当前位置: 仪器信息网 > 行业主题 > >

氨基巴豆腈

仪器信息网氨基巴豆腈专题为您提供2024年最新氨基巴豆腈价格报价、厂家品牌的相关信息, 包括氨基巴豆腈参数、型号等,不管是国产,还是进口品牌的氨基巴豆腈您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨基巴豆腈相关的耗材配件、试剂标物,还有氨基巴豆腈相关的最新资讯、资料,以及氨基巴豆腈相关的解决方案。

氨基巴豆腈相关的论坛

  • 求组4-溴代巴豆酸的气相条件

    各位大神,本人新手,目前做化合物4-溴代巴豆酸,沸点是287.6±23℃,求教如何开展[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]工作。

  • 4-溴代巴豆酸的分析方法

    各位老师好,最近要做一个4-溴代巴豆酸的产品,已知其沸点是287.6±23℃(scifinder)查询得到。我查了很多文献,都没有找到具体的检测方法,现在我想用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]做检测,我应该如何入手,感谢各位。

  • 【“仪”起享奥运】栀子、紫苏子、松花粉、巴豆、王不留行、水红花子、诃子、葶苈子、芥子,国家药品标准修订公示!

    7月23日,国家药典委公示了17个中药标准草案:冠心丹参滴丸、消食退热糖浆、金嗓开音颗粒、金嗓利咽丸、葶苈子、松花粉、芥子、巴豆、紫苏子、栀子、王不留行、水红花子、诃子、咳特灵片、板蓝根含片、复方塞隆胶囊、复方丹参滴丸涉及的9个药材和饮片品种主要修订内容如下:葶苈子:修订葶苈子药材、葶苈子饮片、炒葶苈子饮片的性状项及显微鉴别项。修订葶苈子药材、葶苈子饮片和炒葶苈子饮片的薄层色谱鉴别项。松花粉:增订了松花粉浸出物项。芥 子:修订芥子药材薄层色谱鉴别项、芥子饮片和炒芥子饮片的薄层色谱鉴别项。巴 豆:增订生巴豆饮片的检查、含量测定项。紫苏子:修订炒紫苏子水分检查项。栀 子:修订栀子来源项采收时间、性状项、规范对照品名称。王不留行:增订炒王不留行饮片总灰分检查项。水红花子:修订了水红花子的薄层色谱鉴别项。诃 子:增订诃子饮片鉴别、检查项、浸出物项;增订诃子肉饮片鉴别项、检查项、浸出物项。

  • γ-氨基丁酸 (GABA) 的 HPLC 分析

    文献报道采用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url] (HPLC) 方法测定不同发酵食品中的 γ-氨基丁酸 (GABA) 和谷氨酸 (Glu) 含量。提取最佳溶剂是 75% EtOH 和水,再加上 4% 磺基水杨酸作为后处理。提取的氨基酸在室温下用邻苯二甲醛 (OPA) 衍生 2 分钟,并通过带有荧光检测器 (λex = 340 nm 和 λem = 455 nm) 的 HPLC 分析。与植物和大豆发酵产品相比,动物发酵产品的 GABA 含量更高。将 HPLC 方法获得的结果与分光光度法获得的结果比较,用 HPLC 法测得的所有 GABA 含量都远低于用分光光度法测得的值,这是由于分光光度法使用的着色剂与 GABA 以外的其他氨基酸的非特异性反应干扰测定。因此,食品中的 GABA 含量只能通过 HPLC 来测量。详见https://doi.org/10.1007/s12161-020-01734-2

  • 大豆中氨基酸的测定

    各位大侠们,我们这里要开始用液相紫外检测器检测大豆中和饲料中的氨基酸,可是我还没有找到相应的标准去做,网上看前处理需要衍生,有哪位朋友做过,帮忙指点一二,谢谢

  • 求大神指点

    有没有大神指点下顺式巴豆酸和反式巴豆酸在HPLC上面检测,怎么让两个物质的峰分开,目前用的是乙腈磷酸水,C18柱子

  • 求助极性化合物液相色谱分析相关问题

    求助极性化合物液相色谱分析相关问题

    [color=#444444]本人最近在做反式-4-二甲氨基巴豆酸盐酸盐有关物质分析(结构见附件),按附件条件分析,主峰分析时间为8.3分钟,请问一下各位大侠,如果想把流动相中的离子对试剂去除,换什么色谱柱分析合适?或者不换色谱柱,可以尝试用什么流动相分析?谢谢[/color][color=#444444][img=,474,107]https://ng1.17img.cn/bbsfiles/images/2019/07/201907251021529916_956_1676638_3.png!w474x107.jpg[/img][img=,511,292]https://ng1.17img.cn/bbsfiles/images/2019/07/201907251021540167_9711_1676638_3.png!w511x292.jpg[/img][/color]

  • 常用有机物俗名化学名对照!

    二画二茂铁 二聚环戊二烯铁 Fe2三画山梨酸 己二烯--酸 CH3CH=CHCH=CHCOOH马来酐 顺丁烯二酸酐马来酸 顺丁烯二酸 HOOCCH=CHCOOH四画六氢吡啶 氮杂环己烷 NH-(CH2)5火棉胶 硝化纤维(11~12%N)天冬氨酸 丁氨二酸 HOOCCH2CH(NH2)COOH天冬酰胺 HOOCCH2CH(NH2)CONH2木醇 甲醇木醚 二甲醚 CH3OCH3牙托水 甲基丙烯酸甲酯 CH2=C(CH3)-COOCH3月桂酸 十二酸 CH3(CH2)10COOH月桂醛 十二醛月桂醇 十二醇乌洛托品 环六次甲基四胺双酚A HO-苯-C(CH3)2-苯-OH巴豆酸 丁烯--酸 CH3CH=CHCOOH巴豆醛 丁烯--醛 CH3CH=CHCHO水杨酸 邻羟基苯甲酸五画半胱氨酸 beta-巯基丙氨酸 HSCH2CH(NH2)COOH平平加O 一种非离子表明活性剂,主要成分石聚氧化乙烯脂肪醇醚 RO(CH2CH2O)nCH2CH2OH,其中R为C12~C18的烷基,n为15~16.甘油 丙三醇甘氨酸 氨基乙酸 H2NCH2COOH甘醇 乙二醇甘露醇 己六醇 可的松 11-脱氢-17羟基皮质菑酮,或称皮质酮石炭酸 苯酚龙胆紫 系含义模糊的商业名称,文献上各有其说,一般为甲紫和糊精的等量混和物卡必醇 二甘醇单乙醚 HOCH2CH2OCH2CH2OCH2CH3尼古丁 烟碱,即1-甲基-2-(3-吡啶基)吡咯烷丝氨酸 beta-羟基丙氨酸 HOCH2CH(NH2)COOH

  • 【金秋计划】常见的蛋白质修饰总结

    [font=system-ui, -apple-system, &][size=16px][color=#333333](1)磷酸化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质磷酸化是由蛋白激酶催化的磷酸基转移反应,是最常见、最重要的蛋白质修饰方式之一。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质磷酸化修饰的具体生物效应包括:改变被修饰蛋白质的活性、改变蛋白的亚细胞内定位、改变蛋白与其他蛋白或其他生物分子的相互作用。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]①催化蛋白质磷酸化的蛋白激酶,根据底物的磷酸化位点可分为三大类,蛋白质丝氨酸/苏氨酸激酶、蛋白质酪氨酸激酶、双专一性蛋白激酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]②催化蛋白质去磷酸化的蛋白磷酸酶,根据磷酸化的氨基酸残基不同可分为两类,蛋白质丝氨酸/苏氨酸磷酸酶和蛋白质酪氨酸磷酸酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](2)甲基化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质甲基化是指在甲基转移酶催化下,甲基基团由S-腺苷甲硫氨酸转移至相应蛋白质的过程。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质甲基化修饰可产生多种不同的生物效应,包括影响蛋白质间的相互作用、蛋白质和RNA间的相互作用、蛋白质的定位、RNA加工、细胞信号转导等。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]催化蛋白质甲基化的酶:甲基转移酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](3)乙酰化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质乙酰化是指在乙酰基转移酶的催化下,在蛋白质特定的位置添加乙酰基的过程。蛋白质乙酰化修饰所产生的生物效应,主要包括促进基因转录、诱导细胞自噬、调节代谢酶的活性及代谢通路。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]催化蛋白质乙酰化的酶:组蛋白乙酰基转移酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](4)类泛素化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]小泛素相关修饰物(SUMO)是类泛素蛋白家族的重要成员之一,可与多种蛋白结合发挥相应的功能。SUMO化修饰可参与转录调节、核转运、维持基因组完整性及信号转导等多种细胞内活动。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]①SUMO的分类:SUMO蛋白分布广泛,人类基因组编码了4种不同SUMO蛋白,分别为:SUMO1、SUMO2、SUMO3和SUMO4。其中,SUMO1-3在各种组织中均有表达,而SUMO4则主要在肾脏、淋巴结和脾脏中表达。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]②催化蛋白质SUMO化修饰的酶。SUMO化修饰需要一系列酶的参与,包括E1活化酶,E2结合酶以及E3连接酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](5)巴豆酰化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]作为一种新型组蛋白翻译后修饰方式,蛋白质巴豆酰化是一种进化上高度保守,且在细胞生物学功能上完全不同于组蛋白赖氨酸乙酰化的蛋白质修饰方式。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质巴豆酰化是指在巴豆酰基转移酶的催化下,在蛋白质特定的位置添加巴豆酰基的过程。组蛋白赖氨酸巴豆酰化修饰与基因的活化密切相关。此外,催化蛋白质巴豆酰化的酶是巴豆酰基转移酶。[/color][/size][/font]

  • 求助氨基乙腈盐酸盐

    求氨基乙腈盐酸盐的检测方法,请大家帮忙,最好有详细的分析步骤不胜感激氨基乙腈盐酸盐  中文名称:氨基乙腈盐酸盐   英文名称:Glycinonitrile hydrochloride   中文别名:盐酸胺腈;氨基乙腈盐酸盐;盐酸胺腈;氨基乙氰盐酸盐;甘氨基腈盐酸盐;氰基甲胺盐酸盐;氨基乙腈.盐酸盐   CAS RN:6011-14-9   EINECS号:227-865-9   分 子 式:C2H4N2·HCl;C2H5ClN2   分 子 量:92.53   风险术语:R22; R36/37/38;   安全术语:S26; S36/37/39;   物化性质:熔点:172 - 174   性状:具吸湿性   用途:用作医药中间体、有机合成原料

  • 【求助】吸光值为残留氨基酸量。每次测定的结果都非常奇怪?

    大家好:我最近在做蛋白质修饰率的测定。可是我每次做的结果都是未修饰和修饰过的在335nm处吸光值都非常低,大概在0.003或0.004。我采用的是TNBS法,具体如下:1mL蛋白液(修饰蛋白和未修饰蛋白)+1mL4%碳酸氢钠+1mL0.1%TNBS,混匀后40°反应2h,再加入1mL10%SDS和0.5mL1N盐酸,在335nm处读取吸光值。修饰后蛋白质的吸光值/修饰前蛋白质的吸光值为残留氨基酸量。每次测定的结果都非常奇怪,那么低,我感觉不可信,根据原理应该是修饰后的吸光值小于修饰前的吸光值才合理啊。我也不知道吸光值应该在怎样的范围内正常?我们实验室没有人做过,请大家指点一下吧!哪里有问题呢?谢谢

  • C18与氨基固相萃取柱的选择问题

    LZ刚接触农残检测的新人,现在对固相萃取柱的使用不是很明白。1、吡虫啉与啶虫脒应该都属于极性的吧,为什么检测标准上,吡虫啉净化时用C18小柱,而啶虫脒用氨基固相萃取柱?2、氨基固相萃取柱不应该用非极性的溶剂活化吗,这个标准上直接用的乙腈+甲苯(3+1)活化,然后还是用这个洗脱啶虫脒?3、C18小柱不是非极性的吗?他怎么能吸附吡虫啉呢?

  • 氨基柱能用10%的乙腈冲吗?

    各位大侠,小弟刚接触液相,有个问题想请教下,带我做实验的测样前和测完样都是用10%的乙腈冲氨基柱,流动相是乙腈-0.05 M KH2PO4 60:40,请问这样冲对氨基柱伤害大吗?总觉得这样不妥。

  • 蛋白粉乳制品豆粕饲料调味料等中的氨基酸酸水解前处理的全自动化装置的介绍

    [align=center][b][font=楷体]全自动氨基酸水解前处理研究[/font][/b][/align][align=center][font=楷体]-[/font][font=楷体]上海港岸仪器技术有限公司-[/font][/align][align=left][font=黑体]一、背景介绍[/font][/align][font=宋体][color=#333333][back=white]蛋白质是生命的物质基础,没有蛋白质就没有生命。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质水解成[/back][/color][/font][font=宋体][color=black][back=white]氨基酸,氨基酸是含有碱性氨基和酸性羧基的有机化合物,化学式是RCHNH2COOH。羧酸碳原子上的氢原子被氨基取代后形成的化合物。经蛋白质水解后得到的氨基酸都是α-氨基酸,而且仅有二十二种,包括甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸(蛋氨酸)、脯氨酸、色氨酸、丝氨酸、酪氨酸、半胱氨酸、苯丙氨酸、天冬酰胺、谷氨酰胺、苏氨酸、天冬氨酸、谷氨酸、赖氨酸、精氨酸、组氨酸,它们是构成蛋白质的基本单位。[/back][/color][/font][font=宋体][color=black][back=white]氨基酸是构成动物营养所需蛋白质的基本物质,比蛋白质更易于为动物消化系统吸收。因此食品中氨基酸的含量,是评价食品的品质的重要参数。对于某些特殊的群体,需要服用氨基酸功能食品或者药物来补充氨基酸,维持健康治疗疾病。[/back][/color][/font][font=宋体][color=black][back=white]在氨基酸功能食品和药物的研究和生产过程中,需要测定氨基酸的含量,用来评价和保证食品或者药品的功能疗效。[/back][/color][/font][align=left][font=宋体][color=#191919]测定蛋白质中的总氨基酸,必须先把蛋白质水解成游离氨基酸。[/color][/font][font=宋体][color=#333333][back=white]蛋白质在酸、碱或酶的作用下发生水解反应,中间产物是多肽,最后得到多种α-氨基酸,它是溶于水的[/back][/color][/font][font=宋体][color=#191919]。[/color][/font][font=宋体][color=#333333][back=white]加盐酸的作用是使蛋白质的肽键断裂,从而形成氨基酸。[/back][/color][/font][font=宋体][color=#191919]水解的方法有:酸水解、碱水解和酶水解方法,其中以酸水解法的应用最为广泛。[/color][/font][font=宋体]国标[/font][font=宋体]GB5009.124—2016[/font][font=宋体]对食品中氨基酸,[i][font=宋体][color=#333333]GB/T18246-2019[/color][/font][font=宋体][color=#333333]对饲料中总氨基酸和游离氨基酸[/color][/font][/i]进行测定,[/font][font=宋体]前处理都[/font][i][font=宋体][color=#333333]规定了先要对样品进行酸水解。[/color][/font][/i][/align][align=left][font=黑体]二、目前通常的做法有以下三种:[/font][/align][align=left][font=宋体]2.1 [/font][font=宋体]往水解管里面加入待测样品和试剂,充氮气,拧上盖。放入烘箱里面加热处理。[/font][font=宋体]水解后,使用氮吹浓缩仪或者平行蒸发仪进行浓缩或者减压蒸干。[/font][/align][align=left][font=宋体]2.2[/font][font=宋体]特殊水解管带气阀和气体接口。将气管先后分别连接真空泵和氮气瓶,通过气阀控制防止空气流入水解管。然后再放入烘箱加热水解。[/font][font=宋体]水解后,使用氮吹浓缩仪或者平行蒸发仪进行浓缩或者减压蒸干。[/font][/align][font=宋体]2.3[/font][font=宋体]利用酒精喷灯烧结水解管[/font][font=宋体],同时先抽真空,后充氮气。再放入烘箱水解。水解完了后,使用氮吹浓缩仪或者平行蒸发仪进行浓缩或者减压蒸干。[/font][font=黑体]三、上述常用方法的缺陷[/font][font=宋体]3.1 评价基础:[/font][font=宋体]蛋白质水解过程中要抽真空充氮气,排除空气。因为空气中的氧气会对蛋白质造成负面影响。这种影响被称为共价键修饰。具体来说,就是破坏蛋白质的分子结构,修饰蛋白质氨基酸侧链,蛋白质多肽链断裂,蛋白质分子间交联聚合等,因而影响消化等。[/font][font=宋体]水解过程是在高温(100~150℃)和强酸碱的环境下长时间(20~24小时)作用下进行的,以保证蛋白质在强酸碱的作用下充分水解成多肽片段并最终转化成溶于水的氨基酸产物。借以确保测试的结果准确。[/font][font=宋体]水解结束后,还需要用到浓缩仪或者平行蒸发仪对样品进行抽干浓缩操作。[/font][font=宋体]3.2 现在水解方法和设备评价:[/font][font=Symbol] [/font][font=宋体]残留氧气影响水解程度:方法一往水解管里面充氮气,势必有相当容量的氧气未被挤压出去。方法二插拔管接口和气管中残留了氧气,伴随着氮气注入了水解管。方法三也存在方法二相似的问题,酒精灯燃烧未必耗尽了水解管的氧气,可能有一定氧气残留量。如上所述,氧气会造成水解不充分,甚至失败。[/font][font=Symbol] [/font][font=宋体]加热不均匀影响水解程度:烘箱空间比较大,导致内部空间各点的温度有差异。引发水解管加热不均匀,导致水解不充分,甚至实验失败。[/font][font=Symbol] [/font][font=宋体]操作繁琐,效率不高:方法二和三,操作过程复杂,设计的设备众多。过程中按顺序需要插拔气管,开关气阀,控制真空泵开关,氮气开关,点灯,手持试管等。还要看气压参数。一个人难以独立完成,需要有人配合。[/font][font=Symbol] [/font][font=宋体]实验室及人身安全存在风险:频繁的插拔气管,开关阀门,使用明火,切开水解管取样等操作都存在危及实验室和人员安全的风险。烘箱的寿命,在长时间的高强度的使用中,有短路造成火灾的隐患。样品的安全也会受到威胁。[/font][font=Symbol] [/font][font=宋体]经济性探讨:水解处理中,要使用大量的设备:各种阀,专用水解管和烘箱的损耗,氮吹浓缩仪,旋转蒸发仪,平行蒸发仪等;人力资源的投入大,劳动强度大,风险系数高等。以上因素的综合影响,可能会导致成本高。[/font][font=黑体]四、新技术的研发探讨[/font] [font=宋体]本新技术主要实现了以下功能:[/font][font=宋体]1[/font][font=宋体]、抽真空和充氮气的全自动地无缝地切换,从根本上确保了对于氧气干扰的彻底排除。[/font][font=宋体]2[/font][font=宋体]、氨基酸水解管,及管盖的密封设计,使得各个管之间的并联密闭。氨基酸水解的整个过程,都在按压氮气的密封下进行。[/font][font=宋体]3[/font][font=宋体]、加热腔体一体成型,同时可以处理20个样品。[/font][font=宋体]4[/font][font=宋体]、温控设计,对功率进行了精确计算,保证安全和充分水解兼顾。[/font][font=宋体]5[/font][font=宋体]、触摸屏界面,操作简便,易学易用。[/font][font=宋体]6[/font][font=宋体]、整个水解处理的方法,完全符合国标的要求,较好地保证了结果的准确。[/font][font=黑体]五、技术效果[/font][font=宋体]1[/font][font=宋体]、样品充分加热水解:加热腔体的独特设计,底部球面加工,使得水解管底部侧壁充分均匀受热,对氨基酸水解管的全方位的包裹加热,确保样品的充分水解。[/font][font=宋体]2[/font][font=宋体]、排除了氧气的干扰:真空系统的精心设计,使得全部水解管及抽、充、排气的内部空间形成了一个密封空间;这样的设计,就可以保证完全按照国标要求来抽真空抽氮气。彻底保证了样品在无氧环境下充分彻底地完成水解。[/font][font=宋体]3[/font][font=宋体]、排除火灾风险:独特的温控设计,确保加热的温度可控;科学的加热块功率计算和设计,保证即使是加热块失控也不会发生火灾。彻底摒弃了明火烧结的方法,让水解实验室符合消防要求,杜绝了火灾的隐患。[/font][font=宋体]4[/font][font=宋体]、全流程操作的简化:抽真空,充氮气,加热,抽干等步骤按设置参数全自动次第完成,一气呵成。较大地简化优化水解过程。[/font][font=宋体]5[/font][font=宋体]、更加经济高效:该产品可以一机多用,替代了酒精灯,烘箱,氮吹或者旋转蒸发浓缩仪,平行蒸发仪等。节省设备采购维修费用。减少了劳动强度和人工的投入。水解过程的效率更高品质更好。[/font][align=left][font=宋体]6[/font][font=宋体]、确保操作人员的安全:如上所述该设备规避了火灾隐患,不再需要对试管烧结破开,水解过程的全密闭无异味等。这些优势,能较好的避免出现人员遭受伤亡的情况发生。[/font][/align]

  • 【分享】种植物可致癌 警惕花草成家居“杀手”

    新居装修完之后,在家里摆上几盆花草当做“空气过滤器”,已成为不少市民的消费习惯。可是,中国预防医科院病毒所专家近日指出,目前已发现52种植物含有致癌病毒,“清理门户”事不宜迟。日前,中国预防医科院病毒所专家对植物所含物质的促癌作用进行了研究,从1693种中草药与植物中共检出18个科中的52种植物含有促癌物质。这些植物多属大戟科与瑞香科,其中铁海棠(俗称刺儿梅)、变叶木、乌桕、红背桂花、油桐、金果榄等一些观赏性花木均含有促癌物质,而它们常常出现在市民家中及公园里面。 实验表明,这些致癌植物中所含有的“Epsteln-Barr病毒早期抗原诱导物”,可以诱导EB病毒对淋巴细胞的转化,并能促进由肿瘤病毒或化学致癌物质引起的肿瘤生长。目前,致癌植物诱发鼻咽癌与食管癌的实验已得到证实,它们不仅浑身上下都带“毒”,而且种过此类植物的土壤中都被检测出含有致癌病毒与化学致癌物的激活物质。 专家表示,如果居室中种有此类植物,人们有可能由于长期吸入花粉、尘土颗粒等原因引发癌症。因此,建议爱养花草的市民应及早“清理门户”,尽量不要在家中种植致癌植物。 52种致癌植物一览 石粟、变叶木、细叶变叶木、蜂腰榕、石山巴豆、毛果巴豆、巴豆、麒麟冠、猫眼草、泽漆、甘遂、续随子、高山积雪、铁海棠、千根草、红背桂花、鸡尾木、多裂麻疯树、红雀珊瑚、山乌桕、乌桕、圆叶乌桕、油桐、木油桐、火殃勒、芫花、结香、狼毒、黄芫花、了哥王、土沈香、细轴芫花、苏木、广金钱草、红芽大戟、猪殃殃、黄毛豆付柴、假连翘、射干、鸢尾、银粉背蕨、黄花铁线莲、金果榄、曼陀罗、三梭、红凤仙花、剪刀股、坚荚树、阔叶猕猴桃、海南蒌、苦杏仁、怀牛膝。 绿色“家庭氧吧”君子兰 君子兰不仅具有极高的观赏价值,还具有独特的净化价值。君子兰叶片宽厚,叶面气孔大,光合作用释放出的氧气是一般植物的35倍。一株成龄的君子兰,一昼夜能吸收1立升空气,呼出80%氧气来,在极微弱的光线下也能起光合作用。更适人意的是,它在夜里也不吐出二氧化碳。在十几平方米的室内,有二三盆君子兰,会把室内的烟雾吸收掉。特别是在北方寒冷的冬天,尽管门窗紧闭,君子兰也能起到很好的调节空气作用,保持室内空气清新。所以,称君子兰为绿色“家庭氧吧”当之无愧。

  • 【求助】2-氨基-4-氨基苯甲醚和2-硝基-4-氨基苯甲醚

    2-氨基-4-氨基苯甲醚和2-硝基-4-氨基苯甲醚,这2个东西,我用非极性柱,换了几种不同型号的柱子,用甲醇,乙腈,四氢呋喃不同溶剂做流动相都分不开,我记得在氨基上可以上个什么保护基团,好像是十六烷基磺酸钠什么的,具体怎么搞忘了,请哪位高人指教...

  • 氨基乙腈中氨含量检测

    各位大佬,氨基乙腈中氨含量有无色谱的检测方法,在用安捷伦CP Sil8胺类柱子分析氨基乙腈含量,色谱图上也无氨含量峰,氨基乙腈是用羟基乙腈加氨合成的,用氨水含量的方法无法滴定,请各位大佬指导。

  • 【分享】促癌植物“黑名单”

    一些观赏性植物中含有促癌物质。主要用于观赏、绿化、工业原料等或几种用途兼而有之。其中,主要用于观赏的植物有变叶木、细叶变叶木、蜂腰榕、麒麟冠、高山积雪。既可药用又有观赏性的植物有凤仙子、火殃勒、续随子、铁海棠、红背桂、假连翘、射干。其他植物为银粉背蕨、黄花铁线莲、青牛胆、海南蒌、怀牛膝、土沉香、芫花、土结香、狼毒、黄芫花、了哥王、细轴芫花、阔叶猕猴桃、石栗、石山巴豆、毛果巴豆、巴豆、 猫眼草、泽漆、甘遂、千根草、鸡尾木、多裂麻疯树、红雀珊瑚、山乌桕、乌桕、圆叶乌桕、光桐、木油桐、苦杏仁、苏木、金钱草、独活、红芽大戟、猪殃殃、坚荚树、剪刀股、曼陀罗、黄毛豆腐柴、三稜。 目前,这些植物的名称与各地民间俗称是否一致还不得而知。

  • 安谱碱性硅藻土净化测定酸奶中氨基甲酸乙酯含量

    [b]实验目的[/b]:氨基甲酸乙酯是发酵食品和酒精饮品在发酵和贮存过程中产生的污染物,是国际癌症研究机构确认的人类可能致癌物质(2A类),可以引起肺肿瘤、淋巴癌、肝癌、皮肤癌等。我国人口众多,是发酵食品消费大国,因此对不同发酵食品中氨基甲酸乙酯含量的检测势在必行。目前,国内对酒饮料的中氨基甲酸乙酯含量的研究较多,但对发酵牛奶中氨基甲酸乙酯含量研究很少。本文以酸牛奶为基质,加入同位素内标,使用安谱的碱性硅藻土柱净化,GCMS检测,对氨基甲酸乙酯的测定取得了很好的结果。[b]实验方法:[/b]标准品配制:D5-氨基甲酸乙酯储备液(1.0 mg/mL):准确称取10.0 mg D5-氨基甲酸乙酯标准品,用甲醇定容至10 mL。D5-氨基甲酸乙酯使用液(2.0 μg/mL):准确吸取1.0 mg/mL D5-氨基甲酸乙酯标准储备液0.1mL,用甲醇定容至50 mL。氨基甲酸乙酯储备液(1.0 mg/mL):准确称取10.0 mg氨基甲酸乙酯标准品,用甲醇定容至10 mL。分别准确吸取一定量氨基甲酸乙酯标准工作液,加入2.0 μg/mL的D5-氨基甲酸乙酯溶液0.1 mL,用甲醇定容至1.0 mL,得到10.0、20.0、50.0、100.0、200.0的标准使用液(内含200.0 ng/mL D5-氨基甲酸乙酯)[b]前处理:[/b]样品摇匀,称取2 g(精确至0.001 g)样品,加100 μL2 mg/L D5-氨基甲酸乙酯工作液、氯化钠0.3 g,超声溶解、再加入0.2 mL饱和乙酸铅溶液,沉淀蛋白后,9000r/min离心2 min,将上清液加到碱性硅藻土固相萃取柱中,在真空条件下,将样品缓慢渗入萃取柱中,并静置10 min。经10 mL正己烷淋洗后,用10 mL5%乙酸乙酯-乙醚溶液以约1 mL/min流速进行洗脱,洗脱液经装有2 g无水硫酸钠的玻璃漏斗脱水后,收集于10 mL刻度试管中,30 ℃水浴中用氮气缓缓吹至0.5 mL,用甲醇定容至1.0 mL,过0.22 μm尼龙滤膜后,进GC-MS分析。[b]色谱条件:SPE小柱信息:[img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181712381611_3533_2615123_3.png[/img][/b] [img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181712386404_3379_2615123_3.png[/img] [b]实验谱图[/b]氨基甲酸乙酯及D[sub]5[/sub]-氨基甲酸乙酯总离子流图(100 μg/L)[img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181712387861_5115_2615123_3.png[/img][b]结果分析及讨论[/b]讨论实验内容及对安谱SPE小柱的评价标准曲线:将标准曲线溶液进样测定,得到氨基甲酸乙酯的标准曲线方程为Y=0.0044x+0.0215,R[sup]2[/sup]=0.999,线性相关较好符合定量要求。[img=,458,201]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181712389592_8297_2615123_3.png[/img]定量限:采用空白基质加标测定回收率的方法,通过10倍标准偏差计算定量限。GB5009.233-2014标准中定量限为5 μg/kg,在酸奶空白样品中添加5.0μg/kg的氨基甲酸乙酯标准溶液,做10次平行测定,结果如下表所示[img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181712391067_1540_2615123_3.png[/img]从表中回收率数据可以看出,在添加浓度为5.0μg/kg时,平均回收为5.84μg/kg,标准偏差差为0.08μg/kg,计算得到的定量限为0.79μg/kg。远低于国标要求的5.0μg/kg,可完全满足日常检测需求。回收率及精密度:采用空白基质加标测定回收率的方法来计算准确度和精密度。在酸奶空白样品中添加氨基甲酸乙酯标准溶液,添加浓度分别为5.0μg/kg、10.0μg/kg、25.0μg/kg,每个添加浓度做3次平行测定,结果如下表所示[img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181712392604_1217_2615123_3.png[/img] 从表中的回收率和精密度数据可以看出,本方法在添加水平0~25μg/kg范围内,其加标回收率在117.7%~96.6%之间,相对标准偏差在0.4%~2.3%之间,满足分析方法的要求。GB5009.223-2014标准中规定了只适用于酒类和酱油中氨基甲酸乙酯含量的测定。目前只查阅到两篇关于酸奶中氨基甲酸乙酯测定的文献,且使用的是液液萃取的方法,液液萃取存在浪费时间,有机试剂使用量大的缺点。而本方法通过饱和乙酸铅溶液沉降蛋白,然后经过安谱碱性硅藻土柱净化进行酸奶中氨基甲酸乙酯的测定,方法简单,有机试剂使用量小,结果可靠稳定,表明使用安谱碱性硅藻土柱同样适用于发酵乳制品中氨基甲酸乙酯的测定,扩大了小柱的适用范围。同时此方法操作简便,耗时短,结果稳定,重现性好,可大大提高工作效率,是实验室进行测试氨基甲酸乙酯的首要选择。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制