当前位置: 仪器信息网 > 行业主题 > >

正戊基硫醚

仪器信息网正戊基硫醚专题为您提供2024年最新正戊基硫醚价格报价、厂家品牌的相关信息, 包括正戊基硫醚参数、型号等,不管是国产,还是进口品牌的正戊基硫醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合正戊基硫醚相关的耗材配件、试剂标物,还有正戊基硫醚相关的最新资讯、资料,以及正戊基硫醚相关的解决方案。

正戊基硫醚相关的资讯

  • 和泰用户巡访记 | 第五季• 第六站:湖南、广东
    和泰仪器-技术服务部,以“用心坚持专业,致力服务用户”为理念,“客户满意”为首要目标,积极推动2019年度终端用户巡访工作的开展。第五季• 第六站:湖南2019/10/21-10/25湖南地区有和泰常驻的售后工程师在,所以我们对当地的售后服务要求都是按照最严格的标准来执行。我们要求工程师务必做到及时响应,及时给出解决方案,并按时处理。在高标准严要求的服务体系下,湖南当地的疑难故障基本为零,这样也让我们腾出更多的时间去回访水质要求更高,功能需求更多的用户,也为我们后续产品的升级拓展更广的思路。在长沙市的高等学府中,ECO系列纯水机以其硬朗的外观和卓越的性价比,受到了很多老师和同学的青睐;而在科研院所和国企中,客户偏好功能更多,水质更高的Master系列以及泽拉布系列产品。和泰全面的产品线让我们的每一个客户都能选择到心仪又合适的纯水系统;与此同时,和泰推出的以旧换新活动又能让长期支持和泰的客户以更优惠的成本体验到新的产品,并且根据客户不同的要求我们能进行个性化定制,真正做到“您的需要,我们创造”。短短一周时间,我们在湖南省四个不同的市内留下了我们的巡访足迹,为了让我们的巡访工作能渗透到更深远的地区,我们的工程师永远是不辞辛劳,随时待命,尽全力满足每一位客户对纯水系统的实质需求。第五季• 第六站:广东2019年10/28-11/1广东作为和泰纯水系统最畅销的地区之一,客户群基础很大,这也预示有着更多的回访需求。广州当地服务中心的工程师技术能力较全面,态度谦逊,在售后服务工作中也表现优异,得到了客户的一致认可。此次厂家巡访的目的,旨在于沟通如何更有效和更全面的开展当地的回访工作。在经过了几季的巡访后,客户明显对纯水机有了更深层次的理解,基本建立了对纯水机的保养意识,正是因为有了良好的保养意识,让故障率降低了一大半,加上当地的售后工作也及时高效且专业,客户满意度大幅上升。从最初的滤芯寿命短,取水方式不规范等诸多普遍存在的小问题,到如今对取水流程,水质判断等操作得心应手,我们真正感觉到了客户的进步,这也从侧面验证了我们巡访工作的价值所在。随着巡访工作的不断深入,我们发现越来越多的客户使用我们的泽拉布高端系列纯水系统,能得到用户的认可这也让我们非常欣慰,但我们的巡访目标是涉足更多更广的省内区域客户,让每一位我们的客户,无论是选用基础款还是高端纯水系统,都能享受到我们的优质服务。公司始终把用户的利益放在首位,定期的巡访工作,帮助我们及时能了解用户的需求,听取用户建议,用户的意见反馈,目标就是做到让客户真正地满意,省心。“用心坚持专业,致力服务用户”,为了您的满意,我们从未停下前进的脚步!!下一站:辽宁!
  • 【安捷伦】见证从微米到纳米的变迁 — 记安捷伦半导体无机元素分析论坛
    先进半导体材料的发展,已经成为国家战略发展的重要内容。而无机杂质分析和质量控制是半导体制程中非常重要的一环。为了助推集成电路产业发展,作为半导体无机分析的领导者,安捷伦科技于 2020 年 1 月 9 日,在上海举办了“安捷伦半导体论坛无机元素分析论坛”。来自全国的集成电路产业超过 100 名代表参加了本次论坛。来自日本和台湾地区的半导体无机分析专家,高纯试剂供应商 QC 专家,以及半导体在线元素分析,高纯气体分析等解决方案的供应商,分享了在半导体无机分析最先进分析技术,最热门的客户需求,以及最前沿的解决方案,共同为大家带来一场集成电路无机杂质分析技术盛宴。图为:论坛现场首先,安捷伦大中华东大区整机销售总经理杨挺先生做了精彩的欢迎致辞。图为:安捷伦科技大中华东大区整机销售总经理杨挺ICP-MS 已经成为半导体制程中痕量元素分析的标准技术。面对半导体制程一路快速发展,痕量元素分析的要求也越来越高。作为半导体行业无机分析解决方案的领导者,自 20 世纪 80 年代后期以来,安捷伦与领先的半导体制造商和化学品供应商密切合作,开发一系列 ICP-MS 系统和应用。安捷伦 ICP-MS 半导体元素分析的创新之路安捷伦原子光谱研发总监 Matsuzaki 先生带来了《安捷伦 ICP-MS 半导体元素分析中的创新之路》的报告,回顾了半导体客户对于仪器稳定性和基体耐受性的核心需求,安捷伦从冷等离子体技术到世界上第一台串接 ICP-MS,实现的一次次技术提升,以及对未来 ICP-MS 技术发展的展望。图为:安捷伦原子光谱 R&D 总监 Toshifumi Matsuzaki 亚太地区半导体全新分析技术客户不断提升的需求,驱动着安捷伦不断技术创新。来自台湾巴斯夫无机事业部品质管理经理,负责巴斯夫全球实验室的技术支持的許卿恆先生,做了名为《亚太地区半导体全新分析技术》的报告,分享了半导体制程飞速发展中对检测技术革新最直接的感受,以及利用安捷伦 7900 ICP-MS\8900 ICP-MS/MS 实现越来越严格半导体无机杂质质控要求的故事。图为:台湾巴斯夫无机事业部 品质管理经理 許卿恆ICP-MS/MS 测定有机溶剂中氯的分析技巧来自安捷伦日本,有着超过 30 年半导体 ICP-MS 应用研发经验的安捷伦的高级应用科学家Mizobuchi 先生带来了半导体领域又一个无机杂质质控难题攻克的故事:《ICP-MS/MS 测定有机溶剂中氯的分析技巧》。图为:安捷伦日本 ICP-MS 高级应用科学家 Katsuo Mizobuchi单纳米颗粒 ICP-MS 分析的最新趋势随着半导体制程线宽越来越窄,可能一个纳米级别的不溶性颗粒,都有可能造成不合格产品。关注半导体行业多年的安捷伦半导体 ICP-MS 应用专家 Shimamura 先生做了名为《单纳米颗粒ICP-MS 分析的最新趋势》的报告,介绍了安捷伦强大的应用研发团队和客户开发了利用 ICP-MS 分析高纯试剂中单纳米颗粒的最近技术进展。图为:安捷伦日本 半导体行业 ICP-MS 应用专家 Shimamura Yoshinori半导体无机杂质在线分析最新成果除了 ICP-MS 最前沿的技术进展,本次半导体论坛,安捷伦合作伙伴也分享了最新应用。来自德国 PVA Tepla 公司,VDP 事业部的经理 Robert Beikler 博士分享了 VPD 分析中的全自动液体处理和超痕量测试解决方案。图为:德国 PVA Tepla 公司 VDP 事业部经理 Robert BeiklerIAS Inc. China 的陈登云先生,带来了气体在线分析解决方案《最新气体分析和单纳米颗粒 ICP-MS 新进样系统介绍》。图为:IAS Inc. China 技术总监 陈登云本次论坛,来自半导体无机杂质分析各领域的专家分享了精彩的报告。来自全国的集成电路产业链的参会代表与演讲嘉宾,对无机杂质分析领域最前沿而分析技术,以及最热门的解决方案做了充分的沟通和交流。关于安捷伦科技安捷伦是生命科学、诊断和应用化学市场领域的领导者。公司为全世界的实验室提供仪器、服务、消耗品、应用与专业知识,以帮助客户获得他们所寻求的深入见解。安捷伦的专业知识和深受信赖的合作能力,使得客户对解决方案满怀信心。推荐阅读:1. ICP-MS 期刊 | 半导体行业解决方案创新之路,附海量干货下载https://www.instrument.com.cn/netshow/SH100320/news_483925.htm2. 微米到纳米的变迁 | 安捷伦和半导体行业的“超纯”往事https://www.instrument.com.cn/netshow/SH100320/news_520378.htm关注“安捷伦视界”公众号,获取更多资讯。
  • 一维无机纳米材料构建爆炸物传感器的理想纳米单元
    p   2月17日,Wiley集团出版社所属的材料类期刊Advanced Functional Materials 在线发表了由中国科学院新疆理化技术研究所微传感实验室研究员窦新存团队独立撰写的题为Emerging and Future Possible Strategies for Enhancing 1D Inorganic Nanomaterials-Based Electrical Sensors towards Explosives Vapors Detection 的综述文章。 /p p   爆炸物检测作为反恐防爆的重要措施正日益彰显出广阔的应用前景。爆炸物蒸气检测技术具有非接触、采样简单、可靠性高、性能优异、多功能集成、可以批量生产等优点,使爆炸物探测器实现小型化、低成本和高精度成为可能。一维无机纳米材料具有大的比表面积、量子限域效应、高的反应活性、突出的电学、光学与化学性质及各向异性等优点,并且其结构、性质调整可控。因此,一维无机纳米材料是构建爆炸物传感器的理想纳米单元。然而爆炸物检测领域面临着诸多挑战,例如生产工艺成本高、能耗大,材料组装和排布形成器件难度大,器件稳定性、重复性差等,灵敏度不够高,难以识别种类繁多的爆炸物等。 /p p   新疆理化所科研人员首先全面系统地总结和评述了2010年以来发表的基于一维无机纳米材料的爆炸物蒸气检测工作,并根据在增强电学传感器性能过程中使用的不同策略,将这些工作分为有序排布的阵列、表面修饰、光电增强、柔性设计、肖特基结以及传感器阵列构建几个方面。科研人员还提出了可应用在增强爆炸物检测的电学传感器性能上的策略和方法,包括垂直的阵列结构、一步构建的有序结构、“锁钥”设计、自驱动传感以及可转移和穿戴的传感器设计等。该综述文章通过总结典型的基于电学传感器的爆炸物蒸气检测工作,提炼出了先进可行的实验方法,并且在面对实验室工作与实际检测之间的差距时,提出了一些解决现有问题的可行性方案,同时提出了非制式爆炸物检测被忽视的问题,为未来基于电学传感器的爆炸物检测工作提供了新的研究思路和理论依据。 /p p   该实验室自2012年以来,长期从事微传感方面的研究,尤其致力于开拓爆炸物检测的新理论、新方法、新材料方面,取得了一系列重要成果,截至目前,已在Advanced Functional Materials, Advanced Optical Materials, Small, Nanoscale,Journal of Materials Chemistry,Journal of Physical Chemistry C 等国际期刊上发表10余篇学术论文,提出了肖特基结构建、过渡金属掺杂、缺陷态控制、晶面调控、光电催化检测等用于爆炸物检测的新思路。此次发表的专题综述文章同时对微传感实验室在该方面的科研成果进行了总结,例如利用插层调控肖特基结的势垒高度和吸附能来增强硅纳米线阵列/石墨烯的检测性能(Adv. Funct. Mater. 2015, 25, 4039),引入光照增强气敏检测的性能(Nanoscale 2013, 5, 10693)。 /p p   该工作得到国家自然科学基金、中科院“百人计划”、创新基金等项目的资助。 /p p br/ /p
  • Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应
    Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应布鲁克纳米表面事业部 魏琳琳 博士英文题目:Nature Communications: Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites摘要以聚合物为基体,无机纳米粒子为填料的聚合物纳米复合材料具有优异的力学、电学和热学性能。纳米颗粒和聚合物之间的界面效应通常被认为是实现这些性能增强的关键因素。然而,如何理解界面效应以及界面微区的结构与性能是聚合物纳米复合材料领域长期面临的基础性难题。近期,来自武汉理工大学、清华大学、伍伦贡大学等学校的科学家们将Bruker的光热诱导纳米红外技术与其他先进技术相结合,直接探索纳米颗粒-聚合物纳米级界面区域。研究发现无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构,包括10纳米厚的内层和大于100纳米的外层界面。分子动力学及相场模拟结果表明纳米颗粒表面电势以及颗粒间距的协同作用是形成界面极性构型的关键作用机制。这项研究的结果有助于阐明界面处的相互作用机制,并为制备纳米复合材料以获得最佳性能提供有价值的见解。利用无机纳米粒子/聚合物复合材料的高极性“双界面层”行为,科学家们在具有超低无机填料含量的纳米复合材料中获得了显著增强的介电及压电性能。相关研究成果以Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites为题,发表在Nature Communications上。实验内容实验选择典型的铁电聚合物PVDF作为基体,填充TiO2纳米颗粒。其中PVDF膜层的厚度低于纳米颗粒的直径,使TiO2能够暴露在膜层表面(图1 a)。图1b,c 样品表面和横截面的SEM图像显示颗粒表面存在约10nm的包裹层。HADDF和碳成像图(图1d,f)进一步表明10nm的结合层富含碳元素,为有机碳链键合在纳米颗粒表面。采用布鲁克nanoIR3纳米红外系统进一步研究了界面区域的化学结构(图1 e f)。采用PVDF极性构象的波数(866cm-1)和非极性构象的吸收波数(766cm-1)进行红外成像,分别对应图1f中图和右图。红外成像图显示纳米颗粒周围存在100nm以上强极性构象区域。压电力显微镜(PFM)采集平行于膜平面和垂直于膜平面的L-PFM图像及面外V-PFM图像,结果显示颗粒的L-PFM呈现一半亮一半暗的结构,V-PFM呈现全亮的结构。表明纳米颗粒/聚合物的内层界面区域内偶极子的极化方向垂直于纳米颗粒表面。综合以上的观测结果,作者揭示了无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构, 由10nm的极性偶极子内层界面的和100nm强极性构象的外层界面组成。 图1 直接观测无机纳米颗粒与聚合物基体的“双界面层”结构作者采用nanoIR3纳米红外系统进一步研究了纳米颗粒的间距对界面效应的影响(图2)。距离较远的纳米颗粒会形成强极性构象结构界面(图2 b左图);距离相对较近的纳米颗粒,其界面区域相互重叠,将抑制极性构象的形成(图2 b中图);纳米颗粒相互连接时,界面区域也倾向于相互合并(图2 b右图)。FTIR检测不同TiO2纳米颗粒含量的宏观材料中极性构象的比例(840 cm&minus 1/766 cm&minus 1及 1279 cm&minus 1/766 cm&minus 1峰强比),TiO2纳米颗粒含量0.35%时极性构象最多,继续增加纳米颗粒含量,由于纳米颗粒间距变小,界面区域相互重叠使极性构象含量降低。分子动力学及相场模拟表明极性构象界面的形成取决于纳米颗粒表面电势以及颗粒间距的协同作用。图2 纳米颗粒/聚合物复合材料界面极性区域采用纳米叠层设计(Al2O3/PVDF/ Al2O3)表征单一界面层的贡献。纳米叠层纳米复合材料的介电常数εr与PVDF的膜厚具有很大的相关性,并随着PVDF膜厚的减小而增加。由于界面极性层的影响,纳米叠层纳米复合材料显示出比Al2O3(εr~9.8)和PVDF(εr~7.8)更高的εr。而Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm),包含两层内层界面层结构,表现出86 J/cm3的超高介电能量密度,远高于文献报道的纳米复合材料的介电能量密度。同时具有76%的能量效率,与大多数介电聚合物或纳米复合材料相当。图3 内层界面层增强复合材料介电性能 总结借助于布鲁克纳米红外系统,直接观测到纳米颗粒-聚合物复合材料的极性界面构象,并研究了颗粒间距对极性构象的影响。结合其他科学工具的结果,本文的工作促进了对聚合物纳米复合材料中界面基础科学问题的理解,可为高性能极性聚合物复合材料的设计与开发提供指导,并推动介电储能、电卡制冷、柔性压电传感等高新前沿技术领域的发展。 本文相关链接:Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites [J] Nature Communications volume 14, Article number: 5707 (2023)https://www.nature.com/articles/s41467-023-41479-0
  • 和泰用户巡访记 | 第五季• 第五站:江西、福建
    和泰仪器-技术服务部,以“用心坚持专业,致力服务用户”为理念,“客户满意”为首要目标,积极推动2019年度终端用户巡访工作的开展。第五季• 第五站:江西时间:9/16-9/20江西的巡访服务还处于起步阶段,在有了前几季的巡访经验后,我们把巡访内容和模式复制到江西地区,发现效果不错,而且相比之前我们能走更少的弯路,并能创造更好的效果。江西服务中心的每一位同事都与我们一样,热情高涨的服务每一位用户。耐心为客户讲解在本次巡访工作中,我们主要回访了化工研究所、九环检测、中医院大学、粮油监测中心、九江学院、浔阳环保局、南大一院、林业科学院等多家科研院所、检测中心和工业企业单位。维修现场在巡访过程中,我们依然发现了此前其他地区发现的问题:水源不稳定、对水质认知不够、缺乏保养意识等。在这种使用环境下会导致耗材消耗过快,内部元器件易损等故障。我们帮用户解决问题并培训相关知识后,得到了用户的一致好评。第五季• 第五站:福建时间:9/23-9/27即使在没有厂家工程师开展巡访工作的时候,福建的同事在当地已经铺开了回访工作,其力度丝毫不亚于年度的厂家巡访工作。但依然有些棘手的问题需要我们共同去解决,比如我们常见的离线检测水质问题(相关文章请公众号内搜索“离线检测”)。现场维护此次巡访,有两家用户对和泰纯水机的电阻率和PH产生了质疑,在福建同事多次“讲道理”无果后,我们只能通过“摆事实”的方法来证明我们的“纯净”。检测水质我们在巡访过程中不仅仅是在证明我们的产品和服务质量,更多的是在了解用户的使用环境和习惯,我们相信,每一家做实业的公司,无时无刻都需要去了解终端的使用信息,收集终端的使用反馈,我们从中吸取经验转化为我们的养分,让我们能更加茁壮成长。公司始终把用户的利益放在首位,定期的巡访工作,帮助了我们了解用户的需求,听取用户建议,用户的意见反馈,目标就是做到让客户真正地满意,省心。“用心坚持专业,致力服务用户”,为了您的满意,我们从未停下前进的脚步!!下一站:广东、湖南!
  • 和泰用户巡访记 | 第五季• 第三站:安徽
    和泰仪器-技术服务部,以“用心坚持专业,致力服务用户”为理念,“客户满意”为第一目标,积极推动2019年度终端用户巡访工作的开展。时间:8/19-8/22在前几期的安徽巡访中,大部分纯水系统使用情况相对稳定,这主要归功于当地服务中心充分做好了服务工作。本次巡访过程中,厂家工程师基本也是处理了一些非常规性的故障以及不规范操作。现在正值开学季,各大院校都开启了维护实验室设备的计划,我们在巡访过程中也针对现场情况给了客户合适的使用方案。本次巡访,我们走访了安徽大学,中国科学技术大学,安徽农业大学,安徽科技学院,合肥城市排水检测中心,盈峰环境技术研究院合肥基地,安徽省医学科学研究院等多家院校和国家单位。在回访的过程中,我们发现了一些可能是大部分实验室都存在的普遍问题:没有明显和有效的管理制度。当之前的操作人员离职或者调换岗位后,接任人并没有接受操作培训和交接,也没有其他能有效了解到仪器相关知识的方式。所以我们在巡访中建议用户根据我们的标准操作规程或者说明书,来制定适合现场纯水系统的标准操作规程。我们在巡访中还发现,很多客户在超纯水水质下降后并没有及时更换纯化柱,而是抱着能用继续用的想法。其实这样的想法是非常不利于系统运行的,纯水系统内部的检测电极是非常精密的配件,不达标的水质可能会导致电极烧坏等故障,最终因小失大。所以我们再次强调了及时更换纯化柱的重要性。安徽省的巡访给我们的感觉是,虽然身体很累,但是心里顺畅。因为我们清晰地感受到了我们之前的耕耘已经得到了回报,客户对纯水系统已经有了明显的保养意识,操作使用也比较规范,我们的巡访工作同时也受到了客户的一致好评。我们也将继续坚持,持续为客户提供优质的服务。我们始终把用户的利益放在首位。定期的客服回访、定期的工程师巡访、24小时人工热线,帮助了我们及时听到用户的需求。我们认真的思考用户建议,坚持对用户需求变化信息持续的跟踪,继而深入研究制定用户服务方案。我们反复的审视服务策略和定位,对待设备的质量反馈、用户的意见反馈,第一时间响应,目标就是做到让客户真正地满意,省心。第五季• 第四站:北京敬请期待!
  • 和泰用户巡访记 | 第五季• 第一站:河南
    和泰仪器-技术服务部,以“用心坚持专业,致力服务用户”为理念,“客户满意”为第一目标,积极推动2019年度终端用户巡访工作的开展。第五季• 第一站:河南时间:8月5日-10日此次河南之行,工程师发现很多的用户对水机的水质有清晰的认识和了解。在巡访的几个重点实验室,使用者们自己动手更换水机内部的耗材,设置内部耗材使用时间及参数,平常的工作中水机维护的也很好。在巡访的过程中,工程师始终以”坚持专业,服务客户”的理念,“客户满意”为第一目标,先后巡访了郑州大学第一附属医院,郑州大学医学院,河南省华之源生物技术有限公司,国家建筑装修监督检验中心,河南省产品质量监督检察院,河南水建集团有限公司,河南省农业科学院,河南省动物免疫学重点实验室,河南省牧业经济学院,郑州中检科测试技术有限公司等等单位。用户对我们的巡访工作非常的满意,我们也会再接再厉,争取用更多的行动回报给广大的用户。驻地工程师在平时的工作中做的也非常到位,他们定期的回访,给用户介绍具体的使用细节和平时维护注意的事项,免费提供上门更换滤芯服务。解决用户使用中遇到的问题,收集用户的意见和建议,记录汇总并反馈给公司。和泰一向重视这些意见和建议,并及时进行反馈,力争为客户带去更优质的产品与服务。我们始终把用户的利益放在首位。定期的客服回访、定期的工程师巡访、24小时人工热线,帮助了我们及时听到用户的需求。我们认真的思考用户建议,坚持对用户需求变化信息持续的跟踪,继而深入研究制定用户服务方案。我们反复的审视服务策略和定位,对待设备的质量反馈、用户的意见反馈,第一时间响应,目标就是做到让客户真正地满意,省心。下一站:广西!
  • 环保部首次发布土壤和沉积物无机元素波长色散XRF法标准
    p   近日,为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,规范环境监测工作,环保部发布《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》、《环境空气 五氧化二磷的测定 钼蓝分光光度法》两项国家环境保护标准,标准将于2016年2月1日起实施。 /p p   标准名称、编号如下: /p p   一、 a href=" http://125.39.66.163/files/7078000002A35DC8/kjs.mep.gov.cn/hjbhbz/bzwb/trhj/trjcgfffbz/201512/W020151222556932681759.pdf" target=" _blank" title=" " 《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 780-2015) /a /p p   二、《环境空气 五氧化二磷的测定 钼蓝分光光度法》(HJ 546-2015)。 /p p   其中,《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 780-2015)为首次发布。 /p p   本标准主要起草单位:江苏省环境监测中心、环境保护部环境标准研究所。本标准验证单位:国土资源部华东矿产资源监督检测中心、国土资源部南京矿产资源监督检测中心、山东省地质科学实验研究院、镇江出入境检验检疫局、苏州市环境监测中心站和江苏省环境监测中心。 /p p   本标准适用于土壤和沉积物中25 种无机元素和7 种氧化物的测定,包括砷(As)、钡(Ba)、溴(Br)、铈(Ce)、氯(Cl)、钴(Co)、铬(Cr)、铜(Cu)、镓(Ga)、铪(Hf)、镧(La)、锰(Mn)、镍(Ni)、磷(P)、铅(Pb)、铷(Rb)、硫(S)、钪(Sc)、锶(Sr)、钍(Th)、钛(Ti)、钒(V)、钇(Y)、锌(Zn)、锆(Zr)、二氧化硅(SiO2)、三氧化二铝(Al2O3)、三氧化二铁(Fe2O3)、氧化钾(K2O)、氧化钠(Na2O)、氧化钙(CaO)、氧化镁(MgO)。 /p p   本方法22 种无机元素的检出限为1.0 mg/kg~50.0 mg/kg,测定下限为3.0 mg/kg~150mg/kg 7 种氧化物的检出限为0.05%~0.27%,测定下限为0.15%~0.81%。 /p
  • 面对危险废物无机元素的检测,我们应该如何选择检测设备?
    导读:根据危险废物鉴别标准 浸出毒性鉴别(GB 5085.3-2007)、生活垃圾填埋污染控制标准(GB16889-2008)、危险废物焚烧污染控制标准(GB 18481-2001)、危险废物填埋污染控制标准(GB 18598-2001)等一系列危险废物有害元素限制的国家标准的相继出台,固废中的无机元素的检测变得越来越重要;面对市面上多种技术和检测设备,固废处理企业应当如何进行仪器选型?本文通过对几项标准的解读,和主流技术仪器的对比,为用户企业提供一定的参考。 危险废物的鉴别主要依据的是GB 5085-2007系列鉴别标准和HJ/T 298-2007鉴别技术规范。需要检测和鉴别的无机金属元素有《GB 5085.3-2007 危险废物鉴别标准 浸出毒性鉴别》和《GB 5085.7 危险废物鉴别标准 毒性物质含量鉴别》中的无机金属元素及其化合物,具体分析方法详见下表1。表 1危险废物中无机危害成分及分析方法 序号危害成分项目分析方法1铜(以总铜计)A、B、C、D2锌(以总锌计)A、B、C、D3镉(以总镉计)A、B、C、D4铅(以总铅计)A、B、C、D5总铬A、B、C、D6六价铬分光光度法7汞(以总汞计)B8铍(以总铍计)A、B、C、D9钡(以总钡计)A、B、C、D10镍(以总镍计)A、B、C、D11总银A、B、C、D12砷(以总砷计) C、E13硒(以总硒计)B、C、E14铊(以总铊计)A、B、C、D15钒A、B、C、D16锰A、B、C、D17钛A、B18锑(以总锑计)A、B、C、D、E19锡(以总锡计)B、D20钴(以总钴计)A、B、C、D21锶(以总锶计)A、B、C、D备注:A:电感耦合等离子体原子发射光谱法B:电感耦合等离子体质谱法C:石墨炉原子吸收光谱法D:火焰原子吸收光谱法E:原子荧光法 从上表中可以看出,如果想解决固体废物和危险废物中所有的无机金属元素检测,最理想的情况是将上述六种方法对应的设备都配齐,并且有相匹配的技术人员人数。但现实并没有这么理想,目前在整个危险废物经营行业中能够具备这样实力的单位很少。大多数的企业从资金到人员的配备上都很难满足6种大型仪器全部配齐的理想要求;基本上该行业的用户希望能够配置1-2种仪器,来满足目前的样品检测需求;更理想的情况是,在这两三种仪器的基础上,还能够通过简单的增补配置和前处理等方式,继续满足未来可能扩展的潜在检测需求。既然财力和人力都有限,那么应该如何选择配置仪器设备来最大程度上满足现有的和未来的检测需求呢?我们通过对六种分析仪器及方法的优缺点的比较,来确定如何选择合适的仪器组合。 电感耦合等离子体质谱仪(ICP-MS)虽然能够使得实验室顿时“高大上”起来,但实际在元素分析中是它却是一把“双刃剑”,优点鲜明——具有检出限低、样品通量大、可进行同位素分析等优点,同时劣势也很明显:仪器本身购买的价格很高,仪器维护麻烦,成本高,样品前处理要求苛刻,从试剂选择到操作到人员技术能力再到实验室环境都有非常高的要求。浓度较高的样品,需要多次的稀释,误差会非常的大。目前国内固体废物、危险废物处理行业还处于起步发展阶段,技术人员和技术能力储备能力以及购置仪器的资金均有限,所以大部分企业几乎不一会配置ICP-MS。 原子吸收分光光度法(AAS)作为经典的元素分析方法,在单元素分析时有一定的优势,。例如火焰法分析速度快,精密度好,石墨炉法检出限低,可以直接固体或悬浮液进样等。但受限于元素灯一次只能分析一个元素,多元素检测时分析效率将大大降低。并且火焰法由于原子化温度不高,同时检出限相对于其他方法高,一般为mg/L(mg/kg)~百分含量,难以满足部分元素的检测需求。石墨炉法由于单个元素分析时间长(每个数据每个元素约4分钟)、数据结果精密度较差(1~5%)、线性动态范围小(102),制约了该技术的推广,目前只在个别元素分析上有一定的优势。固体废物和危险废物处理行业需要筛查大量样品,鉴别的元素种类较多,而大样品量多元素同时分析恰好是原子吸收分光光度法劣势,所以不建议配置原子吸收分光光度计为实验室常规分析仪器。 原子荧光分光光度法(AFS)是目前分析砷、汞等重金属元素最理想的方法,但除了这几种重金属元素以外的元素分析,原子荧光分光光度法就显得无能为力。所以原子荧光分光光度计可以作为砷、汞等重金属元素的专用仪器进行配置。 电感耦合等离子体发射光谱法(ICP-OES),采用高温等离子体作为原子化器,不需要元素灯,可真正实现多元素同时测定。目前主流市场上的ICP-OES又可分为顺序扫描型(又叫单道扫描型)和全谱直读型。顺序扫描型(单道扫描型)ICP-OES存在运动部件,即步进电机;分析时需要针对所选择的元素谱线一个一个分析,整体分析速度较慢,通常为5~8个元素/分钟;信号和背景(或者干扰)不是在同一时刻采集的,测量准确性较差,另外因为检测使得时间长,导致整个分析过程中氩气的消耗量较高,这对于实验室来说,是一笔不小的开支; 如果采用顺序扫描型ICP-OES进行危险废物行业多元素分析,必然存在以下几个问题:1. 操作繁琐,整个检测过程需要先测量标液、再测量样品、再测量标液,非常浪费时间。2. 单道扫描需要依次读取每一个波长的数据,测量时间跟测量波长数量有关,多个元素的测量会需要大量的时间,工作效率低。3. 危险废物行业的样品往往需要选择多个波长的测量结果进行分析,以确定一个不受干扰的波长作为测量波长,不同基质的样品最优的波长都不一样,因此每批样品都需要进行最优波长确认,耗时耗钱。4. 危险废物行业往往需要筛查大量样品,如果一个样品检测时间多一倍,那么对于几十上百的样品,检测时间上的差距就更大了。不仅浪费水浪费氩气,而且还会严重影响效率。 全谱直读型ICP-OES采用中阶梯光栅分光系统,具有高分辨率和色散率,无运动部件,多元素多波长同时分析时只需1~2分钟,其检测速度、重复性、稳定性都有很大的提高。 相对于原子吸收分光光度法和紫外可见分光光度法,多元素快速测量才是ICP-OES真正的优势所在。单道扫描型ICP-OES的缺点在于操作繁琐,时间长,对于快速多元素测量影响特别大,因此全谱直读型ICP-OES仪器更适合危险废物鉴别的应用。 分光光度法检测六价铬具有其他方法不具备的优势,检出限比火焰原子吸收低(检测范围0.004mg/L~1.00mg/L),采购、运行和维护成本比石墨炉原子吸收法、电感耦合等离子体发射光谱法低(不需要消耗石墨管和氩气)。 综上所述,在固体废物和危险废物处理行业应用中,大量样品筛查和多元素鉴别时电感耦合等离子体发射光谱仪应作为第一选择仪器,原子吸收分光光度计可以作为第二次能力补充或提升时进行配置。而原子荧光分光光度计和紫外可见分光光度计作为砷、汞等重金属元素和六价铬分析的专用仪器配置。 当然,以上只是我们通过分析推荐测检测配置,如果有些固废处理企业存在某些特殊元素或者资金实力雄厚的情况,大可以根据自己的喜好和侧重来选择仪器配置。 聚光科技(杭州)股份有限公司,是目前国内规模最大的无机元素分析仪器设备供应商,可为环保固废企业用户提供全面的元素分析解决方案。欢迎广大用户来电垂询。联系电话:0571-85012067传 真:0571-85012006聚光科技官方网站:www.fpi-inc.com
  • 土壤/沉积物中的有机碳、无机碳及元素碳检测方案 | 德国元素
    对于诸多应用而言,总有机碳含量(TOC)都是一项重要指标。在农业科学中,碳是了解土壤和沉积物中元素循环的重要参数。有机碳通过植物和动物排泄物分解进入土壤,成为微生物和植物的主要养分来源。因此,TOC分析可提供有关微生物活性和有机物质的重要信息,从而对土壤和沉积物进行定性和评估。直接测定TOC是一种重要的分析方法。通常先测定总碳含量,然后再减去总无机碳。除了有机碳,在土壤和沉积物中还存在无机碳,通常以碳酸盐的形式存在。然而其实还有一种碳源的存在,那就是元素碳(ROC),其与无机碳一样,均不具有生物可利用性。但是通过传统的酸化法无法区分元素碳、有机碳及无机碳,这也是一直进行土壤与沉积物中有机碳测定的困扰。德国元素 Soli TOC cube 碳组分分析仪采用创新的温度梯度法,无需对样品进行前处理,即可通过不同的温度梯度,直接区分测定土壤及沉积物中的不同碳组分,如有机碳、无机碳与元素碳。经过多年的不断优化,Soli TOC cube 内置多种优化方法,应对不同样品的测试需求。案例分享:直接将标样与土壤直接称于不锈钢坩埚中;将坩埚直接放置于仪器自动进样器上;按照仪器内置方法进行测定。实验数据:结果显示,德国元素 Soli TOC cube 碳组分分析仪 可高精度分析土壤中的不同碳组分,且与标样、标准土壤样品的理论值非常接近,完全满足客户的测试要求。
  • 从2017年无机及同位素质谱学术大会看岛津无机质谱技术新进展
    2017年8月19日,由中国质谱学会、表面物理与化学重点实验室主办2017年中国质谱学会无机及同位素质谱学术会议在四川成都隆重揭幕。来自高校、科研院所、以及相关企业的200余人参加了本次会议。组委会邀请了相关质谱领域的院士和著名学者进行大会报告,同时举行分组专题报告和墙报论文展示,交流无机质谱、同位素质谱以及相关技术的最新研究、仪器研发和应用成果。 大会现场传真 会议由本次会议组织委员会主任、北京师范大学教授谢孟峡主持开幕,中国质谱学会副理事长、核工业北京地质研究院郭冬发研究员,中国工程物理研究院机械制造工艺研究所王宝瑞所长,中国核工业建设集团公司研究员李金英致开幕词,期待本次大会能够增进质谱事业的发展以及质谱设备研发水平的提高。简短的开幕仪式后,进入大会报告环节。中国钢铁研究总院王海舟院士做了题为《中国材料与试验标准的发展》的报告,介绍了材料与试验标准体系现状,以及中国材料与试验团体标准CSTM的情况。他强调标准应该是前端的、与技术同步。随后,中国核工业建设集团公司李金英研究员做了题为《质谱技术在核工业领域应用研究新进展》的报告,核工业北京地质研究院郭冬发研究员题为《铀矿物质谱成像分析》的报告,清华大学林金明教授做了题为《微流控芯片质谱联用细胞分析方法研究》的报告,中国工程物理研究院材料研究所廖俊生研究员做了题为《核材料研究中的无机质谱应用技术》的报告,上述权威专家的大会报告中,与“核”相关的报告有3个之多,可见无机及同位素质谱技术在核工业领域的广泛应用。 中国钢铁研究总院王海舟院士做了题为《中国材料与试验标准的发展》的报告 中国核工业建设集团公司李金英研究员做了题为《质谱技术在核工业领域应用研究新进展》的报告 核工业北京地质研究院郭冬发研究员题为《铀矿物质谱成像分析》的报告 清华大学林金明教授做了题为《微流控芯片质谱联用细胞分析方法研究》的报告 中国工程物理研究院材料研究所廖俊生研究员做了题为《核材料研究中的无机质谱应用技术》的报告 岛津公司倾情赞助了本次大会并披露了在无机及同位素质谱的最新研究成果。在“无机质谱技术及应用”分会上,岛津公司分析测试仪器市场部的资深技术专家石欲容博士做报告,重点介绍了岛津无机质谱的联用技术,岛津公司可以提供LC、GC、IC、CE、LA与ICPMS联用的所有产品及技术支持。她在报告中主要介绍了岛津的LC-ICPMS做汞形态分析及地下水中硼、溴、碘形态价态的同时分析。汞的形态分析需要考虑汞的残留,岛津公司的联用系统采用全惰性的液相色谱,PEEK材质的泵头、管路、进样针、联机组件的切换阀,同时也采用了一根带PEEK内衬的C18柱,将汞的残留降低到最低,在等度的条件下将二价汞、甲基汞、乙基汞进行了很好的分离。由于硼大量的工业化应用,加上水臭氧消毒过程将水中的溴、碘氧化成具有一定毒性的衍生物,岛津公司采用离子色谱柱,在等度的条件下同时分析了硼、溴、碘形态分析,同时加标回收、重现性、检测限都得到理想的结果。此外,岛津公司分析中心的技术专家还发表了多篇代表岛津公司先进水平的墙报,引起与会者的关注。 岛津公司分析测试仪器市场部石欲容博士做报告 岛津展台传真 并排而列的岛津公司分析中心的墙报发表引起与会者的关注 岛津分析中心孙友宝与他的发表墙报《电感耦合等离子体质谱法同时测尿的液中多种元素》人体内的痕量元素可以分为必需元素(如Se、Mo、Co、Cu、Zn 等)和有毒元素(如Be、 Pb、Cd等)两大类。通过对尿液中痕量元素的监测,本文参考《SFZ JD0107017-2015 生物检材中32种元素的测定电感耦合等离子体质谱法》,采用直接稀释前处理方法,使用岛津ICPMS-2030型电感耦合等离子体质谱仪测定了尿液中的多种金属元素的含量并通过加标回收率实验对方法进行了验证。实验结果表明,各元素线性相关系数大于0.999,该方法精度在5%以内,元素检测线在0.001-0.07μg/L,尿液样品回收率在90%~110%之间。该方法操作简单,定量准确,线性范围宽,可满足人尿中多种金属元素成分分析的要求。 岛津分析中心盖荣银与他的发表墙报《ICPMS-2030测定中药材甘草中砷、镉、铜、汞、铅元素的含量》对于中药市场的检查发现,市场上的甘草存在硫熏、细菌、重金属超标等问题,达不到药用要求,甚至出现伪品,冒充甘草出售。所以对于中药材甘草中砷、镉、铜、汞和铅重金属的测定非常重要。本文使用岛津ICPMS-2030直接测定中药材甘草样品中重金属元素的含量,并进行加标回收实验。加标回收率在98.6%~101%之间。该方法具有灵敏度高,检出限低,精密度高,分析速度快,操作简单,可行性高等特点,可以完全满足药典规定的 岛津分析中心曾力与他的发表墙报《ICPMS 同时测定人发中多种金属元素的含量》人体含有多种必需的、非必需的和有害微量金属元素。准确检测这些微量元素,有利于指导人们的膳食结构,控制人体体液的离子平衡,保障身体健康。本文采用岛津新品电感耦合等离子体质谱仪 ICPMS-2030 结合微波消解前处理方法,测定了头发样品中的 23 种金属元素含量的方法。将所建立方法应用于人发标准物质中的金属含量分析,分析结果线性相关系数良好, r0.9998,实验结果与标准值吻合,方法准确、可靠。该方法具有灵敏度高,检出限低,易于操作的特点,为人发样品中的金属元素测定提供了有用的参考。 岛津分析中心钟跃汉与他的发表墙报《HPLC-ICP-MS 法测定环境水样中的形态汞》水环境中的汞及其化合物是全球性污染物,是欧美、日本、俄罗斯和中国等多个国家优先控制的污染物之一。本文建立了联用岛津高效液相色谱 LC-20Ai 和电感耦合等离子体质谱 ICPMS-2030,使用PEEK column InertSustain C18, 4.6*250mm, 5μm 色谱柱分离测定环境水样地表水和地下水中无机汞、甲基汞和乙基汞含量的方法。将所建立方法应用于环境水样地表水和地下水中的汞形态分析,分析结果线性相关系数良好,r0.9998,加标回收率在 83.1%~106.6%之间,方法准确、可靠。该方法不仅可以同时分析不同形态的汞,并且具有灵敏度高,检出限低,易于操作的特点,为环境水样品中的汞形态分析测定提供了有用的参考。 在大会举办前夜,岛津公司举办了招待晚宴,为全体与会嘉宾提供了一个轻松交流的平台。岛津公司分析测试仪器市场部胡家祥部长发表了热情洋溢的致辞。首先他对能够在魅力城市成都与各位新老朋友相聚表示非常高兴。他在致辞中指出,目前在各个领域无机质谱和同位素质谱所发挥的重要日益显著,岛津公司不断革新与挑战,开发生产具有高附加价值的产品。岛津推出的ICPMS-2030电感耦合等离子体质谱仪具有显著优势,在推出后短短的一年中得到了包括医药、环境、疾控、农业、独立检测等领域众多客户的高度认可与好评。他在致辞的最后表示岛津公司将继续与中国用户密切合作,持续倾听客户声音,开发出真正适合用户需求的产品与应用。 岛津公司分析测试仪器市场部胡家祥部长发表致辞,表示岛津公司将继续与中国用户密切合作,持续倾听客户声音,开发出真正适合用户需求的产品与应用
  • 传承不息,焕新升级 | 德国元素无机红外碳硫仪、氧氮氢元素分析仪与直读光谱选型方案
    近日,国务院出台《推动大规模设备更新和消费品以旧换新行动方案》,是加快构建新发展格局、推动高质量发展的重要举措,鼓励对仪器设备的淘汰落后与更新升级,旨在大力促进先进设备生产应用,推动先进产能比重持续提升,实现当前与长远的双赢。薪火传承,创新致远德国元素Elementar助力仪器设备更新迭代加快产品更新换代是推动高质量发展的重要举措,可以体验到更先进的仪器分析技术,提高分析的准确性和效率。德国元素Elementar凭借在元素分析领域超过120余年的经验传承,在原先老仪器的坚实基础上不断优化升级,推陈出新,打造全系列高效、稳定、精准和便捷的元素分析仪,已成为专业元素分析的代名词,蜚声国际,为化工、农业、能源、环境、鉴定、材料等领域的客户提供卓越及客户友好的元素分析解决方案。材料的元素组成决定其性能。因此,元素分析对于需要满足一定特性和质量控制要求的材料至关重要。德国元素Elementar设计了创新的inductar® 系列红外碳硫仪、氧氮氢分析仪和移动式火花直读光谱仪。创新理念和先进技术相结合,让inductar系列产品从同类仪器中脱颖而出。简单易用的无机元素分析仪,采用高度创新的测试方法来测定碳、硫、氧、氮、氢和轻金属的元素含量。以下为无机材料红外碳硫仪、氧氮氢分析仪和移动式火花直读光谱仪的选型方案,针对客户的不同应用,提供定制化的精准解决方案,为科研和生产工作提供强有力的支持。德国元素Elementarinductar 系列inductar CS cube 红外碳硫仪应用材料:黑色系金属合金,有色金属,难熔合金,电极材料,光伏材料,陶瓷材料,无机储氢材料,地质矿物等分析元素:碳、硫元素inductar ONH cube 氧氮氢分析仪应用材料:黑色系金属合金,有色金属,难熔合金,光伏材料,陶瓷材料,无机储氢材料,地质矿物等分析元素:氧、氮、氢德国元素Elementar移动式火花直读光谱仪ferro.lyte - 移动式火花直读光谱仪分析基体:铁基,铝基,铜基,镍基,钛基分析元素:Be, B, C, Mg, Al, Si, P, S, Ca 等元素以及双相钢中的 N 元素都能快速可靠的检测出来。
  • 专注无机元素分析,守护国民食品卫生健康——访北京市疾病预防控制中心中心实验室副主任刘丽萍教授
    提到疾控中心,人们习惯性联想到非典、新冠等突发传染病的预防、控制工作。事实上我们这样理解是片面的,以北京市疾控中心为例,其不仅负责北京市传染性疾病、慢性非传染性疾病、计划免疫等的预防与控制的工作,还承担食品卫生、环境卫生、放射卫生和职业卫生等健康危害因素的监测与干预等任务。今年以来,“小龙坎”火锅店、“蜜雪冰城”奶茶店、“华莱士”快餐店、“杨国福”麻辣烫店、“奈雪的茶”奶茶店、“大润发”超市、“胖哥俩”肉蟹煲店曝出食品安全问题。网红店们接连“爆雷”,使得食品安全问题再次被推上舆论的风口浪尖,引发社会广泛关注。为深入了解疾控中心关于食品安全等工作,近日,仪器信息网走进了北京市疾病预防控制中心,与中心实验室副主任刘丽萍教授进行了深入对话交流。刘丽萍主任技师北京市疾病预防控制中心 中心实验室副主任/首都医科大学教授、硕导专注无机分析,主持制定多项国家标准刘丽萍所在的北京市疾病预防控制中心中心实验室是北京市中毒诊断溯源技术重点实验室,专注于食品安全、环境健康等相关检测方法储备和开发,新型污染物研究和应急突发中毒事件处理工作,为政府提供技术支持。在职业生涯早期,刘丽萍主要从事色谱技术分析,如食品中666、DDT等农药残留检测、酒中杂醇油检测等。1994年的一次工作调整,刘丽萍开始从事原子光谱工作,从采用原子荧光技术分析测定食品中砷、汞、硒开始转型无机元素分析,这一干就是二十七年。从事元素分析以来,刘丽萍在无机元素分析及相关国家标准制定方面做了大量的工作,见证了国内无机元素分析发展的几个重要历程。她主持参加了数十项饮用水、食品、化妆品、生物样品中有害物质的标准方法研制工作,其中研制的多项检测方法被纳入《生活饮用水标准检验方法》(GB/T 5750)、《饮用天然矿泉水检验方法》(GB/T 8538)、食品安全国家标准和国家卫生行业标准中,在全国推广应用。2013年卫健委在全国范围为食品安全风险监测遴选了八个参比实验室,由于工作成绩突出,北京市疾病预防控制中心被授予“兽药残留、非法添加、有害元素”三个参比实验室,承担食品安全风险监测中实验室质量控制、考核、技术培训、异常结果的复核和相关分析方法研究工作,刘丽萍主要负责有害元素参比实验室工作。从2015年至今,刘丽萍团队多次承担元素类标准操作规程的研制工作,多年来为食品安全风险评估监测体系制定来了谷类、蔬菜、水果、食用菌、婴幼儿谷类辅助食品、虾姑、茶叶、枣类、贝类、肉类、畜禽内脏中46种多元素的测定方法,虾姑、食用菌中无机砷测定方法的研制工作,为食品安全风险评估做了大量重要又精细的前瞻性工作。攻克元素测定难题,不断修订完善新国标2006年,一起引起国内外轩然大波的“紫菜海带”事件发生。事情的起因是国家市场监管相关单位在进行例行的藻类产品质量监测时,发现部分地区海带、紫菜中无机砷含量严重超标。一石激起千层浪,很快华南、华东、华北多个省份和地区的紫菜海带均被检查出无机砷超标,甚至有媒体形容吃紫菜犹如吃“砒霜”,全国市场上的绝大部分紫菜和海带滞销,我国海藻养殖业陷入危局。此事惊动了时任国家总理温家宝,责成卫生部门牵头处理此突发事件,作为主要参加人之一,刘丽萍第一时间参与了检测方法确认事件处理工作。经过大量的研究工作,刘丽萍和事件处理团队发现原国家标准检测方法GB/T 5009.11-2003中无机砷测定方法不适合紫菜、海带这类有机砷含量高的样品。由于方法的不适用造成假阳性,所以紫菜、海带中无机砷含量超标是个冤假错案!一桩“冤案”澄清了,众多从业者松了口气,老百姓也舒了一口气,紫菜、海带市场也恢复了往日繁荣。而刘丽萍他们并未就此打住,从这一年开始,刘丽萍和方法研制团队开始进行食品中总砷及无机砷测定方法的进一步研究。由于不同食品基质中砷形态的多样性和复杂性,食品中总砷和无机砷检测是一难点。将近十年,刘丽萍和研制团队做了大量工作,优化了一个又一个分析条件,对测定方法进行不断的修改完善。直到2015年9月23日《食品安全国家标准 食品中总砷及无机砷的测定》GB5 009.11-2014终于颁布出台了!GB 5009.11-2014较2003版本有很大的变化,此方法的出台凝聚了研制团队多年的心血,也首次引入液相和原子光谱联用分析技术,使我国元素形态分析工作上了一个大台阶。2015年刘丽萍团队偶然发现某野生食用菌中总砷含量很高,大大超过食品安全国家标准对食用菌的限量规定。然而此食用菌在当地却被视为山珍美味,这激起刘丽萍极大的研究兴趣。于是她带领团队开始对食用菌中砷形态进行研究,几经周折,最后采用三重四级杆液相色谱质谱定性,液相色谱-电感耦合等离子体质谱法分析测定,发现此山珍--野生食用菌中含有的大量砷为对健康无害的有机砷-砷甜菜碱,这项工作为野生食用菌的安全性研究提供了有力支持。团队的研究工作远没有停止,目前刘丽萍教授正在主持进行《食品安全国家标准 食品中总砷及无机砷的测定》GB5009.11-2014修订工作。此外刘丽萍教授主持修订的《食品安全国家标准 食品中总汞及有机汞的测定》GB5009.17-2021也在今年9月正式颁布。 微波消解:“缺少的这10℃,国产仪器搞上去了”说到标准,就不得不提仪器。刘丽萍坦言,在疾控系统的省级实验室中,除了自主知识产权的原子荧光光谱仪外,实验室绝大部分仪器如气相色谱、气质联用仪、液相色谱、液质联用仪、ICP-MS、原子吸收等设备全部是进口,微波消解、压力溶剂萃取、吹扫捕集等样品前处理仪器也是进口的。当时大家较少关注到国产仪器,而这种进口垄断的局面直到2015年才迎来转机。当年北京市疾病预防控制中心作为验评实验室参加了由北京市科委支持、北京出入境检验检疫局(现北京海关)牵头的国产仪器验评工作。“通过验评工作,我们对上海屹尧这个品牌的微波消解仪有了进一步的了解,虽然以前听说这个品牌的微波消解仪不错,但由于没有使用过,没有切身感受。通过这次验评才发现了它真正的优势。”以前消解母乳样品时,在采用温度控温的40位消解系统时刘丽萍团队发现样品消解液上方始终漂浮一层未消化完全的油状物。由于温度控温的系统最高温度只能达到190℃,此类看似简单的样品也不得不采用超高压消解罐才能消解完全,严重影响实验的工作效率。消解植物油样品时也存在类似的情况,要想消解完全就需要采用只有12个罐子的超高压消解体系,这样一来工作效率大打折扣。这个问题一直让她和同事感到头疼。听说国产品牌屹尧的40位微波消解系统可以升温至200℃,这让他们很兴奋!经过仔细研究,发现这台国产微波消解能完美解决乳类样品、植物油样品的消解难题。多次试验证明,在同类型产品中,屹尧的微波消解仪在消解贝类、肉类和植物油类等难处理的样品时,均表现出了超强的优势。刘丽萍教授为仪器信息网编辑介绍屹尧微波消解仪的优势“进口品牌的微波消解在安全性和品质都很好,2004年采购的那款微波消解我们一直用到现在,目前国产微波消解仪的性能品质都上来了,消解能力还略胜一筹,真是太好了!”刘丽萍欣慰地说。如今中心实验室已经购买了一台屹尧的微波消解仪,用于食品安全风险监测的标准操作规程研制中。“今年全国食品安全风险监测培训会上,我也会为做肉类和畜禽脏器多元素的实验室介绍屹尧这款微波消解仪,目前屹尧还推出一款24位温度控温的消解系统,消解温度可以达到230℃,仅采用温度控温多数食品基质的样品消解基本都能解决。屹尧的售后和个性化应用支持也非常到位… … 我们也期待以后有更多的国产仪器像屹尧的微波消解仪一样加入到我们实验室,希望更多的国产仪器闯出自己的优质品牌”刘丽萍向我们介绍。作为疾控战线的一名老兵,二十多年来刘丽萍教授还和同事们一起经历了无数次的突发公共卫生事件的处理。巨能钙、苏丹红、三聚氰胺、怀柔山吧、胶囊铬、汞污染事件历历在目,2014年处理“顺义民工不明原因呕吐”事件中,刘丽萍团队凭借扎实的功底丰富的经验,经采用电感耦合等离子体质谱技术对样品进行多元素测定,结合离子色谱分析的氟,很快确定是因误食六氟硅酸镁引起的,为及时救治患者提供可靠的支持。2014年刘丽萍教授团队正在处理“顺义民工不明原因呕吐”事件为应对突发事件疾控中心老师们的手机是常年保持24小时开机状态。在新冠疫情肆虐的日子里,疾控中心还有一只随时准备应对食品安全等突发公共卫生事件的队伍,默默守卫着人民的健康......刘丽萍教授向我们介绍这些时,自豪之情溢于言表,在她眼中,能够将自己的专业知识应用到守卫人民的健康中去,在国家和社会需要的地方发光发热,就是一件很幸福的事情。在北京市疾控中心举办的国家食品安全风险监测有害元素检测技术培训班
  • 仪器情报,科学家利用多种表征揭示新型二维有机-无机异质结构的创新应用!
    【科学背景】随着二维材料研究的不断深入,二维有机-无机异质结的发展引起了广泛关注。这些异质结结合了有机和无机材料的优势,旨在实现新型器件和应用。然而,传统构建这些异质结的方法,如湿化学处理或机械剥离转移,往往伴随着界面污染、晶体质量差和尺寸受限等问题。因此,迫切需要一种新的策略来实现大规模、高质量的二维有机-无机异质结构。为了填补这一知识空白,陕西师范大学物理学与信息技术学院高健智教授、 国科学院苏州纳米技术与纳米仿生研究所李坊森、华中科技大学物理学院潘明虎教授、美国犹他大学刘锋教授合作在“Nature Communications”期刊上发表了题为“Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands”的最新论文。他们开发了一种基于自下而上的制备方法。本研究以自组装的方式在高度定向热解石墨基底上形成了单层1,3,5-三(4-羟基苯基)苯(THPB)氢键有机框架(HOF),并通过强层间耦合实现了顶层石墨烯的自提升。这一过程在超高真空环境中进行,保证了界面的干净度和异质结构的高结晶性。通过原位高分辨率扫描隧道显微镜/光谱(STM/STS)和角分辨光电子能谱(ARPES),研究人员详细表征了THPB-HOF的晶格结构和电子能带结构。他们观察到了THPB-HOF具有缺陷和无缺陷半部分的蜂窝结构,以及石墨烯层上的Dirac能带和THPB-HOF内的窄带。这项研究的成果不仅展示了自提升效应在制备大规模二维有机-无机异质结构中的有效性,还揭示了这些异质结构在电子性质和结构特征上的独特之处。【科学亮点】(1)实验首次采用自下而上的方法,成功合成了大规模漂浮的二维有机-无机异质结构,具有干净的界面和高结晶性。这种异质结构由单层THPB氢键有机框架(HOF)和自提升的石墨烯层组成,展示了优越的结构特性。(2)通过在超高真空(UHV)环境中进行有机气相生长,获得了高质量的THPB-HOF晶格,其呈现出蜂窝状的特征,包含缺陷和无缺陷的半部分,类似于分子“石墨烯”。实验结果显示,石墨烯层的Dirac能带位于费米能级(EF)附近,表明其优良的电学性能。(3)采用原位高分辨率扫描隧道显微镜(STM)和角分辨光电子能谱(ARPES)技术,观察到THPB-HOF的窄带和Dirac能带的共存。这些窄带位于更深的能量层面,显示了THPB-HOF的独特电子结构,符合DFT计算的拓扑平带特征。(4)研究还发现,在隧道谱中出现的局部自旋态是由于π共轭THPB体系中pz轨道的去除,这为进一步探索材料的磁性特性提供了线索。(5)该研究表明,自提升效应可以有效地构建二维有机-无机异质结构,具有大规模均匀性和长程有序性。这种方法不仅适用于THPB-HOF,也可扩展到其他范德瓦尔斯材料,为新型电子器件的开发开辟了新的方向。【科学图文】图1:大规模二维有机/石墨烯异质结构的自下而上制造。图2:THPB-HOF的STM表征和第一性原理DFT计算。图3:THPB-HOF/石墨烯能带的ARPES观测。图4:在THPB-HOF上测量的隧道谱。【科学结论】本文通过自下而上的方法在超高真空环境中实现了高质量的异质结构,展示了控制材料界面和晶体质量的重要性。这一策略有效避免了传统湿化学和剥离转移过程中常见的污染问题,提示我们在材料合成中关注环境的影响,特别是微观界面的清洁度。其次,实验结果表明,良序的氢键有机框架(HOF)与石墨烯的有效结合,不仅保持了各自的优异电子特性,还使得材料的性能得到了显著提升。这启示我们在设计新型复合材料时,应考虑不同材料间的相互作用,探索如何通过界面耦合增强整体性能。此外,研究中观察到的Dirac能带和窄带的共存,为我们理解二维材料的电子特性提供了新的视角。特别是局部自旋态的发现,提示我们可以通过调整材料的化学环境和结构,诱导出新的量子态,从而拓展材料的应用潜力。这为未来在量子计算、传感器等领域的研究提供了新的方向。原文详情:Zhang, X., Li, X., Cheng, Z. et al. Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands. Nat Commun 15, 5934 (2024). https://doi.org/10.1038/s41467-024-50211-5
  • 和泰用户巡访记 | 第五季• 第七站:辽宁
    和泰仪器-技术服务部,以“用心坚持专业,致力服务用户”为理念,“客户满意”为首要目标,积极推动2019年度终端用户巡访工作的开展。第五季• 第七站:辽宁时间:11/11-11/22辽宁服务中心的同事在我们来之前就已经开始了巡访工作,帮用户解决了许多问题。在现场进行维护保养升级的同时,也为客户做水质分析测试,让客户切身感受到和泰纯水系统的硬实力。除了这些工作以外,我们也致力于深入了解客户的使用需求,根据现场使用条件来为客户提供适宜的使用方案。比如配套使用的进口纯水进水的主机,在使用时需时刻注意水桶内部的纯水水位,避免在使用过程中存在的安全隐患。所以我们建议客户配套使用和泰具有自动补水停水功能的自动液位控制水箱,这样就不需要时刻注意水箱水位,也不用担心水箱内部有抽空的风险。当然我们巡访的主要职责和工作依然不能忘记:那就是对每一个实验室的纯水机进行检测和维护,并给客户培训相关知识概念,使用注意事项等等。随着每个实验室对用水指标更精细化和标准化后,客户对水质的概念越来越清晰,要求也越来越高,这在行业内是一种良性的发展趋势。我们一直以来的服务理念都是:关心客户使用体验,了解客户使用环境,根据客户使用需求和条件为客户推荐最合适的解决方案,每一个方案的背后都是理论、数据和经验作为强大的支撑,以此立足,方能稳固。公司始终把用户的利益放在首位,定期的巡访工作,帮助了我们及时的了解用户的需求,听取用户建议,用户的意见反馈,目标就是做到让客户真正地满意,省心。“用心坚持专业,致力服务用户”,为了您的满意,我们从未停下前进的脚步!!下一站:陕西!
  • 山东省新材料产业协会发布《改性无机粉体材料 接枝率测定 热重法》团体标准征集意见稿
    各有关单位:由迈谱新材料技术(山东)有限公司牵头起草的《改性无机粉体材料 接枝率的测定 热重法》团体标准已完成征求意见稿,按照《山东省新材料产业协会团体标准管理办法》的有关规定,现公开广泛征求意见。有关意见反馈请填写《山东省新材料产业协会团体标准征求意见表》(附件3),并于4月12日前以电子邮件形式反馈至协会秘书处,逾期未反馈视为无意见。 联系方式:联 系 人:周健华,0531-88392693 18754536718邮 箱:sdxclcyxh@163.com联系地址:济南市历下区经十路17923号 附件1 《改性无机粉体材料 接枝率测定 热重法》 征求意见稿.pdf附件2 《改性无机粉体材料 接枝率的测定 热重法》 征求意见稿编制说明.pdf附件3《改性无机粉体材料 接枝率的测定 热重法》团体标准征求意见表.doc山东省新材料产业协会关于《改性无机粉体材料 接枝率测定热重法》团体标准征求意见的函.pdf
  • 第五届江苏省无机光谱分析应用技术研讨会在南京召开
    由江苏省分析测试协会、聚光科技公司联合举办的&ldquo 第五届江苏省无机光谱分析应用技术研讨会暨聚光科技分析技术交流会&rdquo 于2014年6月10日在南京成功举办。来自省内外高等院校、科研院所、检测机构、大中企业等单位从事无机光谱分析的学者、专家、科技工作者代表等120多人参加了大会。   大会开幕式由江苏省分析测试协会赵厚民秘书长主持。 赵厚民在发言中谈到:目前国内光谱分析仪器的水平与国外顶尖产品确实还存在着差距,但目前国内优秀厂商已经越发重视用户体验,能够根据用户需求,积极提供定制化的产品和服务,因此希望大家能够多关注国内产品,在今天的交流会中多提问,多交流,深入地认识新产品、新技术、新应用,给国产厂商提需求、提建议,让他们快速成长起来,早日实现光谱分析技术的中国梦! 我国著名分析化学专家、国家出入境检验检疫局周锦帆教授,浙江省地质矿产研究所郑存江总工,江苏省地质调查研究院江冶高工分别作了&ldquo 中日土三国离子交换分离&mdash ICP光谱法测定日用钢中有害镉方法的比较&rdquo 、&ldquo 电弧直读法测矿物中的难分析元素&rdquo 、&ldquo ICP-OES在地质样品分析中的应用&rdquo 专题学术报告。聚光科技公司的应用技术专家作了&ldquo ICP-5000等离子发射光谱仪&rdquo 、&ldquo E-5000电弧直读光谱仪&rdquo 等新产品、新技术及其应用技术报告。 大会始终洋溢着浓郁的学术气氛,研讨了无机光谱分析技术研究新成果和新方法,展示了国产无机光谱新产品和新技术,推动了江苏省乃至全国无机光谱分析技术水平的发展。与会代表一致认为,本届大会开的非常成功,期望无机光谱研讨会继续高水平、高质量的举办下去,助力我国光谱事业的快速发展。
  • 赛多利斯“称量无止境,创想无极限——实验室天平应用案例有奖征集大赛”启幕
    或许您认为称重是实验室中最司空见惯的操作,不知您可曾想过,当司空见惯与创想擦出智慧的火花,这火花就会引爆更巨大的能量而改变每天的生活。现在就让我们邀请您参与赛多利斯“称量无止境,创想无极限——实验室天平应用案例有奖征集大赛”,体验一场称重也疯狂的创意盛宴,如果您是实验室中的创意达人,如果您曾经:1.利用内置应用功能大大提高工作效率? 参考:天平内置应用程序应用方法详解视频。2.利用拓展的individual软件理顺甚至简化了工作流程?参考:Cubis Individual拓展应用程序详解3.通过强大的数据传输、众多接口实现了数据的自动管理?4.利用天平的特点或者二次开发的功能适应特殊的称量样品、操作环境或者流程?5.巧妙地利用称重解决了开发、生产过程中的监控问题?还有想到的没想到的种种……无论您使用的是哪个品牌的天平,无关乎您使用的是老型号还是新型号的产品,只要其中包含了您的创意,只需通过简简单单几句话即可分享您的经验,展示您的创想,赢得您的大奖啦! 不要忽视你的哪怕小小应用,也许它能启迪千万人的实验生活!参与方法:1、在线填写以下内容,内容真实,表述清晰,字数不限:(1)所使用的品牌、型号(2)未采用应用方案前存在的问题(3)解决方案(4)应用效果或发送以上内容至res.procampaign@sartorius.com立即在线参与评选方式:1)、每个月从参与活动的用户中抽取3名幸运奖,奖品为100元购物卡或等价值礼品一件,未中奖用户可滚动到下个月继续参与抽奖。2)、赛多利斯专家评委评出的优秀作品还会得到单独约稿的机会,每篇稿件可获得400元/篇的酬劳;3)、赛多利斯专家及特约评委从约稿的优秀稿件中评选出一等奖1名、二等奖2名、三等奖3名。奖品如下:一等奖 ipad mini一部,另获价值3000元的实验室产品; 二等奖 ipod touch 一部,另获价值2000元的实验室产品;三等奖 行车记录仪一部,另获价值1000元的实验室产品。赛多利斯集团是一家国际领先的实验室仪器、生物制药技术和设备的供应商。实验室产品及服务部为客户提供一流的实验室仪器如实验室天平、移液器和纯水设备、实验室耗材包括实验室过滤器和移液器吸头,以及优质的服务。生物工艺解决方案涵盖过滤、液体处理、发酵、细胞培养和纯化,并致力于生物制药行业过程控制。工业称重专注于对食品,化工和制药行业生产工艺过程中的称重、监控和控制。 赛多利斯集团在欧洲、亚洲以及美洲都拥有自己的生产及研发机构,并已在全球110多个国家设立了办事处及代表处,总共拥有5,000多名员工。 赛多利斯中国 电话:400.920.9889 / 800.820.9889 传真:021.68782332 邮箱:info.cn@sartorius.com 官网:www.sartorius.com.cn
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。
  • 无机化学家计亮年院士:桃李满天下此生已无憾
    p   从一名皮革厂学徒工起步,计亮年磨砺前行,最终成为我国著名的无机化学家和教育家,2003年当选中国科学院院士。作为三名贡献者之一,计亮年因首次发现“茚基动力效应”轰动国际,为廉价金属锰代替贵金属作为氧化均相催化剂开辟了一条新途径。他在中山大学领导的研究团队以金属酶为对象,系统而创新地使用交叉学科的研究方法,在核酸酶、细胞色素P450单加酶和修饰天然过氧化物酶三种酶体系中取得国际上重大突破,推动了中国生物无机化学事业的发展,为解决当今人类面临的环境、能源、生命等危机作出了重要贡献。 /p p   6岁丧母、9岁丧父……经历过战火岁月,童年的颠沛流离,为计亮年的一生注入了传奇色彩。耄耋之年,回顾一生,在他拥有的多重身份中,计亮年最看重的是教书育人的角色。想起毕生亲自培育的100多名博士后、博士、硕士如今遍布全球,科研后继有人,他坦言此生已无遗憾。 /p p    strong 命运急转:从少爷到孤儿到皮革厂学徒 /strong /p p   1934年,计亮年出生在上海市马当路普庆里10号,父亲计竹卿当时是英国泰晤士报驻上海分社职员,母亲是传统的家庭妇女。计竹卿夫妇育有六女两子,计亮年是年龄最小的一个。 /p p   计亮年的童年岁月,家境还算殷实,有保姆照料。1937年日本全面侵华,随后上海沦陷,父亲的工作失去保障,家道中落。六岁那年,母亲因患肺结核病去世,三年后,父亲也因患肺结核病辞世。 /p p   从少爷到孤儿,计亮年尝尽了命运跌宕起伏的滋味。14岁那年,为了生计,他前往上海一个皮革制品作坊当学徒。1949年5月上海解放后,他获得了一个半工半读的机会。为了补上此前落下的课程,计亮年每天只睡六个小时。这种分毫必争的狠劲,让他仅用三年时间就把初中、高中课程补完,1952年9月,他以全班100名录取生中第一名的成绩考入山东大学化学系。 /p p    strong 学术生涯:勤奋坚韧终大放异彩 /strong /p p   进入大学后,计亮年并没有忘记过去三年背着皮革四处送货时翻书复习的经历。他养成了高效利用时间的习惯,勤奋、坚韧的品格也贯穿了他的科研学术生涯。 /p p   在山东大学的四年里,他未曾离开过学校。每个寒暑假,计亮年都在图书馆里苦读。毕业后,他先后被选拔到北京大学和南京大学进修,师从国内、国际学术大师。1975年,计亮年到中山大学工作。1982年至1983年,计亮年被公派到美国西北大学,师从有“无机化学之父”、时任美国化学会主席的美国科学院院士巴索罗。 /p p   在美国留学期间,他用一年的时间完成了别人需要花费三年时间才能取得的成果。 /p p   天道酬勤,凭借悟性和拼劲,计亮年作为三名贡献者之一,首次发现“茚基动力效应”,这些成果为廉价金属锰代替贵金属作为氧化均相催化剂开辟了一条新途径,轰动国际。在美国的一年间,他在著名国际优秀刊物上发表“茚基动力效应”论文3篇(其中第一作者2篇,第二作者1篇)。 /p p    strong 回报祖国:筹建实验室当“孺子牛” /strong /p p   虽然已在国际上声名远播,计亮年仍然心系祖国无机化学事业的发展。自1975年被中山大学引进至今,他扎根中大40多年,白手起家,与无机化学教研室众多老师一起筹建生物无机化学实验室,见证了中大无机化学学科的发展壮大。 /p p   回忆起三十多年前开始筹建生物无机化学实验室时,计亮年坦言,可以用“一无所有”形容。最困难的时候,课题组甚至添置不起做普通实验的仪器设备,他要骑单车去广东工业技术研究院借玻璃分液漏斗做萃取研究。如今,中山大学无机化学学科已经成为国家重点学科,来自全球的学科人才经常来中大的实验室做实验交流。 /p p   除了推动学科发展,计亮年也是甘愿俯身的“孺子牛”。他先后为本科生和研究生主讲过无机化学等十多门基础课和专业课。在团队老师的协助下,他先后培养了100多名学生(包括博士后5名、博士生62名、硕士生39名),学生遍布海内外,大多担任科研骨干和学术带头人。 /p p   如今,耄耋之年的计亮年仍然活跃在讲台上,讲授的对象不再局限于专业领域的学生,而是向各个年龄阶段的人士传授人生经验。他生活节俭,平日出行经常乘地铁和坐公交车,不愿意麻烦其他人开专车接送。14岁那年,计亮年用双腿跑遍上海送货,练就了好脚力,因此他笑言,如今还是行走自如。 /p p    strong 广州印记:城市暖意融融 学校关怀备至 /strong /p p   计亮年对广州、中山大学充满感恩。在广州,他本是一个异乡人,然而这里的开放包容给予了他成长的空间,也让他时刻感受到周围人的善意。每当他和夫人乘坐地铁和公交车时,均会遇到好心的市民热情让座,让他和老伴内心暖意融融。走在校道上,本系和其他系的学生和老师都会礼貌地向他打招呼,充分体现了尊师重道。 /p p   谈及中大,计亮年心情激动。他表示,这里给予了他充分的自由度发展学术,专心科研。更可贵的是,四十多年来,中大的领导和老师在生活上也给予他非常多的关心,解决了不少困难,感情早已如亲人般浓郁。 /p p    strong 心系科研: /strong /p p strong   三大酶体系取得重大突破 /strong /p p   从美国回来后,计亮年回到中山大学,带领团队在金属酶(包括核酸酶、细胞色素P450单加氧酶和过氧化物酶三种酶体系)的结构、功能、作用机制之间规律性等研究领域取得了国内外公认的重大突破。 /p p   20世纪80年代后期,计亮年在国内率先开展钌多吡啶配合物作为人工核酸酶研究,建立和发展了金属钌的生物无机化学基础理论。其研究成果为治疗抗癌药物的潜在应用奠定了坚实的理论基础,对DNA定位诱变、肿瘤基因治疗、DNA 的修复起着关键性作用。在细胞色素P450单加氧酶领域,计亮年带领团队也取得了重要成果。 /p p   由于贡献突出,计亮年当选英国皇家化学会会士,并被授予特许化学家称号。1990年至2002年,英国皇家化学会五次授予他个人研究基金,该基金每年仅从全球选出30人。他先后代表中国十多次在生物无机化学领域国际会议担任秘书长、组委会副主席等职务。 /p p    strong 院士小传 /strong /p p   计亮年,1934年4月出生上海市,中山大学化学学院教授、博士生导师,是我国著名的无机化学家与教育家,主要从事配位化学及生物无机化学的研究,曾任中山大学化学与化学工程学院首任院长,2003年当选为中国科学院院士。 /p p   计亮年研究生物无机化学30余年,在推动我国生物无机化学的发展和学科建设,促进国内、国际间生物无机化学领域的学术交流等方面作出了突出贡献。除了1978年协作项目获得全国科学大会奖外(中山大学为第二完成单位),还获得国家和省部级科技成果奖10项,教学成果奖4项 1979年获广东省科学大会授予的先进工作者称号 1992年因在高等教育事业作出突出贡献获得国务院“政府特殊津贴” 1995年获香港柏宁顿(中国)教育基金会授予的首届孺子牛金球奖 2000年获“全国先进工作者”称号 2001年获中国科学技术协会授予的“全国优秀科技工作者”称号等国家和省部级个人荣誉奖12项 还曾获得“广东省2013年度科学技术突出贡献奖”。 /p p    strong 记者手记 /strong /p p strong   大师风范 如沐春风 /strong /p p   好事多磨。由于计亮年院士工作繁忙,采访在一个多月后才终于确定。这位拥有成功人生的83岁科学家,愿意与大家一起分享人生的经历,记录他所走过的时代。 /p p   一诺千金,答应接受访谈后,计亮年做了大量的工作。他做事十分严谨,仔细梳理了人生的每个阶段,甚至精确到月份,写满了一页页的草稿。每一段人生经历如何走过,计亮年记得一清二楚,每个人生阶段也充满了反思和自省。在两个多小时的采访中,他知无不言,言无不尽。 /p p   计亮年一生获奖无数,科研硕果累累。回顾一生,令他动容的不是名与利,而是想到他的学生已遍布全球,在中山大学三个金属酶的研究方向已后继有人,且青出于蓝,不用担心科学研究“人去楼空”。不但他的学生遍布全球成为新一代科学家,学生的子女也正在大放光彩,谈到此,计亮年快乐一笑,坦言:“人生梦想已经实现,此生无憾。” /p p br/ /p
  • 探寻药物临床试验GCP认证的“秘笈”——访军事医学科学院附属医院药学部刘泽源主任
    【编者按:GCP即药物临床试验质量管理规范(Good Clinical Practice),是临床试验全过程的标准规定,包括方案设计、组织实施、监查、稽查、纪录、分析总结和报告,用以确保试验数据和结果的准确、可靠,以及受试者的安全、隐私和权益得到保护。GCP是药物临床试验全过程的标准规定。】   前言   每个人的一生中都会遭遇疾病侵袭,随后的“寻医问药”自然难以避免。但是估计大多数人都不甚了解我们日常生活中所接触到的药品必须通过怎样严格的“临床试验”才能获准上市。在我国,医疗机构必须通过国家食品药品监督管理局(以下简称SFDA)和卫生部共同制定的GCP认证才有资格承接新药上市前“临床试验”,以至于认证“秘笈”成为每个待审机构梦寐以求的法宝。 军事医学科学院附属医院药学部刘泽源主任   为了探寻药物临床试验GCP认证的“秘笈”,近日仪器信息网工作人员专程拜访了SFDA药物临床试验机构资格认定评审专家、军事医学科学院附属医院药学部刘泽源主任,深入地交流了GCP认证中“软、硬件”以及实验室管理等问题。   我国GCP认证:“硬件”、“软件”缺一不可   刘泽源主任首先为我们介绍到:“在药物研发过程中通常有两个不同的阶段,一个是‘GCP’,即临床的概念 另一个是‘GLP’(Good Laboratory Practice,即药物非临床研究质量管理规范,就实验室实验研究从计划、实验、监督、记录到实验报告等一系列管理而制定的法规性文件),即临床前的概念。GCP也就是在近二十年发展起来的,军事医学科学院附属医院于1986年获批通过GCP认证。”   “在国外申请机构提交的资料只要符合美国FDA或欧洲EMEA法规要求,其资料就可以被接收 而我们国家目前的GCP属于‘准入’制,相当于设置了一个‘门槛’。既然在中国临床试验有这样一个‘门槛’,就必须进行认证,只有通过GCP认证的单位才有资格承担药物临床试验工作,而这一做法也得到了欧洲一些同行的认可。”   关于GCP认证,SFDA已经有明文规定,但这只是最低的要求。现在随着技术水平的提高,刘泽源主任认为不能仅限于基础规定,应该超出这个‘门槛’,否则在审查中不容易通过。   作为GCP认证专家,刘泽源主任认为一个合格的GCP认证实验室需要具备以下条件:“硬件”方面,包括独立实验室、配套仪器设备(高效液相色谱仪、高效液相色谱-串联质谱仪)、病区(足够床位)、高素质人员等;“软件”方面,包括准化操作规程(SOPs)、技术力量、质量保证体系、完善的工作流程等。需要指出的是,上述“硬件”、“软件”,二者相辅相成、缺一不可。   “在GCP认证资格审查过程中,经常遇到一些关于实验室建设和管理方面的问题,主要包括:实验室、病房、仪器等硬件设施配套不完全;缺乏完善的SOPs以及独立的质量控制和质量保证体系等。”   GCP认证之“硬件”:“分析仪器”不容忽视   1、药物临床试验中“分析仪器”角色之争   谈及药物临床试验中分析仪器的角色,刘泽源主任认为当前业内存在两种观点:   一种观点是主张加大分析仪器的投入,一期试验不仅要重视前期耐受性试验,而且还需要重点投入实验室分析检测仪器;   另一种观点是建议一期实验室安全性评价发挥出医院的优势,重点是加大耐受性试验仪器设备的投入,而像实验室分析检测业务就可以外包给CRO公司或者第三方测试机构来承担这些方面的工作。   2、药物临床试验中“分析仪器”必要性   刘泽源主任谈到:“很多进行GCP认证的机构建设一期实验室初期经常会存在同样的困惑:是否在实验室分析检测仪器引进方面加大投入?”   “因为SFDA在一期实验室建设方面并没有对分析检测仪器进行明文规定,不像GLP对此有明确的要求。药物临床试验一期实验室需要对药物在上临床前进行安全性评价,虽然安全性评价中耐受性等其他试验阶段不需要分析检测仪器,但是其中药代试验阶段却需要分析仪器对样品进行分析检测,所以一期实验室投入一些分析检测工具也是十分必要的。”   “不过根据我们实践经验表明:还是上述争论中第一种观点,更有利于药物临床试验工作的进行。如果拥有一个分析仪器设备完善的实验室,就可以在一期试验过程中随时掌控样品分析进度,从而更好地指导后续工作的进行。”   “例如我们实验室曾承接过一个项目,首先根据对方所提供的材料,实验室进行了前期试验,之后将采集到的样品外送分析检测。然而我们在预试工作后发现了问题,进一步查资料,发现确实是对方提供的样品成分与国外资料报道有出入。继而我们及时和申办方联系,重新调整了试验方案,又补做了一些动物试验,才顺利完成了项目。” 军事医学科学院附属医院药学部刘泽源主任领导的团队   “我从事GCP工作将近7年的时间,前三年工作中主要采用色谱、免疫法等。近四年来,质谱慢慢成为主力分析检测手段。”采访过程中,在刘泽源主任的引领下,笔者参观了军事医学科学院附属医院药学部临床药理研究实验室。该实验室主要配备了高效液相色谱仪、三重四极杆液质联用仪等专门对一些药物小分子化合物进行定量分析;实验室依靠这些分析仪器就基本上可以满足85%生物样品日常分析工作的要求。   “毋庸置疑,SFDA定期的认证都会引发分析仪器的集中购置高潮,主要集中在色谱和质谱。因为大部分药品还是以化学小分子存在,液质联用仪就基本能够满足实验要求了。不过需要指出的是,质谱虽然使用起来更方便,但是其后期的维护要求很高,所以很多人主张外包CRO公司或第三方测试机构来专门承接样品检测也是有一定道理的。”   GCP认证之“软件”:完善的实验室管理和SOPs必不可少   刘泽源主任指出:“一个合格的GCP认证实验室,必须建立临床Ⅰ期研究试验流程管理和药代生物样品分析实验室的技术标准和管理规范,使其既符合中国国情的同时又符合美国FDA认证标准的要求。”   军事医学科学院附属医院药学部临床药理室的临床Ⅰ期研究病房以及药代动力学生物分析实验室经过多年建设,在国内临床研究基地中已具备比较优良的硬件条件,能够满足大多数国内项目的临床Ⅰ期研究需求,并且达到SFDA相关GCP的要求。“但是,与国际标准相比还有一定的差距,主要体现在实验室数据管理网络和实验室标准规范建设等方面需要进一步加强。”   为了加强了内部质量保证和质量控制、实验室质量控制以及试验风险控制,从2003年9月起,军事医学科学院附属医院药学部科室着手标准化操作规程(SOPs)的建设。   “我们以规范药物临床试验各个环节的实施与操作,并且专门抽调具有丰富经验的药物临床试验专家以及经过GCP培训的专业人员在SFDA机构SOPs的基础上修订、增删及完善已有的药物临床试验管理制度和标准化操作规程,先后经进行了三个版本版的SOPs修订。目前我们的SOPs涵盖62条SOPR(规章制度类)、21条SOPD(设计规范类)、75条SOPP(工作程序类)、38条SOPE(仪器设备类)、18条SOPQ(质量控制类)。 ”   “锦上添花”之作:成功开发药物临床试验实验室LIMS系统(CTIMS)   为了进一步完善实验室信息化管理,刘泽源主任带领团队与北京迈康斯德医药技术有限公司药代动力学及生物分析实验室合作,参照美国标准共同开发了“临床试验电子化信息管理系统CTIMS”,并完善了相关SOPs,而且配备了中英文双语版本。   该CTIMS软件适用于一期实验室的病房管理和实验室本身的分析测试室的管理,但是还需要进行修订从而不断升级完善;目前该系统软件试用情况稳定,反馈良好。“拥有药物临床试验实验室LIMS系统,一方面可以极大提升各临床试验机构的竞争力,另一方面可以提高各待审机构的GCP认证通过率。” CTIMS与同类软件比较情况(CTOS/Watson)   CTIMS系统建立并运行了一段时间,已对参与临床试验人员进行了该软件和硬件使用方面的培训,同时在运行过程中对整个系统进行维护和及时升级 。   CTIMS使临床试验数据收集、数据核查、安全性等得到全面改善,提高了临床数据管理的质量,提高了我国临床研究的科研水平。   谈到该CTIMS系统的产生背景,刘泽源主任介绍到:“这套系统最初是为了保障药物临床试验顺利进行,我们从而自发产生的一个想法。不过现在正好和SFDA政策不谋而合,目前SFDA准备推出的国家一期临床试验指导原则和样品检测实验室管理规定中提出这方面的要求,而我们两年前的设想现在也已经实现。如果SFDA现在提出来我们再开始筹划的话,肯定是来不及的。”   “我们没有购置国外的产品,因为国外产品是英文版本不易推广,其次一些功能不适用中国国情。目前有很多单位对此软件进行了咨询,而且我们也已经给部分单位安装试用。如果使用效果理想,我们当然有推向市场的想法。与此同时,我们这次制定的该系统SOPs的适用性、可操作性将更加完善,对于迎接SFDA审查我们信心满满。”  编者手记   采访接近尾声时,刘泽源主任补充说:“我们不会满足已有的成绩,今后还要一如既往地在临床药理领域继续钻研、探讨。”   目前,在刘泽源主任领导的军事医学科学院附属医院药学部临床药理研究室团队已经确定了明确的发展目标:建立国际水平的临床试验室;建立符合美国FDA和欧盟EMEA标准的国际开放药代实验室;制定人体生物医学伦理规范 制定针对肿瘤疾病临床用药特点的临床试验设计以及评价技术规范化标准。   当笔者问及刘泽源主任其成功之道时,刘主任回答到:“其实我们实验室能够有今天的成绩,没有什么神秘的‘秘笈’,唯一可以确定的就是务实严谨的工作作风,踏实严谨的工作态度,这才是成功的‘不二法门’。”   “老老实实做事,本本分分做人。”这就是刘泽源主任多年临床试验工作的真实写照。严谨的作风,朴实的话语,折射出一个当代军人的真我本色。   采访编辑:刘娜   附录1:军事医学科学院附属医院药学部刘泽源主任简历.doc   附录2:军事医学科学院附属医院药学部临床药理室   http://307yls.cnkme.com/
  • 农科院建立植物细胞无机磷可视化高效检测技术
    近日,中国农业科学院农业资源与农业区划研究所土壤植物互作创新团队建立了植物细胞无机磷可视化高效检测技术,并揭示了植物细胞无机磷分布调控新机制,相关研究成果发表在《自然—植物》(Nature Plants)上。研究提出了一种快速比色无机正磷酸盐(PI)成像方法--无机正磷酸盐染色法(IOSA),该方法可以对细胞内PI进行高分辨率的半定量成像。水稻根系伸长区细胞无机磷分布模式。中国农科院供图磷是植物生长发育必需的营养元素。植物根系主要吸收无机正磷酸盐,其也是植物体内磷循环利用的最主要形态。当磷素充足时,植物体内无机磷含量能占到总磷的80%左右。因此,明确植物无机磷的细胞分布模式是研究植物磷素高效利用调控机制的关键。然而,目前对植物组织细胞间无机磷的分布和储存模式仍不清楚,主要原因是缺乏高效的植物细胞无机磷可视化检测技术。研究团队建立了植物细胞无机磷可视化高效检测技术。与现有检测技术相比,该技术具有费用低、耗时短、操作简单、不受植物种类及组织部位限制等诸多优势。利用该技术,研究人员明确了水稻和拟南芥组织细胞无机磷主要的分布模式;发现了已知磷素核心调控因子的新功能,并筛选克隆到了新的水稻叶片细胞磷再利用调控因子。该研究为磷养分分子调控机制研究提供了技术支撑,也为作物磷高效遗传改良提供了新基因资源。该研究得到国家自然科学基金重点项目、优青项目、面上项目,以及中国农科院科技创新工程等项目资助。
  • 解析PerkinElmer公司无机产品线——访PerkinElmer全球无机产品线经理Schneider Charles先生
    提到PerkinElmer公司,就不能不提到该公司的无机产品比如AAS、ICP、ICP-MS等。世界上第一台AAS就是出自于PerkinElmer公司,此外,在ICP和ICP-MS产品领域,PerkinElmer公司亦占据世界领先地位。从2009年1月1日起,PerkinElmer公司实现业务调整,专注于“人类健康”和“环境健康”两大领域,致力于提供一站式解决方案。这次业务整合对于PerkinElmer公司的无机产品线影响如何?鉴于当前的经济形势与技术发展趋势,PerkinElmer公司对无机产品线的全球发展策略有无调整?    PerkinElmer公司全球无机产品线经理Schneider Charles先生   近日,仪器信息网(以下简称Instrument)就此采访了PerkinElmer公司全球无机产品线经理Schneider Charles先生,陪同Schneider Charles先生一起接受采访的还有PerkinElmer公司大中国区副总裁陈晴先生、大中华区市场总监程广辉先生和PerkinElmer公司原子吸收产品经理Yong Ching Tung先生。   PerkinElmer公司业务调整下的无机产品线浅析   2009年初,PerkinElmer将公司业务整合为“人类健康”和“环境健康”这两大领域,重新定义相关部门的研发方向,制定新战略,使公司现有解决方案、分析平台为这两大目标服务。针对这种业务整合,PerkinElmer公司无机产品线能够提供哪些整体解决方案?   Instrument:PerkinElmer公司的无机产品线能为贵公司“人类健康”和“环境健康”这两大业务领域提供哪些整体解决方案?   Schneider Charles先生:PerkinElmer公司有两条无机产品生产线,主要生产各种价位的AAS、ICP-OES和ICP-MS等产品。   这些无机产品在人类健康和环境健康方面得到了很好的应用。例如,学习用品、玩具、汽车尾气中都含有铅,儿童不可避免地会接触到铅,而铅超标会严重危害到人类的身体健康,特别是对于儿童。目前,了解儿童血铅水平是评价儿童铅接触与铅含量的有效方法,利用原子吸收光谱法对孩子进行血液检测,根据检测结果就可以确定儿童血液中铅是否超标。PerkinElmer公司在环境健康方面的业务居多,许多生产线都是为其服务的,尤其是AAS、ICP-OES、ICP-MS的生产线。通过这些分析仪器的检测,人类可以提高水、土壤以及空气的质量,确保环境的健康。   日常生活中存在很多的人类和环境的安全问题,所以PerkinElmer公司会努力提升无机产品技术,使检测结果更加准确,即PerkinElmer公司希望能够更早洞悉问题、提供更有效的治疗方法、更安全的产品,最终实现改善人类及其生存环境健康和安全的使命。   Instrument:PerkinElmer公司无机产品主要是用于采矿业的金属检测等,而现在贵公司专注于“人类健康”和“环境健康”两大领域,请问PerkinElmer公司今后如何定义这些产品以及实现产品的应用转型?   Schneider Charles先生:没错,我们确实在采矿方面有很多相关分析产品,但是我们这些产品不仅仅只是应用于矿业中铁、铜、镍的检测,也可以保证水质、空气不被污染,保持清洁的环境。现在有很多环保法规规定采矿作业必须保证水质、空气质量及矿工人身的安全,所以我们用于采矿业的这些产品实质上也是保护了人类和环境的健康。   程广辉先生:随着工业化的进展,各类矿产供不应求,在开发的过程中,不可避免的将产生一系列环境问题。采矿本身对水质、土壤等环境造成了不利影响,矿业开发对环境的影响已逐步引起人们的重视。   陈晴先生:一个很好的例子就是PerkinElmer公司的矿泉水中矿物检测解决方案。矿泉水在生产中使用臭氧杀菌时会产生致癌物溴酸盐,严重威胁到人类的健康。另外,中国马上要颁布的2010版《中国药典》,进一步加强了对重金属或有害元素、杂质、残留溶剂等的控制,这方面的分析监测工作与人类生活也是息息相关的。    PerkinElmer大中国区副总裁陈晴先生   AAS、ICP、ICP-MS的技术演变趋势   AAS、ICP、ICP-MS三者的应用领域有所重叠,现在有一种说法:ICP有取代AAS的可能,而ICP-MS也有取代ICP的可能。那么作为全球AAS、ICP和ICP-MS技术领先的PerkinElmer公司如何看待这一说法?PerkinElmer公司无机产品线今后的研发方向是什么?   Instrument:针对AAS、ICP和ICP-MS这种技术趋势的评论,请您们谈谈看法?   Schneider Charles先生:1988年,我参加过一次学术报告会,当时一位著名教授作了题为《AAS发展前景和趋势》的学术报告。该报告指出AAS市场需求将下降,前景不容乐观。20年前,原子光谱(AAS、ICP-OES和ICP-MS)每年的市场交易额约合500万美元,20年后的今天,尽管AAS的市场增长速度与ICP和ICP-MS相比较慢,但AAS的市场需求依然强劲。因此,我个人认为低端AAS、中端ICP、高端ICP-MS还有很大的市场空间。   因为AAS、ICP、ICP-MS的技术是可以互补的,各有优势,用户也各有所需。就现在而言,这三种技术之间的主要差别就是销售价格和适用范围,市场需求方面并没有呈现出明显的变化趋势。   事实上,ICP市场需求将会呈增长趋势,而AAS的产品质量也会相对地更加稳定,产品地位会不断上升,就像现在高速发展中的中国一样。   陈晴先生:在很多方面ICP确实比AAS功能强,但是这种技术演变的趋势还会受到各国法规的影响。   例如,在中国环境法规、医药法规和部分产业法规里面,AAS还是一个现行的法规方法。从中国分析仪器产业角度出发,国内的AAS技术已经很成熟,如果AAS被取代了,中国分析仪器产业势必会受到很大的影响。同时,客户也会承担更多的费用。   在东欧、南美洲的一些发展中国家,都有上述类似情况,而在发达国家,ICP技术可能要更流行一些,客户也会倾向于选择ICP,甚至ICP-MS。   Instrument:请问哪些新技术与新产品将是PerkinElmer公司无机产品线今后重点开发的方向?   Schneider Charles先生:目前,质谱仪在许多领域发挥着越来越重要的作用,PerkinElmer也在质谱领域加大了投资力度。例如,PerkinElmer与加拿大Sciex合资,共同研发ICP-MS技术领域的新产品。   另外,今年5月,PerkinElmer还收购了美国Analytica of Branford。这两家公司在业内的地位毋庸质疑,前者在质谱仪领域多有建树,后者一直致力于向现有质谱仪推广其离子源技术,尤其是在有机质谱领域。我们知道有机质谱技术和无机质谱技术存在很大的区别,因此,通过这次收购,PerkinElmer公司获得了大量有机质谱的核心技术,吸纳了一大批具有高度创新精神的研发专家,不久将来,PerkinElmer将会推出LC-MS、ICP-MS等质谱新产品。   对于明年就要发布的新产品,目前还处在“红盖头”下面,请大家耐心等待,不久它们就会惊艳亮相的。   PerkinElmer无机产品线如何应对激烈的市场竞争?   在“后危机时代”,相对于全球经济的低迷,分析仪器行业的竞争激烈程度却日趋上涨。在激烈的市场竞争中,分析仪器企业只有不断地实现自身的完善成长,提高核心竞争力,才能在竞争中求得自身的生存,最终实现顾客所看重的价值。面对如此严峻的市场形势争,PerkinElmer无机产品线将如何完善自身,提高核心竞争力?   Instrument:贵公司无机领域的整体解决方案中所涵盖的具体产品可能有PerkinElmer所没有的,请问您们将如何弥补这种产品缺失问题?   Schneider Charles先生:如果公司真的遇到产品缺失的问题,PerkinElmer公司会考虑与其他公司合作或者采取收购措施,这是PerkinElmer继续加强其人类和环境健康系列产品的战略承诺必不可少的环节。例如,在玩具检测的解决方案中,PerkinElmer是3个国家玩具公司的ICP产品的主要供应商,这些玩具公司多数位于香港和深圳。   除此之外,方案中还需要一些手持式X-Ray、XRF的检测设备。为弥补这些缺失产品,PerkinElmer和相关公司签署一份营销合约。这样建立的合作营销关系将使两家公司共享信息,共同促进彼此的业务发展。   另外,针对于美国市场,PerkinElmer公司与日本Rigaku签订了合作协议 前不久,PerkinElmer还收购了中国上海的新波生物公司等等。这一系列业务扩展活动,也是希望可以预见仪器和应用方面的需求,并提供卓越及时的整体解决方案。   Instrument:PerkinElmer公司原子吸收光谱的生产线转移到新加坡,用户很担心生产线转移后的产品质量是否会有所变化?   Schneider Charles先生:PerkinElmer公司的AAS生产线从德国转移到新加坡已经10年了,这是一项很成功的举措。PerkinElmer会一如既往地关注AAS的生产情况,产品的生产流程不变,或者会更优化。我代表PerkinElmer公司保证:新加坡产地的AAS会和德国出产的AAS同样“优秀”。事实上,AAS生产线建立在新加坡,对于亚洲客户来说会更有利,产品费用会大大降低。   Yong Ching Tung先生:没错,无论我们产品线设立在哪里,PerkinElmer都会精心研发测试,严格保证产品质量,给客户提供高质量高性能的产品。   陈晴先生:如同其它公司将生产线设立在中国一样,这并不标志着产品只是提供给中国用户,或者销往外国的产品质量不好。PerkinElmer建有全球的采购和供应链,产品质量保持一致,费用方面会大大节省,对公司有利,相应地客户也会得到一定的实惠。    PerkinElmer公司 原子吸收产品经理Yong Ching Tung先生   Instrument:最近Agilent宣布15亿美元收购Varian,Varian产品与贵公司的无机产品有直接竞争,而Agilent公司的市场运作能力也很强,这次收购势必对贵公司的无机产品有很大的影响,请问PerkinElmer公司如何应对?   Schneider Charles先生:我相信Agilent与Varian认识到了彼此的优势,才选择了并购,共同发展,但是PerkinElmer与Agilent的公司定位、竞争策略和市场目标并不相同。   PerkinElmer公司更专注于“人类健康”和“环境健康”两个业务领域,不断加大对高端市场的投资力度的同时,对外也有一系列的并购重组等业务扩展活动,扩充了公司的产品技术,不仅仅向客户提供更全面更优质的产品,更重要的是可以向客户提供最终的整体解决方案。我相信PerkinElmer在中国依然有足够的竞争力。   陈晴先生:不管合并还是重组,关键是要研发出更优质的产品,提供更优秀的服务,得到更多客户认可。若能让用户感受到真正的实惠,享受更好的服务,那就是成功的并购。    采访现场  编者手记   采访过程中,PerkinElmer公司全球无机产品线经理Schneider Charles先生向我们介绍了他的工作职责:大致可以分为两部分:一部分就是时刻关注公司的全球业务。根据各国市场需求,制定适宜的销售策略,关注全球的销售状况,与业务团队紧密合作,引领品牌全球化运作 另一部分就是与客户交流。积极拜访客户,做调查,收集市场讯息,与产品研发团队探讨,制定下一步计划,研发更好的产品,满足客户的需求。   2009年,PerkinElmer采取了一系列的收购兼并及业务拓展方面活动,另外,还推出了大量的升级换代新产品及相关技术软件,Schneider Charles先生表示作为最早进入中国的老牌分析仪器供应商之一,PerkinElmer非常看重中国市场,2010年公司将会相继推出大量特色产品,希望大家关注。   采访编辑:刘玉兰   附录一:珀金埃尔默仪器(上海)有限公司   http://www.perkinelmer.com/default.htm   http://perkinelmer.instrument.com.cn   附录二:Schneider Charles、陈晴、程广辉和Yong Ching Tung先生的简历.doc
  • J. Phys. Chem. A:实验室台式X射线发射谱(XES)助力无机/有机硫化合物化学和电子结构解析及鉴别
    硫(S),因在能源存储、生物化学、催化和环境科学等领域有着重要的应用而被广泛研究。因此了解硫的化学相互作用及电子结构对提升其在众多领域的应用有着重要作用[1-3]。目前,用于分析硫和硫化物的众多技术都是直接探测硫元素的信息,而对其周围的配位原子、配体等重要的环境信息有所忽略。例如磁共振 (NMR) 表征技术,可以表征硫元素,但它活性核的自然丰度太低,而且信号很宽,无法实现周围环境的表征。基于X射线的光谱技术,如同步辐射X射线吸收谱近边结构谱(XANES)及X射线光电子能谱(XPS),可以实现对硫和硫化物自身及周围环境的表征。但这两种表征技术也有不可忽视的问题:XANES需要在机时十分紧缺的同步辐射线站测试,而XPS只对样品表面信息敏感且需要真空环境。在过去的几年中,X射线发射谱 (X-Ray Emission Spectroscopy)方法及相关仪器的成功研制,大的推动了硫/硫化物的原子、电子结构及配位环境的相关研究。美国华盛顿大学Seidler教授利用台式XES仪器(美国easyXAFS公司)对S的Kα XES和Kβ VtC-XES (Valence to core) 进行研究,成功的构建并分析了硫化物氧化态和配位环境对应的谱学特征,并通过理论实验相结合的方法构建了硫化物电子结构配位结构的数据库,为以后的研究未知/已知硫化物的XES谱结构和预测提供了强有力的支持[4]。相关研究成果发表于The Journal of Physical Chemistry A, 2020, 124(26): 5415-5434.如图1a所示,电子从2p轨道退激发跃迁到1s空穴时所释放的荧光谱线为Kα峰,由于自旋轨道耦合效应使得Kα峰分裂为Kα1和Kα2,分别对应2p3/2和2p1/2到1s的跃迁。而电子从3p轨道退激发跃迁到1s空穴时所释放的荧光谱线主峰为Kβ1,3,其低能位置处的Kβ’谱线来源于 3p 和 3d 轨道的交换相互作用。Kβ卫星峰又称为VtC-XES(Valence to Core XES),其主峰为Kβ2,5峰,来源于 3d 过渡金属的 3d 或 4p 轨道与配位原子 2p 轨道相互作用而产生的杂化轨道向3d 过渡金属1s轨道的跃迁。而Kβ’’来源于配位原子2s电子向3d 过渡金属1s轨道的跃迁。图1. (a) S的Kα和Kβ XES谱跃迁示意图;(b) Na2SO4,Dibenzothiophene(C12H8S),dimethyl sulfone(C2H6O2S)和ZnS样品中 S的Kα XES谱基于以上XES谱图的基本原理,可以获取目标元素全轨道的电子结构以及原子结构信息。如图1b所示为四种不同硫化物的Kα1和Kα2谱图。虽然这四种硫化物的氧化态和化学配位环境完全不同,但是该四种化合物中S Kα1和Kα2谱图的形状基本相同。同时,随着化合物中S元素价态的提升,图谱向高能方向移动。这些发现与之前的研究结论相吻合:元素局域化学环境对其Kα谱线形状影响不大。在大部分的研究分析中,会以强度较大的Kα1峰为主要分析对象。可以通过分析目标样品中S的Kα1峰相对于单质S Kα1峰的峰位,对目标样品S价态进行分析,同时还可以对混合样品中不同价态的S进行分析。随后,研究人员通过将大量实验测得的VtC-XES谱与基于LR-TDDFT(线性响应时间相关密度泛函理论)理论计算方法得到的VtC-XES谱进行对比,用以建立对应的数据库,后借助机器学习算法辅助后续的实验结果分析。如图2所示,进行了三种类型有机硫化物的S VtC-XES谱分析。A类型的化合物在2465.5 eV附近有个主峰,同时在主峰左右低高能方向各有个小肩峰。通过计算的跃迁数据(图中黑线),可以发现较高能的肩峰主要由一或两个主要的跃迁贡献。而主峰和较低能的肩峰由一系列的跃迁所贡献。对于B类型来说,主峰位置在能量高位置,约2465.5 eV附近(与A类型化合物主峰位置接近)。在2463 eV附近会有一个小峰,在某些化合物会出现或者作为一个较弱的肩峰出现。C类型的化合物出现了两个主峰,一个在2467 eV附近,另一个在2463 eV附近(是2467 eV峰强的1/3)。图2. 各种二价有机硫化物中S Kβ VtC-XES实验谱(红色为台式XES装置测得,蓝色为Yasuda and Kakiyama等测得[5])与LR-TDDFT计算谱(黑色及橙色)对比图如图3所示,对于含有硫和氧直接配位的有机化合物来说(除二苯亚砜),其S VtC-XES谱中有一个位于2467 eV附近的主峰(Kβ1,3峰),以及在其低能方向14 eV的另一个峰(Kβ’峰),后者是众所周知的S-O键的峰。图3. 各种有机硫氧化物中S Kβ VtC-XES实验谱(红色为台式XES装置测得,蓝色为Yasuda and Kakiyama等测得[5])与LR-TDDFT(线性响应时间相关密度泛函理论)计算谱(黑色及橙色)对比图后,研究人员利用分子轨道理论结合加权分析手段对谱图的特征进行分析,得出结论:A和B类型化合物高能位置的峰主要由C,S及部分的O和N的p轨道贡献(HOMO能主要组成),而s轨道贡献较少。随着能量向低能方向过渡,p轨道贡献不断下降,而s轨道不断提升。对于C类型硫化物,其高能位置的峰更强,主要是由于S的p轨道贡献较多。对于含S-O键的硫化物来说,其低能位置的Kβ’峰(2453 eV)主要由O和S的s和p轨道贡献,所以该峰是S-O键的特征峰。因此,随着S周围O配位的增加,Kβ’峰强也会随之增加。而这与分析VtC-XES谱中Kβ’’峰的方法一致。论文还对几种无机硫化物的XES谱结构进行了分析,这里就不重复分析了(J. Phys. Chem. A 2020, 124, 5415-5434)。综上所述,研究人员使用 LR-TDDFT 计算和XES实验谱学结合,解析了有机/无机硫化合物的配位结构特点,成功的再现了Kα和Kβ XES谱学特征。基于实验室别的台式XES仪器使得获取XES谱图变得更加便捷且可信。通过实验和理论计算的数据及机器学习方法,为未来预测未知/已知结构的XES谱图提供了重要基础。图4. 各类型有机硫化物中S Kβ VtC-XES实验谱(红色为台式XES装置测得,蓝色为Yasuda and Kakiyama等测得[5])与LR-TDDFT计算谱(黑色及橙色)对比图,图中的柱状图为各种原子的轨道对于图谱的贡献值得一提的是,以上硫化物的XES实验谱图皆是研究人员利用美国easyXAFS公司台式XES谱仪测试得到的。目前,XES谱学技术在国际上使用研究较多,且不乏很多高质量的研究,而国内相关领域还处于早期阶段。目前国内仅有同步辐射光源线站可以进行XES测试,且不对用户开放(光源人员正在搭建发射谱线站和探索相关技术)。在不依赖稀缺性强的同步辐射光源的情况下,美国easyXAFS公司开发的台式X射线发射谱仪(easyXAFS100,150,300+)可以对材料(原位/非原位环境)的化学结构及电子结构(自旋态,配位原子区分,化合价等)进行精细表征,得到的谱图数据可以和同步辐射水平的X射线发射频图相媲美,且无论在峰位、峰形或其他等方面都具有很好的一致性。easyXAFS公司新系列easyXAFS300+型号仪器,同时集成了XAFS和XES两种功能,这将助力更多研究人员在常规的实验室环境中,即可实现X射线吸收谱和发射谱的测试及相关分析,实现更高质量、高前沿的科学研究。图5.(a)XES谱仪设计示意图;(c)easyXAFS公司台式XES谱仪及创始人Devon Mortensen 参考文献[1] Manthiram A, Chung S H, Zu C. Lithium–sulfur batteries: progress and prospects[J]. Advanced materials, 2015, 27(12): 1980-2006.[2] Rodriguez J A, Hrbek J. Interaction of sulfur with well-defined metal and oxide surfaces: unraveling the mysteries behind catalyst poisoning and desulfurization[J]. Accounts of Chemical Research, 1999, 32(9): 719-728.[3] Wilhelm Scherer H. Sulfur in soils[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(3): 326-335.[4] Holden W M, Jahrman E P, Govind N, et al. Probing sulfur chemical and electronic structure with experimental observation and quantitative theoretical prediction of Kα and valence-to-core Kβ X-ray emission spectroscopy[J]. The Journal of Physical Chemistry A, 2020, 124(26): 5415-5434.[5] Yasuda S, Kakiyama H. Chemical effects in X-ray Kα and Kβ emission spectra of sulfur in organic compounds[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1979, 35(5): 485-493.
  • 鉴有机辨无机,岛津EDXIR开创跨界融合
    导读 对未知物的定性是分析工作者的棘手问题之一,尤其当样品信息极度缺乏而且不能破坏时,更是让人挠破头。而现有的分析技术由于分析原理的限制,每种方法只能提供无机或有机类的信息,而不能给出综合分析结论。为了打破这一困境,岛津发挥自身产品线广、机种丰富的优势,在已有的成熟机种傅里叶变换红外光谱仪(FTIR)和能量色散X射线荧光光谱(EDXRF)之间,以EDXIR架起有机界与无机界间的桥梁,让未知物的定性分析更轻松。有机无机掺杂材料的定性分析问题有机物是生命产生的物质基础,所有的生命体都含有机化合物,如脂肪、氨基酸、蛋白质、糖等。狭义上的有机化合物主要是指由碳元素、氢元素组成,一定是含碳的化合物,但是不包括碳的氧化物和硫化物、碳酸等。在分析化学中,根据有机化合物的性质,发展出各种定性分析技术。例如,通过分子中不同化学键或官能团对特定波长红外光的吸收来鉴别化合物成分的FTIR;将化合物电离为不同质荷比的带电离子后在加速电场的作用下进入质量分析器,以质荷比来推断原化合物组成的有机质谱仪;以及根据强磁场中原子核分裂产生的NMR现象解析化合物结构的核磁共振技术等。无机物与有机化合物对应,通常指不含碳元素的化合物,但包括含碳的碳氧化物、碳酸盐、氰化物、碳化物、金属的有机配体配合物等在无机化学中研究的含碳物种。对无机物的定性分析一般先以X射线荧光光谱法确定元素,再结合X射线衍射或X射线光电子能谱确定样品中无机化合物的种类。然而,实际测试中,并非单一的有机或无机物,材料科学的突飞猛进使得分析工作者面对的样品材质越来越复杂。有机无机掺杂类的复合材料自不必说,即使普通的塑胶中也会加入各种添加剂或功能助剂,其中不乏无机物,例如油漆中的填料等。这些材料的全面成分分析仅使用有机类或无机类的分析技术显然不够全面,而需要综合两类技术进行分析。岛津EDXIR软件跨界融合有机与无机分析岛津成立近150年来,立足以分析仪器为社会做贡献,拥有宽广的产品线,其中FTIR与EDX产品分别为有机和无机定性分析领域的佼佼者。为了解决单一类型仪器所得信息有限的问题,开发出FTIR与EDX的联用技术,通过EDXIR软件,可以实现同时对FTIR和EDX结果进行分析比对,从而得出同时包含有机与无机信息的定性结果。岛津EDXIR综合分析案例分享图1. EDXIR综合筛选结果在上图的EDXIR综合筛选结果中,FTIR谱图显示样品存在聚氯乙烯、碳酸盐等成分,再综合EDX结果中Cl和Ca元素的检出,确认了样品为含有碳酸钙填料的聚氯乙烯,这类材料常用于电线外皮,因此综合分析中软件给出排序第一的可能材料为“电线外皮”。这样的结果既不同于FTIR所给出“PVC+碳酸盐”仅提供化合物成份,更不同于EDX只给出元素含量的形式,而是结合测试结果和数据库中所收录的材料使用场景信息,直接匹配给使用者样品的可能来源,将纯技术性的仪器测试结果直接推进到了场景分析层面,相当于为客户提供了材料分析经验。而实现这一功能也离不开EDXIR数据库中收录的近五百种材料的FTIR与EDX谱图,是综合分析结果的重要支撑。岛津EDXIR量化鉴别混杂材料案例分享EDXIR不仅在未知物的鉴别上可以结合FTIR与EDX进行分析,对于识别材料替换更有一手。通过在软件数据库中建立目标材料的EDX和FTIR谱库,在使用FTIR和EDX检测待测物后,EDXIR会给出待测物与目标物的匹配因子,达到阈值即可判定为符合要求。该项功能可以辅助企业识别原材料的性能是否稳定,以及是否被替换,具有很好的应用前景。图2. 测试样品图片图2为某大型生产企业质量事故中涉及的两种材料。怀疑供应商为了节省成本,未按客户要求使用指定的橡胶制品,而是选用了价格更便宜的仿冒品。为了确证这一点,对指定采购品和疑似仿冒品进行取样,将正品的谱图和数据注册到数据库中,再对疑似仿冒品进行匹配,得到结果如图。图3. 正品和疑似仿冒品红外光谱和EDX重叠谱图通过与正品的多次取样相比,疑似仿冒品的各项匹配度均未达到用户要求,确认质量事故为原材料被替换所导致。表1. EDXIR匹配分析结果结语通过EDXIR将FTIR与EDX的测试结果进行综合分析,分析者能够获得数据库中收录的近五百种材料经验的加持,得到的分析结果不再是简单的元素或化合物组成,而是更直接的“电线外皮”、“密封圈”、“不锈钢”等更为熟悉的材料名称。感谢EDXIR,不仅融合了有机界的FTIR与EDX的无机分析,更拉近了分析化学与材料分析的距离,让未知物分析更便捷!本文内容非商业广告,仅供专业人士参考。
  • 在线清洁验证:根据总有机碳、无机碳和电导率数据实时放行设备
    概述清洁验证是现行药品生产质量管理规范(cGMP,Current Good Manufacturing Practices)的重要组成部分,旨在保证药品的纯度、质量、疗效。患者的安全始终是最重要的。多年来,法规始终要求对清洁过程进行验证。然而许多厂商至今仍然沿用传统方法,即提取淋洗水和擦拭棉签样品,然后在实验室分析总有机碳(TOC)和电导率,以达到法规要求。传统的清洁验证方法虽然合规,却十分耗时,错误机率大,资本设备利用率低。目前行业将在线清洁验证视为更有效、更可持续的清洁验证和确认方法。本文简要介绍Sievers分析仪提供的解决方案,即使用Sievers® M9分析仪来分析TOC和电导率,进行精准、清晰、严谨的清洁验证和确认。目前的挑战传统上,清洁验证和确认是通过手动取样和实验室分析来完成的,其工作流程在质量和效率方面有下列明显缺点:取样耗时,需要分析人员准备样品容器、打印样品标签、提取样品、将样品送到实验室进行分析、然后还需输入和复查数据。棉签擦拭技术还要求进行繁琐的验证和培训工作,才能获得理想的回收率。在进行取样和实验室分析时,可能会损害样品的安全性。在取样的程序中,必须评估样品污染的风险和样品存储的稳定性。实验室流程常常延误数据发布,增加设备停机时间。现场提取的一个样品只代表一个时间点的清洁状况,无法代表整个清洁周期的状况。过程分析技术FDA于2004年发布了“过程分析技术(PAT,Process Analytical Technology)”指导文件1。该文件包括非约束性建议,鼓励cGMP厂家按照过程分析技术来理解工艺、控制工艺、持续证明设备的清洁验证状态。过程分析技术允许实时测量所需的质量特性。有了这些实时数据,就能掌握和证明清洁验证的状态,而无需进行人工取样或实验室分析。过程分析技术根据质量特性的测量结果来评估清洁度,而非仅仅对预定的时间点进行测量。公司采用过程分析技术,能够优化清洁验证工艺,节省清洁的时间、用料和用水,减少设备停机时间和人为错误。过程分析技术同样受FDA的严格监管,因此用来评估清洁度和放行设备的清洁工艺系统必须经过充分验证并符合规则标准,这一点至关重要。比较分析仪和传感器在选择合适的在线技术时,必须清楚了解相关的应用和法规。为了充分发挥过程分析技术的实时放行设备的作用,必须使用经过验证的仪器,仪器必须满足合规性、方法验证、数据安全等方面的要求。大多数在线TOC分析仪都用电导率来测量碳含量。Sievers TOC分析仪(例如Sievers M9分析仪)就是碳分析仪,用透气膜将干扰性化合物与CO2分离,从而准确测量碳含量。此技术能够确保测量的准确性和精确性。传感器测量氧化前后的电导率。虽然许多TOC仪器都以某种方式测量氧化前后的电导率,但在传感器测量的结果电导率中,没有将干扰性离子分离出去。TOC引起电导率变化,但碳以外的其它物质也能引起电导率变化。如果样品中含有干扰性物质(比如在清洁过程中常见的干扰物),就会产生报数偏高或偏低的情况。(见图1)图1:淋洗样品中也可能含有原料药、降解物、清洁剂、赋形剂,与有机碳分子键合的分子也容易被氧化。传感器不仅有错报的风险,而且在校准、验证、维护时,可能有不合规和效率低的问题。例如,在验证线性和特异性时,就无法用ICH Q2(R1)规则来验证传感器方法,而在使用数据来释放cGMP设备时,验证分析方法是关键环节。对于传感器来说,校准、验证系统适用性、维护等过程很繁琐,需要将文件资料甚至仪器送到厂家进行处理。而Sievers M9分析仪的维护、校准、系统适用性就可以自行完成,Sievers分析仪提供当场验证、维护、故障排除等现场支持。Sievers M9分析仪除了报告验证的、准确的TOC数据之外,还同时测量无机碳和电导率。有了这三种质量特性数据,就能全面而清晰地了解清洁工艺。Sievers的解决方案有了总有机碳、无机碳、电导率这三种数据,就能全面掌握清洁工艺。可以同时评估这三种质量特性,从而优化工艺、排除故障、或调查不合格结果(OOS,Out-of-Specification)。一旦在验证数据中确定了各个质量特性的控制范围,就能快速识别和纠正偏离工艺控制范围或规格的错误。也可以同时使用这些数据来调查故障根源,如图2所示。图2:同时使用TOC、无机碳、电导率,能够改善对不符合趋势结果的监测,并有助于调查故障根源为了演示M9分析仪与原位清洗(CIP,Clean-In-Place)工作站的整合与通信,以实时进行在线分析和报告数据,位于科罗拉多州博尔德市的Sievers分析仪开发实验室将Sievers M9便携式TOC分析仪与原位清洗站整合在一起(图3)。实验室模仿厂家普遍采用的清洁工艺,调整了流量、压力、时间、清洁方法。最终方案依照厂家所面临的复杂取样过程,无论对于时间、体积、或压力等限制,Sievers M9分析仪都能与组件成功整合,自动进行加压取样或非加压取样。还需注意,M9便携式分析仪与M9实验室型分析仪采用相同的技术。当从实验室分析转向在线分析时,相同的M9技术能够简化方法转移过程,无需再进行整套的方法验证。图3:整合了原位清洗工作站的Sievers M9便携式TOC分析仪进行实时淋洗分析。减少污染在分析样品时,必须考虑样品流路中的微生物污染风险,并采取措施降低这种风险。Sievers M9分析仪能够在不使用额外部件或工艺的情况下降低样品流路中微生物污染的风险。在清洁循环之间,分析仪用气动阀和干净的压缩空气来彻底干燥样品流路。取样组件和M9的“集成在线取样系统(iOS,Integrated Online Sampler)”都能耐受cGMP工艺常用的灭菌蒸汽、热水、腐蚀性清洁剂等。当采用Sievers M9在线清洁验证配置时,分析仪可以用干净的压缩空气吹干样品流路,使样品流路保持清洁、干燥,为下一次分析做好准备。这种在线清洁验证的系统整合为管控和降低污染风险提供了自动化的解决方案。验证和数据可靠性Sievers M9与原位清洗系统相整合的在线清洁验证技术,为合规性达标提供了精准而有力的方法。Sievers验证支持包第一和第二册满足仪器合规所需的全部要求,能够确保测量数据的准确性,可以用来释放关键性cGMP设备。数据可靠性始终是cGMP厂家所关注的重要议题。配置了DataGuard软件的Sievers M9 TOC分析仪满足联邦法规21 CFR PART 11以及数据可靠性准则的全部要求。具有可修改权限的各种用户级别确保所有用户都有正确的访问级别。审计追踪能够捕获任何人在仪器上执行的任何操作活动,其中包括执行的时间和用户信息。数据、方法、审计追踪都是不能更改或删除的。DataGuard允许以符合数据可靠性规则的方式来分析、存储、传输实时数据。总结随着生产需求不断增加,越来越多的厂家采用过程分析技术来改善运营效率和精益生产流程。在线清洁验证帮助厂家掌握工艺、控制流程、管理风险、提升效率、优化生产,而这些都是实验室监测所无法做到的。Sievers M9提供精确的、准确的、定量的、耐用的分析技术,能够充分利用清洁验证数据。这些经过验证的精准分析数据,可以用来以符合数据可靠性规则的方式进行重要决策、实时放行设备、排查故障、优化清洁工艺。Sievers分析仪为厂家的在线清洁验证提供全方位的解决方案,其中包括提供仪器、验证、合规支持、技术服务、不合格结果(OOS,Out ofSpecification)支持、提供标样、安装组件、应用支持等。如欲查询详细信息,或请Sievers分析仪为您评估工艺可行性,请与我们联系。参考文献Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance. FDA, 2004, https://www.fda.gov/media/71012/download◆ ◆ ◆联系我们,了解更多!
  • 第十七届国际生物无机化学会议邀请函
    由中国化学会、国家自然科学基金委员会主办,北京航空航天大学承办的&ldquo 第十七届国际生物无机化学会议&rdquo 于2015年7月20-24日在北京国家会议中心召开。本次会议以&ldquo 生物无机化学:交叉和合作&rdquo 为主题,设立6个分会场和若干卫星会,会议规模将达1500人,参会人员来自世界不同国家的高等院校、化学、生物及相关领域科研院所和企事业单位,具有广泛的代表性。届时国内外数十位两院院士将受邀莅临指导,国际知名生物无机化学学者和第十七届国际生物无机化学会组织亦将组团与会。   为了积极推动中国生物无机化学的蓬勃发展,大力促进仪器、试剂厂商与化学工作者的相互联系和学术交流,推广新技术和新产品,会议期间将举办与生物无机化学研究有关的仪器、试剂和图书展览会。鉴于贵公司在有关领域的卓越的成就和广泛的影响,大会组委会荣幸地向您发出正式邀请信,热情欢迎贵公司光临本届大会和参加展览,特此致函。   此次活动是专业厂商宣传推广新技术、新产品的极好机会,欢迎各公司、代理商、厂家踊跃参加。为做好有关准备工作,现将该活动有关事项通知如下:   一、国际生物无机化学会议招商说明   国际生物无机化学会议自1983年在意大利首次举办以来,每两年举办一届,是国际生物无机化学界规模最大、学术水平最高、科研成果最集中和生物、化学工作者层次最高的盛会,被誉为生物无机化学届的&ldquo 奥林匹克&rdquo 。   二、日程安排   1. 会议日程:   报到时间:2015年7月19日   会议时间:2015年7月20日- 24日   2. 展览日程   布展时间:2015年7月19日   展出时间:2015年7月20日- 24日   撤展时间:2015年7月24日 16:00   三、组织单位   主办单位:中国化学会   国家自然科学基金委员会   协办单位:北京雄鹰国际展览有限公司   承办单位:北京航空航天大学化学与环境学院   执行单位:北京远航雷素科技服务有限责任公司   四、展出地点:   国家会议中心(北京)   五、会议报告日程安排敬请登录大会官方网站下载   会议赞助   1. 首席赞助商(限1家):20万元人民币(或3.5万美元)   2. 特邀论坛赞助(限6家):8万元人民币(或1.5万美元)   3. 特邀墙报赞助(限4家):8万元人民币(或1.5万美元)   4. 特邀餐饮赞助(限4家):8万元人民币(或1.5万美元)   5. 大会用包或资料袋赞助(限1家):5万元人民币(或1万美元)   6. 大会胸卡及证件挂绳赞助(限1家):5万元人民币(或1万美元)   7. 大会论文集(U盘或CD)赞助(限4家):5万元人民币(或1万美元)   8. 大会文具赞助(限1家):5万元人民币(或1万美元)   9. 大会志愿服务赞助(限1家):5万元人民币(或1万美元)   10. 茶歇赞助:3万元人民币(或0.5万美元)   11. 其它项目如纸袋、参会指南另议   注:第十七届国际生物无机化学会议秘书处针对以上各种赞助方案拟定了详细的回报条款和增值服务。会议赞助正在征集之中,如有意参与赞助,请与国际生物无机化学会议中国秘书处联系,秘书处将为您提供参会方案(包括收费标准及回报方案)。   六、有关费用标准   1. 标准展位(3m× 3m):人民币18000元/个(或3000美元/个),角标加收10%。   2. 费用包含:三面围板、一张桌子、两把椅子、背板和灯光 四天展示时间、参展公司名字列在会议材料中和会议网站上 参会人员按优惠价(人民币3700元/人或600美元/人)注册。   3. 大会论文集:封二30000元 封三20000元 封底40000元 彩色内页6000元/版。   4. 欢迎企事业单位自愿赞助出版《第十七届国际生物无机化学会议论文集》以及其他文件,将在显著位置予以说明和致谢。   七、报名方法   1. 参展单位请详细填写《参展合同表》并加盖公章,邮寄或传真至组委会办公室。   2. 报名后,请参展单位务必在10日内将全款汇入大会组委会委托财务管理单位指定的银行帐户。   3. 对于展位及赞助安排,将本着&ldquo 先报名、先交款,先安排&rdquo 的基本原则,但是由于本次会议展厅面积有限,组委会将根据实际情况在与参展单位充分协商后进行调整。   4. 参展单位代表住宿及展品运输,组委会将另行通知。   八、相关服务   1. 协作安排境外企业展品运输、报关   2. 为参展代表提供便捷服务,协助参展代表订宾馆、返程车票、机票   3. 协助参展单位举办各种形式的新闻发布会、产品项目推介会、专题报告会和技术讲座   4. 安排相关参展单位与国外参观代表团洽谈活动。。   九、联系方式:   地 址:北京市海淀区西三旗新龙大厦B1-1118室 邮编:100096   电 话:86-10-82967481 82967491   传 真:86-10-82967471   手 机:13910227598   邮 箱:lanneret@lanneret.com.cn   联系人:曹林辉
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
  • 有机无机复合材料国家重点实验室成立
    有机无机复合材料国家重点实验室揭牌仪式近日在京举行。本实验室依托四大实验室进行组建。它们分别是纳米材料先进制备技术与应用科学教育部重点实验室、北京市新型高分子材料制备与加工重点实验室、北京市生物加工过程重点实验室和教育部超重力工程研究中心等实验室。   本实验室充分利用了北京化工大学在材料、化工和机械三个一级学科专业方向完整、研究实力雄厚的优势,通过材料、化工、机械、生物等学科间的交叉、渗透和整合以及多年的良性发展,针对有机无机复合材料领域中的重大主题,确立了五个特色研究方向:基础相材料及复合材料模拟与设计 无机相/有机相材料制备基础 树脂基功能纳米复合材料 弹性体基纳米复合材料 碳纤维复合材料。   实验室现有面积6919平方米,5万元以上仪器设备238台件,固定资产原值8270万元,仪器装备水平在材料科学与工程领域属国内一流,并拥有一支学术水平较高、创新能力强的研究队伍,基本满足了国家重点实验室的建设要求。来源科技网
  • 中国地质科学院矿产资源研究所350.00万元采购激光剥蚀进样,无机质谱
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目公开招标公告 北京市-西城区 状态:公告 更新时间: 2022-05-16 中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目公开招标公告 2022年05月16日 16:00 公告信息: 采购项目名称 中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目 品目 货物/通用设备/仪器仪表/其他仪器仪表 采购单位 中国地质科学院矿产资源研究所 行政区域 北京市 公告时间 2022年05月16日 16:00 获取招标文件时间 2022年05月16日至2022年05月23日每日上午:9:00 至 11:00 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 中国通用招标网http://www.china-tender.com.cn 开标时间 2022年06月08日 09:30 开标地点 北京市丰台区西三环南路14号院首科大厦A座4层405号 预算金额 ¥350.000000万元(人民币) 联系人及联系方式: 项目联系人 朱强 项目联系电话 010-63348624(项目咨询),400-680-8126(网站客服) 采购单位 中国地质科学院矿产资源研究所 采购单位地址 北京阜外百万庄大街26号 采购单位联系方式 肖晔010-68999523 代理机构名称 中技国际招标有限公司 代理机构地址 北京市丰台区西三环中路90号通用技术大厦 代理机构联系方式 朱强010-63348624 项目概况 中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目 招标项目的潜在投标人应在中国通用招标网http://www.china-tender.com.cn获取招标文件,并于2022年06月08日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0701-224101190084 项目名称:中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目 预算金额:350.0000000 万元(人民币) 最高限价(如有):350.0000000 万元(人民币) 采购需求: 序号 货物名称 数量 简要技术规格及要求 交货期到货地点 质量保证期 1 飞行时间无机质谱仪 1套 通过ICP离子源将待测元素离子化,再经过飞行质谱仪分析器,将待测元素按质荷比的飞行时间的长短分开,进入检测器,完成纳米颗粒物的分析,还可以结合激光剥蚀系统以完成多元素在二维平面上分布的信息, 还可以结合单细胞进样系统,完成单细胞内的元素分析。 收到预付款后5个月内交货。 北京市海淀区皇后店东路中国地质科学院矿产资源研究所新基地内 整机质保1年。 合同履行期限:收到预付款后5个月内交货 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目为非专门面向中小企业采购的项目 3.本项目的特定资格要求:1)投标人不得为“信用中国”网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不得为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(处罚决定规定的时间和地域范围内);2)投标人若为进口产品经销商,须提供投标产品的制造商授权,也可提供该产品总代理或独家代理出具的授权,但应同时提供原厂商对该总代理或独家代理出具的授权文件;3)投标人应购买本项目招标文件。 三、获取招标文件 时间:2022年05月16日 至 2022年05月23日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外) 地点:中国通用招标网http://www.china-tender.com.cn 方式:网上获取 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年06月08日 09点30分(北京时间) 开标时间:2022年06月08日 09点30分(北京时间) 地点:北京市丰台区西三环南路14号院首科大厦A座4层405号 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 本项目适用的政府采购政策: 《节能产品政府采购实施意见》(财库〔2004〕185号); 《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号); 《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号); 《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号); 《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国地质科学院矿产资源研究所 地址:北京阜外百万庄大街26号 联系方式:肖晔010-68999523 2.采购代理机构信息 名 称:中技国际招标有限公司 地 址:北京市丰台区西三环中路90号通用技术大厦 联系方式:朱强010-63348624 3.项目联系方式 项目联系人:朱强 电 话: 010-63348624(项目咨询),400-680-8126(网站客服) × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息关键内容:激光剥蚀进样,无机质谱 开标时间:2022-06-08 09:30 预算金额:350.00万元 采购单位:中国地质科学院矿产资源研究所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中技国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目公开招标公告 北京市-西城区 状态:公告 更新时间:2022-05-16 中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目公开招标公告 2022年05月16日 16:00 公告信息: 采购项目名称 中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目 品目 货物/通用设备/仪器仪表/其他仪器仪表 采购单位 中国地质科学院矿产资源研究所 行政区域 北京市 公告时间 2022年05月16日 16:00 获取招标文件时间 2022年05月16日至2022年05月23日每日上午:9:00 至 11:00 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 中国通用招标网http://www.china-tender.com.cn 开标时间 2022年06月08日 09:30 开标地点 北京市丰台区西三环南路14号院首科大厦A座4层405号 预算金额 ¥350.000000万元(人民币) 联系人及联系方式: 项目联系人 朱强 项目联系电话 010-63348624(项目咨询),400-680-8126(网站客服) 采购单位 中国地质科学院矿产资源研究所 采购单位地址 北京阜外百万庄大街26号 采购单位联系方式 肖晔010-68999523 代理机构名称 中技国际招标有限公司 代理机构地址 北京市丰台区西三环中路90号通用技术大厦 代理机构联系方式 朱强010-63348624 项目概况 中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目 招标项目的潜在投标人应在中国通用招标网http://www.china-tender.com.cn获取招标文件,并于2022年06月08日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0701-224101190084 项目名称:中国地质科学院矿产资源研究所飞行时间无机质谱仪购置项目 预算金额:350.0000000 万元(人民币) 最高限价(如有):350.0000000 万元(人民币) 采购需求: 序号 货物名称 数量 简要技术规格及要求 交货期 到货地点 质量保证期 1 飞行时间无机质谱仪 1套 通过ICP离子源将待测元素离子化,再经过飞行质谱仪分析器,将待测元素按质荷比的飞行时间的长短分开,进入检测器,完成纳米颗粒物的分析,还可以结合激光剥蚀系统以完成多元素在二维平面上分布的信息, 还可以结合单细胞进样系统,完成单细胞内的元素分析。 收到预付款后5个月内交货。 北京市海淀区皇后店东路中国地质科学院矿产资源研究所新基地内 整机质保1年。 合同履行期限:收到预付款后5个月内交货 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目为非专门面向中小企业采购的项目 3.本项目的特定资格要求:1)投标人不得为“信用中国”网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不得为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(处罚决定规定的时间和地域范围内);2)投标人若为进口产品经销商,须提供投标产品的制造商授权,也可提供该产品总代理或独家代理出具的授权,但应同时提供原厂商对该总代理或独家代理出具的授权文件;3)投标人应购买本项目招标文件。 三、获取招标文件 时间:2022年05月16日 至 2022年05月23日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外) 地点:中国通用招标网http://www.china-tender.com.cn 方式:网上获取 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年06月08日 09点30分(北京时间) 开标时间:2022年06月08日 09点30分(北京时间) 地点:北京市丰台区西三环南路14号院首科大厦A座4层405号 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 本项目适用的政府采购政策: 《节能产品政府采购实施意见》(财库〔2004〕185号); 《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号); 《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号); 《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号); 《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国地质科学院矿产资源研究所 地址:北京阜外百万庄大街26号 联系方式:肖晔010-68999523 2.采购代理机构信息 名 称:中技国际招标有限公司 地 址:北京市丰台区西三环中路90号通用技术大厦 联系方式:朱强010-63348624 3.项目联系方式 项目联系人:朱强 电 话: 010-63348624(项目咨询),400-680-8126(网站客服)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制