当前位置: 仪器信息网 > 行业主题 > >

二氢异吲哚

仪器信息网二氢异吲哚专题为您提供2024年最新二氢异吲哚价格报价、厂家品牌的相关信息, 包括二氢异吲哚参数、型号等,不管是国产,还是进口品牌的二氢异吲哚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二氢异吲哚相关的耗材配件、试剂标物,还有二氢异吲哚相关的最新资讯、资料,以及二氢异吲哚相关的解决方案。

二氢异吲哚相关的资讯

  • 新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!
    新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!关于产品 DLM-10-10/氘代二甲亚砜/2206-27-1 的具体详情:CAS号:2206-27-1编号:DLM-10-10包装:10g纯度/规格:D, 99.9%品牌:美国CILDLM-10-10/氘代二甲亚砜/2206-27-1 公司为答谢新老客户对我们长期以来的支持,现有大量新品上市,低价优惠促销活动,欢迎新老客户前来咨询选购!企业其他相关产品推荐:bs-9642R,17号染色体开放阅读框57抗体|C17orf57抗体价格姜酮对照品/标准品CAS:2212-67-1,禾草知标准品/对照品价格CAS:53411-70-4,D-葡萄糖-6-磷酸三钠盐,6-磷酸葡萄糖三钠盐,6-磷酸葡萄糖酸三钠盐,G-6-P-Na32,4,5-三氯联苯标准品|对照品,cas:15862-07-42,6-(盐酸尼卡地平杂质)对照品/标准品次野鸢尾黄素标准品,cas:41743-73-1对照品CAS:9028-48-2,异柠檬酸脱氢酶,ICDH,Isocitrate dehydrogenasebs-2713R,肾损伤分子1抗体(甲型肝炎细胞受体1)|HAVCR1抗体价格CAS:10031-30-8,过磷酸钙价格重组人 HSPD1/HSP60 蛋白(His & GST 标签)/11322-H20E小鼠血小板衍生生长因子AB(PDGF-AB)ELISA检测试剂盒说明书铑标准溶液,cas:7440-16-6乌药醚内脂标准品,cas:13476-25-0对照品猪血管生成素1(ANG-1)ELISA试剂盒,96T/48T兔子肝细胞生长因子(HGF)ELISA检测试剂盒说明书CAS:61438-64-0,氯碘柳胺钠现货供应CAS:51503-28-7,固红片剂,固红-萘磺酸TR片剂,快红片剂,快红TR片剂,Fast red TR Tablets常山碱乙标准品,cas:24159-07-7对照品bs-15575R,kappa轻链可变区抗体|IGKV A18抗体价格人骨特异性碱性磷酸酶B(ALP-B)ELISA检测试剂盒说明书1,2-|CAS号306-37-6|1,2-Dimethylhydrazine dihydrochlorideCAS:41532-84-7,1,1,2-三甲基-1H-苯并[e]吲哚H-苯并[e]吲哚价格bs-13014R,DNA聚合酶δ2/DNA pol δ 2抗体|DNA polymerase delta p50抗体价格丙硫氧嘧啶对照品/标准品CAS:327-97-9,绿原酸价格CAS:18686-82-3,2-巯基-1,3,4-噻二唑价格沙苑子苷标准品,cas:116183-66-5对照品bs-2679R,细胞粘附分子CD112抗体|CD112抗体价格bs-2978R,硫氧还蛋白过氧化物酶Ⅱ/巯基抗氧化蛋白抗体|Peroxiredoxin 2抗体价格朝藿定A标准品,cas:110623-72-8对照品bs-11975R,周期蛋白结合蛋白抗体|CACYBP抗体价格CAS:1072-98-6,2-氨基-5-氯吡啶价格212304/琼脂,A级培养基厂家
  • 大连化物所在碳氢键活化合成复杂多环体系研究中取得新进展
    p   从简单易得的分子尤其是几乎无处不在的烃类化合物出发,简便高效地合成复杂的多环化物是有机合成工作中的一大挑战。近十年来,由于茂基三价钴、铑催化剂对碳氢键活化有着独特的活性、选择性以及官能团兼容性而被广泛研究。近期,中科院大连化物所金属络合物与分子活化研究组(209组)在这一领域取得了一系列进展,相关工作在《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 15351)和(Angew. Chem. Int. Ed. DOI:10.1002/anie.201704036)上先后发表。 /p p   硝酮化合物通常作为经典的1,3-偶极子参与各类环加成反应。该团队在2013年首次实现了硝酮定位碳氢键的活化。但是将其作为芳烃底物实现碳氢键活化和偶极加成相结合之前尚无报道。最近,该团队利用硝酮作为偶极子定位基,首先经碳氢键活化和环丙烯酮实现酰基化,在原位条件下,活化的C=C双键和硝酮发生分子内的1,3-偶极加成,得到桥环化合物。反应对于邻位含有较大位阻的N-叔丁基以及N-芳基硝酮均可适用,对于N-叔丁基硝酮,碳氢活化发生在唯一的苯环邻位 而对于N-芳基硝酮,反应则发生在N-芳环上,因此得到的产物的结构有所不同。值得一提的是,对于N-叔丁基硝酮,反应呈现出硝酮底物位阻控制的选择性。当N-叔丁基硝酮的邻位取代基位阻较小时,反应虽然也经历C-H活化和对三元环的插入开环,但是产生的烯基铑碳键并没有被质子解,而是发生了对亲电的亚胺片段的插入,之后经历了β-碳原子消除和质子解,得到最终的1-萘酚产物。反应中硝酮起到了亲电性无痕导向基的作用。此部分工作发表在Angew. Chem. Int. Ed. 2016, 55, 15351上。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/471915f3-bd4d-4007-9bab-375252f8942e.jpg" title=" W020170525567525355764.jpg" / /p p   含炔烃片段的环己二烯酮由于同时具有活泼的末端炔烃和α,β-不饱和酮结构,所以有多种的反应可能性,一直以来是研究的热点之一,但是大部分研究都是围绕着底物的亲核性展开。将其与天然产物中广泛存在的吲哚结合,发生分子内的狄尔斯-阿尔德(Diels-Alder)反应尚属首次报道。该反应首先经过碳氢键活化形成金属碳键, 之后发生炔烃的插入原位形成二烯中间体,随后与亲二烯体(环己二烯酮)发生分子内的Diel-Alder反应,反应过程中金属始终参与。反应能得到结构截然不同的桥环和并环化合物。当利用铑作为催化剂时,铑碳键对炔烃发生常见的2,1-插入随后和第一类D-A环化串联得到并环,用半径更小的三价钴催化剂时发生罕见的1,2-插入并和第二类D-A环化串联得到结构罕见的桥环。这一工作近期发表在《德国应用化学》(Angew. Chem. Int. Ed. DOI:10.1002/anie.201704036)上。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/6e10e342-1381-4c91-9df1-b6b7ebb774f1.jpg" title=" W020170525567525358639.jpg" / /p p   该系列工作得到了国家杰出青年基金和中科院先导专项的支持。 /p
  • 专家漫谈|热分析技术在药物质量控制以及药物研究中的一些应用
    p style=" text-align: left "    strong 本文 /strong strong 作者:江苏省食品药品监督检验研究院 李忠红 /strong /p p style=" text-align: left "   热分析法,顾名思义,是围绕物体热量发生了变化来进行的一系列分析测试的技术的总称,包括记录给予被测物热量后物质发生变化的过程以及物体发生变化过程中吸收或放出热量的测定。药典中收录的热分析法,广义的有转化点/熔点测定法、热重分析法、差热/差示扫描量热分析法、热载台显微镜分析法、微量热法(欧洲/英国药典)、溶液量热法(欧洲/英国药典)。中国药典2020年版四部通则0661热分析法中只收录了其中的三种。 /p p style=" text-align: left "   目前来说,在我们药品检验工作中采用热分析法对药物进行质量控制的应用主要有:原料药熔点的测定、化学对照品的纯度测定、药物水分的测定等,应用的项目与品种并不多。中国药典2015年版并未收录具体的需要用热分析仪来做质量控制的品种,2020年版是否有品种收录目前还未知晓。在国家药品监督管理局批准的各企业注册标准中,采用差示扫描量热分析法(DSC)测定熔点的品种有替格瑞洛、利培酮等,下图1是一张不同企业替格瑞洛原料药的热分析图,从图中可以看出不同企业产品的熔点存在着一定的差异,其中微小的差异可能来自于不同的纯度,而较大的差异应该是来自于不同的晶型。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 522px " src=" https://img1.17img.cn/17img/images/202006/uepic/c71b7d9d-0621-4e0b-b52c-b8be3c48db91.jpg" title=" 图1 替格瑞洛DSC分析图.jpg" alt=" 图1 替格瑞洛DSC分析图.jpg" width=" 500" height=" 522" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1 替格瑞洛DSC分析图 /strong /p p   热分析法在药品质量控制中应用面较窄的这种情况的主要原因是因为热分析仪相对于一些传统的药品检验用仪器(例如熔点仪、烘箱、减压干燥箱等)价格要贵得多,客观上限制了在熔点测定与水分测定中的应用。而对于化学对照品的纯度测定,热分析法只是一个辅助测定的方法,或者说是一个验证用其他方法测定出的纯度值是否准确的方法,并不能用热分析法得到的纯度值去给对照品赋值。所以,热分析法对于化学对照品纯度的测定这一应用,只有在化学对照品发行单位得到较多的应用[1,2]。 /p p   当然,在药物的制造过程中,有不少企业已经采用快速水分测定仪(水分天平)来做中间体物料的水分监测。快速水分测定仪是利用热失重法测定样品的水分含量,由称量与加热装置(红外)组成。其原理与热重分析仪一样,也应该算是一种热分析的仪器。 /p p   尽管在药品终产品质量控制中的应用目前还不广泛,热分析技术作为一门成熟的分析技术,在药物研究过程中角色一直是不可或缺的。近5年来在药物研究过程中的应用主要有:药物多晶型的研究[3-6],药物共晶的研究[7],药物新剂型研究[8-18],生物相容性材料[19,20]的表征,药品包装材料(聚乙烯、聚丙烯等材质)与液体药物的相容性研究等。下面简要介绍一下其中的几个应用。 /p p    strong 一、药物多晶型的研究 /strong /p p   各国药典收载的多晶型药物有188种,水合物有307种,无定形(型)物有113种[21],这些药物的研究过程都或多或少地用到过热分析技术。 /p p   2015年研究者Akhtar Siddiqui等[3]发表的研究文章中用DSC结合化学计量学方法对尼莫地平两种晶型的定量测定进行了很好的研究,为质量控制提供了可能。 /p p   2016年研究者Yusuke Hattori等[4]发表的研究文章中用DSC研究了采用熔融-骤冷和研磨法获取加替沙星的无定形物。这两种方法制备的无定形物的X-射线粉末衍射图谱是无差别的,但是它们的DSC图谱存在着一定的差异。下图2就是两种无定形物的DSC图谱。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e018c82b-c99f-4dff-ae98-4fa8d738bd6f.jpg" title=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" alt=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" / /p p style=" text-align: center " strong 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱 /strong /p p style=" text-align: center " (A)研磨法制备 (B)熔融-骤冷法制备 /p p   对于低温下药物的结晶过程、低温下药物晶核形成的机理研究,是近年来另一个研究的热点。2017年研究者Ioannis Nikolakakis等[5]发表的研究文章中采用熔融-骤冷法对扑热息痛(对乙酰氨基酚)的结晶动力学进行了研究,熔融的过程以及对骤冷后得到的玻璃体进行表征均使用了DSC仪。2018年研究者Yuan Su等[6]发表的研究文章中用类似的方法对灰黄霉素进行了研究,提出在超低温状态下(低于玻璃化转变温度),玻璃体发生断裂,在断裂面形成了晶核,因此不仅熔融-骤冷法不一定能得到无定形药物,而且对于无定形药物的保存也要注意贮藏条件可能产生的影响。 /p p    strong 二、药物共晶的研究 /strong /p p   共晶是提高药物溶解度的一个有效手段,而DSC是表征共晶形成成功与否的强有力技术。2018年研究者Patrycja Garbacz等[7]发表的研究文章中对吲哚美辛与糖精共晶、呋塞米与对氨基苯甲酸共晶进行了研究,典型的DSC图谱见图3。由图中可见,原料比例为1:2时吲哚美辛与糖精形成了共晶,即熔点只有一个。其他检测方法,例如红外光谱法、拉曼光谱法,都无法区分物理混合物与共晶。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 251px " src=" https://img1.17img.cn/17img/images/202006/uepic/bfbfeed1-7583-4e9d-bab7-1ff5558465af.jpg" title=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" alt=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" width=" 500" height=" 251" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 吲哚美辛与糖精共晶研究的DSC图谱 /strong /p p style=" text-align: center "   (a)吲哚美辛与糖精物理混合物(1:1) /p p style=" text-align: center "   (b)吲哚美辛与糖精物理混合物(2:1) /p p style=" text-align: center "   (c)吲哚美辛与糖精物理混合物(1:2) /p p style=" text-align: center "   (d)吲哚美辛与糖精共晶(原料比例1:1) /p p style=" text-align: center "   (e)吲哚美辛与糖精共晶(原料比例2:1) /p p style=" text-align: center "   (f)吲哚美辛与糖精共晶(原料比例1:2) /p p style=" text-align: center "   (g)吲哚美辛 /p p style=" text-align: center "   (h)糖精 /p p    strong 三、药物新剂型的研究 /strong /p p   纳米脂质体、介孔二氧化硅纳米粒、聚L-乳酸电纺纤维、温敏性水凝胶都是近年来发展起来的一些药物载体,也是药物新剂型。对于药物载体是否成功载药的研究,DSC是一个有效的表征手段,以2018年Li Pan等[18]对载虾青素的纳米脂质体研究为例,图4为采用DSC对原料药、辅料、原料药与辅料的物理混合物、载药纳米脂质体进行研究的图。载虾青素的纳米脂质体显示了与辅料大豆磷脂酰胆碱以及二者的物理混合物不同的DSC曲线。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 390px " src=" https://img1.17img.cn/17img/images/202006/uepic/fc4b38c6-cf08-49f0-b45d-11e2bd953a3e.jpg" title=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" alt=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" width=" 500" height=" 390" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图4 载虾青素的纳米脂质体研究的DSC图谱 /strong /p p style=" text-align: center " (a)虾青素 /p p style=" text-align: center " (b)载虾青素的纳米脂质体 /p p style=" text-align: center " (c)大豆磷脂酰胆碱 /p p style=" text-align: center " (d)虾青素与大豆磷脂酰胆碱的物理混合物 /p p   对于载虾青素的纳米脂质体研究,研究者不仅使用了DSC,还使用了TG,图谱见图5。TG曲线可被分为三段,分别代表了三步分解过程:失水(138℃之前)、大豆磷脂酰胆碱分解(138~315℃)、虾青素分解(315~500℃)。TG曲线可以从一个侧面反映药物的组成。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 350px " src=" https://img1.17img.cn/17img/images/202006/uepic/cd90f3d6-0c0d-47b8-94ec-55fbf677c8b9.jpg" title=" 图5 载虾青素纳米脂质体的TG图谱.jpg" alt=" 图5 载虾青素纳米脂质体的TG图谱.jpg" width=" 500" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图5 载虾青素纳米脂质体的TG图谱 /strong /p p   由以上这些应用来看,随着采用热分析法对于药物多晶型的研究工作日益的广泛,以及仿制药与原研药一致性评价工作的需求,采用热分析技术作为成品的质量控制手段的可能性也会大幅提升。因此,可以预见,热分析技术在药物质量控制领域会发挥越来越大的作用。 /p p br/ /p p    a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" strong 热分析技术在药物质量控制中的应用专题 /strong : /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202006/uepic/275383cf-9219-4e35-ace8-f04a0943596e.jpg" title=" 192042020200616.jpg" alt=" 192042020200616.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p br/ /p p    strong 参考文献: /strong /p p   [1] 刘毅,吴建敏,严菁,等. 熔点对照品标化研究,中国新药杂志,2015,24(3):264-270 /p p   [2] 刘毅,吴建敏,吴涓,等. 差示扫描量热法在化学药品对照品纯度分析中的应用,中国新药杂志,2017,26(10):1115-1118 /p p   [3] Akhtar Siddiqui, Ziyaur Rahman, Mansoor A. Khan. Application of chemometric methods to differential scanning calorimeter (DSC) to estimate nimodipine polymorphs from cosolvent system. Drug Development and Industrial Pharmacy, 2015, 41(6):995-999 /p p   [4] Yusuke Hattori, Ayumi Suzuki, Makoto Otsuka. Characterization of melt-quenched and milled amorphous solids of gatifloxacin. Drug Development and Industrial Pharmacy, 2016, 42(11): 1851-1856 /p p   [5] Ioannis Nikolakakis, Kyriakos Kachrimanis. Crystallization kinetics of orthorhombic paracetamol from supercooled melts studied by non-isothermal DSC. Drug Development and Industrial Pharmacy, 2017, 42(2): 257-263 /p p   [6] Yuan Su, Lian Yu, Ting Cai. Enhanced crystal nucleation in glass-forming liquids by tensile fracture in the glassy state. Crystal growth & amp design, 2018, DOI: 10.1021/acs.cgd.8b01427 /p p   [7] Patrycja Garbacz, MarekWesolowski. DSC, FTIR and Raman Spectroscopy Coupled withMultivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules, 2018, 23, 2136 doi:10.3390/molecules23092136 www.mdpi.com/journal/molecules /p p   [8] 冯巧,张亚轩,夏志伟,等. 温敏型水凝胶聚(N-异丙基丙烯酰-乙烯基吡咯烷酮)的前端聚合法制备及性能. 高分子材料科学与工程,2015,31(4):37-46 /p p   [9] 王浩,康卫民,张亚秋,等. 壬苯醇醚聚ε-己内酯电纺纤维膜的表征及释放. 沈阳药科大学学报,2015,32(4):249-255,270 /p p   [10] 王浩,郭衎,刘影,等. 十六烷基磷脂酰胆碱复合聚ε-己内酯电纺微球的制备及表征. 辽宁医学院学报,2015,36(2):1-5,附页1-2 /p p   [11] 吕洁琼,林君红,崔升淼. 介孔二氧化硅纳米粒对穿心莲内酯载药性能及药物释放的影响. 广东药学院学报,2016,32(5):555-558 /p p   [12] 吕志阳,杨雨微,陈璟,等. 热熔挤出技术制备银杏总内酯固体分散体的研究. 中药材,2016,39(7):1610-1613 /p p   [13] Li Pan, Hongyan Wang, Keren Gu. Nanoliposomes as Vehicles for Astaxanthin Characterization In Vitro Release Evaluation and Structure-PXRD DSC. Molecules, 2018, 23:2822 doi:10.3390/molecules23112822 www.mdpi.com/journal/molecules /p p   [14] 赵娜,史雨,王中彦. 和厚朴酚固体分散体的制备及表征. 沈阳药科大学学报,2019,36(6):469-473 /p p   [15] 管庆霞,张悦,邹淑君,等. 马钱子碱纳米结构脂质载体的表征及体外释放行为分析. 中国中医药信息杂志,2019,26(8):66-70 /p p   [16] 郭爱灵,姚涛,潘斯庆,等. 复方葛根素水飞蓟宾固体分散体的制备及表征. 中国中医药信息杂志,2020,27(2):59-63 /p p   [17] 黄佳娜,崔银,张天,等. 载塞克硝唑泊洛沙姆复合聚L-乳酸电纺纤维的表征和释放行为考察. 中国医药工业杂志,2020,51(5):605-612 /p p   [18] 盛晓丹,刘臻,罗砚曦,等. 聚多巴胺修饰的载榄香烯介孔二氧化硅纳米粒的制备及其靶向抗肿瘤活性研究. 中草药,2020,51(10):2745-2754 /p p   [19] 王秦峰. 聚乳酸的热性能研究. 上海化工,2019,44(2):14-16 /p p   [20] Carlos David Grande Tovar, Jorge Ivá n Castro, Carlos Humberto Valencia, et al. Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 2020, 25:1203 doi:10.3390/molecules25051203 www.mdpi.com/journal/molecules /p p   [21] 张建军,钱帅,高缘主编. 晶型药物研发理论与应用,化学工业出版社,2019.1 /p p br/ /p
  • 河北省精细化工行业协会发布《2-甲基喹啉》等7项团体标准公开征求意稿
    各相关单位、专家:根据河北省精细化工行业团体标准工作安排,《2-甲基喹啉》《α-甲基萘》《工业苊》《工业芴》《氧芴》《吲哚》《茚》7项团体标准征求意见稿已经完成,现面向社会公开征求意见。欢迎广大行业企业和专家提出宝贵意见。征求意见截止时间为2023年5月1日协会标委会联系电话:0311-68072978邮箱:hbjxhg@163.com附件:《对苯基苯酚》《十氢化萘》2项团体标准征求意见稿 河北省精细化工行业协会管理标准化委员会2023年3月30日2-甲基喹啉-征求意见稿.pdf工业苊-征求意见稿.pdfα-甲基萘-征求意见稿.pdf氧芴-征求意见稿.pdf吲哚-征求意见稿.pdf茚-征求意见稿.pdf工业芴-征求意见稿.pdf精细化工协会团体标准征求意见表-2-甲基喹啉.doc精细化工协会团体标准征求意见表-工业苊.doc精细化工协会团体标准征求意见表-工业芴.doc精细化工协会团体标准征求意见表-α-甲基萘.doc精细化工协会团体标准征求意见表-氧芴.doc精细化工协会团体标准征求意见表-茚.doc精细化工协会团体标准征求意见表-吲哚.doc
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • iMeta | 齐碳纳米孔测序助力揭示桑黄多酚抗结肠炎肠道分子机制
    近日,浙江省农业科学院李有贵、天津中医药大学吴崇明和中国农科院深圳基因组所刘永鑫等团队在iMeta在线联合发表了题为《The gut microbiota-aromatic hydrocarbon receptor (AhR) axis mediates the anticolitic effect of polyphenol-rich extracts from Sanghuangporus》的研究成果。基于齐碳纳米孔测序平台及二代测序平台开展研究,通过16s rRNA基因测序评估SH处理对小鼠肠道微生物群落结构的影响;通过对肠道微生物群落的宏基因组测序,确定与5-羟色胺-3-乙酸(5HIAA)生物合成相关的功能基因序列;通过对微生物,尤其是Alistipes onderdonkii等关键菌株的全基因组测序及组装,进一步理解微生物如何影响宿主健康。最终,本研究证明了桑黄多酚(SH)通过调节肠道菌群有效减轻葡聚糖硫酸钠(DSS)诱导小鼠的结肠炎病理症状,揭示了基于SH和肠道菌群之间的相互作用开发结肠炎治疗策略的潜在途径。背景炎症性肠病(IBD)主要包括溃疡性结肠炎(UC)和克罗恩病(CD),是一个全球性的健康问题,影响全球约0.5%人口。IBD的典型症状包括急性腹泻、间歇性腹痛、直肠出血和体重减轻。除了显著降低生活质量外,IBD还增加了结肠癌的患病风险,从而给个人和社会带来了沉重负担。目前,IBD缺乏明确的治疗药物,虽然常用临床药物具有较高的缓解率,但往往会出现继发性失败。因此,迫切需要寻找更有效、更安全的新的治疗干预措施。越来越多的证据证明了肠道菌群失调与IBD 的发生发展内在联系。Machiels等人发现,UC患者肠道微生态失调表现为产丁酸盐物种,如Roseburia hominis和Faecalibacterium prausnitzii的显著减少。丁酸钠治疗可减轻结肠炎的炎症状态和肠黏膜病变。吲哚衍生物是重要的微生物代谢物,已被证实是改善实验性溃疡性结肠炎的有益药物。例如,吲哚-3-乙酸(IAA)、吲哚-3-甲醇(I3C)和吲哚-3-丙酮酸(IPA)可以作为芳基烃受体(AhR)的天然配体,通过提高血清和组织抗炎白细胞介素水平来减轻IBD。因此,肠道菌群及其代谢产物,特别是吲哚衍生物,可能是开发新的抗IBD治疗干预措施的有效途径。成果概述中药(TCM)在中国已成功治疗疾病数千年。越来越多的证据强调了天然药物资源的药理益处。食药用食物已成为一种很有前途的疾病治疗方法。桑黄是一种可食用的药用真菌,可作为药物和膳食补充剂。研究证明,桑黄具有多种药理作用,包括抗炎、抗肿瘤和抗氧化。此外,它还具有调节肠道菌群的能力。然而,桑黄对于IBD的治疗潜力尚未被探索。本研究旨在确定桑黄多酚(SH)的抗结肠炎作用,并探讨其有益作用是否与肠道菌群密切相关,以及潜在的肠道分子机制。本研究首先评估了SH抗结肠炎活性,并通过一种涉及体内功能验证和粪菌移植的综合方法证实了肠道菌群在其抗结肠炎作用中的重要贡献。此外,本研究还确定了关键的肠道细菌种类及其活性代谢产物5-羟基吲哚-3-乙酸(5HIAA),他们是SH改善结肠炎作用的关键介质,主要通过激活AhR信号通路发挥抗结肠炎作用。本研究不仅有助于更深入地了解SH的治疗潜力,而且也为今后探索SH和肠道菌群治疗结肠炎的治疗途径奠定了科学基础。成果亮点1.SH减轻DSS诱导的C57BL/6小鼠结肠炎桑黄在中国已经实现了大规模的人工栽培(图S1A)。SH是桑黄多酚提取物(93.86% ± 2.78%)(图S1B;表S1)。本研究首先评价了SH在葡聚糖硫酸钠(DSS)诱导小鼠中的抗结肠炎作用(图1A)。与正常小鼠相比,结肠炎小鼠表现出体重减轻(图S2A)、疾病活动指数增加(DAI)(图1B)、结肠长度缩短(图1C;图S2B)、隐窝和结肠组织结构受损(图1D;图S2C),以及明显的炎症反应(TNF-α、IL-1β、IL-6、MCP-1和IL-17α增加,IL-4、IL-10和IL-22降低)(图S3)。低剂量和高剂量SH均可改善结肠炎病理症状,主要表现在增加体重,改善结肠长度和结构损伤(图1B-D;S2)。此外,SH给药以剂量依赖性方式逆转了炎症细胞因子水平的变化(图S3),表明SH具有强大的抗炎作用。氧化应激和肠黏膜屏障对于维持肠道通透性以抵御毒素、致病菌和其他有害物质至关重要。团队在转录和翻译水平上评估了SH对上皮细胞紧密连接蛋白表达的影响,并检测了氧化应激相关基因的表达。与DSS组相比,SH处理组紧密连接蛋白基因Occludin、Claudin-3和Claudin-4的转录水平明显升高(图S4A),结肠组织中NF-kB、Nox4和Stat3的表达水平明显下调(图S4B)。同时,SH也增强了紧密连接蛋白的蛋白表达水平(图S4C-D),证实了SH对粘膜屏障的正向调控作用。此外,经过SH处理后,杯状细胞的数量也显著增加(图S4E)。以上结果表明,SH可显著改善DSS诱导的小鼠结肠炎症状。图1.SH缓解DSS小鼠实验性结肠炎症状,并改变其肠道菌群(A)动物实验示意图;(B)疾病活动指数(DAI)评分;(C)结肠组织图片;(D)苏木精&伊红染色(H&E)结肠病理图(比例尺= 50µ m);(E)基于Chao1指数和Shannon指数评价肠道菌群Alpha多样性。(F)基于加权UniFrac距离的肠道菌群主坐标分析(PCoA);(G)属水平上肠道微生物群的分类特征。(H)DSS相关细菌的核心微生物群。内环代表了在NC-DSS-SHL-SHH队列中可重复检测到的OTUs。不同微生物群落的相对丰度显示为蓝色(NC)、绿色(DSS)、红色(SHL)和青色(SHH)热图。alpha多样性分析采用Wilcoxon非参数检验,PCoA分析采用置换多元方差分析(PERMANOVA)。数据显示为平均值±标准误(n = 8)。*p 0.05,**p 0.01,***p 0.001。NC,阴性对照;DSS,葡聚糖硫酸钠;SHL,低剂量桑黄多酚组(250 mg/kg/d);SHH,高剂量桑黄多酚(400 mg/kg/d);DAI,疾病活动指数。2.肠道菌群在SH抗结肠炎作用中起关键作用为了评估肠道菌群对SH抗结肠炎作用的贡献,团队进行了16S rRNA基因测序分析,以评估SH治疗对肠道菌群的影响。DSS诱导结肠炎小鼠肠道菌群α-多样性明显低于正常小鼠(p 图2.粪菌移植(FMT)揭示SH调节肠道菌群的抗结肠炎作用(A)动物实验示意图;(B)小鼠体重(g);(C)疾病活动指数(DAI)评分;(D)结肠长度(cm);(E)苏木精&伊红染色(H&E)结肠病理切片(上)(比例尺= 200µ m)和Claudin-4紧密连接蛋白免疫荧光图(下)(比例尺= 50µ m);(F)血清抗炎细胞因子IL-10 水平;(G)血清抗炎细胞因子IL-22 水平;(H)血清促炎细胞因子(TNF-α、IL-1β、IL-6和IL-17α)水平;(I)结肠组织中Occludin,Claudin-3和Claudin-4的蛋白表达。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 3.SH富集Alistipes onderdonkii改善结肠炎接下来,团队在属水平上仔细研究了肠道菌群的分类组成,以确定SH抗结肠炎作用的核心细菌。结果显示,与DSS组相比,对照组、SHL组和SHH组中,共有12个菌属表达上调,25个菌属表达下调(图S7A)。与对照组相比,模型组有34个菌属增加,13个属菌降低。低剂量SH处理使得10个菌属上调,4个菌属下调。高剂量SH处理后,20个菌属上调,4个菌属下调(图S7B)。差异表达分析显示,只有Alistipes在DSS组显著减少,而在SH治疗后显著增加(图S7C)。进一步Spearman相关分析表明,3个菌属与DAI评分显著负相关、与结肠长度显著正相关,其中Alistipes相关性最为显著(图S7D)。这些结果表明,SH可以显著调节肠道微生物群落,特异性富集Alistipes。进一步,团队通过物种特异性定量PCR(qPCR)对粪便Alistipes进行定量,发现Alistipes onderdonkii是SH富集的主要菌种(图S7D-E)。团队获得了3株A. onderdonkii,并评价了它们对DSS诱导的结肠炎影响。结果显示,三个菌株中,两个A. onderdonkii 菌株(#1:FDB8和#2:FDFM)可有效预防体重减轻,降低DAI评分,恢复结肠组织损伤,改善炎症状态(图3A-E)。此外, A. onderdonkii提高了紧密连接蛋白的表达,以增强肠道屏障功能(图3F-H)。因此,A. onderdonkii可能是介导SH抗结肠炎作用的关键有效物种。有趣的是, A. onderdonkii(#3)几乎没有改善结肠炎,甚至造成了有害的影响(图S8),表现出了菌株特异性的功能。图3.A. onderdonkii减轻DSS诱导的C57BL/6小鼠结肠炎(A)小鼠体重百分比(%)和体重变化(g);(B)DAI评分和DAI评分的AUC;(C)苏木精&伊红染色(H&E)的结肠病理切片(比例尺= 200µ m)。(D)血清抗炎细胞因子IL-10和IL-22的水平;(E)血清促炎细胞因子IL-1β和MCP-1的水平;(F)结肠组织Occludin,Claudin-2,Claudin-3,Claudin-4和ZO-1的mRNA表达水平;(G)结肠组织Occludin、Claudin-3和Claudin-4的蛋白表达;(H)Claudin-4紧密连接蛋白免疫荧光图(比例尺= 50µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 4.5-羟基吲哚-3-乙酸(5HIAA)是一种关键活性代谢产物考虑到SH对肠道菌群的调节作用,团队对粪便样本进行了代谢组学分析,旨在识别功能微生物代谢产物。如图S9A所示,与NC小鼠相比,DSS诱导结肠炎小鼠中代谢物水平发生显著改变(图S9A),而SH处理组的代谢物谱与NC组接近,表明SH显著恢复了微生物代谢物的分布(图S9A)。随后,团队确定5HIAA在SH处理后显著升高(图S9B-C)。通过对3株A. onderdonkii功能基因序列的全面分析,发现2株A. onderdonkii(#1:FDB8和#2:FDFM)的基因组中含有一个与诱导吲哚化合物生物合成相关的tpl基因。相比之下,第三株菌株(#3:FDPA)的基因组缺乏这个特定的基因(图S9D)。为了证明A. onderdonkii确实具有产生5HIAA的能力,团队采用高效液相色谱(HPLC)对A. onderdonkii培养上清液中5HIAA含量进行检测,发现5HIAA浓度高达33.5 μg/mL。值得注意的是,5HIAA的产生与A. onderdonkii改善结肠炎的作用相关,主要表现为两个有效的A. onderdonkii菌株产生的5HIAA(33.5和16.83 μg/ml)多于无效菌株(0.83μg/ml)(图S9E)。代谢物与结肠炎指数的相关分析显示,有22种代谢物与结肠炎症状密切相关,其中5HIAA与结肠长度呈正相关,与DAI评分呈负相关(图S9F)。因此,SH可以促进5HIAA产生,这可能是与SH抗结肠炎作用相关的关键微生物代谢产物,尤其是A. onderdonkii。据报道,肠道微生物产生的IAA可以缓解结肠炎。因此,团队研究了与IAA密切相关的衍生物5HIAA对DSS诱导结肠炎的影响(图4A)。IAA治疗显著改善了结肠炎的症状(图4B-F),这与之前的报道结果一致,而5HIAA在缓解结肠炎方面的表现明显优于IAA(图4B-F)。此外,这两种吲哚衍生物都能有效地提高抗炎因子的水平,降低促炎因子的水平,以减轻炎症反应(图S10A-B)。在DSS诱导小鼠中,吲哚衍生物也降低了氧化应激相关基因(NF-kB、Nox4和Stat3)的相对表达(图S10C)。此外,IAA和5HIAA均上调了紧密连接蛋白Occludin和Claudins的表达,后者具有显著性(图S10D-E)。图4.5HIAA治疗可减轻DSS诱导的C57BL/6小鼠结肠炎(A)动物实验示意图;(B)体重百分比(%);(C)小鼠DAI评分;(D)小鼠结肠长度(cm);(E)苏木精&伊红染色(H&E)的结肠病理图(比例尺= 200µ m)和小鼠组织学评分;(F)Claudin-4紧密连接蛋白免疫荧光图(比例尺= 50µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 5.结肠AhR激活对SH抗结肠炎具有重要作用既往研究表明,微生物来源的吲哚衍生物可以通过结合并激活AhR来保护结肠炎,提示SH可能通过富集Alistipes及其代谢物5HIAA来激活AhR,从而改善结肠炎。为了证实这一假说,团队首先检测了AhR下游基因(Cypa1、Cypa2和Cypb1)在结肠中的表达水平。结果显示,5HIAA和SH两种处理均显著上调了Cypa1、Cypa2和Cypb1(图5A-B)基因水平,表明AhR在结肠组织中被激活。随后,团队用AhR抑制剂处理DSS小鼠,以验证AhR信号通路对SH抗结肠炎疗效的贡献。AhR拮抗剂StemRegenin 1基本上消除了5HIAA对结肠炎的改善作用,如体重、DAI、结肠长度、血清IL-22和IL-10水平,以及结肠组织病理学(图5C-H)。AhR拮抗剂消除了SH治疗对体重的有益作用(图5C-H),但对DAI、结肠长度等指标的消除作用明显减弱(图5C-H)。通过对Caco-2细胞的体外实验,进一步验证了AhR信号通路的激活情况。CCK-8检测结果显示,五种浓度的5HIAA对Caco-2细胞都没有细胞毒性作用(图S11A)。虽然5-HIAA处理后Caco-2细胞中AhR的表达没有明显变化,但Cypa1、Cypa2和Cypb1的表达明显增加(图S11B),提示5HIAA部分激活了AhR信号通路。以上结果表明,SH至少大部分通过激活AhR信号通路来缓解结肠炎。图5.AhR抑制剂可削弱SH和5HIAA的抗结肠炎作用(A)5HIAA处理结肠炎小鼠结肠组织中Ahr、Cypa1、Cypa2和Cypb1的相对mRNA水平;(B)SH处理结肠炎小鼠结肠组织中Ahr、Cypa1、Cypa2和Cypb1的相对mRNA水平;(C-D)小鼠体重(C)及体重变化(D);(E)DAI分数;(F)小鼠结肠长度(cm);(G)血清抗炎细胞因子(IL-22和IL-10)水平;(H)结肠组织和苏木精&伊红染色(H&E)结肠病理图(比例尺= 200µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 0.05, **p 0.01, ***p 0.001。AhR,芳香烃受体。
  • 国际微波合成的先驱将首次在中国做精彩演讲!
    受莱伯泰科(LabTech)公司和Milestone公司联合邀请,国际微波合成的先驱----Chris Strauss教授将于2008年5月27日上午和29日上午分别在上海和北京做精彩的报告演讲。演讲的内容为国际微波促进有机化学研究方向、现状及**进展。Chris Strauss 教授是澳大利亚绿色化学、微波化学和新介质化学有机合成领域的开创者。近年来,Chris Strauss教授多次受邀以访问教授的身份到美国(1995)、加拿大(1997)、捷克(1998)等国际微波会议做报告演讲,作为一名化学工作者,他更是以严谨的学术态度和在微波合成领域的成就而声誉卓著。此次是他首次来中国做学术报告,他表示希望此行能够促进国际间学术界的交流,加快微波技术在化学合成领域的应用。 Chris Strauss教授简介:男,教授,博士。先后毕业于悉尼大学、阿德莱德大学,分获学士、博士学位。澳大利亚联邦科工组织成员,现任英国贝尔法斯特王后大学离子液体实验室教授。科研方向:微波化学、天然产物、&ldquo 绿色化学&rdquo 、有机合成、离子液体等。迄今为止,Chris Strauss 教授在国际**期刊上发表学术论文500余篇,申请专利近100项。 主要成就: 1. 首次发现高温水具有特殊的性质可用于有机合成及产品后处理 2. 首次将树脂吸附与离子交换技术用于水溶液微波合成产品的分离与纯化 3. 微波批反应器(MBR)的主要发明者 4. 连续微波反应器(CMR)的主要发明者 5. 发明一种催化醚化反应,这种反应不产生有机废物,反应体系无需添加酸或碱 6. 发明N-芳基氨基化合物一步合成法 7. 发现一种用于Jacobs-Gould反应的加热方法,此法转化率高、快速、可预测、可控,无需稀释热传递油 8. 发现一种利用高温水溶液介质直接由乙基吲哚-2-羧酸盐制备吲哚和吲哚-2-羧酸的方法 9. 发现将钯负载于多空玻璃管作为催化剂应用于微波有机合成,具有耐氧化、热稳定、机械强度高、钯损失小、不易中毒等特点 主要奖项: 1996年,澳大利亚联邦科工组织成就奖 1999年获得澳大利亚化学会(RACI)绿色化学挑战奖 2005年获澳大利亚有机化学研究&ldquo Birch&rdquo 奖 主要学术论文: 1. Towards rapid, &ldquo green&rdquo , predictable microwave-assisted synthesis. Roberts, B. A., and Strauss*, C.R., Acc. Chem. Res., 2005, 38, 563. 2. Invited Review. A Combinatorial Approach to the Development of Environmentally Benign Organic Chemical Preparations. Strauss, C. R., Aust. J. Chem., 1999, 52, 83. 3. Applications of High-Temperature Aqueous Media for Synthetic Organic Reactions. An, J., Bagnell, L., Cablewski, T., Strauss*, C. R., and Trainor, R. W. J. Org. Chem., 1997, 62, 2505. 4. Invited Review. Developments in Microwave-Assisted Organic Chemistry. Strauss* C. R., and Trainor R. W., Aust. J. Chem., 1995, 48, 1665. 5. A New Microwave Reactor for Batchwise Organic Synthesis. Raner K. D., Strauss* C. R., Trainor R. W., and Thorn J. S., J. Org. Chem, 1995, 60, 2456. 6. The Development and Application of a Continuous Microwave Reactor for Organic Synthesis. Cablewski T., Faux A. F., and Strauss* C. R., J. Org. Chem., 1994, 59, 3408. 申请专利: 1. Method and Apparatus for Continuous Chemical Reactions. Strauss* C. R., and Faux A. F., Australian Provisional Patent No. PJ 0872/88, 1988. European Patent No. 0437480 (1994) US Patent Number 5,387,397 (Feb. 7, 1995) Canadian Patent Number 2,000,351 (Nov. 13, 1999). 2. Microwave Method. Dixon D. R., Strauss C. R., and Faux A. F., Australian Provisional Patent Application No. PJ5898/89, 1989. 3. Mixing during Microwave or RF Heating. Raner K. D., Somlo P. I., Elder D. W., and Strauss C. R., Australian Provisional Patent Application PK8003/91, 1991. 4. Chemical Processes and Compounds derived therefrom. Rosamilia, A., Scott, J. L., and Strauss*, C. R., Australian Provisional Patent Application No. 2004904308 (August 2, 2004), PCT filing, August 2005  联系人:胡旭 E-mail:marketing@labtechgroup.com Tel:010 64954441 Fax:010 64974268
  • 气质联用分析仪揭秘大熊猫“身份证”
    圈养大熊猫(雄:左图 雌:右图)在墙面和护栏上擦蹭臀部留下气味   在人类的眼中,所有的大熊猫不论雌雄,其外形、体态和毛色等都是相同的,大熊猫个体之间如何相互识别?划地盘和吸引异性是动物世界最为热衷的头等大事,即使憨态可掬的大熊猫也对这两件大事具有战略意识,大熊猫们如何吸引配偶和示警天下?它们采用什么方式来区分亲属和非亲属,从而避免和近亲个体交配繁殖?对于科学家来说,揭示大熊猫“相亲”的秘密是很有意思的课题。   在国家自然科学基金、中国野生动物保护协会和中国保护大熊猫国际合作项目等资助下,中国科学院动物研究所、北京师范大学、美国华盛顿大学及卧龙大熊猫自然保护区的两项合作研究日前分别在国内外期刊上发表文章称,大熊猫的肛腺气味可以充当它们的身份证,从而帮助大熊猫划分自己的地盘 在发情交配季节,雄性个体的尿液还充当了区分亲属和非亲属的主要标志物。这两项新成果对解释圈养雌性大熊猫的配偶选择行为,进一步推动野生大熊猫的保护工作具有重要的理论意义。   大熊猫也有“身份证”   有关大熊猫肛腺含有性别和个体“气味指纹”的研究结果近日发表在国际化学生态学会官方刊物《化学生态杂志》(Journal of Chemical Ecology)上,该结果修正了Hagey和 MacDonald于2003年发表在该杂志上的类似研究。这也是我国有关大熊猫化学通讯的研究成果第一次刊发于国际专业权威杂志上。   看过野生大熊猫录像或者去过动物园繁育中心的人会发现,野生和圈养大熊猫经常在地面、墙面或者树干上擦蹭胖胖的臀部,其实那是在遗留一些气味标记,有时也会通过排尿的方式遗留标记。哺乳动物化学信息素的研究和分析是近几年的热门研究领域。文章作者之一、中科院动物所副研究员张健旭在接受《科学时报》采访时介绍说:“肛腺是哺乳动物的一个重要气味腺,大熊猫正是通过肛腺标记,将分泌物留在领域内的物体上传递信息,从这些气味信息中,我们可以辨识大熊猫的一些特征。”擦蹭臀部的小动作实际上是大熊猫在出示自己的“身份证”,即向它的同类传递自己的性别、性成熟、健康状况等信息。   研究人员利用常规的溶剂萃取和气质联用分析,从16只成年大熊猫的特化气味腺体——肛腺的标记物中检测到39种成分。但其间并没有发现性别特有的化合物。但之前,张健旭等研究人员已经确定了啮齿类动物等信息素建立的方法,于是研究人员以这个方法为基础,将39种成分中含量较高的21个化合物的相对含量进行定量比较找到了其中的成分,即:5-甲基乙内酰脲、吲哚和芥酸在雌性中含量较高,角鲨烯和对苯二酚在雄性中含量较高。它们分别被确定为雌性和雄性的推定信息素,证明肛腺标记物存在传递性别信息的物质基础,即性别的气味指纹。   另一方面,研究人员通过个体特有成分,各主要成分组成的个体间变异度(相对标准差)以及同一个体不同肛腺标记物化学组成的聚类分析,证明肛腺的气味含有大熊猫的个体信息,即与DNA指纹相类比的个体气味指纹。   这样,研究人员逐步认识到,大熊猫通过肛腺标记,将分泌物留在领域内的物体上以传递信息,其性别和个体“气味指纹”是传递相应嗅觉信息的物质基础,在大熊猫配偶识别、领域行为等方面有重要作用。   另外,此前有研究人员已经研究并公布了吲哚、角鲨烯和一些直链脂肪酸等成分,这次研究不但证实了这些成分,还从大熊猫肛腺气味中新发现了三种醛类、苯乙酸、5-甲基乙内酰脲、对苯二酚、苯丙酸和芥酸等成分。   “但所有这些成绩还只是迈了一小步,我们正在考虑进一步利用行为实验验证这些推定性信息素的活性,并将研究处于繁殖期的大熊猫的化学信息素的变化情况。”张健旭说。   凭借尿液“认亲择偶”   而另一项合作研究成果发表在《科学通报》第9期上的《雄性大熊猫尿液中包含亲缘关系的信息》。北京师范大学生命科学学院副教授刘定震带领的研究组发现,大熊猫肛腺分泌物和尿液是用于其亲缘识别的主要亲缘气味源。   近亲回避是动物(包括人)的本能行为。动物一般通过一些特殊的机制来完成这种回避,如某一雄性(或雌性)个体在性成熟前离开出生地,扩散到其他的地方,并与那里的同类繁衍后代。如果分布区狭窄,它们会通过一些特殊的辨别机制区分亲属和非亲属,从而避免和近亲个体交配繁殖。因为近亲繁殖会导致个体适合度的下降。   刘定震说,除非在发情交配季节,一般大熊猫相互间不会发生直接的接触。气味标记就是它们保持相互联系、护卫家域和维持社会等级的主要方式。课题组人员采用气相色谱和质谱联用(GC-MS)技术,对采自卧龙中国保护大熊猫研究中心不同年龄、性别的大熊猫尿液和肛腺分泌物化学成分进行了初步分析,并与个体间的亲缘关系进行相关分析。他们发现了一个非常有趣的结果——大熊猫的尿液中包含有关亲缘关系的信息,即亲属之间在尿液的化学物质成分及其比例上是相似的,而且这种亲缘信息仅存在于发情季节的成年雄性个体尿液中,幼年、雌性个体的尿液及非发情季节的雄性个体尿液则缺少该信息。   大熊猫属独居型动物,行为学观察表明,野生和圈养大熊猫都表现强烈的配偶选择行为。对于雄性不参与亲代抚育和后代关怀的一夫多妻制中的雌性,其较雄性参与后代抚育的单配制中的雌性,选择配偶时会更为慎重。每年仅在春季发情一次的雌性大熊猫就更符合这种情况。   “但是,若在这个短暂的时间中失去交配、繁殖的机会,它们则将错过一年的繁殖。根据测算,如果野生大熊猫错失一次繁殖期就意味着在其生命周期中繁殖成功率降低16%~20%。面对如此大的代价,雌性大熊猫应选择最合适的配偶使其繁殖成功率最大。所以,在选择配偶的过程中,寻找一个既非过分近亲也非过分远亲的雄性配偶就显得尤为重要。”刘定震进一步解释说。   这是首次在大型哺乳动物的尿液中发现这种亲缘信息。科学家曾在小型动物,如金仓鼠和野生北美河狸的研究中证实亲缘气味的存在。刘定震说:“虽然有关亲缘气味产生的内在基因机制还不是十分清楚,但一些前瞻性的研究表明,基因和皮肤腺体的化学分泌物是协同变化的。肛门腺或肛腺在食肉类动物中尤为发达,其腺体分泌物经常被用来进行化学通讯。尽管目前人们对这种腺体在食肉类动物中的广泛存在是趋同进化还是趋异进化现象还不是十分清楚,但大家普遍认识到其在食肉类动物的社会生活和相互通讯中所起的重要作用。”
  • 314万!西安交通大学第二附属医院发布微生物试剂采购项目
    近日,西安交通大学第二附属医院发布微生物组试剂采购项目,计划采购全自动细菌鉴定与药敏检测试剂、细菌质谱鉴定检测试剂、全自动染色仪检测试剂等一年使用量的耗材,总预算为314万元。以下为标讯详细信息:项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次预算金额:314.0000000 万元(人民币)采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片 AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片 AST-GN13VITEK 2革兰氏阴性细菌药敏卡片AST-GN16VITEK 2 革兰氏阴性细菌药敏卡片AST-XN04VITEK 2 革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK 2 革兰氏阴性细菌药敏卡片 AST-N334VITEK 2 革兰氏阴性细菌药敏卡片 AST-N335VITEK 2 革兰氏阳性细菌药敏卡片 AST-P639β-内酰胺酶快速检测试剂Genbag 厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEK MS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶 BacT/ALERT FA全自动血培养仪1厌氧微生物培养瓶 FN需氧微生物培养瓶 SA厌氧和兼性厌氧微生物培养瓶 SN需氧和兼性厌氧微生物培养瓶 PF厌氧和兼性厌氧微生物培养瓶BacT/ALERT FN Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT FA Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT PF Plus半自动鉴定及药敏检测试剂(进口)ID 32 GN 革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID 32 C 酵母菌鉴定试剂盒(比色法)RAPID ID 32 A 厌氧菌鉴定试剂盒(比色法)ID 32 E 肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID 32 STAPH 葡萄球菌鉴定试剂盒(比色法)RAPID ID 32 STREP 链球菌快速鉴定试剂盒(比色法)FUNGUS Ⅲ酵母样真菌药敏试剂盒(微量稀释法)ATB ENTEROC 5 肠球菌药敏试剂盒(比色法)ATB G-5 肠细菌药敏试剂盒(比色法)ATB STAPH 5 葡萄球菌药敏试剂盒(比色法)ATB PSE 5 假单胞菌和非发酵菌药敏试剂盒(比色法)ATB HAEMO 嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATB STREP 5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl 0.85#% 悬浮液悬浮液(3ml)(100支/盒)ATB Medium 肉汤培养基FB(坚固兰)(FAST BLUE BB)JAMES 吲哚试剂麦氏比浊管 McFarland StandardAPI MINERAL OIL 矿物油NIN 马尿酸NIT1 + NIT2 硝酸盐试剂丙酮酸反应检测液(VP1 + VP2)STERILE ATB 无菌加样吸头BCP 二甲苯试剂EHR 色氨酸试剂XYL 溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)--D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP 5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法) P 10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX 30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX 30ugCT0030B米诺环素药敏实验纸片(扩散法)MH 30ugCT0013B氯霉素药敏实验纸片(扩散法)C 30ugCT0064B克林霉素药敏实验纸片(扩散法)DA 2ugCT0020B红霉素药敏实验纸片(扩散法)E 15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK 30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM 20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD 30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法) FOT 20ugCT0058B万古霉素药敏实验纸片(扩散法)VA 30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM 30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP 10ugCT0054B四环素药敏实验纸片(扩散法)TE 30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM 30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO 30ugK6101 奥普托欣纸片 5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF 105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV 5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN 10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM 10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)GC琼脂平板乙腈甲酸头孢硝噻吩纸片
  • 李昂 雷晓光获四面体青年科学家奖
    p   近日,国际出版集团爱思唯尔(Elsevier)宣布,中国科学院上海有机化学研究所李昂研究员、北京大学雷晓光教授获得2017年“四面体青年科学家奖(Tetrahedron Young Investigator Award)”。这是除美国外,四面体青年科学家奖首次授予同一个国家的两名学者。两位获奖者将应邀出席2017年6月27日-30日在匈牙利布达佩斯举办的第18届四面体会议并作大会报告。 br/ /p p   四面体青年科学家奖由《四面体》系列杂志2005年设立,是有机化学领域的重要国际奖项。该奖分“有机合成”、“生物有机与药物化学”两个领域单独评审,每年仅分别评出一名获奖者,旨在奖励40岁以下的杰出青年有机化学家。该奖的获奖者包括普林斯顿大学戴维· 麦克米兰(David MacMillan)、斯坦福大学卡罗琳· 贝尔托齐(Carolyn R. Bertozzi)等国际著名的有机合成或生物有机化学家。作为之前唯一获奖的中国学者,北京大学施章杰教授曾于2012年获得有机合成领域的四面体青年科学家奖。 /p p   李昂研究员主要从事天然产物全合成研究。他发展了6p电环化-芳构化和Prins环化等高效构建多取代六元环的创新策略,完成了虎皮楠生物碱、五味子降三萜、台湾杉醌二萜二聚体、噁唑二萜、吲哚单萜生物碱、吡咯并吲哚生物碱、吲哚萜类等10多个家族天然产物的全合成。电环化-芳构化策略打破了从苯环起始原料出发逐级取代的传统思路,提高了立体化学环境复杂的多取代苯环的合成效率。李昂研究员曾获得2012年优秀青年科学基金项目和2015年国家杰出青年科学基金项目资助(项目编号:21222202,21525209)。 /p p   雷晓光教授主要从事分子探针导向的化学生物学研究。他系统地利用小分子探针,揭示出一系列新颖的程序性细胞死亡生物作用机制和化学调控方法 高效构建了一系列倍半萜多聚体类、石松生物碱天然产物分子探针,阐明了它们的生物作用靶点和全新的分子作用机制,进而开发出对肿瘤、感染性疾病与自身免疫性疾病有良好治疗前景的、基于天然产物的药物先导。雷晓光教授曾获得2012年优秀青年科学基金项目和2016年国家杰出青年科学基金项目资助(项目编号:21222209,21625201)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/noimg/8400429e-755f-4b41-883a-3de1f7ad7245.jpg" title=" 未标题-1.jpg" / /p
  • 滨松PDE在人民医院乳腺中心20周年研讨会展示
    2012年12月1日,北京大学人民医院乳腺中心成立20周年研讨会,第二届吴阶平医学基金会乳腺癌早诊早治规范化培训学习班在北京大学人民医院科研楼举行,会议为期1天。北京大学人民医院乳腺中心自1992年成立,是我国高等医学院校首家集医疗、普查、科研、教学于一体的综合性专业科室。时至今年20周年庆典,特别邀请了北京地区相关医师进行学术交流,并做了相关的学术成果报告会,以及厂商技术介绍和产品使用演示,到会人员约100人左右。 滨松中国(HAMAMATSU)携仪器Photodynamic Eye (PDE医用光子眼)参加此次会议,为与会医师进行技术方面的介绍,很多医师对此款仪器非常感兴趣,并在滨松中国工作人员的指引下对仪器进行了操作。Photodynamic Eye (PDE 医用光子眼)是高灵敏度荧光显像系统,通过探测体内脉管系统示踪的荧光物质ICG(吲哚菁绿),观察不可见的医用荧光图像,在外科手术中进行相关组织、器官的定位,辅助手术操作。主要应用于乳腺癌及其它恶性肿瘤前哨淋巴结定位、皮瓣的血供状况评估、胆管荧光显像等。 有关于PDE产品的使用和技术支持请联系滨松中国 赵旭峰 010-65866006转632 13699259001
  • 让国宝 “活起来”,岛津科技解密古漆器髹漆工艺
    导 语近年来,中央台的一档文博探索类节目《国家宝藏》,唤起了大众对文物保护、文明守护的重视。节目中的国宝守护人为大家讲述“大国重器”们的前世今生,解读中华文化的基因密码。岛津公司的Py-GC/MS作为一把研究古代漆器的利剑,可以很好的帮助我们了解历朝历代漆器组成、结构及髹(xiū)漆工艺的流变历程,为探讨文物的史学意义、文物的修复与保护提供科学依据,真正的实现让国宝“活起来”。 披津斩历,重塑辉煌一直以来,在人民群众的眼中,文物都是高高在上,冷艳而高不可攀的。许多科研工作者一直致力于在文物与人之间建立联结,拉近当代人与历史文物的距离,引导更多的科技生产投向古典文化,让更多的历史符号在新时代的新语境下,焕发出新的生命力,真正成为活着的传承。 漆器是中华民族珍贵的文化瑰宝,是中华民族对人类文明的伟大贡献。由于漆器样品的珍贵性和特殊性(不溶于酸、碱和有机溶剂,难以预处理),很难通过常规的分析方法来剖析。Py-GC/MS是一种分析聚合物、塑料、橡胶、涂料、染料、树脂、涂层、纤维、木材等不溶性材料和聚合物的分析方法。 岛津公司多功能热裂解仪EGA/PY-3030D特点主要有:热分解温度高达1050°C,快速升温(600°C/min)和快速冷却(100°C/min);可进行多步热脱附模式; 检索软件F-Search和多样质谱库(聚合物裂解产物质谱库、添加剂谱库等) Py-GC/MS系统分析具有用量少、灵敏度高、分析速度快,信息量大等特点,适用于各种形式的样品,可直接对固体样品进行测定。Py-GC/MS技术是直接将高分子聚合物裂解成小分子碎片混合物,经气相色谱分离后,由质谱检测器检测,最后通过对高聚物裂解后的分子碎片指纹信息的提取、拼接来获得其物质组成,是鉴别漆器等类似高分子材料化学成分的最佳方法之一。 热裂解-气相色谱质谱仪的分析原理图 武汉大学童华教授课题组近些年来一直致力于多层漆器复杂基质材料/组成、结构和髹漆工艺微损剖析方法的建立和不同历史时期漆器基质成分、工艺变化的源流探究。下面我们来看看他们是如何利用Py-GC/MS技术对多层漆器复杂基质材料的组成、结构和髹漆工艺进行研究的吧。 首先根据样品的层次结构剥离提取每层基质,再将纯化的样品进行Py-GC/MS分析,对测试结果进行深度剖析并与其它分析方法的分析结果相互结合、验证获得各层基质的物质组成。Py-GC/MS法对漆器基质组成的深度解析可采用提取离子技术与ESCAPE技术(盖蒂文物保护研究所Michael R. Schilling漆器研究团队研发)相结合的方法: 漆液种类来源的判断主要靠一系列烯烃烷烃类、苯酚类、烷基苯类、儿茶酚类等物质的裂解产物分布与苯环侧链基团的碳链长度来确定。 干性油类添加材料的特征裂解产物为甘油三酯、一系列一元和二元羧酸和部分标志性裂解产物,其具体种类的判断靠壬二酸二甲酯(A)与软脂酸甲脂(P)的比例、软脂酸甲脂(P)与硬脂酸甲脂(S)的比例、软脂酸甲脂与硬脂酸甲酯的总和占全部脂肪酸甲酯的比例及标志性裂解产物来确定。 虽然蛋白质类添加材料的基本组成单元为氨基酸,但值得注意的是检测到氨基酸的存在并不能确认漆膜中添加了蛋白质类物质,蛋白质类添加材料的确定必须通过一些含氮的裂解产物,如:1甲基-1氢-吡咯、吡咯、吲哚等等。这是因为蛋白质的标志性裂解产物不是氨基酸,而是氨基酸在高温下反应生成的含氮产物。 多层漆器各层基质有机物质组成相对含量图(例) 通过多层漆器各层基质漆液种类、干性油类、萜类、蛋白质类、蜡类、多糖类和其它有机物质组成相对含量图可以看出不同基质层物质组成的分布与差异。 最后通过多层漆器的层次结构、纹饰脉络、各层基质材料组成、历史资料及现代漆器处理技术可以对古代不同类型漆器的髹漆工艺步骤进行大致的推测,从而在一定程度上模拟和还原当时的髹漆工艺。 我国历史悠久,各类文物非常丰富。让文物“活起来”是文物保护的核心。随着社会的发展,文物保护工作越来越受到重视,各类大型分析仪器也在文物保护工作中扮演着越来越重要的作用。岛津公司的Py-GC/MS 联用系统可以为各类文物的分析提供强有力的技术支持,实现高灵敏度的微损分析。
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 《Small》:微流控混合器件实现一步式构建靶向脂质体
    脂质体是一种由磷脂分子在水相中自组装形成的球状泡囊体。脂质体具有良好的生物兼容性和低免疫原性,能够保护药物不被降解,是一种极具前景的药物递送载体。近年来,脂质体已经被广泛应用于肿瘤免疫治疗、基因治疗、多模态分子影像等领域。相比于常规的脂质体,靶向脂质体能够有效地改善药物的细胞摄取以及靶向富集能力,能够显著地提升药物递送效率。但是,常用的制备靶向脂质体的方法正面临着一些挑战,例如,操作复杂、耗时久、批次差异性大等问题。近期,中南大学湘雅医院皮肤科、中南大学机电工程学院等研究团队在《Small》(IF=15.153)期刊上在线发表题为 “ One-Step Formation of Targeted Liposomes in a Versatile Microfluidic Mixing Device ” 的原创性论著。该研究提出了一种基于微流控混合器件的靶向脂质体的一步式合成方法,成功实现了多种靶向脂质体的高通量、高可控性制备。使用微流控混合器件制备的靶向脂质体,在光声成像、小动物活体成像、光热治疗等研究中都表现出了优异的靶向性能。据悉,这项研究的第一作者和第一通讯作者单位均为中南大学。20级博士研究生单晗和20级硕士研究生孙鑫为该论文共同第一作者;中南大学湘雅医院皮肤科陈翔教授、赵爽副研究员和中南大学机电工程学院陈泽宇教授为共同通讯作者。 首先,作者基于靶向脂质体的制备流程筛选了微流控混合器的组合方案,提出了微流控混合器件实现靶向脂质体的一步式合成策略。然后,作者使用高精度3D打印技术(nanoArch S140,摩方精密)制作了微流控混合器件(MMD)。 图1 微流控混合器件(MMD)制备靶向脂质体策略图2 微流控混合器件(MMD)制造随后,作者对脂质体的组分、反应机理进行了设计,选择了吲哚菁绿(ICG)作为模型药物以及靶向PD-L1的适配体作为靶向基团,在MMD内发生混合后,巯基修饰的适配体和功能辅料DSPE-PEG-Mal发生共价结合,最终将适配体修饰到脂质体的表面(Apt-ICG@Lip)。 图3 一步式合成靶向脂质体Apt-ICG@Lip反应机理接下来,作者对靶向脂质体Apt-ICG@Lip的性质进行了测试,包括脂质体的粒径分布、重复性、稳定性、包封率、形貌、细胞毒性、适配体结合效率等。结果显示,使用微流控混合器件(MMD)制备的靶向脂质体Apt-ICG@Lip具有粒径小、批次重复性好、稳定性好、包封率高、低细胞毒性、适配体结合效率高等优点,适用于生物医学应用。图4 靶向脂质体Apt-ICG@Lip性质测试接着,为了验证靶向脂质体Apt-ICG@Lip的靶向性能,作者进行了光声成像(PACT)和小动物活体荧光成像研究。作者将高表达PD-L1的LLC肿瘤模型小鼠分为两组,实验组注射靶向脂质体Apt-ICG@Lip,对照组注射常规脂质体ICG@Lip。结果显示,靶向脂质体Apt-ICG@Lip具有更明显的肿瘤摄取和药物富集能力。 图5 靶向脂质体Apt-ICG@Lip光声成像和小动物活体成像研究接着,作者进一步进行了光热治疗研究。作者将LLC肿瘤模型小鼠分为PBS、ICG@Lip、Apt-ICG@Lip三组,在注射药物后分别使用808 nm激光进行照射,观测肿瘤的体积变化,并使用免疫组化和免疫荧光评估了肿瘤的治疗效果。结果表明,Apt-ICG@Lip由于具备主动靶向能力,具有更好的光热治疗效果,也进一步验证了MMD构建的靶向脂质体的性能。 图6 靶向脂质体Apt-ICG@Lip光热治疗研究最后,作者为了验证MMD构建靶向脂质体的通用性,进一步制备了多种不同用途的靶向脂质体。除了吲哚菁绿(ICG)外,作者还选择了FITC、NHWD-870和亚甲基蓝(MB)作为模型药物,并使用MMD制备了一种anti-Her2抗体修饰的靶向脂质体。作者使用Apt-FITC@Lip进行了细胞实验。结果表明,高表达PD-L1的细胞和Apt-FITC@Lip具有更明显的结合效果。 图7 靶向脂质体Apt-FITC@Lip细胞实验该工作提出的微流控混合器件(MMD)一步式构建靶向脂质体的方法,适用于多种靶向脂质体的制备,在靶向药物递送系统(分子成像、肿瘤治疗等)研究中具有巨大的应用前景。
  • 活体成像中荧光色素标记细胞的方法举例
    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究成为现实。而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记,利用荧光蛋白在外源光源或是内源发光照射下被激发产生的荧光作为检测信号。研究人员能够利用一套非常灵敏的光学检测仪器直接监控活体生物体内的细胞活动和基因行为。 该技术可被广泛应用于标记细胞或基因的示踪及检测;基因治疗在活体动物体内直接的观察和检测;基因组、蛋白组学、药学及生物技术在活体动物内的研究;药物及化学合成药物的药物代谢及毒理学监测;食品菌落生长成像;皮肤医学中皮肤疾病的体内成像;法医鉴定;微孔板成像,例如:免疫分析、报告基因、基因探针和嗜菌作用分析等;荧光团的体内成像,例如:Alzheimer疾病研究中结合嗪的β-淀粉沉淀物分析;转基因植物中通过报告基因对生理周期节奏的研究;凝胶成像分析等等。 但在研究过程中,研究者们必须事先用基因技术进行荧光素酶基因标记,或者某种荧光报告基团标记。目前活体光学成像系统的知名制造商,如Berthold、GE、Xenogen、Photometrics、Carestream Health等,不仅为客户提供先进的仪器,也提供具体实验所需的整套解决方案,包括试剂、实验手册、特殊用途的质粒、细胞株、转基因动物、细胞处理和动物处理设施等配套技术支持。出色的多任务处理能力,人性化的整体设计,便捷精确的操作系统,使实验室影像分析领域进入了一个全新的时代。 下面以研究干细胞活体移植后的存活率为例,简介一两种内源性荧光色素标记的实验方法,供专业人士参考。 用荧光色素DiD标记 间充质干细胞 1. 先用胰蛋白酶消化待标记材料,使之成为一定密度的悬浮液; 2. 从细胞培养箱中取出间充质干细胞,吸取含原有培养基的细胞悬浮液进行标记; 3. 用10 ml Mg/Ca-free PBS (不含钙镁离子的磷酸缓冲液)清洗细胞,吸去PBS, 钙镁离子会影响胰蛋白酶的活性,必须小心; 4. 加入预热的0.05% 胰蛋白酶液,加液量以T75型瓶为例,每瓶加5ml, 确保瓶的表面被完全覆盖; 5. 在细胞培养箱中37° C 孵育约 5 分钟; 6. 然后在显微镜下确认细胞已经完全分散,如果有细胞贴壁情况,轻拍若干次或延长孵育时间直至酶解消化完全成功; 7. 加入等量含 10% FCS的培养基中和胰蛋白酶; 8. 用移液器反复吸取几次确保细胞均匀分散; 9. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 10. 400 RCF离心5 分钟; 11. 小心移去上清液,不要扰动细胞; 12. 将细胞重新悬浮于DMEM 并进行计数; 13. 需要待标记细胞在无血清DMEM溶液中的密度应为1x106 /ml ; 14. 每ml细胞悬浮液加入5 ?L DiD 染色液; 15. 用移液器将染色液与细胞悬浮液混合均匀; 16. 在6孔低附着性细胞板上37 °C 孵育20分钟; 17. 孵育完全后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 18. 400 RCF离心5 分钟; 19. 小心移去染色液,不要扰动细胞; 20. 用PBS清洗细胞,用移液器反复吸取几次确保细胞均匀分散; 21. 重复洗三次; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可以进行活细胞成像了! 用荧光色素ICG标记 人胚胎干细胞 1. 必须先准备好吲哚菁绿溶液(血容量、心输出量、肝功能测定剂)作为对照品 ,然后使之与转染试剂鱼精蛋白(抗凝血作用)混合; 2. 测出1ml吲哚菁绿溶液的活力,然后在100 ?L DMSO中溶解ICG; 3. 向混合物中加入 400 ?L Dulbecco的改良Eagles 培养基 (DMEM + 10% 胎牛血清), 震荡均匀,吲哚菁绿溶液终浓度为2mg/ml; 4. 加入转染试剂鱼精蛋白,鱼精蛋白作为对照品的载体,使之能够有效进入细胞; 5. 在300 ?L ICG 和 300 ?L 无血清Dulbecco改良 Eagles 培养基中混入 5 ?L 硫酸鱼精蛋白溶液, 使之终浓度为 10mg/ml,; 6. 震荡5分钟使之形成复合物,标记溶液制备完毕; 7. 从 hESC 10mm Petri 培养皿中移去原有培养基; 8. 加入5ml预热的 DMEM; 9. 加入制备好的鱼精蛋白/ICG 溶液, 37 °C下孵育1h; 10. 孵育完全后移去染色液; 11. 用5 ml PBS漂洗培养皿以清除染色液; 12. 移去 PBS 再加入 5ml 0.25 % 胰蛋白酶液,37 °C下孵育5分钟使之酶解,适当震摇培养皿效果会更好; 13. 用移液器反复吸取几次确保细胞均匀分散; 14. 加入等量含 10% KSR的培养基中和胰蛋白酶; 15. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中,400 RCF离心5 分钟; 16. 在全培养基中悬浮细胞; 17. 如果还有细胞团块,可以移去原有培养基用10ml预热的全ESC培养基重新悬浮细胞,重复酶解再离心; 18. 在这一点上,鼠源饲喂细胞需从hESCs中分离; 19. 然后将细胞悬浮液移至涂布琼脂的10 cm 培养皿中; 20. 37 °C 孵育 45 分钟,注意不要晃动培养皿,如此鼠源饲喂细胞会贴壁而干细胞保持悬浮; 21. 从Petri 培养皿中移出已标记的单细胞人胚胎干细胞悬浮液; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可进行活细胞成像了!
  • 合肥物质院固体所在可视化检测农药残留方面取得新突破
    近期,中国科学院合肥物质科学研究院固体物理研究所能源材料与器件制造研究部蒋长龙研究员团队在氨基甲酸酯农药和有机磷农药残留分析检测方面取得新进展,设计制备了两种高效的比率荧光纳米探针,并结合智能手机的颜色识别器,实现对食品和环境水体中农药的可视化定量检测。相关研究成果发表在Chemical Engineering Journal和ACS Sustainable Chemistry & Engineering上。   氨基甲酸酯类化合物主要用作杀虫剂、杀螨剂、除草剂和杀菌剂,已成为农药的一大类别。有机磷农药主要用于防治植物病、虫、草害,其挥发性强,遇碱失效。这两种农药广泛用于农业生产中,在农作物中会存在不同程度的残留。但它们在自然界中降解速度较慢,其残留随呼吸、皮肤吸收或误食进入体后,药物毒素会对人体器官功能受损,严重者会出现呼吸麻痹,甚至死亡,严重危害人体健康。目前,国内外用于农药残留检测的主要分析方法仍然局限于酶抑制法和免疫测定等,这些方法通常存在成本高、操作复杂、耗时长等问题。因此,发展快速、低成本、特异性强、灵敏度高的农药检测新方法具有非常重要的意义。   鉴于此,研究人员基于2, 3-萘二醛(NDA)和亚硫酸盐诱发的类 Strecker 反应原理,构建了一种无酶比率荧光探针,以 CdTe 量子点 (CdTe QD) 作为背景荧光,用于氨基甲酸酯农药(CPs)的全谱视觉识别。CPs加入后,通过亲核缩合反应产生绿色荧光的异吲哚,该荧光探针出现了从红色到绿色的明显颜色变化,实现对氨基甲酸酯的快速可视化响应,检测限(LOD)低至18.6 nM,远低于国家最大残留标准。   此外,通过集成绿色碳点和CdTe量子点(CdTe QD)构建了比率荧光探针,用于甲基对硫磷(MP)的高选择性定量检测。在碱性条件下,MP能迅速水解生成对硝基苯酚(p-NP), 氢键加强的瞬时反应导致碳点和p-NP之间的内滤效应猝灭绿色荧光,从而导致探针产生由绿到红的灵敏荧光色度变化,检测限低至为8.9 nM。   上述工作得到了国家重点研发计划、国家自然科学基金项目和安徽省重点研究与开发计划的支持。
  • 福建版“水十条”为环保产业带来两亿多元订单
    福建省前不久出台《福建省水污染防治行动计划工作方案》(以下简称《方案》)。《方案》提出,到2020年,全省饮用水安全保障水平持续提升,全省12条主要流域水质优良比例总体达90%以上 地下水水质极差比例控制在10%以内。到2030年,城市建成区黑臭水体总体消除,其中,要求福州、厦门在2017年达到这一目标。 据了解,福建是全国最早推出地方“水十条”的省。福建省环保厅有关负责人表示,考虑到福建省水环境现状总体优良,《方案》设置的具体水质目标要高于“水十条”要求。“同时根据福建省的特点,《方案》也新增了一些要求。” 他同时表示,要加强源头治理。“只治水,不治污,头痛医头,收效甚微,只有从源头治污,才能标本兼治。”而这给当地环保产业市场、企业也带来诸多机会。工业污染防治带动环保产业发展 对工业废水处理更加细化的规定增加了企业的处理需求,为环保产业的发展创造了机遇 一些传统化工企业凭借自身积累的治污防污经验转行,投身环保产业 据了解,《方案》对工业废水处理提出明确要求。“推进皮革、电镀、印染行业集控区水污染集中治理,新建企业必须全部进入相应行业的集控区。区内所有企业必须全面实现废水分流分治、深度处理,含重金属废水必须进行预处理,达到车间排放标准。”同时,现有化工园区、涉重金属工业园区内企业污水接管率必须达到100%,未达标的园区及区内企业一律停产整改。 这些对工业废水处理更加细化的规定增加了企业的处理需求,为环保产业的发展创造了机遇。大拇指环保科技集团(福建)有限公司有关负责人表示,“《方案》出台之前,企业已经在为一些工业企业做工业废水治理之类的工作。《方案》出台后,相信接下来这方面的工作量会更大。” 据他介绍,大拇指环保科技集团(福建)有限公司主要业务范围涉及城市污水处理、工业废水治理及资源化、节能降耗和有机废弃物综合治理等领域。2006年,大拇指环保在境外成功上市,成为国内少数在境外上市的环保高科技企业之一。而目前在福建,因化工行业“三废”治理提速,带动了当地环保产业的迅猛发展。 同时,从全省范围看,在经济增速放缓的背景下,福建环保产业以高于20%的增速发展,成为一匹黑马。根据福建省环保产业协会数据,2004年全省环保产业产值164亿元,2011年突破千亿大关,今年上半年已超过1500亿元。 福建省环保产业协会会长郑更新表示:“随着日益严峻的环境形势,以及环保执法的高压态势,化工企业要么达标,要么关门。在这一背景下,许多化工企业纷纷上马环保治理项目,更有一些传统化工企业干脆凭借自身积累的治污防污经验转行,投身环保这一新兴产业,促进了福建环保产业发展。”治理畜禽养殖污染促技术应用 一些省内环保企业逐渐满足市场需求,引进、研发技术,进而发展壮大 技术可以让猪排放的粪尿、氨气和吲哚等物质,通过猪体内排放的益生菌和垫料中的益生菌,将其充分降解,实现零排放 “福建的水系大部分是‘自生自饮’,保护得好就能够‘自清自净’,污染破坏了就将‘自作自受’。”福建省省长苏树林的一番话,表明了地方政府对水环境治理的认识。 有环保业内人士分析,虽然福建整体水质远高于全国平均水平,但是好于地表水Ⅲ类的优质水比例却有下降的趋势。水质下降的区域主要集中在流域源头和支流,主要超标项目为总磷、氨氮等。“说明农村面源污染、畜禽养殖污染没有得到根本遏制,反而有进一步向源头化、支流化发展的趋势。” 农村面源污染,尤其是畜禽养殖污染是造成一些区域水质下降的重要原因。这位业内人士进一步解释说:“一头猪的污染物排放量相当于6~8人的排放量,畜禽养殖污染不治理好,水环境将承载巨大压力。” 据福建省环保厅相关负责人介绍,针对区域突出水环境问题,《方案》明确了八大重点县区畜禽养殖污染整治。这八大重点县区包括延平、尤溪、新罗、永定、武平、南靖、闽侯、福清,要求地方各级政府落实。 《方案》提出,2015年底前,基本关闭拆除可养区内存栏250头以下、未提出改造方案或改造后仍不能达标排放的生猪养殖户。自2016年起,新建、改建、扩建规模化畜禽养殖场(小区)实施雨污分流、粪便污水资源化利用。2016 年底前,全面完成存栏 5000 头以上生猪规模养殖场标准化改造 2018年底前,全面完成可养区内生猪规模养殖场(存栏250头以上)标准化改造。 据了解,近几年仅在九龙江流域,就有315个养猪场被关闭、拆除,234个规模化养猪场实现达标排放。同时,削减水产网箱养殖面积3万多平方米。 对此。省环保厅负责人就此表示,“在《方案》出台之后,县区所属的地方政府在出台本级的‘水十条’时,就要列出相关的整治措施,比如何时关闭或搬迁禁养区的养殖场,如何严格养殖准入门槛,如何实现畜禽养殖转型升级。”他认为,这样有利于落实各级责任,促进水污染问题解决。 同时,由于福建省对防治畜禽养殖污染的重视,一些省内的环保企业也逐渐满足市场需求,引进、研发技术,进而发展壮大。 据福建洛东生物技术有限公司负责人董佃鹏介绍,公司专业从事洛东生物发酵舍零排放养猪技术,在第十一届厦门“9.8”投资贸易洽谈会上签署了投资500万美元、在国内设立生产洛东酵素工厂的合同,使技术完全国产化。技术可以让猪排放的粪尿、氨气和吲哚等物质,通过猪体内排放的益生菌和垫料中的益生菌,将其充分降解,实现零排放。 他表示,这项技术作为福建省环保厅国际合作项目,于2005年从日本引进使用至今已在福建、山东、黑龙江、湖南、四川、湖北、江苏等省使用,得到养猪企业的好评,在治理畜禽养殖污染上发挥了良好作用。黑臭水体治理重实效、现商机 由于不少黑臭河流是污水处理后不达标排放造成的,要减少黑臭就必须先有效处理难处理废水,一些企业看好发展趋势 福建此次出台的《方案》对黑臭水体治理提出了细化措施。福建省环保厅负责人认为,从目标设定看,《方案》定性的表述少了,定量的表述明显多了。“《方案》明确了具体水质目标,明确了各级政府具体落实的职责,也明确了牵头或行业主管部门协调督促的责任。如果没有完成,就会被追责。” 据了解,《方案》提出了黑臭水体责任人公示要求,同时对重点城市的黑臭水体治污提出了明确时间表。提出建成城市水体监测评价体系的任务,为河面无大面积漂浮物、河岸无垃圾、无违法排污口的治理提供了依据。 “以前环保部门注重减少污染物排放总量,也做了许多工作。”上述负责人认为,“但你说你减排了多少COD、氨氮,市民听不懂,市民只看到河水黑臭,就觉得环境不好。为此,《方案》的整治任务,就包括影响公众感观的黑臭河道整治,并明确了具体时间表,更贴近市民。”这位负责人说。 一些环保企业在《方案》出台后看到了商机。福建微水环保技术有限公司董事长孙辉跃在看到关于黑臭水体治理的内容后说:“在《方案》出台前,企业污水处理的订单已经应接不暇。由于不少黑臭河流是污水处理后不达标排放造成的,要减少黑臭就必须先有效处理一些难处理废水。看发展趋势,今后我们应该会更忙。我们看好自己所在的环保产业和市场,希望在3年内上市。”孙辉跃对公司的未来信心十足。 据了解,这家年轻的环保高新企业,凭借治污核心技术,业务以每年超过300%的增速迅猛发展,在全国17个省份“开花”,今年上半年已接到两亿多元的订单。来源:中国环境报
  • 欧盟修订危险化学品进出口条例附录1
    日前,欧洲委员会在其《官方公报》上发布了对欧盟危险化学品进出口条例(EC No 689/2008)附录1的修订。修订主要考虑到近期植物保护、生物灭杀剂和REACH法规的变化。   修订内容包括将杀虫剂物质丁氟消草、吲哚乙酸、杀草丹、双胍盐和1,3-二氯丙烷加入到须遵循《鹿特丹公约》“事先知情同意”(PIC)程序的化学品清单中 而将吡氟氯禾灵-P物质从清单中删除。上述修订将于10月1日起生效。   《官方公报》内容见:   http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:215:0001:0003:EN:PDF
  • 看ICG荧光造影技术如何在皮瓣显像中大显神通
    在皮瓣外科手术中,皮瓣能否成活,其中关键因素之一就是皮瓣的血液灌注情况。简单来说也就是皮瓣的血液循环情况。这里做一下科普:皮瓣是由具有血液供应的皮肤及其附着的皮下脂肪组织所形成。所以皮瓣中的血管就好比是一条条公路,无论公路之间怎么交叉环绕,也都要保证公路之间的畅通无阻。皮瓣移植手术时也要确保每一具皮瓣在与其他组织接触时相互连接畅通。滨松荧光造影手术现场术中对皮瓣血液灌注的实时评估,可降低术后皮瓣发生缺血、坏死等并发症发生的概率,提升皮瓣的存活率。大多数的术者主要是凭借个人经验以及主观方法来评估皮瓣的血液灌注情况,比如观察皮瓣的颜色、温度、组织张力等。以上方法要求术者有大量的经验积累以及较高的技术水平,但是这些方法仍然无法保证术者可以得出准确且客观的结果。虽然现阶段也可以在术中使用热成像仪等辅助器材进行检测,但存在着无法进行重复检测、可能出现试剂中毒等问题。 随着皮瓣外科手术的不断发展成熟,近年来,一种新型的近红外荧光造影技术已应用于皮瓣外科手术中。它使用吲哚菁绿(indocyanine ICG)作为造影剂,该造影剂是一种水溶性物质,在静脉注射之后,它会与血浆蛋白紧密结合,可以稳定的留存在血管内,对血液成分、凝血系统及血管内膜没有损伤和影响,具有高敏感性高稳定性以及无放射性等特点。 吲哚菁绿试剂该造影剂在受到760nm的近红外光激发时,会释放810nm的荧光,这是一种近红外光,能够穿透2cm左右的人体组织,红外荧光显像技术就是通过它来测量这种近红外荧光,从而帮助医生实时观察到局部血液循环状态。就如我们上文提到的,如果把皮瓣中的血管比作一条条公路的话,吲哚菁绿与荧光定位仪的结合使用,就好比是为这一条条公路点亮了路灯,使得来来往往的车辆都可以看清自己的前行方向。这种新型的ICG近红外荧光造影技术由于操作简单,评估准确等特点,得到了许多外科医生的重视及应用。近期滨松中国与长沙众智医疗合作,在长沙湘雅医院应用该荧光探测技术,手术结果显示,该技术能够帮助医生准确直接地评估术中皮瓣的血液循环状况,实时观察
  • 2023全球近红外成像市场达8.22亿美元 复合年增长率为14.6%
    p   MarketsandMarkets最新的研究报告显示,2018年全球近红外成像市场预计为4.16亿美元,2023年该市场将达8.22亿美元,预测期间复合年增长率为14.6%。近红外成像市场的增长主要归因于全球外科手术数量的增加以及近红外成像相对于传统可视化方法的优势。 /p p   按产品类别,近红外成像市场分为器件和试剂。预计2018年,近红外成像设备占据更大份额,主要原因是癌症发病率的上升,以及癌症相关科研活动的增加。 /p p   按类型划分,近红外成像试剂市场分为吲哚菁绿(indocyanine green, ICG),以及其他试剂。预计预测期间ICG将以更高的复合年增长率增长,因为ICG是临床使用的唯一获批准的荧光染料。此外,从成本效益上来说,ICG使用起来比较划算,而且无副作用。 /p p   按照终端用户来划分,近红外成像市场可以划分为医院和诊所、研究实验室、制药和生物技术公司。据估计,医院和诊所将成为这个市场上增长最快的终端用户群体,这主要是由于癌症发病率的上升,以及在医院和诊所进行的整形和重建手术的数量不断增加。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/d6a61918-9110-44e1-99e8-054e42d5e592.jpg" title=" NIR.jpg" alt=" NIR.jpg" width=" 600" height=" 264" border=" 0" vspace=" 0" style=" width: 600px height: 264px " / /p p   按照地域来说,北美是近红外成像市场的主要创收地区。北美近红外成像市场增长的驱动力包括高昂的医疗支出、不断增长的老年人口、不断上升的目标疾病患病率、不断增加的整容手术数量,以及该地区对先进成像系统的采用等。 /p p   近红外成像市场的主要参与者包括Stryker (US), KARL STORZ SE & amp Co. KG (Germany), Carl Zeiss Meditec AG (Germany), Leica Microsystems (Germany), Olympus (Japan), Fluoptics (France), Hamamatsu Photonics K.K (Japan), Quest Medical Imaging B.V. (Netherlands), Mizuho Medical Co, Ltd. (Japan), Shimadzu Corporation (Japan), Visionsense (Israel), PerkinElmer, Inc. (US), LI-COR, Inc. (US), and SurgVision (Netherlands)等。 /p p br/ /p
  • 我国团队研制出纳米探针,借助手机实现农药残留可视化定量检测
    从中国科学院合肥科学物质研究院了解到,该院固体所研究员蒋长龙团队设计制备了两种高效的比率荧光纳米探针,并结合智能手机的颜色识别器,实现对食品和环境水体中农药的可视化定量检测。相关研究成果日前发表在《化学工程杂志》和《ACS可持续发展化学与工程学研究》上。图 1. 比率荧光探针可视化检测氨甲基酸酯农药残留的机理示意图。 图 2. 比率荧光探针快速可视化定量检测有机磷农药残留的机理示意图。  氨基甲酸酯类化合物主要用作杀虫剂、杀螨剂、除草剂和杀菌剂,已成为农药的一大类别。有机磷农药主要用于防治植物病、虫、草害,其挥发性强,遇碱失效。这两种农药广泛用于农业生产中,在农作物中会存在不同程度的残留。但它们在自然界中降解速度较慢,其残留随呼吸、皮肤吸收或误食进入人体后,药物毒素会使人体器官功能受损,严重者会出现呼吸麻痹甚至死亡。  目前,国内外用于农药残留检测的主要分析方法仍然局限于酶抑制法和免疫测定等,这些方法通常存在成本高、操作复杂、耗时长等问题。因此,发展快速、低成本、特异性强、灵敏度高的农药检测新方法具有非常重要的意义。  鉴于此,研究人员构建了一种无酶比率荧光探针,以CdTe量子点作为背景荧光,用于氨基甲酸酯农药的全谱视觉识别。氨基甲酸酯农药加入后,通过亲核缩合反应产生绿色荧光的异吲哚,该荧光探针出现了从红色到绿色的明显颜色变化,实现对氨基甲酸酯的快速可视化响应。  此外,研究人员还通过集成绿色碳点和CdTe量子点构建了比率荧光探针,用于甲基对硫磷的高选择性定量检测。在碱性条件下,甲基对硫磷能迅速水解生成对硝基苯酚, 氢键加强的瞬时反应导致碳点和对硝基苯酚之间的内滤效应猝灭绿色荧光,从而导致探针产生由绿到红的灵敏荧光色度变化,并且检测限远远低于国家最大残留标准。
  • 发文章,领奖励,IPHASE讲究!公安部禁毒情报技术中心再次拿下!
    近日,公安部禁毒情报技术中心李静老师,使用IPHASE品牌产品:人肝微粒体在《Biomedical Chromatography》权威期刊上发表文章《UPLC-HR-MS/MS-based determination study on the metabolism of four synthetic microsomes cannabinoids ADB-FUBICA, AB-FUBICA, AB-BICA and ADB-BICA, by human liver》,影响因子1.8!本论文中提到:自2012年以来,非法药物市场上出现了几种带有缬氨基酸酰胺残留的大麻模拟吲唑和吲哚衍生物,并逐渐用萘基或金刚烷基团,取代了老一代合成大麻素(SCs)。其中,ADB-FUBICA、AB-FUBICA、AB-BICA 和 ADB-BICA 最近在国内被发现,但遗憾的是,目前尚无关于其体外人体代谢的信息。因此,筛选其消费的生物监测研究缺乏有关潜在生物标志物(例如代谢物)的任何信息,为了弥合这一差距,通过与人肝微粒体孵育来研究它们的I期代谢,并通过超高效液相色谱-高分辨率串联质谱(UPLC-HR-MS/MS)鉴定代谢物,发现1-氨基烷基部分的N-脱烷基化和羟基化产生的代谢物对这四种物质均占主导地位,其他经过羟基化、酰胺水解和脱氢的代谢物也在研究中被观察到,根据研究,建议N-脱烷基化和羟基化代谢物是监测其摄入量的合适和适当的分析标志物。摘要Since 2012, several cannabimimetic indazole and indole derivatives with valine amino acid amide residue have emerged in the illicit drug market, and gradually replaced the old generations of synthetic cannabinoids (SCs) with naphthyl or adamantine groups. Among them, ADB-FUBICA, AB-FUBICA, AB-BICA and ADB-BICA were detected in China recently, but unfortunately no information about their in vitro human metabolism is available for now. Therefore, biomonitoring studies to screen their consumption lack any information about the potential biomarkers (e.g.metabolites) to target. To bridge this gap, we investigated their phase I metabolism by incubating with human liver microsomes, and the metabolites were identified by Ultra Performance liquid chromatography-high resolution-tandem mass spectrometry (UPLC-HR-MS/MS). Metabolites generated by N-dealkylation and hydroxylation on the 1-amino-alkyl moiety were found to be predominant for all these four substances, and others which underwent hydroxylation, amide hydrolysis and dehydrogenation were also observed in our investigation. Based on our research, we recommend that the N-dealkylation and hydroxylation metabolites are suitable and appropriate analytical markers for monitoring their intake.完整版文献可在【IPHASE】公众号后台留言【获取文章】再次恭喜文献发表,以及对我司产品的认可,希望以上文献能帮助大家了解目前研究进展及我们的核心技术,欢迎各位新老客户联系我们咨询、提出意见,愿我们的努力成果与您的科研碰撞出不一样的火花!发 文 章 得 奖 励凡使用本公司产品,在国内及国际刊物上发表论文(论文发表日起一年内),并注明产品属于IPHASE BIOSCIENCES Co.,Ltd. / 汇智和源生物技术(苏州)有限公司所有,即可申请奖励。根据发表刊物影响因子不同,给予不同金额奖品:非SCI论文及IF≤5分,500元礼品;5分<IF≤8分 800元礼品;8分<IF≤10分 1000元礼品;IF≥10分 2000元礼品;注:①礼品卡也可兑换同等金额产品购买抵用券; ②如遇我司公司名称书写不规范或不是第一作者 等情况,对应给予奖品金额将发放50%;活动多多,礼品丰厚,快来参与吧!关 于 我 们汇智和源,致力于为创新药研发企业及生命科学研究机构提供高品质的生物试剂,IPHASE为公司核心品牌,品牌宗旨“Innovative Reagents For Innovative Research”。
  • 用于评估儿童锰暴露的多巴胺和血清素代谢产物的灵敏高效液相色谱法 ——该方法有助于诊断HVA和5-HIAA水平改变的疾病
    • Ryan De Vooght-Johnson概述一个巴西分析小组开发了一种新的多巴胺和血清素尿液代谢产物的HPLC方法,并用它来评估儿童的锰暴露情况。该方法最终有助于早期识别和治疗有锰中毒风险的儿童。锰暴露对神经系统的影响阿尔茨海默病和帕金森病是影响认知和运动功能的神经退行性疾病。这些疾病的症状可能与锰中毒的症状重叠,锰中毒是一种因接触高水平锰而引起的疾病。然而,这些条件之间存在一些关键差异。帕金森病是由大脑中产生多巴胺的细胞死亡引起的,而阿尔茨海默病与大脑中淀粉样蛋白斑块和tau缠结的堆积有关,两者都是不可逆转的。锰中毒是由暴露于高水平的锰引起的,锰是一种在环境中自然存在的金属,也用于一些工业过程。锰中毒最常见于矿工、焊工和电池制造商等暴露在高锰尘中的行业。锰中毒也可能发生在暴露于环境中高水平锰的人身上,例如空气污染或受污染的水。然而,一旦暴露源被消除,症状通常会消退。锰中毒、阿尔茨海默氏症和帕金森氏症都会导致体内神经递质多巴胺和血清素水平的变化。多巴胺和血清素代谢时分别产生高香草酸(HVA)和5-羟基吲哚乙酸(5-HIAA)。这些神经递质代谢物很难在生物流体中检测到,因为它们的浓度非常低,因此需要灵敏和选择性的方法来检测它们。巴伊亚联邦大学(巴西)的科学家最近报道了一种新的灵敏HPLC方法,该方法使用电化学检测来测量尿液中的HVA和5-HIAA水平。研究人员随后在已知接触锰的儿童和对照组中测试了这种新方法。使用氢氧化钠将尿液样本的pH调节至6-7,然后加入内标物(对香豆素)。将样品装载到强阴离子交换SPE柱上,然后用氢氧化钠水溶液和甲醇洗涤,然后用酸化的甲醇洗脱分析物。将样品干燥并重新溶解在甲醇中,准备注射到HPLC系统中。HVA和5-HIAA标准品用于定量。分析在具有Waters 2465电化学检测器的Agilent 1260 Infinity HPLC上进行。该探测器设置在壁射流布置中,具有玻璃碳工作电极和Ag/AgCl参比电极原位Ag/AgCl(ISAAC)。Waters Symmetry C18柱用于梯度模式下的分离。该方法根据巴西国家卫生监督局(ANVISA)指南进行了验证,LOD分别为4和8 μmol/L,回收率为85~94%,线性良好(R20.99)。HVA和5-HIAA水平无显著差异接触锰的儿童的代谢物水平与对照组没有显著差异,均在预期的生理范围内。尽管在这种情况下没有发现锰暴露的任何影响,但尿HVA和5-HIAA的新方法是有效和敏感的,应该有助于诊断改变这些排泄代谢产物水平的疾病。相关链接Cardoso MS, Rocha AR, Souza-Júnior JA, Menezes-Filho JA. Analytical method for urinary homovanillic acid and 5-hydroxyindoleacetic acid levels using HPLC with electrochemical detection applied to evaluate children environmentally exposed to manganese. Biomedical Chromatography. 2023. https://doi.org/10.1002/bmc.5699 Guilarte TR. Manganese and Parkinson’s Disease: A Critical Review and New Findings. Environmental Health Perspectives. 2010. https://doi.org/10.1289/ehp.0901748 作者简介•Ryan De Vooght JohnsonRyan是一名自由科学作家和编辑。在获得仪器和分析方法硕士学位后,他在制药行业担任过各种分析开发职务,之后担任编辑职务。作为委托编辑,他创办了两本与分析化学和药物相关的期刊《生物分析》和《治疗药物》,并管理了许多其他期刊。他现在是一名自由科学作家和编辑,以便有更多的时间陪伴家人、骑自行车和分配。本文来源:Wiley Analytical Science Magazine . Sensitive HPLC method for dopamine and serotonin metabolites used to assess manganese exposure in children供稿:符 斌
  • “100家实验室”专题:访中科院兰州化学物理研究所甘肃天然药物重点实验室
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100个实验室”进行走访参观。近期,仪器信息网工作人员参观访问了本次活动的第二十四站:中科院兰州化学物理研究所甘肃天然药物重点实验室。实验室主任师彦平研究员及学生李佳博士热情接待了我们。   甘肃省天然药物重点实验室是在中国科学院兰州化学物理研究所分离分析科学和有机化学学科基础上于2002年7月经甘肃省科技厅批准挂牌运行的重点实验室。分离分析学科50年来,在气相色谱、液相色谱、毛细管电泳及核磁共振波谱等研究领域做出了卓有成效的工作,成为国内外有重要影响的研究单元之一。甘肃省天然药物重点实验室面向甘肃和西部特色中药和民族药资源,有效运用现代分离分析和结构鉴定科技手段,研究其物质基础和作用机理,解决中药和民族药资源研发中的若干关键科技问题,不断强化中药/民族药新药以及功能产品的研发 发展新的高效、快速、微量的天然产物分离、分析、纯化、结构鉴定和活性测试的集成技术,提高天然药物研究技术水平 研究中药化学成分、体内代谢、作用靶点和作用机制等。 研究室拥有高效液相色谱仪、制备液相色谱仪、毛细管电泳仪、液相色谱―质谱联用仪、毛细管电泳 —质谱联用仪、质谱仪、气相色谱仪、气相色谱―质谱联用仪、超临界流体萃取仪、核磁共振仪、X—光粉末衍射仪、微量热仪、紫外分光光度仪、荧光分光光度仪、等离子体发射光谱仪等先进仪器设备。面向国家经济建设,开展了油田分析、环境分析、植物化学成分分析、医药分析、手性分离等集成技术研究,获国家科技进步奖、中科院重大科技成果奖和省部级科技进步奖30多项。 Agilent公司 气相色谱 Waters公司 UPLC Agilent公司 液相色谱 PE公司 原子吸收 戴安公司 离子色谱 江苏华安 超临界流体色谱 中药中试设备 Agilent公司 毛细管电泳仪 据师老师介绍,现实验室下设五个研究组:药物分离材料研究组、药物工艺标准研究组、药物分子识别研究组、药物化学成分研究组及药物手性分离研究组,现有研究人员32人,其中包括研究员7人,副高级人员11人,并且设有分析化学博士、硕士学位授予点及博士后流动站。实验室占地2200平方米,有总价值3000多万元的专业化仪器设备,设备分布在各课题组实验室。   当问及实验室研究经费来源时,师老师表示,目前实验室的经费主要来源于科研人员申请的课题和项目,科研仪器的购买也和课题有关。但依据仪器价格的不同,中科院、研究所及课题组共同按比例出资购买。实验室的项目或课题每年有十多项,涉及国家科技部项目、国家基金委项目、甘肃省科研项目及中国科学院项目(部分项目如下表所示)。   中科院兰化所甘肃天然药物重点实验室在研项目列表 序号 项目名称 经费来源 1 原油与驱油体系构效关系与吸附研究 国家科技部 2 原油与驱油体系分析研究 国家科技部 3 新型调剂聚合物结构表征与分析 国家科技部 4 当归、黄芪、大黄质量控制技术研究及相关标准制定 国家科技部 5 海洋红藻中独特结构卤代化合物的快速识别等研究 国家科技部863子课题 6 基于介孔氧化物包覆无孔硅胶的核壳材料HPLC新型固定相的系统研究 国家基金委 7 杯吡咯键合毛细管柱分离阳离子性能及机理研究 国家基金委 8 基于代谢组学与HPLC方法筛选青龙衣中抗癌活性成分研究 国家基金委 9 双吲哚基光化学感应受体设计及其阴离子识别研究 国家基金委 10 Al2O3/SiO2核—壳型色谱填料的研究 国家基金委青 11 甘肃金盏花深加工技术和产品产业化开发 中科院西部行动 12 番茄红素制备技术及软胶囊的开发 中科院科技支甘 13 红景天有效成分提取分离与鞣质成分去除的关键技术及其产业化 中科院科技支青 14 前列泰片超声法制备关键技术与产业化 中科院科技支甘 15 西部特色中药研发中的关键技术研究 中科院百人计划 16 甘肃金盏花叶黄素功能产品开发与应用 中科院联合学者 17 党参功能产品研究与开发 中科院西部之光 18 岷上红三叶异黄酮规模化制备技术及质量标准研究 中科院西部之光   在师老师领我们参观研究室成果展示区的时候,我们很是惊讶,实验室成立短短7年时间,科研人员已取得了很多成果,主要分为以下几类:一、区域特色可再生植物资源提取物,如金盏花黄色素、红三叶异黄酮、沙棘叶黄酮、番茄番茄红素等 二、区域特色天然资源功能产品,如黄芪咀嚼片、党参健康含片、当归精油软胶囊等 三、区域特色资源中藏药新药,如康尔肾片及海归愈胶囊等。实验室的部分成果与企业合作实现了产业化。  实验室的研究成果   关于实验室的对外测试服务,师老师说,实验室的仪器也加入到研究所公共技术服务平台和中科院兰州分院分析测试中心,通过此平台对外提供测试服务,但一些专业化强的仪器主要用于研究所承担的科研课题和项目中。谈及仪器的售后服务,师老师对此表示还比较满意,而且特别提到如安捷伦、Waters等厂商每年2次的巡访,问及仪器的使用情况及对仪器改进有何要求等。   参观的最后,师老师表示,实验室地处西部,人才的引进常常比较困难,他希望更多的有识之士能够来到这里,发挥自己的才能,为西部的发展做出自己的贡献。   实验室主任师彦平老师与本网工作人员的合影
  • Nature | 治愈登革的希望再燃—一款泛血清型登革抑制剂靶向NS3-NS5相互作用
    如果您持续关注全球新冠疫情,您可能知道截止2021年10月8日,全球确诊患者已高达236599025(https://covid19.who.int/)。您可能不知道的是,每年全球还有大约1-4亿人感染登革病毒(Dengue virus),仅出现症状的患者据估计就高达9600万。登革病毒是一种由蚊子叮咬传播的黄病毒,其主要传播媒介是埃及伊蚊(Aedes aegypti)及白纹伊蚊(A. albopictus),它们也是基孔肯雅热病毒、黄热病毒和寨卡病毒的传播载体。在过去50年间,登革病毒的感染率已增长30倍,目前全球128个国家和地区出现登革病毒感染,39亿人处于病毒威胁之下。登革病毒共有四种血清型(DENV-1~4),一种血清型的感染可能会加重其他血清型感染的几率,这是由于患者体内产生的低效或中效的抗体促进后续血清型病毒的感染,该现象称为ADE效应。目前一款名为Dengvaxia的疫苗已在部分国家获批用于九岁以上个体的预防,但仅建议曾有登革暴露史的患者使用。不过治疗性药物仍无获批,开发难点在于:药物应适于口服,并可快速降低病毒载量以阻止病程演进为重症,且应对四种血清型均有效。尽管困难重重,药物开发的进程从未停止,2021年10月6日,比利时科学家Marnix Van Loock和Johan Neyts团队合作在Nature发表题为A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction的研究文章,公布一种名为JNJ-A07的抑制剂可以纳摩尔至皮摩尔浓度抑制4种血清型的21种登革病毒临床毒株;该分子不易产生耐药突变,靶向阻断病毒NS3和NS4B的相互作用从而阻止病毒复制复合体的形成;小鼠实验显示其具备优异的药代特征和良好的安全性,可起到预防效果,延迟给药时同样有效。该分子的类似物已进入后续开发。JNJ-A07类分子并非首次面世,事实上,该团队在2018年就已报道其先导化合物的合成和测试工作:通过体外细胞实验在约2000种候选药物中筛选到一种新型吲哚化合物,可有效抑制DENV-II型毒株感染细胞。在本次报道中,研究者首先确认JNJ-A07在Huh7、Vero、C6/36等多种细胞系中均能以纳摩尔至皮摩尔浓度发挥抗病毒作用,尤其是在非成熟的树突状原代细胞中同样有效的,这种细胞被认为是病毒入侵时的首要靶细胞。作者还发现JNJ-A07对4种血清型的21种登革毒株的半数效应浓度(EC50)均达到纳摩尔至皮摩尔级别,这21种临床毒株涵盖目前已知的所有登革病毒基因型,而JNJ-A07对其他多种黄病毒不存在抑制作用,因此是一款登革病毒特异性抑制剂。接下来是找靶点。作者发现只要在病毒的RNA合成尚未启动或未达检测线时,即使延迟向被感染细胞中加入JNJ-A07,抗病毒活性也没有明显减弱;而病毒RNA一旦起始合成,抗病毒活性即逐渐丧失。因此,JNJ-A07的作用指向病毒RNA合成机器。为确定靶点,作者进行了抗药突变株筛选实验,发现添加有化合物的连续传代培养中,DENV-2对JNJ-A07的耐药突变在第15周才可以检出,而完全突变株直到40周后才出现。经测序发现突变导致病毒NS4B基因上的三个氨基酸发生替换(在两组平行试验中,一组均出现L94F、T108I、T216N突变;另一组均出现V91A、L94F、T108I突变,部分出现F47Y、P104S、T216P突变),这一方面说明NS4B就是靶点,另一方面也表明JNJ-A07的耐药门槛很高。后续实验还发现,在人源细胞株中发生的突变位点会导致病毒无法在蚊子细胞中复制,换言之,即使在用药治疗时病毒产生耐药突变,突变株也几乎失去继续通过蚊子叮咬传播的可能。登革病毒的NS4B蛋白可以诱导内质网来源膜囊泡的产生,后者正是病毒复制发生之处;NS4B还可通过阻断IFN-α/β通路阻止宿主细胞抗病毒反应的建立。黄病毒的编码蛋白都是首先翻译成一条长多肽链,经宿主和病毒蛋白酶切割成熟;其中NS4B需经NS4A-2K-NS4B前体加工而来,病毒蛋白酶-螺旋酶复合体NS2B-NS3参与此过程。于是作者检测JNJ-A07对NS3-NS4B相互作用的影响,利用NS4B特异性的pull-down实验,发现在45倍的EC50浓度下JNJ-A07可以抑制95%的NS4B-NS3相互作用;而当病毒发生V91A、L94F、T108I、T216N突变时,JNJ-A07则几乎不再影响NS4B-NS3的相互作用。进一步实验还发现突变体V91A和T108I以剂量依赖型增强NS3-NS4B相互作用。JNJ-A07在体内的作用如何呢?作者首先在小鼠和大鼠中验证其具备良好的药代特征,在300mg/Kg剂量下连续口服给药15天时无副作用。然后,使用感染模型AG129小鼠攻毒DENV-2型RL毒株,通过每天两次口服给药,发现JNJ-A07可以剂量依赖地显著抑制脾、肾、肝等多种脏器中的病毒载量,IL-18、IFN-γ、TNF、IL-6等炎性因子水平接近恢复正常。接着,研究者测试JNJ-A07对致死剂量病毒(106 PFU)攻毒小鼠的保护效果,发现以30mg/kg剂量给药时,小鼠存活率达90%,即使以1mg/kg给药,存活率依然可达75%。在非致死剂量下,30、10、3 mg/kg给药均可使病毒RNA维持在检测线附近。最后,作者发现JNJ-A07兼具预防和治疗效果,在非致死剂量病毒感染4-5天后使用依然迅速产生抗病毒效果。故,JNJ-A07在小鼠体内显示出优异的抗病毒活性。目前的实验结果表明,JNJ-A07是一款高效的、泛血清型登革病毒抑制剂,靶向NS4B、不易产生耐药突变,在小鼠体内显示出良好的药代特征和安全性、可有效预防和治疗登革病毒感染,显示出不俗的开发前景。Nature杂志同期还发表了加州大学伯克利分校的Scott B. Biering和Eva Harris撰写的观点文章A step towards dengue therapeutics,介绍该研究取得的结论并展望其后续开发,同时指出JNJ-A07抑制NS4B的具体机制有待结构生物学研究,其是否可与其他抗病毒药物联用等问题仍有待进一步研究确认。JNJ-A07类似物在后续开发中能否取得理想结果?我们拭目以待。
  • 中科院上海有机化学所游书力团队在手性分子精准合成领域取得新突破
    仪器信息网讯 中国科学院上海有机化学研究所游书力团队利用金属铱催化剂的反应特点,从易得的Z—烯丙基酯原料出发,实现了含有Z—烯烃手性化合物的精准合成。该研究揭示了全新的不对称烯丙基取代反应模式,为含有Z—烯烃结构单元的手性分子提供了一个通用的合成策略,有望应用于药物化学、天然产物合成等领域。该研究成果以“铱催化Z式保留不对称烯丙基取代反应(Iridium-catalyzed Z-retentive asymmetric allylic substitution reactions)”为题,于2021年1月22日在《科学》(Science)上在线发表。论文链接:https://science.sciencemag.org/content/371/6527/380#login-pane图1 (A) 含有Z-烯烃的手性天然产物和生物活性分子 (B) 过渡金属催化不对称烯丙基取代反应  过渡金属催化的不对称烯丙基取代反应可以便捷地实现含有烯烃结构的手性分子合成。在过渡金属催化的烯丙基取代反应中,Z-烯烃底物与金属发生氧化加成可先形成热力学不稳定的anti-π-烯丙基金属络合物,随后该物种通过“π-σ-π”异构化实现烯丙基构型翻转生成热力学稳定的syn-π-烯丙基金属络合物。一般情况下,亲核试剂进攻syn-π-烯丙基金属络合物,会得到以E-烯烃直链或末端烯烃支链为主的产物,因此高选择性地得到含有Z-烯烃的手性产物十分挑战(下图1B)。  游书力团队基于金属铱催化的烯丙基取代反应机理研究,发现π-烯丙基铱络合物的构型翻转较慢,Z-烯烃底物形成的anti-π-烯丙基铱络合物在发生异构化之前可以被亲核试剂捕获,从而实现了铱催化Z式保留的不对称烯丙基取代反应。他们使用Z-烯丙基底物,N-甲基保护的色醇衍生物为前手性亲核试剂,探究了铱催化Z式保留的不对称烯丙基取代反应。经过一系列条件筛选,反应能以20/1的Z/E比,83%的分离收率以及93% ee的对映选择性获得含有Z-烯丙基片段的目标化合物。值得一提的是,不同的色醇,色胺以及带有亲核碳边链的吲哚衍生物均可以参与反应,并以优秀的Z/E比和对映选择性控制得到目标化合物(图2,底物拓展大于50个例子)。  图2 铱催化吲哚衍生物的Z式保留不对称烯丙基取代反应  在进一步的机理研究中,他们通过核磁共振磷谱(31P NMR)和质谱实验观察到在三氟甲磺酸的促进下,一价铱物种可以与Z-烯丙基前体发生氧化加成生成anti-π-烯丙基铱络合物,并且该络合物在室温下可以逐渐异构化为热力学稳定的syn-π-烯丙基铱络合物(图3)。此外,若向含有anti-π-烯丙基铱络合物的反应体系中加入亲核试剂,该物种的磷谱和质谱信号均会立即消失,同时质谱上可以监测到产物信号。这进一步证实了π-烯丙基铱络合物接受亲核试剂进攻的速率远大于其异构化速率,即anti-π-烯丙基铱络合物异构化为syn-π-烯丙基铱络合物之前便可被亲核试剂捕获,生成含有Z-烯烃的手性产物。  图3 anti-π-烯丙基铱络合物的生成及异构化过程的表征  这种Z式保留不对称烯丙基取代反应模式具有很好的普适性。通过对催化剂和反应条件的调控,醛亚胺酯也可以作为前手性亲核试剂用于铱催化Z式保留不对称烯丙基取代反应,为含有Z-烯烃的手性氨基酸衍生物提供了一种高效合成方法(图4)。  图4 铱催化α-氨基酸衍生物的Z式保留不对称烯丙基取代反应
  • 一篇文章吃透水质分析中的微生物检测项目
    总大肠菌群检测1、大肠杆菌、总大肠菌群和粪大肠菌群如何区分? 问题描述:做海水大肠杆菌的检测,可是只找到了粪大肠菌群的检测。三种检测方法有什么不一样的?好多文献大肠杆菌用的就是总大肠菌群的检测方法,不知对结果会有多少影响? 解答: 三种检测方法是不一样的,大肠杆菌不该用总大肠菌群的检测方法,因为大肠菌群(总大肠菌群)粪大肠菌群&耐热大肠菌群大肠杆菌。 a、总大肠菌群系指一群在37℃培养 24 小时能发酵乳酸、产酸产气、需氧和兼性厌氧的革兰氏阴性无芽胞杆菌;该菌群主要来源于人畜粪便,具有指标菌的一般特征故以此作为粪便污染指标评价饮水的卫生质量。 b、粪大肠菌群:是在胰蛋白胨肉汤中于44.5℃,24h 内产生吲哚的耐热大肠菌群,因检测方法比大肠杆菌简单地多,而受到重视;用提高培养温度的方法将自然环境中的大肠菌群与粪便中的大肠菌群区分开,在44.5℃仍能生长的大肠菌群,称为粪大肠菌群。是水体受人畜粪便污染的比较直接指标。 c、大肠杆菌:细菌门。细胞杆状,直径约1微米,长约2微米,两端钝圆,周身具鞭毛,可运动。革兰氏染色阴性,不形成芽孢。菌落圆形,白色或黄白色,光滑而具闪光,低平或微凸起,边缘整齐。最适条件下培养20分钟可繁殖1 代。大肠杆菌是人和温血动物肠道内普遍存在的细菌,是粪便中的主要菌种。一般生活在人大肠中并不致病,可能在肠中对合成维生素 K 起作用。但它侵入人体一些部位时,可引起感染,如腹膜炎、胆囊炎、膀胱炎及腹泻等。人在感染大肠杆菌后的症状为胃痛、呕吐、腹泻和发热。感染可能是致命性的,尤其是对孩子及老人。大肠杆菌的检验是以无菌操作取25g样品,放入装有225mL稀释剂的灭菌均质杯内,于 8000r/min 均质1~2min,制成1:10样品匀液(也可用灭菌乳钵研磨的方法代替)。稀释样品匀液根据对样品污染情况的估计,用稀释剂将样品匀液制成一系列十倍递增的样品稀释液,从制备样品匀液至稀释完毕,全过程不得超过15minLST和EC初步筛选:对每个样品选择适宜的三个连续稀释度的样品稀释液。每个稀释度接种三管月桂基硫酸盐胰蛋白(LST)肉汤,每管接种 1mL。将接种管置于36±1℃培养48±2h;观察试管的产气情况:检查倒管内是否有气泡产生,用直径为3mm 的接种环将所有48±2h 内产气的LST肉汤管培养物移种于EC肉汤管中;将所有接种的EC肉汤管在30min内放入带盖44.5±0.5℃水浴箱内培养48±2h。 2、检测总大肠菌群过程中,倒管操作的疑惑 问题描述:第一步,乳糖发酵试验的时候,在开始培养的时候,小试管里面我感觉是一小试管的气,到底是液体还是气体啊? 解答: a、放小倒管,目的是看培养后它是否产生气体。小倒管放进去要没有气泡,一开始放进去就有气泡不行的。可以先放小倒管,在加培养基。你可以自己试验下,看自己操作哪种方式容易操作不会有气泡。小导管要清洗干净。小导管先加后加问题不大才对,灭菌以后小导管里面的空气可以排尽。这个过程,先放后放(放完里面有气泡)去灭菌完,看下效果。 b、倒管里面有气主要还是你灭菌的时候没有控制好,跟先倒培养基或者先放小倒管没有关系,注意在灭菌时候,时间到了不着急放气,等温度和压力自然降下来再取,另外就是灭菌的时候试管倾斜一定角度放灭菌锅里也有助于排气。 3、如何选择粪大肠菌群 MPN 法和滤膜法,以及两者的单位是否能转换? 问题描述:按照 HJ/T347,粪大肠菌群有两种监测方法,一种是 MPN 发,一种是滤膜法,现在碰到几个问题比较困惑,想请教一下:a、MPN 法的单位是没有单位呢,还是MPN/L呢?b、包括 GB 3838 还是 GB/T14848 等标准,反正是我看到过的所有对粪大肠菌群有限值要求的标准,都是以个/L 做单位的,是不是就只能用滤膜法了?或者 MPN 法也可以呢? c、根据地表水环境质量标准值中,粪大肠菌群的单位是“个/L”,但是多管发酵的最后单位是 “MPN/100mL”及时最后计算是把 MPN/100mL 转化为"MPN/L",那我在做最后的评价中,我要如何把 MPN/L,和“个/L”进行评价。还是说,地表水的检测方法只能用滤膜法而不能用多管发酵法。 解答: a、滤膜法、多管发酵法及酶底物法这 3 者之间检测总大肠菌群不具有可比性。滤膜法检测的是准确值,多管发酵法及酶底物法出具的是估计值。三者的检测原理不同,接种取样的量也不同。故 3 者之间不能相互转换或比对。 b、酶底物法单位是 MPN/100mL,滤膜法是用个/L。MPN 法的检出限 2MPN/100mL 不能简单等同于 20 个/L,否则按个/L 计的检出限将大于 GB5749 标准的限值,这是不合逻辑的。但检测结果中,可以用 MPN/100ml 乘以 10 便转化为“个/L”。
  • 上海有机所肿瘤免疫靶向小分子药物技术授权金额创纪录
    p   中国科学院上海有机化学研究所与信达生物制药(苏州)有限公司近期就肿瘤免疫靶向小分子药物的授权开发达成了合作协议。信达生物以首付款、研发里程碑和销售里程碑付款共计4.57亿美元另加销售提成的合作方式,获得上海有机所研发的吲哚胺 2,3-双加氧酶(IDO)小分子抑制剂的全球独家开发许可权。这是目前国内科研院所与本土生物制药企业达成的合作金额最高的项目,充分体现了分子创制的价值,有望成为中国院企创新药合作的重大里程碑事件。 /p p   创新药物的研发是当前国际科技竞争的战略制高点之一,对经济发展和社会进步具有重要而深远的影响。国际创新药物研发的一个重要趋势是以基础研究的突破为引领。目前,在国际创新药物研发中,肿瘤免疫治疗药物研发成为备受关注的新方向。中科院生物与化学交叉研究中心研究员王召印、朱继东致力于肿瘤免疫治疗小分子靶向药物及肿瘤免疫治疗的研究攻关,通过紧密合作研究,获得新型结构的高活性IDO抑制剂,成为肿瘤免疫治疗药物开发的“种子选手”。 /p p   科技创新绝不仅仅是实验室里的研究,而是必须将科技创新成果转化为推动经济社会发展的现实动力。信达生物制药致力于抗体创新药的研发,目前已与多家国际著名制药企业达成肿瘤免疫疗法的合作。中科院上海有机所研发的IDO抑制剂与信达生物当前正在开发的肿瘤免疫类抗体有着潜在的协同治疗效果。此次合作,是科研院所与中国生物药创新企业在重要的免疫疗法上的强强联合,将共同开创肿瘤免疫治疗的新天地,合作成果不仅有望惠及中国乃至全球病人,而且将推动中国生物药抢占国际市场,打响“中国创新”品牌。 /p p   近年来国内外临床研究证明,IDO抑制剂与PD-1抗体的联合疗法已取得令人满意的临床结果。PD-1是信达生物的“拳头产品”,目前信达生物与其国际战略合作伙伴合作开发的PD-1抗体已进入三期临床。此次院企联手,可使信达生物的PD-1产品“如虎添翼”,有望达到更加有效的治疗作用。 /p p   IDO可以抑制免疫细胞的活性,目前研究已发现在前列腺癌、胰腺癌、乳腺癌、胃癌等多种肿瘤细胞内都有IDO的过度表达。所谓IDO过度表达,是指肿瘤细胞通过过度释放IDO造成色氨酸耗尽而阻止免疫细胞增殖激活,从而使肿瘤细胞逃避免疫系统的监视而“逍遥法外”,这也是早期癌症难以被免疫系统发现的原因之一。IDO抑制剂可以对IDO的过度表达进行抑制,从而让肿瘤微环境中的免疫细胞重新恢复活性,精准杀死肿瘤细胞。 /p p /p
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法
  • Oxoid推出快速确认食品中大肠杆菌方法
    Thermo Fisher Scientific(赛默飞世尔)旗下全球知名的微生物培养与诊断产品Oxoid最新推出了优化的BrillianceTM大肠杆菌/大肠菌群选择性显色培养基,不仅能够对食品和水样中的大肠杆菌与大肠群菌快速分离、区分和计数,而且能够快速对大肠杆菌进行确认鉴定。 大肠杆菌和大肠菌群直接或间接来自人与温血动物的肠道,它们在食品中的出现预示某些肠道病原菌的存在,因此在国内外的检测标准中大肠杆菌和大肠菌群的数量都是评价食品卫生质量的重要指标之一。Oxoid的BrillianceTM大肠杆菌/大肠菌群选择性显色培养基中的显色剂用来检测大肠杆菌的ß -葡萄糖苷酸酶活性和大肠菌群的ß -半乳糖苷酶活性(包括大肠杆菌),因此平板上紫色的大肠杆菌菌落与粉色的大肠菌群菌落非常清晰地区分开来,可以快速、方便地对食品和水样中的这两种菌群进行分离、区分和计数。   现在,Oxoid对这款培养基的蛋白胨成分进行了优化,初步鉴定的紫色大肠杆菌菌落可以在平板上直接通过吲哚试验确认。向平板加入Kovac’s溶液,紫色的大肠杆菌菌落立刻呈现明显的樱桃红色,即确认为阳性的大肠杆菌,而无需额外的确认实验。   对于食品微生物常规检测项目,Oxiod还有其它的显色培养基:BrillianceTM沙门氏菌显色培养基,BrillianceTM李斯特菌显色培养基、BrillianceTM阪崎肠杆菌显色培养基、BrillianceTM蜡样芽孢杆菌显色培养基等。同时,Oxoid还在不断的研究开发新的产品,努力为食品行业微生物检测提供更简便、更快速的解决方案。   关于Oxoid   Oxoid 是 Thermo Fisher Scientific 旗下的知名微生物产品品牌,其产品涵盖整个微生物科学领域,为临床检验、工业生产领域和基础学术研究的微生物诊断提供优质的解决方案。Oxoid最初起源于欧洲,其历史可以追溯到十九世纪微生物科学开始的年代。Oxoid总部位于英国Basingstoke,并在全球设有多家生产厂,如加拿大、德国、澳大利亚等等。2006年Oxoid在中国北京设立了一条新的微生物制成培养基生产线,它的运营使中国的微生物工作者在微生物培养基产品上可以与世界标准接轨,并大幅度减少了微生物实验室操作的工作量,有效地提高了微生物实验室检验的标准化程度。2006年Oxoid正式成为全球科学服务领域的领导者Thermo Fisher Scientific旗下的品牌之一,与另一微生物品牌Remel组成微生物产品部,资源整合优化后,为全球的微生物工作者提供更全面的产品与更专业的服务!欲了解更多信息,请浏览网站:www.oxoid.com。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制