当前位置: 仪器信息网 > 行业主题 > >

吡咯烷二酮

仪器信息网吡咯烷二酮专题为您提供2024年最新吡咯烷二酮价格报价、厂家品牌的相关信息, 包括吡咯烷二酮参数、型号等,不管是国产,还是进口品牌的吡咯烷二酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡咯烷二酮相关的耗材配件、试剂标物,还有吡咯烷二酮相关的最新资讯、资料,以及吡咯烷二酮相关的解决方案。

吡咯烷二酮相关的资讯

  • 赫施曼助力胶鞋 、运动鞋N-甲基吡咯烷酮含量的测定
    胶鞋和运动鞋是我们日常生活中常见的鞋子类型,在生产过程中需要考虑到其材料成分及安全性。N-甲基吡咯烷酮是一种化学物质,对人体有一定的危害,因此需要进行检测和限制其含量。根据GB/T 38349-2019,测定胶鞋和运动鞋中N-甲基吡咯烷酮的方法是高效液相色谱法。实验涉及标准溶液的配置:N-甲基吡略烷酮标准储备溶液,20mg/L:用Miragen电动移液器移取0.5mL浓度为1000mg/L的N-甲基吡咯烷酮标准溶液至25mL容量瓶中,用甲醇(色谱纯)定容至刻度,得到20mg/L的标准储备溶液。N-甲基吡咯烷酮标准工作溶液:采用10mL规格的Miragen电动移液器,单吸多排模式设置5个体积分别为0.25、0.5、1.0、2.5和5mL,然后按分液键,将5个体积的N-甲基毗咯烷酮标准储备溶液(20mg/L)分别加入到10mL容量瓶中,然后用甲醇(色谱纯)定容至刻度,得到浓度分别为0.5、1、2、5和10mg/L标准工作溶液,与20mg/L的N-甲基吡咯烷酮标准储备液组成六个不同浓度的标准工作溶液。 实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。Miragen电动移液器可给电机多段信号,从而达到吸液和排液分多次且各体积独立可调。比如上面的标准溶液的移取,就可设置单吸多排,单次吸取9.25mL,分5次排液(0.25、0.5、1.0、2.5和5mL),程序可存储和调用,非常便捷。
  • 全自动乌氏粘度计在PVP(聚乙烯吡咯烷酮)材料中的应用
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone),简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中独具特色的精细化学品。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其独特的性能获得广泛应用。PVP(聚乙烯吡咯烷酮)材料作为一种合成水溶性高分子化合物,具有水溶性高分子化合物的一般性质,胶体保护作用、成膜性、粘结性、吸湿性、增溶或凝聚作用,其受到人们重视的独特性质是其优异的溶解性能及生理相容性。在合成高分子中像PVP(聚乙烯吡咯万通)材料这样既溶于水,又溶于大部分有机溶剂、毒性很低、生理相溶性好的并不多见,特别是在医药、食品、化妆品这些与人们健康密切相关的领域中,随着其原料丁内酯价格的降低,展示出发展的良好前景。PVP(聚乙烯吡咯烷酮)材料按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应PVP(聚乙烯吡咯烷酮)材料的平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。在PVP(聚乙烯吡咯烷酮)材料的生产和研发中,K值通常使用乌氏毛细管法进行测量,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 全自动乌氏粘度计-用毛细管法测定聚乙烯基吡咯烷酮的k值
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone)简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,且被研究得最深、广泛的精细化学品品种。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其优异独特的性能获得广泛应用。PVP按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应的PVP平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。测定K值最常用的方法是用毛细管粘度计测的PVP水溶液的相对粘度n,再根据公式计算出K值。 实验方法如下实验所需仪器:卓祥全自动粘度仪、自动配液器、万分之一电子天平。实验所需试剂1:溶剂:纯水,无水乙醇为清洗剂。溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入纯水,软件中启动测试任务待结束,测的溶剂时间T0。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品溶液的制备:在万分之一天平上精准称量精确到*g,溶解在**ml溶剂中,通过自动配液器将溶液浓度精准配制到**g/ml,溶解条件:常温搅拌。样品粘度的测定:加入**ml样品,测量样品时间**,计算粘度结果粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 瑞士万通参加2011年华东区药物分析学术交流会
    十月泉城,景色宜人。2011年10月18日~20日,山东省食品药品检验所与山东省药学会于泉城济南珍珠泉宾馆举办&ldquo 2011年药品标准提高研讨会暨华东区药物分析学术交流会&rdquo 。瑞士万通(中国)有限公司有幸参会,并做了&ldquo Metrohm仪器在药品分析的新技术及新应用&rdquo 的学术报告。 报告中,瑞士万通市场部的高级工程师胡清介绍公司最新的药片水分分析的全自动解决方案,并详细讲解了中药材及其饮片中二氧化硫的测定方法及瑞士万通离子色谱技术在药物分析中的应用。 会议现场气氛热烈,会后众多客户前来咨询。 瑞士万通市场部工程师介绍公司的新技术与新应用 会议期间,瑞士万通工作人员将万通离子色谱在药物领域中的各种应用与现场参会人员进行了交流。而瑞士万通《离子色谱在药典中的应用》应用报告专辑也非常受药物检测人员的欢迎。该报告详细介绍了药物检测中的N-甲基吡咯烷、葡萄糖胺等热点物质的离子色谱检测方法。 获取应用专辑请发邮件至:info@metrohm.com.cn 关于瑞士万通: 1950年,瑞士万通发明了第一支复合pH电极。 1954年,瑞士万通设计出第一台用于痕量分析的实用自动极谱仪。 1956年,瑞士万通开发出第一支活塞型滴定管。 1968年,在瑞士万通诞生世界首台数字化滴定仪,第一台数字化电子滴定管。 &hellip &hellip 2007年,瑞士万通研发出首台智能型离子色谱仪。 2010年,瑞士万通研制出世界首台紫外离子色谱。 Metrohm - 瑞士万通,是当今世界唯一全方位涵盖各类不同离子分析技术的国际化分析仪器公司。
  • 纺织品有害物质检验有新规定
    近日,国际环保纺织协会在例行年会上发布了最新的100种纺织品有害物质检验的测试标准和限量值要求。为让企业有充足的时间调整、规范生产,新的规定特别允许生产企业有一段过渡调整期,其确切的生效日期为2013年4月1日。   据介绍,测试参数的重新评估是基于目前市场和产品的发展方向,新发现的有毒物质以及相关的新法规要求,集中考虑了REACH法规的要求。其中,包括在2011年已加入REACH高度关注物质列表的与纺织生产相关的N-甲基吡咯烷酮和二甲基乙酰胺有害物质。新的检验标准将这两种化学物质列入“溶剂残留物”的新项目下,限量值要求不超过重量比的0.1%。   对此,检验检疫部门提醒纺织品生产企业,一是积极关注相关部门对纺织品标准要求的变化,及时根据新要求改进生产工艺 二是要做好成品的检验工作,避免因N-甲基吡咯烷酮和二甲基乙酰胺等成分不符合标准而导致滞留、退运等情况 三是严把原料质量关,在选择染料、助剂的同时,必须注意相关有害物质的种类与限量,确保产品质量安全。
  • 岛津GC在锂离子电池产业链中的典型应用(下篇)
    锂离子电池(LIBs)是一种充电电池,主要依靠锂离子在正极和负极之间的移动来完成充放电的工作。LIBs是公认的绿色环保化学电源,具有电压高、比能量大、放电电压平稳、循环性能好等优点,因而发展迅速,应用广泛。LIBs主要用于智能手机、平板电脑等3C领域,电动汽车、电动自行车等动力电池领域以及电网、5G基站等储能领域。电解液组成分析对LIBs的能量密度、循环寿命和安全性研究具有重要意义。在电解液原材料检测以及研发过程中,涉及主盐含量、有机溶剂组份、水分、阴离子、金属杂质等各项测试。在SJ/T 11568-2016《锂离子电池用电解液溶剂》等相关标准中,使用GC对电解液溶剂的纯度与总醇进行检测。1、锂离子电池电解液中碳酸酯类有机溶剂含量测定电解液中碳酸酯类溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)和碳酸亚乙烯酯(VC)等。岛津推荐采用GC-FID对已知电解质溶剂的常规定量检测,GCMS用于电解液中未知溶剂和不纯有机物中杂质的定性、定量检测。本例采用GC-FID对已知电解质溶剂进行常规定量检测。图1 标准溶液谱图取实际电解液样品,正己烷适当稀释后进样分析,得到分离谱图,通过多点校正外标法获得样品结果。图2 实际样品谱图表1 样品定量结果2、碳酸二甲酯(DMC)中水分含量测定碳酸二甲酯(DMC)是电池电解液中常用有机溶剂,利用岛津BID检测器进行DMC中水分含量的测定,方法操作简单、重复性好,适用于化工产品DMC中水分含量的快速分析,可以满足生产过程质量控制的要求。图3 标准色谱图(含水量0.1%)使用DMC配制标准溶液,含水量分别为 0.001、0.005、0.01、0.05、0.1%,进样分析制作标准曲线,以0.001%标准溶液响应值计算仪器检出限。图4 标准曲线表2 相关系数及仪器检出限使用含水量0.01%的DMC溶液,重复进样6次,峰面积重复性良好,RSD小于2%。图5 重叠谱图3、锂电池电极片中N-甲基吡咯烷酮(NMP)残留量测定NMP是生产锂电池非常重要的辅助材料,起到混合活性物质、导电剂和粘结剂的作用,但绝大部分的NMP在浆料涂布过程中被去除,这是因为NMP对于电池来说是杂质,根据工艺分析要求,采用顶空进样器结合气相色谱仪进行锂电池电极片中NMP残留量的测定。图6 Nexis GC-2030 + HS-20 NX本例采用岛津HS-20 NX顶空进样器结合Nexis GC-2030气相色谱仪,建立了电池电极片中NMP残留量的检测方法,标准曲线良好、灵敏度高。图7 N-甲基吡咯烷酮标准色谱图图8 标准曲线表3 相关系数及仪器检出限锂电池的整个生产过程需要配套完备的分析仪器,岛津气相色谱仪在锂离子电池产业链中拥有完善的解决方案,广泛应用于产品研发、生产、质控以及原料进厂检验等众多环节,助力锂离子电池产业健康发展。参考资料:1. 岛津应用No. GCMS-058 气相色谱测定锂电池电解液中碳酸酯类有机溶剂含量2. 岛津应用No. GC-194 GC-BID法测定碳酸二甲酯中水分含量3. 岛津应用No. GC-232 顶空-气相色谱法测定锂电池电极片中N-甲基吡咯烷酮残留量本文内容非商业广告,仅供专业人士参考。
  • HPLC级叔丁基甲醚促销
    货号:CAEQ-4-018397-4000 HPLC级叔丁基甲醚 规格:4L 报价:540元 促销价:整箱起订432元/瓶,4瓶/箱 促销时间:2011年5月3日至2011年5月31日 高效液相色谱法已经在产品检测、研发以及药物质量控制和环境分析领域成为首要的技术方法,因而对所使用的溶剂提出了更高的要求。 CNW液相色谱溶剂具有以下优点:1)低紫外吸收,确保最佳灵敏度;2)严格控制非挥发性物质、游离酸、游离碱和水分含量至最低;3)严格的梯度测试以检测干扰峰和基线漂移情况;4)可用于荧光检测。我们可以为您提供满足不同分析需求的溶剂,如UV-IR表示可满足紫外可见吸收光谱、红外光谱等分析;HPLC preparative表示可满足制备色谱分析;HPLC isocratic表示可满足等度洗脱分析;HPLC gradient表示可满足梯度洗脱分析;GPC表示可满足大分子化合物凝胶渗透色谱分析;另外我们还可以为您提供满足所有现代LC/MS精确检测分析用的溶剂。 订货信息: 产品货号 产品名称 品牌 规格 报价(元) 4.003302.4000# HPLC级甲醇 CNW 4L 180.00 4.003306.4000# HPLC级乙腈 CNW 4L 420.00 4.003513.2500# HPLC级水 CNW 2.5L 200.00 4.003513.4000 HPLC级水 CNW 4L 320.00 4.012256.0500# HPLC级苯CNW 500ml 400.00 4.012256.1000 HPLC级苯 CNW 1L 600.00 4.012256.4000# HPLC级苯 CNW 4L 1360.00 4.012783.0500# HPLC级吡啶 CNW 500ml520.00 4.012783.1000# HPLC级吡啶 CNW 1L 860.00 4.012783.4000 HPLC级吡啶 CNW 4L 2800.00 4.010734.0500 HPLC级二甲基亚砜 CNW 500ml 360.00 4.010734.4000# HPLC级二甲基亚砜 CNW 4L 1150.00 4.011410.0250# HPLC级1,4-二氧六环 CNW 250ml 480.00 4.010410.0500 HPLC级1,4-二氧六环 CNW 500ml 860.00 4.010410.1000# HPLC级1,4-二氧六环 CNW 1L 1360.00 4.014077.4000 HPLC级N,N-二甲基甲酰胺 CNW 4L 520.00 4.014080.0500# HPLC级N,N-二甲基乙酰胺 CNW 500ml 360.00 4.014080.1000# HPLC级N,N-二甲基乙酰胺 CNW 1L 480.00 4.014080.2500 HPLC级N,N-二甲基乙酰胺 CNW 2.5L 800.00 4.011556.4000# HPLC级环己烷 CNW 4L 520.00 4.011406.0500# HPLC级N-甲基吡咯烷酮 CNW 500ml 320.00 4.011406.4000 HPLC级N-甲基吡咯烷酮 CNW4L 980.00 4.012001.4000# HPLC级二氯甲烷 CNW 4L 600.00 4.011408.0500 HPLC级1-氯丁烷 CNW 500ml 450.00 4.011408.1000# HPLC级1-氯丁烷 CNW 1L 750.00 4.011412.0500# HPLC级氯苯 CNW 500ml 560.00 4.011412.1000 HPLC级氯苯 CNW 1L 960.00 4.011404.1000 HPLC级1,2-二氯苯 CNW 1L 750.00 4.011414.0500# HPLC级1,2,4-三氯苯 CNW 500ml 520.004.011414.1000 HPLC级1,2,4-三氯苯 CNW 1L 860.00 4.018397.4000# HPLC级叔丁基甲醚 CNW 4L 540.00 4.011321.4000# HPLC级四氢呋喃 CNW 4L 720.00 4.014048.4000# HPLC级乙酸乙酯 CNW 4L 450.00 4.016362.4000# HPLC级乙醇 CNW 4L 520.00 4.013493.4000# HPLC级异丙醇 CNW4L 420.00 4.010893.1000# HPLC级异丁醇 CNW 1L 560.00 4.010893.4000 HPLC级异丁醇CNW 4L 1800.00 4.010566.4000# HPLC级异辛烷 CNW 4L 860.00 4.019067.1000 HPLC级正丙醇 CNW 1L 300.00 4.019067.2500 HPLC级正丙醇 CNW 2.5L 640.004.014508.1000# HPLC级正丁醇 CNW 1L 360.00 4.014508.4000# HPLC级正丁醇 CNW 4L 860.00 4.019030.4000# HPLC级正庚烷 CNW 4L 800.00 4.011518.4000# HPLC级正己烷 CNW 4L 450.00 4.019028.4000# HPLC级正戊烷 CNW 4L 800.00 4.011402.1000 HPLC级叔丁醇 CNW 1L 640.00 4.011401.0500 HPLC级正辛醇 CNW 500ml 480.00 4.011405.0250 HPLC级1,2-二氯乙烷 CNW 250ml400.00 4.011405.1000 HPLC级1,2-二氯乙烷 CNW 1L 600.00 4.011403.1000 HPLC级4-甲基-2-戊酮 CNW 1L 560.00 4.000306.4000 LS-MS甲醇 CNW 4L 600.00 4.000308.4000 LS-MS乙腈CNW 4L 840.00 4.000302.4000 LS-MS水 CNW 4L 600.00 了解更多产品请进入安谱公司网站 http://www.anpel.com.cn/
  • 博纳艾杰尔成功开发出奶粉中激素样品前处理方法
    奶粉激素事件牵动着大家的关注! 凭借材料研发的优势,博纳艾杰尔研发中心的技术人员们已经成功地开发了两种从奶粉中提取激素的样品前处理固相萃取柱,Cleanert PEP和Cleanert CM Silica,并成功地用于雌酮、雌二醇、醋酸甲地孕酮、醋酸氯地孕酮等四种激素的检测。数据表明:改方法具有快速、准确、简单等特点,而且回收率高、成本低。藉此我们希望抛砖引玉,让从事方法开发的同行们共同探讨,完善方法。 奶粉中雌酮、雌二醇、醋酸甲地孕酮、醋酸氯地孕酮 SPE-LC/MS/MS检测方法 1.实验部分: 1.1材料、试剂 Cleanert PEP吡咯烷酮化聚苯乙烯/二乙烯基苯固相萃取柱(100mg/6mL, P/N: PE1006,博纳艾杰尔科技);Cleanert Silica CM改性硅胶固相萃取柱 ( 1000mg/6mL , P/N : CM0006,博纳艾杰尔科技) 液相色谱柱 (Halo C18 , 2.1×100mm, 2.7μm, P/N: 92812-602,博纳艾杰尔科技) 标准品:雌酮(CAS.No. 53-16-7)、雌二醇(CAS.No. 50-28-2)、醋酸甲地孕酮(CAS.No. 595-33-5)、醋酸氯地孕酮 (CAS.No. 302-22-7 ),购自中国药品生物制品检定所。 1.2样品前处理方法 1.2.1 Cleanert PEP样品提取净化法 提取:取2g奶粉,加标,然后加12mL 80% 乙腈,涡旋混匀两分钟后,离心(90000r/min, 6min)取3mL上清液,加入9mL超纯水稀释,涡旋混匀后,待过Cleanert PEP柱净化。 净化步骤: 1) 活化:以5mL乙腈,5mL水活化Cleanrt PEP; 2) 上样:把上述稀释后的样品溶液过柱,流速控制以1mL/min为宜; 3) 淋洗:待样品溶液完全通过小柱后,用5mL 5%乙腈淋洗小柱,然后真空抽干3min; 4) 洗脱:以3-5mL乙腈洗脱目标,收集流出液; 5) 浓缩:收集液以氮气浓度吹干(40℃水浴),后以50% 甲醇水定容至1mL,混匀后过0.22μm微孔滤膜过,进LC-MS/MS分析。 1.2.2 Cleanert Silica样品提取净化法 提取:取2g奶粉,加标,然后加12mL 乙腈,涡旋混匀两分钟后,离心(90000r/min, 6min)取3mL上清液,待过Cleanert Silica柱净化。 净化步骤: 1) 活化:以5mL乙腈活化Cleanrt Silica小柱; 2) 上样:把上述提取液过柱,收集流出液; 3) 淋洗:以5mL乙腈洗涤小柱,收集流出液; 4) 浓缩:合并以上流出液液,以氮气浓度吹干(40℃水浴),后以50% 甲醇水定容至1mL混匀后过0.22μm微孔滤膜,进LC-MS/MS分析。 1.3 LC-MS/MS检测条件 1.3.1 孕激素(醋酸甲地孕酮、醋酸氯地孕酮)测定 液相色谱条件:色谱柱 (Halo C18, 2.1×100mm, 2.7μm);流动相:A:0.1%甲酸水,B: 甲醇,梯度条件(略);流速:0.3mL/min,柱温:40℃,进样量:10μL 参考质谱条件:电离源:电喷雾正离子模式;其他(略) 1.3.2 雌激素(雌二醇、雌酮)测定 液相色谱条件:色谱柱(Halo C18 2.1×100mm,2.7μm);流动相:A:水,B: 乙腈,梯度条件(略);流速:0.3mL/min,柱温:40℃, 进样量:10μL 参考质谱条件:电离源:电喷雾负离子模式;其他(略) 2.结果与讨论: 结果见图1、图2。用Cleanert PEP (反相)或Cleanert Silica CM(正相) 两种净化手段均可到达满意的回收率和净化效果,添加浓度在25ppb时回收率可达到80% 。 用Halo色谱柱可以实现样品的快速分离,大大提高工作效率。 雌二醇和雌酮两种激素,质谱相应偏低,质谱条件需要进一步优化。 本实验结果采用单点定量判定,结果可能有失偏颇,详细数据需做基质添加标准曲线确证,方法的精密度,稳定性等亦需要进一步确证。 图1 两种孕激素总离子流图和选择离子流图(标品) 图2 两种雌激素总离子流图和选择离子流图(奶粉样品)
  • 国际环保纺织协会发布百种纺织品有害物质检验标准
    国际环保纺织协会如往年一样,在例行年会上发布了最新的100种纺织品有害物质检验的测试标准和限量值要求,2012年开始生效。据了解,为了给企业充足的时间调整规范生产,允许生产企业有一段过渡调整期,确切的生效日期为2013年4月1日。   据介绍,测试参数的重新评估是基于目前市场和产品的发展,新发现的有毒物质和新法规的要求,同时也考虑了REACH法规的要求,包括在2011年已加入REACH高度关注物质列表的与纺织生产相关的有害物质。测试项目具体更新为:根据现行版本的候选物质清单和目前达成的共识,湿法纺丝纤维和涂层将检测N-甲基吡咯烷酮和二甲基乙酰胺项目。两种化学物质被列入"溶剂残留物"的新项目下,限量值要求不超过重量比的0.1%。另外,相关样品需检测四种新纳入的增塑剂:邻苯二甲酸二C6-8支链烷基酯、邻苯二甲酸二C7-11支链烷基酯、邻苯二甲酸二己酯、邻苯二甲酸二甲氧乙酯。这些将并入已有的邻苯二甲酸盐项目下。总的限量值要求将维持不变,为重量比的0.1%。
  • 欧盟修订REACH法规(EC 1907/2006)附件XVII
    近日,欧盟向WTO秘书处通报了修订REACH法规(EC 1907/2006)附件XVII的委员会法规草案(G/TBT/N/EU/118)。   该草案将磷化铟、磷酸三酯、叔丁基锂、氢化石脑油、高温煤焦油沥青、氟环唑、硝基苯、邻苯二甲酸二己酯、N-乙基-吡咯烷酮、砷化镓、十五代氟辛酸铵、全氟辛酸和硫代甘醇酸异辛酯二正辛基锡这些物质包括到法规(EC 1907/2006)附件XVII的28-30条中,以限制其作为物质、其他物质的成分或在向公众提供的混合物中投放市场或使用。由于法规(EU 618/2012)和CLP法规第5次修订的预期采用,依照其属于作为致癌、致基因突变、有生殖毒性1A或1B的新分类,增加了“仅限于专业人员使用”的标签要求。   该通报法规的拟批准日期为2013年9月,拟生效日期为在欧盟官方公报上公布起20天(2014年4月1日起实施)。
  • 西安电子科技大学红外物理与工程团队成功研制微型低成本便携式重建型光谱仪
    西安电子科技大学光电工程学院红外物理与工程团队利用光化学重塑技术,对金纳米棒及薄膜光谱透过率进行原位调节,设计出一种微型低成本便携式重建型光谱仪。相关科研成果题为“Miniature Spectrometer Based on Gold Nanorod-Polyvinylpyrrolidone Film”近日在线发表于国际期刊《Acs光子学》。该研究首次提出了基于金纳米棒-聚乙烯吡咯烷酮薄膜的重建型光谱仪,在满足光谱仪微型化发展需求的基础上,实现了简化的器件加工工艺、降低了制造成本,对微型光谱仪的普及具有重要意义。光谱被称为物质的“指纹”。通过对物质的透射、反射、吸收或发光光谱的分析,便可得知物质的光学特征、温度、元素成分等信息。近年来,光谱仪的微型化发展十分迅速,相关研究成果使光谱分析得以应用于现场检测、芯片实验室等领域。光谱仪是获取光谱信息的重要工具,相比于实验室中笨重且昂贵的传统台式光谱仪,微型化、便携化的光谱仪可适用于更多场景。其中重建型光谱仪作为一种新型的光谱仪微型化策略受到广泛关注,这类光谱仪不使用复杂的机械结构以及较长的光学路径,因此可以实现超紧凑的系统设计。但是,重建型光谱仪所使用的色散、滤光器件通常需要较为复杂和昂贵的微纳制造工艺流程,这在一定程度上限制了重建型光谱仪的研究和广泛应用。金是一种贵金属材料,物理化学性质非常稳定。而金纳米颗粒根据尺寸和形状,可以表现出独特的光学特性,其光谱吸收特征可以随着金纳米棒长度和直径比例的变化而改变。在成像传感器表面的聚合物薄膜内,嵌着一种被称为金纳米棒的棒状金纳米颗粒。该团队引入光化学重塑技术,利用金纳米棒的光热效应和再成型化学反应,在原位改变金纳米棒的长径比,从而达到改变薄膜的光谱透射率的目的。“针对金属纳米颗粒的光热与光化学重塑现象已被广泛研究。我们发现该效应可应用于重建型光谱仪滤光器件的加工。”西安电子科技大学光电工程学院博士研究生叶云龙说,“我们将光化学重塑技术应用于金纳米棒—聚乙烯吡咯烷酮薄膜,获得了具有丰富光谱透射特征的滤光器件。”“目前,重建型光谱仪使用的色散元件或滤波器,大多采用复杂且昂贵的微纳加工制造工艺。相比之下,利用光化学重塑金纳米棒聚合物薄膜的技术,可以实现滤光结构的低成本快速制造和灵活设计,而且这种技术并不限于金纳米棒这种材料。”团队指导教师王昱程说。据介绍,实验验证了重建型光谱仪设计思路的可行性,所加工的样机可对600纳米至700纳米范围内的光谱具有较好的窄带和宽带光谱重建效果。
  • 赋能创“芯”| 把控化学品中超痕量金属元素污染,应对极致检测需求!
    随着半导体制程线宽已达纳米时代,细微的污染都可能改变半导体的性质,湿电子化学品是电子行业湿法制程的关键材料,需要直接与硅片接触,其金属离子的控制对于确保产品良率至关重要。赛默飞可提供从ICP-OES到ICPMS(单杆、三重四极杆到高分辨)的全产品线解决方案,适用于不同制程的痕量污染物检测需求,确保 QA/QC 一致性,助力提升良率!► ► 突破高纯有机溶剂行业壁垒高纯度有机溶剂被广泛使用在集成电路行业中,包括异丙醇、甲醇、丙酮、N-甲基吡咯烷酮(NMP)、丙二醇甲醚醋酸脂(PGMEA)、乳酸乙酯、二甲基乙酰胺等。如异丙醇因其低表面张力和易挥发性而用于晶片清洗和干燥,在封装测试、化学中间体以及油墨生产中异丙醇的需求量也很大;NMP和PGMEA作为高级溶剂可与水互溶,并且能溶解大部分的有机和无机化合物,具有良好稳定性,被广泛应用于光刻胶溶剂等。 赛默飞可为高纯有机溶剂提供QA/QC检测,遵循国际半导体设备和材料组织SEMI标准中规定用ICPMS法来测定超痕量金属离子杂质,此外,还可以提供创新R&D检测方案,准确地对杂质进行鉴定和监测,可以有利于工艺方案的优化及产品质量的控制,以及不同批次产品间的组分差异,助力突破研发壁垒。 ► ► 高纯有机溶剂ICPMS测试的挑战有机溶剂直接进样对于ICPMS测定有较大的挑战,高挥发性增加了等离子体负载,导致炬焰收缩而熄火,炬管和接口的积碳导致检测强度下降影响长期稳定性,甚至于堵塞锥孔。因此传统测试上采用挥发蒸干用酸提取,对于水溶性溶剂也使用稀释法进样。固态聚合物更多地使用高温灰化或微波消解的前处理方法。但随着试剂纯度的提高,对于其中要求的杂质限量值越来越低,样品前处理步骤往往会有引入污染的风险,尤其是前处理条件不能满足洁净度要求的情况下。 iCAP TQs最新变频阻抗匹配设计的RF发生器,对于有机溶剂直接进样具有及其快速的匹配,并结合高效Peltier雾化室制冷模块,在雾化室连接管上接入高纯度氧气,与样品气溶胶混合后导入离子体,加氧消除积碳保持进样稳定性,即便在600w冷等离子体条件下也能获得稳定的测定结果。串联四极杆技术结合碰撞与反应模式可进一步去除碳、氮、氩等基体产生的多原子离子干扰,可获得低背景值并更为准确的结果。分析操作流程也更为简单、快速,可有效控制外来污染并提高分析工作效率。► ► 应用案例:电子级N-甲基吡咯烷酮(NMP)电子级NMP在半导体产业用途广泛,可作为光刻胶溶剂、除胶剂、清洗剂等。NMP密度为1.028g/cm3与水的密度相当,沸点202℃其在室温下挥发性低,粘度较低并可以与水互溶。结构中存在N-甲基使NMP直接进样ICPMS分析时,其基体效应相对于异丙醇要强,将抑制待测元素的信号强度。通过等离子体条件优化,结合标准加入法定量测定可消除基体效应。在NMP的检测中,采用赛默飞三重四极杆iCAP TQs半导体专用ICPMS,将ICPMS雾化室制冷至-5℃,减少有机溶剂进样量,50ml/min等离子体加氧避免锥口积碳。有机溶剂直接进样测定时,碳、氮、氩基体离子将对待测离子产生严重的干扰,如¹ ² C₂ +对² ⁴ Mg+,¹ ³ C¹ ⁴ N+对² ⁷ Al+,¹ ⁴ N¹ ⁶ O¹ H+和¹ ² C¹ ⁸ O¹ H+对³ ¹ P+,以及¹ ² C+的峰拖尾对M-1的¹ ¹ B+的干扰等等,方法中采用冷等离子体模式,可有效降低C、 N、Ar等电离,同时在Qcell中加纯氨反应以获得低背景值。¹ ¹ B的测定采用Q1和Q3的高分辨模式,提高丰度灵敏度消除¹ ² C+的影响。³ ¹ P采用热等离子体氧反应模式,Q3选择³ ¹ P¹ ⁶ O+消除CNHO的多原子离子的干扰。分析结果 iCAP TQs ICPMS稳定可靠的RF发生器在等离子体加氧下,可适合于直接进样测定有机溶剂,冷等离子体可有效抑制碳基多原子离子的干扰,结合TQ氨气和氧气反应模式,在一次测定中可稳定切换各种测定模式,提高易用性和分析效率,可满足半导体行业超痕量ppt级的痕量金属杂质检测要求。 一键获取赛默飞半导体材料检测文集赛默飞为半导体材料开发了全面的痕量无机阴离子、阳离子和金属离子的检测方案,在晶圆表面清洗化学品、晶圆制程化学品、晶圆基材和靶材等各方面,全方位满足半导体生产对相关材料的质量要求,并开发了通过高分辨质谱Orbitrap技术对于材料未知物研发检测的需求,从完整制程出发提供全面可靠的分析技术,助力半导体材料国产化乘风破浪! 长按识别下方二维码即可下载《赛默飞半导体材料检测应用文集》,或点击阅读原文进入半导体解决方案专题页面获取更多解决方案!
  • OEKO-TEX(国际环保纺织协会)2012新标准公布
    OEKO-TEX® 国际环保纺织协会如往年一样,在年会上发布了最新的OEKO-TEX® Standard 100纺织品有害物质检验的测试标准和限量值要求,2012年1月1日开始生效,4月1日新要求开始执行。测试参数的重新评估是基于目前市场和产品的发展,新发现的有毒物质和新法规的要求,同时也考虑了REACH法规的要求,包括在2011年已加入REACH高度关注物质列表的与纺织生产相关的有害物质。   OEKO-TEX® 测试项目更新如下:   根据现行版本的REACH候选物质清单和目前达成的共识,湿法纺丝纤维和涂层将检测N-甲基吡咯烷酮和二甲基乙酰胺项目。两种化学物质被列入“溶剂残留物”的新项目下,限量值要求不超过重量比的0.1%。   另外,相关样品需检测四种新纳入的增塑剂:邻苯二甲酸二C6-8支链烷基酯,邻苯二甲酸二C7-11支链烷基酯,邻苯二甲酸二己酯,邻苯二甲酸二甲氧乙酯。这些将并入已有的邻苯二甲酸盐项目下。总的限量值要求将维持不变,为重量比的0.1%。   类似于OEKO-TEX® Standard 1000环境友好生产实地认证框架内对APEO的禁用要求,NP, NPEOs(1-9), OP, OPEOs(1-2)也将纳入OEKO-TEX® Standard 100的认证要求。   以下限量值适用于所有四个产品级别:   NP: 100 ppm   OP: 100 ppm   NPEO(1-9) s: 1000 ppm   OPEO(1-2) s: 1000 ppm   测试从新标准发布起即开始实施。为了给企业充足的时间调整规范生产,允许生产企业有一段过渡调整期,确切的生效日期为2013年4月1日。此项不适用于OEKO-TEX® Standard 1000认证企业,因其已符合所需标准。   针对产品级别为IV的皮革制品,可萃取的铬限量值要求为10 mg/kg。不同于根据目前市场上可获得的最佳技术取得的纺织品通常的铬限量值要求。此类皮革产品按要求使用不会对人体产生毒害。   Oeko-Tex® Standard 100的新要求及最新的申请表格可在网上下载获得。   除了新的测试参数,全球范围开展的OEKO-TEX® 获证产品的品质监控比例将扩大至全年获证产品的20%,目前最少的监控比例为15%。近年来,平均18%比例的获证产品从商店购回进行测试监控,费用全部由OEKO-TEX® 国际环保纺织协会承担。OEKO-TEX® Standard 100现接受特殊产品的认证,如帐篷、婴儿车、办公椅或背包。
  • 光催化N-杂螺环的多组分直接组装
    你能想象有*化学也能玩成“乐高积木”吗?2022年10月5日,2022年诺贝尔化学奖授予了三位科学家:Carolyn R. Bertozzi、K. Barry Sharpless和Morten Meldal,奖励他们在发展“点击化学”和“生物正交化学”中的贡献。 问:什么是点击化学?“点击化学(Click chemistry)”是指一类能够高效生成“碳原子-杂原子链”的化学反应。点击化学有以下优势:1.区域特异性和立体特异性;2.对溶剂参数不敏感;3.反应得率高、副反应少,且原料充分反应4.实验条件简单;5.大的热力学驱动力。与点击化学的优势类似,流动化学也具有高效混合、简便*的温度控制、收率高、减少副产物等优势。 图1:发表在JOC杂志上的文章“可见光驱动光催化促进的N-异质螺环的多组分直接组装”今天为大家介绍在2022年9月,Steven V.Ley教授在JOC上一篇题为《可见光驱动光催化促进n杂螺环的多组分直接组装》的文章,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。1、螺环化合物20世纪六十年代起,生物学家和药物学家逐渐发现,从自然界分离得到的具有生物活性的化合物中拥有螺环结构的化合物占有很大的比例。随着研究的深入,螺环化合物的性质使他在药物研发中占据非常重要的地位。螺环化合物是指两个单环共用一个碳原子的多环化合物;共用的碳原子称为螺原子。杂环螺环结构在一定程度上改变药物分子的水溶性、亲脂性、优势构象等,使优化后的药物分子更容易成药。不同的螺环具有丰富的三维立体结构,从而提供了改善药效的可能性和药物*的创新性;既可以突破现有药物的*,又能设计全新结构或者骨架的小分子化合物。 图2:螺旋内酯固醇 图3:灰黄霉素已上市药物中,也有很多含有螺环结构的小分子药物,比如利尿剂螺旋内酯固醇(Spironolactone)(如图2所示)和抗真菌药物灰黄霉素(Griseofulvin)(如图3所示)。N-异螺旋环是在天然产物和药物中发现的有趣的结构单元,但其合成的可靠方法相对较少。传统合成方式 图4:获取螺旋环吡咯烷的策略 图5:从N-烯丙磺酰胺和烯烃中构建β-螺旋吡咯啶现有的方法通常需要几个步骤,并使用昂贵的催化剂,如钌或铑,以获得所需的产品。在过去,靠传统的办法合成目标分子,往往需要绕很多弯路。步骤越多,意味着产率越低,浪费越大。2、更高效的合成方式使用Vapourtec UV-150光反应器放大合成N-异象螺旋循环 图6:使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物Steven V. Ley教授是世界*的有机化学家,剑桥化学系研究主任,皇家化学会RSC的前任会长,教授在有机合成方法学和全合成领域中的成就斐然。Ley教授在“可见光驱动光催化促进n杂螺环的多组分直接组装”一文中,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。在近年来发展的叠杂杂螺环的大多数制备方法中都需要多步步骤。然而,光催化的最新应用可以使合成步骤大大减少。作者利用光催化生成N-中心自由基,可构建多种β-螺环吡咯烷,包括药物衍生物。利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。光催化能够在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构。在开发的螺环吡咯烷的制备方法中,大多数都能够制备α-螺环吡咯烷,克服了制备α-三级胺的一些困难。简化合成路线的解决方案之一是采用无试剂化学方法。从光化学上讲,以氮为中心的自由基的产生相对简单,并被证明可以激活N-H和N-X键。通过在合成螺旋环化合物时使用这种方法,可以避免四元碳中心引起的立体问题,从而改善整体过程。使用VapourtecE系列进行流动反应和放大实验,该系列由三个蠕动泵和一个光反应器组成,BPR输出为8bar。使用的光源是Vapourtec 61W(辐射功率)365 nm(峰值强度)LED灯光,辐射带范围为350&minus 400nm。利用在线监测,大大的缩短了研究时间,提高研究效率。作者使用配有365nm高功率LED灯的E-photochem演示了一系列螺环吡啶的合成。在合成双叠氮杂螺环的过程中,该方法使用光化学反应器UV-150进行了放大,产量达到了100克/天。3、实验总结1、相比传统的的反应,该反应具有操作简便、条件温和、反应时间短等优势;2、利用在线监测,大大的缩短了研究时间,提高研究效率;3、在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构;4、利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。4、关于Vapourtec Vapourtec是一家专业设计和制造流动化学设备的公司。Vapourtec公司的连续流动化学系统质量可靠、性能成熟、高效能模块系统可随您的流动化学生产能力的扩大而拓展。反应器可进行组合,实现多步合成。无需使用任何工具数秒内即可完成反应器更换。UV-150反应器UV-150反应器消除了传统批次光化学的问题,可以充分发挥光化学的潜力。在连续流动操作下,它提供了安全、精确、高效、一致和可扩展的光化学。 图7:vapourtec UV-150光化学反应器● UV-150光化学反应器与Vapourtec R系列和E系列流化学系统兼容,操作简便;● Vapourtec提供3种不同的光源,提供220纳米至650纳米之间的精确波长;● 可以在-20°C到80°C之间设置反应温度。参考文献[1] Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven PhotocatalysisOliver M. Griffiths and Steven V. LeyThe Journal of Organic Chemistry 2022 87 (19), 13204-13223 DOI:10.1021/acs.joc.2c01684[2] Total Synthesis of Phytotoxic Radulanin A Facilitated by the Photochemical Ring Expansion of a 2,2-Dimethylchromene in FlowBruce Lockett-Walters, Simon Thuillier, Emmanuel Baudouin, and Bastien NayOrganic Letters 2022 24 (22), 4029-4033 DOI: 10.1021/acs.orglett.2c01462
  • 先进的分析检测手段,助力锂离子电池等新能源行业中NMP的质量控制
    目前新能源汽车发展大势不变,锂电池产业投资热度不减,N-甲基吡咯烷酮(NMP)产品,目前主要生产市场集中于制造锂离子电池、电动汽车动力电池及对位芳纶等领域,是锂电生产过程中不可或缺的有机溶剂其充足稳定的供应保障是中国锂电行业能够得以持续快速发展的重要条件之一。 NMP,属于氮杂环化合物,中文名称N-甲基吡咯烷酮,英文名称为N-methyl-2-pyrrolidone,化学式为C5H9NO,为稍有氨味的无色透明油状液体,与水以任何比例互溶,是一种性能优良的高沸点溶剂,几乎与所有溶剂(乙醇、乙醛、酮、芳香烃等)完全混合。NMP是锂电生产过程中不可或缺的有机溶剂,其质量直接影响锂离子电池拉浆涂布质量和对环境保护的要求。目前锂电池对有机溶剂的纯度,特别是水的含量要求非常高,其水的含量需要小于0.02%,甚至更低。目前国产NMP中水的含量普遍大于300ppm。而进口的NMP提纯后,其指标要求:色度要求小于10,纯度要求大于99.8%,水分含量要求不超过200ppm。对于NMP来料检验,NMP的质量控制就成为了锂电池产业的一项重要指标,先进的分析检测手段将助力NMP的质量控制。 一:化验室检验内容参考如下:(本标准适用于γ-丁内酯(以下简称GBL)和甲胺化合而制备的NMP的检验。)序号检验项目检 验 标 准检 验 方 法检测设备1包装a. 标识清楚,内容正确可识别;b. 外包装无破损、受潮、未有严重撞击痕迹;c. 外包装上需有环境有害物质方面的标识。目检/2外观溶剂无色透明、无杂质、沉淀。取适量实验室样品于比色管中,在自然光下目视观察比色管3溶解性粘结剂与溶剂混合搅拌后能完全溶解,无杂质、不溶物出现,颜色为无色或微黄透明。根据抽样水平每批随机抽取100g溶剂分别与10g PVDF粉末混合,于洁净、干燥的烧杯中搅拌,做溶解性实验 100-1500rpm磁力搅拌器EYELARCH-1000 4水分▲优等品≤200ppm合格品≤300ppmGB/T6283 (醛酮试剂)METTLERC30S/C10S/C20S库伦卡尔菲休水分仪5纯度▲优等品≥99.90% 合格品≥99.50%随机取样10ml溶剂用气质联用仪检测 GB/T 9722  化学试剂 气相色谱法通则 GC-MS7890B-5977B (7820A-5977B)DB-1701色谱柱HP-5MS 色谱柱或者GC7820A DB-225色谱柱6丁内酯≤0.03%7甲基NMPC-Me.NMP(wt%)≤0.058色度合格品≤20Hazen优等品≤10APHA随机取样10gNMP溶剂用色度仪检测(GB/T3143)LOVIBOND Pt-Co色度仪AF-327 目视EC-2000 pt-Co电子式9密度1.029-1.033g/mLGB/T 4472METTLER DA-100M/30PX台式/便携式密度计10折光率(N020)1.4680-1.4700GB/T6488 ATAGO DR-1T 阿贝折射计(20度)配外循环恒温水浴11PH值7.0-9.0使用纯水作为溶剂将NMP配成10%的溶液,测试溶液的PHMETTLER FE28/S210PH计12游离胺▲(wt%)优等品≤20ppm合格品≤30ppm使用微量滴定管,用HCl进行滴定(参考附件氨含量测试方法)GB/T9725MEYYLER G10S/ET18滴定仪10ml 滴定管 (备注:打▲的为重要指标。) 测量说明:A.对于水分测定,锂电池生产中涉及到的水份检测可以分为 2 类:1.) 正极材料,负极材料等固体样品的水分检测2.) 电解液、NMP溶剂等液体样品水份检测 第一类样品一般是固体样品,需要通过加热的方式将样品中的水份蒸发出来,通过载气(高纯氮气或干燥空气)将蒸发出的水份带至滴定杯内滴定 第二类样品一般是液体样品,比如电解液、NMP等可以直接将样品添加至KF 滴定杯内进行测定.C10S/C20S 对于NMP含量的测定,方法1: GB/T9722,可以采用GC方法进行测量;预算充足,定性定量分析方便,精度要求更高,采用GC-MS 进行分析测量。GC方法提要仪器AGILENT 7820A,整机灵敏度和稳定性优于GB/T9722中有关规定。在选定的色谱操作条件下,使样品气化后经色谱柱分离,用氢火焰离子化检测器(FID)检测,校正面积归一化法定量。 Agilent 7820A 推荐的色谱柱和色谱操作条件 毛细管色谱柱30m×0.32mm×0.5μm,(柱长×柱内径×液膜厚度)固定相25%氰乙基-25%苯基-50%甲基硅氧烷(DB-225)柱温初始100oC,保持1min;升温速度10oC/min,升温到160oC,保持10min气化室温度/ oC250检测器温度/ oC300载气(N2或He)流量/(mL/min)1.0 mL/min(N2)氢气流量/(mL/min)30空气流量/(mL/min)300尾吹气(N2)流量/(mL/min)35进样量/μL0.2分流比25:1 分析步骤 1.1校正因子的测定1.1.1标准溶液的配制 用称量法配制NMP加欲测杂质的标准溶液,各组分的称量精确至0.0001g,组分含量的质量分数计算精确至0.001%。所配制的标准溶液中杂质含量应与待测试样相近。1.1。.2 相对校正因子的测定根据仪器说明书,调节仪器至表2所示的操作条件,将未加欲测杂质的NMP和配制的标准溶液依次注入气相色谱仪,各平行测定4次,取4次测定的峰面积的算术平均值为测定结果。依据所得的峰面积及杂质组分含量,计算各组分的相对校正因子fi。试样中未知组分或得不到标准物质的组分的相对校正因子取值为1。1.1.3 相对校正因子的计算组分i相对N-甲基-2-吡咯烷酮的相对校正因子fi ,按公式(1)计算: ̷̷̷̷̷̷̷̷̷̷̷̷̷̷(1)式中:AB ——标准溶液中NMP的峰面积;Ai ——NMP未加入欲测杂质时组分i的峰面积;A‘i——标准溶液中组分i的峰面积;cB ——标准溶液中NMP的质量分数的数值;ci ——标准溶液中组分i的质量分数的数值。1.2 试样的测定 根据表2所示的仪器操作条件测定样品,采用校正面积归一化法定量。1.3 结果计算NMP的质量分数X1,数值以%表示,按公式(2)计算: X1 =(100 — X水) ̷̷̷̷̷̷̷̷̷(2)式中: X水——4.5测得NMP中水的质量分数的数值;——试样中NMP的色谱峰面积;fi ——组分i的相对校正因子;——组分i的色谱峰面积。 取两次平行测定结果的算术平均值为报告结果。两次平行测定结果的绝对差值不大于0.03%。 方法2:NMP 含量的测定,由于GC中FID 检测器的定性能力低于GC-MS, 为了定性定量分析方便,精度要求更高,采用GC-MS 进行分析测量。 锂电池行业业内的主流配置为目前最新的配置Agilent 7890B-5977B,配7693A 自动进样器(或者其同系列的型号),当然也可以选择中端的型号7820A-5977B. 仪器条件参考如下:色谱柱:HP-5MS(30m×0.32mm×0.25mm,Agilent);升温程序为:在60℃温度下保持5min,再以6℃/min的速率升至230℃,保持10min;进样口温度为210℃;流速为1mL/min;进样量为1μL;载气为氦气,纯度≥99.999%;质量扫描范围为35~350amu;离化方式为EI;离化电压为70eV。(备注: NMP 在12.135min 左右就出峰,为了保证较好的响应时间,面积及好的峰型,升温速率降低,同时缩短停留时间)。游离胺的测定1.1试剂异丙醇:分析纯。盐酸标准滴定溶液C(HCl)=0.02moL/L:应于临用前将[C(HCl)=0.1moL/L]的标准滴定溶液用煮沸并冷却的蒸馏水稀释,必要时应重新标定。 1.2 仪器METTLER G10S 电位滴定仪,DG-113 非水PH电极 1.3 测定方法称量NMP样品65g(精确至0.0001g)到250ml烧杯中。加入100ml异丙醇且混合均匀后,按照GB/T 9725《化学试剂 电位滴定法通则》中6 测定进行样品的测试。 1.4 结果计算:在电位滴定仪G10S上输入公式,一键滴定得到游离胺的含量。 样品中游离胺的质量分数X2,数值以%表示,按公式(3)计算: ×100̷̷̷̷̷̷̷̷̷̷̷(3)式中:V —— 滴定终点时,消耗盐酸(HCl)标准溶液体积,ml;C —— 盐酸(HCl)标准溶液的浓度,单位为升每摩尔(mol/l);0.0311—— 与1.00mL盐酸标准溶液[c(HCL)=1.000moL/L]相当的以克表示一甲胺的质量的数值,单位为克(g);m —— 称量试样的质量数,g。 METTLER G10S 其他的折光率,密度计,比色计,PH的测量相对比较简单,仪器附表上有推荐仪器的型号,相信广大用户及技术人员都不陌生。对于NMP的质量控制,目前有相关的标准及先进的检测手段,助力于锂电池行业的蓬勃发展。
  • ATAGO在线折光仪应用解决方案
    由光源发出的入射光线经过棱镜到达棱镜与待测液体的接触界面处,由于整束光内不同光线入射到界面的角度不同,因而产生折射,反射和全反射现象。以临界角为界,一部分光线折射进入待测液体,另一部分光线反射经过棱镜,到达CCD检测器。在高分辨率CCD形成暗区和亮区,当溶液的浓度发生变化时引起CCD上暗区和亮区的组成比率变化,CCD将检测到的光信号转变为电信号,通过线性化,实现对液体浓度变化的检测。 ATAGO(爱拓)在线折光仪实现过程检测监控,安装在生产线上可24小时连续实现监测,可测量液体或者半液体的糖度,浓度,可溶性固形物含量,大幅降低工人劳动强度,生产安全保证。在线折光仪应用解决方案,实时检测浓度变化,检测生产的每一个环节就能够立即发现次品而避免流入下一个生产环节,并且全自动检测消除人为误差的情况发生。 ATAGO(爱拓)在线折光仪主要应用行业:化工行业中尿素,清洁剂,乙二醇,双氧水,异丙醇浓度,表面活性剂,N-甲基吡咯烷酮 NMP;机械行业中润滑液,切削油,电瓶液,防冻液,清洗液;环保行业中废水处理,自动化处理系统,依据固形物含量定义废水或再循环用水,作为浓度变化提醒。在排水处理过程中,废液浓度管理不可或缺,在机械加工行业中,会产生废液排放,金属加工行业中通过测量废液的浓度,来防止高浓度的废液排放到自然环境之中。ATAGO(爱拓) 在线折光仪,废水在线折光仪采用实时自动化监测浓度变化; 在线折光仪一次安装后,可实时监测废液浓度变化,通过检测数据可以查明原因,及时避免废液流入下一个程序,为金属加工行业提供可靠的浓度管理。 欲构建在线折光仪浓度检测系统并且确定项目实施计划,请与ATAGO(爱拓)中国分公司联系。
  • 1+1>2,分布TF-SPME法同时分析啤酒风味物质
    酒的风味物质组成十分复杂,主要由如醇类、脂类、醛类、酮类等物质组成,这些物质的种类和数量直接决定了啤酒的风味特性。风味化合物除了有非极性的挥发性有机物VOCs和半挥发性有机物SVOCs以外,还有一部分是极性的挥发物质难以被萃取分析。那么,有没有一种技术可以同时萃取非极性和极性的风味化合物?TF-SPME薄膜固相微萃取技术可以帮到您。什么是TF-SPME薄膜固相微萃取技术?TF-SPME技术是一种具有高萃取相体积与高表面积的新型无溶剂萃取技术。TF-SPME的适用范围?(1) 痕量VOCs或SVOCs分析(2) 同时萃取低分子量极性和非极性分析物。TF-SPME薄膜有哪几种填料类型?(1) PDMS:非极性VOCs和SVOCs (2) PDMS/DVB:VOCs和SVOCs的一般分析 (3) PDMS/HLB:更广泛的极性和非极性化合物分析。#SPME固相微萃取技术图1:固相微萃取纤维SPME fiberSPME固相微萃取技术是基于分析物在样品基质与吸附剂之间的分配平衡,已被广泛应用于风味物质分析。然而,SPME fiber具有一定的局限性,小型化的设计限制了吸附剂涂层的表面积和体积,从而限制了萃取相的吸附容量和影响分析物的萃取速率。近年来,以传统Fiber为原型,把吸附相涂在碳网片上的固相微萃取新技术——薄膜固相微萃取技术(简称TF-SPME或Thin Film SPME),大大提高了吸附剂的萃取相体积和比表面积,从而增加吸附容量,通过热脱附设备热解析与GC-MS耦合,降低GC-MS的检测限。TF-SPME装置TF-SPME由加拿大皇家科学院院士Janusz Pawliszyn教授发明,用于分析超痕量的VOCs和SVOCs等挥发性有机物。具有以下特点:● 减少达到平衡所需的时间,萃取效率更高;● 增大吸附容量,提高灵敏度;● 适用于极性和非极性的挥发性有机物和半挥发性有机物;● 机械及化学稳定性好,可以在恶劣环境中现场采样;● 适用于所有标准尺寸的热脱附仪(3.5x1/4’’)。图2:TF-SPME使用方法这时候,一定有人要质疑了——为什么TF-SPME能同时萃取极性和非极性VOCs呢?想要同时萃取非极性和极性挥发性化合物,可以通过涂有PDMS/HLB的固相微萃取薄膜来实现,HLB颗粒是专为提取低分子量极性和非极性化合物而设计的。HLB颗粒是什么?HLB是Hydrophile Lipophilic Balance的缩写,HLB是一种亲水亲油平衡颗粒,近年来逐渐被作为吸附剂填料,专门为萃取低分子量极性和非极性化合物而设计。HLB亲水亲油平衡调料由特殊的共聚合技术制备而成,由二乙烯基苯结构和N-乙烯基吡咯烷酮骨架结构共聚合技术制备而成。由于二乙烯基苯中的芳香环结构保留非极性化合物,N-乙烯基吡咯烷酮的内酰胺环结构保留极性化合物,所以在HLB颗粒中该骨架结构在疏水性和亲水性相互作用之间提供了平衡。图3:左图为HLB亲油性基团;右图为HLB亲水性基团应用案例分步TF-SPME(Sequintal TF-SPME)分析啤酒样品中的极性和非极性化合物Pawliszyn教授团队近日提出,使用分步TF-SPME薄膜固相微萃取法分析啤酒中的极性和非极性化合物,在提高萃取能力的同时,可以有效消除复杂样品萃取过程中由于基质成分竞争效应而导致的的取代(displacement)和饱和(saturation)现象,提高了对复杂食品样本定量分析的灵敏度和准确性。萃取过程:将样品至于10/20ml顶空瓶中,400 rpm搅拌,并加热样品至40℃,把TF-SPME装置浸入/顶空萃取样品萃取。连续TF-SPME步骤如下:第一步:采用PDMS TF-SPME薄膜萃取食品基质中高浓度存在的非极性化合物和其他化合物;第二步:使用PDMS/HLB TF-SPME薄膜萃取第一步剩余的化合物,包括极性化合物;第三步:萃取结束时使用去离子水去除TF-SPME薄膜表面残留物质,把第一步和第二步的TF-SPME薄膜放入同一个空热脱附管中进行热解析。最终结论使用顺序TF-SPME分析啤酒中的糠醛(LogP=0.34)、甲缩醛(LogP=0.34)、芳樟醇(LogP=2.823)、苯乙醇(LogP=1.36)、己酸乙酯(LogP=2.823)、大马士酮(LogP=4.042)、香兰素(LogP=1.21)、α-葎草烯(LogP=6.53)和苯乙烯(LogP=2.95)等物质。图4:分析化合物的结构和logP值PDMS涂层的TF-SPME薄膜对非极性分析物表现出良好的选择性和萃取性能,但对于低LogP的糠醛、甲缩醛、苯乙醇、香兰素等极性分析物几乎没有萃取效果,所以需要叠加使用PDMS/HLB涂层的TF-SPME薄膜对其极性化合物进行萃取。下图表示,使用分步TF-SPME薄膜固相微萃取(红色)提取的极性化合物(包括糠醛、苯乙醇和香草醛)的量明显高于单独使用 HLB/PDMS TF-SPME (蓝色)萃取的量,达到了1+1>2的效果!图5添加了所有分析物(50ppb)和葎草烯(15ppb)的10ml标准混合物中萃取;蓝色:仅使用一个PDMS/HLB TF-SPME薄膜萃取,红色:使用PDMS TF-SPME薄膜&PDMS/HLB TF-SPME 薄膜顺序萃取TF-SPME产品订购信息货号描述规格200211-002-04TF手动包:4×TF with PDMS,2cm,4×TF顶空瓶配件20*4.85*0.04mm200211-004-04TF手动包:4×TF with PDMS,4cm,4×TF顶空瓶配件40*4.85*0.04mm200213-102-04TF手动包:4×TF with PDMS/HLB(1μm)2cm,4×TF顶空瓶配件20*4.85*0.04mm200213-104-04TF手动包:4×TF with PDMS/HLB(1μm)4cm,4×TF顶空瓶配件 40*4.85*0.04mm参考文献[1] Jonathan J. Grandy, Varoon Singh, Maryam Lashgari, Mario Gauthier, and Janusz Pawliszyn. Development of a Hydrophilic Lipophilic Balanced Thin Film Solid Phase Microextraction Device for Balanced Determination of Volatile Organic Compounds. Doi:10.1021/acs.analchem.8b04544[2]Martyna N. Wieczorek , Wei Zhou , Janusz Pawliszyn.Sequential thin film-solid phase microextraction as a new strategy for addressing displacement and saturation effects in food analysis. Doi:https://doi.org/10.1016/j.foodchem.2022.133038
  • 出口欧盟食品接触塑料材料及制品需高度关注新法规
    2011年12月10日,欧盟官方公报公布了(EU) No 1282/2011号法规,修订了关于食品接触塑料材料及制品的(EU)No 10/2011号法规。新法规指出,对于2012年1月之前符合现有法规获准上市销售的塑料材料及制品而言,如果不符合该项最新法规规定,仍可在2013年1月1日之前上市销售,相关库存产品可以售完为止。该法规自其在欧盟官方公报公布20天后生效。2012年1月25日,欧盟食品安全局(EFSA)又发表了食品接触塑料制品的新法规的细节说明,即塑料实施措施,对法规进行了进一步的补充说明。   须引起高度关注的是在新法规中,三聚氰胺的特定迁移限量(Specific migration limit, SML)由原来的30mg/kg减少到2.5mg/kg。此外,根据EFSA的意见,2,4-双(2,4-二甲基苯基)- 6-(2-羟基-4-正辛氧基苯基)- 1,3,5-三嗪的SML由0.05mg/kg修订为5mg/kg N-甲基吡咯烷酮的SML设定为60 mg/kg。此外,法规还修改了部分欧盟清单中已授权物质的限制和规范。   食品接触类塑料制品是宁波地区重要的出口消费产品。据统计,2011年宁波地区检验检疫出口食品用包装容器、食品用具已突破2.2万批,货值突破3.96亿美元,其中塑料制品占有相当大的比重,欧盟地区为重要的出口市场。近年来,欧盟相继出台了一系列法规条例,不断提高进口食品接触材料的门槛,面对日趋严厉的贸易壁垒和管控要求,国内相关产品生产企业应当引起高度关注,在产品检测和原辅材料把关上投入更多的精力和成本。   鉴于此,检验检疫部门提醒相关食品接触塑料制品生产企业:一是要及时了解和掌握新法规的相关条款要求,对欧盟法规的限定项目和限量保持高度敏感,提高风险意识,避免由此带来的损失 二是要规范管理,建立可靠的原辅料供应渠道,尤其是以三聚氰胺-甲醛树脂(密胺塑料)为原辅料的生产企业,应高度重视新法规中对三聚氰胺可迁移限量从严要求的限制,警惕由此带来的质量安全问题 三是要加强与检验检疫部门的联系,密切关注政府部门发布的预警信息,提早防范,不断提高自身产品的品质,提升“中国制造”的品牌形象。
  • 通过微波增强的多肽固相合成自动合成首尾相连的环肽
    摘要使用 Liberty Blue&trade 和 Liberty PRIME&trade 多肽合成仪可以快速、高纯度进行头尾环化肽的全自动合成。微波增强的多肽固相合成(SPPS)不仅有利于线性组装,而且有利于随后的环化步骤,在各种困难的生物学重要肽上实现了极高的纯度合成。Liberty PRIME 上使用的一锅法 Fmoc SPPS 循环进一步改善合成时间、减少浪费。表1 :全自动合成首尾相连的环化肽表2:Liberty Blue 和 Liberty PRIME 合成 Cyclorasin A1引言环肽能够桥接小分子和抗体之间的化学空间间隙,允许设计具有高结合亲和力、显着选择性、低毒性和进入细胞内靶点的能力的分子2。因此,大环肽作为靶向传统上无法成药的生物靶点的治疗剂具有相当大的前景3。截至 2017 年,超过 40 种环肽用于临床4。环肽作为候选药物开发的这一令人鼓舞的趋势,为发展更稳健的制备方法提供了动力。SPPS 可以通过使用 Fmoc-Glu-ODmab 作为 C 端氨基酸 (图 1) 制备首尾相连环化肽。在合成线性肽骨架后,可以使用稀肼溶液选择性地去保护 Dmab 基团。之后,可以使用微波增强偶联实现首尾环化。将微波能量应用于首尾环化肽的合成可以实现更有效的偶联,从而加快合成时间和提高纯度 (CarboMAX&trade )5。 图 1:Fmoc-Glu-ODmab ( 左 ) Fmoc-Glu(Wang resin LL)- ODmab (右)材料与方法试剂以下含有指定的侧链保护基团 Fmoc 氨基酸购自 CEM Corporation (Matthews, NC) 并:Ala、Arg (Pbf)、Gly、His (Boc)、Ile、Leu、Lys (Boc)、Thr (tBu) )、Trp (Boc)、Tyr (tBu) 和 Val。Rink Amide ProTideTM LL 树脂也购自 CEM Corporation。Fmoc-Glu-ODmab、Fmoc-Glu(Wang)-ODmab LL 树脂、FmocD-Ala- OH 和 Fmoc-4-氟-L-苯丙氨酸购自 EMD Millipore (Burlington, MA)。Fmoc-D-2-Nal-OH、FmocD-Nle-OH 和 Fmoc-N-甲基-L-苯丙 氨酸购自 Bachem (T orrance, CA)。Fmoc-N-甲基-异亮氨酸-OH 购自 Advanced ChemTech (Louisville, KY)。FmocN-甲基-亮氨酸-OH 购自 Alfa Aesar (Haverhill, MA)。水合肼、N,N-二异丙基乙胺(DIEA)、Fmoc-N-甲基-甘氨酸-OH、N,N' -二异丙基碳二亚胺 (DIC)、哌啶、吡咯烷、三氟乙酸 (TFA)、3,6-dioxa-1、 8 辛二硫醇(DODT) 和三异丙基硅烷 (TIS) 购自 Sigma-Aldrich (St. Louis, MO)。N,N-二甲基甲酰胺 (DMF)、无水乙醚 (Et2O) 和乙酸购自 VWR (Radnor, PA)。LC-MS 级水 (H2O) 和 LC-MS 级乙腈 (MeCN) 购自 Fisher Scientific (Hampton, NH) 。多肽合成:CEM 7-mer, cyclo-[GVYLHIE] 使用 CEM Liberty Blue 自动微波多肽合成仪,在 Fmoc- Glu(Wang)- ODmab 树脂(离子交换容量:0.025 meq/g)上,以 0.10 mmol 的规模合成(Dmab 脱保护以0.05 mmol 规模进行,首尾环化以 0.025 mmol的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍量的Fmoc氨基酸,DIC和Oxyma Pure(CarboMAX)5 中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后无水乙醚沉淀肽并过夜冻干。图2:CEM 7-mer多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q] (Liberty Blue)使 用 CEM Liberty Blue 自 动 微 波 多 肽 合 成 仪 , 在 Rink Amide ProTide LL 树脂(离子交换容量:0.19 meq/g )上,以 0.05 mmol 的规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍Fmoc氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并过夜冻干。多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q](Liberty PRIME)使用 CEM Liberty PRIME 自动微波多肽合成仪,在 Rink Amide ProTide LL 树脂(离子交换容量:0.19 meq/g)上,以 0.05 mmol 规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/ DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图3:Cyclorasin A多肽合成:N-MethylCyclorasinAnalog, cyclo-[WTaR-NMeGly- NMePhe-nal-NMeGly-Fpa-nle-E]使用 CEM Liberty PRIME 自动微波肽合成仪在 Fmoc-Glu (Wang ) -ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.05 mmol 的 规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在CEM RazorTM高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽 并冻干过夜。图4:N-Methyl Cyclorain Analog多肽合成:Poly N-Methyl Peptide, cyclo-[KA-NMeIle-NMeGly-NMeLeu-A-NMeGly-NMeGly-E]使 用 CEM Liberty PRIME 自 动 微 波 肽 合 成 仪 在 Fmoc-Glu (Wang )-ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.1 mmol 的规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护 。偶 联 反 应 在 5 倍 Fmoc 氨 基 酸 、 DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图5: Poly N-Methyl Peptide多肽分析在配备有 PDA 检测器的 Waters Acquity UPLC 系统上分析肽, 该 检 测 器 配 备 Acquity UPLC BEH C8 柱 (1.7 mm 和 2.1 x 100 mm)。UPLC 系统连接到 Waters 3100 Single Quad MS 用于结构测定。在 Waters MassLynx 软件上进行峰分析。使用 (i) H2O 和 (ii) MeCN 中的 0.05% TFA 梯度洗脱进行分离。 结果在 Liberty Blue 自动微波肽合成仪上 CEM 7-mer 的微波增强固相合成产生了纯度为 78% 的目标肽(图 6)。图6:CEM 7-mer 的UPLC色谱图在 LibertyBlue 自动微波肽合成仪上的 Cyclorasin A的微波增强。图7:Cyclorasin A (Liberty Blue)的UPLC的色谱图Liberty PRIME 自动微波肽合成仪上的 Cyclorasin A 微波增强。图8:Cyclorasin A (Liberty PRIME)的UPLC色谱图Liberty PRIME 自动微波肽合成仪上的 Poly N-Methyl Peptide。图9:多聚N-甲基Peptide 的UPLC色谱图Liberty PRIME 自 动 微 波 肽 合 成 仪 上 的 N-Methyl Cyclorasin Analog 的微波增强固相合成产生了纯度为 66% 的目标肽(图10)。图10:N-甲基 CyclorasinAnalog的UPLC色谱图 结论使用自动微波增 SPPS 可以快速有效地合成首尾环肽。此外,易于使用的 Liberty Blue 和 Liberty PRIME 软件允许对肽序列进行快速直接的编程。使用 Liberty Blue 肽合成仪在 2 小时 13 分钟内合成了纯度为 78% 的 7 聚体环肽。在 Liberty Blue 上在 3 小时 1 分钟内以高纯度 (75%) 合成了 Cyclorasin A 环肽。在 Liberty PRIME 上仅用了 2 小时就合成了相同的肽,纯度很高 (75%),浪费大约 100 mL。在 Liberty PRIME 上,微波增强的 SPPS 可在 2 小时 5 分钟内以 66% 的纯度合成了具有综合挑战性的 N-methyl cyclorasin analog 环肽。最后,在 Liberty PRIME 上以 73% 的纯度在 2 小时 12 分钟内制备出多聚 N-甲 基化 11 聚体肽。 参考文献[1] Upadhyaya, P. Qian, Z. Selner, N. G. Clippinger, S. R. Wu, Z. Briesewitz, R. Pei, D. Angew. Chem. Int. Ed. Engl. 2015, 54 (26), 7602&ndash 7606. [2] White, A. M. Craik, D. J. Expert Opin. Drug Discov. 2016, 11 (12), 1151&ndash 1163.[3] Hurtley, S. M. Science. 2018, 361 (6407), 1084.4-1085. (4) Zorzi, A. Deyle, K. Heinis, C. Curr. Opin. Chem. Biol. 2017, 38, 24&ndash 29. (5) CEM Application Note (AP0124) - &ldquo CarboMAX - Enhanced Peptide Coupling at Elevated Temperature.&rdquo
  • 毛细管电泳(CE)真的“没落”了吗?
    毛细管电泳技术(Capillary Electrophoresis, CE)又称高效毛细管电泳(HPCE)或毛细管分离法(CESM),是一类以毛细管为分离通道、以高压直流电场为驱动力的新型液相分离技术。是80年代初发展起来的一种新型分离分析技术,它是电泳技术与层析技术相结合的产物,现在所说的毛细管电泳技术(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离;1984年Terabe等发展了毛细管胶束电动色谱(MECC);1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行,建立了毛细管等电聚焦(CIEF);同年,Cohen发表了毛细管凝胶电泳(CGF)的工作;1988&mdash 1989年出现了第一批CE商品仪器。   但是目前很多人认为,在众多的仪器中,CE好像不是那么的热门,甚至一些从事过CE研究的人员也认为该方法前途暗淡。   行内流行说法之一:CE近年越来越难发文章,人们的研究热情正在走下坡路。   行内流行说法之二:由于企业和检测机构用的少,学这个就业困难。不如HPLC、GC等有前途。   日前一名网友在仪器信息网论坛发帖称,鉴于以上的这些消极情绪,导致一些刚入门的新手们,无论他们起初是怀着多大的热情,随着时间的推移他们总会或多或少难以避免的被这些消极情绪所影响,人云亦云,失去钻研的热情。   毛细管电泳(CE)真的&ldquo 没落&rdquo 了吗?   以一个科研工作者的身份该,网友谈到,&ldquo CE方法已经被各种标准(包括中国药典、国标,甚至是欧洲标准)所收录,说明一直有企业或检测机构在应用该方法。而事实也正是如此,我自己所知道的就有好几家检测机构和企业配备有CE仪器。&rdquo   据小编了解,2010年版中国药典对盐酸头孢吡肟中N-甲基吡咯烷的检查,USP对盐酸罗哌卡因的对映体纯度检查,均采用毛细管电泳法测定。   另外,该网友谈到,任何仪器都只不过是一种方法媒介,如果你&ldquo 矢志不渝&rdquo 的认为CE没前途,那么你有没有对你的课题有一个整体的认识呢?又或者,你有没可能通过这个课题对这个领域有一个系统的认识?举个例子,比如你的课题是有关CE在某种中药检测中的应用。那么你在毕业前应该要掌握以下几点:该药物的使用历史、功效、研究现状、特征组份等;涉及该药物的检测方法;该药物的功效和对应功效的活性成分;如何进行质量控制等。该网友说,如果你具备了这些知识,面试的时候就不会只是一脸无辜的说,&ldquo 我做CE出身的&rdquo 。   十八般兵器样样精通那是不可能的。其实退一步说,就算相对于LC、GC来说CE有点偏门,但学校学的是&ldquo 渔&rdquo 的手段,也就是分析问题,解决问题的能力,一法通万法通。所以,困心横虑中的从事CE研究的同学们,是不是不那么煎熬啦?   其实,每一种好的仪器,研究和应用都需要大家的推动,如果我们放弃了,这种仪器的未来也就被放弃了。所以,从事CE研究的人们,或许你们今天的研究就能够推动CE的发展,加油!   对于&ldquo 行内流行说法之一&rdquo ,该网友会在7月份开新帖,以数据说话,大家敬请期待!   原帖:写给从事CE研究的研究生们--我们为何不屈不挠的浸泡在哀伤里?
  • ECHA拟向CoRAP清单增加63个物质
    2012年10月23日,ECHA就2013年到2015年的待评估物质发布了欧盟社区滚动计划(CoRAP)物质清单草案,清单中包含116个物质。   相比较今年2月发布的首批CoRAP清单,此次发布的清单草案增加了63个物质,其中有27个物质属于2013年要评估的48个物质的范畴。相应于评估物质数的增加,一些新的欧盟成员国也参与了物质评估工作。   首批CoRAP清单中一些原定于2013年评估的物质因为卷宗符合性评估仍在进行、注册人需要进一步提供信息等技术原因无法赶上时间表,物质评估时间被推迟了一年。此外,首批清单中原定于2014年评估的物质N-乙基-2-吡咯烷酮由于其分类错误,而ECHA的风险评估委员会(RAC)正在研究该物质的合适分类ce="Calibri"CoRAP清单中被去除了。   物质评估的目的是为了评估优先列入CoRAP清单中的物质是否对人体健康和环境存在危害,从而促进对物质的安全管理,而CoRAP物质的选择主要依据物质的性质尤其是物质的持久性、生物累积性和毒性(PBT)、内分泌干扰性、致癌性、致突变性和生殖毒性(CMR)等,并结合考虑物质的流通和用途情况。   目前,该CoRAP清单草案已被提交给欧盟成员国执法当局和ECHA成员国委员会(MSC),MSC将在2013年2月对CoRAP清单草案给出意见,而ECHA将基于MSC的意见在2013年3月发布2013年至2015年待评估物质的CoRAP清单终稿。   ECHA表示现在发布草案是希望让利益相关方及时了解物质评估的进展,并促进物质的注册人和对应的成员国尽早的沟通交流。CoRAP清单草案没有公众咨询阶段。
  • 会议回顾 | 无人机与薄膜固相微萃取联用你见过吗
    环境问题一直是全球关注的重要课题,为加强我国在环境分析化学方面的学术交流,互相借鉴、共同分享环境分析方面的学术成果和经验技术,推动环境保护事业进步和环境分析化学学科发展,“第三届全国环境分析化学研讨会暨第九届固相微萃取技术(中国)研讨会”于2021年10月17-20日在贵阳圆满落幕。 会议主要集中在交流我国环境分析领域的研究进展,讨论环境分析领域的国际研究前沿与发展趋势,为我国环境分析领域的发展建言献策等方面。近年来,随着新原理、新技术、新方法、新设备、新材料的应用,环境分析化学取得快速的发展,使环境污染物质分析水平走向更加微观、快速、准确。尤其是固相微萃取技术(SPME),集采样、萃取、浓缩和净化于一体,已经应用于多个环境污染物检测的标准方法中。 此次研讨会,德祥展出了薄膜固相微萃取技术,简称TF-SPME或Thin Film SPME,,把吸附相涂在碳网片上的固相微萃取新技术。 该技术由加拿大皇家科学院院士Janusz Pawliszyn教授发明,用于分析超痕量的VOSs和SVOCs等挥发性有机物。解决了传统方法中因吸收速率和吸收能力受限、样品基质干扰严重、对于一些极性较强的痕量挥发性成分富集效果不好等问题。 德祥展台吸引了诸多客户上前问询 INNOTEG(英诺德) Thin Film SPME 技术特点 01适用于更宽极性和非极性范围的化合物,使得TF-SPME变得更有优势01相表面积和体积增加,TF-SPME比常规的SPME更为灵敏,可提高分析物的回收率01萃取涂层厚度不变,萃取时间和解析时间同样迅速01无溶剂萃取,可实现恶劣环境下的现场采样,绿色环保01三种吸附剂:PDMS、PDMS/DVB和PDMS/HLB 应用案例 近年来,Jonathan J. Grandy等学者使用无人机与TF-SPME联用,检测河道中的污染物。(https://dx.doi.org/10.1021/acs.analchem.0c01490) 01使用HLB / PDMS TF-SPME薄膜安装到无人机采样器上,从消毒热水池中使用无人机静置采样10min(温度38°C,pH为7.2,游离氯含量为5 ppm,总碱度为180),使用实验室的热脱附设备进行解析,检测到消毒副产物:包括三氯甲烷、二氯乙腈、1,1,1-三氯-2-丙酮、2,2,2-三氯乙醇、苯甲腈和苄腈等; 02为了实现可以现场采样,随后在高速公路旁的河道进行无目标物分析,使用无人机静置采样10min后,采用SPS-3高容量解析模块把TF-SPME薄膜萃取的化合物转移到Needle Trap动态捕集针上,随后使用便携式气质分析。检测到苯乙烯、异丙苯、丙苯和1,3,5-三甲苯、苯、2-戊酮、1-硝基丙烷、吡啶、辛烷、十二烷、十六烷等一些列苯系物。 综上所述, HLB/PDMS是一种疏水亲脂平衡的颗粒用作碳网载体上的涂层。HLB / PDMS的优势在于它是一种聚二乙烯基苯-coN-乙烯基-吡咯烷酮骨架结构,可提供疏水和亲水分子间相互作用的平衡,因此极性范围宽,非常适用于环境中的无目标分析。 德祥自主品牌INNOTEG(英诺德)与薄膜固相微萃取的生产商和*持有者JP Scientific Ltd签订合作生产协议,成为全球指定合作品牌。
  • 近物所等建立牛奶添加剂检测HPLC新方法
    中国科学院近代物理研究所和中国农业科学院兰州畜牧与兽药研究所的科研人员联合甘肃凯悦奶牛场、黑龙江汇丰兽药有限公司进行攻关,通过对牛奶中各种化合物物理及化学性质的研究,应用高效液相色谱法(HPLC),建立了一种检测牛奶添加剂的新方法。该方法具有分离能力好、灵敏度高、分析速度快、操作方便等优点。 掺假蛋白质问题,直到最近几年的食品安全事件才引起关注。所有含氮的物质都可能被用于掺假。假蛋白氮(NPN)的形式具有多样性,如:三聚氰胺及其类似物、尿素、硝酸铵等廉价高氮物质,还包括一些体内其它含氮物质,如核酸、尿酸、肌酐等。任何一种假蛋白氮物质的加入都会引起食品中蛋白值的虚高。 除假蛋白以外,牛奶中常见的添加剂是聚乙烯吡咯烷酮,其具有吸湿性和很强的膨胀性能,无臭或微臭,在医药上广泛用于片剂崩解剂,还可用作啤酒、果酒、饮料酒的稳定剂。该化合物添加在牛奶中主要作用是提高蛋白质的稳定性,使其不易变质。 检测牛奶添加剂新方法是在实施国家跨越计划——新型安全兽药的产业化及示范项目的基础上建立的。该项目主要针对当前我国面临的食品安全的迫切需要,通过熟化组装新型天然饲料添加剂“葛根素”,研制出免疫增强饲料和奶牛绿色催乳饲料,并在示范单位进行工业化生产和实验示范,在建立畜产品兽药残留检测与评价方法的基础上,按照绿色食品标准,对示范单位生产的无抗畜产品进行药物残留的检测与评价,实现了生态奶、蛋、肉制品的生产。今年这一成果已获得兰州市科技进步一等奖,正在申报甘肃省科技进步奖。
  • 中科院拉曼技术助力针灸机理探究 AC发文论可插入式SERS传感器
    p   近日,中国科学院合肥智能机械研究所杨良保研究员等人基于针灸针构筑了一种“可插入式”表面增强拉曼光谱(SERS)传感器,实现了多相体系的原位检测,该传感器有望用于针灸机理的研究。相关成果发表在美国化学会《分析化学》(Analytical Chemistry)杂志上。 /p p   传统针灸学源远流长,是我国医学科学的特色和优势,并对世界医学发展产生了积极的影响。然而,针灸并没有给出明确的现代科学依据,针灸作用机理不明确,这很大程度上限制着针灸的发展和推广,也是针灸在国内外并没有受到广泛认可和接纳的最主要原因。 /p p   近年来,SERS技术由于可以进行无损、高灵敏的指纹识别检测而一直备受关注,已经广泛应用于各大基础研究领域。杨良保团队一直在思考,能否利用SERS技术研究传统针灸机理。 /p p   受到传统针灸银针的启发,研究人员将PVP(聚乙烯吡咯烷酮)包裹的金纳米颗粒修饰在针灸银针表面,构筑了一种“可插入式”的SERS传感器。作为黏结剂,PVP可以直接将金纳米颗粒修饰在银针上面,而且由于金纳米颗粒表面PVP空间位阻的存在,银针表面的金纳米颗粒更倾向于密集排布,有助于形成更多的 “热点”,以提高“可插入式”SERS传感器的灵敏性。 /p p   杨良保告诉《中国科学报》记者:“和传统的SERS传感器相比,‘可插入式’SERS传感器更容易达到样品内部,通过针体表面不同位置的取点检测,可以获得样品不同深度的信息。” /p p   研究人员将“可插入式”SERS传感器置于水—油双相体系中,分别从水相和油相中取点检测,可以获得不同相中的分子信息。杨良保说:“这种‘可插入式’SERS传感器有望用于生物活体样本,特别是对于传统针灸机理的研究。” /p
  • 中国水产科学研究院推出MOFs仿生材料新成果
    酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物不仅可通过生活饮用水直接进入人体,也可经水体及水体微生物转移到水产品中,在水产品中富集,并通过食物链对人体造成潜在的危害,被人体吸收后的酚类化合物,通过体内解毒功能,可使其大部分丧失毒性,并随尿排出体外,若进入人体内的量超过正常人体解毒功能时,超出部分可以蓄积在体内各脏器组织内,造成慢性中毒,出现不同程度的头昏、头痛、皮疹、精神不安及各种神经系统症状和食欲不振、吞咽困难、流涎、呕吐和腹泻等慢性消化道症状。当水中酚类化合物 0.1—0.2mg/L,鱼肉有异味;大于5mg/L时,鱼中毒死亡,因此水产品中酚类化合物的快速检测技术研究意义重大。近日,中国水产科学研究院研究团队在Sensors and Actuators B: Chemical杂志在线发表了题目为“Synthesis of Yolk/Shell Heterostructures MOF@MOF as Biomimetic Sensing Platform for Catechol Detection”的研究论文,研究团队可控合成异质核壳结构的金属有机骨架材料(MOFs),此MOFs仿生材料不但实现了天然酶选择性催化酚类化合物的功能而且克服了天然酶易变性的缺点,在快速检测、工业催化和生物技术领域应用前景广阔。在仿生材料的合成过程中,首先用聚乙烯吡咯烷酮(PVP)作为结构导向剂包覆多孔配位网络(PCN-222)核,然后对沸石型咪唑框架(ZIF-8)进行改性,提出了构建明确和分级的卵黄/壳PCN-222@ZIF-8杂化催化剂的策略。基于PCN -222@ ZIF -8的卵黄/壳传感器对邻苯二酚有高选择性,但对多巴胺或左旋多巴无选择性。基于PCN-222@ZIF-8混合材料的传感器显示出比基于PCN -222的传感器高10倍的灵敏度,检测限(LOD)为33 nmol L-1。这项工作为MOF@MOF仿生传感器的构建和其他应用开辟了新的途径。仿生MOF@MOF材料制备原理图透射电镜监控仿生MOF@MOF材料合成过程Sensors and Actuators B: Chemical是分析化学领域的顶级学术期刊,影响因子达7.1。据了解,改论文的通讯作者为质标中心吴立冬副研究员,硕士研究生曹强和肖雨诗为论文的共同第一作者。此项工作还得到了中央级公益性科研院所基本科研业务费专项资金项目(2020GH09)和(2020TD75)的支持。
  • 1.1类乳腺癌新药吡咯替尼获批,凭借2期研究获SDA优先审批上市
    p   今日,业内传来重磅新药上市消息,江苏恒瑞医药宣布,其自主研发的1.1类新药吡咯替尼(商品名:艾瑞妮& reg )凭借2期临床研究获国家药品监督管理局(下称“SDA”)优先审批上市,目前状态为审批完成,待制证。吡咯替尼是一种泛-ErbB受体酪氨酸激酶抑制剂,用于人表皮生长因子受体 2(HER2)阳性晚期乳腺癌的靶向治疗。值得注意的是,该药物凭借1期研究结果登上全球顶级期刊《JCO》,又凭借2期临床获得SDA的优先审评上市,回顾整个过程可谓是中国自主研发创新药物优先审批的典范之一。 /p p style=" text-align: center " img width=" 276" height=" 184" title=" 2018.8.14 2-1.jpg" style=" width: 329px height: 152px " src=" http://img1.17img.cn/17img/images/201808/insimg/e6cc6de8-0bf7-44f9-a99f-9a447161c25c.jpg" / /p p   吡咯替尼是获得国家“重大新药创制科技重大专项”资助,作为泛-ErbB受体酪氨酸激酶抑制剂,可同时靶向作用于人表皮生长因子受体2(HER2)、表皮生长因子受体(EGFR)和人表皮生长因子受体4(HER4),其疗效显著优于多个小分子抗HER2药物。 /p p   · 2017年5月,《JCO》杂志首次全文发表了吡咯替尼的1期研究结果,中国自主研发抗肿瘤药物仅凭1期研究就登上全球知名期刊十分难得。 /p p   · 2017年8月,吡咯替尼凭借2期研究结果中极为出色的疗效被国家食品药品监督管理局药品审评中心(下称:CDE)列为优先审评创新药物。同年12月,2期临床研究结果在美国圣安东尼奥乳腺癌大会上报道,并被列入2017年乳腺癌重大事件年度回顾。 /p p   · 2018年8月, SDA正式批准吡咯替尼用于HER2阳性晚期乳腺癌治疗。吡咯替尼凭借2期临床研究的结果即获得优先审批,且从递交临床数据报告及上市申请到正式获得上市批准仅历时10个月。 /p p   吡咯替尼是一款不可逆的泛-ErbB受体酪氨酸激酶抑制剂,靶点包括HER2、EGFR和HER4。吡咯替尼与EGFR、HER2和HER4的胞内激酶区ATP结合位点共价结合,阻止同/异源二聚体形成,不可逆的抑制自身磷酸化,阻断下游信号通路的激活,抑制肿瘤细胞生长。 /p p   据了解,吡咯替尼单药治疗晚期乳腺癌1b期临床研究旨在确定最大耐受剂量,评估药代动力学和初步疗效。研究结果显示出其极为出色的抗肿瘤疗效及较好的安全性。值得一提的是,1b期研究结果全文发表在全球顶级期刊《JCO》,中国自主研发抗肿瘤药物仅仅凭借I期研究就登上全球知名期刊十分难得。同期,另一肿瘤领域顶级期刊《Lancet Oncology》杂志也对吡咯替尼的1b期研究发表点评,对该新药出色疗效和较好的安全性做出了高度评价。 /p p   基于1b期研究的疗效和安全性,恒瑞迅速开展了2期临床研究,评估吡咯替尼联合卡培他滨方案对比拉帕替尼联合卡培他滨方案治疗HER2阳性转移性乳腺癌的有效性和安全性。研究结果表明,其临床获益,且较现有治疗手段具有明显优势,这一结果首次在2017年美国圣安东尼奥乳腺癌大会上报告。 /p p   由于研究结果与现有治疗相比存在重大突破,吡咯替尼仅凭2期临床研究结果即被CDE列入优先审评。由于其临床获益且较现有治疗手段具有明显优势,符合国家对临床急需药品(指对用于治疗严重危及生命且尚无有效治疗手段的疾病的创新药)有条件批准上市的相关要求。 /p p style=" text-align: center " img width=" 600" height=" 416" title=" 2018.8.14 2-2.jpg" style=" width: 445px height: 238px " src=" http://img1.17img.cn/17img/images/201808/insimg/074fb1a4-8553-4941-950d-0fd1e9f386aa.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  恒瑞吡咯替尼获批状态 /span /p p   2018年8月,吡咯替尼已经进入审批完毕,待制证状态。这是自1998年抗HER2治疗开始以来,中国首个自主研发的抗HER2靶向药物。 /p p & nbsp /p
  • REACH高度关注物质(SVHC)最新候选清单
    2011 年6 月20 日,欧洲化学品管理局(ECHA)将七种致癌和/或对生殖系统有害的化学物质新增到高度关注物质(SVHC)候选清单中。经过四次修订,现有效SVHC 候选物质清单已达53 项。 序号 物质名称 EC CAS 可能用途 1 氯化钴 231-589-4 7646-79-9 干燥剂、例如硅胶 2 重铬酸钠二水合物 234-190-3 7789-12-0 金属表面精整、皮革制作、纺织品染色、木材防腐剂 3 五氧化砷 215-116-9 1303-28-2 杀菌剂、除草剂 4 三氧化二砷 215-481-4 1327-53-3 除草剂、杀虫剂 5 酸式砷酸铅 232-064-2 7784-40-9 杀虫剂 6 三乙基砷酸酯 427-700-2 15606-95-8 木材防腐剂 7 邻苯二甲酸二丁基酯(DBP) 201-557-4 84-74-2 增塑剂、粘合剂和印刷油墨的添加剂 8 邻苯二甲酸二(2-乙基己) 204-211-0 117-81-7 PVC 增塑剂、液压液体和电容器里的绝缘体 酯(DEHP) 9 邻苯二甲酸丁苄酯(BBP) 201-622-7 85-68-7 乙烯基泡沫、橡胶、耐火砖和合成皮革的增塑剂 10 蒽(Anthracene) 204-371-1 120-12-7 染料中间体、杀虫剂、木材防腐剂。高纯蒽用于制取单晶蒽,用在闪烁记数器上。 11 三丁基氧化锡(TBTO) 200-268-0 56-35-9 木材防腐剂 12 二甲苯麝香 201-329-4 81-15-2 香水、化妆品 13 六溴环十二烷(HBCDD) 206-33-9 294-62-2 阻燃剂 14 C10-13氯代烃(短链氯化石蜡)(SCCP) 287-476-5 85535-84-8 金属加工过程的润滑剂、橡胶和皮革衣料、胶水 15 4,4'-二氨基二苯甲烷(MDA) 202-974-4 101-77-9 偶氮染料、橡胶的环氧树脂固化剂;有机合成的中间体 16 蒽油 292-602-7 90640-80-5 主要用于制造其他物质,如提炼蒽、碳黑,也用于炸药的还原促进剂,以及海洋捕捞、防腐。 17 蒽油、蒽糊、轻油 295-278-5 91995-17-4 18 蒽油、蒽糊、蒽馏分 295-275-9 91995-15-2 19 蒽油、少蒽 292-604-8 90640-82-7 20 蒽油、蒽糊 292-603-2 90640-81-6 21 高温煤沥青 266-028-2 65996-93-2 主要用于制作工业电极,少量用于重度防腐、铺路、黏土制作 22 硅酸铝耐火陶瓷纤维 工业绝缘隔热材料 23 氧化锆硅酸铝耐火陶瓷纤维 工业绝缘隔热材料 24 2,4-二硝基甲苯 204-450-0 121-14-2 用于制作甲苯二异氰酸盐(酯)(TDI),进而制造聚亚胺酯泡沫;也用于制造白明胶塑料。 25 邻苯二甲酸二异丁酯(DIBP) 201-553-2 84-69-5 增塑剂 26 铬酸铅 231-846-0 7758-97-6 色素,用于塑料、油漆着色 27 钼铬酸铅红(CI颜料红104) 235-759-9 12656-85-8 28 铬酸铅黄(CI颜料黄34) 215-693-7 1344-37-2 29 三(2-氯乙基)磷酸盐(TCEP) 204-118-5 115-96-8 阻燃剂 30 丙烯酰胺 201-173-7 1976-6-1 丙烯酰胺主要用于生产聚丙烯酰胺;聚丙烯酰胺应用于各个领域,尤其是在废水处理和纸张加工。丙烯酰胺也有少部分用于包括研究目的制备聚丙烯酰胺凝胶及在土木工程中的灌浆剂。 31 三氯乙烯 201-167-4 1979-1-6 金属部件的清洗剂和去污剂;黏合剂中的溶剂;用于生产氯氟有机化合物的中间体 32 硼酸 233-139-2 10043-35-3 具有众多的用途,例如用于生物杀灭剂,防腐剂,个人护理用品,食品添加剂,玻璃,陶瓷,橡胶,化肥,阻燃剂,涂料,工业液体,刹车液,焊锡产品,胶片显影剂等。 33 四硼酸钠,无水 215-540-4 1330-43-4 具有多种用途,例如用于玻璃及玻璃纤维,陶瓷,洗涤剂剂及清洁剂,个人护理产品,工业液体,冶金,黏合剂,阻燃剂,生物杀灭剂,化肥等 34 四硼酸钠,水合物 235-541-3 12267-73-1 35 铬酸钠 231-889-5 7775-11-3 实验用分析试剂;生产其他含铬化合物 36 铬酸钾 232-140-5 7789-00-6 金属处理及镀层;生产化学品及试剂;生产纺织品;陶瓷着色剂;皮革鞣制剂敷料;生产颜料及油墨;实验室用试剂;烟花制造 37 重铬酸铵 232-143-1 7789-9-5 氧化剂;实验室用试剂;皮革鞣制;生产纺织品;生产感光荧屏;金属处理 38 重铬酸钾 231-906-6 7778-50-9 生产金属铬;金属处理基镀层;生产化学试剂;实验室用试剂;皮革鞣制;生产纺织品;照相平板;木材处理;制冷系统防腐剂 39 硫酸钴 233-334-2 10124-43-3 用于制陶瓷釉料、油漆催干剂和镀钴等。也可用作饲料添加剂,碱性蓄电池添加剂等。 40 硝酸钴 233-402-1 10141-05-6 用于表面处理、电池、陶瓷颜料、催化剂。 41 碳酸钴 208-169-4 513-79-1 陶瓷、玻璃颜料,饲料微量元素添加剂,微量元素肥料 42 醋酸钴(乙酸钴) 200-755-8 71-48-7 用于表面处理、合金、颜料、染料和饲料添加剂。43 乙二醇单甲醚2- 203-713-7 109-86-4 用作涂料溶剂、渗透剂、匀染剂及有机合成中间体,也用作燃料的添加剂 44 乙二醇单乙醚2- 203-804-1 110-80-5 常用作溶剂,皮革工业用于着色剂,涂料工业用于配制油漆稀释剂、脱漆剂,及制造喷漆的原料,纺织工业用于制造纤维的染色剂,有机化工中用于制造醋酸酯、乳液稳定剂等。 45 三氧化铬 215-607-8 1333-82-0 用于金属处理和木材防腐剂中的稳定剂。 46 三氧化铬衍生酸,如:铬酸、重铬酸、低聚铬酸等 231-801-5236-881-5 7738-94-513530-68-2 用于金属处理和木材防腐剂中的稳定剂。 47 乙二醇乙醚醋酸酯 203-839-2 111-15-9 用于油漆、粘合剂、胶水、化妆品、皮革、木材染料、半导体、摄影和光刻过程 48 铬酸锶 232-142-6 7789-6-2 用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层 49 邻苯二甲酸二(C7-11支链与直链)烷基酯(DHNUP) 271-084-6 68515-42-4 用于聚氯乙烯(PVC)塑料、电缆的增塑剂及粘合剂 50 肼 206-114-9 7803-57-8302-01-2 防锈剂;用于制药,农药,油漆,油墨,有机染料等的合成原料,及高分子合成材料单体 51 1-甲基-2-吡咯烷酮 212-828-1 872-50-4 用于涂料溶剂、纺织品和树脂的表面处理和金属面塑料 52 1,2,3-三氯丙烷 202-486-1 96-18-4 用于脱脂剂溶剂、清洁剂、油漆稀释剂、杀虫剂、树脂和胶水 53 邻苯二甲酸二(C6-8支链与直链)烷基酯,富C7链(DIHP) 276-158-1 71888-89-6用于聚氯乙烯 (PVC)塑料增塑剂、密封剂和印刷油墨
  • 英国豪迈子公司科尔康的气体检测仪及监测方案荣获两项工业大奖
    p 2015年12月,由工业界的知名媒体“工业360”主办的2015年度最佳产品、最佳解决方案和年度最佳工厂评选活动最终揭晓。英国豪迈的 a href=" http://www.halma.cn/product/crowcon" 气体检测品牌科尔康 /a ( a href=" http://www.crowcon.com.cn" crowcon.com.cn /a )凭借其多功能显示型 a href=" http://www.crowcon.com.cn/index.php?m=content& amp c=index& amp a=show& amp catid=13& amp id=229" 固定式气体检测仪Xgard Bright /a 荣获了环境与安全类的最佳产品;由科尔康设计安装的 a href=" http://www.crowcon.com.cn/index.php?m=content& amp c=index& amp a=show& amp catid=23& amp id=235" 中国首套电池行业的N-甲基吡咯烷酮的浓度监控系统 /a 则荣获了自动化/仪器仪表/系统集成类的最佳解决方案。 /p p br/ /p p style=" TEXT-ALIGN: center" img alt=" 科尔康荣获工程师选择奖" src=" http://www.halma.cn/sites/default/files/field/image/201601050101.jpg" / br/ 科尔康的固定式气体检测仪Xgard Bright荣获的环境与安全类最佳产品奖。 /p p br/ /p p style=" TEXT-ALIGN: center" img alt=" 科尔康荣获最佳解决方案奖" src=" http://www.halma.cn/sites/default/files/field/image/201601050102.jpg" / br/ 科尔康的N-甲基吡咯烷酮浓度监控系统荣获的自动化/仪器仪表/系统集成类最佳解决方案奖。 /p p br/ /p p “2015年度工厂360工程师选择奖”的评选活动采取了网上投票的方式,历时一个半月,吸引了包括西门子、艾默生、福禄克等知名国际品牌在内的近百家企业报名参赛。Plant360主动邮件推送更是覆盖百万级的制造业的工程师人群。最终,科尔康以绝对优势的投票结果荣获工程师选择大奖。您可以查看完整的“ a href=" http://plant360.cn/?p=6058" 2015工厂360年度最佳榜单 /a ”。 /p p br/ /p p 此次评选活动的主办媒体“工业360”是一家以整合式数据营销为核心的工业类大型门户网站,旗下拥有工控网、仪器仪表网、化工网、机械网、物流与包装网、制药网等12大行业门户网站和170多个产品应用及热点专题类子网站。 /p p br/ /p p “工业360”旗下品牌工厂360(Plant360)于2015年9月特举办2015年度最佳产品、最佳解决方案和年度最佳工厂评选活动,为构建智能工厂树立标杆,推广支撑工厂数字化智能化发展相关的先进产品和解决方案。 /p p br/ /p p strong 关于科尔康和英国豪迈: /strong br/ 英国科尔康检测仪器有限公司是安全和环境监测产品领域的领导者,专门从事开发、制造和销售创新、可靠并具有成本效益的易燃和有毒气体检测仪器。公司成立于1970年,总部位于英国牛津的阿宾登,并在荷兰、美国、新加坡、印度、中东和中国设有分公司。科尔康的产品远销世界各地,服务于石油、天然气、石化、公用市政、水清洁与污水处理、消防、建筑等其他因气体或蒸汽意外泄漏有可能产生爆炸或毒气威胁的行业。 /p p br/ /p p 科尔康是英国豪迈(Halma)的子公司,隶属于豪迈的医疗设备事业部。1894年创立的英国豪迈如今是安全、医疗、环保产业的投资集团,是伦敦证券交易所中唯一在过去30多年股息年增长& gt 5%的上市公司。集团在全球拥有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有区域代表处,且在上海、北京、保定、深圳等地建立了多家工厂。 /p p br/ /p p strong 市场合作联系人: /strong br/ 李凤凤(Kate Li) br/ 科尔康中国区市场经理 br/ 电话:010-67870335 x 104 br/ 邮箱:kate.li@crowcon.com /p
  • 方案分享 | 不只是DMSO,高沸点溶剂你还能这么去除?
    在药物合成过程中,由于合成反应有多种路径和多步反应,会用到各种各样的有机溶剂。药物研发中使用高沸点溶剂是在所难免的,其中包括DMF,DMSO,NMP等偶极非质子溶剂,由于其*性、热稳定性好、低毒,与水互溶等特点,不但可以作为反应溶剂,而且也可以作为溶剂溶解药物,有的被称作有机合成反应中常用的“*溶剂”。N,N-二甲基甲酰胺,可以溶解大多数的有机物和很多种无机物,不但广泛用作反应的溶剂,也是合成药物中间体,有*溶剂之称。由于二甲基亚砜良好的溶解性,不仅作为反应溶剂,也可以作为氧化剂参与氧化反应,同样有*溶剂之称。由于N-甲基吡咯烷酮显著的极性和溶解性,在有机合成和药物研究中得到了广泛的应用。那么问题来了 Q1:为得到目标产物,如何实现快速并有效的去除高沸点溶剂?但是由于其沸点高,导致去除时十分困难,这是个令有机合成同学头疼的问题。以DMSO为例,常规做法选择水洗法和蒸馏法来去除,但是这两种方法有利有弊,在去除高沸点溶剂时又带来新的难题。水洗法 VS 蒸馏法水洗法:利用DMSO可溶于水的特点,多次加入水洗涤样品,然后用有机溶剂萃取,回收有机溶剂,*干燥得到样品。但是,水洗往往会导致很多产物在水中析出,导致步骤繁琐、耗时过长,而且多次水洗过程还会影响样品的回收率。蒸馏法:对于耐热的化合物,通过普通的蒸馏方式在较高的温度下除去DMF或DMSO。此法时间长、去除不彻底、不适用热敏感的样品,并不能满足后续的成品要求。 Q2:那有没有一种方法可以高效去除这类高沸点有机溶剂的同时又可以解决以上问题呢?我们知道溶剂的沸点随着压力降低而降低,当压力降到一定程度时,在较低的温度条件下,溶剂便沸腾蒸发。既能使高沸点溶剂得已去除,又可在保证较低的温度对样品进行保护。如DMSO在1mbar的真空度条件下溶剂的沸点降至25℃。 图1:压力与沸点关系图 Genevac HT-12 溶剂蒸发工作站 在药物合成后对各类溶剂的处理,英国Genevac为您提供一种全新的溶剂蒸发解决方案——‍‍‍‍‍‍‍‍HT-12‍‍‍‍‍‍‍‍溶剂蒸发工作站‍‍。‍‍‍‍‍‍‍‍‍‍ 1、 解决高沸点溶剂难蒸发问题,搭载高真空的分子涡轮泵,降低溶剂沸点和样品温度,可以直接去除沸点高达220℃的高沸点溶剂,包括DMF、DMSO、NMP等溶剂。既可以避免水洗带来回收率低下、繁琐耗时的问题,又能适用于热敏性样品;2、采用红外灯间接加热样品,使样品始终处于低温条件。结合*的温度控制技术,通过设定温度阈值进行控制,高于该温度阈值灯将自动关闭,能杜绝任何的过热导致样品的损坏,对热不稳定样品更友好;图2:SampleGuard™ 控温技术3、为满足药物高通量筛选要求,HT-12高端智能的蒸发系统提供高通量处理量,同时处理上百个到上千个样品,缩短研发周期。上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等;转子类型HT-12样品通量深孔板24浅孔板4850ml烧瓶484ml小瓶28816×100mm试管28813×100mm试管4801.5ml EP管384表1:HT-12不同转子的样品通量4、智能、自动化程度高:采用全触屏控制面板,实时显示蒸发曲线,整个过程都是智能化的,自动识别蒸发终点,自动停机,无需人员干预; 图3:全触摸屏控制软件一台好的溶剂蒸发工作站可以帮助您加速新药发现,保证保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,具有更多功能助力新药研发:# Sample Genie定量浓缩套装:直接浓缩至2mLGC小瓶,不需要样品转移,提高回收率;# 针对药物合成中各类溶剂,均有不同的解决方案,包括难处理的易暴沸溶剂,HCL,TFA等;# Lyospeed™ 快速冻干法实现对HPLC馏分的直接冻干;图4:Lyospeed™ 快速冻干法# 晶型筛选:Exalt结晶技术 ,可以实现多种溶剂同时同速率蒸发结晶; 图5:Exalt结晶工具包
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制