有利于进入到胶束内核中,减少溶剂鞘结构中的水分子数(图2)。此外,红外,拉曼光谱结果也识别到了SO42-阴离子扭曲的正四面体结构,可能是由于胶束内部拥挤的空间和电荷-偶极相互作用造成的,这些结果表明了胶束电解质的成功构建。 图2.胶束电解质的核磁,红外,拉曼以及结合能计算表征   得益于胶束电解质内部氢键的重构,电解质和碳布正极界面接触角降低,MnO2/Mn2+成核电位降低,同时由于Mn2+的控制释放特性,生成了反应可逆性更高,结构更加疏松的二氧化锰颗粒。在不同SOC状态下,非原位SEM,XPS,Raman, XRD等测试方法核实了高度可逆的二电子转化反应。利用二电子反应的锌锰电池显示出前所未有的高能量密度800.4 Wh kg-1(基于正极活性材料)以及高达1.87 V的放电电压(图3)。 图3.Zn||Mn 电池的电化学性能   中国科学技术大学化学与材料科学学院博士生邓永琦为该文章的第一作者,闫立峰教授为通讯作者。该研究得到了科技部、国家自然科学基金和中国科学技术大学的经费资助。
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 禾工CT-1Plus 多功能全自动滴定仪在食品酸价和过氧化值检测中的应用
    p strong 一:引言 /strong br/   酸价:酸价是脂肪中游离脂肪酸含量的标志。一般认为酸价越小,说明油脂质量越好,新鲜度和精炼程度越好。酸价和过氧化值略有升高不会对人体的健康产生损害。但如果酸价过高,则会导致人体肠胃不适、腹泻并损害肝脏。 br/   过氧化值:过氧化值是过氧化物的活性氧表示的氧化能力,油脂氧化分解产生的过氧化物是引起食物中毒的原因。因此无论在评价油脂或含有食品酸败时,此标准都有十分的重要意义。 br/   酸价和过氧化值是食品质量安全检测中重要的卫生指标,其检测结果对食品安全来讲是 br/ 十分重要的。新标准GB 5009.227-2016 《食品安全国家标准食品中过氧化值的测定》于 br/ 2017.3.1 正式实施。 br/ strong 二:新标准解读 /strong br/ strong 2.1 测试方法及标准溶液 /strong br/   过氧化值:0.01mol/L 硫代硫酸钠标准溶液; br/   酸价:均使用0.1mol/L、0.5mol/L 氢氧化钾或氢氧化钠标准溶液(浓度选择与称样量有关); br/ strong 2.2 适用范围 /strong br/   过氧化值:动植物油脂和人造奶油,测量范围是0g/100g—0.38g/100g; br/   酸价:食用植物油(包括辣椒油)、食用动物油、食用氢化油、起酥油、人造奶油、植脂奶油、植物油料、油炸小食品、膨化食品、烘炒食品、坚果食品、糕点、面包、饼干、油炸方 br/ 便面、坚果与籽类的酱、动物性水产干制品、腌腊肉制品、添加食用油的辣椒酱; br/ strong 2.3 称样量 /strong br/   过氧化值:5g(精确至0.001g); br/   酸价:试样称样量和滴定液浓度应使滴定液用量在0.2mL~1 0mL 之间(扣除空白后); br/ strong 2.4 溶剂及用量 /strong br/   过氧化值:异辛烷-乙酸2+3,50mL; br/   酸价:乙醚-异丙醇1+1,50ml~100ml; br/ strong 2.5 结果判定 /strong br/   过氧化值:自动滴定仪自动记录电位-体积滴定曲线、一阶微分曲线,自动判断终点; br/   酸价:自动滴定仪自动记录pH-体积滴定曲线、一阶微分曲线,自动判断pH 值突跃,即滴定终点。 br/ strong 2.6 精密度 /strong br/   过氧化值:不超过算术平均值的10%; br/   酸价:酸价& lt 1mg/g,不超过算术平均值的15%;酸价≥1mg/g,不超过算术平均值的12%。 br/ strong 三:设备与方法 br/ 3.1 仪器 /strong br/   上海禾工CT-1Plus 多功能全自动电位滴定仪 br/ strong 3.2 产品参数及特点 /strong br/ strong 参数: /strong br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/051d015e-d9f8-4ffd-8228-fc87de67aff6.jpg" title=" 参数.jpg" style=" width: 600px height: 390px " width=" 600" vspace=" 0" hspace=" 0" height=" 390" border=" 0" / /p p strong 特点: /strong br/   CT-1Plus 可选配自动颜色判定模块,用于无法有效进行电位滴定的分析需求,机器人视觉原理精确颜色判断。同类产品中,唯一一款颜色滴定和电位滴定随时切换的电位滴定仪,颜色滴定无需购买电极,只依赖摄像头和颜色指示剂,耗材成本低,通过摄像头显微作用和精度以及颜色识别的自动化,既可判断颜色突变也可滴定至指定的颜色,满足各种颜色判断,完全可以替代传统的手工颜色滴定。电位滴定支持多种电极,PH 电极,ORP 电极,各种离子电极,可兼容复合电极,也可适用指示电极加参比电极的模式,滴定方法参数设定便捷,满足各种滴定,如PH 酸碱滴定、氧化还原滴定、沉淀滴定和络合滴定等,符合GMP/GLP 规范,审计追踪,用户管理、权限设置,图谱有双曲线显示,可以导出数据,仪器具有触摸屏模式也有电脑联机操控,可以自动判断终点,可进行固定终点滴定、动态滴定、组合交叉滴定和手动滴定功能。可以自动停止检测和手动停止检测,关键滴定组件具备紧急停止保护功能。滴定管精度高耐腐蚀,三通阀切换等。 br/ strong 3.3 检测方法 /strong br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/ae2e85c5-8493-445d-802c-e0b8bd56c9e4.jpg" title=" 检测方法.jpg" / /p p strong 四、分析与图谱 /strong /p p br/ strong 五、 /strong br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/7a1210c7-db09-424c-a85a-181b101a67dc.jpg" style=" " title=" 5.1.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/5a9cebd3-0e7a-4231-8f21-e68396a7d8d7.jpg" style=" " title=" 5.2.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/efa77a8a-bf40-4e1a-b54c-55a4e747f74f.jpg" style=" " title=" 5.3.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/b5487cad-274b-4fe0-ae32-8f2d7b3f17df.jpg" style=" " title=" 5.4.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/c8d7e880-b070-4389-aef8-13e42b421fca.jpg" style=" " title=" 5.5.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/1e537f9c-7137-4ae1-a405-f86d29d98b80.jpg" style=" " title=" 5.6.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/606c0fd4-00c6-4aec-94f5-b4d6c7eb6366.jpg" style=" " title=" 5.7.jpg" / /p p 联系人:吴开胜(经理) br/ /p p 联系电话:021-51001666 br/ /p p 手机号码:13816577011 br/ /p p 邮箱:2851298501@qq.com /p p 地址:上海市嘉定区复华路33号复华高新技术园区B4幢 /p
  • 溶解氧的测量方法有两种
    溶解氧的测量方法有两种:一、碘量法:水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。二、溶解氧仪法:溶氧仪由传感器和显示仪表两个部分组成。溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化jia或氢氧化钾电解液组成,氧通过膜扩散进人电解液与金电极和银电极构成测量回路。目前溶解氧仪可分为便携式溶解氧,台式溶解氧分析仪,在线式监测水中溶解氧仪。传感器是采用荧光猝灭原理,通过自主研发的传感膜,计算出水中的溶解氧含量。实现了实验室、污水、养殖、湖泊、地表水等各领域的水质监测。荧光法的优势就在于不消耗氧气、不需要频繁校准、没有流速和搅动的要求、不受硫化物的干扰。对于国内紧缺的溶解氧传感膜,可以毫不夸张的说,蛙视具有相当的储备及量产的能力
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制