当前位置: 仪器信息网 > 行业主题 > >

全氟戊二酸

仪器信息网全氟戊二酸专题为您提供2024年最新全氟戊二酸价格报价、厂家品牌的相关信息, 包括全氟戊二酸参数、型号等,不管是国产,还是进口品牌的全氟戊二酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全氟戊二酸相关的耗材配件、试剂标物,还有全氟戊二酸相关的最新资讯、资料,以及全氟戊二酸相关的解决方案。

全氟戊二酸相关的论坛

  • 全氟辛酸的测定

    全氟辛酸的含量如何测定?全氟辛酸中有还原性物质吗,若有如何测定?全氟辛酸放置时间久了,颜色会变深吗?

  • 跪求:异戊醛,丙二酸二乙酯,正己烷,二丙胺的气相检验方法,其中一个也可以

    [em07] 本人新手,因为需要帮助贸然进入此地,希望有经验的前辈人士能帮帮忙。本人需要天然异戊醛,丙二酸二乙酯,正己烷,二丙胺的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]检验方法,其中一个也可以。有知道能能够不吝赐教。如果言语上有违反斑竹规定的,请斑斑高抬贵手,原谅偶是新人了。下面是化学式异戊醛 | 分子式: (CH3)2CHCH2CHO丙二酸二乙酯 分子式:CH2(OOCCH2CH3)2二丙胺 | 分子式: (CH3CH2CH2)2NH 跪求回帖了。请喜好灌水的大人也高高……高抬贵手了。

  • 高效液相色谱质谱法测定涂料中的全氟辛酸和全氟辛基磺酸化合物的含量

    高效液相色谱质谱法测定涂料中的全氟辛酸和全氟辛基磺酸化合物的含量

    [align=center]高效液相色谱质谱法测定涂料中的全氟辛酸和[color=#333333]全氟辛基磺酸化合物的含量[/color][/align]1.摘要: PFOA全氟辛酸(Perfluorooctanoic Acid 缩写为PFOA),国内最常见的含氟聚合物是应用之一是聚四氟乙烯涂层,亦称作“不粘炊具”。为提供光滑非粘的特性,不粘涂层已广泛地应用于以健康的目的不含脂肪和低脂肪的煎炒烹调中。此不粘涂层是有机树脂通过在水中或者有机溶剂中均匀分布形成厚度不超过60 μm 的表面层。此涂层同样被应用于金属基材,如铝、铝化钢和镀锌钢,用作仓库、发电站、纪念碑建筑和其他商业建筑的外部表面。当PFOA 分解后会在环境或人体中释放出来。[color=#333333]2003 年起,美国环境保护局(USEPA)定期更新和提供科学知识引导人们更好地理解PFOA。USEPA 提出PFOA 及其主盐的暴露会导致人体健康的发展和其他方面产生不利影响。PFOA 会残留于人体短至四年长达半生的时间。因此根据“美国有毒物质控制法(US TSCA)”, 此类成分被禁止并将其列入化学品目录清单中。事实上,毒性水平是每天每千克人体重量不能超过3 毫克。[/color][color=#333333]PFOS是全氟辛基磺酸化合物( Perfluorooctane Sulfonate)的英文缩写,即C8F17SO2Y,Y=OH、金属盐、卤化物、氨基化合物和包括聚合物在内的其他衍生物;PFOA是全氟辛酸类化合物( Perfluorooctanoic Acid) 的英文缩写,即C7F15COOH 及其衍生物。欧盟关于PFOS的禁令对我国纺织、服装、皮革等传统优势产业造成较大的影响。而随后的PFOA及直链全氟辛基(C8)衍生物的禁令,会给我国氟化工及含氟材料加工、纺织、皮革、油墨、消防、以及汽车、半导体等产业等带来巨大影响。PFOA 和PFOS具有于其他持久性污染物不同的特性。首先是它们的Kow不能被测定,其次它们是富集在血液里,另外它们不是芳香族的化合物,没有苯环。这类物质有极性的官能团,可以较好的溶于水。但同时它们还具有一个长长的全氟烷基的碳链,碳链上的氢原子都被氟原子所取代。由于氟原子的吸电子作用,其碳链的氟原子对(水)环境是呈负电(partial charge)。所以在水中PFOA和PFOS的呈现的是一个大负电的结构,这不仅来源于其极性官能团水中的离解,还来自于其(partial)负电的全氟烷基碳链。[color=#333333]PFOS是目前已知最难降解的有机污染物之一,具有很高的生物蓄积性和多种毒性,不仅会造成人体呼吸系统问题,还可能导致新生婴儿死亡,其导致的全球性污染正日渐受到人们关注。2002年12月,经合组织(OECD)召开的第34次化学品委员会联合会议上将PFOS定义为持久存在于环境、具有生物储蓄性并对人类有害的物质。基于PFOA和PFOS对环境和人类的有害性,有必要对产品中的PFOA和PFOS进行定量分析,已确定是否含有或者残留量是否满足限值要求。本文通过用水超声提取,离心分离,经固相萃取柱纯化,洗脱液定容后用液相色谱-质谱分析仪,外标法测定涂料样品中的PFOA和PFOS的含量。[/color][/color]关键词:全氟辛酸,[color=#333333]全氟辛基磺酸化合物,高效液相色谱-串联质谱[/color]2.实验部分:2.1 试剂 、设备及耗材超纯水、乙酸铵(分析纯)、色谱纯乙腈、固相萃取柱、离心机、超声波、液相色谱-质谱仪(岛津[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]8040)[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907020940116449_8470_1657564_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907020940131412_3907_1657564_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907020940136072_8926_1657564_3.jpg!w690x920.jpg[/img]2.2. 测试过程称取1g涂料试样,加100mL水超声提取20分钟,离心后取1m L上清液到HLB固相萃取柱净化,最后用乙腈定容到10mL,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]分析。2.3 仪器条件按照标准上的参考仪器条件,结合实验室实际情况,确定仪器条件如下:[img=,542,388]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011732360949_5078_1657564_3.png!w542x388.jpg[/img] [table][tr][td]色谱柱[/td][td]C18柱,100mm×2mm×2.2μm[/td][/tr][tr][td]进样量[/td][td]1μL[/td][/tr][tr][td]流速[/td][td]0.2mL/min[/td][/tr][tr][td]流动相[/td][td]A:0.01mol/L乙酸铵溶液B:乙腈A:B=45:55[/td][/tr][tr][td]柱温箱[/td][td]30°C[/td][/tr][tr][td]采集时间[/td][td]5min[/td][/tr][tr][td]监测方式[/td][td]MRM[/td][/tr][tr][td]离子化方式[/td][td]负离子扫描[/td][/tr][tr][td]监测离子及条件[/td][td] [table=510][tr][td] [align=center]前体离子[/align] [align=center]M/Z[/align] [/td][td] [align=center]产物离子M/Z[/align] [/td][td] [align=center]驻留时间ms[/align] [/td][td] [align=center]Q1 Pre[/align] [align=center]偏差(V)[/align] [/td][td] [align=center]CE[/align] [align=center](V)[/align] [/td][td] [align=center]Q3Pre[/align] [align=center]偏差(V)[/align] [/td][/tr][tr][td=1,3] [align=center]PFOA[/align] [/td][td] [align=center]413.00[/align] [/td][td] [align=center]369.00[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]25[/align] [/td][/tr][tr][td] [align=center]413.00[/align] [/td][td] [align=center]168.95[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]17[/align] [/td][td] [align=center]30[/align] [/td][/tr][tr][td] [align=center]413.00[/align] [/td][td] [align=center]219.00[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]15[/align] [/td][td] [align=center]22[/align] [/td][/tr][tr][td=1,3] [align=center]PFOS[/align] [/td][td] [align=center]499.00[/align] [/td][td] [align=center]80.05[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]30[/align] [/td][/tr][tr][td] [align=center]499.00[/align] [/td][td] [align=center]99.05[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]42[/align] [/td][td] [align=center]18[/align] [/td][/tr][tr][td] [align=center]499.00[/align] [/td][td] [align=center]230.00[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]39[/align] [/td][td] [align=center]22[/align] [/td][/tr][/table] [/td][/tr][/table]此仪器条件下,标准溶液(10μg/L)总离子流色谱图如下:由图上可知,此仪器条件下各组分分离良好,基线稳定,适合分析。2.4 线性范围按标准要求,使用购买的PFOA和PFOS标准物质配制成100mg/l混合储备液,再通过逐级稀释用乙腈配制成2,5,10, 20, 50及100μg/l的标准曲线工作溶液,在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]上进行分析,得到数据如下: [table=576][tr][td] [align=center] [/align] [/td][td=6,1] [align=center]各浓度峰面积[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=right] 浓度μg/L[/align] 目标物[/td][td] [align=center]2[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]20[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]相关系数(R)[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]33570[/align] [/td][td] [align=center]85660[/align] [/td][td] [align=center]155159[/align] [/td][td] [align=center]288979[/align] [/td][td] [align=center]611110[/align] [/td][td]1161960[/td][td] [align=center]0.9991 [/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]3991[/align] [/td][td] [align=center]9726[/align] [/td][td] [align=center]20884[/align] [/td][td] [align=center]38606[/align] [/td][td] [align=center]88718[/align] [/td][td] [align=center]172447[/align] [/td][td] [align=center]0.9997 [/align] [/td][/tr][/table]从上表可以看出,曲线线性良好,相关系数R>0.995,满足标准要求。2.5 精密度取10μg/L的混合标准溶液,在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]上进行7次测试,计算精密度。 [table=576][tr][td] [align=right]浓度mg/L[/align] 目标物[/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]6[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]RSD[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]11.20 [/align] [/td][td] [align=center]11.47 [/align] [/td][td] [align=center]10.59 [/align] [/td][td] [align=center]10.68 [/align] [/td][td] [align=center]11.47 [/align] [/td][td] [align=center]11.24 [/align] [/td][td] [align=center]11.04 [/align] [/td][td] [align=center]3.2%[/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]10.54 [/align] [/td][td] [align=center]10.85 [/align] [/td][td] [align=center]10.30 [/align] [/td][td] [align=center]10.85 [/align] [/td][td] [align=center]10.81 [/align] [/td][td] [align=center]11.41 [/align] [/td][td] [align=center]11.03 [/align] [/td][td] [align=center]3.2%[/align] [/td][/tr][/table]7次测试相对标准偏差RSD均小于5%,精密度良好。2.6 样品加标回收率选取涂料“环氧底漆”样品,添加0.5mL的10mg/L的PFOA/PFOS混合标准溶液,样品中理论加标浓度为5μg/L,按样品测试过程进行操作,重复7次,考察样品加标回收率。 [table=621][tr][td]油漆加标[/td][td=8,1] [align=center]测得浓度μg/L[/align] [/td][/tr][tr][td] [/td][td] [align=center]样品[/align] [/td][td] [align=center]加标-1[/align] [/td][td] [align=center]加标-2[/align] [/td][td] [align=center]加标-3[/align] [/td][td] [align=center]加标-4[/align] [/td][td] [align=center]加标-5[/align] [/td][td] [align=center]加标-6[/align] [/td][td] [align=center]加标-7[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]ND[/align] [/td][td] [align=center]4.34 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.42 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.29 [/align] [/td][td] [align=center]4.35 [/align] [/td][td] [align=center]4.66 [/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]ND[/align] [/td][td] [align=center]4.57 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.70 [/align] [/td][td] [align=center]4.62 [/align] [/td][td] [align=center]4.47 [/align] [/td][td] [align=center]4.26 [/align] [/td][td] [align=center]4.47 [/align] [/td][/tr][/table] [table=555][tr][td]油漆加标[/td][td=7,1] [align=center]加标回收率[/align] [/td][/tr][tr][td] [/td][td] [align=center]加标-1[/align] [/td][td] [align=center]加标-2[/align] [/td][td] [align=center]加标-3[/align] [/td][td] [align=center]加标-4[/align] [/td][td] [align=center]加标-5[/align] [/td][td] [align=center]加标-6[/align] [/td][td] [align=center]加标-7[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]86.8%[/align] [/td][td] [align=center]87.4%[/align] [/td][td] [align=center]88.4%[/align] [/td][td] [align=center]87.4%[/align] [/td][td] [align=center]85.8%[/align] [/td][td] [align=center]87.0%[/align] [/td][td] [align=center]93.2%[/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]91.4%[/align] [/td][td] [align=center]87.4%[/align] [/td][td] [align=center]94.0%[/align] [/td][td] [align=center]92.4%[/align] [/td][td] [align=center]89.4%[/align] [/td][td] [align=center]85.2%[/align] [/td][td] [align=center]89.4%[/align] [/td][/tr][/table]进行7次测试,回收率都在85%~94%之间,满足测试要求。2.7 方法检出限(MDL)和定量检出限(LOQ)选取环氧底漆样品添加0.5mL的10mg/L的PFOA/PFOS混合标准溶液,样品中理论加标浓度为5μg/L,按样品测试过程进行操作,重复7次,通过标准偏差来计算检出限。 [table=658][tr][td] [align=center] [/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]6[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]SD[/align] [/td][td] [align=center]MDL (μg/L)[/align] [/td][td] [align=center]LOQ (μg/L)[/align] [/td][td] [align=center]LOQ (mg/kg)[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]4.34 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.42 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.29 [/align] [/td][td] [align=center]4.35 [/align] [/td][td] [align=center]4.66 [/align] [/td][td] [align=center]0.12 [/align] [/td][td] [align=center]0.36 [/align] [/td][td] [align=center]1.21 [/align] [/td][td] [align=center]1.2 [/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]4.57 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.70 [/align] [/td][td] [align=center]4.62 [/align] [/td][td] [align=center]4.47 [/align] [/td][td] [align=center]4.26 [/align] [/td][td] [align=center]4.47 [/align] [/td][td] [align=center]0.15 [/align] [/td][td] [align=center]0.45 [/align] [/td][td] [align=center]1.50 [/align] [/td][td] [align=center]1.5 [/align] [/td][/tr][/table]以7次加标测试值相对偏差的3倍作为方法检出限,10倍作为定量检出限,按称样量1g,最终定容体积100mL,再净化稀释10倍,计算得到的定量检出限为1.2和1.5mg/kg,能达到检测方法0.0002%的检出下限的要求。实际测试中可将报告检出限统一定为2mg/kg。2.8 结论通过试验验证,方法线性相关系数好,达0.999以上、精密度高<3.5%、回收率在85%~94%,检出限低达2mg/kg,结果均满足测试要求,方法简单实用,实验室可以据此开展涂料中PFOA和PFOS含量的测定工作。3.参考文献:【1】 GB/T28606-2012 涂料中全氟辛酸及其盐的测定高效液相色谱-串联质谱法【2】 GB/T24169-2009 氟化工产品和消费品中全氟辛烷磺酰基化合物(PFOS)的测定高效液相色谱-串联质谱法【3】 GB/T27417-2017 合格评定化学分析方法确认和验证指南【4】 CNAS-CL01-A002:2018检测和校准实验室能力认可准则在化学检测领域的应用说明

  • 【我们不一YOUNG】含氟富氮多孔有机聚合物的合成及其对水中全氟辛酸的去除

    [align=center][size=18px]含氟富氮多孔有机聚合物的合成及其对水中全氟辛酸的去除[/size][/align][size=18px][font=&]摘要[/font][font=&]全氟辛酸(PFOA)在自然环境中难以降解,会通过富集渗透污染水体和土壤,从而对自然环境和人体健康造成影响。开发成本低、效率高、环保的吸附剂实现环境水体中PFOA的高效吸附去除是解决PFOA污染的有效途径之一。[/font][font=&]本研究采用无溶剂一锅法设计、制备了一种含氟富氮多孔有机聚合物(POP-3F),通过引入氟原子增加了材料的疏水性,增加了主客体分子间的疏水作用、氟-氟相互作用,提升了材料对PFOA的吸附效果。使用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、X-射线衍射仪(XRD)、固体核磁(ssNMR)、X射线光电子能谱仪(XPS)、热分析系统(TGA)等对POP-3F进行了表征。[/font][font=&]结合[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS),研究了POP-3F在不同pH、盐浓度和腐植酸条件下对PFOA的吸附性能。在pH值为2时,POP-3F对PFOA的去除率最高达到98.6%,可用于去除酸性工业废水中的PFOA。[/font][font=&]并且POP-3F对于PFOA的去除率几乎不受NaCl和腐植酸浓度的影响,在加入NaCl后,POP-3F表面会形成双电层,可以削弱POP-3F与PFOA之间的静电相互作用,去除率仅下降了1%。腐植酸与PFOA存在竞争吸附,在高浓度腐植酸条件下,POP-3F对PFOA的去除率仅下降了0.73%。在最佳pH条件下考察了吸附等温线和吸附动力学,通过数学模型拟合了实验结果,探究了吸附机理。[/font][font=&]结果显示,POP-3F的理论容量为191 mg/g,高于活性炭和其他多数吸附剂,表现出较高的吸附容量。此外,POP-3F对PFOA的吸附去除几乎不受基质种类的影响,在模拟自然水中吸附效果略有降低(仅降低0.1%),经过5次吸附-解吸循环后,对PFOA的去除率仅微幅下降(降低0.67%),表明其具有循环使用和可再生性,在实际PFOA污染废水处理中具有广阔的应用前景。[/font][font=&]1、材料制备[/font][font=&]将1,4-双(2,4-二氨基-1,3,5-三嗪)-苯(BDTB,1185.2 mg, 4 mmol)、对三氟甲基苯甲醛(3F-TMA,1393 mg, 8 mmol)和二甲基亚砜(DMSO,60 mL)置于100 mL双颈圆底烧瓶中混匀。[/font][font=&]在氮气气氛下180 ℃加热反应24 h,将产物用10 mL DMSO和甲醇在10000 r/min条件下各离心洗涤3次,用甲醇索氏提取24 h后在120 ℃下真空干燥,得到的POP-3F为凝胶状固体,研磨后为白色粉末,收率为40.22%。POP-3F的合成路线见下图。[/font][font=&] POP-3F的合成示意图[/font][font=&]2、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS方法[/font][font=&]Atlantis T3色谱柱(100 mm×2.1 mm, 3 μm,美国Waters公司) 流动相5 mmol/L乙酸铵(A)和甲醇(B) 柱温40 ℃ 流速0.2 mL/min,进样量2 μL。[/font][font=&]梯度洗脱程序:[/font][font=&]0~14 min, 80%A~10%A 14~16 min, 10%A 16~16.01 min, 10%A~80%A 16.01~20 min, 80%A。[/font][font=&]电喷雾电离(ESI),负离子模式 多反应监测模式(MRM) 离子源温度:500 ℃ 离子源电压:-4500 V 气帘气压力:2.41×105 Pa 雾化气压力:2.76×105 Pa 辅助器压力:2.76×105 Pa。其他质谱参数见原文表1。[/font][font=&]3、PFOA标准曲线绘制[/font][font=&]PFOA的定量采用外标法,首先用去离子水配制质量浓度为100 mg/L的PFOA储备液,再用去离子水稀释为100、50、10、5、1、0.1 μg/L的标准工作液。用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析上述标准工作液,以PFOA的质量浓度为横坐标(x, mg/L),峰面积为纵坐标(y),绘制标准曲线。[/font][font=&]在最优条件下,PFOA在0.1~100 μg/L范围内线性关系良好,回归方程为y=2.04×106x-1.13×106,相关系数(r2)为0.999。方法的检出限(LOD, S/N=3)为0.004 μg/L,定量限(LOQ, S/N=10)为0.013 μg/L。[/font][font=&]4、吸附实验[/font][font=&]取50 mL 1 mg/L的PFOA溶液,将溶液pH调节至2,再加入10 mg POP-3F,超声1 min使POP-3F固体分散开。然后在25 ℃下以200 r/min恒温振荡吸附24 h,吸附后经过滤将POP-3F与上清液分开,得到的上清液经聚醚砜针式过滤器(0.22 μm×13 mm)过滤后进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析。吸附实验所需器具均由聚丙烯(PP)材质制成,整个过程避免接触聚四氟乙烯和玻璃材质的物品。[/font][font=&]5、脱附实验[/font][font=&]根据参考文献,选择甲醇为洗脱剂进行脱附实验,稀释储备液配制质量浓度为1 mg/L的PFOA溶液(pH=2),再加入10 mg的POP-3F超声1 min。在25 ℃下以200 r/min恒温振荡6 h后通过0.2 μm的针式过滤器(聚醚砜膜)过滤,将所得固体分散在50 mL甲醇中,超声30 min,过滤后在24 h内进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析。[/font][font=&]6、材料的吸附性能[/font][font=&]吸附动力学[/font][font=&]采用上述方法进行吸附实验,在振荡间隔时间为5、10、20、30、60、120、240、360、720、1440 min时分别用注射器取300 μL的溶液,用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS测定。t时间下的吸附量(qt, mg/g)和去除率(R)的计算公式如下:[/font][font=&]式中:[/font][font=&]C0和Ct分别表示吸附前和t时间时溶液中PFOA的质量浓度(mg/L) V表示溶液的总体积(L) m表示吸附剂的质量(g)。[/font][font=&]吸附等温线[/font][font=&]取50 mL一定浓度(1、3、5、7、9、12、15、20 mg/L)的PFOA溶液,采用上述方法进行吸附实验,并根据下式计算平衡吸附量qe(mg/g)。[/font][font=&]式中:[/font][font=&]Ce表示吸附平衡时溶液中PFOA的含量(mg/L)。[/font][font=&]结论[/font][font=&]本文通过无溶剂一锅法成功合成了一种含氟富氮多孔有机聚合物POP-3F,在POP-3F中引入三氟甲基可有效提高材料与PFOA之间的静电相互作用和氟-氟相互作用,进而提高POP-3F对PFOA的吸附亲和力。利用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS进行吸附实验,发现在酸、盐和腐植酸存在的情况下,POP-3F对PFOA仍有很好的去除效果,且具有良好的可循环使用性能。本文提出的POP-3F材料合成过程简单,具有作为经济、环保、高效的PFOA吸附剂的潜力。[/font][font=&]1.郑州大学化学学院, 河南 郑州 450001[/font][font=&]2.郑州大学风味科学研究中心, 中原食品实验室, 河南 郑州 450001[/font][font=&]文章信息[/font][font=&]色谱, 2024, 42(6): 572-580[/font][font=&]DOI: 10.3724/SP.J.1123.2024.04006[/font][/size]

  • 全氟辛烷磺酰基化合物的国标方法测定(LC/MS)

    全氟辛烷磺酰基化合物的国标方法测定(LC/MS)

    2016年5月17日至19日,第十一届持久性有机污染物国际学术研讨会在西安召开。会上,全氟化合物(PFASs)受到了与会专家的诸多关注,成为报告者讨论最多的化合物。 全氟化合物是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。2009年5月,斯德哥尔摩公约第四次缔约方大会决定将全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)列入公约附件B(限制类),并于2013年8月在我国得到全国人大常委会批准。2015年,斯德哥尔摩缔约方大会通过了全氟辛酸(PFOA)及其盐类和相关化合物的附件D审查(POPs特性筛选),认为PFOA符合附件D筛选标准,决定在其附件E审查时应纳入可降解为PFOA的盐类和相关化合物。 为适应新的履约需求,在我国近期更新的中国履行《斯德哥尔摩公约》国家实施计划中,也将PFOS纳入了计划中,并将动用2400万美金来实现其在重点行业的淘汰和替代。这也许就是全氟化合物受到大家广泛关注的原因。(新闻详情请移步:http://www.instrument.com.cn/news/20160520/191615.shtml) 那么接下来,小编将为大家带来一篇按照国标方法对全氟辛烷磺酰基化合物的液相分析报告,希望能对大家有所帮助。全氟辛烷磺酰基化合物的国标方法测定全氟辛烷磺酰基化合物(PFOS)由于其同时具备疏油、疏水等特性,被广泛应用于生产纺织品、皮革制品、家具和地毯等表面防污处理剂,以及与人们生活接触密切的纸制食品包装材料和不粘锅等近千种产品。http://ng1.17img.cn/bbsfiles/images/2016/05/201605251408_594746_2222981_3.jpg最近研究表明,全氟辛烷磺酰基化合物持久性极强,在自然环境中极难降解,并能够在生物体内高度积累,蓄积水平甚至高于已知的有机氯农药和二噁英等持久性有机污染物的数百倍至数千倍,成为继多氯联苯、有机氯农药和二噁英之后,一种新的持久性的环境污染物。且此物质具有毒性,大量的调查研究发现,PFOS具有遗传毒性、雄性生殖毒性、神经毒性、发育毒性和内分泌干扰作用等多种毒性,被认为是一类具有全身多器脏毒性的环境污染物。本实验按照《食品包装材料中全氟辛烷磺酰基化合物(PFOS)的测定 高效液相色谱-串联质谱法》(GB/T 23243-2009)中的测定方法,使用资生堂 CAPCELL PAK C18 MGIII S5:2.0mm i.d ×150mm色谱柱,对全氟辛烷磺酰基化合物标准品进行了LC-MS测定。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594521_2222981_3.jpg图1MGIII色谱柱GB方法对全氟辛烷磺酰基化合物标准品分析结果http://ng1.17img.cn/bbsfiles/images/2016/05/201605241051_594527_2222981_3.jpg如图1所示,CAPCELL PAK C18 MGIII S5; 2.0mm i.d ×150mm色谱柱在此流动相条件下,对全氟辛烷磺酰基化合物得到了较好的保留,保留时间2.00min,较参考保留时间(1.67min)略长,峰形较好。同时在使用资生堂NASCA自动进样器+NANOSPACE液相系统时,进样0.1 µg /mL浓度(100ppb)标准品后,进样空白溶剂,色谱柱及系统均无残留,如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594522_2222981_3.jpg图2 溶剂空白进样结果在此基础上,绘制标准曲线,全氟辛烷磺酰基化合物在0.002 μg/mL - 0.05μg/mL浓度范围内线性良好,如图3所示。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594523_2222981_3.jpg图3 MGIII色谱柱分析全氟辛烷磺酰基化合物标准品浓度-峰面积标准曲线图

  • 全氟辛酸(PFOA)色谱图有问题,求助各位大神

    全氟辛酸(PFOA)色谱图有问题,求助各位大神

    最近用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]法做全氟辛酸的检测,在测标线时,发现随着浓度越高,峰面积不变,甚至变低,特来请教大家。标准溶液是用甲醇稀释的,浓度为0.01ppb,0.1ppb,1ppb,10ppb。有人测过全氟辛酸吗,可以帮我指出我的问题吗?谢谢大家了,十万火急。[img=,269,181]https://ng1.17img.cn/bbsfiles/images/2019/05/201905100914169734_142_3906267_3.png!w690x466.jpg[/img][img=,269,256]https://ng1.17img.cn/bbsfiles/images/2019/05/201905100914302811_2637_3906267_3.png!w653x622.jpg[/img][img=,269,343]https://ng1.17img.cn/bbsfiles/images/2019/05/201905100914392359_1275_3906267_3.png!w595x760.jpg[/img]

  • 液相色谱被全氟丙酸污染如何净化

    最近我的液质联用系统使用了全氟丙酸做缓冲溶液,因此对质谱负模式产生比较大的影响,请问有谁知道用什么方法可以很好的去除污染(除了硝酸钝化)

  • 如何分析丙烯酸中的乙二醛、乙二醇?

    1.如何分析丙烯酸中的乙二醛,水中乙二醇? 乙二醛会导致丙烯酸聚合,应越少越好。乙二醇为抗冻剂,检查工业水中的乙二醇含量可以确认冷冻水管是否破裂,滲漏。1.曾以GC,LC,UV,GC-MASS进行尝试,均定性不出来。 GC上曾尝试DB-WAX,HP-5,FFAP等不同的管住进行分析。 LC的管住为SB-C8,加入不同浓度的标准品,峰形却几乎不变。波长扫描后,换波长也没用。 请教各位有什么高招进行分析。

  • 全氟辛酸(PFOA)色谱图有问题,求助各位大神

    全氟辛酸(PFOA)色谱图有问题,求助各位大神

    我刚接触这方面知识,我想利用液相色谱串联质谱仪测试PFOA的浓度,在制定标线时,发现浓度越高,峰面积不变,甚至变低,这是什么原因呢?有人测过全氟辛酸吗?或者大神指出我的问题。我的标样是用甲醇稀释至0.01ppb,0.1ppb,1ppb,10ppb[img=,265,178]https://ng1.17img.cn/bbsfiles/images/2019/05/201905092157479702_2966_3906267_3.png!w690x466.jpg[/img]设置参数[img=,265,252]https://ng1.17img.cn/bbsfiles/images/2019/05/201905092158218310_805_3906267_3.png!w653x622.jpg[/img][img=,265,338]https://ng1.17img.cn/bbsfiles/images/2019/05/201905092200121140_2910_3906267_3.png!w595x760.jpg[/img]

  • 如何分析丙烯酸中的乙二醛,水中乙二醇?

    1.如何分析丙烯酸中的乙二醛,水中乙二醇? 乙二醛会导致丙烯酸聚合,应越少越好。乙二醇为抗冻剂,检查工业水中的乙二醇含量可以确认冷冻水管是否破裂,滲漏。1.曾以GC,LC,UV,GC-MASS进行尝试,均定性不出来。 GC上曾尝试DB-WAX,HP-5,FFAP等不同的管住进行分析。 LC的管住为SB-C8,加入不同浓度的标准品,峰形却几乎不变。波长扫描后,换波长也没用。请教各位有什么高招进行分析。

  • 全氟羧酸衍生化

    我看的文献方法衍生全氟羧酸,用三乙基硅烷醇的方法,用的仪器是岛津的单杆EI 源,但是衍生以后全扫模式下,所有的全氟羧酸出的峰都一样。通过SIM模式下才能找到目标峰,并且PFDA/PFNA/PFDOA的峰都非常小。我用的是1ug/ml得标液衍生的,全氟辛酸的峰大概只有1000,其他的峰高就只有100不到。有没有大神做过类似的方面,求帮助。还有一个问题,如果做全氟羧酸的目标物,用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]做的话,文献中有用NCI源和EI源的,具体的那个方法更好一点呢。跪谢!

  • 【原创大赛】化妆品中全氟及多氟化合物的快速检测及健康风险评估

    【原创大赛】化妆品中全氟及多氟化合物的快速检测及健康风险评估

    [align=center][b]化妆品中全氟及多氟化合物的快速检测及健康风险评估[/b][/align][b]摘要:[/b]基于在线湍流色谱-串联质谱法,快速检测化妆品中全氟及多氟化合物(PFASs)的赋存水平,并进行健康风险评估。本人在前期工作的基础上(指本人前期投稿的《全自动在线检测尿液中的全氟及多氟化合物》),对检测参数进行了进一步优化。使得所有目标化合物在0.05至50ng/mL的范围内具有良好的线性关系,检出限为0.012-0.18 ng/mL,加标回收率范围为78.1%-117%,精密度为3.7%-18.2%。最后,该方法用于10种化妆品中PFASs的检测和风险评估。[b]1 引言[/b]全氟及多氟化合物(PFASs)是一类人工制造的化学物质,化学通式可表示为F(CF2)xR,根据碳链末端的取代基团不同,主要包括全氟羧酸(PFCAs)和全氟磺酸(PFSAs),全氟膦酸(PFPAs),全氟磺酰化合物(POSF),以及全氟磷酸酯(PAPs)等[1]。PFASs中C-F键具有极高的键能,使其具有很好的热稳定性和化学稳定性,此外,碳氟链还具有疏水疏油的特性。自从PFASs发明以后,由于其性能优异,产量不断增加,并广泛应用于日常生活和工业生产的各个领域,包括纺织品,食品包装材料,地毯和皮革的表面处理,消防泡沫和含氟聚合物生产中的高性能化学品)[2]。化妆品已经成为人们生活中必不可少的日用品,化妆品健康风险如何成为民众关心的主要问题。化妆品质量问题、过敏性问题屡见不鲜,其中有毒有机物的组分是造成健康分析的主要原因[3]。已有研究在化妆品中检出一定浓度的PFASs,但是尚存在检测工序复杂,消耗时间长的缺点。本研究使用在线液相色谱质谱联用的方法(建立在本人前期投稿的《全自动在线检测尿液中的全氟及多氟化合物》一文所建立的方法基础上),快速检测了化妆品中PFASs并对其人体健康风险进行了评估,将有利于了解PFASs的污染现状,更有利于加强对化妆品中有害化合物的监管,降低消费者的健康风险。[b]2 实验部分2.1 材料和仪器[/b]本研究使用的所有天然和同位素标记的PFAS标准品(表1)均购置于惠灵顿实验室(Guelph, Ontario, Canada),所有标准品的纯度均超过98%。乙腈(ACN),甲醇(MeOH)和异丙醇(IPA)均为[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]级溶剂(ThermoFisher Scientific,USA)。醋酸铵(NH4 OAc),( 97%),氢氧化铵(28%),乙酸( 99.8%,HPLC级),甲酸( 98%,HPLC级)和1-甲基哌啶(1-MP, 98%)购置于自Alfa Aesar公司(Ward Hill,MA,USA)。本研究使用的超纯水(18.2 MΩcm)取自Milli-Q Advantage A10系统(Millipore,USA)。液相色谱仪为UltiMate™ 3000(ThermoFisher Scientific,USA),由DGLC-3600RS双梯度快速分离泵,WPS- 3000 TLS自动采样器和带有六通(2P-6P)阀门的TCC-3200柱温箱组成,质谱检测仪为Thermo Quantiva 三重四极杆质谱仪(ThermoFisher Scientific,USA)。整个分析过程由Chromeleon 6.70色谱工作站控制,数据由Xcalibur 3.0软件记录。[align=center][img=,687,567]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011008162247_6158_3875454_3.png!w687x567.jpg[/img][img=,690,666]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011015247514_2300_3875454_3.png!w690x666.jpg[/img][img=,663,377]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011008398102_4160_3875454_3.png!w663x377.jpg[/img][img=,690,594]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011016297924_4243_3875454_3.png!w690x594.jpg[/img][/align][b]2.2 样品收集及前处理[/b]在超市买不同品牌的化妆品(液体型)10种,取0.5 mL样品放置于1.5 mL离心管内,添加2 ng内标,添加0.5mL 0.1%的甲酸乙腈溶液,12000 r• min-1离心15 min,取上层200微升至进样瓶中,待测。[b]2.3 在线检测[/b]仪器初始位置为样品负载位置,如图1(a)所示,样品经自动进样器注入TurboFlow SPE柱(Cyclone-P,1.0×50 mm,ThermoFisher Scientific,USA),左泵的初始流动相为 1.5 mL min-1,100% A,样品加载1.0 min以清理基质杂质。样品净化后,六通阀切换至样品洗脱位置(图1(b)),将TurboFlow柱保留的分析物解吸并洗脱到分析柱(Zorbax Extend C18,3.0×150mm,3.5μm,Agilent Technologies Inc,USA)上以进一步分离和检测,分析泵流速为0.4 mL min-1。然后,六通阀切换至负载位置(图1(a))。为了保证TurboFlow SPE柱的可重复使用性,样品洗脱后,负载泵要用1 mL min-1 MilliQ-水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1)冲洗TurboFlow柱5.5分钟以去除残留的杂质。然后,负载泵的流动相恢复到初始比例以准备下一针样品的进样检测。分析柱温度设定在40℃。加载和分析泵的在线SPE程序和HPLC梯度洗脱条件以及阀切换的时间在表2中列出。[align=center] [img=,564,388]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011009549992_7999_3875454_3.png!w564x388.jpg[/img][/align][align=center][img=,690,414]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011010405402_8677_3875454_3.png!w690x414.jpg[/img][/align]注:a. 1-2:负载位置(0-1 min);b. 1-6: 洗脱位置(1-6 min);c. 负载位置(6-19 min)左泵流动相:A. 0.1% 甲酸水溶液(pH调至4),B. 乙腈和甲醇(体积比1:1),C. 超纯水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1),右泵流动相:A. 2mM醋酸铵缓冲溶液(pH 用氨水调至 10.5), B. ACN和METH(V:V=1:1)的混合溶液中添加5 mM 1-MP,C. 超纯水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1)质谱仪使用负离子ESI源多反应监测(MRM)模式进行扫描,母离子和子离子参数如表1所示,待测PFASs采用两个子离子分别作为定性和定量离子,以确保检测方法的准确性。对于PFOS和PFHxS,采用三个扫描离子,分别作为定性、定量和确定性离子,以避免内源性物质共洗脱现象的干扰。MS相关参数设置如下:鞘气,40单位;辅助气,12单位;源电压,2500 V;汽化器温度,350℃ 毛细管温度,400℃;扫描时间0.01秒。[b]2.4 质量保证与质量控制[/b]为防止背景污染的产生,采样、样品前处理以及样品检测过程中均避免使用含氟聚合物材质的器皿或者管路。使用器皿均为聚丙烯材料,并且所有器皿和设备使用前先用甲醇清洗;PFASs测定采用内标法定量,利用一系列浓度的标准溶液(0.05、0. 1、0. 2、0. 5、1、2、5、20、50 ng• mL-1)绘制标准曲线,所有检测物线性相关系数均大于0.99。以信噪比S/N=3时所对应的浓度作为仪器检出限,化妆品中PFASs的检出限范围分别为:0.012-0.18 ng/mL,加标回收率范围为78.1%-117%,精密度为3.7%-18.2%。表明仪器和检测方法适用于实际样品的分析。在样品前处理过程中,每8个样品添加一个程序空白,以保证检测结果的可靠性;每进样检测10次,进一次标准作为质量控制,查看仪器信号漂移,若检测的标准偏离原始检测值± 20%,则重新绘制标准曲线后再定量。[b]2.5 人体通过化妆品摄入PFASs的量及暴露风险评估[/b]人体每人通过化妆品暴露于PFASs的量为:EDI = DCi* Ci/ BW (ng/kg/day) 其中,人均使用化妆品的量DCi约为5 mL/day [4],成人平均体重BW为65kg。危害指数(hazard index,HI)法是最常用的累积风险评估方法,计算公式如下: HQi= EDIi/Reference valuesiHI=∑_(i=1)^n▒ HQi式中:RVi为第 i 种 PFASs的参考限值;EDI为PFASs的每日暴露量,HQi为第i种PAE的危害因子。HQi代表的是单个物质的暴露风险,而 HI 代表的多个物质总的暴露风险。当 HI 和 HQi 的值小于 1 时,说明人群对该物质的暴露水平较低,处于安全的暴露风险;当 HI 和 HQ 的值大于 1、小于 100 时,代表具有一定的潜在暴露风险;而当它们的值大于 100 时,说明暴露风险较高,处于不安全的水平。[b]3. 结果与讨论3.1 化妆品中PFASs的赋存水平[/b]所有目标PFASs中,共有9种化合物的检出率超过40%,我们进行进一步的浓度分析,PFASs 中PFHxS、PFOS和PFOA的浓度是主要的检出物,但是不同品牌的化妆品中PFASs的浓度差别很大,这三种主要PFASs的平均浓度 ± SD分别为4.30±1.84 ng/mL,6.96±6.04 ng/mL,8.97±9.15 ng/mL。每种化妆品中这9种化合物的浓度及浓度比例见图2(a)、(b)。每种化妆品中单体PFASs的浓度存在很大的差异,并且浓度比例也各有不同,这与每种化妆品的成分、功能及制作原料有关。 [align=center][img=,558,674]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011011125640_2049_3875454_3.png!w558x674.jpg[/img][/align][b]3.2 化妆品中PFAS的风险评估[/b]PFOS和PFOA是检出率和检出浓度最高的化合物,也是关注率最高的化合物,目前国际组织也对这两种化合物的每日暴露安全值进行的估算。根据风险评估公式计算人体每日通过化妆品暴露于PFOS和PFOA的量分别为XX,XX,远低于美国[5]、德国[6]、欧盟[7]制定的每日摄入量安全阈值: PFOS 分别为 25、100、150 ng/kg.b.w/day PFOA 分别为 333、100、1500 ng/kg.b.w/day,危害指数远小于 1,表明 PFOS、PFOA 尚未对人体产生较大的风险。但是如果将所有的化合物作为整体,用总浓度进行风险评估,风险值就会高出很多。因此,未来将更加关注该类化合物在化妆品中的赋存及潜在的毒性效应。[align=center][img=,523,306]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011012564222_4058_3875454_3.png!w523x306.jpg[/img][/align]参考文献[1] Sunderland E M, Hu X C, Dassuncao C, et al. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of exposure science & environmental epidemiology, 2019, 29(2): 131-147.[2] Ross I, McDonough J, Miles J, et al. A review of emerging technologies for remediation of PFASs[J]. Remediation Journal, 2018, 28(2): 101-126.[3] Cousins I T, Herzke D, Goldenman G, et al. The concept of essential use for determining when uses of PFASs can be phased out[J]. Environmental Science: Processes & Impacts, 2019.[4] Ashhami A. Assessment of Extractable Organic Fluorine (EOF) Content and Contribution of Per-and Polyfluoroalkyl Substances (PFASs) in Cosmetic Products[J]. 2017.[5]Roos P H, Angerer J, Dieter H, et al. Perfluorinated compounds (PFC) hit the headlines[J]. Archives of toxicology, 2008, 82(1): 57-59.[6]So M K, Yamashita N, Taniyasu S, et al. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China[J]. Environmental science & technology, 2006, 40(9): 2924-2929.[7]Fromme H, Tittlemier S A, Vö lkel W, et al. Perfluorinated compounds–exposure assessment for the general population in Western countries[J]. International journal of hygiene and environmental health, 2009, 212(3): 239-270.

  • 酸溶硅和全硅

    各位老师 钢铁及合金钢中硅的状态还分为“酸溶硅”和“全硅”啊二者含量差的多么 咱么做试验所带的标样中硅的含量一般指的是酸溶硅还是全硅?全硅是酸溶硅和酸不溶硅的合么?紧急啊....

  • 硫酸二甲酯、硫酸二乙酯的测定

    最近测定某药品中的硫酸二甲酯(DMS)、硫酸二乙酯(DES),参考GB/T35771-2017的方法。国标的方法:中极性色谱柱,进样口250℃,分流比10:1(分流模式);流速1.0ml/min;程序升温:初始50℃保持2min,然后以10℃/min升温至130℃,再以25℃升至280℃,维持2min;液体进样,进样量1微升;EI源(70eV),温度230℃,传输线280℃。DMS定量离子95,定性离子97/66/125;DES定量离子139,定性离子125/99/127。线性最低点浓度为0.25mg/L,基线平滑,附图是0.5mg/L的色谱图(附图1)。参考国标方法,用的是-17ms色谱柱,首选选择高浓度全扫确定DES、DMS出峰时间,然后在进行SEM,同时根据全扫质谱图选择定量离子及定性离子,发现对照品浓度在2mg/L时才有响应,但DMS的信噪比不超过3(附图2);对方法进行优化,提高流速及改为不分流进样,DMS的定量离子定为95,无定性离子(降低背景干扰);DES定量离子为125,无定性离子;离子源及传输线均为260,进样口为250℃,不分流时间1min;程序升温,50℃维持2分钟,然后以40℃/min升至260,维持8min,测定对照品浓度在0.4mg/L时才有响应也很小,且DMS附近基线也不平滑(附图3)。方法要求定量限做到0.2mg/L以下,这样看来不可能。有没有高手给分析下原因,分析下为什么实际测定的图谱与国标的图谱差很多,且基线也不平?请各位高手指教(供试品浓度假设固定 的情况下)以上溶剂均为色谱甲醇,且仪器灵敏度均符合要求。

  • 液质测定全氟化合物

    液质测定全氟化合物

    各位老师好,我第一次参考标准做[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]测定全氟化合物,先用了全氟丁酸,戊酸,己酸,十一弯酸,十四弯酸来做预实验看看,流动相用的甲醇或者乙腈和5mmol的乙酸氨水溶液,梯度洗脱。负离子模式,色谱柱新买的。峰型响应都挺好,就是空白试剂甲醇乙腈都有戊酸和己酸干扰,甲醇乙腈都是质谱级别,水是屈臣氏蒸馏水,乙酸氨也是质谱级。下图左边是五个全氟混标图,右边空白试剂图。求各位老师指点交流谢谢。[img=,690,388]https://ng1.17img.cn/bbsfiles/images/2020/09/202009221940517265_1461_3557119_3.png[/img][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2020/09/202009221940522929_9098_3557119_3.png[/img]

  • 【每日一贴】富马酸二甲酯

    【每日一贴】富马酸二甲酯

    【中文名称】富马酸二甲酯;反丁烯二酸二甲酯【英文名称】dimethyl fumarate【结构或分子式】 http://ng1.17img.cn/bbsfiles/images/2012/02/201202142008_349299_1855403_3.jpg【相对分子量或原子量】144.13【密度】1.37(20℃)【熔点(℃)】103~104【沸点(℃)】193【折射率】1.4063(111℃)【毒性LD50(mg/kg)】 大鼠经口3000【性状】 白色结晶性粉末。【溶解情况】 微溶于水,易溶于醇、丙酮、氯防。【用途】 对微生物具有广谱的高效抑菌、杀菌作用,抗菌活性不受pH值的影响,并兼有杀虫活性。可用于食品、饲料、粮食、淀粉、水果、蔬菜、纺织品、皮革、化妆品及药物等的防霉防虫。【制备或来源】 由富马酸(反丁烯二酸)与甲醇反应制得。【生产单位】 江苏淮安县兽药厂;湖南省化工研究院;苏州合成化工厂等

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制