当前位置: 仪器信息网 > 行业主题 > >

氰基二茂铁

仪器信息网氰基二茂铁专题为您提供2024年最新氰基二茂铁价格报价、厂家品牌的相关信息, 包括氰基二茂铁参数、型号等,不管是国产,还是进口品牌的氰基二茂铁您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氰基二茂铁相关的耗材配件、试剂标物,还有氰基二茂铁相关的最新资讯、资料,以及氰基二茂铁相关的解决方案。

氰基二茂铁相关的资讯

  • 新型二维铁电材料铁电畴结构的调控研究获进展
    铁电材料因具有稳定的自发极化,且在外加电场下具有可切换的极化特性,在非易失性存储器、传感器、场效应晶体管以及光学器件等方面具有广阔的应用前景。与传统的三维铁电材料不同,二维范德华层状铁电材料表面没有悬空键,这可降低表面能,有助于实现更小的器件尺寸。此外,传统三维铁电薄膜的外延生长需要合适的具有小的晶格失配的基材,而在二维层状材料中,许多具有不同结构特性的层可以被堆叠并用于铁电异质结构器件,不受基底的限制,从而提供了广泛的铁电特性可调性。某些二维层状材料已在实验或理论上被报道为铁电材料,包括薄层SnTe、In2Se3、CuInP2S6、1T单层MoS2、双层或三层WTe2、铋氧氯化物和化学功能化的二维材料等。然而,目前对二维材料铁电畴结构的调控及铁电-反铁电相变等方面缺乏系统性研究,在范德华层状材料中实现连续的铁电域可调性和铁电-反铁电相转变仍是挑战。   近日,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星团队与中国人民大学教授季威团队、南方科技大学副教授林君浩团队、松山湖材料实验室副研究员韩梦娇合作,在新型二维铁电材料铁电畴结构的调控方面取得进展。该团队发现了一种具有室温本征面内铁电极化的新型二维材料Bi2TeO5,并观测到由插层铁电畴壁诱导的铁电畴大小、形状调控机制以及由此产生的铁电相到反铁电相的转变。科研人员采用CVD法合成新型的超薄室温二维铁电材料Bi2TeO5,通过压电力显微测(PFM)证实该材料存在面内的铁电畴结构,结合电子衍射及原子尺度的能谱分析和第一性原理计算结果对其结构进行解析,结合像差校正透射电镜对亚埃尺度的离子位移进行分析(图1)。对Bi2TeO5中畴结构的进一步研究发现,样品中存在大量的条状畴结构。原子尺度结构分析和计算结果表明,由于Bi/Te插层的存在,有效降低了畴壁的应变能,从而使得180°畴壁的条状畴能够稳定(图2)。研究表明,通过调控前驱体中Bi2O3和Te的比例可以有效实现180°铁电畴宽度的调控及实现铁电-反铁电相的反转(图3、图4)。此外,Bi/Te插层的引入除了能够改变铁电畴的大小,同时可以对畴壁的方向进行调控(图5)。   本研究对Bi2TeO5室温面内铁电性的报道丰富了本征二维铁电材料体系。原子插层作为新的调控单元对铁电畴大小及方向的调控,以及由此产生的铁电-反铁电相变,为二维铁电材料畴结构及相结构的调控提供了新思路,并为在未来纳米器件领域的应用奠定了新的材料基础。相关研究成果以Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite为题,发表在《自然-通讯》(Nature Communications)上。图1.二维层状铁电材料Bi2TeO5的CVD生长及结构表征。a、二维层状Bi2TeO5的光镜图;b-c、样品的表面形貌及对应的面内PFM图像;d-f、不同方向Bi2TeO5的结构模型以及铁电极化的产生;g-I、Bi2TeO5的原子尺度结构表征及对应的极化分布。图2.Bi/Te插层诱导的180°铁电畴的形成。a、Bi2TeO5中典型条状180°铁电畴的面内PFM;b、180°铁电畴壁的原子尺度HAADF-STEM图;c-e、180°铁电畴壁处铁电离子位移(DBi)及晶格畸变(晶格转角θ)的原子尺度分析;f、弛豫后180°铁电畴的结构模型。图3.插层对畴宽度的调控及铁电相到反铁电相的转变。a-d、具有不同周期的180°畴HAADF-STEM图像;e-h、分别为对应图a-d中的离子位移分布。图4.插层诱导的反铁电相。a、具有反铁电性样品的PFM;b-d、反铁电样品中的原子尺度极化分布及晶格畸变分析;e、弛豫后的反铁电相结构模型。图5.畴壁台阶的形成及插层对畴壁取向的影响。a-b、样品中扇形铁电畴的面内PFM图像;c、扇形铁电畴边缘处大量台阶形成的倾斜畴壁面;d-e、畴壁台阶的原子尺度HAADF-STEM图像及对应的离子位移分析;f、弛豫后的畴壁台阶结构模型;g、Te和O浓度对畴壁台阶形成焓的影响。
  • 瑞绅葆携手陕西钢铁系列之二
    -热烈祝贺陕西钢铁采用瑞绅葆PrepP-01系列压片机热烈庆祝陕西钢铁集团有限公司(简称陕西钢铁)再一次采购瑞绅葆PrepP-01系列压片机,瑞绅葆PrepP-01系列压片机能够再次入选,正是因为其自动化程度高,可根据要求选择合适的压力,出样效果好,制样持续准确稳定,能够满足其日常制样需要。 瑞绅葆PrepP-01系列压片机是瑞绅葆分析技术(上海)有限公司研制的用于X射线荧光光谱分析(压片法制样)的专业配套设备,最高压力可达80T,可广泛应用于钢铁、冶金、化工、地质、水泥、陶瓷耐火材料等行业。简介:陕西钢铁集团有限公司(简称陕西钢铁)成立于2009年8月,是陕西省委、省政府为振兴钢铁产业而组建的钢铁企业集团,在2016年以粗钢产量730万吨位列全球前50大钢铁企业名单第49位。是一家集钢铁冶炼、钢材加工、矿山开发、物流运输、装备制造、金融贸易、酒店餐饮等为一体的大型钢铁企业集团,具备了1000万吨钢的综合产能,年营业收入突破500亿元,进入中国企业500强.
  • Memmert美墨尔特(上海)贸易有限公司庆祝成立7周年
    2017年8月15日,美墨尔特(Memmert)德国董事总经理Christiane Riefle-Karpa 女士携公司高管及世界各地的销售同事一行莅临上海,举行2017年度全球销售会议暨美墨尔特(上海)贸易有限公司成立7周年庆典。 Karpa女士首先致辞,表示很荣幸能够在成立七年之际再次来到上海,她愉快地回顾了美墨尔特(上海)贸易有限公司7年来的发展历程,从一间狭小办公室创立起始,经过不断努力,发展壮大到服务东亚及东南亚,设有三个办事处,拥有众多精英员工,颇具规模朝气蓬勃富有活力的公司,她对美墨尔特(上海)的工作做出高度评价,就七年来所取得的不凡成绩表示祝贺,并对辛勤工作的老员工进行了表彰,期待未来再创辉煌。 随后,美墨尔特(Memmert)德国总部向美墨尔特(上海)贸易有限公司赠送了颇具寓意的德国民族特色礼品——手工金箔画,祝福创立于虎年的美墨尔特(上海)能够如猛虎般活泼矫健,富有力量,持续为公司发展注入活力。Karpa女士向美墨尔特(上海)贸易有限公司董事总经理穆先银颁发了杰出贡献奖杯,以嘉奖穆总对公司运营及品牌拓展等方面所作出贡献。 伴随着Karpa女士切下了蛋糕的第一刀庆典的欢乐气氛达到高潮,在座同事共举香槟,齐表祝愿。来自英国、法国及美墨尔特(上海)的同事针对市场推广与应用案例做了介绍与交流。Karpa女士将硕大的庆典蛋糕分享给在座同事 美墨尔特(上海)贸易有限公司将一如既往地秉承“至尊品质,追求卓越,永不妥协”理念,为广大客户提供最优质的产品应用与售后服务。 关于Memmert 全球领先的温控箱体领导品牌德国Memmert(美墨尔特)创始于1933年,近九十年来,美墨尔特一直致力于精确温控箱体的研发和生产,并引领箱体的发展方向与潮流。公司同时拥有悠久的半导体控温技术(Peltier)经验,为仅有的全系列半导体技术温控箱体制造商。 产品包括二氧化碳培养箱、恒温恒湿箱、光照培养箱、低温培养箱、环境测试箱、真空烘箱、通用烘箱、灭菌箱、生化培养箱、水浴油浴等。2010年9月11日,德国Memmert(美墨尔特)大中华区全资子公司——美墨尔特(上海)贸易有限公司在上海成立,现在北京及南京设有代表处。
  • 北京征集第二批设备购置贴息贷款项目,涉这些仪器!
    北京市发改委近日发布通知,为持续扩大设备购置投资,助力相关企业缓解资金压力、降低融资成本,带动高精尖产业发展,近日,北京启动设备购置与更新改造贷款贴息第二批项目征集。关于征集本市第二批设备购置与更新改造贷款贴息项目的通知  各区人民政府、北京经济技术开发区管委会,各相关市级部门:  按照《关于推动“五子”联动对部分领域设备购置与更新改造贷款贴息的实施方案(试行)》(京发改规〔2022〕3号,以下简称《实施方案》),现就本市第二批设备购置与更新改造贷款贴息项目申报工作有关事项通知如下。  一、请各区、各相关部门持续广泛开展政策宣传、组织动员、沟通衔接等相关工作,推动本区、本领域符合《实施方案》各项要求的项目应报尽报。  二、请各项目单位向项目所在地或项目单位注册地区发展改革部门申报。项目单位应于2023年6月20日(星期二)前向相关区发展改革部门报送以下申报材料:设备购置与更新改造贷款贴息项目申报表(见附件1)、申请书、项目立项文件(包括核准或备案文件)、设备采购合同(尚未签订的提交设备采购方案)、贷款合同(尚未签订的提交融资计划书)、项目单位工商营业执照/法人证书、项目真实性合规性承诺函。有关材料均应加盖公章,申报材料电子版应打包发送至相关区发展改革部门相应邮箱(各区发展改革部门联系方式及申报邮箱见附件2)。  三、各区发展改革部门对项目申报材料进行初审,对申报项目真实性、合规性严格把关。  四、各区发展改革部门完成初审后,汇总形成本区设备购置与更新改造贷款贴息项目申报表,报请区政府审定并加盖区政府公章,于2023年6月25日(星期日)前将所有项目申报材料报至我委(电子版材料发送至fgwbjsbdk@163.com)。  我委收到申报材料后,将按《实施方案》要求开展项目联审、项目推介等后续工作。  特此通知。  附件:1.设备购置与更新改造贷款贴息项目申报表  2.各区发展改革部门联系表  北京市发展和改革委员会  2023年5月23日  首批推介102个项目,贷款需求超180亿元  据了解,此前征集的首批项目,已向银行推介102个项目、贷款需求超180亿元。  去年12月,北京印发《关于推动“五子”联动对部分领域设备购置与更新改造贷款贴息的实施方案(试行)》,对部分领域企业2023年1月1日至11月30日期间签订贷款合同并实际发生采购、可形成固定资产投资的设备购置与更新改造项目予以贷款贴息支持。对符合政策要求的项目给予2.5个百分点的贴息、期限2年,重点支持科技创新、先进制造业、先进制造业与现代服务业“两业融合”、新型基础设施等9大领域34个细分领域项目。  北京市发改委相关负责人介绍,针对首批征集项目,目前,已完成征集、联审、推介等工作环节。首批共征集项目192个、贷款需求超300亿元,其中102个项目通过联审,贷款需求超180亿元。通过联审的项目已推介至相关银行,各相关银行正在按照市场化原则自主选择项目,开展贷款审批和签约工作。  首批项目中,从支持领域看,聚焦北京市高精尖产业各重点领域。高精尖产业领域项目占比超七成,贷款需求占比九成以上,涉及科技创新、先进制造业、先进制造业和现代服务业“两业”融合发展、新型基础设施、社会投资公共服务、节能降碳与环保等重点领域和关键环节,有利于推动“五子”联动、形成叠加效应。  从支持对象看,重点为社会投资特别是民间投资项目降低融资成本。民间投资项目占比近七成,有利于充分激发社会投资动力和活力。以神州细胞制剂灌装线项目为例,项目贷款金额2.5亿元,目前已通过项目联审。如能正式签约贷款并申报贴息支持,预计可获得贴息1250万元,融资成本可下降近五成。  从区域分布看,项目主要分布在“三城一区”、石景山区。首批通过联审项目数量靠前的是北京经济技术开发区、昌平区、石景山区、海淀区、顺义区,分别为18个、14个、9个、8个、8个。贷款需求靠前的是北京经济技术开发区、顺义区、昌平区、海淀区、石景山区,分别为129.51亿元、11.05亿元、9.2亿元、6.39亿元、5.07亿元。  本次第二批项目征集现已启动,企业可就近在项目所在地或企业注册地区发展改革部门申报。征集工作将于2023年6月20日截止,企业应于6月20日之前向所在区发展改革部门提交项目申报表、申请书、立项文件等申报材料。  第二批涉及34个细分领域,涉这些仪器  方案所支持购置或更新改造的设备,包括达到固定资产标准、需要安装的各种研发设备、生产设备、传导设备、动力设备、信息通信设备、节能设备等。  具体投向领域及分工情况  一、科技创新  1.研究与实验发展、专业技术服务业、科技推广和应用服务业。  2.软件和信息技术服务业,包括国家网络安全产业园等网络安全和信创建设,基础软件和工业软件开发、AR/VR应用场景等。  市发展改革委责任处室:高技术处。  行业主管部门:市科委中关村管委会、市经济和信息化局等相关部门。  二、先进制造业  3.新一代信息技术设备制造。  4.医药健康:(1)医药制造。(2)医疗仪器设备及仪器仪表制造。  5.集成电路制造:集成电路芯片产线、封装测试、装备及零部件、材料制造。  6.智能网联汽车制造:(1)自主品牌乘用车、高端品牌整车、产品结构升级等整车制造。(2)新能源汽车整车制造。(3)汽车发动机制造。(4)汽车零部件及配件制造中的动力总成系统、汽车电子、新能源和智能网联汽车关键零部件制造。  7.智能制造与装备:(1)智能机器人与自动化成套装备制造。(2)高端科学仪器和传感器等智能专用设备制造。(3)智能终端制造。(4)航空航天,包括商业航天卫星网络、航空核心关键部件、无人机等领域制造。(5)轨道交通,包括列车通信和控制系统等核心零部件、高端整车及关键零配件制造。  8.新材料:石墨烯等纳米材料、生物医用材料、3D打印材料、超导材料、液态金属、智能仿生材料等。  市发展改革委责任处室:高技术处。  行业主管部门:市经济和信息化局等相关部门。  三、先进制造业和现代服务业“两业”融合发展  9.新一代信息技术和制造业服务业融合:(1)人工智能、工业互联网、5G、大数据、物联网、云计算、元宇宙等新一代信息技术在制造业、服务业的创新应用。(2)区块链研发及应用。(3)“北斗+”“+北斗”研发及集成应用。  10.医药制造与健康服务融合:(1)CRO、CMO/CDMO等平台服务体系。(2)互联网医疗和医工交叉创新。(3)“智能+”模式拓展远程健康管理、远程门诊、移动医疗、运动向导、精准照护等服务业态。(4)中医药同旅游、康养、教育、餐饮等产业融合发展。  11.智能网联汽车制造和服务全链条融合:(1)车联网、智能交通、共享汽车、智能停车等智慧出行服务及平台建设。(2)高级别自动驾驶。(3)汽车企业开展汽车租赁、改装、二手车交易、维修保养等全生命周期服务。(4)动力电池回收利用管理平台建设。  12.集成电路制造与研发设计服务融合:(1)集成电路设计。(2)集成电路制造企业提升设计能力相关项目。  13.高端装备与服务业融合:支持智能装备制造企业拓展协同设计制造、预测性维护、远程维护、远程监测等服务业务。  14.新能源和节能环保与相关产业绿色融合:(1)能源智慧化管理。(2)智慧化节能环保综合服务。(3)新能源和可再生能源开发利用。  15.现代物流和制造业融合:(1)支持物流园区建设综合信息服务平台。(2)智慧物流,物流机器人、智能仓储、自动分拣等新型物流技术装备。  16.消费领域服务与制造融合:(1)新型终端、智慧家居等领域“产品+内容+生态”全链式智能生态服务。(2)文化旅游等服务企业向制造环节拓展。(3)新型智能终端开发应用。  市发展改革委责任处室:高技术处、产业处、社会处、能源处、新能源处、经贸处、资环处等。  行业主管部门:市经济和信息化局、市卫生健康委、市城市管理委、市商务局等相关部门。  四、新型基础设施  17.先进通信网络、数据中心、超级计算中心、物联网、云计算、人工智能等领域项目。  18.智慧城市:(1)城市感知网络、智慧杆塔等。(2)燃气、供热、水务等领域数字化转型。  19.新能源汽车充电桩和换电站。  市发展改革委责任处室:高技术处、能源处等。  行业主管部门:市经济和信息化局、市城市管理委等相关部门。  五、节能降碳与环保  20.高耗能企业节能降碳升级改造。  21.前沿节能低碳技术开发应用。  22.氢能:包括氢能制、储、运、加、用全产业链项目。  23.燃油锅炉房改造等清洁供热。  24.新型储能发展。  市发展改革委责任处室:资环处、能源处、新能源处。  行业主管部门:市经济和信息化局、市城市管理委等相关部门。  六、社会投资公共服务  25.教育:包括民办学历教育学校、幼儿园。  26.托育:相关托班以及家庭式的托管服务设施。  27.卫生健康:包括社会资本举办的综合医院、专科医院、中医医院、基层医疗卫生机构开展诊疗、临床检验、重症、康复、科研转化等涉及的设备。  28.养老:包括养老服务设施和医养结合服务设施。  29.体育:包括经营性体育场馆、健身活动场所、训练培训基地建设,以及户外运动、体育制造业、体育服务业投资运营主体设备购置更新。  30.实训基地:包括依托职业院校和企业建设的产教融合实训基地。  市发展改革委责任处室:社会处。  行业主管部门:市教委、市卫生健康委、市民政局、市体育局、市人力资源社会保障局等相关部门。  七、文化旅游  31.旅游景区、度假区、重点游乐园(场)、数字剧场、音乐厅、歌舞剧院、博物馆、实体书店、酒店、美术馆,京郊度假酒店、露营休闲、乡村旅游点,图书馆、文化馆(文化中心)及新型公共文化空间等文化旅游场所涉及的设备购置与更新。  32.文化智慧化平台、数字化工程涉及的设备购置与更新。  市发展改革委责任处室:经贸处、社会处。  项目联审行业部门:市委宣传部、市文化和旅游局、市文物局等相关部门。  八、城市地下综合管廊  33.地下综合管廊涉及的监测及预警等系统和装备。  市发展改革委责任处室:基础处。  行业主管部门:市城市管理委等相关部门。  九、垃圾处理体系建设  34.固废垃圾处理设施、动力电池回收利用、家电回收体系建设等。  市发展改革委责任处室:资环处、产业处。  行业主管部门:市城市管理委、市生态环境局、市经济和信息化局等相关部门。
  • 补铁要补三价铁还是二价铁?赛默飞带您细探究竟
    补铁要补三价铁还是二价铁?赛默飞带您细探究竟原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘莉 王艳萍缺铁性贫血,相信大家都不陌生,多见于婴幼儿、青少年、妊娠和哺乳期妇女,以及肿瘤性疾病和慢性出血性疾病人群,是最常见的贫血类型。据世界卫生组织(WHO)调查报告,全世界约有10%~30%的人群有不同程度的缺铁。缺铁与贫血的相关性为什么缺铁会贫血呢?血液中有红细胞、白细胞、血小板三系血细胞,其中红细胞通过血红蛋白完成运输氧的工作。血红蛋白低的时候(中国贫血标准:在我国海平面地区,成年男性Hb形式吸收,以Fe3+形式运输和贮存,最后以Fe2+的形式利用。可以说二价铁和三价铁都可以作为补铁的来源,目前市面上补铁制剂分为三类:第一类是以硫酸亚铁为代表的无机亚铁盐类;第二类是是以乳酸亚铁为代表的有机酸盐类;第三类是螯合铁剂以及铁的多肽复合物类,前两类以二价铁为主,后者以三价铁为主。给药方式主要分为口服和静脉注射两种,其中口服占绝大部分。具体应该合适哪种类型的补铁剂需要根据病情和医生详细诊断确定。无论是补铁制剂是二价铁还是三价铁,其中的二价铁和三价铁含量均需准确测定,GB1902.38-2018中规定琥珀酸亚铁中三价铁要在2%以内,USP规定蔗糖铁中二价铁不超过0.4%。(点击查看大图)补铁剂中的二价铁和三价铁检测方法三价铁二价铁的传统测试方法一般采用滴定方法:用硫代硫酸钠标准溶液滴定测定三价铁含量,用硫酸铈标准溶液滴定测定二价铁,但是滴定方法步骤较为复杂,二价铁转化难以控制,重复性较差。为了简化样品前处理和测试流程,提高测试准确度与重复性,赛默飞推出联合创新方案:采用Easion离子色谱和iCAP RQplus ICP-MS联用方法测试补铁制剂中的三价铁和二价铁。该方案可简单、快速同时分析补铁剂中的三价铁和二价铁,并且有效降低二价铁氧化率,灵敏度高、重复性好。(点击查看大图)实际应用案例一IC-ICP-MS测定琥珀酸亚铁中的三价铁和二价铁琥珀酸亚铁是典型的有机酸盐类,主要为亚铁形式存在,需要严格控制三价铁含量,IC-ICP-MS对琥珀酸亚铁分离色谱图如下所示。(点击查看大图)琥珀酸亚铁片样品测试结果与加标回收结果如下表所示,同时与滴定法结果进行比较,结果一致。(点击查看大图)实际应用案例二IC-ICP-MS测定新型补铁剂蔗糖铁注射液中二价铁含量蔗糖铁是最常用的静脉铁剂疗法之一,其活性成分是氢氧化铁(Ⅲ)-蔗糖复合物,结构与生理状态下的血清铁蛋白结构相似,在生理条件下不会释放出铁离子,且吸收率极高,药物不良反应较少。需要对其中的二价铁含量进行严格控制,IC-ICP-MS对蔗糖铁中三价铁与二价铁分离色谱图如下图所示。(点击查看大图)蔗糖铁注射液测试结果及平行性结果如下表所示,三个平行样RSD均在3%以内,重复性良好。(点击查看大图) 结论 综上所述,三价铁和二价铁均可以作为补铁制剂,只是铁存在形式与作用机理不同。而这些不同价态的补铁剂均需要对另外一种价态的铁含量进行严格控制,赛默飞推出的特色创新IC-ICP-MS联用铁形态分析方案能够方便准确高效地进行各类补铁剂中的三价铁和二价铁含量测定。如需合作转载本文,请文末留言。补铁要补三价铁还是二价铁?赛默飞带您细探究竟原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘莉 王艳萍缺铁性贫血,相信大家都不陌生,多见于婴幼儿、青少年、妊娠和哺乳期妇女,以及肿瘤性疾病和慢性出血性疾病人群,是最常见的贫血类型。据世界卫生组织(WHO)调查报告,全世界约有10%~30%的人群有不同程度的缺铁。缺铁与贫血的相关性为什么缺铁会贫血呢?血液中有红细胞、白细胞、血小板三系血细胞,其中红细胞通过血红蛋白完成运输氧的工作。血红蛋白低的时候(中国贫血标准:在我国海平面地区,成年男性Hb无论是补铁制剂是二价铁还是三价铁,其中的二价铁和三价铁含量均需准确测定,GB1902.38-2018中规定琥珀酸亚铁中三价铁要在2%以内,USP规定蔗糖铁中二价铁不超过0.4%。(点击查看大图)补铁剂中的二价铁和三价铁检测方法三价铁二价铁的传统测试方法一般采用滴定方法:用硫代硫酸钠标准溶液滴定测定三价铁含量,用硫酸铈标准溶液滴定测定二价铁,但是滴定方法步骤较为复杂,二价铁转化难以控制,重复性较差。为了简化样品前处理和测试流程,提高测试准确度与重复性,赛默飞推出联合创新方案:采用Easion离子色谱和iCAP RQplus ICP-MS联用方法测试补铁制剂中的三价铁和二价铁。该方案可简单、快速同时分析补铁剂中的三价铁和二价铁,并且有效降低二价铁氧化率,灵敏度高、重复性好。(点击查看大图)实际应用案例一IC-ICP-MS测定琥珀酸亚铁中的三价铁和二价铁琥珀酸亚铁是典型的有机酸盐类,主要为亚铁形式存在,需要严格控制三价铁含量,IC-ICP-MS对琥珀酸亚铁分离色谱图如下所示。(点击查看大图)琥珀酸亚铁片样品测试结果与加标回收结果如下表所示,同时与滴定法结果进行比较,结果一致。(点击查看大图)实际应用案例二IC-ICP-MS测定新型补铁剂蔗糖铁注射液中二价铁含量蔗糖铁是最常用的静脉铁剂疗法之一,其活性成分是氢氧化铁(Ⅲ)-蔗糖复合物,结构与生理状态下的血清铁蛋白结构相似,在生理条件下不会释放出铁离子,且吸收率极高,药物不良反应较少。需要对其中的二价铁含量进行严格控制,IC-ICP-MS对蔗糖铁中三价铁与二价铁分离色谱图如下图所示。(点击查看大图)蔗糖铁注射液测试结果及平行性结果如下表所示,三个平行样RSD均在3%以内,重复性良好。(点击查看大图) 结论 综上所述,三价铁和二价铁均可以作为补铁制剂,只是铁存在形式与作用机理不同。而这些不同价态的补铁剂均需要对另外一种价态的铁含量进行严格控制,赛默飞推出的特色创新IC-ICP-MS联用铁形态分析方案能够方便准确高效地进行各类补铁剂中的三价铁和二价铁含量测定。如需合作转载本文,请文末留言。
  • 磷酸铁锂迎发展“第二春”,欧美克高性能激光粒度仪需求强劲
    近日,在北京召开的第七届中国电动汽车百人会论坛(2021)上,比亚迪股份有限公司董事长王传福表示,“按照规划,到2025年,我国新能源汽车新车销售量将达到汽车新车销售总量的20%左右。”这意味着接下来5年,新能源汽车行业年复合增长率将达37%以上。结合前期“特斯拉Model Y低价发售”、“宁德时代逼近万亿股价”、“蔚来包下宁德时代磷酸铁锂电池生产线!”等新闻发酵,不难发现随着磷酸铁锂电池以其低成本高安全性的优势在中低端市场不断渗透,特别是相关技术的进步也助推磷酸铁锂电池自2020年起重新扩展市场空间,其需求快速反转向上。中国汽车动力电池产业创新联盟日前发布的数据显示,2020年我国动力电池累计销量达65.9GWh,同比累计下降12.9%。其中,三元锂电池累计销售34.8GWh,同比累计下降34.4%;磷酸铁锂电池累计销售30.8GWh,同比累计增长49.2%,是唯一实现同比正增长产品。中信证券指出,目前,特斯拉、戴姆勒等海外新能源汽车主流企业均明确了磷酸铁锂电池技术路线,预计宝马、大众等其他海外车企也将在其动力电池技术路线中选择磷酸铁锂方案。而国内无论是宁德时代的CTP电池管理控制技术还是比亚迪的“刀片电池”,磷酸铁锂的高安全性助力了其在乘用车领域的回暖,都让磷酸铁锂电池开始经历第二春!伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂第二春的帷幕已然拉开,大规模的量产也必将刺激高性能激光粒度仪的市场需求。众所周知,激光粒度分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、导电剂、隔膜涂覆用氧化铝等材料的粒度测试。从大量的制浆经验以及行业交流反馈来看,诸如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)、镍钴锰酸锂(LiNiCoMnO2)和磷酸铁锂(LiFePO4)等多种不同的正极材料,通常采用中值粒径D50、代表大颗粒的D90作为关键质控指标。不同材料不同工艺的产品对原材料的粒径要求也不尽相同,以分布在1-20μm范围内居多。负极材料以石墨为例,当其平均粒径为16-18μm,且粒度分布较为集中时,电池有较好的初放容量及首次效率。此外,随着电池隔膜的厚度要求不断提高,对其中添加阻燃材料的粒径要求也随之不断提高,常使用的隔膜氧化铝粒径从微米级逐渐发展到亚微米甚至是纳米级。随着电池性能提高对原材料的粒度要求不断提高,激光粒度仪发挥着不可替代的作用,同时对粒度测量仪器的重复性、重现性、分辨能力提出了更高的要求。锂离子电池正、负极材料标准中的粒度分布要求激光粒度仪的高分辨能力在电池材料的检验中,对测试样本中少量的大颗粒或小颗粒的准确识别有着重要的意义。比如说在电池材料活性物质中如果存在少量的大颗粒,可能会对涂布、滚压造成负面影响。如果在原材料检测时就发现,则可以避免后续不良品的产生。另一个典型的例子是粒径过小的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外颗粒直径太小,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行粒度测试,在一定程度上有助于预判后续产品性能、防范风险… … 可见,电池性能的诸多方面都与正负极材料和隔膜材料等的粒径息息相关。欧美克Topsizer激光粒度分析仪对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高品质高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光信号都精确地聚焦获取,通过精准的独立探测器焦点曲面排布设计和一致性定位工装提高粒度仪分辨能力和仪器之间的重现性。欧美克Topsizer激光粒度分析仪和Topsizer Plus激光粒分析仪是在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克LS-609激光粒度分析仪而欧美克LS-609激光粒度分析仪就采用了先进的激光粒度仪散射光能探测的设计,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式精确放置于与其散射角相对应的傅立叶透镜焦点位置,以保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。我们以具体的电池材料样品来看欧美克激光粒度分析仪的测试性能对材料准确表征的案例。1. 欧美克Topsizer激光粒度仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于最终下游应用中电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常巨大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。2. 下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。由此可见高分辨能力和重现性的激光粒度分析仪在电池原材料粒度检测领域能带来更好的质控效益。正如中国科学院院士、中国电动汽车百人会副理事长欧阳明高所说,中国动力电池技术创新模式已经从政府主导向市场驱动转型,目前中国电池材料研究处于国际先进行列。而在中国动力电池的快速创新发展必然也离不开高分辨能力和重现性的激光粒度分析仪作为质控的好帮手。通过给动力电池行业提供更专业优化的粒度检测方案,欧美克激光粒度仪的行业销售也在持续高速增长。欧美克必将一如既往不断探索,与中国动力电池行业并行快速发展,携手创造中国奇迹,助力新能源引领世界美好未来!参考资料:1. 沈兴志,珠海欧美克仪器有限公司,《高性能激光粒度分析仪在电池材料测试中的应用》2. 经济日报,《第七届中国电动汽车百人会论坛举办》3. 腾讯网,《磷酸铁锂厂家齐涨价,2021年将回潮迎来“第二春”?》4. 中国证券报,《磷酸铁锂电池迎来发展“第二春” 2020年累计销售同比增长近
  • 庆国庆:使用仪器信息网APP评论、发帖双倍积分
    庆国庆:使用仪器信息网APP评论、发帖双倍积分仪器信息网APP(以下简称APP)为庆祝祖国的72华诞,又双叒叕送福利啦。即日起使用APP对资讯新闻评论、仪器社区发帖、回帖都将获得双倍积分奖励。立即去找篇感兴趣的文章评论下立即去社区发帖、回帖活动时间:2021年9月30日-12月31日特别说明:1)请勿发无意义的评论、帖子(发帖、回帖);2)请遵守国家法律法规,遵守仪器信息网相关的评论、发帖规则。仪器信息网APP装机已超过500000万。在APP里您可以享受诸多的福利:1)选仪器、找厂商:方便便捷、消息及时达;2)直播会议:享受高清、无卡顿待遇,会议开播提前提醒;3)仪课通课程购买优惠:95折;4)视频回放:第一时间订阅视频回放;5)提问题、用户互动:300万用户在线帮您解答,轻松与人沟通;6)70万份行业资料:免费下载;7)与企业HR:多渠道在线沟通;8)礼品兑换:品类众多的礼品尽在积分商城兑换;9)实验室小工具:多款实验室小工具,免费使用。APP可以一键登录、还有很多活动,等您来参与。更多福利等您来发掘… … 如果您还没下载仪器信息网APP,扫码下方二维码即可!扫码安装仪器信息网APP仪器信息网APP自2017年上线以来,开启这仪器及检测行业移动端的新纪元。“她”是一款科学仪器及检测行业工具型的APP,可轻松快速选仪器找厂商、随时随地看直播学课程、与百万同行交流、掌握第一手行业动态,是科学仪器及检测行业移动端入口级生态产品。
  • 第二个冷冻电镜导电毛结构,居然还是细胞色素?
    撰文丨王冯斌博士"Truth never triumphs - its opponents just die out." - Max Planck.普朗克大佬的意思大概是 "Old theories never die only their proponents do"。某些科研领域确实存在一些很尴尬的现象,一个方向停滞不前,是因为多年前领域里的大佬一把油门把别人带到坑里去了,然后大佬又因为不为人知的原因,死活不承认。今天要讲的,就是一个这样的故事(编者注:2022年7月7日,弗吉尼亚大学王冯斌博士以第一作者身份在Nature Microbiology上发表了文章Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing)。德里克老铁是一个有名的微生物学家。35年前在华盛顿DC的河流沉积物里发现了一种厌氧菌,这个菌就厉害了,能产生一种好几微米长的“导电毛”,在很长的距离传导电子,进行能量代谢。德里克研究这种导电毛一搞就是30来年。后来他们发现,一但敲掉一个叫pilA-N的“第四型菌毛”的基因,导电毛就没了。pilA-N呢,结构上只是一个很疏水的长helix,是第四型菌毛中间的疏水核心。尽管pilA-N在很多结构生物学家眼中可不可溶都是个问题,德里克老铁却认定了导电毛一定是pilA-N,坚信自己可以守得云开见月明。随着冷冻电镜技术革命,现在大家也不用天天只靠遗传实验做这些判断了。想知道导电毛是啥?放在冷冻电镜下看看喽。2019年,我们直接用冷冻电镜观察了导电毛,至于它的组成与第四型菌毛蛋白之间的关系,只能说是毫不相关。导电毛其实是multi-heme cytochrome形成了一种之前从没被发现过的菌毛,而multi-heme的细胞色素,大家早就知道它们可以传导电子了(详见BioArt报道:Cell | 王冯斌博士等解析地细菌导电纳米线的冷冻电镜结构)。德里克老铁没有欣然接受这一现实,而是继续选择逐梦第四型菌毛。他声嘶力竭的质问,为啥突变了pilA-N,导电毛就没了?啊?尼秋老铁是德里克之前的博士后,现在已经是名校教授,非常的“父慈子孝”。在2021年发表了一个相对令人信服的模型,说第四型菌毛在该菌里包括两个蛋白pilA-N和pilA-C,第四型菌毛平常是不分泌到细胞外的,基本上相当于一个泵,有事没事动一动,把细胞色素形成的导电毛给怼出去。(ref: https://doi.org/10.1038/s41586-021-03857-w)德里克老铁彻底的愤怒了,说“冷冻电镜看不到我说的3nm的pilA-N“导电毛”不代表它就不存在!我用AFM就能看见!你们冷冻电镜都是artifact!”你看,这不是巧了嘛。我们最近又做了一些别的冷冻电镜的观察。我们把初代“导电毛”的关键氨基酸给突变了,本来想研究研究突变的初代导电毛。您猜怎么着,如果用一个一般的promoter表达突变,我们压根看不到突变的初代导电毛,反而看到了一种新的导电毛,OmcE。猜猜他是啥,还是细胞色素。谁能想到细胞这么“聪明”,连初代导电毛的替代品都悄默默的存好了。如果用一个过表达的promoter,不仅可以看到OmcE,还能看到初代菌毛的一些bundles,还有少量把他们泵出来的第四型菌毛(pilA-N和pilA-C,他们分开的话pilA-N很可能不可溶)。可能是表达的太猛烈了,泵工作的太猛,把自己都怼出来了。图 OmcS导电毛的替代品, OmcE那么,就真的没有3nm的毛了嘛?德里克老铁眼神儿就那么不好吗?其实还真有一个2.5nm左右的毛,偶尔会出现。加了Dnase I就会消失,是的,它就是——B-form DNA。图:所有毛的画像别着急,还会有新的细胞色素导电毛被发现的。我期待德里克老铁改变自己看法的那一天。
  • 美终裁中国产晶体硅光伏电池存在倾销和补贴
    华盛顿10月10日电 美国商务部10日作出终裁,认定中国向美国出口的晶体硅光伏电池及组件存在倾销和补贴行为,这基本为美国针对此类产品征收反倾销和反补贴关税(“双反”)扫清了道路。   美国商务部当天最终裁定,中国晶体硅光伏电池及组件的生产商或出口商在美国销售此类产品时存在倾销行为,倾销幅度为18.32%至249.96%。同时,还裁定中国输美的此类产品接受了14.78%至15.97%不等的补贴。   根据这一终裁结果,倾销幅度从今年5月份初裁的最低31.14%下调至18.32%,最高幅度不变 补贴幅度则大大高于初裁的2.9%至4.73%。   按照美方贸易救济程序,除美国商务部外,此案还需美国国际贸易委员会作出终裁。根据目前日程,美国国际贸易委员会定于今年11月23日左右作出终裁。如果美国国际贸易委员会也作出肯定性终裁,即认定从中国进口的此类产品给美国相关产业造成实质性损害或威胁,美国商务部将要求海关对相关产品征收“双反”关税。   根据美国商务部公布的数据,2011年美国从中国进口了价值约为31亿美元的晶体硅光伏电池及组件。   美国智库人士与相关行业协会多次警告,美国通过征收“双反”关税来保护本土企业,将付出沉重代价。美国廉价太阳能联合会估算,若美方对来自中国的光伏电池及组件征收100%的惩罚性关税,将在未来3年内损失5万个工作岗位。   这是今年以来美国对中国发起的又一项贸易救济行动,此前美国方面连续对中国产品发起“双反”和“337调查”。中国商务部多次表示,希望美国政府恪守反对贸易保护主义承诺,共同维护自由、开放、公正的国际贸易环境,以更加理性的方法妥善处理贸易摩擦。   美终裁对华光伏产品征34%-47%关税   《纽约时报》报道,美国商务部发布最终裁决,决定对大多数从中国进口的太阳能板和太阳能电池产品征收大约34%到接近47%的关税。   对大多数中国太阳能企业而言,这一惩罚比奥巴马政府今年早些时候的判决更为严苛。
  • Lovibond高温补贴,请排队领取
    火热的夏季,Lovibond为您送上贴心的购机补贴,前所未有的优惠力度,带给您清凉感受!一、活动对象:购买颜色产品EC系列、PFXi系列的客户二、活动时间:2017年7月1日至10月15日三、活动内容:1、客户在购买EC系列产品时,提供原使用的英国Lovibond目视系列产品的比色盘照片及序列号,经英国Lovibond公司审核认可后,即可获得如下的货款减免: 内贸合同:2000RMB; 外贸合同:250英镑EC系列比色计2、客户在购买PFXi系列产品时,提供原使用的英国Lovibond目视系列产品的比色盘照片及序列号,经英国Lovibond公司审核认可后,即可获得如下的货款减免: 内贸合同:4000RMB; 外贸合同:500英镑 PFXi系列比色计英国Lovibond® 色盘照片及序列号示意如下:详情致电400-699-7881,由专业销售为您服务!也可拨打18121275803活动热线,了解更多信息!(本公司保留随时修改、终止此活动的权利,如有变更恕不另行通知)
  • 毛发中毒品检测“手把手”第二弹——了解样品预处理流程
    司法部:《毛发中Δ9 -四氢大麻酚、大麻二酚、大麻酚的液相色谱-串联质谱检验方法》SF/Z JD0107022-2018为例:目标物:Δ9 -四氢大麻酚、大麻二酚、大麻酚内标:甲氧那明/或近似物操作流程:司法部:毛发中二甲基色胺等16种色胺类新精神活性物质及其代谢物的液相色谱-串联质谱检验方法 SF/T 0065-2020 内标1mg/mL赛洛西宾D4/赛洛新D10/或近似物 目标物:色胺类:5-甲氧-N,N-二异丙基色胺(5-Me0-DiPT)5-甲氧基-N-甲基-N-异丙基色胺(5-Me0-MiPT)5-甲氧-N,N-二烯丙基色胺(5-Me0-DALT)5-甲氧基-N,N-二甲基色胺(5-Me0-DMT)5-羟基-N,N-二异丙基色胺(5-0H-DiPT)4-羟基-N,N-二异丙基色胺(4-0H-DiPT)N,N-二甲基色胺(DMT)N,N-二丙基色胺(DPT)5-甲氧基-N-异丙基色胺(5-Me0-NiPT)4-羟基-N-甲基-N-乙基色胺(4-0H-MET)赛洛新(Psilocin)赛洛西宾(Psilocybin)4-羟基-N-甲基-N-异丙基色胺(4-0H-MiPT)4-乙酰氧基-N,N-二异丙基色胺(4-Acetoxy-DiPT)5-甲氧基-2-甲基色胺(5-Me0-AMT)N-异丙基色胺(NiPT)规范SF/Z JD0107022-2018中建议采用先研磨后称量的方案取样,而SF/T 0065-2020中采用准确称量后研磨的方案,哪种更适用? 2个方案均可! 1. 规范中采用毛发清洗,晾干,剪碎,研磨后称取的方案优势:1mm毛发小段容易产生静电,剪碎后称取会造成毛发粘贴在试管内壁不容易转移和称取,所以先采用干式冷冻研磨后再称取相对容易操作。劣势:干式冷冻研磨后样品中容易混入研磨球中的碎屑造成重量不准,检测结果的浓度偏低。为避免该现象发生需要选用金属研磨球,但造价较贵一次性使用会增加成本。 2. 标准中采用毛发清洗,晾干,剪碎,称取,加内标溶液后研磨的方案优势:研磨后毛发的精准重量不会变化,数据结论更为精准。劣势:毛发容易产生静电,剪碎后称取会造成毛发粘贴在试管内壁不容易转移和称取,要解决该问题的出现需要精准记录1mm毛发小段称取的质量信息用于计算,并采用精度更好的天平称量。此外针对样品预处理除毛发清洗、研磨需要手工操作外,全流程可以采用ATLAS-LEXT 系列产品自动化样品预处理:相对于手工样品分析,自动化方案更加简便快捷。 操作流程:ATLAS-LEXTATLAS-LEXT NHD 产品特点: 1.Compact Design 集成化设计体积小巧可以在通风橱内存放及使用. ((W) 600 mm×(D)585 mm×(H) 592 mm) 2.Ensure Safety 保障操作者安全防污染设计,防止生物样品疾病、病毒污染操作者,减少手工操作误差。 3.Extraction System 自动化萃取流程配备离心机 (maximum 2000×g) 可用于蛋白质去除等处理流程,更快速的离心机设置可有效实现样品基质的有效去除。 4.Evaporation Device 自带样品浓缩单元可选GHD (顶吹氮气加热浓缩系统)或VHD(减压加热浓缩系统)可供选择。 5.Simple Operation 样品操作样品制备流程程序化,样品制备方案多样化,可实现差异化批处理流程的编辑模式。 本文内容非商业广告,仅供专业人士参考。
  • 刘相华一生情系中国钢铁 对仪器比对爱人钟情
    刘相华教授最近很忙,在国内的几家大型汽车生产企业来回奔波,本是一个学者的他,却干起了开拓市场的活,为的是“推销”他们开发出的一项节能减排新产品——用于汽车减重的差厚板。   “所谓差厚板,就是可以根据客户的需求,一次成形轧制出厚度不同的一整块钢板,这样不仅最大程度减轻了结构重量,还节约了成本。”他说,经过前期探索,这种依托他们的发明专利生产出差厚板产品,已经提供给上汽集团,通过了台架实验和装车道路实验,现已稳定生产,开始批量供货。与一汽、长城、奇瑞、吉利等汽车生产企业的合作也在洽谈之中。   轧钢新技术的产、学、研、用,显然已经在他脑中融会贯通。实际上,生产这种差厚板产品的技术雏形早在2001年他去美国考察汽车板生产新技术时,就已经形成了。看到当时因为车身不同位置对钢板厚度的需求不同,美国人采用激光拼焊技术生产变厚度板时,作为轧钢专家,他提出用轧制方法一次成形的思路。这当然得益于他一生结缘钢铁的专业敏感,同时也得益于他始终重视应用而得来的敏锐的市场嗅觉。   钢铁情结始于孩提时代   实际上,刘相华的钢铁情结,从孩提时代就有了。   忆起1958年大炼钢铁、文革后缺钢少铁、改革开放之初依赖引进办钢铁的历程,他说:“在拿到我国改革开放后第一批钢铁领域博士学位证书之时,也担起了振兴中国钢铁事业的责任和使命”。博士毕业后,为了学习国外先进的钢铁生产技术,他出国深造。学成归国后,他在轧钢领域钻研拼搏,攻克了有限元理论与编程、智能轧制技术、变厚度轧制理论等一个个学术堡垒、帮助现场解决了超细晶粒钢生产、板带钢控轧控冷、计算机辅助孔型设计、数学模型优化等一个个技术难题,在30多本科技进步奖励证书上,凝结着他的心血和汗水。   “我们这一代人年轻时上山下乡,成长过程历经磨难,深知承上启下、齐心协力奔小康的历史责任。国家富强需要钢铁,把钢铁搞上去,回报节衣缩食供养我们读书的父母,无愧引领我们入门的师长。”他如数家珍地谈起钢铁对我们生活的巨大影响,“没有这么多钢铁做支撑,就不会有今天舒适的住房和便捷的交通,不会有强大的国防和日益增强的国际地位,从神舟上天到蛟龙入海,现代工业和现代科技一点也离不开钢铁。” 言辞之间透漏出他对选择走上钢铁之路感到自豪,表达了对发展我国钢铁事业的坚定信念。   坚忍不拔 迎来超级钢时代   七年前,当记者在北京钢铁研究院的一家宾馆里见到这位作为国家863计划超级钢项目负责人的刘相华时,他还在为开发400MPa和500MPa级超级钢,实现普碳钢强度翻番日夜奔波。那时他已经预见到,未来几年,我国普通钢铁产品强度将大面积提高到400MPa和500MPa。今天事实已经证实了他的预言,现在建筑部门已经把我国主力钢筋的强度定位到400MPa级,我国钢铁年产量早已超越了美国、日本、欧洲等全部发达国家的总和,当年“钢铁元帅”的大国梦已经实现。超级钢的开发成功与普及应用,已缩小了钢材品种、质量与国外的差距,中国正在由钢铁大国向钢铁强国迈进。   新事物的诞生似乎总伴随着争议,刘相华表示,在863计划超级钢课题立项之初学术界也有争论,在钢铁这个被国外认为是夕阳工业的领域中还能搞出什么名堂?到底走什么样的技术路线?面对种种的疑问,他依然坚定地认为中国的国情决定了钢铁在整个国民经济里仍然起着至关重要、不可替代的作用,在经济高速发展的现阶段,钢铁领域的科研成果更加需要迅速转化为生产力,钢铁的产量、质量上去了,整个工业的健康发展,就有了良好的原材料基础。   凭着一股韧劲,刘相华教授带领着他的课题组成员在实验室钻研,到钢厂、汽车厂等现场进行工业实验,终于在国际上率先实现了超级钢(超细晶粒钢)工业生产,其成果在宝钢、鞍钢、本钢、一汽等很多厂家应用,取得了突出的经济效益和社会效益,为钢铁工业腾飞和振兴东北老工业基地做出了贡献,在国内外钢铁界产生了重要影响。   实验室为家 对仪器比对爱人钟情   刘相华办公室里唯一的装饰物,就是墙上的一副书法作品了,“天道酬勤,厚德载物。”八个字力透纸背,这种氛围让我体会到:他正是那种把别人喝咖啡的时间都用到钻研学问和工作中的人。   环视四周,记者被刘相华教授办公桌上一个硕大的水杯吸引了视线,原来,这个杯子是唐山的一位学生送的。一次,这位学生来到实验室看望刘教授,见他一会儿忙着给学生修改论文、一会儿准备报告的幻灯片、还要处理实验室的重要事情,一个上午一直在伏案工作,连出去接杯水的时间都顾不上,敬师心切的学生就给恩师买了这个出奇硕大的杯子。   “倒一次水,就够我喝半天了。”刘相华教授说这话时,言语中透着一丝由衷的幸福。忙到废寝忘食?没经历过的人也许很难想象那种忘我的工作状态,为了和时间赛跑,这个在公路上只开40迈的科学家,一步二个台阶半跑着上楼已成习惯,不经意间多抢出几秒钟早点儿进入办公室,因为那里有等待他批改的学位论文,有等他决断的科研计划,有等他推导的数学公式,有等他勾画的发展蓝图,有他的职责、他的事业,有他的企盼、他的梦想……   学校实验楼前后几任值夜班的师傅见证了他总是最后一个离开实验室 外出归来先回实验室后回家也已经成了习惯。积年累月,他的妻子似乎已经适应并习惯了他的这种生活状态,“曾经埋怨,实验室才是他的家,但现在更多的是关怀和理解了。”   在恩师白光润教授架鹤西归的当天,凌晨4点师母把临危的电话打到刘相华教授的家中,可没想到凌晨4点他仍然在实验室带领着他的弟子们紧张地准备着一个钢铁项目的竞标文档,从实验室直接赶到医院急救室……   “明天我的学生们一定能作到”   作为我国知名钢铁专家、国家钢铁领域重点科研项目带头人,刘相华教授在进行科学研究的同时非常重视把研究方法和研究成果传授给学生,致力于钢铁行业的人才培养。他略带微笑地告诉我,他一上讲台就兴奋,一走进学生中间就感到亲切和责任。“我的身边总有一批才华横溢的研究生,听到哪位学生又作出了新的成绩,是让我最高兴的事”。正是这涓涓细流,孕育着江河的澎湃、折射着大海的包容。   作为一名博士生导师,他对学生既严格要求,又从学业和生活各个方面关怀体贴。因材施教,重视对研究生基础理论的训练和实际动手能力的培养。为了使研究生能够在实践中得到锻炼,他奔走于各大钢铁企业,利用熟悉现场的条件,为学生选择具有应用背景的研究课题,使学生能够在生产实践的风浪中,真刀真枪地干起来。   正像他办公室墙上的那八个大字:天道酬勤,厚德载物。刘相华教授童年的理想随着我国钢铁工业的飞速发展正在一步步成为现实。国家973计划、863计划、国家科技支撑计划、自然科学基金重大项目、重点项目等一系列国家科研项目,对钢铁领域的发展给予了巨大支持,刘相华教授也在其中感受到付出艰辛和成长的喜悦。由于在钢铁领域的科研成果,他获得了三项国家科技进步奖,一项国家技术发明奖,一项国家发明创业奖和30多项省部级科学技术奖励 出版、参编了10部学术著作 发表的研究论文被SCI收录的有290多篇次,被引用7200多篇次 在他指导下,已经有95名博士、96名硕士获得学位,他的学生已成为我国钢铁工业发展的中流砥柱。   刘相华教授曾经带领着国家重点实验室,作为本领域科研的国家队,起到了“引领钢铁材料发展方向,推动轧钢行业技术进步”的重要作用。实验室近些年取得的若干代表性成果为此提供了佐证。   “山再高高不过脚面,只要往上走,成功往往就在进一步的努力之中。”刘相华总会以这样的话激励自己和学生在钢铁科学研究这条艰辛的路上披荆斩棘、勇往前行。   “我在给学生讲课的时候常常提到,钢铁产业的中心应该也必然会转移到中国,现在我们要看到优势,找出差距,向高精尖产品迈进。”谈到学生,刘相华动情地说,“说到底我还是个老师,我有世界上最好的学生。今天我们暂时还没有做到的,明天我的学生们一定能作到!”
  • 钢铁行业开创绿色新篇章-第十六届上海国际冶金工业展览会侧记
    上海国际冶金工业展览会,创办于1986年,随着历次展会规模不断壮大,逐渐成为全球冶金工业领域的行业盛会之一。2011年9月26-28日在上海世博会主题馆举办的第十六届上海国际冶金工业展览会,由中国金属学会、宝钢集团有限公司、上海市金属学会主办,同期开展的还有第七届上海国际钢管工业展览会、第七届上海国际金属工业展览会(三者合称MTM EXPO 2011)。三大产业链涵盖了整个钢铁产业领域,对加强国内外冶金技术交流合作、推动钢铁技术进步与发展、促进冶金技术贸易和合作起到积极的作用。此次展会吸引了24个国家和地区的近600家企业参展,涉及钢铁制造、冶金装备、金属制品及加工设备等众多行业。 几十名行业专家、精英出席了26日的开幕典礼并致词,数千名观众现场见证了这一盛况,举办方也用中国传统舞狮活动献上热烈的欢迎和真诚的祝福,将开幕式推向高潮。 开幕式盛况 舞狮献瑞 钢铁行业在“十一五”期间实现了粗钢产量跨越三个台阶,2010年产量超6亿吨,同时造就了许多大规模企业,从各大钢厂的巨幅展台可见一斑,图为河北钢铁集团的展台。 河北钢铁集团的展台 本次展览会的最大特色,或者说令参会者耳目一新的是展会的中央展厅——“低碳与创新”主题展区,围绕创新低碳工艺、开拓低碳能源、开发低碳材料、共创低碳社会。谈到“低碳”,就需要确认一个评价标准,以此来判断是“低碳”还是“高碳”,目前广为接受的是“生命周期评价”系统。生命周期评价是一种“从摇篮到坟墓”的环境管理和分析工具,它是从产品生命周期全过程来量化其资源能源消耗和环境排放,并评价这些消耗和排放对于资源、生态环境及人体健康带来的影响。简单来说是我们生活中的每个物品,从它的原材料开始到最终的废品处理,整个生命过程带给我们的利弊评价。从某种角度说,原始人的野果充饥、树叶蔽体的生活更符合我们现代人的环保低碳标准,但是让我们重回原始,又与人类文明的发展相悖,如何实现“低碳”与“文明”的双赢呢?看来只能求助于我们的科技进步了。 在宝山钢铁的展台前,我们看到这样一个案例:通过先进高强度钢(AHSS)使用为减少汽车在其整个生命周期内的温室气体排放提供一个可持续的解决方案。举例来说将AHSS应用到典型的五座私家车中时,每辆汽车总重量会减少117千克,按照LCA方法计算,汽车的整个生命周期中将减排2.2吨二氧化碳当量,该减排量超出汽车所用的全部钢铁在生产过程中排放的二氧化碳总量。 先进高强度钢(AHSS)是如何做到既减轻汽车总重量,又提高撞击保护效果,保护乘车人的呢?先进高强度钢,也称为高级高强度钢,其英文缩写为AHSS(Advanced High Strength Steel)。国际钢铁协会( IISI) 先进高强钢应用指南第三版中将高强钢分为传统高强钢(Conventional HSS) 和先进高强钢(AHSS) 。传统高强钢主要包括碳锰(C -Mn) 钢、烘烤硬化(BH) 钢、高强度无间隙原子(HSS -IF) 钢和高强度低合金(HSLA) 钢;AHSS 主要包括双相(DP) 钢、相变诱导塑性(TRIP) 钢、马氏体(M) 钢、复相(CP) 钢、热成形(HF) 钢和孪晶诱导塑性(TWIP) 钢;AHSS的强度在500MPa到1500MPa之间,具有很好吸能性,在汽车轻量化和提高安全性方面起着非常重要的作用,已经广泛应用于汽车工业,主要应用于汽车结构件、安全件和加强件如A/B/C柱、车门槛、前后保险杠、车门防撞梁、横梁、纵梁、座椅滑轨等零件;DP钢最早于1983年由瑞典SSAB钢板有限公司实现量产。 看来,合金元素的添加和材料中的物相比例,对钢材的性能影响巨大。如何控制分析材料中的元素含量及其分布呢?看看下面这些分析仪器的身手吧。岛津PDA 岛津PDA系列产品,即岛津光电发射光谱仪(行业内称直读光谱仪),包括PDA-5500、PDA-7000、PDA-8000,可快速测定固体金属样品的元素组成,广泛应用于钢铁、铸造、有色、汽车、机械加工等众多行业,提高对冶炼工业和机械加工工业的工程管理分析、原材料验收及产品出厂鉴定分析等能力。 岛津X射线荧光光谱仪岛津MXF-2400型X射线荧光光谱仪,是适合工业分析的多道同时型分析装置。采用4KW分析技术,特别适合从高含量到微量元素的全面分析。具有很好的长期稳定性和快速分析能力。在钢铁、有色金属和水泥获得广泛应用。岛津专利的背景基本参数(BG-FP)法,支持固定道的单标样定量分析,进一步扩展了仪器的应用范围。 岛津电子探针EPMA-1720电子探针(EPMA: Electron Probe Microanalyzer)利用高能(典型的加速电压为1~40kV)的聚焦电子束(典型的电子束直径为1μm 或更细)照射试样的表面,从而在微米级的区域内激发出大量携带着各种信息的量子信号,如用于定性、定量分析的特征X 射线,用于形貌观察的二次电子,用于利用有效原子序数进行成分分析和形貌分析的背散射电子,用于价带电子结构研究的阴极发光等等。结合电子束扫描和/或样品台扫描,电子探针还可以对样品的表面进行数十微米至10 厘米的区域的扫描分析,可以提供此区域内的元素成分定性、定量分析及其分布的信息。 新品电子探针EPMA-1720 欲详细了解仪器信息,请致电800-810-0439。
  • 工信部:生产重点新材料且应用于仪器等产业,可申请保费补贴
    2022年1月26日,工业和信息化部办公厅 银保监会办公厅联合发布关于开展2021年度重点新材料首批次应用保险补偿机制试点工作的通知。该通知指出,生产《重点新材料首批次应用示范指导目录(2019年版)》内新材料产品,且应用于先进交通高端检测仪器等13条重点产业链,并于2021年1月1日至2021年12月31日期间投保重点新材料首批次应用综合保险的企业,符合首批次保险补偿工作相关要求,可提出保费补贴申请。通知正文如下:工业和信息化部办公厅 银保监会办公厅 关于开展2021年度重点新材料首批次应用保险补偿机制试点工作的通知根据《关于开展重点新材料首批次应用保险补偿机制试点工作的通知》(工信部联原〔2017〕222号)要求,为做好2021年度重点新材料首批次应用保险补偿机制试点工作,现就有关事项通知如下:一、生产《重点新材料首批次应用示范指导目录(2019年版)》内新材料产品,且应用于工业母机、5G新一代信息技术、生物医药和高端医疗装备、新能源和智能网联汽车、农业机械、稀土稀有金属、绿色低碳重大技术装备、北斗导航系统推广应用、安全可靠打印机、先进交通高端检测仪器、工业机器人、图像传感和MEMS传感芯片及制造工艺、元器件仿真软件等13条重点产业链,并于2021年1月1日至2021年12月31日期间投保重点新材料首批次应用综合保险的企业,符合首批次保险补偿工作相关要求,可提出保费补贴申请。承保保险公司符合《关于开展重点新材料首批次应用保险试点工作的指导意见》(保监发〔2017〕60号)相关要求,且完成重点新材料首批次应用保险产品备案。二、申请保费补贴的产品应由新材料用户单位直接购买使用,用户单位为关联企业及贸易商的不得提出保费补贴申请。原则上单个品种的保险金额不低于5000万元。三、已获得保险补贴资金的项目,原则上不得提出续保保费补贴申请。用于享受过保险补偿政策的首台套装备的材料不在本政策支持范围。四、请各地工业和信息化主管部门和有关中央企业组织本地区或所属企业做好申报工作。保费补贴申请材料具体要求见附件,申报形式采用线上申报,网址https://xclcygx.miit.gov.cn。五、有关单位要严格把关,认真组织做好初审工作,现场核查申报材料的真实性,杜绝骗保骗补等行为,确保财政资金使用效果。初审意见请于2022年2月28日前报送工业和信息化部(原材料工业司)。初审中发现申报企业存在弄虚作假等行为的,省级工业和信息化主管部门要向社会通报,并按规定实施惩戒。六、工业和信息化部、银保监会将视情组织开展现场抽查,发现存在骗保骗补等行为的申报企业,将向社会通报曝光并按规定实施惩戒,同时暂停该地区或中央企业下一年度首批次保险补偿申报工作。对发现存在违法违规行为的承保保险公司,将依照有关规定采取监管措施。联系方式:工业和信息化部(原材料工业司) 鞠伟 010-68205770 刘一浪 010-68205565银保监会(财产保险监管部) 薛雨 010-66286575线上申报系统技术服务 王小军 010-88559177附件:2021年度新材料首批次保费补贴资金有关材料要求.pdf《重点新材料首批次应用示范指导目录(2019年版)》.pdf
  • 高校人才引进看“帽子”:是否“四青”,待遇天壤之别
    人才都有“帽子”,那没有“帽子”的算什么呢?  37岁的陆涛(化名)今年暑假奔走于沪上多所高校,打听人才引进的流程和相关待遇。这位任教于京城一顶级名校的年轻学者正考虑跳槽。“我头上没有‘帽子’,在我们这样的大学,有‘帽子’的才称得上人才,没‘帽子’的简直有点不是人了。”  陆涛所说的“帽子”,指的是目前中央各部委和单位出台的形形色色的人才计划。从中组部的“千人计划”、“青年千人”到教育部的“长江学者”、“长江青年”,再到国家自然科学基金委的“杰青”、“优青”以及中科院的“百人计划”̷̷初步统计,约有20多种,不一而足。  对接即将启动的“双一流”建设计划,各地纷纷推出建设高水平大学或一流学科建设的方案,与之勾连的就是人才引进大战已经提前打响——  这无形中让一些学者焦虑不已,有“帽子”的身价倍涨,没帽子的今后咋办?  有没有“帽子”,待遇“天壤之别”  陆涛这次来上海高校打听,得到的答复让他哭笑不得。  一所高校分管人事的负责人给他出了主意:“先回去,尽快弄顶‘帽子’后再来。”因为,如果弄不到“帽子”,就不符合该校引进人才的“硬杠杠”,享受不了引进人才的待遇。即便勉强“转会”成功,一年的薪资也只有10多万元,待遇还不如陆涛目前所在的北京某高校。  可陆涛说,他之所以考虑到上海发展,就是希望在这里解决“帽子”问题。  有“帽子”学者和没“帽子”学者之间的待遇差距,用华中科技大学教授薛宇的话来说,现在简直是“天壤之别”。  以武汉地区几所重点高校为例,普通的教授招聘,科研启动经费一般不超过100万元。可如果入选的是“青年千人”,无论是工资待遇还是科研启动经费,都至少可以翻番,有时甚至可以翻几番,例如启动经费有的可以达到500万以上。而如果引进的是国家“杰青”,那么无论是年薪还是科研经费都会更高。  就在去年,东莞理工学院就曾开出高价全球揽才,其中,对国家“杰青”、教育部“长江学者”给出基础年薪130万元,住房补贴250万元的优厚待遇。  据悉,由于“青年千人”能够从国家直接获得较多的经费,因此虽则建设“双一流”的战鼓擂响,许多高校目前出台人才引进计划,甚至只考虑招聘头上有“帽子”学者。  38/40岁和45岁,成为两道“分水岭”  有“帽子”的人才身价倍增,无形中让一些目前还没有拿到“帽子”的学者压力陡增,“奔四焦虑”和“45岁焦虑”随之开始蔓延。因为,高校目前公认的几大高级别的人才计划,对申报者的年龄都有限制。比如,  国家“青年千人”申报者年龄不超过40周岁   申报国家“优青”的,一般男性不超过38周岁,女性不超过40周岁   申报“长江学者”,理工科领域一般不超过45周岁(人文社科类不超过55周岁)   申报“青年长江”,理工科不超过38周岁(人文社科类不超过45周岁)  从年龄轴来看,38/40岁和45岁,是能否成为“人才”的两道分水岭。  而记者在采访中了解到,这种“年龄焦虑”,实际上和学界公认的“帽子链”评价体系有关。  薛宇介绍,国家自然科学基金委的一位负责人曾披露过一些数据并指出,自国家“杰青”评审启动后,近年来入选中国科学院或工程院的院士,绝大多数都是国家“杰青”获得者。这位负责人的本来意图应该似乎想说明国家“杰青”项目对科学家成才很有帮助,但传到学界的信号却无形中有了偏差。更多学界人士对此的解读是,今后想参评院士,先要拿下国家“杰青”。而由于国家“杰青”竞争激烈,所以2012年当国家自然科学基金委首次推出“优青”项目后,学界中人又揣测,先要申请并拿下“优青”,这就相当于在“杰青”的路上排上了队。  就在今年8月4日,国家基金委公布2016年度国家杰青基金建议资助名单。此后,学者喻海良就把他的新观察写入其在科学网的博客:今年的国家“杰青”中,有接近一半是“四青人才”的成员。  所谓“四青”,就是目前“国家千青”、“优青”、“青年长江”、“万人拔尖”四大人才计划的统称。  但他认为,这一现象可以理解为,国内对优秀人才持续资助,让强者更强。  正确看待“帽子链”现象,不妨多一些淡定  在一些学者看来,如果“帽子链”的说法可以成立,那么与之相应的另一种“倒推逻辑”也可以成立:如果一名学者45岁前没有入选高级别的人才计划,那么就意味着在学术这条路上基本没有机会再出头。  “现在的一些高校,有部分教师甚至学院院长认为,一名学者到45岁还没有拿到帽子的,基本就该急流勇退、靠边站了。”沪上一所985高校的科研处处长谈及这一点,很是感慨。  从他手中的一些统计数据看,该校过去几年承担的863、973国家级课题,真正挑大梁的学者,很多人的年龄都超过45岁。  毫无疑问,这批年龄在四、五十岁,有学术经历、人脉和一些项目管理经验的学者是今后承担国家重点研发计划的主力。“如果任凭‘45岁焦虑’蔓延,打击这部分学者的积极性,那么最后遭受损失的是学校和国家。”  有学者在接受采访时坦言,国家出台各种人才计划,本来的意图是支持基础研究,让一批年富力强的科研工作者能够安心学术。可这些年,学者头上的“帽子”却和职称晋升以及各种评奖挂钩,各大名校也掀起抢“帽子”的竞争,相互攀比“帽子”的数量和等级——显然,这违背了各类人才计划出台时的“初心”。  不过,谈及现在学界上演的“帽子焦虑”现象,薛宇倒表现出乐观、淡定的一面。从国家层面到各地以及各高校,确实都在出台形形色色的人才计划。  “随着‘帽子’越来越多,今后人人都有‘帽子’,结果就是‘帽子’贬值,最后对学者的评价,还是回到学术实力的比拼上。”
  • 二月二开好头,初春新气相 | 毛细管柱买满即赠!
    春风渐暖春天已经来了今天是农历二月二龙抬头 我们开个好头“剪”去旧的毛细管柱换个新气相“初春新气相”毛细管柱买赠活动拂面而来买满即赠配适耗材快来看看吧~01活动时间即日起-2022年3月31日02活动对象全体终端用户03具体活动内容月旭科技品牌全线气相毛细管柱实际成交总金额达5000元即可获赠气相色谱配件:0.53mm或0.32mm石墨垫两者任意组合10个+气相进样隔垫任选1包(赠品规格请查看下文)实际成交总金额达8000元即可获赠气相色谱配件+实验室耗材:0.53mm或0.32mm石墨垫两者任意组合10个+气相进样隔垫任选1包+透明样品瓶套装100pk+棕色样品瓶套装100pk;(赠品规格请查看下文)实际成交总金额达10000元即可获赠气相色谱配件+实验室耗材+可选礼品:0.53mm或0.32mm石墨垫两者任意组合10个+气相进样隔垫任选1包+透明样品瓶套装100pk+棕色样品瓶套装100pk+博柏利香水/YSL小金条口红任选其一;
  • 河北村民井中抽出铁红色水 近700只鸡饮后死亡
    沧县张官屯乡小朱庄一名村民,在村旁的南排河大坝上建起一个简易洗车场,本想就近利用地下水源为过往的车辆冲洗,没想到自备井一打开,抽上来的水散发着异味,放置片刻便呈现出刺眼的铁红色,根本就没法使用。而在洗车场附近的一家养殖场,近 700只鸡因饮用这样的地下水而集体死亡。昨日,记者来到小朱庄进行调查走访。   抽出的地下水呈铁红色   在小朱庄村东南方向的南排河大坝北侧,当地一名村民建起一座钢结构的简易房用来当洗车场,简易房西侧用旧砖砌的地面尚未完工,地上放置着一口农村常见的粗瓷大水缸。“这缸里的水就是从地下抽上来的,你瞅瞅是啥颜色的呀?”一位老者指着水缸底部一洼浊水让记者看,水色果然如村民所说呈现出铁红色,就像刚刚泡好的浓茶一般。在水面上方,水缸壁则泛起水分蒸发后留下的白一圈、红一圈的印痕。“水刚抽上来时散发着一股刺鼻的臭味,过不了多久就变成了铁红色,这样的水怎么给人冲车呀?”一名村民告诉记者,看到抽上来这样的水,洗车场干脆没有营业就关了门。记者小心翼翼地用空矿泉水瓶罐了满满一瓶刚刚抽上来的地下水,拿在手中不大一会儿工夫,瓶中的水就呈现出了浓郁的铁红色。   一位朱姓村民指着大坝下一条水色墨绿的沟渠非常气愤地说,这些污水都是建新化工厂排出来的,“这个化工厂建了20多年了,村子周边的地下水都被污染了。我到环保部门测了一下地下水的成分,监测人员说里面含有0.0096mg/L的挥发性酚、0.014mg/L的硝基苯和3.15mg/L的苯胺,这些都是有毒的化学物质,村民们每天都住在这样的环境里能不生病吗?”   近700只鸡饮用后死亡   从洗车场向东走几百米,在大坝以南有一家养殖场,养殖场主人周大姐同样也是“谈水色变”。   跟随带路的几名村民穿过两排鸡舍中间一片刚刚冒出幼芽的蒜畦,记者看到养殖场里也有一眼自备井。   “这口井是去年夏天才打的,有30多米深,主要是夏天天热时喷淋成水帘给鸡棚降温用。”周大姐说,她在鸡棚中间种植了一些蔬菜,去年还曾用从井里打上来的地下水浇菜,但是今年肯定不会再这样做了。“春节前后,冷得要命,村里的深机井通往养鸡场的水管被冻住了,咱不能看着鸡们渴死吧,就从自己打的机井里抽出水来给鸡喝。”周大姐说,令她万万没想到的是,刚进的一批雏鸡和一些成品鸡先后出现了拉稀现象,随后近700只鸡相继死亡。“让人心疼呀,都是地下水惹得祸,今后说什么也不敢再给鸡喝了。”   大坑里填满了化工废料   走出养殖场,村民们又带领记者来到与小朱庄相邻的北蔡庄东北角的一个大坑旁。住在大坑西侧、北蔡庄的一位村民介绍说:“原来,这个大坑要比现在大得多、深得多,建新化工厂生产完的废渣都拉到这里垫了坑,废渣上面又垫了石灰粉再垫上泥土,就是现在这个样子了。”记者看到,大水坑内是一潭死水,水呈酱油色,在一段坍塌的坑壁上,可以清楚地看到层次分明的泥土与石灰粉的分界线。“我也让人测了一下北蔡庄大坑里水的成分,里面含有0.0024mg/L的挥发性酚和1.74mg/L的苯胺。”朱姓村民说。“不光北蔡庄的大坑里垫着化工废渣,我们村周边的很多池塘、沟渠里都曾看到过同样的废渣,只是随着时间的推移,这些化工废渣都被埋到了地下。”一位村民说,当地上年纪的村民都称化工厂的化工废料为“铁泥”,很多人都知道十几年前这些“铁泥”都随意倾倒进沟塘坑渠。   记者在返程途中发现,在小朱庄周边的临近村庄,一些小化工厂的烟囱里滚滚的黑烟正冲向空中,刺鼻的异味让人喘不过气来。“这几年我们村已经有30多人死于各种癌症,污染再不治理就没法活啦!”此时,村民们的话语言犹在耳,令人痛心。
  • 德国Eltra(埃尔特)元素分析仪助力邢台钢铁技术中心
    前言钢铁行业是以从事黑色金属矿物采选、黑色金属冶炼加工等工业生产活动的工业产业,是最重要的基础工业。近年来,钢铁企业不断改进和提高技术水平,在环保、节能等方面提高装备水平,降本增效的同时向高质量发展进军。德国Eltra(埃尔特)走进邢台钢铁技术中心,看看钢铁企业是如何积极地向高质量发展阶段迈进的。 6月 14日,烈日炎炎,绿树成荫,德国Eltra(埃尔特)区域经理魏广京先生与工程师钱斌先生一同来到有着“邢国故地、襄国故都”之誉的邢台,探访邢台钢铁技术中心的负责人赵主任。共同商讨钢样及铁水中的元素检测技术与方法优化。钢铁化验室隶属于理化检验中心,是邢钢的质量控制部。主要承担公司的铁水、钢水、以及渣样、钢产品的检测工作。现有管理及检测人员70余名。钢铁化验室配备了检测仪器共计是二十余台套,其中有X-荧光光谱仪, ICP光谱仪,以及德国埃尔特的红外碳硫分析仪和氧氮氢元素分析仪,配套的服务设备有制渣、洗样机、风动分样等一些简单的取制样设备。邢钢理化检验中心建立了一个质量管理体系,在2005年通过的CNAS认可,钢铁化验室秉承”客观公正,方法科学,数据准确,服务热情”的计量方针来展开各项检测工作。 据赵主任介绍,检验中心有四台德国Eltra(埃尔特)的碳硫元素分析仪CS-800和一台氧氮氢分析仪ONH-2000。目前检测方式分为两种,一种是碳硫元素分析,一种是氧氮氢元素分析。碳硫元素分析又分为两种,一种是测量铁水里的碳硫元素含量,另一种是测量钢样的碳硫元素含量。铁水的样品主要经过预脱硫处理,对0.010以下的硫元素进行分析,钢材样品主要是做一些光谱分析的对比,从0.01到1.0,所有的碳含量都覆盖。氧氮氢元素分析则是分析各种类别的钢品种,氧含量从0.04ppm到0.10%ppm全都包含,氮含量是从10ppm到0.2ppm,有一些不锈钢的到0.2ppm。这四台仪器测量数据是比较稳定的,相对来说操作也比较简单,从2007年一直用到现在将近12年了,赵主任对德国产品的品质和Eltra(埃尔特)品牌给予了高度认可。在售后服务方面,跟工程师的沟通也是比较顺畅的,一般通过电话就能把潜在的一些小的问题解决掉,除非是一些大的问题需要工程师来现场帮助解决。 德国Eltra(埃尔特)专注于元素分析30多年,从最初的碳硫分析仪,扩展到氧氮氢分析仪、热重分析仪的研究制造,Eltra已经成为元素分析领域的佼佼者,其产品广泛应用于钢铁、采矿、汽车、航空、煤炭、建筑材料及高校、研究机构。 检测固体样品内碳和硫分是实验室和生产常见的应用。根据样品材质的不同,应选用不同的分析仪。钢铁、铸铁、难熔金属、陶瓷等无机样品具有相对较低的碳含量(从ppm级至10%),并且一般情况下不能燃烧。样品中的碳硫元素只有在2000℃以上才可以完全释放,可选择高频感应炉碳硫分析仪。CS-800适用于同时检测无机样品里的碳和硫元素,可以快速精确地分析不同样品。
  • 赫施曼助力铌铁中钛含量的测定
    铌铁是冶金行业冶炼钢的重要原材料,铌作为合金元素加入钢中能显著改善钢的焊接性能。铌与钛,钒、锆等元素相似,能对钢的性能产生良好的影响。钛作为铌铁中有益元素,准确测定其含量对炼钢质量具有重要意义。根据GB/T 3654.8-2023,铌铁中钛含量的测定方法是:变色酸光度法和二安替比林甲烷光度法。其中变色酸光度法原理为:试料用氢氟酸和硝酸分解,冒硫酸烟,在草酸溶液中,变色酸与钛形成红色络合物,于波长475nm处测量其吸光度。方法如下: 1.将试料(见表1)置于100mL聚四氟乙烯烧杯或100mL铂皿中,用赫施曼HF型瓶口分配器加入5mL氢氟酸(ρ=1.15g/mL),滴加5mL硝酸(ρ=1.42g/mL),低温加热至试料完全溶解,用瓶口分配器加入15mL硫酸溶液(1+1),继续加热至冒硫酸烟并保持约4min。2.取下稍冷,将试液移入预先盛有50mL草酸溶液(50g/L)的250mL烧杯中,再以100mL草酸溶液(50g/L)分次洗涤聚四氟乙烯烧杯或铂皿,洗液合并于烧杯中,溶液加热保持不沸至澄清。3.取下稍冷,用Miragen电动移液器加入2mL过氧化氢(30%),加热微沸30s取下,冷却至室温。将试液全部移入200mL容量瓶中,以40mL草酸溶液(50g/L)分次洗涤烧杯,洗液合并于容量瓶中,用水稀释至刻度,混匀。4.按表1移取试液和随同试料空白各两份,分别置于50mL容量瓶中,以下分别按5和6进行。5.显色溶液:用瓶口分液器向一份试液和随同试料的空白溶液中补加草酸溶液(50g/L)至30mL,用Miragen电动移液器加lmL亚硫酸钠溶液(200g/L)混匀,放置2min,加入6mL变色酸溶液(50g/L),用水稀释至刻度,混匀。6.参比溶液:向另一份试液和随同试料的空白溶液中补加草酸溶液(50g/L)至30mL,用Miragen电动移液器1mL亚硫酸钠溶液(200g/L),以水稀释至刻度,混匀。7.将部分显色溶液移入适当的比色皿中,以各自的参比溶液为参比,于分光光度计波长475nm处测量其吸光度。用显色溶液的吸光度减去随同试料空白试验的吸光度后,从校准曲线上查出相应的钛量。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的液体移取。其中ceramus痕量分析瓶口分配器,采用极耐腐蚀的材质,以及可以阻断试剂挥发进主机的专利密封阀设计,使其适用于除氢氟酸以外的几乎所有溶剂的液体分配工作,包括浓硝酸、浓盐酸、硫酸和王水等强腐蚀性或挥发性的特殊试剂。赫施曼还有氢氟酸专用瓶口,用于氢氟酸的便捷分液。实验室移取几微升到几毫升的液体,一般采用移液器。Miragen电动移液器,接头和内腔为不锈钢,相对于常见的橡胶和塑料,更适合有机试剂。电枪的数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。
  • 扫描电镜的衬度信息与表面形貌像——安徽大学林中清33载经验谈(15)
    【作者按】衬度指的是图像上所存在的明、暗差异,正是存在这种差异才使得我们能看到图像。同是明、暗差异,衬度与对比度的不同在于:对比度是指图像上最亮处和最暗处的差异,是以图像整体为考量对象;衬度是指图像上每一个局部的亮、暗差异,它是以图像上的局部细节为考量对象。形貌衬度、二次电子衬度和边缘效应、电位衬度、Z衬度、晶粒取向衬度是展现扫描电镜表面形貌特征的几个主要衬度信息。形貌衬度是形貌像形成的基础,其余的衬度信息叠加在这个基础之上做为形貌像的重要组成部分,充实及完善形貌像所展现的表面形貌信息。依据辩证的观点,这些衬度信息各有其适用领域,相互之间不可能被完全替代。即便是形貌像的基础“形貌衬度”也不具有完全代替其余任何一个衬度的能力。对任何衬度呈现的缺失,都会使得表面形貌像存在程度不同的缺陷,使仪器分析能力受到一定程度的影响,这些都将在下面的探讨中通过实例予以充分的展示。在前面经验谈中有大量的实例及篇幅对以上衬度予以介绍。本文是对过去零散的介绍加以归纳总结,形成体系。下面将从形貌衬度开始,通过实例,依次介绍二次电子衬度、边缘效应、电位衬度、Z衬度以及晶粒取向衬度的成因、影响因素、所展现的样品信息以及应用实例和探讨。一、形貌衬度形貌衬度:呈现样品表面形貌空间位置差异的衬度信息。影响因素:探头接收溢出样品的电子信息的角度。形成缘由:要充分表述表面形貌三维空间的位置信息,形成图像的衬度应当包含两个基本要素:方向和大小。物体图像的空间形态取决于人眼观察物体的角度:侧向观察是立方体,顶部观察为正方形。这是由于该角度包含着形成图像空间形态的两个基本要素:方向和大小。扫描电镜测试时形貌衬度的形成也是同样道理。形貌衬度的形成与探头接收溢出样品的电子信息(二次电子、背散射电子)的角度密切相关。该接收角度发生改变,形貌衬度也将发生变化,形貌像就会跟着出现变动。接收角对形貌像的影响并不单调,而是存在一个最佳范围。不同厂家的不同类型扫描电镜,由于探头位置设计上的差异,各自都存在一个最佳工作距离以形成最佳的信息接收角,呈现出各自所能表达的样品表面形貌的最大空间形态。样品的倾斜会对接收角产生较大的影响,因此倾转样品可以发现表面形貌像的空间信息也会发生改变。任何测试条件的改变都不会带来唯一且单调的结果,而是遵循辨证法的规律,即对立统一、否定之否定和量变到质变。选择测试条件时,要针对样品特性及最终目的做到取舍有度。形貌衬度是形成形貌像的基础,但并不是形貌像的全部。形貌像中许多细小的形貌细节,会受到探头所接收的电子信息(SE和BSE)溢出区大小的影响。电子信息和电子束的能量越大对这些细节的影响也越大,当量变达到一定程度就会影响某些细节的分辨,从而对表面形貌像产生影响。要形成充足的形貌衬度,又该如何选择电子信息接收角的形成方式?依据样品特性及表面形貌特征可分为:A)低倍,低于10万倍,呈现的形貌细节大于20纳米。此时,背散射电子很难完全掩盖这些细节信息,随着所需呈现的样品表面细节的增大,背散射电子对图像清晰度的影响也会减小,图像也将越渐清晰。样品仓内的探头位于样品侧上方,与样品和电子束共同形成较大的电子信息接收角。由该接收角形成的形貌衬度能充分呈现20纳米以上的样品表面形貌细节。随着工作距离、样品台倾斜和加速电压的改变,该接收角的变化幅度较大,图像所呈现的形貌变化也较为明显。镜筒内探头位于样品顶部,与样品和电子束在一条直线上。其对信息的接收角度主要形成于电子信息的溢出角,该角度较小,形成的形貌衬度也较小,不利于充分展现大于20纳米的形貌细节。工作距离、样品台倾斜以及加速电压的改变对接收角的影响较小,图像形态变化不明显。基于以上原因:低于10万倍,观察的样品表面细节大于20纳米。以样品仓探头为主获取的形貌像,空间形态更优异。B)高倍,大于20万倍,观察的形貌细节小于20纳米。表面形貌的高低差异小,形貌衬度也小,电子信息的溢出角度即可满足衬度的形成需求。此时,低角度信息的接收效果将是主导因素,低角度信息越多,图像立体感越强烈。背散射电子因能量较高对这些细节影响较大,必须加以排除。为充分呈现这类形貌信息,应采用镜筒内探头从样品顶部接收充足的二次电子,尽量排除溢出面积较大的背散射电子信息溢出区对样品细节的影响。此时形成形貌像的关键是采用小工作距离(小于2mm),以增加镜筒内探头接收到的低角度二次电子。实例展示及探讨:A )大于20纳米的细节,以样品仓探头为主(大工作距离)形成的形貌像,立体感强、细节更优异,形貌假象较少。B)样品仓探头获取的表面形貌像对工作距离的变化、样品倾斜、加速电压的改变都十分敏感,表面形貌像的形态随之改变也较为明显。镜筒探头位于样品顶端,改变以上条件对接收角的影响不大,形貌像的空间形态变化也不明显。 B1)改变工作距离对表面形貌像的影响(钴、铁、钨合金)B2)样品倾斜对形貌像立体感的影响B3)改变加速电压对形貌像立体感的影响(合金钢)C)小于10纳米的细节,形貌衬度要求较小,溢出样品的低角度电子信息就满足这类表面细节的呈现需求。此时如何避免样品中电子信息的扩散对形貌细节产生影响是首要选择,充分选用低能量的二次电子就显得极为关键。镜筒内探头因位置和结构的特别设计,使得它接收的样品信息以二次电子为主,是展现这类几纳米细节的首选。工作距离越小,镜筒内探头接收到更为丰富的多种角度的二次电子信息,对10纳米以下细节的分辨力最强。D)处于不同位置的镜筒内探头获取的形貌衬度也不相同。位于侧向的镜筒内(U)探头相较于位于顶部的镜筒内探头(T),可获取更多的低角度信息,形貌像的立体感更强。结论:形貌衬度是形成形貌像的基础,探头接收形貌信息的角度是形成形貌衬度的关键因素。不同大小的形貌细节要求的形貌衬度不同,该接收角的形成方式也不同。低倍时,形貌像的空间跨度大,要求的形貌衬度也大,需探头、样品和电子束之间形成一定的角度才能获得充分的形貌像。该角度有一个最佳值,探头位置不同,这个值也不同,形成的形貌像空间感也存在差异。高倍时,形貌空间跨度小,低角度电子信息即可满足形貌衬度的形成需求。此时避免电子信息的扩散对形貌像的影响就极为关键,充分获取低角度二次电子将成为测试时的首选。形貌衬度虽是形成表面形貌像的基础,但并不是唯一因素,要获取充足的形貌像,其他衬度的影响也不可忽视。下面将对形成形貌像的其他衬度加以探讨。二、二次电子衬度和边缘效应一直以来的主流观点都认为:二次电子衬度和边缘效应是形成扫描电镜表面形貌像的主导因素。各电镜厂家都把如何充分获取样品的二次电子做为形成高分辨形貌像的首选,对探头位置的设计,也以充分获取二次电子为目的来展开。这一理论体系的形成依据是:1. 二次电子的溢出量与样品表面斜率相对应,在边缘处的溢出最多。而表面形貌像可看成是不同斜率的平面所组成,故二次电子衬度和边缘效应含有充分的样品表面形貌信息。2. 二次电子能量低,在样品中扩散小,对样品表面那些极细小的细节影响小,分辨能力强,图像清晰度高。 但实际情况却往往于此相反。如下图:右图中二次电子衬度及边缘效应充足,但形貌信息相较左图却十分的贫乏,并在形貌像上带有极为明显的假象。为什么会出现这种与目前主流观点完全不一样的结果?原因何在?这还是要从扫描电镜形貌像的形成因素说起。表面形貌像呈现的是表面形貌高低起伏的三维信息,图像中必须含有两个重要的参数:方向与大小。表述一个斜面,需提供与该斜面相关的两个重要参数:斜率大小和斜面指向,这是向量的概念。二次电子衬度对斜率大小的呈现极为明显,亮、暗差异大;却对斜面指向的呈现极差。对形貌像来说,斜面指向形成的衬度差异对形成形貌像往往更重要。因此由二次电子衬度和边缘效应形成的图像只具二维特性,无法呈现形貌像的三维特征,失去形貌细节也在所难免。探头对样品信息的接收角所形成的形貌衬度能充分表达形貌像的指向差异。因此下探头即便接收的背散射电子较多,对斜率大小的表现较差,但呈现的形貌形态却更充足。任何信息都有其适用范围,在适用范围内总扮演着关键角色。二次电子衬度和边缘效应虽然对斜面指向不敏感,但对斜率大小却极度敏感,该特性能强化平面和斜面区域整体的衬度差异,有利于对区域整体进行区分。区域在形貌像中占比越小,被区分的优势就越大。需要注意:此时区域之间的衬度表述,并非该区域成分和密度的不同,而是各区域中斜面数量和斜率大小的差异。观察区域在图像中面积占比越低,区域中的形貌细节越难分辨,采用形貌衬度对区域进行区分也越难。此时,二次电子衬度和边缘效应对区域进行区分的作用也就越大,如下例:以上是钢铁表面的缺陷,在500倍时采用下探头是无法区分A、B两个区域有哪些不同,很容易被误认为是两块完全相同的平面。但是采用上探头(二次电子衬度优异)发现这两个区域存在非常明显的不同,放大到2万倍,可见区域A和B在形态上的差别巨大,A区域比B区域的起伏大。二次电子衬度和边缘效应的强弱可通过探头和工作距离的选择加以调整。对这一衬度的合理利用,可拓展对样品形貌特征进行分析的手段,获得更充分的形貌信息。此外,充分的运用二次电子,还有利于利用“电位衬度”来扩展对样品表面形貌信息进行分析的方法。三、电位衬度电位衬度:样品表面由于存在少量荷电场,对样品某些电子信息的溢出量产生影响而形成的衬度。影响因素:由于荷电场较弱,受影响的主要是二次电子,背散射电子的溢出量受影响较小。实用方向:样品表面存在有机物污染、局部氧化或晶体结构的改变。这些变化采用Z衬度很难观察到,而形成荷电场强度及位置的些微差异所产生的电位衬度却较明显。该特性在进行样品失效分析时对找出性能改变的区域,作用极其明显。实例展示及分析:A)智能玻璃表面的有机物污染表面镀膜的智能玻璃,通电后总是有明显的光晕出现。该部位用扫描电镜进行微观检测。结果如下:镜筒内(上)探头,SE为主,Z衬度较差。相较于样品仓(下)探头,BSE为主,出现以上类似Z衬度所形成的光斑图案的几率和强度要低,但结果却完全与常规认识相背离。原因何在?从探头的改变对结果影响判断,该图案不是Z衬度所形成,否则下探头图案将更为明显。图案形状如同液体滴在块体上所形成,怀疑为有机液滴落在薄膜表面,造成该处漏电能力减弱,形成局部的弱荷电场,影响二次电子的溢出而酿成电位衬度。背散射电子未受到荷电场的影响,薄薄的液滴层形成的Z衬度又小,故下探头无法呈现反映液滴污染的任何电子信息。能谱分析该处的碳含量略高一些。客户清洗设备,排除任何有机污染的因素,该现象消失。B)铁、钴、镍合金框架表面的氧化斑采用能谱分析颗粒物部位,多出硅和氧的成分信息,说明这里可能存在夹杂物,但含量极少用Z衬度很难区别。而硅、氧造成了其存在区域的漏电能力下降,使得该处的电位衬度极为明显。由此我们可轻松找到材料的缺陷点。通过以上实例可见,材料的缺陷,往往会由于工艺问题使某些部位局部被氧化或污染。这类缺陷采用Z衬度往往很难观察到,而采用电位衬度就会很容易找到。只有在大工作距离下,才可轻松切换样品仓和镜筒探头以分别对某个区域进行观察,针对形貌像所表现出的电位衬度差异,往往很容易找到样品的失效点并分析原因。二次电子和背散射电子都有其善于呈现的衬度信息。二次电子在二次电子衬度、边缘效应和电位衬度的展现上优势明显,上面已经充分的探讨。背散射电子在Z衬度和晶粒取向衬度(电子通衬度ECCI)的表现上更加的优异,下面将分别加以介绍。四、Z衬度Z衬度:由样品各个组成相的平均原子序数(Z)及密度差异所形成的图像衬度。形成因素:相同条件下,SE和BSE的溢出量和散射角会随组成样品的原子序数及密度的不同而不同,造成探头对其的接收量出现差异而形成Z衬度。背散射电子在量的改变上较二次电子更强烈,因此形成的Z衬度更大,灰度差异更明晰。实例展示并探讨:A)高分辨扫描电镜的样品仓探头比镜筒内探头接收到的背散射电子更多,形成的图像中Z衬度更明显。B)样品仓、镜筒、背散射电子探头的Z衬度结果对比。合金钢,能谱图中1、2、3三个区域的色彩,绿色:铁;红色:钨;绿黄:铁、铬。拟合下探头图像所展现的灰度差。低加速电压下,三种探头所形成的Z衬度差异将减弱。五、晶粒取向衬度晶粒取向衬度:晶体材料的晶粒取向差异会造成探头获取的电子信息出现差别,形成的衬度。与EBSD表述的信息有一定的对应性,但对晶粒取向变化的敏感度要远低于EBSD。也称“电子通道衬度”(ECCI),但命名原因及依据不明。形成缘由:从晶体表面溢出的电子信息会随晶粒取向的差异而不同。表现为信息的溢出量及取向上出现差别,使处于固定位置的探头所接收到的电子信息在数量上出现区别,形成表述晶粒取向差别的衬度。背散射电子受晶粒取向不同而出现的衬度差 异较二次电子更为强烈,这与两种电子信息在Z衬度上的表现基本一致。实例展示及探讨:A)zeiss电镜采用三种探头模式观察钢的表面(倍率:×5K)B)日立Regulus8230样品仓和镜筒探头的各种组合结果六、结束语扫描电镜表面形貌像是由呈现表面各种形貌信息的形貌衬度、二次电子衬度及边缘效应、电位衬度、Z衬度及晶粒取向衬度共同形成。其中形貌衬度是形成形貌像的基础,其余衬度叠加在形貌衬度之上,形成完整的表面形貌像。形貌衬度:该衬度的缺失,形貌像将只具有二维特性。形成形貌衬度的关键在于探头接收样品信息的角度,而样品信息(SE\BSE)的能量会对形貌细节的分辨产生影响。背散射电子,因能量较高,在样品中扩散范围较大,对直径小于几十纳米的细节或10万倍以上高倍率图像的清晰度影响较大,对直径十纳米以下细节的辨析度影响极大。虽然二次电子能量较弱,但其对5纳米以下的样品细节或30万倍以上图像清晰度和辨析度还是有明显的影响。低密度样品,以上受影响的放大倍率阈值也会相应降低。探头对信息接收角度的形成方式应依据所需获取的样品信息的特性和样品本身特征来做出合理的选择。样品的表面形貌起伏大于20纳米,所需的形貌衬度较大,需要探头、样品和电子束之间形成一定夹角才能满足需求。背散射电子的扩散,不足以掩盖掉这些细节的展现,相对于形成充分的形貌衬度来说,处于次要地位。此时应选择大工作距离,充分利用样品仓探头对样品信息进行接收,再结合镜筒内探头接收的样品信息给予加持,才能充分展现样品的形貌特征。样品表面起伏越大,样品仓探头在形成形貌像中的占比也相应提高,才有利于充分获取样品的表面形貌信息,形成的表面形貌像也更为充盈。样品表面起伏小于20纳米,所需的形貌衬度较小,溢出样品表面的电子信息角度即能满足形成表面形貌像所需的形貌衬度。此时背散射电子对形貌细节影响将成为形成表面形貌像的主要障碍,必须加以排除。充分利用镜筒内探头,排除样品仓探头的影响将成为获取形貌像电子信息的唯一选择。此时,镜筒内探头能否充分获取低角度电子信息是形成形貌像的症结所在。在实际操作中,选择小工作距离及镜筒内探头的组合就极为关键。有些电镜厂家在物镜下部设置的低角度电子信息转换板,有助于镜筒内探头对低角度电子信息的接收,充分运用该转换板将使得表面形貌像的立体感更加充分,形貌信息更为充实。二次电子衬度与边缘效应:一直以来的主流观点都认为该衬度是形成表面形貌像的基础。但该衬度因缺失对斜面指向因素的呈现,故无法表现形貌像的空间位置信息。由其形成的形貌像对形貌斜面的斜率大小表现充分,而对斜面的指向却没有体现,故形貌像只具二维特性。该衬度容易与Z衬度相混淆而出现形貌假象,但也能够加强斜面区域的衬度,有利于低倍时对形貌不同但组成成分相近的区域进行区分,如多层膜的膜层分割等。电位衬度:该衬度是由样品表面形成的少量荷电场引起的电子信息溢出异常所形成。背散射电子能量较大,信息的溢出量不易受该荷电场影响,故不存在该衬度或存在的衬度值较小。利用不同探头在接收样品信息时,对电位衬度的呈现差异,可对样品中被污染、氧化或发生晶体结构改变而形成漏电能力出现变化的部位,进行区分及分析。这在样品的失效分析中意义重大。Z衬度:由样品组成相的平均原子序数及密度不同所形成的信息衬度。背散射电子从样品表面溢出的数量和角度受样品的组成成份和密度的影响较大,由其为主形成的表面形貌像中,Z衬度的差值更大,图像更锐利,边缘更明晰,但表面细节较差。以二次电子为主形成的形貌像,具有的Z衬度差值较小,图像锐利度不足但细节更丰富。晶粒取向衬度:晶体的晶粒取向差异所形成的信息衬度。主流的称谓是:电子通道衬度(ECCI),命名的原由不明。该衬度如同Z衬度,背散射电子对其的呈现更为明显。对各种衬度信息的充分认识,将有助于正确理解形貌像上各种形貌信息的形成缘由。是正确选择扫描电镜测试条件,获取充分且全面的表面形貌像的基础,必须加以重视。参考书籍:《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社 《显微传》 章效峰 2015年10月 清华大学出版社作者简介:
  • 氧氮氢分析仪如何测出钢铁中危害
    氧:钢中氧使钢的综合力学性能下降,氧含量高时易形成夹杂物,这类夹杂物主要是金属氧化物、硅酸盐、铝酸盐、含氧硫化物以及类似夹杂化合物,钢中夹杂物使钢在压延过程中产生裂纹并使钢材产生各向异性,降低钢的疲劳寿命,使钢的冲击韧性下降,钢的切削性变坏。因此,准确测定氧含量对改进工艺控制,改善钢的性能,提高钢的质量具有重要意义。氮:氮不能一概而论归结为有害气体元素,因为有些特种钢是有目的的加入氮;所有的钢均含有氮,其存在量取决于钢的生产方法、合金元素种类、数量及其加入方式,钢的浇注方式,以及是否有目的的加入氮。某种意义上说,钢中溶解氮破坏了钢微观结构的完整性,形成了钢的缺陷如铸坯表面气泡,气孔和微裂纹,使钢脆性增加,严重时造成漏钢事故。氢:当钢中氢含量大于2ppm时,氢在“鳞片剥落”现象中起重要作用,在滚轧和锻造后的冷却过程中出现内裂和断裂现象时,这种剥落现象一般更加明显。当铸铁中氢含量大于2ppm时,容易出现孔隙或者多孔性,这种氢造成的多孔性将造成铁的脆化,即“氢脆”。碧彦(上海)仪器技术有限公司也是德国布鲁克元素独家授权的气体元素分析仪的中国总代理和直读光谱仪,公司主要产品有提供直读光谱仪, 便携式直读光谱仪,布鲁克直读光谱仪,氧碳分析仪 碳硫分析仪,扩散氢分析仪在山东、陕西、河北、山西、北京、天津、内蒙古、辽宁、吉林、黑龙江、四川、重庆、云南、贵州、宁夏、甘肃、青海、新疆和西藏地区的总代理。为客户提供专业的布鲁克直读光谱仪和完善的服务是我们一直以来努力的目标和前进的动力。
  • 二维材料首现奇异“多铁性”状态,助力磁性数据存储设备开发
    美国麻省理工学院物理学家在单原子薄材料中发现了一种奇异的“多铁性”状态。他们的观察首次证实了多铁性可存在于完美的二维材料中。发表在最新一期《自然》杂志上的这一发现,为开发更小、更快、更高效的数据存储设备铺平了道路,这些设备由超薄的多铁性比特和其他新的纳米级结构组成。  研究作者、麻省理工学院物理学教授努格迪克称,二维材料就像乐高积木,不同组合会出现百变形状。“现在我们有了一个新的乐高积木:单层多铁体,它可与其他材料堆叠在一起,诱导出有趣的特性。”  实验证实,碘化镍在其二维形式中是多铁性的。更重要的是,这项研究首次证明了多铁有序可存在于二维中,这是构建纳米级多铁存储位的理想维度。  在材料科学中,“多铁性”指的是材料电子中任何属性在外场下的集体转换,如它们的电荷或磁自旋方向。材料可以表现为几种铁性状态中的一种。例如,铁磁材料是电子自旋集体沿着磁场方向排列的材料,就像向日葵向着太阳转一样。同样地,铁电材料由自动与电场对齐的电子电荷组成。  在大多数情况下,材料要么是铁电性的,要么是铁磁性的。它们很少能同时体现这两种状态。“这种组合非常罕见,”研究作者之一里卡多科明教授说。“即使对整个元素周期表都不加限制,也不会有太多这样的多铁材料生产出来。”  但最近几年,科学家们在实验室里以奇特的耦合方式合成了表现出多铁性的材料,既表现为铁电体,又表现为铁磁体。电子的磁自旋不仅可受磁场影响,还可受电场影响。  这种耦合的多铁性状态令研究人员十分兴奋,因为它具有开发磁性数据存储设备的潜力。在传统的磁性硬盘驱动器中,数据被写入快速旋转的磁盘上,磁盘上刻有微小的磁性材料域。悬浮在磁盘上的一个小尖端会产生一个磁场,它可以共同将域的电子自旋切换到一个方向或另一个方向,以表示编码数据的基本“位”——“0”或“1”。  尖端的磁场通常是由电流产生的,这需要大量的能量,其中一些能量可能会以热的形式损失。除了硬盘过热外,电流产生磁场和切换磁位的速度也有限制。科明和努格迪克等物理学家认为,如果这些磁性比特可由多铁性材料制成,它们就可使用更快、更节能的电场而不是电流感应磁场来切换。如果使用电场,写入比特的过程将会快得多,因为在电路中可在几分之一纳秒内产生场,这可能比使用电流快数百倍。
  • 铁基高温超导成果终结自然科学一等奖3年空缺
    图为赵忠贤研究组。 赵忠贤院士的两位研究生正在讨论实验数据。   正在举行的2013年国家科学技术奖励大会上,中国科学院物理研究所/中国科技大学&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质的研究&rdquo 获2013年度国家自然科学一等奖。   以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所/北京凝聚态国家实验室(筹)(以下简称&ldquo 物理所&rdquo )和中国科学技术大学(以下简称&ldquo 中国科大&rdquo )研究团队因为在&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质研究&rdquo 方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。   自2000年起,国家自然科学一等奖13年里有9次空缺,目前已连续空缺3年。1989年,物理研究所&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 曾获当年国家自然科学一等奖。   ■ 事实+   什么是&ldquo 铁基高温超导&rdquo ?   超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。   物理学家麦克米兰根据传统理论计算断定,超导体的转变温度一般不能超过40K(约零下233摄氏度),这个温度也被称为麦克米兰极限温度。   中国科学家首先发现了转变温度40K以上的铁基超导体,接着又发现了系列的50K以上的铁基超导体。   在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。   物理所和中科大的科学家们在铁基高温超导研究中引领了国际研究的热潮。1989年,物理研究所&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 就曾获当年国家自然科学一等奖。   五位获奖科学家成果丰硕   上个世纪九十年代中后期,国际物理学界倾向认为铜氧化物超导体能给出的信息基本上被挖掘殆尽,通过铜氧化物超导体探索高温超导机理的研究遇到了瓶颈,国际上的相关研究也进入低谷。但超导研究所的研究人员们一直坚持在高温超导研究领域默默耕耘。   这些年来,铁基超导体系不断产出优秀论文,引起了强烈的国际反响。物理所的靳常青找到了第三种全新的以LiFeAs为代表的111体系超导体,这对进一步探索高温超导的内在物理机制和提高超导转变温度都有重要的意义。   丁洪放弃了美国波士顿学院的终身教授职位,毅然回国后的第二天就投入到了铁基超导的研究当中。他首次在实验上提出了铁基超导体的能隙对称性,解决了这个曾在铜氧化物超导体中被长时间争论的问题。   任治安当时是赵忠贤组的主要成员之一,之前也是赵忠贤的博士生,直接与其他80后一起合成了一系列转变温度在50K以上的铁基超导体。   王楠林研究组当时有一员干将名叫陈根富,2007年10月回国加入该组后,即着手开展了LaFeAsO等铁砷超导材料的探索合成工作。他不但率先发现了41K的CeFeAs(O,F)新超导体,还首次生长出了一批高品质的超导单晶样品,推动了相关铁基超导机理的研究。   在五名获得国家自然科学一等奖的科学家背后,有着一支庞大的研究团队。他们反复强调说,自己只是中国科研人员中一个最最普通的集体。   截至2013年1月4日,铁基超导体的8篇代表性论文SCI共他引3801次, 20篇主要论文共SCI他引5145次。相关成果被众多国际知名学术刊物专门评述或作为亮点跟踪报道。   著名理论物理学家,美国佛罗里达大学Peter Hirschfeld教授说:&ldquo 一个或许本不该让我惊讶的事实就是,居然有如此多的高质量文章来自北京,他们确确实实已进入了这个(凝聚态物理强国)行列&rdquo 美国斯坦福大学Steven Kivelson教授说:&ldquo 让人震惊的不仅是这些成果出自中国,重要的是它们并非出自美国。&rdquo
  • 基于垂直架构的新型二维半导体/铁电多值存储器研究获进展
    二维层状半导体材料得益于原子级薄的厚度,受到静电场屏蔽效应减弱,利用门电压可对其电学性能进行有效调控。利用二维层状半导体材料构建的多端忆阻晶体管(Memtransistor)可以模拟人脑中复杂的突触活动,有望应用于未来非冯架构的神经形态计算等。此外,相比于平面构型,二维纳米功能材料通常具有开放且洁净的界面,使其能够进行任意垂直组装,可实现硅基半导体工艺所不能兼容的多层向上集成范式,从而在单位面积内沿z轴获得更高密度集成。因此,基于垂直架构的二维纳米电子学器件,已成为当前延续摩尔定律的重要研究方向之一。迄今为止,针对铁电二维材料忆阻晶体管的研究仍然匮乏,尤其缺失具有垂直构型的门电压可调的忆阻器件的研究,主要原因在于传统基于隧穿架构的二维忆阻器难以在垂直方向兼具更高性能和有效栅极调控特性。   近日,中国科学院金属研究所沈阳材料科学国家研究中心与国内多家单位合作,设计二维半导体与二维铁电材料的特殊能带对齐方式,将金属氧化物半导体场效应晶体管(MOSFET)与非隧穿型的铁电忆阻器垂直组装,首次构筑了基于垂直架构的门电压可编程的二维铁电存储器。11月17日,相关研究成果以A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory为题,在线发表在《先进材料》(Advanced Materials)上。   科研团队使用二维层状材料CuInP2S6作为铁电绝缘体层,利用二维层状半导体材料MoS2和多层石墨烯分别作为铁电忆阻器的上、下电极层,形成金属/铁电体/半导体(M-FE-S)架构的忆阻器;在顶部半导体层上方通过堆叠多层h-BN作为栅极介电层引入了MOSFET架构。底部M-FE-S忆阻器件开关比超过105,具有长期数据存储能力,且阻变行为与CuInP2S6层的铁电性存在较强耦合(图1)。此外,研究通过制备3×4的阵列结构展示了该型铁电忆阻器件应用于存储交叉阵列【crossbar array,实现随机存取存储器(RAM)的关键结构】的可行性(图2)。进一步,研究在上方MOSFET施加栅极电压,有效调控了二维半导体层MoS2的载流子浓度(或费米能级),从而对下方M-FE-S忆阻器的存储性能进行操控(图3)。基于上述成果,科研人员展示了该型器件的门电压可调多阻态的存储特性(图4)。   本研究展示的门电压可编程的铁电忆阻器有望在未来人工突触等神经形态计算系统中发挥重要作用,并或推动基于二维铁电材料制备多功能器件的开发。此外,该工作提出的MOSFET与忆阻器垂直集成的架构可进一步扩展到其他二维材料体系,从而获得性能更加优异的新型存储器。   研究工作得到国家重点研发计划“青年科学家项目”、国家自然科学基金青年科学基金项目/面上项目/联合基金项目、沈阳材料科学国家研究中心等的支持。图1.器件结构设计及两端铁电忆阻器的存储性能。a、器件结构示意图;b、器件的阻变行为;c、少层CuInP2S6的压电力显微镜相位和幅值图;d、器件在不同温度下的输运行为;e、存储器的数据保持能力测试;f、存储器开关比统计图。图2.铁电忆阻器存储阵列演示。a、二维铁电RAM结构示意图;b、CuInP2S6/MoS2界面的HAADF-STEM照片;c、3×4阵列的SEM图像;d、局部放大图;e、3×4阵列的光学照片;f-g、通过读取3×4阵列中每个交叉点的高阻态和低阻态编码的“I”“M”“R”的简化字母。图3.器件的可编程存储特性。a、器件结构示意图;b、MoS2层的转移特性曲线;c-d、异质结的能带结构图;e-f、通过施加门电压实现了对存储窗口从有到无的调控。图4.门电压可编程存储器的多阻态存储特性。a-d、器件在不同门电压下的存储窗口;e、器件的多阻态存储性能演示;f、栅极调控的耐疲劳特性。
  • 三聚氰胺“二次作恶”背后是权力不作为
    全国食品安全整顿工作办公会1月30日召开,全国食品安全整顿工作办公室主任、卫生部部长陈竺指出,在整顿高压态势下,仍有个别企业和个人置人民群众生命安全和身体健康于不顾,利欲熏心、顶风作案。2009年以来,一些地方查处了上海熊猫炼乳、陕西金桥乳粉、山东“绿赛尔”纯牛奶、辽宁“五洲大冰棍”雪糕、河北“香蕉果园棒冰”等多起乳品三聚氰胺超标案件。这些案件都是使用了2008年未被销毁的问题奶粉作为原料,生产乳制品,性质非常恶劣。   打量“彻查并坚决销毁2008年问题奶粉”透露出的峻厉语气,可以想见职能部门打击问题的雷霆决心,但当触及“2008年问题奶粉”的字样时,则不免让人嗅出其中的黑色幽默意味,岁月流转,时间的刻度已经指向了2010年,但2008年的问题奶粉还在苟延残喘,这是问题奶粉太狡猾还是相关部门太无能?   有一种痛叫时时隐痛,有一种伤叫伤疤未好再添新伤。三聚氰胺重出江湖无疑再次灼痛了世道人心,也许每个人都忘记不了2008年被曝出的三聚氰胺事件,该事件危害之惨烈、损失之严重、教训之深刻,无不让人倍感沉重。然而,事情让人感到惊骇之处正在于悲剧被复制。   众所周知,《食品安全召回规定》第三十一条明确规定:“应当销毁的食品,应当及时予以销毁” 第三十二条明确规定:“市级以上质监部门对召回食品的后处理过程进行监督”。可见法规对于召回食品如何处理,如何保证处理执行到位,都给了明确的说法。试问,2008年的问题奶粉为何时至今日仍未销毁?   将目光拉回到现场,2008年10月14日,国家工商行政管理总局等九局(部)下发《关于不合格奶制品退货退款和召回、销毁有关问题的紧急通知》,要求工商、质检、商务、工业主管、财政、公安、环保、卫生、食品药品监督管理等部门协作,制定切实可行的工作方案,严格监督检查生产者、销售者,做好不合格奶制品退货退款和召回、销毁等工作。显然,通知虽好,但只是纸上富贵而已,中看不中用,徒具形式而无执行。   法条被废置,通知成废纸,问题出在哪里?正如业内人士所称,“这说明在2008年三聚氰胺事件之后,对于一大批流通在市场上的问题产品的监控仍存在空白。”政府有关部门对于一批当时处于生产与终端之间的中间领域的问题奶粉并没有给予足够的监管,包括问题产品从企业售出后,卖给了谁,并没有真正跟进。也许正因为存在监管空白、跟进空白和落实空白,才直接导致此后上海熊猫炼乳、陕西金桥乳粉等多起乳品三聚氰胺超标案件的发生。   其实悲剧早已埋下。据《21世纪经济报道》1月5日报道,在2008年的三聚氰胺事件中,曾被公众所质疑的一个地方在于,回收的近万吨的三鹿奶粉如何销毁、销毁途径,大部分没有完全公开的信息。也有多位网友发帖询问,三鹿之外的涉嫌三聚氰胺的乳品企业,为何听到的是召回信息,却惟独没有销毁公告。的确,只见楼梯响未见人下来,只见召回信息,未见销毁公告,遑论销毁现场。这委实是吊诡的“杯具”,他们假装销毁,公众不明真相,而时间又是最残酷的老人,它让我们在疲于奔命中忘记了追问。   尤其值得一提的是,这些问题奶粉并没有被“束之高阁”,而是流入市场。日前参加了食品安全专项整治紧急会议的广东副省长雷于蓝透露,2月1日起,开展为期10天的乳品和乳制品专项整治,“因为2008年还有一批含三聚氰胺的乳制品没被销毁,现在有的又流到市场上去了。”但是,具体数量和具体流向我们并不知道,这又是“杯具”。   孩童的孱弱身躯禁不住三聚氰胺的一再侵袭,这些流入市场的问题奶粉二次作恶,真是情何以堪?谁在纵容三聚氰胺二次作恶?难道仅是问题企业无良吗?难道仅是监管之失吗?缺乏制度设计、缺乏执行力、缺乏对生命的起码尊重,悲剧便必然一再复制。一言以蔽之,不死的三聚氰胺的背后,映衬的是不作为的权力。权力不作为就导致三聚氰胺不死。
  • 磁光克尔效应系统再发Nature:全反铁磁隧道结新突破!
    巨磁阻效应自发现以来就被广泛应用于MRAM、磁传感器等自旋电子器件中。目前,基于巨磁阻效应的自旋电子器件主要是铁磁体磁隧道结,其研究和发展受限于铁磁体的使用。因此,为进一步提升自旋电子器件的磁阻比等性能,探究其他磁体开发的高效自旋电子器件的研究非常有必要。近期,东京大学的Satoru Nakatsuji团队对手性反铁磁体Mn3Sn组成的磁隧道结进行了深入探究。作者首先对Mn3Sn手性反铁磁态中自旋正极化、负极化和磁八极的投影态密度进行了表征,发现八极矩的大多数和少数能带之间存在明显的能量漂移,与铁磁性铁中自旋矩的大多数和少数能带的漂移非常相似,并根据第一性原理进行了模拟验证,结果表明Mn3Sn在基于隧穿磁阻(TMR)的器件(如MRAM)中具有巨大的应用潜力。此外,为了更好的观测其TMR效应,作者制备了基于Mn3Sn的磁性隧道结( MTJ ),测得室温下的隧穿磁阻(TMR)比率约为2%,出现在手性反铁磁状态下簇磁八极的平行和反平行构型之间。该成果以《Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction》为题发表在Nature上。图1 带簇磁八极的反铁磁隧道结(a)铁磁(FM)隧道结示意图(b)反铁磁(AFM)隧道结示意图(c)(d)铁磁隧道结和反铁磁隧道结的投影态密度图(pDOS) 本文中,作者使用了英国Durham公司的磁光克尔效应系统-NanoMOKE3,通过系统自带的磁滞回线测量功能,对反铁磁隧道结顶部和底部Mn3Sn电极的矫顽力进行了测量。图2 室温基于手性Mn3Sn反铁磁体的磁隧道结表征图 (a)高分辨率TEM表征图(b)磁光克尔测量示意图(c)顶部和底部Mn3Sn反铁磁体的磁滞回线图 英国Durham公司是依托于英国Durham大学的高科技企业。与Durham大学强大的磁光学研究相对应,Durham公司的Russell Cowburn教授(英国剑桥大学卡文迪许实验室主任,英国科学院院士)设计并研发了灵敏度能到10-12 emu兼具Kerr显微镜与回线测量功能的高精度磁光克尔效应系统——NanoMOKE3。相比于历代MOKE系统,NanoMOKE3系统将磁光克尔的光路部分集成在光学盒中,避免了实验人员测试前搭建光路的工作,大大减少了实验人员操作量。另外,光学盒中的光路经过特殊设计,可以同时实现极向克尔和纵向克尔的测量,无需调整光路,只需更换镜片即可完成极向克尔和纵向克尔的切换。左)NanoMOKE3磁光克尔效应系统;右)NanoMOKE3光学集成盒因其高集成度的系统设计和开放式的样品环境,NanoMOKE3具备丰富的拓展性。实验人员可以以NanoMOKE3系统为基础,与其他实验设备组合搭建,进行其他领域方面的测量。一、低温磁光克尔系统NanoMOKE3系统允许用户在样品台部分搭建低温恒温器,实现低温磁光克尔的测量。例如,下图所示为NanoMOKE3与美国Montana Instrument无液氦低温恒温器进行了组合使用,从而实现了10K以下的磁光克尔测量。NanoMOKE3的低温磁光克尔测量性能在国内外领域内具有极高的水平。此低温MOKE方案已在南方科技大学安装使用。NanoMOKE3 磁光克尔系统与 Montana Instrument无液氦低温恒温器组合使用示意图二、晶圆扫描探测系统如今,越来越多的晶圆检测设备采用非接触式的光学测量,取代了传统的接触式晶圆测试方法。其中,以磁光克尔效应原理进行晶圆检测的方法就因其操作简单、检测速度快而被广泛使用。Durham公司在现有磁光克尔系统基础上改造升级,推出了超高灵敏度的晶圆扫描探测系统(wafer mapper),专门用于测量整个晶圆表面的磁滞回线和磁畴图像。系统中集成的磁光克尔能对整个晶圆样品区域(可按X和Y轴自由移动)进行磁滞回线扫描和区域Mapping的测量,最终绘制得到晶圆样品整体区域的磁性分布图,从而完成晶圆样品的检测。该款晶圆级磁光克尔测绘仪选用NanoMOKE3特创的光学盒,继承了其测量速度快,操作简单的优点。整个测量过程可以通过系统自带的LX PRO3软件完成,无需进行繁琐的实验预设值,大大增加了实验效率。晶圆扫描探测系统装配图 Durham公司特创的NanoMOKE3磁光克尔光学集成盒是Cowburn教授从事MOKE系统研发和深耕多年的结晶。不但减轻了实验人员的操作繁琐度,更重要的是以磁光克尔效应为基础,为更丰富领域的测量提供了可能,有望助力各个领域科研人员实现更高水平的突破!参考文献:[1]. Chen, X., Higo, T., Tanaka, K.et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).
  • 欧盟对EDTA铁钠作为食品中铁强化剂的科学意见
    EDTA铁钠作为铁强化剂的安全性以及来自EDTA铁钠的铁的生物利用率。至于铁本身的安全性--可能的铁摄入量--并不在这个科学委员会的评估范围之内。   应欧盟委员会的要求,食品添加剂及营养强化剂科学委员会公布EDTA(乙二胺四乙酸)作为普通食品(包括食品补充剂)以及特殊营养用途食品的铁强化剂的科学意见。所公布的科学意见涉及EDTA铁钠作为铁强化剂的安全性以及来自EDTA铁钠的铁的生物利用率。至于铁本身的安全性--可能的铁摄入量--并不在这个科学委员会的评估范围之内。   有关EDTA铁钠的铁生物利用率的信息立基于人体铁强化研究。科学委员会根据这些研究得出结论,来自于EDTA铁钠的铁具有生物可利用性。研究进一步发现,EDTA铁钠中的铁的生物利用率是硫酸亚铁的二至三倍,同时可以有效与血红蛋白的结合。   科学委员会指出,EDTA铁钠中的铁的吸收会依照人体的铁量进行调整,方式与其他铁化合物类似,通过在食品中添加EDTA铁钠进行铁强化并不会导致人体铁过载。这些研究同样对动物(老鼠)和人体(铁强化研究)内EDTA铁钠对食品中其他营养物质(例如锌、铜、钙、锰以及镁)的吸收和代谢产生的影响进行了分析,结果并未发现影响吸收和代谢现象。   科学委员会称,两项为期90天针对老鼠体内EDTA铁钠的研究为他们提供了数据。根据这些数据,委员会得出的无可见不良作用剂量水平为每天每公斤体重250毫克EDTA铁钠。根据一项为期61天的老鼠摄入EDTA铁钠研究,委员会得出的无可见不良作用剂量水平为每天每公斤体重84.3毫克(提供每天每公斤体重11.2毫克铁)。基于这项研究得出的发现,联合食品添加剂专家委员会(JECFA)2000年得出结论,在饮食中填入EDTA铁钠在满足铁营养需求的同时并不会导致铁的过量摄入。   委员会指出,针对鼠伤寒沙门氏菌(7株)和大肠杆菌(2株)的试管内诱变性试验结果显示为阴性,但试管内老鼠淋巴瘤试验结果显示为微弱阳性,观察到中度细胞毒性。在此次试管内老鼠淋巴瘤试验中,还观察到与其他铁化合物有关的类似结果,EDTA钠铁(III)产生的影响可能与铁有关,而不是EDTA.此外,试管内老鼠微核试验结果显示为阴性。   欧盟一份EDTA风险评估报告指出,EDTA及其钠盐在极高摄入剂量情况下可产生较低的致突变性。根据多项结果为阴性的研究以及一项非整倍体诱发剂作用机制阀值的假设,EDTA及其钠盐对人体并不具有致突变性。科学委员会认为,根据所获得的信息,EDTA铁钠作为铁强化剂不会产生基因毒性方面的安全隐患。   虽然并未对EDTA铁钠进行化学毒性和致癌性研究,但对于包括EDTA 三钠、EDTA二钠钙和EDTA磷酸氢二钠在内的其他EDTA盐还是进行了一些研究。与其他EDTA金属一样,EDTA铁钠在内脏内分裂为一种具有生物可利用性的铁和一种EDTA盐,在评估EDTA铁钠的安全性时,其他EDTA盐的毒理学研究具有可参考性。根据这些研究,EDTA盐并不具有致癌性。   根据老鼠食用EDTA磷酸氢二钠、EDTA三钠、EDTA四纳、EDTA二钠钙等类似EDTA盐的发育研究获取的数据,死亡率、生育能力或者致畸作用均与这些化合物无关。根据老鼠EDTA铁钠的一项发育毒性研究,科学委员会得出的无可见不良作用剂量水平为每天每公斤体重200毫克。   发展中国家对将EDTA铁钠作为食品的一种铁强化剂进行了大量现场测试。根据这些测试,EDTA铁钠并未对参与长期EDTA铁钠强化测试的人产生副作用。委员会指出,EDTA的光降解能够促进甲醛的形成。欧洲食品安全局的食品添加剂、调味料、加工辅料和原料专家组(AFC)对甲醛在食品添加剂生产和制备过程充当防腐剂进行了分析,结果并未发现口服摄入的甲醛具有致癌性的任何证据。AFC专家组认为,在遵照相关部门建议的量摄入EDTA铁钠情况下,EDTA的降解产物甲醛并不对人体造成安全隐患。   食品添加剂及营养强化剂科学委员会请求将EDTA铁钠作为一种铁强化剂,建议应该在特殊营养用途食品中添加EDTA铁钠,每天为体重60公斤的成年人提供22.3毫克铁,为体重30公斤的儿童提供11.1毫克铁。为了达到这一铁摄入量,成年人和儿童每天分别需要摄入大约168毫克和84毫克EDTA铁钠。   对于食品补充剂,委员会并没有建议具体的摄入量,但指出应该与当前被批准用于食品补充剂的其他铁类似。以EDTA铁钠形式摄入的铁量,体重60公斤的成年人每天不应超过22.3毫克,体重30公斤的儿童每天不应超过11.1毫克。为达到同样的摄入量,食品补充剂中添加的EDTA铁钠应与特殊营养用途食品相同,即成年人和儿童每天分别需要摄入大约168毫克和84毫克EDTA铁钠。   委员会指出,维生素与矿物质专家组(EVM)建议的摄入量只供参考,补充摄入量大约为每天17毫克铁,(相当于体重60公斤的成年人每天每公斤体重摄入0.28毫克)。对于绝大多数人来说,这一摄入量不会产生副作用。每天17毫克铁可由128.3毫克EDTA铁钠提供,EDTA为89毫克,相当于成年人每天每公斤体重摄入大约1.5毫克EDTA,体重15公斤的儿童每天每公斤体重摄入5.9毫克EDTA.   基于这些摄入量,委员会计算出所有铁以EDTA铁钠形式摄入情况下的EDTA摄入量。对于特殊营养用途食品,成年人每天摄入的EDTA大约在116毫克左右,儿童为每天58毫克左右。对于食品补充剂,成年人每天摄入的EDTA大约在116毫克左右,儿童为大约在58毫克左右。这两种情况下的EDTA摄入量为,成年人每天每公斤体重1.9毫克左右,体重15公斤的儿童为每天每公斤体重3.9毫克左右。   对于强化食品,假设EDTA铁钠摄入量按照委员会的建议,体重15公斤的儿童每天摄入的EDTA平均在11.3毫克,成年男性为24.6毫克,第95百分位的儿童为24.6毫克,成年人为58.5毫克。若以单位体重表示则分别为每天每公斤体重0.8毫克和0.4毫克,第95百分位情况下分别为每天每公斤体重1.7毫克和1.0毫克。   委员会指出,虽然EDTA的每日允许摄入量还没有确定,但联合食品添加剂专家委员会已制定了EDTA二钠钙的每日允许摄入量标准,为每天每公斤体重2.5毫克,摄入的EDTA为每天每公斤体重1.9毫克。EDTA二钠钙为欧洲唯一获得批准的EDTA衍生物。   如果将EDTA铁钙作为一种铁强化剂,添加进所有3种来源--特殊营养用途食品、强化食品和食品补充剂,儿童平均每天摄入的EDTA为每天每公斤体重8.6毫克,成年人平均每天摄入的EDTA为每天每公斤体重4.2毫克 第95百分位的儿童为每天每公斤体重9.5毫克,成年人为每天每公斤体重4.8毫克。这超过了为EDTA二钠钙制定的EDTA每日允许摄入量标准,也就是每天每公斤体重1.9毫克。委员会无法评估个体摄入所有3种添加EDTA铁钠的产品的可能性,但这种可能性并不高。   如果以EDTA铁钠形式每天摄入22.3毫克铁(相当于摄入165毫克EDTA铁钠),每天将额外摄入9毫克纳。通常情况下,欧洲人每天摄入的纳平均在4500至1.1万毫克之间,即使食用所有3种添加EDTA铁钠的产品,额外摄入的纳量也不足为虑。   委员会认为,来自EDTA铁钠的铁具有生物可利用性,如果每天摄入的EDTA不超过每天每公斤体重1.9毫克,将EDTA铁钠作为普通食品的一种铁强化剂不会造成安全隐患。如果按照建议的量,将EDTA铁钠作为公众强化食品的一种铁强化剂,同样不会造成安全隐患。委员会指出,如果将EDTA铁钠用于特殊营养用途食品或者童提供11.1毫克铁,EDTA的成年人摄入量将为每天每公斤体重1.9毫克,儿童为3.9毫克。
  • 铁基高温超导研究成果再夺国家自然科学一等奖
    2014年1月10日,国家科技奖励大会在人民大会堂隆重召开。中共中央总书记、国家主席、中央军委主席习近平,中共中央政治局常委、国务院总理李克强等出席大会并为获奖科学家颁奖。   以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所/北京凝聚态国家实验室(筹)(以下简称&ldquo 物理所&rdquo )和中国科学技术大学(以下简称&ldquo 中国科大&rdquo )研究团队因为在&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质研究&rdquo 方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。   这也是继物理所在1989年&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 获得国家自然科学一等奖以来,又一项高温超导研究领域的国际一流成果。   物理学中的璀璨明珠,未来应用的希望之星   超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。   在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。   也许大多数人还没有察觉到,其实超导已经或多或少地走进了人们的生活。近年来,国内外相继研制成功了多种超导材料和超导应用器件,超导正在为人类的工作、学习和生活提供着便利。如高温超导滤波器已被应用于手机和卫星通讯,明显改善了通信信号和能量损耗 世界上各医院使用的磁共振成像仪器(MRI)中的磁体基本上都是由超导材料制成的 使用的超导量子干涉器件(SQUID)装备在医疗设备上使用,大大加强了对人体心脑探测检查的精确度和灵敏度 世界上首个示范性超导变电站也已在我国投入电网使用,它具备体积小、效率高、无污染等优点,是未来变电站发展的趋势。   这些超导应用,在1911年荷兰物理学家Onnes发现超导的时候,人类绝对没有预测到它今天的应用。超导在未来可能给人类生活带来多大的变化,也将大大超乎我们今天的预期。若能发现室温超导体,人类生存所面临的能源、环境、交通等问题将迎刃而解。   中国成果震动学术界   物理学家麦克米兰根据传统理论计算断定,超导体的转变温度一般不能超过40K(约零下233摄氏度),这个温度也被称为麦克米兰极限温度。   是否人类对超导的应用确实只能被限制在40K以下,还是麦克米兰使用的传统理论本身存在缺陷?40K麦克米兰极限温度是否可能被突破?为了探索这个问题,世界各地的科学家们做了无数次尝试。1986年,两名欧洲科学家发现以铜为关键超导元素的铜氧化物超导体,转变温度高于40K,因而被称作为高温超导体。2007年10月以来,王楠林、陈根富研究组就尝试生长LaOFeP和LaOFeAs单晶样品,并计划开展其他稀土替代物CeOFeAs等材料的合成。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。之后,中国的铁基超导研究工作像井喷一样。中国科学家首先发现了转变温度40K以上的铁基超导体,接着又发现了系列的50K以上的铁基超导体。与铜氧化物高温超导体不同,初步的研究表明,铁基超导体在工业上更加容易制造,同时还能够承受更大的电流,这为应用奠定了基础。但与此同时,铁基超导体性质极为复杂,对科研人员的理论功底和实验技能都提出了更高的要求。   为了彻底揭开高温超导的原理,探索和寻找到临界温度更高、更能广泛应用于实际生产生活、惠及千家万户的超导体,物理所和中科大的科学家们在铁基高温超导研究中引领了国际研究的热潮。国际知名科学刊物Science刊发了&ldquo 新超导体将中国物理学家推到最前沿&rdquo 的专题评述,其中这样评价道:&ldquo 中国如洪流般涌现的研究结果标志着,在凝聚态物理领域,中国已经成为一个强国&rdquo 。同时铁基超导体工作研究被评为美国Science杂志&ldquo 2008年度十大科学突破&rdquo 、美国物理学会&ldquo 2008年度物理学重大事件&rdquo 及欧洲物理学会 &ldquo 2008年度最佳&rdquo 。   2013年2月,中国科学院国家科学图书馆统计显示,世界范围内铁基超导研究领域被引用数排名前20的论文中,9篇来自中国,其中7篇来自该研究团队。这一切都表明,该团队在铁基超导方面的研究,毫无疑问已经走在了世界的最前沿。   高温超导的研究基地   物理所对高温超导的探索和研究历史可以追溯到上世纪70年代。1986年,铜氧化物高温超导体被发现。1987年物理所研究组独立地发现了起始转变温度在100K以上的Y-Ba-Cu-O新型超导体。在此之前,世界上一切超导研究都必须采用昂贵并难以使用的液氦来使超导体达到转变温度,这对超导研究形成了巨大的障碍。物理所的这项成果把使用便宜而好用的液氮来达到超导转变温度变为现实,为超导研究开辟了一片崭新的天地,大大方便和加速了全世界的高温超导研究,并荣获1989年国家自然科学一等奖。同年,经国家计委批准,物理所成立了超导国家重点实验室。 以&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 为代表,物理所作为中国最重要的高温超导研究基地,在铜氧化物高温超导体的研究中做出了一系列重要的研究成果,为人类理解和应用超导体做出了中国人应有的贡献。   中科大从上个世纪80年代以来,也一直在高温铜氧化合物超导研究领域从事着重要的工作,并于1992年成立了中科大超导研究所,为我国在高温超导领域的发展做出了重要的贡献。同时,经过中科大几代人的努力坚持,为我国培养并储备了一批从事高温超导研究的专业人才。   铜氧化物高温超导体在人类超导研究的历史上发挥了重要的作用,但它们属于陶瓷性材料,复杂的制作工艺使其大规模应用难以实现。上个世纪九十年代中后期,国际物理学界倾向认为铜氧化物超导体能给出的信息基本上被挖掘殆尽,通过铜氧化物超导体探索高温超导机理的研究遇到了瓶颈。   机遇和有准备的头脑   铜氧化物高温超导体研究进入瓶颈期以后,国际上的相关研究进入低谷,在各种学术期刊,特别是那些高影响因子的期刊上发表高温超导的论文变得愈发困难。国内的高温超导研究因此遭受了打击,相关研究人员纷纷转到其他领域。   物理所很早认识到评价科学研究的关键是工作本身的科学意义,而非论文数量或影响因子。高温超导具有极高的科学重要性和广泛的应用前景,探索新型高温超导材料,开辟更多的高温超导研究蹊径,才是应对瓶颈期的正确态度。在这样的评价机制下,物理所顶着&ldquo 没有好文章&rdquo 的压力坚持高温超导研究,为将来的科学突破做好了准备。与此同时,以陈仙辉为代表的中科大超导研究所的研究人员也一直坚持在高温超导研究领域默默耕耘,并保持着对高温超导二十年如一日的研究热情,并与物理所的同行建立了良好的合作研究,为后来的铁基超导研究奠定了合作基础。   基于长期的超导研究,物理所赵忠贤院士等从事超导研究的科研人员认为在某些具有特殊磁或电荷性质的层状结构体系中可能存在高温超导体,并一直不懈探索。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。虽然这个转变温度仍然低于40K,但它立刻引起了物理所人的注意。由于铁的3d轨道电子通常倾向形成磁性,在该种结构体系中出现26K超导则非同寻常,有可能具有非常规超导电性。以赵忠贤院士为首,大家一致认为:LaOFeAs不是孤立的,26K的转变温度也大有提升空间,类似结构的铁砷化合物中很可能存在系列高温超导体。必须抓住机遇,全力以赴!   突破极限,勇攀新高   由于最早发现的铁基超导样品转变温度只有26K,低于麦克米兰极限,当时的国际物理学界对铁基超导体是不是高温超导体举棋不定。中科大陈仙辉研究组和物理所王楠林研究组同时独立在掺F的SmOFeAs和CeOFeAs中观测到了43K和41K的超导转变温度,突破了麦克米兰极限,从而证明了铁基超导体是高温超导体。这一发现在国际上引起了极大的轰动,标志着经过20多年的不懈探索,人类发现了新一类的高温超导体。   为了进行更加系统和深入的研究,必须合成一系列的铁基超导材料才能提供全面、细致的信息。物理所的赵忠贤组利用高压合成技术高效地制备了一大批不同元素构成的铁基超导材料,转变温度很多都是50K以上的,创造了55K的铁基超导体转变温度纪录并制作了相图,被国际物理学界公认为铁基高温超导家族基本确立的标志。   中科大陈仙辉组在突破麦克米兰极限后,又对电子相图和同位素效应进行了深入研究,发现在相图区间存在超导与磁性共存和超导电性具有大的铁同位素效应,这些现象后来都被证明是大多数铁基超导体的普适行为,对理解铁基超导体的超导机理提供了重要的实验线索。另外,陈仙辉组发展了自助溶剂方法,生长出高质量的单晶,为后续的物性研究奠定了基础。   物理所王楠林组从实验数据出发,猜测LaOFeAs在低温时有自旋密度波或电荷密度波的不稳定性,超导与其竞争。闻海虎小组合成了首个空穴型为主的铁基超导体。方忠与实验工作者深入合作,进一步加强了有关物性研究。方忠及其合作者计算了LaOFeAs的磁性,并且得到了和猜测一致的不稳定性,做出了&ldquo 条纹反铁磁序自旋密度波不稳定性与超导竞争&rdquo 的判断。这一预言随后被国外同行的中子散射实验证实。在当前的铁基超导机理研究中,自旋密度波不稳定性同超导的关系已经成为最主流的方向。   截至2013年1月4日,铁基超导体的8篇代表性论文SCI共他引3801次, 20篇主要论文共SCI他引5145次。相关成果在国际学术界引起强烈反响,被Science、 Nature、 Physics Today、Physics World等国际知名学术刊物专门评述或作为亮点跟踪报道。著名理论物理学家,美国佛罗里达大学Peter Hirschfeld教授说:&ldquo 一个或许本不该让我惊讶的事实就是,居然有如此多的高质量文章来自北京,他们确确实实已进入了这个(凝聚态物理强国)行列&rdquo 美国斯坦福大学Steven Kivelson教授说:&ldquo 让人震惊的不仅是这些成果出自中国,重要的是它们并非出自美国。&rdquo   默默无闻,无私奉献   在五名获得国家自然科学一等奖的科学家背后,有着一支庞大的研究团队。他们虽然默默无闻,但所做的杰出贡献都在铁基超导体的研究中熠熠闪光。   当已经发现的铁基超导体系不断产出优秀论文的时候,物理所的靳常青&ldquo 要走别人没走过的路,要做出自己的新体系&rdquo 。他通过不懈地尝试和探索,在铁基超导体1111体系和122体系之外,找到了第三种全新的以LiFeAs为代表的111体系超导体,引起了强烈的国际反响。LiFeAs的自旋密度波性质和其他体系有着明显的不同,这对进一步探索高温超导的内在物理机制和提高超导转变温度都有重要的意义。   丁洪是国家第一批&ldquo 千人计划&rdquo 入选者。他放弃了美国波士顿学院的终身教授职位毅然回国后的第二天就投入到了铁基超导的研究当中。当时,丁洪在国内的实验室还没有建成,他拿着样品跑到日本完成了测量,首次在实验上提出了铁基超导体的能隙对称性,解决了这个曾在铜氧化物超导体中被长时间争论的问题。   任治安当时是赵忠贤组的主要成员之一,之前也是赵忠贤的博士生,直接与其他80后一起合成了一系列转变温度在50K以上的铁基超导体。   王楠林研究组当时有一员干将名叫陈根富,2007年10月回国加入该组后,即着手开展了LaFeAsO等铁砷超导材料的探索合成工作。他不但率先发现了41K的CeFeAs(O,F)新超导体,还首次生长出了一批高品质的超导单晶样品,推动了相关铁基超导机理的研究。   就是这样一群值得世人崇敬的科学家,积极进取,努力拼搏,淡泊名利,勇攀高峰,让世界对中国竖起了大拇指。而在我们满怀着景仰之情采访他们的时候,他们却一点也不觉得自己做了什么了不起的事情。就像赵忠贤院士说的那样,&ldquo 荣誉归于国家,成绩属于集体,个人只是其中的一分子&rdquo 是每一个物理所人心中的信条。他们还反复强调说,自己只是中国科研人员中一个最最普通的集体。我们相信,和他们一样优秀和勤奋,乐于奉献,有志报国的科学家在中国的各个地方、各个领域还有很多,都在等待着厚积薄发,破茧而出的那一刻。   民生超导,强国超导   百余年长盛不衰的超导研究历史,表明新超导体探索存在广阔的空间,特别是铁基高温超导体的发现也为潜在的重大应用提供了全新的材料体系。无论是比高铁快近一倍的超导磁悬浮列车,比现有计算机快数十倍的超导计算机,还是基于超导技术的导弹防御和潜艇探测系统,都将在不远的未来走进我们的生活、生产和国防。超导,这项二十世纪初的伟大科学发现,必将在二十一世纪改变每一个人的生活。   习近平总书记在考察中科院时,提出了&ldquo 率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构&rdquo 的明确要求和殷切期望,为中科院引领支撑创新驱动发展战略,全面深化科研体制改革,取得科技跨越发展,建设一流科研机构指明了方向。世界科技的竞争已经演化为国家综合实力的竞争,物理研究所放眼前沿,勇争一流,铁基高温超导只是他们科技强国梦里的一个片段。许许多多这样的片段连接起来,就可以被谱写成中华民族伟大复兴的感人篇章。
  • 华大基因第二代测序产品“贴牌”国产化惹争议
    华大基因创始人汪建   一石激起千层浪。   7月初,华大基因第二代基因测序产品获得CFDA批准,引发市场上相关概念股票&ldquo 暴动&rdquo 。   然而,这一好消息迅速引来质疑。7月15日,中科院北京基因组研究所DNA序列测定技术研究开发中心常务副主任任鲁风公开发文,质疑CFDA的超常规审评过程不透明,并向CFDA递交了政务公开申请。   作为国内基因测序的龙头,华大基因虽然仍未上市,却早已名声在外。   据了解,基因测序产业分为仪器、试剂和服务,其中仪器与试剂归属CFDA审批,开展技术服务需要通过国家卫生和计划生育委员会(以下简称&ldquo 卫计委&rdquo )审批。此次华大基因二代测序产品虽然获批,但基因测序服务是否能大规模推广,还需要等待卫计委进一步明确。这场质疑风波无疑也为华大基因旗下公司的华大科技近期香港上市计划增添了不确定因素。   &ldquo 超常规&rdquo 审批   基因测序(也称DNA测序)是一种破解基因密码(即碱基序列)的技术。通俗来说,就是利用仪器对基因进行测序,通过高科技的体检来预测患某种病的风险,从而提前采取措施:只需采集几毫升血液或者唾液,就可以预测其患癌症、白血病等疾病的风险,并提出相应对策,其因此被誉为防治遗传病最好的技术。   我国作为全球人口最多的国家,在这一领域也表现出了巨大的市场潜力。单就产前诊断这一应用领域的市场,据估算就在150亿元左右。2013年华大基因、贝瑞合康在无创产前筛查领域分别测序10万人次和5万人次,占据了市场的大部分份额。   CFDA发布的公告显示,批准了华大基因的BGISEQ-1000基因测序仪、BGISEQ-100基因测序仪和胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(联合探针锚定连接测序法)、胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(半导体测序法)医疗器械注册。这是自今年2月CFDA喊停所有未经批准的测序临床诊断服务后,CFDA首次批准注册的第二代基因测序诊断产品。   任鲁风质疑称,此次华大基因获批的4个产品,就是华大基因去年3月收购美国Complete Genomics公司(以下简称CG)所获得的测序系统,以及Life Tech公司的IonProton系统,更名后摇身一变成了BGISEQ-1000和BGISEQ-100两款仪器,至于试剂盒,则是这两款机型的配套基础测序试剂。CFDA数据库信息显示,这两款仪器在武汉生产,试剂则在深圳生产。   他为此向CFDA提出了政务公开申请,希望公开华大基因基因测序产品的注册材料,包括申请注册时间、申请注册提交的资料目录、出具产品检验报告的医疗器械检验机构名称,检验报告出具时间和报告结论等。&ldquo 华大若走加速审评道路,必须要先在CFDA创新医疗器械网站上公示,但是它没有公示&rdquo 。   华大基因公共传播与政府事务首席代表徐萍在接受媒体采访时对此回应称:&ldquo 华大的无创技术研发从2008年开始,为期五六年。从2013年3月全资收购CG获得全部知识产权后,开始进行技术转移、零部件到位、临床前试制,并按照医疗器械相关法规程序要求及流程准备至最终获证历时14个月。&rdquo   据了解,为了整顿国内基因测序的临床应用市场,今年2月,CFDA和卫计委联合发布通知,宣布包括产前基因检测在内的所有医疗技术需要应用的检测仪器、诊断试剂和相关医用软件等产品,如用于疾病的预防、诊断、监护、治疗监测、健康状态评价和遗传性疾病的预测,需经食品药品监管部门审批注册,并经卫生计生行政部门批准技术准入方可应用,已经应用的,必须立即停止。   医药行业研究员符浩表示,2014年1月14日,CFDA办公厅发布关于基因分析仪等3类产品分类界定的通知。5月30日即批准了相关的4项产品,CFDA在基因测序产品审批上,确有轻率冒进之嫌。   &ldquo 试验是做过的,临床数据也有,华大完全用的是Life Tech在国外已成熟的技术,基因检测本身技术通路可靠,对仪器的改装和试剂的小小改动并不会增加假阴性几率 美国食品药品监督管理局(FDA)没有批准同类产品,但Life Tech无创检测项目已通过CLIA认证,相关测序服务已经在做 对仪器和试剂的FDA认证同时在进行中,FDA审批周期很长,正在走流程。&rdquo 符浩说。   亦有公开资料显示,质疑者任鲁风所在的研究所正在与紫鑫药业合作,开发国产新一代基因测序仪产品,这与华大属竞争关系。   绕路&ldquo 国产化&rdquo   这次被批准的两款仪器,BGISEQ-1000是基于华大基因在2013年收购美国测序仪生产商CG的原有测序仪 BGISEQ-100则是基于Life Tech公司的Ion Proton测序平台。   按照现行的医疗器械监管法规,进口医疗器械的注册需要满足已经在原产国上市这一条件。   据了解,国内检测机构目前所用的检测仪在原产国还未获批准上市,其中包括应用最广泛的Illumina公司Hiseq基因测序仪,其至今也并未通过FDA审批。   今年2月,Illumina中国分公司负责人透露,其二代测序平台MiSeqDx正在积极申请CFDA的认证。   &ldquo 国产化&rdquo 无疑能帮助国外仪器绕过其先在原产国上市的门槛。   华大医学首席执行官尹烨曾公开表示:&ldquo 根据《医疗器械监督管理条例》规定,进口的第三类医疗器械在中国获得CFDA认证的前提是获得生产国的认证,而现有基因测序仪只有MiSeq通过了美国FDA的认证,因此其他进口仪器只能通过与国内公司合作、贴牌生产才可以推广,或者在卫计委批准的试点机构使用。&rdquo   任鲁风表示,华大上述这两种系统均未通过美国FDA认证。华大基因测序仪如果使用外国合作方芯片是不合规的。&ldquo 芯片是测序系统进行测序生化反应的载体,因此应作为测序试剂盒中不可缺少的组成部分。如果国产诊断试剂产品通过批准的话,芯片由于不属于组成仪器设备的零部件,而是测序反应中关系实验数据产出的关键性耗材,应该在国内生产,直接采购国外产品,不符合医疗器械监管条例。&rdquo   任鲁风还认为,华大基因测序产品是否获批,背后或承载着巨大的经济利益。国际测序巨头Life Tech与达安基因和华大基因或明或暗的合作,Illumina和贝瑞和康的技术&ldquo 国产化&rdquo 转移,都将实行对中国市场的围剿。&ldquo 只赚服务费用,而来源于核心技术资金的最大收入却流向国外。&rdquo 他说。   任鲁风直言,华大基因经CFDA获批的Ion Proton系统则远低于国外在唐筛测序技术方面需要测到的3000万条序列的水平,这一获批在国际上看来都是个&ldquo 笑话&rdquo 。   医药行业研究员符浩则认为,华大基因两个仪器一个芯片是CG的,一个芯片是Life Tech的,用合作方芯片是合规的,只要不存在专利纠纷。华大申请注册二代测序仪是和Life Tech有合作框架的,应该有许可。建库、测序试剂、测序仪,华大并不需要保证完全自主生产,部分测序芯片是进口的,部分测序试剂可能也是,但并不妨碍申报注册。   公开资料显示,在目前核心的基因测序仪器部分,外资的Illumina和Life Tech两家公司已经占到了国内市场整体份额的90%以上。   &ldquo 大家一直在说国产,结果叫来一群披着国产仪器外衣的狼。&rdquo 任鲁风说。   基因测序设备和人们熟知的B超、核磁共振成像设备一样,是一种开放平台。任鲁风担心,市场一旦被国外品牌占领,整个围绕着设备应用的试剂、医疗流程设计、人员培训、科研等都将被捆绑在外国设备商之下。   业内人士看来,华大二代产品还面临着商业推广难题,市场接受度存在疑问。   &ldquo 此前CG的设备需要在独立的恒温恒湿及特定波长光源照明的实验室环境下进行,如果与CG相比没有改变,那对用户的实验室环境要求是个挑战。&rdquo 任鲁风说。   医药行业研究员符浩则认为,BGISEQ-1000是基于CG的测序平台做的改进,以华大本身的技术实力,想在性能上做出较大程度的优化,相信是非常困难的,因此BGISEQ-1000在临床上的使用预计会遇到使用条件苛刻的短板。不出意外的话,华大在无创产检推广上,将偏重于更加适用于实验室环境的采用Life Tech技术的BGISEQ-100,而BGISEQ-1000只是华大仪器自产化的一个尝试。   申银万国研究报告则称,CG只能测序人类基因组,并且无法做无创产前检测。   美国HudsonAlpha研究院韩健研究员也撰文表示,美国有四家提供无创产前诊断测序服务的公司都是使用Illumina公司的测序仪器。华大获得报批的产品是两个不同的技术平台,Life Tech的仪器和Complete Genomic的仪器。如果华大提供产前诊断服务使用的是Life Tech的技术平台,那在通量上(一次得到的数据量)就吃亏很多。   华大科技拟去香港上市,但上市时间未定,集资约4亿美元(约31.2亿港元),上市保荐人为花旗及大摩,目前还无法得知这场正在发酵的质疑风波对其上市前景影响几何。   面对种种质疑,华大基因方面对相关问题一直未能做出任何回应。
  • 仪器新应用!Kerr显微镜揭示二维铁磁体FGT中的CIDWM现象
    【科学背景】随着自旋电子学的发展,将电流转化为自旋电流的能力成为自旋电子学中至关重要的一环。自旋电流能够携带自旋和可能的轨道角动量,从而产生扭矩,用于操控局部磁化。这些扭矩的来源包括自旋转移和自旋轨道相互作用,它们构成了实现新型自旋电子学器件的基本构建模块。其中,基于磁性纳米线的竞赛轨道存储器设备,利用自旋转移扭矩和/或自旋轨道扭矩驱动的电流诱导的畴壁运动,被认为是下一代高速、高密度、低能耗的非易失性记忆器件的主要候选者。特别地,Fe3GeTe2(FGT)因其金属性质、可调谐的居里温度和强的垂直磁各向异性而备受关注。最近,FGT中观察到了各种手性磁性纳米结构,这些纳米结构需要DMI的来源。虽然曾有界面DMI的假设,但考虑到FGT薄片的相当厚度,这种假设似乎不太合理。相反,研究者认为这些手性自旋纹理的起源可能是体积型的。最近的研究表明,FGT晶体具有破缺反演对称性的晶体结构,这为体积型DMI提供了有力证据。然而,对于FGT的电流诱导磁化操控的研究还处于初步阶段,现有的研究主要采用了间接探测方法。直接成像受限于厚度较大的FGT样品,并且观察到的高速电控畴壁运动速度较慢。因此,研究人员需要一种更具挑战性的方法来解决这一问题。有鉴于此,马丁路德大学物理学研究所Stuart S. P. Parkin教授、安徽大学材料科学与工程学院Tianping Ma等人在“Nature Communications”期刊上发表了题为“Cur3t-induced domain wall motion in a van der Waals ferromagnet Fe3GeTe2”的研究论文,引起了不小的关注!本研究旨在利用磁光克尔显微镜(MOKE)技术探索FGT异质结中的高速电控畴壁运动CIDWM,并观察其在不同条件下的行为。通过将FGT与重金属铂(Pt)或钨(W)层结合,作者研究了畴壁运动的机制,并发现畴壁驱动的竞争行为。此外,作者还发现,作者的方法可以获得比以前报告的速度更高一个数量级的畴壁速度。【科学亮点】(1)实验首次探究了Fe3GeTe2(FGT)中的高速电控畴壁运动(CIDWM),并取得了重要发现。&bull 通过使用Kerr显微镜,作者观察到了在FGT薄片中实现的CIDWM现象,这是首次在该材料中进行的。&bull 在Pt或W层覆盖的FGT异质结中,作者证明了畴壁可以通过自旋转移和自旋轨道扭矩的组合进行移动。(2)实验结果表明CIDWM的速度比以前的研究中报告的速度高一个数量级,并揭示了畴壁运动的新机制。&bull 作者发现在异质结中,畴壁的驱动方式既可以是由STT单独引起,也可以是由STT和SOT的竞争机制共同作用引起。&bull STT和SOT之间的竞争导致畴壁运动方向的变化,随着注入电流密度的增加而发生改变。【科学图文】图1:由自旋转移力驱动的FGT中的CIDWM。图2. FGT/Pt和FGT/W异质结中的电流诱导磁化翻转。图3:在T = 70K下,FGT(8.1 nm)/Pt(3 nm)异质结中的电流诱导DW运动。图4:FGT/W异质结和原始FGT中DW速度随纵向磁场的变化。【科学结论】作者通过磁光学克尔显微镜成像研究了二维铁磁体FGT中的CIDWM现象。基于STT的CIDWM得到了清晰展示。作者观察到了在20K时畴壁的最高速度为5.68 m/s。畴壁运动的纵向磁场依赖性揭示了原始FGT中由DMI诱导的尼尔型畴壁。在FGT表面沉积了Pt和W薄膜,形成了重金属/铁磁体异质结。Pt和W中的自旋霍尔角的相反符号导致了SOT诱导的磁化翻转方向相反,以及CIDWM的不同行为。在FGT/Pt中,STT和SOT之间的竞争导致了较低的畴壁速度和随着电流密度增加而畴壁运动方向的改变,而在FGT/W中,STT和SOT互相促进,并导致与原始情况一样有效的畴壁运动。这样的DMI源于FGT薄片中铁原子空位的无序和铁原子的插层。作者的工作为基于二维磁体的功能自旋电子学器件的发展提供了启示。原文详情:Zhang, W., Ma, T., Hazra, B.K. et al. Cur3t-induced domain wall motion in a van der Waals ferromagnet Fe3GeTe2.Nat Commun 15, 4851 (2024). https://doi.org/10.1038/s41467-024-48893-y
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制