当前位置: 仪器信息网 > 行业主题 > >

右旋糖酐铁

仪器信息网右旋糖酐铁专题为您提供2024年最新右旋糖酐铁价格报价、厂家品牌的相关信息, 包括右旋糖酐铁参数、型号等,不管是国产,还是进口品牌的右旋糖酐铁您都可以在这里找到。 除此之外,仪器信息网还免费为您整合右旋糖酐铁相关的耗材配件、试剂标物,还有右旋糖酐铁相关的最新资讯、资料,以及右旋糖酐铁相关的解决方案。

右旋糖酐铁相关的资讯

  • 卫生部批准使用5种食品添加剂
    8月28日消息:昨天,卫生部发布公告,5种食品添加剂新品种获批,同时批准13种食品添加剂、5种食品用加工助剂和8种食品营养强化剂扩大使用范围及用量。   经审核批准,5种食品添加剂新品种包括焦磷酸一氢三钠、氧化亚氮、乳糖酶、柠檬酸钙(三水)、右旋糖酐酶。   此外,卫生部还批准乳酸钙等13种食品添加剂、白油(液体石蜡)等5种食品用加工助剂和铁等8种食品营养强化剂扩大使用范围及用量,增补已批准食品添加剂葡萄糖酸-δ-内酯的质量规格要求,增补食品用酶制剂蛋白酶的原料来源。
  • 武汉大学药学院黎威教授课题组:可穿戴式自供电微针贴片用于增强深部黑色素瘤治疗
    黑色素瘤是一种与表皮层黑色素细胞密切相关的高度恶性皮肤癌。经皮递药是手术替代或者补充治疗皮肤癌的有效方法,它可使药物能够穿透皮肤屏障并直接作用于肿瘤部位。然而,随着黑色素瘤的进展,表皮黑色素瘤细胞会持续浸润真皮,形成皮肤深部黑色素瘤。深部皮肤肿瘤的有效治疗依赖于经皮给药系统中的增强药物渗透。虽然微针(MNs)和离子导入技术在经皮给药方面已展现出效率优势,但皮肤弹性、角质层的高电阻和外部电源要求等需求挑战,仍然阻碍了它们治疗深部肿瘤的有效性。基于此,武汉大学药学院黎威教授和姜鹏副教授课题组设计开发了一种集成柔性摩擦电纳米发电机(F-TENG)的可穿戴自供电载药微针(MNs)贴片,旨在增强深部黑色素瘤的治疗。微针由水溶性微针基质材料与带负电荷的pH响应纳米粒子(NPs)混合而成,其中纳米粒子中装载着治疗药物。该装置充分利用MNs和F-TENG的优势(F-TENG能够利用个人机械运动产生电能),治疗性NPs可以在MNs贴片插入皮肤后渗透到深层部位,在酸性肿瘤组织中迅速释放药物。在深部黑色素瘤小鼠模型对比实验中,使用集成的F-MNs贴片的治疗效果优于普通MNs贴片,预示这集成F-MNs贴片在深部肿瘤治疗的巨大潜力。该贴片通过摩方精密microArch® S240(10μm精度)制备完成,相关研究成果以题为“Enhancing Deep-Seated Melanoma Therapy through Wearable Self-Powered Microneedle Patch”的文章发表在《Advanced Materials》。武汉大学药学院博士研究生王陈媛、硕士研究生何光琴和博士研究生赵环环为共同第一作者,武汉大学药学院黎威教授和姜鹏副教授为共同通讯作者。首先,研究者采用气体扩散法合成了具有pH响应性质的Ce6@CaCO3 NPs, Ce6@CaCO3 NPs为100 nm左右均匀分布的球形结构,表面修饰PEG进一步增强纳米粒子的胶体稳定性。在pH = 7.4的中性环境中,纳米粒子维持稳定的结构,使得封装的药物难以释放。在pH = 5.5的酸性环境中,纳米粒子结构被破坏,可实现药物的快速释放(如图1)。图1 Ce6(DOX)@CaCO3-PEG NPs的合成与表征a) Ce6(DOX)@CaCO3-PEG NPs的合成和药物释放过程示意图。b)合成Ce6@CaCO3 NPs的TEM图像。c)游离Ce6、游离DOX和Ce6(DOX)@CaCO3-PEG的紫外可见光谱(蓝色和黑色虚线矩形分别表示Ce6和DOX的特征吸收峰)。d) DLS测定的Ce6(DOX)@CaCO3-PEG NPs的粒径分布。e) Ce6@CaCO3和Ce6(DOX)@CaCO3-PEG NPs的Zeta电位。f) Ce6(DOX)@CaCO3-PEG NPs在不同pH值(7.4、6.5和5.5)的PBS中孵育0.5 h后的代表性TEM图像。g) Ce6(DOX)@CaCO3-PEG NPs在不同pH值(7.4、6.5和5.5)的PBS中随时间变化的水动力直径变化。Ce6(DOX)@CaCO3-PEG NPs在不同pH值PBS中h) DOX或i) Ce6的体外释放谱。每个点代表平均值±SD (n = 3个独立重复实验)。***p 图2 Ce6(DOX)@CaCO3-PEG NPs的体外行为a) B16-F10细胞对Ce6(DOX)@CaCO3-PEG NPs的摄取。b) Ce6(DOX)@CaCO3-PEG NPs孵育4 h后细胞摄取量的定量测定c)激光照射下游离Ce6或Ce6@CaCO3-PEG孵育后B16-F10细胞的细胞活力。两种处理的Ce6浓度相当。d)游离DOX或Ce6(DOX)@CaCO3-PEG孵育后B16-F10细胞的细胞活力。两种处理的DOX浓度相当。e) 660 nm激光照射不同处理下B16-F10细胞内ROS检测。f)用Ce6@CaCO3-PEG或Ce6(DOX)@CaCO3-PEG NPs处理B16-F10细胞在激光照射或不照射下的细胞活力。g)不同处理后B16-F10细胞的活/死测定。这些处理具有相同的DOX或Ce6浓度。绿色荧光:钙素-AM 红色荧光:碘化丙啶(PI)。每个点代表平均值±SD (n = 3个独立重复实验)。*p . ns表示无显著性。同时,研究者通过硅橡胶和导电织物制备了一种典型的接触和分离模式的柔性摩擦电层F-TENG,可以通过接触通电和静电感应的耦合效应将生物机械能转化为交流电(AC)输出。然而,为了有效地为离子电泳系统供电,交流输出必须转换成直流(DC)。因此,作者制作了电源管理系统(PMS),将F-TENG的交流转换为直流,同时显著放大电流。最后将柔性的F-TENG与载药微针结合,制备成一种可穿戴的装置(如图3)。 图3 一种工作在接触分离模式下的柔性TENG (F-TENG)。a) F-TENG的原理图(左)和照片(右)。b) F-TENG工作机理示意图。c)短路电流,d)开路电压,e) F-TENG的转移电荷。f)连接整流桥和LED灯的F-TENG输出电流。g)连接电源管理系统和LED灯的F-TENG输出电流。(f)和(g)中的插图是15秒内电流峰值的放大视图和LED灯的光学照片。h)手动驱动F-TENG连接到PMS的电流。i)可穿戴式F-MN贴片原理图。可穿戴的F-MN贴片j)贴在人体手臂上之前和k)贴在没有皮肤穿刺的情况下的演示照片。 微针通过真空浇筑法,将载药的纳米粒子与水溶性基质PVA/suc混合后填入PDMS模具中制备得到,并用导电的PPy作为微针背衬填入。制备好的微针与F-TENG通过导电胶连接得到F-MN装置。此外,将偶联FITC荧光的葡聚糖作为模型药物被微针递送到到皮肤后,通过荧光分布可以看出连接F-TENG的微针装置具有更高效和深部的药物递送(如图4)。图4 F-MN贴片的制备与表征。a) MN贴片制作工艺示意图。b)制备的MN贴片的光学图像和c) SEM图像。d) FITC -葡聚糖负载MN贴片的代表性明场(左)和荧光显微镜图像(右)。e)右旋糖酐-MN贴片插入后大鼠皮肤代表性明场和荧光显微镜图像。f)荧光图像和g)植入或不植入F-TENG的大鼠皮肤后残余MNs的相应荧光强度(FI)。h)代表性显微镜图像,i)药物穿透深度,j)外用葡聚糖溶液或葡聚糖-MN贴片加F-TENG或不加F-TENG后大鼠皮肤组织切片对应的荧光强度。每个点代表平均值±SD (n = 3个独立重复实验)。*p 表示无显著性。微针尺寸:高850 μm,尖端直径10 μm,底座直径400 μm.而后,作者在小鼠体内观察F-TENG产生电流的能力以及在体内药物递送的效果。将F-MN装置应用在小鼠肿瘤部位后,F-TENG能够将运动产生的机械能转化为电能,在小鼠体内维持恒定的电流,有效促进微针中负载的药物向更深部的肿瘤渗透,同时也提高了药物在体内的递送效率和作用时间(如图5)。 图5 F-MN装置提高了体内给药效率。a)经F-MN贴片处理的荷瘤小鼠照片。(插图:治疗小鼠时,MN贴片被连接。正极连接小鼠左前肢,负极连接MN贴片)。b) F-MN贴片作用于肿瘤部位的示意图。c)治疗过程中通过MN贴片的电流。d)不同处理小鼠给药后24 h的荧光图像。红色虚线圈表示肿瘤部位。e)不同处理的荷瘤小鼠及肿瘤部位照片。f)代表性图像,g)相应的药物穿透深度,h)局部应用NPs或MN贴片或f -MN贴片后肿瘤部位组织切片在体内的相对荧光强度。每个点代表平均值±SD (n = 3个独立重复实验)。*p 图6 F-MN贴片在B16-F10黑色素瘤小鼠中的抗肿瘤行为。a)处理过程示意图。b)不同肿瘤深度荷瘤小鼠的代表性超声图像和c)肿瘤组织的组织学切片。d) (c)中的深度量化。e)五组不同处理小鼠的平均肿瘤生长曲线。f)第9天各给药组小鼠肿瘤重量。g)第9天各组离体肿瘤形态。h)各组小鼠治疗后体重。i)各治疗组小鼠存活率曲线。j)各组肿瘤组织切片H&E、Ki67、TUNEL染色分析。每个点代表平均值±SD (n = 5个独立重复实验)。*p 图7 F-MN贴剂的体内生物安全性评价。a)各组主要器官切片H&E染色分析。不同处理后小鼠血清生化指标b)丙氨酸转氨酶(ALT)、c)血尿素氮(BUN)、d)肌酐(CR)、e)总胆红素(TBIL)各组全血中f)白细胞(WBC), g)红细胞(RBC), h)血小板(PLT)的数量。数据以mean±SD (n = 5个独立重复实验)表示,ns表示无统计学意义。结论:在这项研究中,作者开发了一种与F-TENG集成的可穿戴自供电MN贴片,并首次用于治疗深部实体肿瘤。F-MN贴片能够通过可溶解的纳米颗粒将载药的纳米颗粒递送到皮肤中,并通过纳米发电机将个人机械运动转化为电能,从而提供足够的驱动力将治疗性纳米颗粒推进深部肿瘤,进而显著提高药物递送穿透效率。在到达酸性肿瘤位置后,pH响应性NPs表现出快速解离和释放化学分子(DOX)和光敏剂(Ce6),从而显示出强大的协同根除肿瘤细胞的能力。在小鼠深部黑色素瘤模型中,单次给药这种F-MN贴片能够实现明显的肿瘤生长抑制。此外,荷瘤小鼠的生存期明显延长,体内生物安全性令人满意,这表明了该贴片在临床治疗深部实体瘤方面具有很大的潜力。这种有效的装置具有出色的传输能力,可以很轻松地将生物大分子或治疗性NPs经皮输送到深部,将来也可局部或全身用于治疗其他疾病,如糖尿病。
  • 美国怀雅特技术公司参展2010 Pittcon并发布新产品
    (SANTA BARBARA, CALIFORNIA-March 1, 2010)美国怀雅特技术公司,世界领先的绝对大分子表征仪及其软件制造商,于2010年2月28日~3月1日在美国Orlando举办的Pittcon展会上推出两款新产品:MÖ BIUζ™ 大分子迁移率测定仪;Optilab T-rEX示差折射率测定仪。 关于MÖ BIUζ™ 大分子迁移率测定仪 MÖ BIUζ™ 大分子迁移率测定仪主要用于如脂质体、病毒粒子(VLPs)、抗体、蛋白质等生物大分子迁移率的测定。该仪器融入Wyatt多项创新专利技术,使得样品测定结果的精度、重复性得到极大保障。与传统的迁移率测定仪或zeta电位仪宽范围的样品测定不同,MÖ BIUζ™ 基于以激光为光源而专门针对于生物大分子迁移率表征。因其能快速、准确、可靠的测定大分子物质迁移率而在Pittcon展会上备受关注。 带电性是所有大分子物质非常重要的基本性质。在胶体悬浮液中,大分子所带电荷的多少以及粒子与界面间的相互作用是关系溶液稳定性的极为重要因素。对于众多生物大分子如蛋白质而言,分子静电间的相互作用直接影响分子构象和性能。由于直接测定界面间电位的方法几乎不可行。因此,利用电泳迁移率表征大分子带电荷性质的测定方法已被越来越多的人们接受。 此外,作为非破坏性检测方法,光散射法还因其全部采用物理学第一原则测定大分子迁移率而备受赞赏。然而,对蛋白质类生物大分子而言,由于其分子尺寸小(98%。此外,使用MÖ BIUζ™ 另一优势,如将2mg/mL溶菌酶或0.5 mg/mL牛血清蛋白测试,其灵敏度较市场上同类产品至少高出2倍。 不仅如此,您还可以选择WyattQELS动态光散射配件同步测定大分子平移扩散系数、流体力学半径以及迁移率。而进样方式您可以任意选择,如手动进样、自动进样、注射泵进样,甚至自动滴定方式。MÖ BIUζ™ 独有的先进智能化温控系统,为试验研究、产品监控提供极大便利性和可操作性。 关于Optilab T-rEX示差折射率测定仪 Optilab T-rEX示差折射率测定仪是美国怀雅特技术公司开发的新一代示差折射率型检测仪。与Optilab rEX相比,其内嵌2GHz处理器(提高~7倍);新一代激光光源,其能量高出近50倍;其独特的双温控制系统,使得温度系统控温能力大幅提高。毫不夸张的说,Optilab T-rEX是目前世界上灵敏度最高的示差折射率型检测仪。此外,其最高检测浓度高达:蛋白质180mg/mL,右旋糖酐220 mg/mL。 详情请登陆网站:www.wyatt.com;www.wyatt.com.cn 电话:010-82292806, 传真:010-82290337 E-Mail:info@wyatt.com.cn
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 疫苗前沿|冷冻干燥技术助力新型mRNA疫苗研发与生产
    第四轮新冠疫情在全球的爆发,就在近几日,上海疫情感染总数也突破10万人次大关,感染人数不断上升,但这不仅仅是因为上海防控措施的原因,更因为病毒没有一刻停止过进化。目前国外甚至又进化出两种新的“毒王”。随着大家对疫情的关注度迎来又一波热潮,对疫苗的关心和问题也冲上热搜。目前不同厂家的疫苗有什么区别?为什么有的疫苗只需接种一剂,有的则需要接种两剂或三剂?应该选择什么类型的疫苗?不同疫苗的有效性是否有差异?疫苗加强针是否应该接种,该怎么选择?有没有有效性更高、且稳定性好的疫苗?关于疫苗研发的5条技术路线图1:全球并行开发了5条技术路线的疫苗我们先来了解一下什么是疫苗?疫苗是预防和控制传染病最经济、有效的手段,疫苗接种是通过诱导机体产生保护性免疫应答来预防和控制人类和动物疾病的常规方法。自新冠疫情初期开始,我国与全球主要国家就投入了新冠疫苗的研发工作,并行开发了5条技术路线的疫苗,这也是目前疫苗的主要分类。疫苗的不同技术路线:※灭活疫苗※减毒活疫苗※基因工程亚单位疫苗※腺病毒载体疫苗※核酸疫苗(含DNA和RNA疫苗)灭活疫苗是最传统的平台,而亚单位蛋白疫苗在过去几十年中蓬勃发展,核酸和病毒载体疫苗是该领域重要的新生事物。核酸疫苗使用先进的基因工程RNA或DNA产生一种自身可以安全诱发免疫应答的蛋白质。相较于DNA而言,RNA更容易被人体识别并产生相应的抗原信息,但不会参与细胞内DNA的改造,因而更加高效且安全性更高。不同疫苗的有效性如何呢?此次新冠疫苗在产量方面处于领先地位的是美国辉瑞-BioNTech和Moderna(mRNA疫苗)、阿斯利康和强生(病毒载体)以及中国国药集团和科兴(灭活)。各疫苗的有效性如何呢?世界卫生组织公布的数据如下:从数据来看,辉瑞-BioNTech和Moderna(mRNA疫苗)有效性较高,分别为95%和94.1%。为了应对新冠病毒的持续变异,建议尽早接种新冠疫苗加强针。为确保同等或更有利的免疫原性或疫苗有效性,在第一剂和第二剂接种灭活疫苗后,视产品供应情况,第三剂既可继续接种同品牌的灭活疫苗,也可接种世卫组织紧急使用列表中的任一种COVID-19mRNA疫苗(辉瑞或莫德纳)或COVID-19病毒载体疫苗(阿斯利康Vaxzevria/COVISHIELD或杨森)。mRNA疫苗的优势在哪里?代表着未来新技术的mRNA疫苗是将外源靶抗原的基因序列通过转录、合成等工艺制备的mRNA通过特定的递送系统导入机体细胞,通过在体内表达目的蛋白,刺激机体产生特异性免疫学反应,从而使机体获得免疫保护的一种核酸制剂,能实现体液与细胞的双重免疫,有效性高。mRNA疫苗作为一种平台型技术,在设计和构建上具有快速性、应变性以及简单的全合成制备等优势,新型冠状病毒肺炎在全球范围爆发和蔓延后,随着Moderna和BioNtech公司的mRNA疫苗在临床上的安全性和保护效力得到进一步验证,使得mRNA疫苗技术得到广泛关注并推动了其快速发展。冷冻干燥技术在mRNA疫苗研发和生产中的应用mRNA疫苗虽然有效性高,但在生产和使用过程中依然存在一些挑战——①结构不稳定;②容易被环境中普遍存在的RNA酶降解破坏;③需要在零下-20℃~-70℃之间保存。这就意味着全程需要冷冻储存和冷链运输,配送和使用会变得非常困难,尤其是对于医疗条件和运输条件相对较差的非洲、南美洲和部分亚洲国家等,因此会造成由于无法按时接种最终导致仍有数百万人死于这些疾病。图2:冻干疫苗可以解决储存运输难题而这些难题可以通过冻干生产相对较为干燥的产品来解决。目前,冷冻干燥技术由于其独特的优势,已被广泛应用于抗体、疫苗等生物制药中。1、冻干疫苗的优势●疫苗制剂在预冻前完成分装,从而保证了剂量的精确性;●由于冻干是在真空和低温状态下完成的,因此不易发生氧化和热变性,可以最大限度地保持疫苗的理化性质和生物特性;●固态的冰晶升华成为水蒸气后形成的疏松多孔(海绵状)结构,使冻干疫苗具有极好的速溶性和复水性,可迅速吸水溶解,恢复其原有特性;●冻干疫苗易进行无菌化操作,污染相对减少,临床应用效果好,过敏等副作用少;●冻干疫苗脱水彻底,含水量低,重量轻,适合长途运输及长期保存;●冻干疫苗可以在室温下保存,减少冷链运输的成本,延长货架期。2、冻干疫苗所面临的挑战冻干疫苗具有显著的优势,但必须克服一些挑战。复杂的制剂,尤其是由多种菌株或多种抗原组成的疫苗,可能导致具有挑战性的关键配方温度和复杂的冷冻干燥过程。冷冻和干燥会对疫苗造成一定的影响,疫苗冻干过程的敏感性程度因疫苗而异。内部结冰和对疫苗成分(例如脂质膜、核酸或蛋白质)的直接损害可能是应力因素。在冷冻过程中会形成病毒内冰晶,这会增加产品的体积并可能损坏脂质双层(如图3所示)。冰还会在冰和液体之间产生新的界面,并增加表面诱导聚集的风险。图3:冷冻干燥过程中的应力因素在关键配方温度以上干燥会导致无定形相在冻干循环的初级干燥步骤中的流动性提高。这使得蛋白质相互作用并可以提高膜通透性。在去除结合水的二次干燥阶段,可能会发生蛋白质聚集和失活。在磷脂存在的情况下,热致相变的改变也可以提高膜渗透性。二次干燥直接影响残留水分含量,从而影响长期稳定性。3、冻干疫苗配方所需特性最理想的情况是,疫苗须在干燥状态下长期储存和液体状态下至少保持24小时稳定。为了实现这一目标,必须以适当的配方和工艺开发疫苗。稳定剂(冷冻或冷冻保护剂)在开发稳定的疫苗配方中起着关键作用。无定形冷冻保护剂,如糖类和糖醇,在冷冻过程中通过优先排除冷冻保护剂和蛋白质的水合作用在热力学上保持稳定(如下图4所示)。图4:优先排除理论它们还通过玻璃化作用提供动力学稳定性,从而减缓蛋白质和脂质膜的聚集。一些冷冻保护剂,如葡聚糖,不能渗透化合物,但通过增加渗透梯度,也能够阻止内部结冰。一些冻干保护剂,如右旋糖酐,不能渗透该化合物,但可以通过增加渗透梯度来抑制内部结冰。冻干保护剂通过替换水和磷脂或蛋白质之间的氢键,在冷冻干燥循环的干燥阶段发挥作用(如图5所示)。与冻干保护剂一样,通过玻璃化来实现动力学稳定,使蛋白质和脂质膜的流动性得以实现,从而达到结构和构象的稳定。图5:水替代理论为了提高疫苗的稳定性,可以在制剂中加入其他赋形剂,例如缓冲剂、使表面引起的不稳定最小化的表面活性剂和不太常用的赋形剂,例如填充剂、有机共溶剂和张力调节剂。案例研究——开发一种具有三种灭活血清型的耐热冻干脊髓灰质炎疫苗通过使用实验设计(DoE)方法,用多种赋形剂评估了脊髓灰质炎疫苗的不同配方,并检查了血清型的稳定性。用有限量的赋形剂进行基本筛选没有显示出稳定的产品,因此进行了广泛的筛选,成功鉴定了稳定剂。与液体制剂和其他市售脊髓灰质炎疫苗制剂相比,对最佳候选物进行优化产生了具有高热稳定性的最终制剂。4、冻干疫苗工艺开发冷冻对产品特性有重要影响,进而影响产品稳定性(如图6所示)。缓慢冷冻会导致形成少量的大晶体,这可能对膜有害。快速冷冻减少了渗透水释放的时间,但是会产生更大的内部结冰风险。快速或慢速冷冻之间的选择是困难的,但会很容易受疫苗配方和敏感性的影响。因此,在冻干循环开发过程中研究冷冻速率对稳定性的影响至关重要。图6:冻结速率的影响产品温度在整个初级干燥步骤中至关重要,它会影响干燥时间、升华速率和稳定性。在优化疫苗的主要干燥参数时,值得考虑减少干燥时间与产品稳定性的成本效率。在二次干燥期间去除水合壳会降低产品稳定性。残留水分增加还会导致坍塌、聚集和降解。因此,最佳残留水分含量和二次干燥条件也应该是开发阶段的一部分。案例研究——初级干燥过程中产品温度对长期稳定性的重要性在所检查的细菌疫苗的示例中,基于产品温度(Tp)测试了三个不同的循环,并在稳定性方面分析了产品特性。通过比较冻干后活细菌疫苗的活细胞计数来量化稳定性。冷冻干燥后立即保守[Tp远低于崩溃温度(Tc)但高于玻璃化转变温度(Tg' )]和激进循环(Tp高于Tc)之间没有区别。激进周期在几天和一个月后表现不佳,中间(Tp在Tc)和激进周期不如保守周期好(如图7所示)。建议使用保守条件开始干燥周期,但对于某些疫苗制剂,高于Tc的初级干燥可能不会导致稳定性损失。图7:临界配方温度(CFT)与冷冻干燥条件对疫苗稳定性的影响的相关性那么问题来了Q1:如何准确实现冻干疫苗中关键配方温度测量?图8:冻干显微镜Lyostat5及搭配使用的DSC模块英国BiopharmaGroup公司提供的冻干显微镜Lyostat5及可与显微镜搭配使用的DSC模块,可以轻松实现配方关键温度(Tc,Teu,Tg’)的测量。Q2:如何快速实现疫苗冻干工艺开发和优化?SPScientific提供的Lyostar冻干机仅需运行一个遁环即可自动摸索和开发冻干工艺。结合全球领先的冻干PAT技术(Smart全自动工艺开发技术,Controlyo晶核控制技术,TDLAS实时水蒸汽测量技术),使漫长复杂的工艺摸索变得简单快捷有效。图9:Lyostar全智能冻干工艺开发与优化Q3:是否有冻干疫苗的案例?辉瑞、莫德纳,阿斯利康、强生均已在使用SPScientificLyostar智能工艺开发冻干机进行新冠冻干疫苗的研发。ThePfizer/BioNTechComirnatyvaccine,31December2020.TheModernaCOVID-19vaccine(mRNA1273),30April2021.TheSII/COVISHIELDandAstraZeneca/AZD1222vaccines,16February2021.TheJanssen/Ad26.COV2.SvaccinedevelopedbyJohnson&Johnson,12March2021.灭活疫苗是传统成熟的技术路线。RNA疫苗有效性较高,代表着未来疫苗新技术和新趋势。冷冻干燥是提高疫苗热稳定性的理想技术。冻干疫苗制剂开发应探索冻干保护剂和冷冻保护剂、其他稳定赋形剂的选择以及冻干过程中的冷冻干燥工艺的影响,以防止对疫苗造成任何损害。在开发项目中,应根据配方和工艺问题考虑对工艺条件的影响,以及它如何影响产品质量属性。通过了解这些潜在机制,结合先进的PAT工具和QbD理论,实现快速合理开发,最终获得有效性高、长期稳定性好的预防疫苗和治疗疫苗,快速预防和消除人类疾病!
  • 助力高校用户快速选型——【仪器优选-高校版】上线啦!
    1.7万亿+2000亿财政贴息贷款,助力高校设备更新改造,引爆各高校院所科学仪器采购热潮。据不完全统计,各大高校将在2022年Q4季度集中进行仪器选型采购,采购金额可能远超Q1~Q3季度采购金额总和。 仪器信息网【仪器优选】作为科学仪器行业专业导购平台,针对本次高校用户采购量大、采购品类多、采购周期短等痛点,特别推出“仪器优选—高校版”选型工具,全面助力高校用户快速选型。选型工具核心亮点亮点一:精选200+个高校高频采购仪器品类亮点二:20万+台仪器中甄选国内外优质仪器亮点三:支持产品参数PK,选型一目了然亮点四:提供近30000个高校采购典型案例仪器优选-高校版选型工具扫码立即选型↑↑↑关于仪器优选【仪器优选】作为专业性及影响力兼具的国内一线科学仪器导购平台,囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等15大类仪器,1000+个仪器品类,收录20万+台优质仪器。 其核心宗旨是帮助仪器用户快速找到优质靠谱的仪器。经过多年的持续建设,平台实现了可以同时从价格、品牌、行业、口碑、产品横向对比等多维度快速查找仪器产品的功能,助力千万级用户轻松找到靠谱仪器。
  • 从原料到包装:2024年1-8月化妆品执行标准盘点
    化妆品行业正面临消费者对安全、有效性和质量的日益关注,这带来了挑战也蕴藏着机遇。化妆品标准是保障产品质量和消费者安全的关键,涵盖原料、检测方法、功效测定、包装和口腔清洁等多个方面。本文将对2024年1-8月发布的化妆品执行标准进行盘点。化妆品标准化是保障产品质量和消费者安全的根本手段。中国现行的化妆品技术标准包括《化妆品安全技术规范》(以下简称“《技术规范》”)、国家标准、行业标准、地方标准、团体标准和其他标准。通过对2024年发布的标准盘点(见文末附录)发现,化妆品通则及检测方法类占据主导地位。化妆品检测方法是确保产品安全性和有效性的关键环节。标准化的检测方法不仅能够提供可靠的数据支持,并确保不同实验室之间数据的可比性。目前,化妆品检测方法标准涵盖了微生物检测、重金属含量检测、防腐剂效能测试等多个方面。随着检测技术的进步,新的检测方法如高效液相色谱(HPLC)、质谱(MS)等高灵敏度、高选择性的技术逐渐应用于化妆品检测中。在整理中有9条明确指出了高效液相色谱串联质谱法、高效液相色谱法用于对化妆品中功效组分虾青素、牙膏中丙烯酰胺的测定、化妆品中限用组分等的检测分析中。其次,对于化妆品原料的的安全性是保证化妆品产品质量的基础。全球各国和地区对化妆品原料的监管各有不同。在欧盟,《化妆品法规》明确规定了允许使用的化妆品原料清单,并对某些成分设定了使用限制。例如,某些防腐剂、染发剂和紫外线吸收剂在使用量上有严格的限制。中国的《化妆品监督管理条例》同样对化妆品原料有严格规定,尤其对新原料的安全性要求进行了详细描述。今年发布的标准中一共有23条标准对化妆品原料进行了要求,包括有表面活性剂、天然提取物等等,以确保源头的安全性。日常我们所说的具有抗皱、美白、保湿、祛斑等作为宣传的产品,其都需要依据化妆品功效测定标准进行功效检测。目前,欧盟、中国、美国等地区都有相关的化妆品功效测定指导原则。常见的测定方法包括有体外实验、人体试验、皮肤生理指标测试等等。今年发布的标准中多条对口服美容产品、特殊食品和化妆品的功效进行了标准化制定,以确保产品在使用过程中不会对消费者健康产生不良影响。口腔清洁护理用品如牙膏、漱口水等,作为化妆品的一个特殊类别,近年来在标准的发布上也相对来说较多,上半年在牙膏类标准就新增了12条。其标准制定既要考虑口腔健康安全,又要兼顾产品的清洁和护理效果。经了解在许多国家,口腔清洁产品的成分如氟化物、抗菌剂等有明确的使用限制,确保长期使用对人体健康无害。随着消费者对口腔健康的重视,未来口腔清洁产品的标准将更加细化和严格,特别是在功能性成分和产品安全性方面。除上述之外,对于化妆品包装的标准涉及包装材料的安全性、包装的密封性、防污染能力等方面。在欧盟,包装材料必须符合《欧盟食品接触材料法规》的要求,确保包装材料不释放有害物质。中国的《化妆品监督管理条例》也对化妆品包装提出了明确的要求,上半年共发布两条标准,分别为《T/BDCA 0001-2024 北京市国产普通化妆品包装和标签设计指南》和《T/GDCA 039-2024 化妆品包装相容性评估方法》,进一步规范了化妆品包装。化妆品标准化是保障产品质量和消费者安全的根本手段。无论是化妆品原料、检测方法、包装,还是口腔清洁产品的标准,都需要在保障安全和效果的基础上,更多地考虑可持续性和环境友好性。通过持续完善和更新标准,化妆品行业将能更好地满足消费者需求,推动整个行业的健康发展。附录:(以下“2024年1-8月发布的化妆品相关标准”的整理为编辑个人梳理,如有遗漏,欢迎大家留言补充。联系邮箱:wugq@instrument.com.cn)2024年1-8月发布的化妆品相关标准国家标准标准代号标准名称标准代号标准名称GB/T 43718-2024免洗洗手液GB/T 44365-2024牙膏中6-甲基香豆素、二氢香豆素、7-甲基香豆素、7-甲氧基香豆素、7-乙氧基-4-甲基香豆素的测定 高效液相色谱法GB/T 43777-2024化妆品中功效组分虾青素的测定 高效液相色谱法GB/T 44366-2024化妆品中限用组分月桂醇聚醚-9的测定 液相色谱-串联质谱法GB/T 43855-2024衣物洗涤质量要求GB/T 44367-2024化妆品中限用组分二氨基嘧啶氧化物的测定 高效液相色谱法GB/T 43954-2024重瓣红玫瑰精油GB/T 44428-2024化妆品中大麻二酚和四氢大麻酚的测定 液相色谱-串联质谱法GB/T 44364-2024牙膏中丙烯酰胺的测定 高效液相色谱串联质谱法行业标准标准代号标准名称标准代号标准名称QB/T 5994-2024除味喷雾剂QB/T 8056-2024氨基酸表面活性剂 谷氨酸型QB/T 5995-2024菊酯防蛀剂QB/T 8055-2024氨基酸表面活性剂甘氨酸型QB/T 5997-2024干湿两用纸巾QB/T 8057-2024氨基酸表面活性剂 肌氨酸型QB/T 2548-2024空气清新气雾剂QB/T 8058-2024非离子表面活性剂 椰油酰胺MEAQB/T 2761-2024室内空气净化产品净化效果测定方法地方标准标准代号标准名称标准代号标准名称DB31/T 1472-2024普通化妆品备案资料要求团体标准标准代号标准名称标准代号标准名称T/GDICST 003-2023化妆品舒缓功效评价 脂多糖诱导巨噬细胞炎症因子IL-6测定方法T/GDCA 040-2024化妆品原料 重组可溶性胶原蛋白T/GDICST 002-2023粉类防晒化妆品SPF值体外测试方法T/UNP 69-2024化妆品用原料 山茶籽油T/CAFFCI 73-2024化妆品用原料 铁皮石斛茎提取物T/GDC 9-2024洗脸扑T/CAFFCI 72-2024化妆品用原料 乙酰基二肽-1鲸蜡酯T/GDC 8-2024化妆棉T/CAFFCI 71-2024化妆品用原料 六肽-11T/GDC 7-2024化妆分装瓶T/CASME 1248-2024化妆品用原料 纤连蛋白T/QGCML 4196-2024化妆品用金属瓶盖T/GDICST 001-2023化妆品稳定性测试指南T/CIET 465-2024复合酸祛痘类化妆品质量要求T/SGLYCYX 001-2024化妆品用原料 茶油T/GDCA 041-2024防晒化妆品清水可洗测试评价方法T/ZHCA 032-2024驻留类化妆品温和性评价 重建表皮模型组织活力法T/ZJDAIR 009-2024化妆品用原料 酸橙(常山胡柚)果皮提取物T/ZHCA 031-2024淋洗类化妆品温和性评价 重建表皮模型组织活力法T/QGCML 4193-2024有效祛除牙斑牙垢的增白牙膏T/ZHCA 030-2024化妆品舒缓功效测试 重建表皮模型白介素-8生成抑制法T/GDCA 044-2024化妆品用原料 羟丙基四氢吡喃三醇 (β,S构型)T/ZHCA 029-2024化妆品舒缓功效测试 角质形成细胞白介素-8生成抑制法T/COCIA 31-2024数字化牙刷T/CIET 360-2024美白祛斑功效护肤品通用要求T/CGDF 00041-2024植物性化妆品标准T/CIET 361-2024适合中国人肤质的美白护肤品开发指南T/CHCIA 030-2024活氧泡洗粉T/QGCML 2951-2024海藻酸钠面膜T/CHCIA 027-2024鼠李糖脂表面活性剂含量的测定 蒽酮-硫酸法T/QGCML 3028-2024无胶环保口红管T/SHRH 60-2024精准养肤化妆品研发指南T/GDCA 035-2024极简配方化妆品通则T/SHRH 061-2024底妆持妆效果评价指南T/CIET 355-2024家用射频美容仪T/SHRH 062-2024纯净彩妆通用要求指南T/GDCA 011-2024化妆品 纯净美妆通则T/TIC 031-2024洁颜粉T/CITS 0006-2024实验室质量控制规范 化妆品理化检测T/WHHLW 138-2024化妆品用超氧化物歧化酶T/CITS 0005-2024实验室质量控制规范 化妆品功效评价T/CIET 544-2024化妆品行业绿色工厂评价规范T/CASME 1326-2024化妆品 保湿功效的测定 鱼胚法T/CIET 543-2024护肤品产品碳足迹评价导则T/GDCA 038-2024化妆品舒缓功效人体评价方法T/CITS 0117-2024化妆品中β-烟酰胺单核苷酸(NMN)含量测定高效液相色谱法T/QGCML 3906-2024全面均匀搅拌洗发水生产用匀质乳化机T/CHCIA 032-2024除菌型洗涤剂 通用技术要求T/QGCML 3905-2024混合均匀洗液加工装置T/WHHLW 143-2024婴幼儿用维E保湿霜T/PPZL 022-2024化妆品用羊尾油原料T/JSSKSLXH 02-2024可溶性微晶护理膜T/LNBHXH 004-2024化妆品舒缓功效评价 体外人皮肤模型测试方法T/JSSKSLXH 03-2024手持式可溶性微晶美容仪T/FCA 01-2024化妆品生产企业原料管理规范T/JSQA 184-2024化妆品用寡聚透明质酸钠T/GDCQMA 005-2024化妆品舒缓功效测试—体外皮肤角质形成细胞炎症因子测试法T/CASME 1563-2024美妆产品原料 文冠果油T/BDCA 0001-2024北京市国产普通化妆品包装和标签设计指南T/GDCQMA 006-2024化妆品生产工艺验证指南T/CIET 415-2024口服美容产品抗皱功效测试方法T/UNP 144-2024化妆品安全技术要求T/CIET 414-2024质量分级及“领跑者”评价要求 眼霜T/UNP 145-2024绿色低碳产品评价规范 化妆品T/CIET 411-2024口服美容产品保湿功效测试方法T/UNP 146-2024化妆品舒缓功效评价技术规范T/CIET 410-2024口服美容产品改善皮肤老化功效评价方法T/UNP 147-2024化妆品修复功效评价技术规范T/CIET 406-2024口服美容产品祛斑美白功效测试方法T/GDCA 045-2024儿童天然化妆品指南T/CIET 409-2024适老营养食品通用要求T/GDCA 046-2024化妆品用原料 牡丹枝/花/叶提取物T/FJCA 003-2024特殊食品和化妆品 减脂功效测试 秀丽隐杆线虫法T/GDCA 047-2024化妆品用原料 松口蘑提取物T/QLMZ 12-2024化妆品用原料 羟丙基四氢吡喃三醇T/GDCA 048-2024头皮修护功效人体评价方法T/QLMZ 13-2024化妆品用山东特色植物资源原料目录T/GDCA 049-2024浓缩型护肤产品评价指南T/QLMZ 14-2024化妆品用原料 聚谷氨酸钠T/HZGY 003-2024化妆品CMF设计与评价规范T/QLMZ 15-2024化妆品用原料 四氢甲基嘧啶羧酸T/COCIA 41-2024口腔用品(牙膏、漱口水、口喷等)纸质 包装盒产品评价方法T/SHRH 058-2024化妆品稳定性试验指南T/COCIA 39-2024口腔清洁护理用品 牙膏中黄连生物碱含量的测定方法 高效液相色谱法T/SHRH 057-2024化妆品修护功效评估方法T/COCIA 38-2024绿色生产质量管理规范 牙膏用复合管T/STHZP 0031-2024沐浴油T/COCIA 37-2024口腔清洁护理用品 牙膏用龙血竭T/STHZP 0033-2024眉毛定型液T/COCIA 36-2024口腔清洁护理用品 牙膏功效评价 清除牙菌斑功效实验室评价方法T/STHZP 0032-2024儿童沐浴慕斯T/COCIA 35-2024口腔清洁护理用品 牙膏用右旋糖酐酶T/CHCIA 029-2024化妆品风险物质调查和特定检出值安全评估指南T/CI 447-2024热塑性聚氨酯(TPU)薄膜日用品卫生安全等级评价T/BYXT 025.3-2024稀土抗菌日用品 第3部分:洗涤剂T/COCIA 32-2024口腔清洁护理用品 牙膏用凝血酸T/SHRH 059-2024护肤精华油T/COCIA 20-2024口腔清洁护理用品 牙擦T/GDCA 039-2024化妆品包装相容性评估方法T/ACCEM 024-2024透皮吸收类化妆品通用要求T/GDAQI 141-2024化妆品中椰油酰甘氨酸钾的测定 高效液相色谱法其他标准标准代号标准名称标准代号标准名称BJH 202402化妆品中双氟拉松丙酸酯的测定BJH 202401化妆品中非那雄胺等10种组分的测定
  • 国家钢铁产品质检中心(唐山)通过验收
    近日,唐山市质监局承建的国家钢铁产品质量监督检验中心(唐山)通过了国家质检总局专家组的现场验收。   唐山市质监局先后投入150万元对钢铁检验站实验室进行技术改造 投入700多万元购置了美国、德国等30台(套)国际一流的检验设备,检测能力大幅度提升。目前,该中心能对300余种钢铁产品各项指标按标准进行检验,可对钢铁新产品的研发提供有力的技术支持。
  • “河北省钢铁实验室”获批在唐山筹建
    日前,河北省科技厅印发《关于组织做好河北省钢铁实验室筹建工作的通知》,同意在唐山市筹建河北省第一家省实验室——河北省钢铁实验室,并纳入省级科技研发平台管理序列。 据介绍,省实验室是河北省围绕重点产业发展需求,推进重塑实验室体系,构建新发展格局,布局建设的省级重大科技创新平台。河北省是“第一钢铁大省”,唐山是“第一钢铁大市”,组建河北省钢铁实验室对于突破钢铁产业的痛点难点问题,加快推动全省钢铁行业转型升级具有重大战略意义。2022年,唐山市科技局、华北理工大学在深入调研钢铁企业发展面临的困难和迫切需求基础上,编制了《河北省钢铁实验室建设方案》(以下简称《方案》),将围绕河北省支柱产业钢铁产业高质量发展需求,整合省内外高水平科技、人才、产业资源,着力创建具备国际一流水准的科技创新高地。根据《方案》,河北省钢铁实验室采用“1+N+N”战略布局,由唐山市主导建设,牵头单位为华北理工大学。依托华北理工大学建设河北省钢铁实验室“1”个总部,实施关键共性、前沿引领、现代工程和颠覆性技术创新研究;依托钢铁研究总院、北京科技大学、燕山大学、河北科技大学、河北工业大学等加盟高校和科研院所建立“N”个实验室分中心,协同实验室总部开展相关科研任务;依托河钢唐钢、首钢京唐、河钢宣钢、津西钢铁等单位建立“N”个成果转化基地,打造创新样板工厂,加速实验室科技成果转化。从研究方向来看,河北省钢铁实验室设计十分明晰。该实验室聘任中国工程院院士、钢铁领域著名专家毛新平担任实验室主任,并围绕实验室8个主要研究方向,分别设立省外、省内双首席科学家(省外院士+省内权威专家),搭建了钢铁领域一流的高水平科研团队。相关研究方向密切聚焦钢铁冶金与材料领域具有战略性、前瞻性、基础性的关键科学问题,以及制约产业发展的关键共性技术和工程示范难题,主要包括钢铁制造流程运行优化与智能化、难选铁矿及冶金资源综合利用、近零碳排放电炉流程技术、近终型制造技术、先进钢铁材料冶炼及加工技术、特种钢铁材料制备技术、钢铁企业系统能效提升与用能结构优化、钢铁数字化设计与数字化制造等关键核心技术和重大工程技术。接下来,唐山市科技局将同有关单位共同努力,将河北省钢铁实验室打造成为具有国内外影响力的高能级科技创新平台、绿色低碳关键共性技术研发平台、现代工程技术成果转化平台、高端和创新人才培养平台以及钢铁产业高质量发展战略研究智库,为我国钢铁产业创新发展作出更大贡献。
  • 另类可穿戴:纹身贴纸测血糖
    北京时间1月18日早间消息,加州大学圣迭戈分校的纳米工程师团队开发了一款新的可穿戴计算设备,能帮助糖尿病人以无痛的方式监控自己的血糖水平。   这一研究成果已经发表在了《分析化学》期刊上。目前,糖尿病人每天需要多次针刺手指去测量血糖水平,而根据美国疾病控制中心的数据,糖尿病已经影响了美国的2910万人。   这款设备中包含小型传感器,而特定形状的电极通过丝网印刷技术被印制在纹身贴纸上。通过在皮肤上施加特定的电压,该设备能够从皮肤中提取体液,而含有特定酶的传感器能够据此测量血糖浓度。   研究人员在7名病人身上对此进行了测试。在他们大量饮食后,这一设备获得了与传统针刺法类似的结果。   这并不是第一种无痛的血糖传感器。2002年,Cygnus推出过一款获得美国食品药物管理局(FDA)批准的手环GlucoWatch,能实现类似的功能。不过,当时的产品存在明显问题,即无法完全摆脱针刺。用户仍需要通过传统针刺法去校准腕带,而许多人报告了皮肤过敏的问题。   加州大学圣迭戈分校可穿戴传感器中心负责人、这份研究报告的作者之一约瑟夫· 王(Joseph Wang)表示,相对于GlucoWatch,这款设备采用较低的电流,因此不会带来不适。   他表示,如果希望这款设备能被持续使用,那么还有更多工作需要完成。他的部门仍在继续开发设备,向用户显示血糖读数,并通过蓝牙连接将这一信息实时传送给病人的医生。在对这一概念进行优化之后,产品价格将会更便宜、更易使用。目前,血糖试纸的每张平均价格超过1美元。节约这笔费用,同时使他们不再有疼痛感,这将帮助数千万糖尿病人更愿意接受他们需要的治疗。
  • 氨基糖苷类抗生素(AGs)方法包发布,攻克行业检测难题!
    我国每年约有30000儿童因药物性致聋陷入无声世界,其中因抗生素使用不当致聋占了约一半。近年研究还发现,我国药源性耳聋患者中50%与遗传因素有关,而且属“母系遗传”,有家族史的患者应禁用氨基糖苷类药物。 氨基糖苷类抗生素药因价格低廉、抗菌谱广等特点,也应用于兽用药杀菌以促进家畜生长。此类抗生素由2个或多个氨基糖基团通过糖苷和氨基环多醇键合而成,极性大,易溶于水,脂溶性差,人体和禽畜的胃肠道不易吸收,通过肌肉注射后大部分以原药经肾排泄,通过粪肥可能迁移至土壤及周围水体中,最终进入食物链,对动物和人体健康及生态系统构成潜在威胁。 氨基糖苷类抗生素药分析检测中的挑战由于此类化合物极性极大,常规色谱保留弱或无保留,无紫外吸收或紫外吸收弱,业内目前也没有特别成熟稳定且灵敏的检测方法。 Idea 1对于极性化合物的检测,一般会首先想到选用亲水作用液相色谱-HILIC,理论上亲水性越强的化合物,在Hilic柱上被保留的时间越长。市面上有两款Hilic柱在极性化合物的保留能力方面颇受广大科研工作者的青睐,但在进行氨基糖苷类抗生素化合物分析检测时,因基质残留大、稳定性差、重现性不好、灵敏度不高等原因而未受认可。 Idea 2另外一个思路是在流动相中添加七氟丁酸(HFBA)、三氟乙酸(TFA)等离子对试剂来增强极性化合物的保留,GBT21323-2007《动物组织中氨基糖苷类药物残留量的测定高效液相色谱-质谱/质谱法》中,使用100mM HFBA作为流动相,结合常规的C18柱,对这类化合物保留良好。但是,TFA、HFBA等离子对试剂,负离子响应极强,进到质谱中极易残留且不容易洗掉,极大地影响其他负离子化合物的检测灵敏度,质谱分析中是不建议使用离子对试剂的。另外,国标方法中,进样量大(30μL),基质效应明显,其检测的10种氨基糖类抗生素LOQ分别为50ppb、300ppb,灵敏度不高。 ??检测氨基糖苷,赛默飞有妙招!??赛默飞氨基糖苷类抗生素(AGs)检测方法包赛默飞采用Thermo Scientific™ Vanquish™ Binary Horizon液相系统与Thermo Scientific™ TSQ Fortis™ 三重四极杆质谱仪联用平台,通过在流动相中添加TFA和HFBA等离子对试剂,搭配Thermo Scientific™ Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱(可耐pH范围0.5~10),来增强这些极性化合物的保留,再结合赛默飞离子色谱专利的电解再生膜抑制器技术,去掉TFA和HFBA离子,避免污染质谱。Vanquish™ Binary Horizon液相系统与TSQ Fortis™ 三重四极杆质谱仪联用平台 基于这样的理念和赛默飞独有的技术平台,成功建立了快速检测动物源食品中14种氨基糖苷类抗生素残留的方法(潮霉素、阿米卡星、安普霉素、巴龙霉素、卡那霉素、链霉素、奈替米星、庆大霉素、大观霉素、双氢链霉素、妥布霉素、新霉素、西索米星、依替米星)。Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱 样品前处理方式与国标GBT21323-2007一致,21min内获得良好的分离(国标35 min),灵敏度满足国标要求,LOQ均≤20ppb(进样量5μL)且连续6针的RSD均<14%,连续进50针猪肉基质样品后,保留时间精密度和峰面积重复性良好,RTs偏差≤±0.03min,各化合物50ppb的峰面积重复性均<11%,本方案快速灵敏、可靠稳定。 电解再生膜抑制器 部分实验数据展示14种氨基糖苷类抗生素在21min内实现良好保留和分离。点击查看大图点击查看大图 抑制器原理小贴士在下图抑制器原理图中,两边是选择性透过膜,中间为流动相通道,通过电解水作用,在阴极产生OH?置换出流动相中的TFA?和HFBA?,直接从阳极排到废液。点击查看大图 参考文献徐媛,陈达,钟新林,徐牛生,LC-MSMS结合离子色谱电解再生膜抑制器技术快速检测动物源食品中14种氨基糖苷类抗生素残留 点击下载完整版【赛默飞氨基糖苷类抗生素方案】!
  • 重磅!北京昌平厂商!最高50万补贴来取
    2023年,昌平区被评选为工信部第一批中小企业数字化改造试点城市(2024-2025年),区经信局制定了《昌平区中小企业数字化转型城市试点实施方案》并报工信部审批。一、 支持范围重点对数字化转型相关的软件和技术投入部分、示范项目、优秀案例等进行奖补,中央财政下达试点资金1亿元。二、 支持对象1、在昌平区依法完成注册登记、税务登记、统计登记、具备独立法人资格、2、具有良好信用记录3、生物医药制品及器械制造业、智能化装备及零部件制造业中小企业,以及提供数字化转型服务的链主企业、龙头企业。三、 支持内容七类1、 企业数字化改造2、 企业上云用云3、 企业打造示范项目4、 采购“小快轻准”产品和服务5、 “链式”转型6、 数字化转型优秀案例7、 支持绿色化、智能化升级改造现有服务商与服务:仪器信息网目前正在积极认证服务商,如果通过审批,将会有会员、优选、搜索、品类先锋、网络讲堂、仪课通、商机点七大服务参与。届时,可按照规定申请50%金额的补贴,单个服务最高补贴5万元,每家企业最高补贴50万元!四、 申报流程注意:领取补贴需要提前进行申报认证,待认证成功后才可按照规定采购相关服务,方可领取补贴。1、 申报地址:昌平区中小企业数字化转型公共服务平台(http://chpsz.bjchp.gov.cn/#/login )2、 认证认证后,则可采购平台商城的服务,建议购买服务前,先与服务商联系人联系,以便引导采购流程,如需咨询政策或服务,均可添加仪器信息网联系人微信:
  • “钢铁侠”背后的清洁能源之梦【GDS微课堂-5】
    同学们好呀!在上上节课的“微课堂3”中,我和大家探讨了在打造钢铁侠的战衣盔甲,GDS发挥了什么作用。这节课,我们来看看大热的清洁能源和GDS的关系~提到“钢铁侠”的原型埃隆马斯克(Elon Musk),大家反应应该是 SpaceX(太空探索技术公司)以及Tesla Inc.(特斯拉公司)。其实,除了太空旅行和自动驾驶领域,马斯克还是美国居民太阳能电池板的大供应商太阳城公司(SolarCity)的董事会主席。图片来源:Pixabay你知道马斯克为什么这么看重太阳能吗?因为加速全世界向可持续的清洁能源的转变,是马斯克从少年开始就有的梦想,而太阳能无疑是合适的选择。太阳能作为一种持久、普遍、巨大的能源,可以说是取之不尽用之不竭,且相比于其他能源,不会对生态环境造成污染,是好利用的清洁能源之一。图片来源:Pixabay目前太阳能的有效开发方式主要为太阳能电池。太阳能电池又称为“太阳能芯片”或“光电池”,是一种有半导体镀层的特种器件,它能将照在太阳能电池板上的太阳光转变成电能输出。太阳光照在半导体PN结上,形成新的空穴-电子对,在PN结内建电场的作用下,光生空穴流向P区,光生电子流向N区,接通电路后就产生电流。在这一过程中,实际发挥作用的就是玻璃基底或金属基底上那层薄薄的镀层。因此可以说太阳能电池光电转换效率的高低、稳定性和大面积重复性的好坏与镀层的性能息息相关。而GDS能够快速、灵敏地检测镀层样品中各元素随深度分布的情况,非常适合分析太阳能电池。接下来我们来看看3个典型案例,感受一下GDS如何在整个镀层制作过程中提供镀层结构、掺杂元素及工艺条件优化信息,从而提高太阳能电池的性能。案例一提供镀层结构信息我们先来看看下面两张图,是通过GDS获取的铜铟镓硒太阳能电池的深度剖析图。考考大家,你能分辨出哪个是正常质量的电池,哪个是加工失败的电池吗?图一图二图一中横坐标是深度,纵坐标是各元素含量随深度的变化,我们可以看到各元素含量随着深度改变的变化趋势基本一致,说明元素在各层分布均匀,多数元素在加工过程中得到很好地融合,镀层结构良好,所以它是正常质量的电池;图二中我们可以直观的看到不同深度下各种元素含量差异明显,说明这些元素在加工时没有充分融合,导致太阳能电池不具备光电转化功能,所以属于加工失败的产品。怎么样?这样分析一下是不是立刻就分清楚了呢?案例二提供掺杂元素信息实际镀层加工过程中,我们会利用掺杂元素来改善镀层性能,提高太阳能电池的效率,而掺杂元素在镀层中的含量及位置,对太阳能电池的整体性能影响非常大。但是实际掺杂元素的含量都比较低,对掺杂元素的监控也就变成了一个难题。当然,遇见GDS,这都不是事了。我们以不锈钢为基底的太阳能电池为例,利用GDS进行了检测:图三:不锈钢为基底的太阳能电池中各元素随深度的分布图四:0-40s低含量元素放大图数据来源:Prog. Photovolt: Res. Appl. (2013) ? 2013 John Wiley & Sons,Ltd.通过图三,我们可以直观地了解到各个镀层、交界层及基底中元素的变化趋势,并通过这些信息表征镀层的质量及相互渗透等现象,和上面的案例类似,这里就不多做说明了。而图四通过对0~40s低含量元素的放大,则更清晰地显示出掺杂元素B、P在a-Si:H层中的分布,可以看到,相比较而言B的分布比P更集中且与界面间的渗透更少。通过这样的方式,GDS就可以帮助研究人员轻易的实现对掺杂元素的监控了。案例三提供工艺条件优化信息这里举个简单的例子,现在有三种不同结构的镀层材料,我们如果想判断哪种材料的光电转化能力强,该怎么做呢?很简单,我们可以把三种材料经过相同加工处理后(在550℃退火),再利用GDS检测镀层中元素分布,研究这三种材料的镀层融合情况,分析终形成的镀层结构,如下图中a/b/c图显示:其中黑线为Mo,蓝线为Cu,橙线为In,红线为Ga,绿线为Se。(a) Cu-In-Ga+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;我们可以看到,在Cu-In-Ga+Se结构中,Ga元素(红线)没有均匀的混入镀层,而是聚集在后交界面。(b) Cu-In+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;我们可以看到,在Cu-In+Se结构中,Cu、In和Se的混合很均匀。(c) Cu-Ga+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;数据来源:F. Oliva et al. / Thin Solid Films 535 (2013) 127–132我们可以看到,在Cu-Ga+Se结构中,各元素的含量随深度的增加差异较大,并未均匀混合,因此得出CuGaSe2的生成反应并未完成。这样一比较,你知道选哪种材料了吧?对的,选(b),Cu+In+Se结构的材料在经过550℃的退火后,各元素间融合更加均匀,太阳能电池的光电转化功能也就越强。此外,我们还可以对同一种材料进行不同加工工艺,从而分析不同条件对材料镀层性能的影响。如下图中,c图依旧是Cu-Ga+Se结构经过550℃退火的结果,d图中Cu-Ga+Se结构不仅经过550℃,同时延长了退火的浸泡时间。 (c) Cu-Ga+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;(d) 延长了退火时间后,Cu-Ga+Se结构太阳能光伏电池的元素分布状况;两张图对比后,我们可以看出,延长退火时间可以促进Ga元素向吸收层扩散,利于元素间更好的融合,从而提高太阳能电池光电转化效率。通过上面的几个例子,相信大家都能感受到,利用GDS可以很好的掌控太阳能镀层制作过程,研究相关工艺处理后镀层性能的提高。而在实际使用过程中呢,因为GDS可以同时测定Na、Cu、In、Ga、Se、Mo、Sn等70余种元素,又不需要制备样品,而且GDS自身分析速度也较快(几微米/分钟),所以说有了GDS,提高研究效率,都是分分钟的事情啦。HORIBA光谱入门手册自2014推出以来备受好评,为了帮助大家更好地理解,我们发布了GDS微课堂系列文章。除了GDS,光谱入门手册还包括拉曼、辉光放电、椭圆偏振光谱等系列合集。 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界
  • 中国环境监测总站2018-2020年采购代理机构进行公开优选
    p   今日,仪器信息网从环境监测总站获悉,中国环境监测总站拟开展公开优选2018-2020年采购代理机构工作。优选具体内容及要求如下: /p p   一、 优选组织单位:中国环境监测总站 /p p   二、 优选说明: /p p   (1) 优选项目名称:中国环境监测总站2018-2020年采购代理机构优选项目。 /p p   (2) 报名条件: /p p   ① 采购代理机构满足以下基本条件: /p p   具有独立承担民事责任的能力 /p p   具有良好的商业信誉和健全的财务会计制度 /p p   具有履行合同所必须的设备和专业技术能力 /p p   有依法缴纳税收和社会保障资金的良好记录 /p p   参加此采购活动前三年内,在经营活动中没有重大违法记录 /p p   符合法律、法规规定的其他条件。 /p p   ② 采购代理机构应具有国家发展和改革委员会颁发的《中央投资项目招标代理机构甲级资质证书》且在有效期内(提供上述证书复印件并加盖公章)。 /p p   ③ 采购代理机构必须未被列入“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)渠道信用记录查询的失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。 /p p   ④ 此次优选不接受联合体申报,不允许分包和转包。 /p p   (3) 优选数量 /p p   此次优选确定不多于6家采购代理机构进入中国环境监测总站采购代理机构库。 /p p   (4) 优选结果有效期限:自优选结果产生后-2020年12月31日。 /p p   三、 时间安排 /p p   (1) 报名及优选文件领取时间、地点:2017年12月1日-7日(双休日除外),时间9:00-16:00。中国环境监测总站906室,联系电话010-84943153。 /p p   (2) 参选文件递交时间、地点及联系人:2017年12月8日,9:00-16:00,中国环境监测总站906室,联系人:孙媛、蒋建宏。 /p p   (3) 2017年12月12日,通知入围采购代理机构参加终选答辩。 /p p   (4) 优选结束后,结果在中国环境监测总站官网公告。 /p p   四、 费用说明 /p p   (1) 免费提供优选文件,不收取费用。 /p p   (2) 采购代理机构自行承担参加优选有关的全部费用。 /p p   五、 联系方式 /p p   联系人:中国环境监测总站 孙媛、蒋建宏 /p p   联系电话:010-84943153 传真:01084943062 /p p   地址:北京市朝阳区安外大羊坊8号(乙) /p
  • 麒麟公司参加“河北唐山钢铁行业分析检测技术与仪器交流研讨会”
    南京麒麟仪器集团赵副总参加 &ldquo 河北唐山钢铁行业分析检测技术与仪器交流研讨会&rdquo 南京麒麟仪器集团赵副总应邀于2010年6月26日赴唐山金滨酒店参加中国仪器仪表学会举办的&ldquo 2010年河北唐山钢铁行业分析检测技术与仪器交流研讨会&rdquo ,会议全天,会议规模150人。 本次技术交流会以&ldquo 适合钢铁企业需求的分析检测技术及仪器交流&rdquo 为主题,采取专家讲座、分析仪器厂商产品应用讲座、产品展示、互动交流等多种形式。本次会议不仅为河北唐山钢铁行业从事分析检测技术的人员创造一个与行业专家、与分析仪器厂商密切交流,了解最新技术和产品发展的平台;为分析仪器厂商了解用户需求,为用户提供贴切的解决方案,促进双方深入合作创造了良好的机会;同时也为唐山钢铁行业相关企事业单位更好地完成2010年及以后年度的分析检测技术改造及提升企业创新能力提供了技术支持。 会上南京麒麟分析仪器有限公司副总赵云泉代表公司向会议代表发放公司产品资料并与到会专家、学者及各用户代表、分析检测人员进行了广泛的交流和探讨&hellip &hellip
  • 卫生部对“糖干海参”说不 或引行业地震
    业内人士称:“注糖参”大连不少 或引发行业强震   被业内称为“掺假”获得暴利的“糖干海参”,近日引起国家卫生部关注,记者获悉,卫生部办公厅发文,明确企业应当执行《干海参》(SC/T3206-2009)行业标准,这意味着“注糖海参”可能面临行业震动,中国水产流通与加工协会透露,近期将会同农业、工商、质检、食药局等,对海参市场进行整顿,坚决取缔“糖干海参”。本报去年12月21日曾对“注糖参”的暴利链条进行了报道。   小小海参,体内一半是白糖   和“注水肉”一样,“注糖参”主要是在海参体内加白糖,因为干海参价格较高,一斤需要几千元,加糖后海参重量增加,外表还看不出来,几块钱一斤的白糖就卖出了几千元的海参价格。   山东是“注糖参”的一个加工地,据本报记者去年的一次调查,干海参加工甚至可以根据客户的要求来确定加糖的比例,当地加工户,在简单的烘干作坊中,让海参一遍一遍的在糖水说“洗澡”、烘干,“再洗澡”、再烘干,以此达到增重的目的。   一只9克重的“注糖参”,含糖量高的可以占到一半。这意味着市民几千元,一半是买了白糖。   业内人士透露,2009年,全国海参产量近10万吨,总产值近300亿元,是最大的海产养殖品种之一,其中干海参市场约为200亿元,这200亿市场大约有7成的干海参,都是不同程度的“注糖参”,消费者每年买海参花掉的200亿元,几十亿元其实是买了白糖。   这是明显的“掺假”和“经济欺诈”,曾参与2009版国家《干海参》行业标准制定的李晓川对“注糖参”这样评价,更多的业内专家担心,“注糖参”的“欺诈行为”给行业的未来发展埋下了巨大的隐患,很可能对海参产品生产、加工、流通造成“致命打击”。   行业标准严格禁止“注糖参”   据记者了解,卫生部办公厅是在今年的3月24日复函,对中国水产流通与加工协会提出的“注糖参”问题给予回应。   复函中称:“根据《食品安全法》的规定,食品国家安全标准公布前,食品生产经营者应该当按照食用农产品质量安全标准、食品卫生标准、食品质量标准和有关食品的各行业标准生产经营食品。生产经营干海参,应当执行《干海参》(SCT3206-2009)标准,不允许使用除食盐意外的其他食品添加剂。”   目前,干海参尚无国家标准,因此企业生产经营干海参,只能依据行业标准,这个行业标准即2009年制定的《干海参》((SCT3206-2009)。   “所有的‘注糖参’都严重违反的这个标准。”   一位业内人士肯定地告诉记者,2009年的《干海参》标准中主要有两大类指标,一个是感官指标,一个是理化指标。其中理化指标中,对蛋白质、水分、盐分、含砂量、兽药残留等都有非常严格规定,允许海参自身的水溶性还原糖,“注糖”则绝对严格禁止。   一些生产、经营干海参企业向记者表示,卫生部针对“糖干海参”即“注糖参”明确表态,这还是第一次。   业内称可能会引发行业地震   中国水产流通与加工协会的一位成员表示,卫生部复函后,4月2日,协会已经发出通告,将会同农业、工商、质检、食品药品监管等多个部门,对海参市场进行抽查、整顿,对“注糖参”坚决取缔。   “如果整顿,大连的干海参的市场会有极大的震动。”一位海参企业的负责人告诉记者,大连市场上的“注糖参”的比例也很高,能占到6成以上,涉及的品牌大大小小超过100个,案值可能达到百亿,卫生部此次发文,明确对“注糖参”说不,对全国的干海参市场,也是一次“地震”。   据记者了解,中国水产流通与加工协会之所以对“注糖参”表现出了高压态势,一方面担心行业因“掺假恶名”受到重创,担心加糖暴利对守规行业的冲击,同时也来自于市场“半公开”的销售现状和“注糖参”对消费者健康的影响。   协会一位人员表示,包括大连在内,很多企业在销售“注糖参”的时候,大都不明确标明,消费者一点也不知道是否“加糖”,这在行业是一个公开的秘密。加糖的海参对健康的危害可能没有“瘦肉精”那么大,但是这种不明示销售,对糖尿病人是巨大风险。   “注糖参”安全让专家担忧   食品安全问题是市民关注的热点问题,“注糖参”的曝光以及即将开始的行业整顿,业内人士称,很可能让大连海参企业遭遇的史上最大考验,但更重要的是让市民知道“注糖参”有什么“危害”。   中国水产流通与加工协会的一家单位透露,2010年12月,协会曾在大连开了一次会,专门讨论“糖干海参”的问题。   “糖干的质量很差。加糖的你外表看不出来,甚至卖相更好一点,但是你算算成本就知道了,去年鲜海参价格是一斤3700元,如果算上加工成本、运输、销售等费用,差一点的也该卖到4000元,市场上那些2000多元的‘淡干海参’,它怎么就能做下来,质量怎么能保证?”   协会的一些专家表示,糖干海参一般是在120度的糖稀中熬制3-5遍,反复的高温熬制,让海参中活性营养物质流失,而且海水中的重金属含量浓缩,对健康危害极大。   另外一个食品安全隐患来自于那些小加工点都是按照自己的“土办法”熬,缺乏卫生学、毒理学评价,糖在高温下很容易产生焦糖物和糖化物,这些都属于致癌物质。长期食用会食胰岛素分泌过多、碳水化合物和脂肪代谢紊乱,诱发慢性疾病。   记者获得了一份来自大连某海参加工企业自定的标准,其中100克的海参,糖分比重占到了35%,加上水分、盐以及其他成分,真正的蛋白质很低,而加糖50%甚至更高的海参,已经成了名副其实的“糖块”。   “擦边球”逃避监管不好用了   据记者了解,由于“干海参”尚无国家标准,一些干海参的生产、经营企业,通过其他方式绕过2009年的《干海参》行业标准,称“注糖参”是一种新的加工工艺,并寻求在相关部门备案。   《辽宁省卫生厅食品安全企业标准备案目录公示》显示,从2009年11月起,共有12家企业通过了“糖干海参”食品安全企业标准备案,以此规避《干海参》行业标准。   “这是扯淡,一是企业既然自定标准,指标总得在行业标准之上才行,还有就是加糖根本就不是新工艺,不仅保证海参的品质,对人体吸收有好处,反而让海参质量严重下降。”中国水产流通与加工协会的一位专家表示,“说到底,糖干海参就是为了‘暴利’。”   随着卫生部对糖干海参明确说不,要求企业执行2009年的干海参行业标准,这意味着“注糖参”走到头了,大连一家生产、销售海参产品的大型企业向记者表示,不管你是什么工艺,什么标准,都不允许海参检出白糖来。   对不加糖的正规企业来说,虽然行业整顿是件好事,但也有部分企业认为,如何能保证监管效果更加重要,目前中国水产流通和加工协会拟联合的四个部门共同监管,但是“注糖参”涉及到的企业太多了,药不能下狠了,导致行业瘫痪,但如何查处,按照什么标准,在未来几年有怎样的监管目标,现在亟需进行权衡。
  • 杭州奥盛荣膺“2023中国年度优选雇主”
    近日,杭州奥盛凭借在企业文化、品牌建设、福利待遇、工作环境和人才发展通道等方面的出色表现,荣膺智联招聘“2023中国年度优选雇主”荣誉大奖。杭州奥盛在过去的17年,一直秉承“认真勤勉、务实创新”的核心价值观,践行“诚信、尊重与成就”的人才发展理念,珍视每一位员工,关注他们的成长与发展,将人才视为企业的核心竞争力。 智联招聘“2023中国年度优选雇主”是由北京大学社会调查研究中心、北京大学国家发展研究院、《哈佛商业评论》等多家专业机构参与组织、评审,从2万多家报名企业中遴选而出。 杭州奥盛在过去的17年,一直秉承“认真勤勉、务实创新”的核心价值观,践行“诚信、尊重与成就”的人才发展理念,珍视每一位员工,关注他们的成长与发展,将人才视为企业的核心竞争力。 期待更多优秀人才加入杭州奥盛,为生命科学事业共同奋斗!
  • 「仪器优选」重磅升级!进一步向用户端发力
    它,是一个专业的科学仪器导购平台;它,为千万用户仪器选型而助力;它,就是仪器信息网旗下“仪器优选”栏目。随着网络高速发展,用户选型行为也在发生变化。仪器优选作为用户选型的主阵地,每年访问仪器信息网的用户大部分都是通过“仪器优选”栏目来选仪器。一直以来,我们视用户至上的初心不变。通过对选型用户的调研,我们发现,用户选型时主要关注以下几个维度。用户的痛点就是我们的起点,用户的需求就是我们的动力!此外,用户更希望平台通过大数据等多种形式进行推荐,助力用户选型。本次升级,有5大亮点:一、升级3i规则,让用户关注的内容都能看见众所周知,3i规则影响的是产品在仪器三级类中的排序。本次升级,我们提高了产品信息完整度的权重,包括:核参、价格、相关绑定(视频、资料、解决方案、获奖情况、典型用户);还提高了评价的权重,包括长评、短评;增加了品牌及接听率维度,其中,接听率主要用来提高厂商的电话接听率,给用户更好的应用体验。其他维度基本没有变化。二、新增选型心得,为用户提供更多参考意见用户在选型时非常看重其他用户的选型或使用意见,基于此,我们新增了选型心得栏目。通过用户分享自己真实的仪器选型、使用心得/经验,为其他用户提供更多、更全面的参考意见。同时,我们也将定期举办心得征集活动,将优质的用户内容沉淀到【仪器优选】。最近一期的心得征集活动,火热进行中,快去喊您的同行朋友们速速参加吧~~~仪器心得征集活动↑↑↑三、打造个性化榜单,满足用户多元化选型需求新推仪器月度热榜,根据平台大数据和用户访问行为,为用户展示上个月热度较高的top10产品,有效帮助用户选型决策。后期也将定向推出单一应用榜单,如国产双光束紫外可见分光光度计波长准确度推荐榜等,助力用户多维度选型。上图仅供参考,无任何推荐意义↑↑↑四、推出快捷筛选,让用户选型更加方便在仪器三级类列表页推出快捷筛选项,用户点击可直接到达仪器筛选列表页,帮助用户快速选型。上图仅供参考,无任何推荐意义↑↑↑五、新增同类推荐,大数据更懂用户选型根据用户的行为画像,为用户推荐同类仪器,实现千人千面,精准触达,增加用户访问深度。本次升级功能将于2023年6月7日全新上线,敬请期待!如您有任何疑问,可咨询您的营销顾问,或拨打平台客服热线,联系电话:010-51654077。
  • 成都生物所发明判断大豆异黄酮糖苷水解的方法
    近日,中科院成都生物所发明的“一种判断大豆异黄酮糖苷是否水解或水解程度的方法”获得国家发明专利授权。   大豆异黄酮是大豆等豆科植物生长过程中形成的一类次生代谢产物,具有多种生理功能。它不仅参与调节植物的生长活动,还能对人体发挥有益的生理调节作用。天然大豆异黄酮苷类的分子结构并不是活性发挥的最佳状态,普遍认为苷元才是活性发挥的最佳状态。然而,在大豆中,大豆异黄酮主要是以染料木黄酮、大豆苷和黄豆苷糖苷形式存在的,它们对应的苷元染料木素、大豆苷元和黄豆苷元的含量很少。为了得到生物活性高的大豆异黄酮苷元,在工业上大多以大豆豆饼或豆粕为底物,采用酸水解或微生物转化的方法将糖苷转化为苷元。此前,判断大豆异黄酮糖苷是否水解及水解程度,通常是通过水解前后苷元含量的变化来判断的,此方法过程相对比较繁琐。   成都生物所发明的该种方法,通过商品豆粕经乙醇提取、提取液抽滤除杂质、减压蒸馏浓缩至无乙醇得水相、以水相为底物进行水解、用乙酸乙酯从水解液中萃取大豆异黄酮苷元、萃取液减压浓缩、浓缩相进行薄层层析、在紫外灯下观察层析结果,以此判断大豆异黄酮糖苷是否水解或水解的程度。该方法具有快速、准确等优点,具有良好的应用前景。
  • 吃饼干治糖尿病?新研究让口服胰岛素成为可能
    吃块饼干,治糖尿病。这个很多“糖友”梦寐以求的成果出现在11月16日的国际顶刊《自然化学生物学》上。北京大学药学院刘涛团队与华东师范大学叶海峰团队利用合成生物学技术开发出了一种新细胞。在他们的研究中,植入这种工程细胞的糖尿病小鼠,只要吃下特定的氨基酸饼干,就能提高胰岛素水平,进而降糖。“这是首次将基因密码扩展技术用于细胞治疗。”论文通讯作者之一、北京大学药学院教授刘涛告诉科技日报记者,吃下饼干的小鼠只需要90分钟就能降糖,和注射胰岛素起效时间相当。创造胰岛素微型“无人工厂”在“糖友”体内产生胰岛素,光靠饼干就可以吗?其实不是,“饼干”只是一把钥匙,真正生产胰岛素的是一座微型“无人工厂”。胰岛素作为人体的一种蛋白要求极高,胰岛素水平高了会发生低血糖、低了或者无效危害更大。细胞能做到精准的控制吗?“我们有一套独特的控制系统,控制的核心是一种人造的密码子。” 论文通讯作者之一、华东师范大学生命学院、上海市调控生物学重点实验室研究员叶海峰解释,自然界里有3个不编码氨基酸的密码子(终止子,功能是终止蛋白质翻译),通过人为改造可以让其中一个只听“饼干”的命令。饼干里的特殊氨基酸在自然界找不到,所以平时不会开启。经过改造的密码子就此有了双重身份。人工氨基酸一来,密码子配对,开启胰岛素的翻译过程,人工氨基酸一走,密码子还是“终止子”,整个流水线关闭。这才有了“吃饼干”合成胰岛素的完整治疗过程。给饼干开通一个专线快递前面说了,饼干里的氨基酸在自然界里找不到,那自然也找不到匹配的运送系统。“原来负责转运氨基酸的信使RNA都有自己的密码子,就像京东快递是负责这几个密码子、顺丰快递负责另外几个密码子、圆通也有自己要负责的密码子,现在多出来一个非天然的快递单怎么办呢?”刘涛打了一个很形象的比方,为了解决这个问题,合成生物学又出手了。“我们给‘饼干’开通了一个专线快递。”刘涛说,一种人工的合成酶能够把非天然的氨基酸送到快递员手上,即通过氨酰化的生化反应,把非天然氨基酸与特定的转运RNA连接起来,让它直送到胰岛素的装配生产线上。经过一系列“神操作”,饼干里的非天然氨基酸有如神助地直接成为生物体内胰岛素的重要组成部分。这种“专线快递”特点的正规名称叫“生物正交”,是指人造反应不会被机体内源的元件识别,也不干扰内源的生物化学过程。也就是说,胰岛素的整个制造过程不会干扰到其他生命活动。更具临床实用价值“利用我们的技术,只需要纳摩尔每升级别浓度的非天然氨基酸,给药1分钟就足以激活系统,表达释放胰岛素 。”刘涛说,这种非天然氨基酸与很多功能饮料中添加的成分类似,对人体非常友好。动物试验研究显示,将改造过的工程细胞经材料包埋后植入小鼠皮下,给小鼠喂食含有非天然氨基酸的饼干,可以在一个月内稳定且有效地降低小鼠血糖。一系列动物安全性实验也表明,服用一个月有效剂量的非天然氨基酸后,小鼠并未表现出明显的体重减低或其它生化指标的改变。“或许某一天,只需要每天饭前服用一粒非天然氨基酸药物,或含有非天然氨基酸成分适合糖尿病患者的食物,就可以控制血糖了。”刘涛说。浙江大学药学院院长顾臻教授在论文同期刊发的评论中认为,通过合成生物学方法创建工程细胞,进而产生治疗性蛋白质是解决包括胰岛素在内的蛋白质分子稳定性差、生物半衰期短及其不受控释放等挑战的极具吸引力的替代方法。据介绍,该研究获得国家“重大新药创制”专项、科技部合成生物学重点专项、国家自然科学优秀青年基金、北京市杰出青年基金、上海市科委等项目的支持。
  • 沃特世在WCBP2013年会上推出业界首个应用于蛋白质、多肽及寡糖分析的综合平台
    沃特世在WCBP 2013年会上推出业界首个可应用于蛋白质、多肽及寡糖分析的LC/MS综合平台   全新表面带电杂化颗粒色谱柱以及寡糖制备GlycoWorks工具包的推出进一步完善了生物制药平台解决方案   美国华盛顿DC - 2013年1月28日   沃特世公司(NYSE:WAT)今日在WCBP 2013研讨会上再次强调其将加大对推进生物药物表征研究技术的投入。沃特世今日宣布了UNIFI® 生物制药平台解决方案,用于肽图分析的全新ACQUITY超高效液相色谱(UPLC® )CSH130 C18色谱柱和XSelect™ HPLC CSH130 C18色谱柱,以及用于寡糖标记和样品制备的配套GlycoWorks™ 工具包。   上述创新产品表明,沃特世一直致力于为生物创新药物研发公司、生物仿药物研发公司以及相关CRO公司提供具有针对性的解决方案。新推出的产品不但进一步优化了常规生物药物分析技术,而且使对糖蛋白的分析更加深入与便捷。在对糖蛋白的全面分析中,取得详细的蛋白质一级结构仅仅是第一步,还需进行更加全面的修饰寡糖分析。而随着在研发和生产过程中对蛋白糖基化知识越来越深入的认知,生物制药公司对糖基化蛋白药物的结构表征要求也在逐步提高,并且这也是日益严格的监管要求,并最终确保生物药物的安全有效。   沃特世UNIFI生物制药平台解决方案   新一代UNIFI作为以科学数据体系为框架的生物制药解决方案平台,以UPLC/MS数据为基础,可对完整蛋白质、肽图以及寡糖进行分项以及综合分析。而且,在沃特世所提供的拓展解决方案中,能够为网络实验室工作组内的多个四级杆飞行时间(Q-Tof) 质谱和光学检测仪器提供控制、记录及分析支持。配备了UNIFI的系统的生物制药公司能够在整个研发和质量控制机构中都能灵活地完成高分离度UPLC生物分离和高效质谱分析工作。   最新发布的寡糖分析工作流程进一步扩充了平台性能,使其可用于支持应用荧光检测的日常游离寡糖验证和糖谱分析。结合高效UPLC HILIC (亲水作用色谱) 、沃特世提供的校准标准品与试剂、以及NIBRT/沃特世GlycoBase 3+ UPLC 寡糖数据库,不但可使使用单位在寡糖验证、定量及糖谱分析方面信心十足,而且大大提高工作效率。   GlycoBase 3+ 数据库是由爱尔兰国家生物工艺研究培训所(NIBRT)Pauline Rudd教授的科研团队研发,是首个寡糖色谱保留数据库,以多聚葡萄糖校准数据为单位显示,涵盖了现代生物药物糖蛋白的各种寡糖结构。   UNIFI生物制药平台解决方案的特点: ACQUITY UPLC H-Class 和 H-Class Bio系统采用颇具特色的生物惰性材料和Auto-Blend Plus™ 四元溶剂管理技术,为高分离度生物分离的实现提供了可能性 沃特世为多肽、蛋白质和寡糖分离,分别提供适合的色谱柱,良好的质量控制又保证了实验结果的重现性 沃特世分析标准品及试剂覆盖了生物药物分析的众多方向,如SEC(体积排阻色谱技术)分析、游离寡糖的分析校准、完整蛋白质谱分析、肽图分析,以及游离寡糖制备实验流程的系统查验标准品 高灵敏度精准质量兼具定性和定量功能的台式高分辨质谱系统——Xevo® G2-S Q-Tof 质谱仪采用了沃特世独有的StepWave™ 技术,该技术是一种独特的离轴离子传输技术,可使质谱分析具备稳定性、重现性和高灵敏度 UNIFI科学信息系统,一个可以灵活控制仪器、处理先进数据并生成复杂报告的交互式工作流程驱动数据的先进平台,符合GxP实验室相关规范,使得例行的工作站或工作组实验室配置部署成为可能 GlycoBase 3+数据库,首个含有游离寡糖色谱保留数据的资料库,以多聚葡萄糖校准数据为单位显示,并涵盖大量生物药物的多种寡糖结构。   沃特世表面带电杂化颗粒技术色谱柱   沃特世全新CSH130颗粒技术色谱柱为UPLC和HPLC在肽图和蛋白组学上的应用提供独特非常好的灵敏度。ACQUITY UPLC® CSH130 C18及XSelect™ HPLC CSH130 C18色谱柱为多肽分析纯化、UPLC/LC/LC-MS分析数据带来了全新的标准,目前上市的产品有不同粒径及柱规格。   该色谱柱创新引入沃特世用于表面带电杂化颗粒的合成方法,使得填料颗粒表面均匀带有弱的正电荷。该填料技术使得色谱柱在与弱酸调节剂(如甲酸)共同使用时,表现出更好的分离度与灵敏度——其性能与采用对MS信号抑制性离子对添加剂(如三氟乙酸TFA)的标准LC-MS方法的分离性能相当,质谱信号更加出色。   沃特世UNIFI生物制药平台解决方案在寡糖分析、生物仿制药比较性研究、肽图分析上的应用优势在WCBP 2013的系列海报中进行了展示。   GlycoWorks系列消耗品   沃特世全新推出的GlycoWorks系列消耗品包含用于寡糖分析制备全过程各个步骤所需要的不同试剂和耗材以及配套的实验方法,从样品制备、荧光标记、SPE净化和相应的标准品,到具体操作方法和故障处理指南。   此产品线包含2种GlycoWorks产品,分别用于高通量需求和单次分析,均包含一套荧光标记组件。每套制备组件中包含:配有多种可供选择的糖苷酶,用于游离寡糖富集和净化的HILIC SPE产品,一套配合方法验证、开发和故障排除的标准品。GlycoWorks 2-AB标记组件包含用于游离寡糖标记过程的四种反应试剂。   沃特世支持游离寡糖分析的其它消耗品包括:经过专门质量检测的高分离度UPLC BEH寡糖分析色谱柱,经过2-AB标记的右旋葡聚糖水解物标准品,和一套经过2-AB标记的人IgG寡糖标准品。   关于沃特世公司(www.waters.com)   50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。   作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。   2012年沃特世公司拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。   ###   Waters、ACQUITY UPLC、UPLC、UltraPerformance LC、XSelect、Xevo、UNIFI、GlycoWorks、AutoBlend Plus、Stepwave、Q-Tof和CSH是沃特世公司商标。   沃特世联系方式   媒体联系   Brian J. Murphy,   公共关系   +1 508-482-2614   brian_j_murphy@waters.com   叶晓晨   电话:021-61562643   xiao_chen_ye@waters.com
  • 广西发布《甘蔗制糖工业水污染物排放标准》
    近日,广西区质监局与广西区环保厅联合发布《甘蔗制糖工业水污染物排放标准》(以下简称《标准》)。其中悬浮物、化学需氧量等多项控制指标大幅度高于现行国家标准。   广西是我国甘蔗制糖主要产区。据统计,2011/2012榨季,广西甘蔗制糖企业共103家,蔗糖产量680万吨,两者均列全国第一。与此同时,蓬勃发展的制糖工业也给本地的环境保护带来了不小的压力,制糖工业废水中含有的总磷和氨氮已成为当地水环境的主要污染源之一。   &ldquo 现行国家标准门槛低、针对性不强,已不利于本地制糖业推动清洁生产和提高治污水平。&rdquo 广西区环境科学院工程师张立宏一语道出修订制糖排污广西地方标准的初衷。在过去两年里,广西区质监局联合广西区环保厅组织专家、学者扎根生产一线,经过多次调研、磋商,最终结合本地工业发展实际和未来地域环保要求,联合出台了广西第一部环保地方标准。   记者查看《标准》发现,pH值、悬浮物、生化需氧量、化学需氧量、氨氮、总氮、总磷、单位产品基准排水量8项重要控制指标皆高于现行国家标准。其中,悬浮物、单位产品基准排水量、化学需氧量这三大控制指标比现行国家标准严格一倍以上。   《标准》对广西制糖企业提出了更高的环保要求,将促使各企业改进生产工艺,淘汰一批耗能高、排污量大的设备,最终促进制糖产业结构调整,为其他产业腾出发展空间。
  • 赫施曼助力黄酒中总糖的测定
    黄酒是中华民族的传统酒,也是华夏瑰宝。随看人们生活质量的提高和健康意识的增强,人们对黄酒的类型、品质也有了更高的要求与追求。黄酒的总糖含量是区别不同类型黄酒的主要指标,根据其中的总糖含量,可将黄酒分为干黄酒、半干黄酒、半甜黄酒、甜黄酒。根据GB/T 13662-2018,总糖的测定有廉爱农法、亚铁氰化钾滴定法。1. 廉爱农法费林试剂与还原糖共沸,生成氧化亚铜沉淀。以次甲基蓝为指示液,用试样水解液滴定沸腾状态的费林溶液。达到终点时,稍微过量的还原糖将次甲基蓝还原成无色为终点,依据试样水解液的消耗体积,计算总糖含量。试样的测定:吸取试样2~10mL于500mL容量瓶中,加水50mL和盐酸溶液5mL,在68~70℃水浴中加15min。冷却后,加入甲基红指示液2滴,用氢氧化钠溶液中和至红色消失,加水定溶至500mL,摇匀,用滤纸过滤后,作为试样水解液备用。测定时,以试样水解液代替葡萄糖标准溶液,操作步骤同干型黄酒的总糖检测方法。2.亚铁氰化钾滴定法费林溶液与还原糖共沸,在碱性溶液中将铜离子还原成亚铜离子,并与溶液中的亚铁氰化钾络合而呈黄色,以次甲基蓝为指示,达到终点时,稍微过量的还原糖将次甲基蓝还原成无色为终点。根据试样水解液的消耗体积,计算总糖含量。试样的测定:(1)预滴定:准确吸取甲溶液【称取硫酸铜(CuSO45H2O)15.0g及次甲基蓝0.05g,加水溶解并定容至1000mL,摇匀】、乙溶液【称取酒石酸钾钠(C4H4KNaO64H2O)50g、氢氧化钠54g、亚铁氰化钾4g,加水溶解并定容至1000mL,摇匀】、试样水解液各5mL于100mL锥形瓶中,摇匀后置于电炉上加热至沸腾,用葡萄糖标准溶液滴定至终点,记录消耗葡萄糖标准溶液的体积;(2)滴定:准确吸取甲溶液、乙溶液、试样水解液各5mL于100mL锥形瓶中,加入比预滴定少1.00mL的葡糖标准溶液,摇匀后置于电炉上加热至沸腾,继续用葡萄糖标准溶液滴定至终点。记录消耗葡萄糖标准溶液的体积。接近终点时,滴入葡萄糖标准溶液的用量控制在0.5~1.0mL。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转控制滴定速度,光能板供电无需电池;赫施曼的opus电子滴定器可通过触屏来进行灌液,可以正常滴定,也可以半滴滴定(每次出液约20uL),此外还有预滴定功能(可设定添加一定体积的滴定液,然后再继续进行常规滴定,数值累加)。这两种滴定器均为屏幕直接读数,可连接电脑输出数据,针对性解决了三大痛点,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 2000亿贴息贷款影响初显,六效合一助力科学仪器厂商乘风而起
    作为专业的仪器导购平台,仪器信息网囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类,主流品类95%的仪器厂商长期合作,收录20万+台优质仪器。其核心宗旨是帮助仪器用户快速找到优质的仪器设备。经过多年的持续建设,平台实现了可以同时从价格、品牌、行业、口碑、产品横向对比等多维度快速查找仪器产品的功能,助力千万级的用户轻松找到了靠谱的仪器。 为此,仪器信息网将特别围绕此次贴息贷款政策推出系列活动,六效合一助力科学仪器厂商乘风而起。系列活动一:仪咖说vol.15:专家共议乘万亿设备更新改造政策“东风” 仪器信息网将于2022年10月21日举办第十五期仪咖说活动,活动主题为专家共议乘万亿设备更新改造政策“东风”,活动将邀请中国计量科学研究院院长方向、北京大学分析测试中心副主任周江、北京国家质谱中心主任汪福意三位嘉宾围绕财政贴息设备更新改造贷款政策落地、仪器设备更新采购需求及诉求等问题共同探讨。此外,活动中还会有两位神秘嘉宾现身直播间,帮助仪器用户更好地进行用户选型。系列活动二:推出“仪器优选--高校版”导购选型工具 针对本次高校量大、多品类、采购急的痛点,仪器信息网10月21日将上线“仪器优选--高校版”导购选型工具,从1000+仪器分类中精选200余个高校高频采购品类;20万台仪器中甄别每个分类国内外主流、优质仪器;同时为采购用户提供仪器参数筛选、产品比一比、厂商400电话、一键留言等功能;梳理近3万个高校采购典型用户,帮助高校采购用户快速选型,降本增效。“仪器优选--高校版”精选仪器规则: 主流仪器:获得行业内“国产好仪器”、“绿色仪器”、“用户关注仪器”等荣誉奖项; 优质仪器:品类先锋、金榜题名、品牌直通车、品牌合作伙伴等厂商优质仪器;“仪器优选--高校版”入驻咨询:请拨打电话13651391054系列活动三:助力高校用户进行仪器选型 将在10月24日--11月11日期间、集中组织50+主流厂商为高校用户提供选型指导。拟定直播品类如下:直播时间10月24-26日 色谱10月27-28日 质谱10月31日--11月2日 光谱11月3日--4日,光学仪器11月7日--8日 分离/萃取11月9日--11日,纯化/混合其他品类登记报名链接:http://xlku21n32eleulo3.mikecrm.com/tG6yPft联系我们:13651391054 zhangyu@instrument.com.cn系列活动四:2022财政贴息设备更新改造贷款之仪器选型专题 为了更好地帮助仪器用户通过此次财政贴息贷款选购适合的仪器设备,仪器信息网拟联合多家优质仪器厂商上线专门的仪器展示专题,提升用户选购仪器的效率。(专题拟于10月17-21日期间上线) 联系我们:17862992005,guancg@instrument.com.cn系列活动五:仪器厂商征稿活动 仪器信息网面向广大仪器厂商进行征稿活动,仪器厂商可围绕“2000亿贴息贷款政策下,如何助力快速选型采购”这一主题进行原创稿件创作(字数不少于1500字),稿件一经采用将发布在仪器信息网上并收纳到相关专题中。 活动截止时间:2022年12月31日 联系我们:17862992005,guancg@instrument.com.cn系列活动六:仪器用户原创稿件征集 仪器信息网面向广大仪器用户进行征稿活动,如果您是仪器用户,除了可以联系我们发布仪器采购需求外,还可围绕以下主题之一进行原创内容创作(字数不少于1500字): 1.仪器采购经验分析 2.对于此次贴息贷款政策的理解和解读 原创稿件一经采用将发布在仪器信息网上并收纳到相关专题中,投稿用户还将获得800元(税后)稿酬。 活动截止时间:2022年12月31日 联系我们:17862992005,guancg@instrument.com.cn 可以预见的是,2022年第四季度科学仪器市场势必风起云涌,涌现大量的仪器采购商机,采购规模更胜往年。如何在这样激烈竞争的市场环境下,掌握第一手商机,请持续关注仪器信息网!
  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 09年甘肃省测土配方施肥项目补贴4050万元
    近日,从甘肃省“巧施肥促生产”行动启动仪式上了解到,今年,农业部、财政部下达该省测土配方施肥项目补贴资金4050万元,将尚未实施该项目的主要农业县全部纳入测土配方施肥补贴范围,其中,将地震灾区补贴资金提高到了80万元。   根据农业部、财政部下达的项目实施方案,2009年国家将甘肃省尚未实施测土配方施肥项目的主要农业县全部纳入补贴范围,并下达该省项目补贴资金4050万元,另外,省级财政还将补贴300万元,总计今年补贴资金4350万元,计划推广测土配方施肥2500万亩,从而实现测土配方施肥项目补贴覆盖全省所有农业县。今年,甘肃省农业节水与土肥总站将组织教学、科研单位土肥专家及省级测土配方施肥专家组成员等深入灾区各县,对灾区项目县农技人员、农民群众进行培训,提高农民科学种田水平,使技术入户率达到90%,示范区达到100%。
  • MS9000-您的黑臭水体在线监测优选搭档
    MS9000-您的黑臭水体在线监测优选搭档哈希公司 安装地点:东莞某地MS9000+X多参数水质监测仪是由采配水单元、预处理单元、分析单元(多参数)、控制单元、数据采集与传输单元、空调、UPS电源等组成。可根据实际测量需求订制pH、溶解氧、电导率、浊度、水温、高锰酸盐指数、氨氮、总磷、总氮、化学需氧量、水中油、叶绿素、蓝绿藻等参数,占地面积小于2平方米。具有相当好的抗污性、稳定性和准确性,能有效满足黑臭水体长时间的在线监测。目前为止我们运维了3个黑臭水体站点,在如此恶劣工况条件下,MS9000连续七天不需要进行维护,系统集成能有效防止水体中淤泥、生活垃圾等的入侵,通过集成的预处理能防止杂质对仪器的损伤和数据的干扰,但又不会过度失真,保持水体原有的本质。系统的自动清洗、自动较准、预诊断等功能又为仪器保驾护航,使仪器尽管在恶劣水质下依然保持着良好的运行状态,减少故障的发生,给业主提供准确可靠的数据。MS9000是您在黑臭水体在线监测中优选搭档。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 欢迎预订尊贵坐席 BCEIA 英美先端供应链 优选推荐会
    欢迎预定尊贵坐席 &ndash BCEIA 英美的通用实验设备 先端供应链 优选推荐会 欢迎莅临优选推荐会: 中国北京,2013年10月23日- 26日&mdash &mdash 实验室通用实验设备及服务商 &ldquo 通用实验科技集团&rdquo (以下简称: 通用实验) 将于参加10月23-26日举办的2013年北京分析测试学会报告会及展览会(BCEIA 2013)。期间,通用实验将向来自全国各地的实验室用户及渠道分销商 展示并推荐来自英国和美国的18个全新实验室通用产品项目,还将请来自英国和美国的产品专家,亲自讲解这些设备在实验室的行业应用和解决方案,与大家分享实验室样品前处理和辅助实验设备领域的世界卓越技术和行业领先产品。 优选推荐会地址 : BCEIA北京展览馆 (B 技术交流室 ) 优选推荐会时间: BCEIA 展览会10月 24日-25日 9:30 -17:30 欢迎并邀请对象:1、政府实验室、大学科研单位、企事业单位 资深实验室用户和采购人员 2、各地区、行业 通用实验设备 业务领域 的渠道分销商和项目集成商 参加办法:1、请致电 400 821 3360 提前预约尊贵座席并获取参加资格, 每场限座 50位。 2、因坐席有限,若无预定,请恕无法保证现场临时的参加者能够参加并享座位。
  • 【618超级彩蛋】信立方618“仪器优选”超级分会场,优惠不停,拓客不断!
    仪器优选栏目于2023年6月7日完成全新升级,随之该栏目的广告产品也迎来了新的优惠篇章;仪器优选栏目专业的科学仪器导购平台千万用户仪器选型的必经之路厂商对外发声,占领市场的不二阵地也是仪器广告投放,拓客效果的最佳方案新客户/老客户都能薅的优惠活动,还不赶紧行动!!!一、活动介绍如下:活动日期:2023.6.15-2023.7.15参与对象:新老客户服务范围:仪器优选栏目广告(不含品类先锋和金榜题名 )享受机制:先到先得,送完为止优惠活动:购买仪器优选栏目广告,配送广告位(最多2个月)+500元*150张京东卡1、配送广告位:购买服务范围内的广告客户,均享受指定广告位的配送服务;2、500元京东卡:仅限购买新版品牌直通车年包服务,前面三个位置的客户;3、其他广告:指仪器优选栏目广告(不含品牌直通车、品类先锋、金榜题名广告),且购买周期半年(含)以上;4、新老客户优惠活动如下:优惠活动新客户老客户品牌直通车(新)其他广告品牌直通车(新)其他广告配送广告位√√√√500元京东卡(年包)√(100张)-√(50张)-配送广告:1、 最多配送2个月,广告最晚于2023年9月15日之前投放完毕;2、 配送广告不可多选,仅能选择配送范围内的一个广告;3、 合同内容不体现配送广告,若意向广告位被占用需协商调剂4、 品牌直通车仅限购买年包前三位置;5、配送位置及价值:广告位:优先首页PPT一级类顶部BANNAR三级类banner1-3新增广告位价值(最高):10000元/月5000元/月1666元/月暂无二、6月新品预告:1、6月份有什么期待的新品?新版品牌直通车于6月份上线,将以新价格分品类分位置售卖,售卖周期更灵活(年度、半年度、季度),满足不同产品广告宣传诉求;2、能给客户带来什么?①前3个位置的资源更优质,极大提升品牌影响力②形式更吸睛,促进用户点击,提升广告转化效果③提升展台流量,增加3i指数和产品入选月榜的机会3、新品长什么样子?鼠标悬浮至logo处,上方展示banner图片,更多内容曝光,提升转化效果(上图为示例供参考,无任何宣传意义↑↑↑)友情提示:*618优惠活动不能与其他活动同享,只能选其一*本活动最终解释权归信立方所有更多活动详情可扫码咨询更多关于信立方超级品牌日的活动信息,可扫描下方二维码了解详情
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制