当前位置: 仪器信息网 > 行业主题 > >

變棉子酚

仪器信息网變棉子酚专题为您提供2024年最新變棉子酚价格报价、厂家品牌的相关信息, 包括變棉子酚参数、型号等,不管是国产,还是进口品牌的變棉子酚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合變棉子酚相关的耗材配件、试剂标物,还有變棉子酚相关的最新资讯、资料,以及變棉子酚相关的解决方案。

變棉子酚相关的资讯

  • AFM vs. STM 分子级别分辨率成像技术
    如果你已经看过我上一篇介绍低电流STM成像的短文[i],那么那些HOPG上钴和镍八乙基卟啉(CoOEP 和NiOEP)自组装二维晶格子的高分辨STM图像一定会令你印象深刻。Roger也是一样,在看到那些图片之后,他向我建议可以尝试使用Cypher AFM的轻敲模式(调幅AC模式)来代替STM观察CoOEP的 晶格,因为我们知道Cypher AFM在空气中的成像质量相当稳定。当我把这个想法告诉Kerry Hipps教授时,他第一反应是“这不可能!”。我接着跟他说: “我非常确定这个是可行的。” 好吧,我承认我的倔强和执着,所以无论如何,我都要尝试一下这个“疯狂”的想法。我选择了一个尖锐,敏捷,硬度中等,悬臂为硅材料的镀金探针(FS-1500AuD探针)。 它的针尖半径为Rtip = 10± 2 nm,空气中的共振频率为fair≈1.5MHz,弹性系数为k≈6N / m。您也可以在我们的探针库找到它.当我将针尖接近样品表面时,样品表面的苯基辛烷薄层会立即吸附在探针悬臂上(见图1)。在这样一种气相-液相混合振荡介质中,针尖的共振频率会立即降到0.66 MHz。这种情况下的溶液需要大约10分钟之后才达到平衡,而在此之后,即使探针在表面移动也不会再次影响到溶液的稳定性。图1. 苯基辛烷/ HOPG界面处干涉条纹的时间序列图像。这些图像是通过Cypher ES顶视光学系统捕获的。当溶液吸附到AFM悬臂上时,苯基辛烷弯月面起到衍射器的作用而产生出干涉条纹。由于BlueDrive出色的光热激发稳定性,在平衡溶液中调谐悬臂后,我能够将自由驱动振幅和设定点分别稳定在~1.44 nm(90 mV)和~0.34 nm(21 mV)[iii] 。瞧瞧图2中的图像,CoOEP晶格渐渐在视野中显现出来,这里观察到的的~1.4 nm的晶格的分子间距和预期的理论值一摸一样!我向 Hipps教授展示了这组图片,他不得不惊叹地说一句 “Wow!”图2. 低振幅轻敲模式下CoOEP的分子晶格分辨率图像。 (A)扫描边长为100 nm。 (B)沿(A)中的白线的截面,从中可以清楚的观察到CoOEP分子有规则间隔。 (C)扫描边长为100nm 的3D图像。将图2继续放大后(见图3),我确信自己可以在一部分相位图中看到卟啉环结构。您可能会注意到的是,相比上一篇短文中的STM图像,这里的测量结果似乎对样品表面的污染更加敏感。我们可以看到样品表面上有一些无定形的团聚物,这些污染物会和扫描过程中的针尖相互作用,使扫描的图像发生了一些变化。这意味着在AFM测量之前,您务必对样品表面,探针和探针支架进行全方位的清洁。图3.在轻敲模式下CoOEP晶格的AFM放大图像。 (A)扫描边长为20纳米的形貌图。 (B)扫描边长为20纳米的相位图。注意卟啉环结构在图像的上部清晰可见。这些数据让我想起了纽卡斯尔大学的Rob Atkin教授,诺丁汉大学的Peter Beton教授和南京大学的王欣然教授曾经发表的一些关于使用Cypher 在大气环境下进行的AFM的研究 [iv-vi]。这里我来具体介绍一下这些研究的成果。第一项研究[iv]阐明了在恒电位控制偏压下石墨(HOPG)表面的离子液体(EMIm + TFSI-)的纳米结构(见图4A)。此外,施加的偏压在开路电位附近有规律地变化,同时分子Stern层作为偏压的函数(以及离子组分的函数,例如Li +和Cl-)进行了重新整合。第二项研究[v]主要集中在观察吸附在六方氮化硼(hBN)和其他样品表面上的5,10,15,20-四(4-羧基苯基)卟啉(TCPP)的超分子结构,及分析该吸附现象对TCPP分子的光电子特性的影响。图4B显示了hBN上TCPP的正方晶格结构。第三项研究[vi]探讨了HOPG和hBN上高流动性的二辛基苯并噻吩并苯并噻吩(C8-BTBT)的少层二维分子晶体的范德瓦尔外延结构,这种材料可用于实现有机场效晶体管。图4C显示了在hBN上生长的C8-BTBT晶格的高分辨率形貌。图4. 2D分子晶格的AFM成像。 (A)吸附在HOPG基片上的纯EMIm + TFSI-Stern层的相位图 扫描边长为30nm,在块体EMIm + TFSI-离子液体中成像(参见参考文献[iv])。 (B)组装在hBN基片上的TCPP的正方晶格的形貌图像 扫描边长为50nm,在空气中成像(参见参考文献[v])。 (C)在hBN基片上生长的C8-BTBT晶格的形貌图像 扫描边长为10nm,在空气中成像(参见参考文献[vi])。References[i] April Current Amplifiers Bring May Ultra-Low-Current STM[ii] Learn more about Cypher here: https://www.oxford-instruments.com/products/atomic-force-microscopy-systems-afm/asylum-research/highresolution-fast-scanning-afm.[iii] (a) Learn more about blueDrive at https://afm.oxinst.com/bluedrive and athttps://pdfs.semanticscholar.org/e807/9171fb282e6340f6813a0f6b8cee8b4bae74.pdf. (b) A. Labuda, K. Kobayashi,Y. Miyahara, and P. Grütter, Retrofitting an atomic force microscope withphotothermal excitation for a clean cantilever response in low Qenvironments, Review of Scientific Instruments, 2012 83, 053703.https://aip.scitation.org/doi/abs/10.1063/1.4712286.[iv] A. Elbourne, S. McDonald, K. Vo?chovsky, F. Endres, G. G. Warr, and R.Atkin, Nanostructure of the Ionic Liquid–Graphite Stern Layer, ACS Nano,2015, 9(7), 7608–7620. https://pubs.acs.org/doi/abs/10.1021/acsnano.5b02921.[v] V. V. Korolkov, S. A. Svatek, A. Summerfield, J. Kerfoot, L. Yang, T. Taniguchi,K. Watanabe, N. R. Champness, N. A. Besley, and P. H. Beton, van der Waals-Induced Chromatic Shifts in Hydrogen-Bonded Two-Dimensional PorphyrinArrays on Boron Nitride, ACS Nano, 2015, 9(10), 10347–10355.https://pubs.acs.org/doi/10.1021/acsnano.5b04443.[vi] D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan, J. Liu, J. Yao, Z. Wang, S. Yuan, Y. Li, Y.Shi, J. Wang, Z. Ni, L. He, F. Miao, F. Song, H. Xu, K. Watanabe, T. Taniguchi, J.-B.Xu & X. Wang, Two-dimensional quasi-freestanding molecular crystals forhigh-performance organic field-effect transistors, Nature Communications,2014, 5:5162, 1–7. https://www.nature.com/articles/ncomms6162.*转载文章前请与牛津仪器联系,未获许可谢绝转载,谢谢。
  • 中科大实现世界最高分辨率单分子拉曼成像
    在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。   记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作&ldquo 打破了所有的纪录,是该领域创建以来的最大进展&rdquo ,&ldquo 是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地&rdquo ,&ldquo 是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作&rdquo 。   这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。   光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。   上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。&ldquo 迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。&rdquo 董振超说。   微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元&ldquo 天线&rdquo 的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。   &ldquo 可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。&rdquo 董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。
  • 利用荧光DNA探测分子 单个碱基突变也能被发现
    DNA序列中最轻微的变异也会影响深远,无论对研究还是医学应用,可靠识别这些序列都非常重要。据物理学家组织网近日报道,美国华盛顿大学和莱斯大学研究人员合作,开发出一种荧光DNA探测分子,能检查出一段目标DNA链中单个碱基的变化。而这些微小突变可能是造成某些疾病的根源,或耐抗生素细菌的原因。这一成果有助于诊断和治疗像癌症、肺结核这样的疾病。相关论文发表于7月28日的《自然· 化学》杂志网站上。   不同的DNA序列为不同生物设定了独特的基因标记。现代基因组学研究表明,仅一个碱基对的变化都足以引发严重的生物后果,可能决定了一种疾病能否被治愈,也解释了疾病的突发或某些疾病对常规抗生素治疗无效的原因。论文领导作者、华盛顿大学电力工程和计算机科学与工程副教授乔治· 塞利格说,比如造成肺结核的细菌有很强的耐药性,这种能力通常来自其基因序列中的少量突变。现在,人们已能预先查出这种突变。   &ldquo 我们真正改进了以往的方法。&rdquo 塞利格说,&ldquo 新方法不需要任何复杂的反应或添加酶,就只用DNA。这意味着无论温度及其他环境变量怎样变化,该方法都是稳定的,所以很适合用于低资源设置中的诊断。&rdquo   这种探测分子经过专门设计,采用了新的编程机制,能与一个可疑的DNA序列结合,对其双螺旋链生成互补的DNA序列。把含有两种序列的分子在盐水试管中混合,如果两条链的碱基对都是完好的,它们自然地匹配在了一起,探测分子会发出荧光 如果不发光,则意味着上面有碱基对发生了突变。与以往技术不同的是,探测分子会检查目标DNA双螺旋的两条链是否发生了突变,而不是一条,这使检验更加全面具体。   此外,探测分子由许多寡核苷酸构成,克服了合成上的局限,可以探测更长的DNA序列中更详细的变异信息,达到200个碱基对,而现有探测突变的方法只能检查20个。   目前,研究人员与华盛顿大学商业化中心一起对该技术提出了专利申请,他们希望把这种技术和诊断试纸结合用于疾病测试。
  • 我国科学家在单分子精密测量方面取得重要进展
    精确测定分子的化学结构、识别其化学物种一直是表面科学的核心问题,即使在单个分子层次上,分子结构、电子态及其激发态、化学键振动、反应动力学行为等多维度的内禀属性也表现出显著的特异性。分子多维度内禀参量的精密测量是一个极具挑战性的前沿问题。在国家重点研发计划“纳米科技”重点专项支持下,我国科学家发展了多种扫描探针显微成像联用技术,实现了对单分子在电、力、光等外场作用下不同内禀参量响应的精密测量,在单化学键精度上实现了单分子多重特异性的综合表征,突破了单一显微成像技术的探测局限。研究人员利用这一高分辨的综合表征技术,以并五苯分子及其衍生物作为模型体系,结合电、力、光等不同相互作用,实现了对电子态、化学键结构和振动态、化学反应等多维度内禀参量的精密测量。实验结果表明纳腔等离激元激发是导致特定吸附构型下C—H键选择性断裂的原因,阐明了Ag(110)表面吸附的并五苯分子转化为不同衍生物的机理。此外通过集成高灵敏度的单光子计数器,把拉曼光谱的实空间成像速度提高了2个数量级,成功地实现了并五苯分子化学反应前后的动态跟踪与测量。该多维度表征技术方法将为表面催化、表面合成和二维材料中的化学结构与物种识别,以及构效关系的构建提供可行的解决方案,在表面化学、多相催化等研究领域具有重要的科学价值。相关研究成果于2021年2月发表在Science上。
  • 中国在原子分子超快动力学研究方面取得重要进展
    p   飞秒强激光为在原子时空尺度(阿秒时间与亚埃空间尺度)探测物质微观结构及电子超快动力学提供了重要手段。近日,我国专家在利用飞秒强激光探测原子分子结构及电子超快动力学研究方面取得重要进展。 /p p   飞秒强激光诱导的电离电子波包或可重新返回母离子实并与之发生再散射过程,由再散射引起的高次谐波谱或光电子谱为探测原子分子结构及电子态超快演化提供有效途径。当前,发展时空高分辨的原子分子结构及动力学探测方法为研究领域广泛关注。 /p p   中国科学院武汉物理与数学研究所柳晓军研究员、全威研究员等人与北京应用物理与计算数学研究所陈京研究员、吴勇副研究员等合作,提出一种新的激光诱导非弹性电子衍射方案,并采用这一方案实验测定了电子与惰性气体离子碰撞引起的非弹性散射微分截面。 /p p   据介绍,在这一方案中,专家利用飞秒强激光驱动原子产生的再散射电子波包替代传统电子束,通过电子碰撞的方法对惰性气体母离子结构进行探测。结合武汉物数所前期建成的高分辨电子-离子动量谱仪装置与符合测量方法,他们实验测量了对应于电子-离子碰撞电离过程的光电子二维动量谱,并从中提取出电子与母体离子作用的非弹性散射微分截面,实验结果与扭曲波波恩近似理论计算结果吻合。 /p p   这一方案继承了传统电子衍射方法的超高空间分辨优点,而且具有超高时间分辨能力,为在飞秒乃至阿秒时间尺度研究激光诱导的原子分子超快动力学过程提供了重要手段。相关研究成果近期发表在学术期刊《物理评论快报》上。 /p
  • 观察分子反应像数星星 新型化学显微镜拥有超高分辨率
    教科书上的化学反应均以单分子形式进行概念描述,但实验中得到的却是大量分子的平均结果。一瓶380毫升的水,约含有10的25次方个水分子,投入金属钠会产生激烈的反应。不妨试想,宏观可见的化学现象,具体到单个分子是怎样的表现?  单分子实验是从本质出发解决许多基础科学问题的重要途径之一。近年来,虽已有单分子荧光显微镜技术,冷冻单分子电镜技术等诺贝尔奖级别的成果问世,观察、操纵和测量最为微观的单分子化学反应仍是科学家面对的长期挑战。  8月11日,浙江大学化学系冯建东研究员团队在国际顶级期刊《自然》发表封面文章。浙大团队以电致化学发光反应为研究对象,发明了一种可以直接对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术可实现更清晰的微观结构和细胞图像,在化学成像和生物成像领域具有重要应用价值。  捕获分子发光信号 1秒内连拍上千张图片  电致化学发光,是指具有发光活性的物质在电极表面通过化学反应实现发光的形式,可令分子产生光信号,在体外免疫诊断、成像分析等领域已有应用。  “在溶液体系还难以开展单分子化学反应的直接光学捕捉。”冯建东介绍,单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。  如何实现微弱乃至单分子水平电致化学发光信号的测量和成像?如何在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像?3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。  “团队通过搭建灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立捕获到了单分子反应后产生的发光信号。” 论文第一作者、浙大化学系博士生董金润介绍。  从空间上,研究团队通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最快在1秒内拍摄1300张,消除邻近分子间的相互干扰。  利用这套光电控制和测量平台,团队首次实现单分子电致化学发光信号的空间成像,其成像特点在于无需借助外界光源,可在暗室操作。  多重曝光合成叠加 实现纳米级超高分辨率  现如今,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“但能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术非常有限。”冯建东提到,主要在于受到光的衍射极限限制,光学成像分辨力不足,即相邻很近的两个点难以分辨。  为此,冯建东团队在获取单分子信号图像基础上,着手研究电致化学发光的超分辨成像。受到超分辨荧光显微镜技术的启发,研究团队利用通过空间分子反应定位的光学重构方法进行成像。  “好比人们夜晚抬头看星星,可以通过星星的‘闪烁’将离得很近的两颗星星区分开一样。”冯建东介绍,技术原理即通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,就能构建出化学反应位点的“星座”。  为验证这一成像方法的可行性以及定位算法的准确性,研究团队通过精密加工的方法,在电极表面制造了一个条纹图案作为已知成像模板,并进行对比成像,条纹间隔为几百个纳米。  记者看到,该微纳结构的单分子电致化学发光成像与电镜成像结果高度吻合。而且,单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。  研究团队进而将该成像技术应用于生物细胞显微成像,以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化,成像结果与荧光超分辨成像可关联对比,其分辨率也可与荧光超分辨成像相媲美。  “相比于荧光成像技术,电致化学发光成像不需要对细胞结构做标记,意味着不易影响细胞状态,对细胞可能是潜在友好的。”冯建东表示,未来,这项显微镜技术将作为一项研究工具,在单分子水平揭示更多化学奥秘,也有助于揭示更为清晰的生物结构和看清生命基本单位细胞如何工作。
  • 原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析
    原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析什么是抗冻蛋白?抗冻蛋白是一种能抑制冰晶生长的蛋白质或糖蛋白质.自二十世纪发现以来,研究对象先后从极区鱼类,昆虫,转移到植物材料上。抗冻蛋白是生活在寒冷区域的生物经过长期自然选择进化产生的一类用于防止生物体内结冰而导致生物体死亡的功能性蛋白质。对于抗冻蛋白抗冻机制的研究有助于揭开冰晶成核、生长和冰晶形貌调控的分子层面的机理。抗冻蛋白生长机制的模型抗冻蛋白吸附在冰晶表面,通过EAFC3效应抑制其生长.机制的模型为:一般晶体的生长垂直于晶体的表面,假如杂质分子吸附于冰生长通途的表面,那么需要在外加一推动力(冰点下降),促使冰在杂质间生长.由于曲率增大,使边缘的表面积也增加.因表面张力的影响,增加表面积将使体系的平衡状态发生改变,从而冰点降低。通过对抗冻植物抗冻活性的研究,认为抗冻植物形成了一种特殊的控制胞外冰晶形成的机制,即抗冻蛋白和冰核聚物质的协同作用.在植物体内,热滞效应并不明显,而冰重结晶抑制效应显著.吸附抑制学说是否适应于植物有待于进一步的证实.原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析原位变温低场核磁共振系统是指可以实现在线原位改变样品温度,并在设置温度下对样品进行原位测量的低场核磁共振系统。该系统可同时实现弛豫分析和磁共振成像功能。传统的低场核磁共振系统是常温测试系统,测试过程中样品的温度保持与实验室温度(环境温度)一致,检测到的数据与样品在室温下的特性相关。而原位变温低场核磁共振系统可对样品进行程序控温(高低温),并进行原位检测,可研究不同温度下样品的特性。可对样品进行冷冻过程、干燥过程、蒸煮过程、样品冰点、食品变性过程等相关研究。 原位变温低场核磁共振系统是在常规低场核磁共振系统上加配了变温探头、控温硬件以及控温软件。系统样机如下图:
  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 侯建国领衔单分子尺度研究 实现亚纳米分辨拉曼成像
    目前,全球信息技术正跨入以量子效应为特征的&ldquo 后摩尔&rdquo 时代。单分子尺度体系具有丰富的功能结构和独特的量子性质,将成为量子计算和信息技术物质载体的最佳选择之一。   十余年来,中科院院士、中国科学技术大学教授侯建国领衔的&ldquo 单分子尺度的量子调控研究集体&rdquo 对单分子尺度体系进行不断的探索,取得了一批重要创新成果,并由此获得2014年度中科院杰出科技成就奖。  领先国际水平   单分子尺度量子调控研究是国家量子调控科学领域的重大科学问题和需求。近年来,该研究集体进一步发展和提升了单分子尺度量子态的探测、操纵及调控技术,率先实现了国际上最高水平的亚纳米分辨的单分子拉曼成像。   &ldquo 2013年,我们在单分子化学识别方面取得重大突破,实现了亚纳米分辨的单分子拉曼成像。该工作在《自然》杂志上发表后,立即引起国际科技界的广泛关注。&rdquo 中国科学技术大学教授杨金龙在接受《中国科学报》记者采访时表示。   &ldquo 我们通过技术上的创新和概念上的突破,将非线性效应融入到常规的针尖增强拉曼散射过程中,从而大大提高了拉曼信号的探测灵敏度和空间分辨能力,将光学光谱探测推进到前所未有的亚分子亚纳米水平,使单分子尺度的化学识别成为现实。&rdquo 中国科学技术大学教授董振超说。   团队成员之一、中国科学技术大学教授王兵表示,尽管科学发展进程非常快,但他们在拉曼成像方面取得的成绩迄今仍保持着世界纪录。   此外,该集体还利用单分子选键化学实现了单分子磁性自旋态控制 成功设计并实现具有多重功能集成的单分子器件 利用纳腔等离激元共振实现了单分子电致发光 揭示出氧化物表面光催化分解水的微观机制等。   团队建设尤为重要   &ldquo 我们能取得现在的成绩,离不开团队的长期密切合作。&rdquo 杨金龙表示,单分子尺度体系的研究并不是一项短平快的研究,这个&ldquo 硬骨头&rdquo 需要很多人一起慢慢地&ldquo 啃&rdquo 。   中国科学技术大学单分子尺度的量子调控研究集体由侯建国(实验)和杨金龙(理论)领衔,一共10位成员组成。&ldquo 团队合作对于整个研究获得新突破是非常重要的,协作是全方位的,贯穿了整个团队发展的始终。每一次新的发现,都是整个团队共同协作和努力的结果。&rdquo 王兵说。   其中一位团队成员告诉记者,每次新加入的成员都会带来新的思路,团队建设实际上也是一个逐渐积累和发展,然后不断提升创新研究能力的过程。   在董振超看来,团队的支持对自己的科研工作非常重要。&ldquo 在学术上,我们经常进行热烈的探讨和争辩,有时甚至争论得面红耳赤,大家都在试图攻击对方的弱点。待这些弱点被攻克后,课题研究自然也就往前迈进了一步。&rdquo   &ldquo 我们的团队研究有两个最鲜明的特色:一个是实验和理论紧密结合,因为量子里面有很多实验现象需要理论支撑 第二个是多学科交叉,包括物理、化学、电子、光学、生物等,这样才能有效促成技术的创新集成和知识的融会贯通。&rdquo 董振超说。  应用前景广阔   &ldquo 目前,我们的研究尚属于基础研究阶段。&rdquo 杨金龙表示,团队成员并不满足于现在的进步,会一直探究下去。   &ldquo 科学的魅力在于对未知的探索。&rdquo 董振超说,当你朝着某个方向努力,但作出来的结果与原来的想象和理论不一样时,就会出现新的信息,这样会反过来促进对一些现象新的理解,进而推动科研向前发展。   该团队一位研究人员表示,他们的目的是深刻理解和有效调控分子尺度上的量子行为。目前的研究离真正的应用还有一段距离,但是研究课题都是瞄准未来的能源、信息、生物等前沿领域,旨在为这些未来技术提供基本信息和科学依据。   &ldquo 比如单分子拉曼成像技术,其最主要的优点是能把微观世界里相邻分子的成分和结构&lsquo 看&rsquo 出来,这在材料科学、纳米催化、分子纳米技术、生物技术等领域可能都有很重要的应用前景。&rdquo 董振超介绍说。   &ldquo 在生命科学领域,拉曼成像的应用有可能提高疾病的早期检测技术水平。比如现有技术只能检测出已达到一定量的癌细胞,如果能事先对生命体作单分子检测,就能在癌变细胞极少的情况下将其检测出来,这对癌症早期治疗意义重大。&rdquo 杨金龙表示。   &ldquo 在研究过程中,我们一方面从科学角度出发,另一方面也从国家整体需求出发,在进行科学探索的同时,关注国家战略方向。&rdquo 王兵说。
  • 2013中国十大科技进展 世界最高分辨率单分子拉曼成像入选
    三中全会部署深化科技体制改革   11月9日至12日,党的十八届三中全会召开,会议把深化科技体制改革作为全面深化改革的重要内容进行系统部署。会议通过的《中共中央关于全面深化改革若干重大问题的决定》明确提出深化科技体制改革、加强知识产权运用和保护、整合科技规划和资源、改革院士遴选和管理体制等。   三中全会关于科技体制改革的部署,既体现了与以往改革思路的继承发展,对实践中先行先试的经验予以肯定,又结合经济领域改革的大方向,突出了今后一个时期改革的重点领域和环节,为实施创新驱动发展战略、建设创新型国家提供了重要的制度设计。   &ldquo 嫦娥三号&rdquo 实现月面软着陆   12月14日21时11分,&ldquo 嫦娥三号&rdquo 在月球正面的虹湾以东地区实现软着陆。这将开创人类月球探测史的多项&ldquo 首次&rdquo 。月面软着陆就位探测与月球车巡视勘察二者同时进行并有机结合,将获得比以前更有意义的探测成果 在国际上首次利用测月雷达实测月壤厚度和月壳岩石结构 首次在软着陆地点利用数据转发器精确测定地月间距离,进行月球动力学研究 首次开展日地空间和太阳系外天体的月基甚低频射电干涉观测,进行太阳射电爆发与空间粒子流、光千米波辐射&hellip &hellip   运-20大型运输机首飞成功   1月26日,我国自主发展的运-20大型运输机首次试飞取得圆满成功。运-20是中国研制的最大的飞机,其成功标志着中国跻身世界大飞机国家。   该型飞机是我国依靠自己的力量研制的一种大型、多用途运输机,可在复杂气象条件下执行各种物资和人员的长距离航空运输任务。运-20大型运输机的首飞成功,对于推进我国经济和国防现代化建设,应对抢险救灾、人道主义援助等紧急情况,具有重要意义。该型飞机首飞后将按计划继续开展相关试验和试飞工作。   &ldquo 天河&rdquo 超级计算机再夺冠   6月中旬,在德国莱比锡&ldquo 2013国际超级计算大会&rdquo 上,中国天河二号超级计算机跃居第41届世界超级计算机500强排名榜首。其峰值计算速度达每秒5.49亿亿次、持续计算速度达每秒3.39亿亿次。这是继2010年天河一号首次夺冠之后,中国超级计算机再次夺冠。   天河二号超级计算机系统内存总容量1400万亿字节,存储总容量12400万亿字节,最大运行功耗17.8兆瓦。据天河二号工程副总指挥李楠研究员介绍,天河二号运算1小时,相当于13亿人同时用计算器计算1000年,其存储总容量相当于存储每册10万字的图书600亿册。较之上届&ldquo 状元&rdquo 美国&ldquo 泰坦&rdquo 超级计算机,天河二号计算速度是它的2倍,计算密度是它的2.5倍,能效比相当。   神十进行载人航天应用性飞行   6月26日,神舟十号载人飞船返回舱在预定区域安全着陆,航天员健康出舱,天宫一号与神舟十号载人飞行任务取得圆满成功。神舟十号开创中国载人航天应用性飞行的先河。   此次任务的主要目的有4个:   一是发射神舟十号飞船,为天宫一号目标飞行器在轨运营提供人员和物资天地往返运输服务,进一步考核交会对接技术和载人天地往返运输系统的性能   二是进一步考核组合体对航天员生活、工作和健康的保障能力,以及航天员执行飞行任务的能力   三是进行航天员空间环境适应性和空间操作工效研究,开展空间科学实验和航天器在轨维修等试验,首次开展我国航天员太空授课活动   四是进一步考核工程各系统执行飞行任务的功能、性能和系统间协调性。   首次测到量子反常霍尔效应   由清华大学薛其坤院士领衔的团队从实验中首次观测到量子反常霍尔效应,这是物理学领域基础研究的一项重要科学发现。该成果于北京时间3月15日在《科学》杂志在线发表。   美国科学家霍尔曾发现霍尔效应和反常霍尔效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。而在磁性材料中不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。其美妙之处是不需要任何外加磁场,这将推动新一代的低能耗晶体管和电子学器件的发展,可能加速推进信息技术进步的进程。   体细胞重编程技术重大突破   8月,北京大学研究团队,成功将体细胞制成多潜能性干细胞。此前,通过借助卵母细胞进行细胞核移植或使用导入外源基因的方法,哺乳动物体细胞被证明可以进行&ldquo 重编程&rdquo 获得&ldquo 多潜能性&rdquo 。邓宏魁团队的方法则更简单和安全。   该成果将为未来细胞治疗及器官移植提供理想的细胞来源,极大推动人类&ldquo 克隆&rdquo 组织和器官治疗疾病的医学研究。这一重大发现有助于人们更好地理解细胞命运决定和细胞命运转变的机制,使人类未来有可能通过使用小分子化合物的方法,直接在体内改变细胞命运。   制出人感染H7N9禽流感病毒疫苗株   10月26日,我国科学家宣布成功研发出人感染H7N9禽流感病毒疫苗株,改变了我国流感疫苗株需由外国提供的历史,为及时应对新型流感疫情提供了有力的技术支撑。   目前,该病毒疫苗种子株已通过中国医学科学院医学实验动物研究所新药安全评价研究中心的安全性雪貂评价实验。检测结果显示,该病毒疫苗株各项基数指标均符合流感病毒疫苗株的要求。   该成果的领衔者、中国工程院院士李兰娟介绍,课题组于4月3日收到H7N9病例咽拭子样本,并成功分离获得一株H7N9禽流感病毒。随后,联合课题组采用国际通行的流感疫苗种子株制备方法,通过反向遗传技术,以PR8质粒为病毒骨架,与自行分离的病毒株进行基因重排,并成功研制出H7N9流感疫苗种子株。   实现世界最高分辨率单分子拉曼成像   6月,中国科学家在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。   光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值。   4G牌照发放助力信息消费升级   12月, 工信部向中国移动、中国电信和中国联通颁发了4G牌照。此举预示我国进入到一个全新的通信时代,将对包括用户网速、语音通话、移动互联网、电子商务、智慧城市等带来深远影响。据预计,到2014年,4G手机在国内市场的销量会接近1亿部,并拉动15%的消费需求。   工信部向三大电信运营商颁发了LTE/第四代数字蜂窝移动通信业务(TD-LTE)经营许可。此次4G牌照的发放打破了电信和联通对于固网牌照的垄断,实现了三大运营商固网+移动的格局。
  • 登上《自然》封面!新型单分子化学反应成像显微镜在浙大问世
    化学创造着千变万化的物质世界,在这其中每一个单分子起到基本的作用。传统化学和生物学研究大量分子参与的反应和变化。著名物理学家埃尔温薛定谔曾评论过:“我们从来没有用一个单电子、单原子或单分子做过实验。我们假设我们可以在思想实验中实现,但是这会导致非常可笑的后果。”观察、操纵和测量最为微观的单分子化学反应是科学家面临的一个长久科学挑战。针对这一挑战,浙江大学化学系冯建东研究员致力于发展跨学科的单分子测量方法和仪器,实现多维度的溶液体系单分子物理和化学过程观测、新现象研究和应用建立。近期,其团队发明了一种直接可以对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术在化学成像和生物成像领域具有重要的应用价值,允许看到更清晰的微观结构和细胞图像。北京时间8月11日,这项研究成果作为封面论文刊登在国际顶级期刊《自然》。论文第一作者为浙江大学化学系博士生董金润和博士后卢禹先;论文通讯作者为浙江大学化学系冯建东研究员。 浙大团队的研究对象是电致化学发光反应。电致化学发光是利用电极表面发生的一系列化学反应实现发光的形式。相比于传统的荧光成像技术,由于不需要光激发,电致化学发光几乎没有背景,是目前对于灵敏度有着很高要求的体外免疫诊断领域的重要手段,其在成像分析等方向也具有一定价值。目前,电致化学发光存在两个重要的科学问题,其一是微弱乃至单分子水平电致化学发光信号的测量和成像,这对于单分子检测非常重要。其二是在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像,这一点对化学和生物成像具有重要意义。3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。首次实现了单分子电致化学发光信号的宽场空间成像;并在此基础上成功突破了光学衍射极限,第一次实现了电致化学发光的超分辨成像。这项单分子电致化学发光显微镜技术不需要光激发即可实现单分子超分辨成像,有望影响化学测量和生物成像领域的应用。 在时空隔离中达到单分子反应测量极限教科书上的化学反应都是以单分子形式进行概念描述,但传统实验中得到却是大量分子的平均结果。单分子实验是从本质出发解决许多基础科学问题的重要途径之一,是研究方法的质变。这也是化学测量学面临的一个极限挑战。电致化学发光过程中,为什么难以开展单分子信号的捕捉呢?这主要是因为单分子反应控制难、追踪难、检测难。冯建东介绍:“单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。” 图1:单分子电致化学发光信号的时空隔离和随机性。为此,浙大科研人员搭建了灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立“捕捉”到了单分子反应后产生的发光信号。“具体从空间上通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最高在1秒内拍摄1300张,消除邻近分子间的相互干扰。”博士生董金润介绍到。利用这套光电控制和测量平台,浙大科研团队首次实现了单分子电致化学发光反应的直接宽场成像。“由于不需要光源激发,这一成像的特点在于背景几近于零,这种原位成像将为化学和生物成像领域提供新的视野。” 在单分子空间定位中突破光学极限显微镜是物质科学和生命科学研究的重要研究工具,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“在这个标尺中,能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术仍然非常有限。”冯建东提到,主要原因在于光学成像分辨力不足,受到光学衍射极限限制。为此,冯建东团队接着着手从时空孤立的单分子信号实现电致化学发光的超分辨成像。 受到荧光超分辨显微镜(2014年诺贝尔化学奖)的启发,浙大研究者利用通过空间分子反应定位的光学重构方法进行成像。这就好比当人们夜晚抬头看星星时,可以通过星星的“闪烁”将离得很近的两颗星星区分开一样。“化学反应的随机性,通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,构建出化学反应位点的‘星座’。 ” 图2:单分子电致化学发光显微镜在微纳结构成像上的论证。 冯建东说,为了验证这一成像方法的可行性以及定位算法的准确性,团队通过微纳加工的方法在电极表面制造了一个条纹图案作为已知成像模板,并对之进行对比成像。单分子电致化学发光成像后的结果与该结构的电镜成像结果结构上高度吻合,证明了成像方法的可行性。单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。 图3:单分子电致化学发光显微镜固定(死)细胞成像。 研究团队进而将该技术应用于生物细胞显微成像,不需要标记细胞结构本身意味着电致化学发光成像对细胞可能是潜在友好的,因为传统使用的标记可能会影响细胞状态。团队进一步以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化。成像结果与荧光超分辨成像可以进行关联成像对比,定量上表现出可以同荧光超分辨显微镜相媲美的空间分辨率,同时该技术避免了激光和细胞标记的使用。 图4:单分子电致化学发光显微镜活细胞成像。 未来,这项显微技术将作为一项研究工具为化学反应位点可视化、单分子测量、化学和生物成像等领域提供新的可能,具备广泛的应用前景。在同一期上,《自然》期刊专门邀请了领域专家对这一突破性技术的前景进行了亮点评述和报道。 该研究受到了国家自然科学基金委(项目号:21974123)、浙江省自然科学基金委(项目号:LR20B050002)、中央高校基本科研业务费校长专项(项目号:2019XZZX003-01)和浙江大学百人计划的经费支持。
  • 打破分子检测昂贵的现状 新型高分辨率多聚SNP技术
    以DNA变异为基础的分子检测技术被广泛应用于生物分子学、基因组学、遗传学和育种等领域。在动植物遗传育种方面,DNA变异被开发为SSR和SNP等不同类型的分子标记,用于遗传图谱构建、多样性分析、标记-性状关联、图位克隆、分子育种、指纹鉴定等方面。各种高通量检测技术设备和高密度DNA芯片的开发,极大地满足了动植物遗传育种对于高通量和高密度分子检测技术的需求。但芯片开发和制作难度大,且需要匹配昂贵的检测设备。国际大型跨国种业公司通过构建高通量分子检测平台,为其全球范围、多物种的应用研发提供支撑,大大提高了分子检测效率并降低单个样本的分析成本,从而推动了分子检测技术在基础和育种研发中的大规模应用,进而加强其在国际种业市场中的竞争优势。然而,在发展中国家、中小种业公司或公共研究机构,无法建立起高效共享的检测平台,导致分子检测成本高昂而难以得到普遍应用。  近日,中国农业科学院作物科学研究所徐云碧团队联合石家庄博瑞迪生物技术有限公司张嘉楠、佛山科学技术学院王蕴波等人,通过整合靶向测序和液相芯片技术,成功开发出一套高分辨率多聚SNP(multiple single-nucleotide-polymorphism cluster,mSNP;或multiple dispersed nucleotide polymorphism,MNP)检测体系,该体系可取代依赖昂贵仪器设备的固相芯片和其他分子检测技术,广泛应用于动、植物遗传育种等多个领域。相关研究成果于8月9日以Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip为题在Plant Communications在线发表。 联合研究小组基于靶向测序基因型检测(genotyping by target sequencing, GBTS)技术,建立和完善了利用单一扩增子检测多个SNP标记的mSNP技术体系,极大地提高了目标位点(扩增子)内变异的检测效率。在玉米中通过筛选和优化,开发了包括40K目标位点的一套标记集(40K mSNP),平均每个位点(扩增子)可以检测到6.6个SNP标记,而同一位点的多个SNP标记,又可构成多种单倍体形式。因此该标记集整体上包含了三类不同的标记,即40K mSNP、260K SNP/Indel和912K单倍型。由于这种mSNP位点和SNP标记检测是通过测序来实现的,通过测序所能捕获的标记位点数与测序深度成正比。因此,根据应用场景对标记密度的需求,通过控制测序深度就可以从同一标记集获得多种不同的标记密度,包括从1K 到40K mSNP任意位点(扩增子)数以及由此衍生的、不同数量的SNP标记和单倍型。 与常规的测序式基因型检测和固相芯片检测相比,基于GBTS的mSNP技术具有平台广适性,不需要借助于特定的昂贵设备,可以采用各种可供利用的测序平台。mSNP标记定制时没有起始样本量和标记数量的限制,测序与标记基因型检测可在同一管内完成;使用时没有单次检测样本量限制;可向体系中随时加入新的引物或对已有引物进行调整;根据同一套高密度标记,可以通过调整测序深度来获得不同数量的标记。所有检测试剂均实现了本地化,从而大大降低了试剂成本,同时利用现有的测序设备降低了检测设备的维护、管理和运营有关的成本。mSNP标记和基因型信息具有高度重复性和可靠性,便于将不同时间、地点和实验所获得的信息进行累加、比较和综合分析。与固相芯片、全基因组重测序和随机的简化基因组测序等技术相比,基于GBTS的mSNP液相芯片检测技术对于平台和支撑系统的要求很低,不需要借助于额外的检测技术或高度专业化的生物信息团队。  基于GBTS的mSNP标记技术体系可广泛应用于生物进化、遗传图谱构建、基因定位克隆、标记性状关联分析、后裔鉴定、基因渐渗、基因累加、品种权保护、产品质量监测、转基因成分/基因编辑/伴生生物检测等领域。联合研究小组以玉米为例,采用288份热带/亚热带自交系、246份甜玉米自交系、333份来自中国、美国和CIMMYT的温带自交系,分别利用代表mSNP位点的标记、所有SNP标记、单倍型标记对这些材料的多样性、群体结构、连锁非平衡衰减进行了分析。同时以玉米轴色为例开展了全基因组关联分析。研究证实,利用mSNP及其单倍型替代固相芯片中的单一SNP标记能够获得额外的检测效率。基于GBTS 的mSNP液相芯片技术具有广泛的物种适应性,可以用于所有动植物和微生物的分子检测。目前已经在13种主要农作物、蔬菜以及部分动物和微生物中开发了基于GBTS的液相芯片50余套,并已在上述有关领域得到广泛应用。  中国农业科学院作物科学研究所郭子锋和佛山科学技术学院杨泉女为论文的第一作者,中国农业科学院作物科学研究所/CIMMYT—中国徐云碧、石家庄博瑞迪生物技术有限公司张嘉楠、佛山科学技术学院王蕴波为通讯作者,国际玉米小麦改良中心、上海市农业科学院、新疆农垦科学院、河北省农林科学院为论文合作单位。
  • 徐涛院士团队研制出分子尺度分辨率干涉定位显微镜
    p style=" text-align: justify text-indent: 2em " Seeing is believing,光学显微镜自1590年由荷兰詹森父子创制伊始,即成为生命科学最重要的研究工具之一。进入21世纪,借助荧光分子,科学家将光学显微镜的分辨率提高了一个数量级,由约一半光波波长(250 nm)拓展至几十纳米,并兴起了超高分辨荧光成像技术,用于“看到”精细的亚细胞结构和生物大分子定位,相关工作荣膺2014年诺贝尔化学奖。 /p p style=" text-align: justify text-indent: 2em " 9月9日,Nature Methods杂志在线发表了中国科学院生物物理研究所徐涛院士研究组与科学研究平台纪伟正高级工程师研发团队合作研究论文,题为“Molecular resolution imaging by repetitive optical selective exposure”,为超高分辨光学显微镜家族再添新成员,使显微镜分辨率进一步被突破。该工作提出了一种基于激光干涉条纹定位成像的新技术,并据此研制出新型单分子干涉定位显微镜(Repetitive Optical Selective Exposure, ROSE),将荧光显微镜分辨率提升至3 nm以内的分子尺度,单分子定位精度接近1 nm,可以分辨点距为5 nm的DNA origami(DNA 折纸)结构。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 226px " src=" https://img1.17img.cn/17img/images/201909/uepic/bcbdc347-2f8b-464e-9014-787a341c1e21.jpg" title=" 徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" alt=" 徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" width=" 450" height=" 226" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图1 左侧,传统质心拟合定位方法,右侧,ROSE干涉定位方法 /strong /p p style=" text-align: justify text-indent: 2em " 所谓干涉定位,是指采用不同方向和相位的激光干涉条纹激发荧光分子,荧光分子的发光强度与其所处条纹的相位有关,该技术即是通过荧光分子强度与干涉条纹的相位关系,来确定荧光分子的精确位置。为降低单分子发光时的闪烁和漂白对亮度和定位精度产生的不良影响,研发团队对显微镜光路进行了创造性地设计,分别为:基于电光调制器的干涉条纹快速切换激发光路,基于谐振振镜扫描的6组共轭成像光路,两种光路的同步实现了高达8 kHz的分时成像,确保在相机的单次曝光时间里把每个单分子发光状态均匀分配给6个干涉条纹,有效避免了荧光分子发光能力波动对定位精度的干扰。 /p p style=" text-align: justify text-indent: 2em " 研发团队利用该技术对不同荧光位点间距的DNA origami阵列进行验证测试,证明干涉成像分辨率达到了3 nm的分子水平,可以解析5 nm的DNA origami阵列。后续的功能性实验结果显示,该技术在免疫标记的微管、CCP(clathrin coated pits,网格蛋白有被小窝)以及较致密的细胞骨架成像时展现出良好性能,该技术将为进一步解析精细亚细胞的组分和生物大分子的纳米结构提供有力工具。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 311px " src=" https://img1.17img.cn/17img/images/201909/uepic/45780611-1a95-4748-a74e-d777d33bd780.jpg" title=" 分子尺度分辨率光学成像.jpg" alt=" 分子尺度分辨率光学成像.jpg" width=" 450" height=" 311" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图2左侧,不同荧光位点间距的DNA origami成像,ROSE技术与传统的质心拟合方法进行对比验证。右侧,鬼笔环肽标记的微丝成像,ROSE技术与传统的质心拟合方法进行对比验证。 /strong /p p style=" text-align: justify text-indent: 2em " 徐涛院士领衔的仪器研发团队近年来致力于显微成像仪器设备和技术方法的研究和开发,先后研制出偏振单分子干涉成像、冷冻单分子定位成像以及超分辨光电融合成像系统,开发了新的超分辨显微成像算法、探针和技术,申请有多项发明专利,上述成果被广泛应用于细胞生物学相关研究,支撑团队与合作者在该领域取得了系统性成果产出。纪伟正高级工程师所在的生命科学仪器研发中心是根据研究所发展新技术新方法的迫切需求而设立,隶属于科学研究平台,在提供技术服务的同时,聚焦生物显微成像仪器设备的研发与应用推广。 /p p style=" text-align: justify text-indent: 2em " 徐涛院士和纪伟正高级工程师为该文章的共同通讯作者,谷陆生、李媛媛、张淑文为共同第一作者。李栋研究员、薛艳红、李尉兴参与了本课题。 /p p style=" text-align: justify text-indent: 2em " 该工作受到中国科学院科研仪器设备研制项目、国家重点研发计划、国家自然科学基金以及北京市科技计划等项目的资助。 /p
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N   图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
  • 广西大学预算809万元购买1台离子源-高分辨质谱分子成像仪
    8月24日,广西大学公开招标购买1台离子源-高分辨质谱分子成像仪,预算809万元。  项目编号:GXZC2021-G1-003071-KLZB  项目名称:专用仪器设备采购  预算总金额(元):8090000  采购需求:  标项名称:广西大学激光离子源-高分辨质谱分子成像  数量:1  预算金额(元):8090000  简要规格描述或项目基本概况介绍、用途:技术参数  1、离子源  ★1.1 具有ESI和MALDI双离子源  1.2 ESI和MALDI离子源可通过软件全自动切换  ★1.3双激光器,主激光频率:10,000Hz 后电离激光1,000Hz  1.4 MALDI离子源:样品盘采用工业标准的微滴定盘设计,可点384个样品,最多能够放1536个样品  1.5 ESI离子源:离子漏斗传输技术,柔和的离子聚焦和高效离子传输,且不受质量大小的影响  1.6 ESI和MALDI离子源可通过软件全自动切换,时间不超过1分钟  1.7 具备捕获离子淌度谱功能,产生高分辨率离子淌度数据  1.8 具有平行累加连续碎裂功能,几乎达到100%工作周期  1.9 进样口喷针部分电压为零  1.10 玻璃毛细管,起到将大气压与真空系统隔离和产生电压差的目的  2、飞行管  2.1 同轴、快速高灵敏度的检测器系统,飞行中重聚焦离子光学系统,提供高灵敏度  2.2正负离子切换  ★2.3飞行管配有水冷恒温温控装置和智能化温度补偿装置,在MS和MS/MS模式下质量准确度具有长时间的超稳定性。  2.4 采用ADC模拟数字化转换器,确保得到准确的真实同位素分布  2.5 CID离子碎裂功能  2.6四极杆质量过滤器,质量范围20-3000m/z  3、技术指标  ★3.1 具备离子淌度功能,离子淌度分辨率≥150,可计算CCS值  3.2 分辨率:高达 50 Hz 采集速度下不损失分辨率,TOF分辨率≥60,000  3.3 准确度:内标校准:平均误差 ≤ 0.8 ppm 外标校准:平均误差 ≤ 2 ppm  ★3.4 采样频率:  QTOF和TIMS模式:MS和MS/MS均为 50 Hz  PASEF模式:MS/MS 100 Hz  3.5 质量范围:20-20,000 m/z,可由软件自动设定  3.6 灵敏度:1pg/uL利血平,信噪比100: 1  3.7 具备基质成像分析的样品制备、信号采集和数据分析处理功能。  3.8 具备常规和纳升流速的ESI离子源。  3.9 在断电的情况下维持仪器持续运行1小时以上。  设备清单:见招标文件  最高限价(如有):8090000  合同履约期限:自签订合同之日起120历日内整体完成供货安装调试  本标项(否)接受联合体投标  开标时间:2021年09月15日 09:00G1-003071招标公告附件.docx
  • 我国科学家在纳米级分辨太赫兹形貌重构显微技术方面取得进展
    蛋白分子膜(蛋白膜)在生物传感和生物材料领域应用广泛。从纳米尺度精确检测蛋白分子的成膜过程,对控制蛋白膜的品质、理解其形成机制和评价其功能表现具有重要意义。然而,目前尚缺少一种能够精确表征蛋白分子在成膜过程中所有形态结构的技术手段,例如,原子力显微镜虽然具有优异的表面成像功能,但是它难以提供样品的亚表面信息,无法揭示蛋白分子层的内部结构信息。        近日,中国科学院重庆绿色智能技术研究院研究员王化斌团队和上海大学材料生物学研究所教授李江团队等合作,报道了一种同时具有表面和亚表面探测能力的纳米级分辨太赫兹形貌重构显微技术。研究团队发展了多介质层有限偶极子近场理论模型,建立了基于样品太赫兹近场光学显微图像重构样品三维形貌的方法,实现了单个蛋白分子、蛋白网状结构、蛋白单分子层和蛋白复合层的精确检测。太赫兹形貌重构显微技术具有无损、无标记的特点,以及表面和亚表面检测能力;其侧向分辨率与原子力显微镜相当,垂直分辨率达0.5 nm。该技术为研究生物分子、功能材料和半导体器件等样品提供了一种全新的技术途径。相关研究成果以Near-Field Terahertz Morphological Reconstruction Nanoscopy for Subsurface Imaging of Protein Layers为题,发表在ACS Nano上。研究工作得到国家重点研发计划、国家自然科学基金、重庆市自然科学基金等的支持。
  • 749万!Waters中标清华大学高分辨MALDI质谱分子成像系统采购项目
    一、项目编号:OITC-G220272149/清设招第20221356号(招标文件编号:OITC-G220272149/清设招第20221356号)二、项目名称:清华大学高分辨MALDI质谱分子成像系统采购项目三、中标(成交)信息供应商名称:国药(上海)医疗器械实业有限公司供应商地址:北京市海淀区西直门北大街金运大厦B座中标(成交)金额:749.4800000(万元)四、主要标的信息序号供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1国药(上海)医疗器械实业有限公司 高分辨MALDI质谱分子成像系统 英国Waters SELECT SERIES MRT 1套 7494800
  • 广东中科奥辉首创桌面式荧光相关光谱单分子分析仪,致力解决国内科学技术“卡脖子”难题
    明亮的实验室里,约两台电脑主机般大小的桌面式荧光相关光谱单分子分析仪,正快速地分析着从复旦大学寄来的样品。大约1周后,样品的分析数据就会发回给学校,一段科研合作就此完成。近年来,类似的合作不断在广东中科奥辉科技有限公司内进行着,除了为高校研究院提供分析测试服务外,在以创始人黄韶辉博士为核心的科研队伍的共同努力下,公司自主研发的桌面式荧光相关光谱单分子分析仪(全球首创)还卖进了美国顶尖的研究机构,并多次获广东省高新技术产品认定、入选中科院首批国产仪器推荐目录。2021年,凭借强劲的“创新”势头,该企业入选首批中山市专精特新培育企业名单。广东中科奥辉有限公司拥有光学、电子、软件、机械、计算机、测试计量、生物物理、生物化学等多学科专业技术人员组成的研发团队总计15人。■体格小功能大 将国际领先科研成果产业化黄韶辉祖籍中山小榄镇,在国外生活30多年,在美国康奈尔大学完成了博士后研究,是中国科学院引进的杰出技术人才。2017年,被中山投资经贸洽谈会暨中山人才节所吸引,黄韶辉回到中山,于翠亨新区中瑞(欧)工业园健康医药示范区成立了广东中科奥辉科技有限公司,希望将国际领先的科研成果快速产业化。很快,他的愿望成为了现实。公司成立数月,团队便研发出了世界上第一款双通道桌面式荧光相关光谱单分子分析仪,并将其产业化。这种荧光相关光谱单分子技术,可实现单分子分辨率对微量(<5微升)溶液样品中的分子特性(浓度、大小、相互作用等)进行快速(数秒至数分钟)定量分析,在科学研究、药物开发、医疗检测、环境监测等领域具有广泛的应用前景。“别看它小小一台,每台的价值可达上百万元。”黄韶辉介绍,目前这款仪器在市场上的竞争对手非常少,因为它克服了国际上现有设备操作复杂、费用贵、不可移动、体积大等问题。“传统的设备单是一个放置高精度仪器的光学平台就有数吨重,而整个桌面荧光相关光谱单分子分析仪仅有20公斤重,价格仅为传统设备的四分之一甚至八分之一。”黄韶辉说。■市场环境变化 政策红利助企业站稳脚跟目前,企业已与国内多所高校如北京大学、清华大学、澳门大学等形成了产学研合作模式,在2021年全球生命科学领域排名前十的大学/机构中,他们的客户便有3家。黄韶辉认为,企业之所以能在短短几年内在业内打响名号,一定程度上得益于市场环境的变化。在过去,90%的国内高端科学研究设备都是依靠进口,自中美贸易战发生后,许多“卡脖子”技术对国内发展造成了重大影响,形势便发生了改变,国产的高端科研设备也随之崛起。“近年来,国家也加大了对科学研究、精密仪器制造等重点行业的支持,北京、杭州、中山等地方政府也相继出台了政策,尤其是翠亨新区,在全市的扶持基础上,又针对高端精密仪器制造产业出台了配套的政策,在这种空前的重视下,我们才能快速在市场上站稳脚跟。”黄韶辉说。此外,企业对科研投入的重视也是提高竞争力的有力手段。目前,该公司拥有光学、电子、软件、机械、计算机、测试计量、生物物理、生物化学等多学科专业技术人员组成的研发团队总计15人,其中研究生及中级职称以上学历11人。“我们每年投入到研发领域的资金占企业收入的30%,这样的力度在企业中是极为少见的。”黄韶辉说。■克服产品化难点 成立平台服务其他企业为什么精密仪器制造会成为“卡脖子”技术?黄韶辉认为,也许在老百姓眼里,国家缺乏技术人才是主要的原因,但实际上国家既不缺技术人才,也不缺市场,缺的是能把技术变成产品的综合性人才。“做研究跟做产品还是有很大区别的,做研究只要结果成功就行了,产品却要满足不同客户以及不同场景的需求。”他举例说,公司做出来的第一台样机在运去美国参展前曾做了很多次测试,比如模拟运输过程中的震动,但事实上到达展会时仍然出现了问题,“所以把实验室技术变成商品并没有那么简单”。此外,由于桌面式荧光相关光谱单分子分析仪属于全球首创,并没有现成的生产经验和生产设备能使用,所以绝大多数的核心部件都是由中科奥辉自主设计、加工、生产的。经过多年的探索,企业已经形成了完整的研发生产线,在政府的资金支持下,这里还成立了中山市高端医疗器械及科研设备工程技术研究中心、医疗器械与科研设备公共技术服务平台,为其他有精密仪器制造需求的企业提供多种公共服务功能,如设计加工、技术开发、检验测试、技术咨询等。■探索医疗检测领域 盼望享受“首台套”政策支持“科学技术是促进国家发展的强大动力,而基础科学研究设备则是支持科技发展的重要工具。”黄韶辉博士认为,虽然目前在人才、成本、市场、供应链方面还存在着一些问题,但随着国家的日益重视,高端精密仪器制造产业必将迎来一片蓝海。未来,企业计划在医疗检测方面下苦功,将荧光相关光谱单分子分析技术运用至病毒核酸检测、癌症肿瘤标记物的检测等领域。他希望,未来政府能进一步加大对产业的扶持,如落实更具有吸引力的高端研究人才、产业技术人才及管理人才的政策;加强高端仪器产业的配套公共服务设施建设(比如,工程中心、测试中心、认证中心、法律咨询、投融资及配套生活设施等);科研仪器也能享有与工业仪器类似的“首台套”支持政策等。这将更好地促进国产高端精密仪器制造行业的发展。
  • 表面活性剂:从分子到纳米粒子
    p   韩国科学技术信息通信部发布消息称,韩国先进软性物质研究团组利用纳米粒子研制出表面活性剂。该研究结果刊登在国际学术杂志《自然》上。 /p p   表面活性剂是广泛用于肥皂、洗涤剂、洗发水等生活用品的化学物质。在一个分子中存在易粘附于水和易粘附于油两个部分,使用表面活性剂可将水、油分离,呈现水滴形态。因此,利用表面活性剂传送特定物质(药物等)可作为新一代医学材料,特别是作为调节液体水滴的技术可广泛应用于制药、疾病诊断、新药开发等领域。 /p p   现有调节液体水滴的技术多采用“分子表面活性剂”,是使表面活性剂包裹的液体水滴受到外部刺激的分子结构设计方式,但想实现两种以上刺激反应难度较大。此次研究组利用纳米粒子具有杀死细菌以及运送酵素等多种功能的特点,研制出可在多种刺激下控制液体水滴的“纳米粒子表面活性剂”,比现有分子表面活性剂具有更多样的功能。通过纳米表面活性剂可对电、光、磁场全部反应,磁场和光可以调节液体水滴的位置以及移动、旋转速度,并可以与电场结合。例如,使用操纵液体水滴移动或组合的工具可将活体细胞植入液体水滴里培养或将利用液体水滴还原细胞内的酵素反应等需要特殊环境的制药、生物医学领域。 /p p br/ /p
  • 核磁共振成像技术步入分子层面
    美国和加拿大科学家分别采用新型核磁共振成像(MRI)技术观测到人体内的分子变化,从而大大提高了MRI扫描的速度和精度,可在未来用于更快地检测癌症等疾病。研究发表在最新一期《科学》杂志上。   两国科学家使用的MRI技术都通过操控分子的旋转来提高扫描的速度和精度,从而可以在分子层面快速地完成诸如分析药物药效或推断肿瘤生长速度等工作,以更好地为人类健康服务。   加拿大研究人员通过操纵仲氢(仲氢是航天飞机上使用的燃料),将仲氢的磁性转移到许多更容易探测的分子上面,并在动物身上进行了该技术的测试。结果表明,新技术可以将扫描的灵敏度增加1000倍左右,原来统计生物系统数据需要花费90天时间,现在只需几秒就可以完成。   美国科学团队则调整了原子核的旋转来增强信号,在旋转状态的分子之间制造了很大不平衡,并且使分子变成了功能更加强大的磁体,可以产生更详细的图像。新技术得到的信号强度可能是传统MRI中氢原子所释放信号的几千倍甚至几万倍。
  • 胡伟教授团队在分子光谱的人工智能模拟方面取得研究进展
    齐鲁工业大学(山东省科学院)化学与制药学部胡伟教授团队,在分子光谱的人工智能模拟方面取得研究进展。研究成果以“A Deep Learning Model for Predicting Selected Organic Molecular Spectra”为题,在Nature子刊 《自然-计算科学》(Nature Computational Science)杂志上在线发表。论文第一单位为齐鲁工业大学(山东省科学院),化学与制药学部2019级本科生邹子涵为第一作者,化学与制药学部胡伟教授、光电科学与技术学部张玉瑾副教授、中国科学技术大学罗毅教授和江俊教授为本文的共同通讯作者。分子光谱作为“分子指纹”,被广泛地应用于物理、化学、生物、材料、医学、食品、环境、化工等领域。传统的分子光谱模拟采用量子化学方法,涉及昂贵的电子结构计算和复杂的光谱模拟,导致效率低下。针对该难题,胡伟教授团队结合E(3)-等变几何组、自注意机制,开发了一套深度学习模型:DetaNet,从而建立了更高效、更准确、更快速的分子性质和分子光谱的人工智能模拟方法。研究团队首先建立了包含 13万余种分子的红外、拉曼、紫外-可见吸收、核磁共振光谱数据库:QM9S 数据集;其次,通过传递高阶几何张量信息,使得DetaNet 能够预测各种分子的标量(能量、原子电荷等)、矢量(电偶极矩、原子力等)以及高阶张量(Hessian矩阵、电四极矩、极化率、电八极矩、第一超极化率等)性质。在此基础上,开发了通用模块用来预测四种重要的分子光谱,即红外光谱、拉曼光谱、紫外可见吸收光谱、核磁共振光谱。通过测试,研究团队发现DetaNet的计算效率比量子化学快3-5个数量级。本研究成果提供了原创的深度学习模型:DetaNet,在世界上首次提出直接预测分子张量性质的机器学习算法,开发了多种分子光谱的人工智能模拟算法,对分子高通量筛选、光谱辅助结构鉴定等重要的领域提供了坚实的理论基础和高效的软件工具。本课题受到国家自然科学基金、山东省泰山学者计划、济南市高校20条等项目支持。
  • 苏州医工所生物分子界面分析仪通过欧盟CE认证
    p   近日,中国科学院苏州生物医学工程技术研究所传感创新中心周连群研究员及其团队,研发的生物分子界面分析仪(Mole-Q),通过权威实验室CE(EMC\LVD)\FCC(EMC)等相关测试,获得相关认证证书及报告。 /p p   分子界面分析仪主要应用在生物生命分析领域中,实现对生物分子的分子相互作用、动力学研究、细胞吸附、迁移变化、药物作用与药物筛选、生物相容性、聚电解质膜层的组装等高灵敏度检测和分析,也可应用于石油、化工、航天等领域。采用薄膜压电技术,利用薄膜压电晶片实现生物分子界面分析。当物质在压电薄膜表面发生吸脱附反应或表面的液体性质发生变化时,均引起频率的变化。芯片共振频率的变化,与芯片表面吸附的物质的质量相关。通过分析频率的变化可以获得吸附层相应的质量、吸附层厚度、粘弹性(剪切模量)等信息。 /p p   该款迷你型生物分子界面分析仪(Mole-Q)是面向国内外科研院所、高校、企业以及个体研究人员的测试需求定向开发的便携式产品。产品外形采用象牙白和透明材质曲面设计,总体重量不超过500g,便携性强,“即插即用”,仪器通过USB数据线连接分析终端如PC电脑即可实现数据实时采集和分析。液体流路易于观察,传感器易于清洗更换。芯片上方测试样品为10μL,频率分辨率0.1Hz,在空气中10分钟内频率漂移小于2Hz。该产品和芯片的部分参数性能优于目前市场上动辄百万元的同类进口产品,综合性能达到国际先进水平。 /p p   周连群研发团队攻克高灵敏度压电薄膜核心技术,优化微纳加工工艺实现薄膜化压电晶片(Lamb波器件、高频QCM器件)的批量化制备,完善质量控制和工序管理,提高生物分子分析仪核心传感单元工程化的效率。研发出厚度信号强度大于60dB的薄膜压电传感器,将对生物分子检测灵敏度提升至皮克量级。独创的芯感& reg MEMS技术、结合一体式微流控进样和高频信号采集等模块,实现芯片和系统的低成本、高性能、高兼容性。突破国外垄断产品的专业壁垒,获得20余项相关发明专利的授权,申请的国际PCT专利已进入日本和美国。 /p p   在苏州医工所“创新”“转化”双轮驱动政策的大力支持下,“分子界面分析仪(Mole-Q)”产品和芯片已落地在苏州国科芯感医疗科技有限公司(简称“国科芯感”)进行研产转化。新型成果转化模式的拓展,有效弥补传统技术研发与市场需求脱节、开发速度慢、周期长、权属模糊等弊端,促进科研和产业优势互补,实现研产双赢。此次Mole-Q产品通过欧盟CE认证及美国的FCC认证,证实苏州医工所科研能力和成果有效转化的实力,促进后续系列产品的研发和推广,也为产品出口欧盟等国际市场提供强有力的保障。 /p p /p p & nbsp /p p style=" TEXT-ALIGN: center" img title=" W020171206585288196153.jpg" src=" http://img1.17img.cn/17img/images/201712/noimg/0df49df2-5d14-4f84-9300-856809703341.jpg" / /p p style=" TEXT-ALIGN: center" 分子界面分析仪(Mole-Q)产品 /p
  • 我国科学家在单分子器件研究方面取得重要进展
    p   利用单个分子构建电子器件有希望突破目前半导体器件微小化发展中的瓶颈,其中实现可控的单分子电子开关功能是验证分子能否作为核心组件应用到电子器件中的关键步骤。 br/ /p p   在国家自然科学基金(资助号: 21225311, 91333102, 21373014, 21190033, 91221202, 61321001)等的资助下,北京大学化学与分子工程学院郭雪峰课题组联合美国宾夕法尼亚大学Abraham Nitzan教授课题组、北京大学信息科学技术学院徐洪起教授课题组及其他合作者于2016年6月17日在Science上发表了单分子器件研究领域的最新进展“Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity”(《通过共价键构筑的具有稳定且可逆光开关导电性的单分子结》),该文的核心内容是利用二芳烯分子为功能中心、石墨烯为电极首次成功地实现了真实稳定可控的单分子光电子开关效应研究的突破(图1)。论文链接: a href=" http://science.sciencemag.org/content/352/6292/1443" _src=" http://science.sciencemag.org/content/352/6292/1443" http://science.sciencemag.org/content/352/6292/1443 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201606/noimg/e529f9bb-e43b-498c-a226-c1cd21c93e44.jpg" title=" 1.jpg" / /p p style=" text-align: center " 图1 石墨烯–二芳烯单分子器件的示意图 /p p   研究者们发展起来的碳基单分子器件结构提供了更坚实的单分子器件研究平台,使得以前无法开展的工作成为可能,这将孕育着新的突破。 /p p   该项研究证明功能分子确实可以作为核心组件来构建电子回路,这是将功能分子应用到实用的电子器件迈出的重要一步,在未来高度集成的信息处理器、分子计算机和精准分子诊断技术等方面具有巨大的应用前景。Science同期的Perspective Article以“Designing a robust single-molecule switch: A single-molecule switch works at room temperature”为题对此工作发表了长篇评述(Science 2016,17, 1394)。 /p p br/ /p
  • Nature!庄小威团队利用MERFISH技术绘制小鼠全大脑分子可定义和高空间分辨的细胞图谱
    在哺乳动物的大脑中,许多不同类型细胞形成复杂的相互作用网络,从而实现广泛的功能。由于细胞的多样性和复杂的组织,人们对大脑功能的分子和细胞基础的理解受到了阻碍。单细胞RNA测序(scRNA-seq)和单细胞表观基因组分析的发展使发现大脑中许多分子上不同的细胞类型成为可能[1,2]。然而,这些研究中有限的样本量可能导致对大脑细胞多样性的低估。此外,了解大脑功能背后的分子和细胞机制不仅需要对细胞及其分子特征进行全面的分类,还需要详细描述分子定义的细胞类型的空间组织和相互作用。在更精细的尺度上,细胞之间的空间关系是通过相邻分泌和旁分泌信号传递的细胞间相互作用和通信的主要决定因素。虽然突触通信可以发生在细胞体相距较远的神经元之间,但神经元和非神经元细胞之间的相互作用以及非神经元细胞之间的相互作用通常借助直接的体细胞接触或旁分泌信号,因此需要细胞之间的空间接近。而且涉及局部中间神经元的相互作用也倾向于发生在空间近端神经元之间。因此,一个高空间分辨率的全脑细胞图谱对于理解大脑的功能极其重要。来自美国哈佛大学的庄小威教授课题组使用多重误差鲁棒荧光原位杂交(MERFISH)技术对整个成年小鼠大脑中大约1000万个细胞中的1100多个基因进行了成像,并通过整合MERFISH和scRNA-seq数据,在全转录组尺度上进行了空间分辨的单细胞表达谱分析。研究人员在整个小鼠大脑中生成了5000多个转录不同的细胞簇(属于300多种主要细胞类型)的综合细胞图谱,将该图谱与小鼠大脑共同坐标框架进行定位,可以系统量化单个大脑区域的细胞类型组成和组织,并进一步确定了具有不同细胞类型组成特征的空间模块和以细胞渐变为特征的空间梯度。这种高分辨率的细胞空间图—每个细胞都具有转录组表达谱,有助于推断数百种细胞类型对之间的细胞类型特异性相互作用和预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能。总之,此研究不仅为大脑的分子和细胞结构提供了丰富的见解,而且为其在健康和疾病中的神经回路和功能障碍奠定了基础。该结果于近日发表在Nature上,题为“Molecularly defined and spatially resolved cell atlas of the whole mouse brain”。研究小组通过MERFISH技术对横跨4只成年小鼠(1雌3雄)大脑整个半球的245个冠状面和矢状面切片上进行成像,根据DAPI和总RNA信号,单个RNA分子被识别并被分配到细胞,进而得到单个细胞的表达谱。总之,该研究对成年小鼠大脑中大约1000万个细胞进行成像和分割,包括11个主要的大脑区域:嗅觉区、等皮层(CTX)、海马形成、皮质底板(CS)、纹状体(ST)、苍白球、丘脑、下丘脑(HT)、中脑、后脑和小脑。基于典型相关性分析整合MERFISH数据和scRNA-seq数据,采用K最近邻(k-NearestNeighbor,KNN)分类算法对MERFISH细胞进行分类。为了对不同大脑区域的细胞类型组成和组织进行系统定量,他们将MERFISH生成的细胞图谱注册到艾伦脑科学研究所发布的小鼠脑三维图谱第三版(Allen Mouse Brain Common Coordinate Framework,CCFv3)[3],可将每个单独的MERFISH成像细胞及其细胞类型身份标签放入3D CCF空间(图1)。图1 对整个小鼠大脑的分子定义和空间分辨的细胞图谱(图源:Zhang, M., et al.. Nature, 2023)据统计,整个小鼠大脑由46%的神经元和54%的非神经元细胞组成,神经元细胞与非神经元细胞的比例在后脑中最低、在小脑中最高。神经元细胞包括315个亚类和超过5000个集群,其类型也表现出很强的区域特异性,大多数神经元亚类仅在11个主要区域中的一个区域富集。这11个主要区域包含了不同数量的细胞类型,尤其是后脑、中脑和下丘脑所包含的神经元细胞类型的数量以及局部复杂性远远高于其它大脑区域。基于神经递质转运体和参与神经递质生物合成相关基因的表达,他们将成熟的神经元分为8个部分重叠的组别。其中,谷氨酸能神经元和γ-氨基丁酸(GABA)能神经元分别约占神经元总数的63%和36%,谷氨酸能与GABA能神经元的比例在不同的大脑区域中差异很大,而5-羟色胺(5-HT)能、多巴胺能、类胆碱能、甘氨酸能、去甲肾上腺素能和组胺能神经元仅占神经元总数的2%(图2c)。谷氨酸能神经元和GABA能神经元广泛分布于全脑,可分为具有不同空间分布的不同细胞类型;在谷氨酸能神经元中,Slc17a7(Vglut1)、Slc17a6(Vglut2)和Slc17a8(Vglut3)在不同的脑区分布存在差异,Slc17a7主要位于嗅觉区、CTX、海马形成、CS和小脑皮层,而Slc17a6主要位于HT、中脑和后脑(图2d,e)。他们还观察到两个未成熟神经元(IMNs)亚类:一种是抑制性的,一种是兴奋性。抑制性IMNs由30个簇组成,沿脑室下区(SVZ)分布,通过前连合处延伸至嗅球;兴奋性IMNs由七个簇组成:簇516主要位于嗅觉区域,而其它簇沿海马体形成的齿状回分布(图2f),这与之前关于海马形成中成人神经发生的发现一致[4]。图2 神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)非神经元细胞包括23个亚类和117个簇。通过量化,研究小组发现在整个大脑中,非神经元细胞由30%少突胶质细胞、6%少突胶质细胞前体细胞(OPCs)、28%血管细胞、23%星形胶质细胞、8%免疫细胞和5%其它类型细胞组成。一些非神经元细胞类型,特别是星形胶质细胞和心室系统中的细胞也表现出很强的区域特异性。星形胶质细胞包括36个细胞簇,最大的两个集群Astro 5225和Astro 5214,分别占星形胶质细胞总数的48%和33%。基本上每个Astro星团都显示出独特的空间分布,Astro 5225只位于端脑区,Astro 5214只位于非端脑区,Astro 5215位于丘脑,Astro 5216位于后脑,Astro5231-5236位于嗅球,Astro 5207位于小脑,Astro 5222位于齿状回,Astro 5208富集于靠近软脑膜表面的髓质,Astro 5228、5229和5230位于SVZ沿线,延伸至嗅球,并与抑制性IMNs广泛共定位(图3d)。少突胶质细胞在纤维束中富集,在整个脑干中十分丰富,而OPCs则均匀分布地整个大脑;在集群水平上,一些少突胶质细胞和OPCs也表现出区域特异性,如Oligo 5277在皮层中富集,而Oligo 5286在后脑中富集(图3e)。与心室系统相关的细胞也呈现区域特异性分布,在第三脑室,下丘脑室管膜—胶质细胞位于腹侧区域,而ependymal细胞占据背侧区域,Hypendymal细胞位于第三脑室背侧的下联合器,心室内的主要细胞是脉络膜丛细胞和血管软脑膜细胞(VLMCs)。除了VLMC 5301和VLMC 5302,大多数VLMC集群被限制在软脑膜(图3f)。图3 非神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)接下来,研究团队为每个细胞定义了一个局部细胞类型的组分矢量,并使用这些矢量聚类细胞,从而得到了包含相似邻域细胞类型组成的细胞的“空间模块”(图4a)。他们确定了16个一级空间模块和130个二级空间模块,一级空间模块将大脑分割成与CCF中定义的主要大脑区域基本相吻合的区域,一个显著的差异是中脑和后脑之间的边界(图4b,c)。许多2级空间的模块与CCF中定义的子区域一致,但观察到更多的差异(图4d)。此研究中的空间模块描述是基于单个细胞的转录组范围内的表达谱所定义的细胞类型,因此比CCF中脑区描述的信息具有更高的分子分辨率,空间梯度代表了对该区域的分子轮廓的更精确的描述。图4 空间模块:分子定义的大脑区域(图源:Zhang, M., et al.. Nature, 2023)考虑到在某些情况下,细胞的基因表达谱可能会表现出渐进或连续的变化,他们因此检查了所有的细胞亚类,结果发现细胞的空间梯度广泛分布在大脑的许多区域。例如,颅内(IT)神经元在整个CTX上形成了一个连续的梯度,在这个区域,基因表达沿皮层深度方向逐渐变化,但第2/3层IT神经元的分离更为明显(图5a)。在纹状体中,D1和D2中棘神经元均沿背外侧-腹内侧轴形成空间梯度(图5b,c)。在外侧间隔复合体(LSX)中,几个GABA能亚类沿着背腹轴形成了一个梯度(图5d)。在海马体的CA1、CA3和齿状回区域和中脑的下丘中也观察到空间梯度。他们也观察到了一些非神经元细胞之间的空间梯度,如下丘脑室管膜—胶质细胞,沿着第三脑室的背腹轴形成了一个连续的梯度(图5e)。通过基于UMAP(一致的多方面逼近和投影以进行降维)的基因表达可视化分析,他们发现一个大规模的跨越HT、中脑和后脑区域的空间梯度(图5f)。图5 分子定义的细胞类型的空间梯度(图源:Zhang, M., et al.. Nature, 2023)最后,他们分析了亚类水平上的细胞类型,并推断单个大脑区域中细胞类型特异性的细胞-细胞相互作用(包括非神经元细胞间,非神经元细胞和神经元之间以及神经元间)。几百对细胞亚类被确定,统计学结果显示有显著的相互作用。预测的大多数具有相互作用的细胞类型对包含多个配体-受体对,与同一细胞类型对中的非近端细胞对相比,近端细胞对的表达显著上调,为这些细胞间相互作用的分子基础提供了见解。在非神经元细胞之间,发现内皮细胞和周细胞均与大脑中的边缘相关巨噬细胞(BAMs)、巨噬细胞有显著的相互作用。在这两种情况下,与非近端细胞对相比,来自层粘连蛋白信号通路的配体-受体对在近端细胞对中均明显上调,一些细胞因子(内皮细胞中的Cytl1和周细胞中的Ccl19)在BAMs近端血管细胞中表达上调,这说明大脑中的血管细胞可能利用这些细胞因子来招募巨噬细胞(图6d,e)。小胶质细胞也被发现与内皮细胞、周细胞之间的显著相互作用;与内皮细胞相比,周细胞与小胶质细胞相互作用的可能性更高,而与BAMs相互作用的趋势则相反(图6f,g)。他们还观察到神经元和非神经元细胞之间的显著相互作用,例如星形胶质细胞和抑制性IMNs在嗅球中、星形胶质细胞和兴奋性IMNs在海马形成中表现出显著的相互作用。此分析也预测了一些神经元亚类之间的相互作用,例如,海马形成过程中Pvalb枝形吊灯状GABA神经元和CA3谷氨酸能神经元之间、IPN Otp Crisp1 GABA神经元和中脑的DTN-LDT-IPN Otp Pax3 GABA神经元之间的相互作用。图6 细胞间的相互作用和通信(图源:Zhang, M., et al.. Nature, 2023)文章结论与讨论,启发与展望通过MERFISH技术成像约1000万个细胞,并将MERFISH数据与全脑scRNA-seq数据集整合,该研究生成了一个具有高分子和空间分辨率的、横跨整个小鼠大脑的分子定义的细胞图谱。进一步将该图谱注册到了艾伦脑科学研究所发布的CCF中,提供了一个可被科学界广泛使用的参考细胞图谱,使科研人员能够确定每个大脑区域不同转录细胞类型的组成、空间组织和潜在的相互作用。一方面,非神经元细胞与神经元细胞或非神经元细胞之间的相互作用,以及配体-受体对、基因的相关上调,为测试不同非神经元细胞类型的功能作用提供了切入点。另一方面,将转录组成像与不同行为范式下的神经元活动成像相结合可以揭示神经元的功能角色[5]。未来的研究将结合空间分辨的转录组学分析和各种其它特性的测量(如表观基因组谱、形态学、细胞的连通性和功能、系统的基因扰动方法),将有助于大家阐述大脑的分子和细胞结构的功能和功能障碍在健康和疾病中的作用。MERFISH(Multiplexed Error-Robust Fluorescence In Situ Hybridization),一种空间分辨的单细胞转录组学方法,经过近年的发展已成为生命科学领域中最具有前景的单细胞测序技术之一。该技术独特的原理和方法,可实现对单细胞进行多重靶向探测,从而深入研究细胞的生物学特性,对于疾病诊治及药物研发等方面也有着广泛的应用价值。
  • 北京有群“嗅辨员” 鼻子辨臭能力超仪器数倍
    从透明的玻璃气瓶中,用玻璃针管缓缓抽出一管从垃圾场采集到的“臭气”,然后注入密封的袋子中,打开出气口,一边用手轻轻捏着袋体,一边将鼻子凑近仔细嗅辨。作为北京市环境卫生监测站的一名“闻臭员”,张超每天的工作就是到各大垃圾场去采集排放出来的“臭气”,带回实验室通过“闻臭”来判断垃圾场的排放是否达标。这样特殊的工作,张超一干就是11年。不过,张超可不愿意别人管他叫“闻臭员”,他们的专业名称叫做嗅辨员。像他一样具有专业资质的嗅辨员,全市共有约300名。  每天至少去3个垃圾场采样  又到了张超最怕的夏天。气温攀升到30多摄氏度之后,不少人都尽量避免高温作业,但对于张超和他的同事们来说,几乎每天都要进行的固定检测却不能因为高温而停止。  天气炎热,气体更易扩散,虽然焚烧厂的垃圾已经经过严格处理,并没有传统垃圾场扑鼻的恶臭,但空气中依然会夹杂着一些特殊气味。为了更加全面地监测,除了能够产生气味的焚烧炉,废水池以及厂区边界,也都需要进行采样。相比于在臭不可闻的垃圾堆放站收集气体,张超认为这已经算是比较好的工作环境。  采样的气瓶在带离实验室前,要提前对其进行抽真空处理。随后,嗅辨员需要亲赴垃圾场的厂界位置采集一些环境空气,取样带回实验室,对臭气浓度进行检测,以此来衡量垃圾场的排污情况是否达标。  张超说,全市目前共有50个垃圾处理设施,有19个垃圾填埋场、综合处理厂、焚烧厂和转运站,必须保证每个月都得去一次。而像是粪便消纳站和一些区的垃圾处理场,则要保证每季度去一次。这样算下来,嗅辨员每天至少要去3个垃圾处理设施,才能够保证完成任务。  采集回来的样品,当天就必须进行嗅辨,以防采集回来的气体飘散或是变质。  鼻子辨臭能力超仪器数倍  在北京市环境卫生监测站内,张超的脸上滚满了豆大的汗珠。回到实验室后,采集的气体将会被高度稀释,并放入气袋中,以便嗅辨员来嗅。  一个嗅辨小组由6名嗅辨员和一名判定师组成。一边忙着操作,张超一边解释说,每个嗅辨员会发给3个密封的袋子,3个袋子中只有1个里面打入了从垃圾场采集回来的样品空气,而其他两个袋子中则只有干净的空气。嗅辨员用鼻子闻了袋中的气体后,觉得哪个袋子中有味道,就在相应的表格中打对钩,如果觉得没有味道,则在表格中打叉,无法确定就画圆圈。最后通过公式,算出样本的臭味是否达到国家标准。只要闻着臭,就说明排放肯定不达标。之后,再由城管委来决定对垃圾场的处罚或是整改措施。  在科技如此发达的今天,为何还需要用人的鼻子来判别空气质量?张超说,科学检测仪器虽然越来越先进,但机器只能显示数值,无法分辨臭味。光数据显示还不够,如果依然有股怪味儿,对周边的居民肯定还有影响。臭味本身就是一种污染源。“人的鼻子,比仪器能够检测到的味道要多得多。比如仪器可能只能检测到十几种或是二十几种指标,但是人的鼻子却能够闻到几十种甚至上百种味道。”  数据虽然安全,但是闻起来却依然有臭味,嗅辨员既专业又接地气的检测方式,无疑给越来越多的垃圾处理设施提出了更高要求。  男不许抽烟喝酒 女必须素面朝天  一只富有经验的鼻子显然至关重要,但是想要成为一名嗅辨员,光靠鼻子灵还远远不够,必须先经过国家恶臭重点实验室的审核,并通过专门的笔试和嗅觉测试才能拿到资质,资格证每三年就需要重新考核。目前,整个北京拿到嗅辨资格审核的一共有约300名嗅辨员。  回忆起考核时的场景,张超说,每个参加考核的嗅辨员会发给5个纸条,其中两个纸条上蘸一些嗅液,闻几轮,来进行嗅觉考核。  在日常的生活中,嗅辨员还有不少额外的要求。比如不能抽烟、喝酒,避免吃辛辣刺激的食物,遇到感冒也不能进行嗅辨。在这工作的女性全部素面朝天,绝对不能化妆,指甲油不能涂,连防晒霜都不能抹,风油精、花露水都不能喷。“比如说下午要检测,中午饭肯定不能吃包子一类有味道的东西。”  硫化氢的味道特别难闻,闻起来是一股臭鸡蛋的味儿。张超说,刚开始做嗅辨员时,偶尔还会因为闻到恶臭变得头晕恶心,食欲不振。但是做的时间长了,慢慢就习惯了。“我已经做这行11年了,早习惯了。”
  • 当遇到拉曼和幸运分子 光谱创新便一路向前——《寻找光谱仪器创新的力量》系列约稿
    在筹办今年第四届拉曼光谱网络会议时,仪器信息网的叶编就说要推出《寻找光谱仪器创新的力量》系列专栏,问我敢不敢写一篇。等发布约稿通知,我一看要讲光谱仪器创制和课题组成果转化案例,就不敢写了,因为没干过或没干成。本周叶编在微信问我“想起之前跟您的约稿,寻找光谱仪器创新的力量,还记得吗?”当然记得。和叶编认识于N年前的全国光散射学术会议,2018年上海师范大学承办第二届全国拉曼生物医学学术会议时,仪器信息网现场全程报道;在叶编策划下,仪器信息网至今举办了四届拉曼光谱网络会议,除了第一届没印象是否参加,第二届主持了《拉曼光谱在生命科学领域的应用》分会场,第三和第四届由上海师范大学与仪器信息网共同主办,每届邀请拉曼领域三十几位资深专家分享年度最新进展。特别是,疫情封控点燃了在线学术交流的热情,其中2022年第四届拉曼光谱网络会议的拉曼粉丝超一万,人气爆棚!和叶编真是老朋友了,怯怯地觉得必须盛情难却,只能勉为,谈谈自己与拉曼的缘分吧,虽然已在仪器信息网其它专栏里说过了,也是叶编约的稿。上海师范大学杨海峰教授课题组1997年,上海师范大学购置法国Dilor LabRamanII的激光共焦拉曼系统,液氮冷却CCD,暗电流小,灵敏度高。章宗穰先生说仪器是厦门大学田中群老师推荐的型号,他去匹兹堡参加仪器展时现场定购,由于我有长期红外光谱分析经验,希望我读他的硕士,开展相关的研究工作。果然仪器刚安装好,田中群老师就带着硕士生刘峰铭飞来上海做实验,期待硅基底有SERS,田老师还自己准直了光路,希望有更高的灵敏度。2002年,经章宗穰先生推荐,我去湖南大学攻读分析化学博士,湖大刚购置一台LabRamanII,所以我的硕士和博士学位都与一家法国仪器公司Dilor有关,这家公司后被Horiba并购了。我博士期间导师有三位,俞汝勤先生、沈国励先生和章宗穰先生,先生们学问渊博,待人亲切,教导学生都是授之以渔。俞先生起初希望我用化学计量学解析生物医药拉曼成像(Raman mapping)数据,当时畏难放弃了,错过了化学计量学。这个课题后由师妹林伟琦在蒋健晖老师指导下完成,药片活性成分分布拉曼成像化学计量学研究成果发表在Analytical Chemistry上。寒假回上海,徒弟刘泓找我,想用拉曼光谱测植物提取物中的植酸含量,没成功。但我一眼就喜欢上了植酸,六元碳环上长了6个磷酸键,可以和所有的金属离子作用,而且来源植物易得,毒性与食盐相当。当时刚完成第一个博士论文工作,主要围绕电极表面自组装辅酶I分子吸脱附行为的原位拉曼光谱电化学研究,搞清楚了腺嘌呤环以2个N原子垂直吸附于表面,由于磷酸酯键弹性,烟酰胺环也会有弱吸附,文献中对此原有争议,论文后发表在Journal of Raman Spectroscopy上;2003年恰遇SARS疫情,我也逆行了一次,从上海返回湖大实验室,将植酸以单分子自组层组装到银表面,用电化学极化方法发现不同pH条件下获得的单分子层对电极缓蚀性能差异大,通过Raman mapping、原位拉曼光谱电化学实验和分子模拟等揭示了机理,即在特定pH下,植酸分子由5个磷酸酯键与银表面作用,形成致密的保护层。2004年,相关成果发表在Journal of Physical Chemistry B上;2005年湖大博士毕业后,回上师大建立课题组,主要的研究领域是有机小分子金属缓蚀机理拉曼研究,在国家自然科学基金支持下,发现植酸钙、植酸纳和植酸铜等对金属都有很好的缓蚀性能。2008年,组里开始关注SERS在食品安全和环境分析领域的应用,是因为朱璇同学用植酸作为稳定剂合成了纳米银项链,SERS性能不错,加之我看到当时有几款市售的SERS基底卖得挺贵而且性能一般,也想着能发点基底财。王娜同学接着朱璇师姐的课题做,她也很聪明且勤奋心细,在合成过程中,不停取样测电镜,发现植酸在一定pH下沸腾时会自组装成纳米囊泡,作为纳米反应器可制备纳米银,SERS信号很强且由于纳米囊泡抓着银纳米粒子,在四个月里都很稳定。后又减弱还原剂的还原性,让纳米银慢慢长大,获得了2nm植酸层包埋的核壳纳米银,易形成SPR热点,且放置1年半稳定。对于食品安全和环境分析领域SERS应用,高增强因子、高稳定SERS基底的商品化是关键,我们正在不懈努力。王娜毕业后入职赛默飞公司担任拉曼和红外技术支持工程师。王娜的师弟马志远,在组里是专攻可呼吸介观尺度SERS基底制备,主要用于生物标志物检测,毕业后也去了赛默飞从事拉曼仪器的技术支持工作。组里第一个做生物标志物拉曼分析的是杨天溪同学,本科学药学,本科还未毕业就从烟台来组里工作。来得太早,我就让天溪重复师兄一个工作,她意外地用植酸合成出了稳定的磁性网状纳米粒子,负载上纳米金后,在磁场调控下可富集痕量分子并聚集粒子形成SPR热点,可检测出飞摩尔水平的福美双农药,研一就在Small上发表论文,提出了磁优化SERS策略,课题也获国家基金委面上项目的支持。天溪基于磁性基底SERS分析了尿液中肺癌标志物和唾液毒品生物标志,相关成果发现在Biosensors & Bioelectronics 和ACS applied Materials and Interfaces上。天溪毕业后去了Umass读博,做了一站博士后,在美国FDA做食品安全相关研究的科学家,现在加拿大不列颠哥伦比亚大学(UBC)建组,拓展SERS技术在安全和可持续性农业-食品系统中的应用研究。此外,组里的郭小玉老师利用植酸修饰贵金属基底开发重金属离子SERS探针,结合手持拉曼光谱仪器在环境分析、烟草制品和食品安全领域的应用也具有广阔的应用前景。组里现在8位老师,硕博研究生45人,有5台拉曼。其中,共焦拉曼系统2台,一台是赛默飞的DRX2拉曼成像光谱仪器,适合于细胞成像、农残洗涤评价和化妆品评价,由于配置EMCCD,灵敏度高,成像速度快,学生要排队预约。大概8年前,LabRamanII拉曼系统经Horiba的弗拉克(Franck)改装CCD后,青春焕发,LabRamanII今年已经25岁了还天天开工,弗拉克技术真是好。3台小拉曼分别是DeltaNu、卓立汉光和滨松的。组里正在围绕小拉曼应用场景,利用化学反应性分子修饰基底,开发特异性拉曼检测探针,提高分析选择性,并针对具体的问题提供技术解决方案,在食用油痕量苯并芘检出、微量爆炸物、肿瘤标志物分析、烟草甲醛、唾液血糖、皮肤炎症和肾炎POCT等领域有了些初步的工作。随着拉曼仪器的小型化、智能化和便携化,构建云端数据解析系统,研制可靠的特异性SERS探针,形成技术解决方案,必将在疾病早期诊断、病毒细菌检测、食品安全,环境安全和公共安全等领域大有作为。同仁们特别是年轻的拉曼爱好者一起努力,为美好生活贡献拉曼界的智慧和力量,光谱创新未来无敌!(作者 上海师范大学杨海峰教授)
  • 我国科学家绘制原发性肝癌高分辨率空间分子图谱
    异质性是癌症预防和治疗的主要挑战。近日,我国海军军医大学的研究团队在《Science Advances》发表了题为“Comprehensive analysis of spatial architecture in primary liver cancer”的文章。  研究人员对7例原发性肝癌患者的21个组织样本进行空间转录组学测序,得到84823个位点信息。通过将空间肿瘤微环境特征从非肿瘤区、边界区到肿瘤区进行渐进式比较,发现肿瘤包膜可能影响肿瘤内空间簇连续性、转录组多样性和免疫细胞浸润,并且发现肿瘤内部不同细胞亚群具有不同优势基因表达、细胞功能、预后以及克隆来源,且肿瘤细胞内部亚群并不独立,在彼此接触的范围(100 μm宽交界区)会发生广泛的配体-受体相互作用,同时发现肿瘤干细胞的富集与原发性肝癌的肿瘤侵袭和迁移呈正相关。通过开发一个新的用于鉴定三级淋巴结构的基因集,他们发现其高评分与原发性肝癌的较好预后显著相关。  该研究系统分析了肿瘤微环境中不同细胞类型或亚群的空间分布特征,绘制了原发性肝癌的高分辨率空间分子图谱。  论文链接:https://www.science.org/doi/10.1126/sciadv.abg3750  注:此研究成果摘自《Science Advances》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 《化学会评论》封面报道化学所仿生体系分子组装研究成果
    《化学会评论》当期封面   生命体系中诸多基本结构单元在特定的环境下,能自发地进行自组装,形成各种各样的纳米结构。在细胞生命活动中,蛋白的折叠和展开起到了至关重要的作用,蛋白质的错误折叠能够导致神经性疾病的发作,例如阿尔兹海默症(Alzheimer's Disease)。实际上,淀粉样纤维的形成是这类疾病的一个共同特点,通过对与淀粉样纤维形成相关蛋白、多肽甚至寡肽的序列和有效分子识别单元的研究,人们能够设计生物启发的自组装构筑基元,进而用于材料的设计和制备。   在科技部、国家自然科学基金委和中国科学院的共同支持下,化学研究所胶体、界面与化学热力学院重点实验室研究人员近几年来一直致力于“仿生体系分子组装”方面的研究,并取得了系列研究成果,在英国皇家化学会综述期刊《化学会评论》 (Chem. Soc. Rev., 2010, 39, 1877-1890) 上发表了题为Self-assembly and application of diphenylalanine-based nanostructures的综述文章,系统地介绍了该小组近几年来在肽基分子组装方面的工作,并被选为该期的封面论文。   该课题组基于分子仿生的概念,利用不同肽作为自组装基元,构筑了一系列肽基纳米结构,由此组装的肽纳米结构材料在应用方面展示出其独特的优势,如在生物医药领域用于组织工程、药物输运、生物成像和生物传感等。其也可作为模板材料用于各种各样功能性纳米结构的制备。肽分子自组装可在分子水平上进行设计和功能化,从而控制组装体的形状和结构(Angew. Chem. Int. Ed.2007, 46, 2431 Chem. Eur. J. 2008, 14, 5974.),这有利于我们理解生物体里一些结构的形成和调控现象。在某些条件下,这样的肽分子能够自组装成纳米纤维,最终形成宏观的凝胶网络结构(Chem. Mater. 2008, 20, 1522 Chem. Eur. J. 2010, 16, 3176.)。另外,为了赋予纳米生物材料新的特性,发展了一些新的构建策略,制备生物有机-无机复合材料。例如,将阳离子寡肽与荧光量子点结合制备生物兼容的三维胶体球,可用于活体细胞的标记(Small, 2008, 4, 1687) 与多价阴离子结合构建适应性的杂化超分子网络,可用于多种尺度客体材料的包封,在药物控释方面有潜在的应用(Adv. Mater.2010, 22, 1283)。
  • 利用电子顺磁共振技术测量分子构象方面取得新进展
    分子半导体材料具有超长的室温自旋寿命,在实现室温高效自旋输运和调控方面具有极大潜力,其结构多样性、可设计性以及丰富的光电特性也为分子自旋电子学的发展提供了广阔空间。分子半导体材料化学结构与自旋输运性质之间的构效关系研究是开发高效自旋输运分子半导体材料以及构建高效自旋器件的重要基础,而电子顺磁共振(ESR)技术在分子材料自旋寿命探测中的应用为该研究方向的发展提供了有效的测量手段。近日,孙向南课题组利用电子顺磁共振技术,在同分结构异构体的分子构象与材料自旋寿命的构效关系研究方面取得新进展,相关成果以Structural isomeric effect on spin transport in molecular semiconductors为题在线发表于Advanced Materials上。DOI: 10.1002/adma.202402001.分子半导体通常由原子序数较低的轻元素组成,因此具有较弱的自旋轨道耦合强度和较长的自旋寿命,在室温自旋输运和应用方面具有极大的潜力。元素组成主导的自旋轨道耦合效应通常被认为是导致自旋在分子半导体中自旋弛豫的主要因素,进而影响材料自旋寿命和自旋扩散长度。同分异构是有机半导体材料的一种典型的现象,由于同分异构体的元素组成完全相同,因此通常认为同分异构体之间的自旋寿命和输运性能理应差异不大。ITIC和BDTIC是分子电子学研究中经典的商业化的互为结构异构体的小分子半导体材料,具有确定的化学结构和较高的纯度。基于对ITIC和BDTIC同分异构体的自旋输运性能的研究,孙向南课题组首次实验证明,尽管ITIC及其结构异构体BDTIC两种薄膜的电荷输运和分子堆积性质非常相似,但其自旋输运性能完全不同。通过进一步的电子顺磁共振实验和密度泛函理论计算,发现在BDTIC中形成的非共价构象锁可以增加自旋输运路径上的自旋轨道耦合作用,从而降低自旋寿命。因此,本研究表明,开发高效的自旋输运分子半导体材料必须考虑结构异构效应的影响,这也为解决未来薄膜中构象锁定量测量的巨大挑战提供了可靠的理论基础。另外,该方法也有拓展到更为广阔分子科学应用方向的巨大潜力,如分子相变、聚集态结构等研究领域。国家纳米科学中心博士生杨婷婷、特别研究助理秦阳、国家纳米科学中心与中国石油大学(北京)联合培养的硕士生吴梦为文章的共同第一作者,国家纳米科学中心郭立丹副研究员和孙向南研究员为通讯作者。该研究成果得到了国家自然科学基金项目和中国科学院战略性先导科技专项B类等项目的资助。 图.分子半导体材料中结构异构效应对自旋寿命和自旋扩散长度的影响
  • SPR分子互作服务全面升级,618折扣火热来袭!
    用行业内最低的价格,给您一站式服务体验!还在为分子互作实验担心吗?由普瑞麦迪推出的SPR技术服务将一站式解决您的实验难题,您只需交付样品,从实验到分析,从实验报告到论文编写,我们将为您护航到底!表面等离子共振( SPR )技术是目前最经典和精确的分子相互作用检测技术,已有30年的应用历史,可快捷的实时分析DNA与蛋白质之间、蛋白质与蛋白质之间、药物与蛋白质之间、核酸与核酸之间、抗原与抗体之间、受体与配体之间等等生物分子之间的相互作用。主要用途可应用于研究信号通路、调控机理、结构分析、抗体筛选、药物筛选等,或进行有特定靶标的生物功能分子的筛选。检测流程*检测两个蛋白质的相互结合性,其中一个蛋白质要用化学方法固定在芯片表面上*另一个蛋白质从流体单元里接近表面上的蛋白质*相互结合性在实时过程包括:结合、解离和表面再生(surface regeneration)那么最后,为了更了解SPR技术服务,让我们来看看普同学和麦技术的聊天吧! SPR分子互作技术和传统的分子互作实验(Co-IP, ELISA, ChIP…)相比优势是什么?基于SPR原理,实时、无标记、检测相互作用;在收到样品后,当天完成测试,获得动力学和亲和力等数据。而传统的检测方法耗时费力,且属于终点检测,因此并不能实时获得数据。芯片的种类有哪些? 能够检测的物质有哪些?适用于小分子化合物、核酸、多肽、蛋白、抗体、脂类、多糖、纳米颗粒、病毒、微生物、细胞等各种类型样品;同时也可在各种复杂溶液之中完成检测,比如血液、牛奶、细胞裂解液等。多长时间可以获得结果呢?最快在收到样品当日获得检测报告。送样要求呢? SPR论文部分的编写怎么解决呀?不用担心,我们不仅提供实验报告,另外更有SPR论文模板提供给您! 下单即送以下精美礼品,充值更有豪礼相送!!欲了解更多折扣信息,请速速联系我们吧!!!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制