当前位置: 仪器信息网 > 行业主题 > >

水解干酪素

仪器信息网水解干酪素专题为您提供2024年最新水解干酪素价格报价、厂家品牌的相关信息, 包括水解干酪素参数、型号等,不管是国产,还是进口品牌的水解干酪素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水解干酪素相关的耗材配件、试剂标物,还有水解干酪素相关的最新资讯、资料,以及水解干酪素相关的解决方案。

水解干酪素相关的资讯

  • 生鲜牛乳的检测方法和收购管理标准
    进一步加强生鲜乳质量安全监管,规范生鲜乳生产收购秩序,提高生鲜乳质量安全水平,保障了生鲜乳质量安全。从事生鲜乳收购、贮存、运输的生鲜乳收购站应当取得《生鲜乳收购许可证》,乳制品生产企业、奶牛养殖场、奶农、专业生产合作社,执行加强生鲜乳生产收购管理,保证生鲜乳质量安全,促进奶业健康发展,根据《乳品质量安全监督管理条例》,制定要求。第一章第六条,生产、收购、贮存、运输、销售的生鲜乳,应当符合乳品质量安全国家标准。第三章 生鲜乳收购 ,第十八条 取得工商登记的乳制品生产企业、奶畜养殖场、奶农、专业生产合作社开办生鲜乳收购站,第四条化验、计量、检测仪器设备清单。保障生鲜乳质量安全,促进奶业稳步健康发展,真正让广大人民群众喝上“放心奶”。 许多乳品收购单位还规定下述情况之一不得收购:①产犊前15d内的末乳和产后7d内的初乳;②牛乳颜色有变化,呈红色、绿色或显著黄色者;③牛乳中有肉眼可见杂质者;④牛乳中有凝块或絮状沉淀者;⑤牛乳中有畜舍味、苦味、霉味、臭味、涩味、煮沸味及其他异味者;⑥用抗菌素或其他对牛乳有影响的药物治疗期间,母牛所产的乳和停药后3d内的乳;⑦添加有防腐剂、抗菌素和其他有碍食品卫生的乳;⑧酸度超过20oT,个别特殊者,可使用不高于22oT的鲜乳。 新鲜牛乳的滴定酸度为16~18oT。不同酸度的原料乳可合理利用:——淡炼乳的原料乳,要用75%酒精试验;——甜炼乳的原料乳,用72%酒精试验;——乳粉的原料乳,用68%酒精试验(酸度不超过20oT)。——奶油的原料乳尚可用22oT的乳制造,但其风味较差。——酸度超过22oT的原料乳只能供制造工业用的干酪素、乳糖等。 食品安全国家标准《乳和乳制品酸度的测定》 GB5413.34-2010因发酵而产生的,是酸奶中的乳酸,乳制品中最重要的酸则是乳酸,乳制品的酸度滴定常用于检测奶酪和酸乳生产中的乳酸发酵过程,并且可以制造出不同味道的出品,生鲜牛乳糖酸一体机PAL-BX/ACID91可迅速进行生鲜牛乳进行糖度和酸度测量,无需要任何测量试剂,方便现场收购生鲜牛奶使用。如巴氏杀菌乳、灭菌乳、生乳、发酵乳、炼乳、奶油及干酪素酸度的测定均可使用牛乳糖酸一体机PAL-BX/ACID91进行测量,作为生产质量指标。乳酸%:牛奶的酸度除滴定酸度外,也可用乳酸的百分数来表示,与总酸度的计算方法一样,也可由滴定酸度直接换算成乳酸% (10T=0.09%乳酸)。习惯上把酸度小于0.2%以下的牛奶称为新鲜牛奶;把大于0.2%的牛奶称为不新鲜牛奶。 测试方法:a .此仪器测试糖度(Brix)时使用样品原溶液,测试酸度时需要使用去离子水(蒸馏水)或者纯水稀释50 倍(1:50),但是酸度测试值还是指原溶液的酸度。b. 便捷的稀释(1:50)可以使用配备的胶头滴管和计量附件进行。暨使用胶头滴管吸取0.2ml 样品,添加去离子水或纯水到计量附件标注的刻度线(10ml)位置。C. 精确的稀释(1:50)使用国内配套的200ul 移液器吸取样品,5000ul 移液器添加9.8ml 去离子水或纯水。 使用OFFSET, 与滴定法的差异对于特定的样品,由于测量原理的差异,仪器的测试值可能无法与滴定法测试值完全一致。 使用修正(offset)创建两种方法之间的转换表(系数)。Y = ax + bY:滴定值x: 仪器测试值a: 系数(倍数)b: 加/减的数值转换 此款牛乳糖酸一体机PAL-BX/ACID91 均有样机可以免费样品测试,欢迎租借试用,欲了解更多产品资讯,或有样品需要测试请联系ATAGO中国分公司。
  • 工信部行标复审 五项食品标准废止
    按照工业行业标准复审计划,现已完成了工业行业标准的复审工作。   据来自工业和信息化部网站的消息,按照工业行业标准复审计划,现已完成了工业行业标准的复审工作。涉及食品的《罐头食品检验规则》等41 项标准继续有效,《火腿午餐肉罐头》等37项标准将予以修订,《裹衣花生》等5 项标准自2010年1月14日起废止。   附:2009 年消费品工业行业标准复审结论表(食品行业) 序号 标准编号 标准名称 复审结论 1 QB 1006-1990(2009) 罐头食品检验规则 继续有效 2 QB 1007-1990(2009) 罐头食品净重和固形物含量的测定 继续有效 3 QB 1036-1991(2009) 工业用三聚磷酸钠(包括食品工业用)氯化物含量的测定电位滴定法 继续有效 4 QB 1118-1991(2009) L-天门冬氨酸 继续有效 5 QB 1228-1991(2009) 食品添加剂红米红 继续有效 6 QB 1805.1-1993(2009) 工业用α-淀粉酶制剂 继续有效 7 QB 1805.3-1993(2009) 工业用蛋白酶制剂 继续有效 8 QB 1805.4-1993(2009) 工业用脂肪酶制剂 继续有效 9 QB 2245-1996(2009) 食品添加剂蔗糖脂肪酸酯(无溶剂法) 继续有效 10 QB 2393-1998(2009) 食品添加剂乙酰磺胺酸钾(AK 糖) 继续有效 11 QB 2483-2000(2009) 食品添加剂天然维生素E 继续有效 12 QB 2484-2000(2009) 食品添加剂果胶 继续有效 13 QB 2554-2002(2009) 食用氯化钾 继续有效 14 QB 2555-2002(2009) 食用硫酸镁 继续有效 15 QB 2581-2003(2009) 低聚果糖 继续有效 16 QB 2582-2003(2009) 酵母抽提物 继续有效 17 QB/T 1733.2-1993(2009) 花生类糖制品 继续有效 18 QB/T 1733.4-1993(2009)花生酱 继续有效 19 QB/T 1804-1993(2009) 工业酶制剂通用检验规则和标志、包装、运输、贮存 继续有效 20 QB/T 1805.3-1993(2009) 蛋白酶制剂 继续有效 21 QB/T 1805.4-1993(2009) 脂肪酶制剂 继续有效 22 QB/T 1879-2001(2009) 液体盐 继续有效 23 QB/T 2306-1997(2009) 耐高温α-淀粉酶制剂 继续有效 24 QB/T 2605-2003(2009) 工业氯化镁 继续有效 25 QB/T 2606-2003(2009) 肠衣盐 继续有效 26 QB/T 3535-1999(2009) 碘 继续有效 27 QB/T 3599-1999(2009) 罐头食品的感官检验 继续有效 28 QB/T 3775-1999(2009) 全脂无糖炼乳检验方法 继续有效 29 QB/T 3777-1999(2009) 硬质干酪检验方法 继续有效 30 QB/T 3778-1999(2009) 粗制乳糖 继续有效 31 QB/T 3779-1999(2009) 粗制乳糖检验方法 继续有效 32 QB/T 3780-1999(2009) 工业干酪素 继续有效 33 QB/T 3781-1999(2009) 工业干酪素检验方法 继续有效 34 QB/T 3782-1999(2009) 脱盐乳清粉 继续有效 35 QB/T 3783-1999(2009) 食品添加剂叶绿素铜钠盐 继续有效 36 QB/T 3784-1999(2009) 食品添加剂木糖醇酐单硬脂酸酯 继续有效 37 QB/T 3790-1999(2009) 食品添加剂聚氧乙烯木糖醇酐单硬脂酸酯 继续有效 38 QB/T 3791-1999(2009) 食品添加剂甜菜红 继续有效 39 QB/T 3792-1999(2009) 食品添加剂菊花黄 继续有效 40 QB/T 3793-1999(2009) 食品添加剂黑豆红 继续有效 41 QB/T 3800-1999(2009) 食品添加剂酪蛋白酸钠 继续有效 42 QB 1353-1991 火腿午餐肉罐头 修订 43 QB 1364-1991 红烧鸡罐头 修订 44 QB 1373-1991 油炸禾花雀罐头 修订 45 QB 1376-1991 凤尾鱼罐头 修订 46 QB 1380-1991 糖水龙眼罐头 修订 47 QB 1381-1991 糖水山楂罐头 修订 48 QB 1382-1991 糖水葡萄罐头 修订 49 QB 1386-1991 杏酱罐头 修订 50 QB 1389-1991 西瓜酱罐头 修订 51 QB 1395-1991 什锦蔬菜罐头 修订 52 QB 1399-1991 香菇罐头 修订 53 QB 1401-1991 雪菜罐头 修订 54 QB 1402-1991 榨菜罐头 修订 55 QB 1404-1991 榨菜肉丝罐头 修订 56 QB 1406-1991 小竹笋罐头 修订 57 QB 1407-1991 水煮笋罐头 修订 58 QB 1603-1992 糖水莲子罐头 修订 59 QB 1606-1992 红烧排骨罐头 修订 60 QB 1608-1992 红烧元蹄罐头 修订 61 QB 1610-1992 酥炸鲫鱼罐头 修订 62 QB 1611-1992 糖水杏罐头 修订 63 QB 1687-1993 浓缩苹果清汁 修订 64 QB 1688-1993 糖水染色樱桃罐头 修订 65 QB 2604-2003 食用氯化镁 修订 66 QB/T 1409-1991 花生米罐头 修订 67 QB/T 1498-1992 液态法白酒 修订 68 QB/T 1612-1992 红焖大头菜罐头 修订 69 QB/T 1981-1994 露酒 修订 70 QB/T 1982-1994 山葡萄酒 修订 71 QB/T 1998-1994 栗(豆)羊羹 修订 72 QB/T 2021-1994 工业溴 修订 73 QB/T 2076-1995 水果、蔬菜脆片 修订 74 QB/T 2187-1995 芝麻香型白酒 修订 75 QB/T 2221-1996 八宝粥罐头 修订 76 QB/T 3605-1999 豆豉鲮鱼罐头 修订 77QB/T 3770.1-1999 压缩啤酒花及颗粒啤酒花 修订 78 QB/T 3770.2-1999 压缩啤酒花及颗粒啤酒花取样和试验方法 修订 79 QB/T 1733.3-1993 裹衣花生 废止 80 QB/T 1733.5-1993 油炸花生仁 废止 81 QB/T 1733.6-1993 烤花生仁 废止 82 QB/T 1733.7-1996 咸干花生 废止 83 QB/T 2319-1997 液体葡萄糖 废止
  • 阿拉丁细胞培养总动员,一起快乐实验吧
    阿拉丁细胞培养总动员,一起快乐实验吧 Aladdin&i-Quip的优势细胞培养细胞培养技术也叫细胞克隆技术,在生物学中的正规名词为细胞培养技术。不论对于整个生物工程技术,还是其中之一的生物克隆技术。细胞培养都是一个必不可少的过程,细胞培养本身就是细胞的大规模克隆。细胞培养技术可以由一个细胞经过大量培养成为简单的单细胞或极少分化的多细胞,这是克隆技术必不可少的环节,而且细胞培养本身就是细胞的克隆。通过细胞培养得到大量的细胞或其代谢产物。因为生物产品都是从细胞得来,所以可以说细胞培养技术是生物技术中最核心、最基础的 技术。 细胞培养泛指所有体外培养,其含义是指从动物活体体内取出组织,于模拟体内生理环境特定的体内条件下,进行孵育培养,使之生存并生长。细胞培养工作现已广泛应用于生物学、医学、新药研发等各个领域,成为最重要的基础科学之一。 阿拉丁为您提供全面的细胞培养技术,现货充足的各种培养所需试剂。芯硅谷作为阿拉丁的耗材品牌,为细胞培养实验准备了各系耗材,包括:细胞培养板,深孔板,各容积培养皿、培养管等。阿拉丁-芯硅谷是您细胞培养实验的首选。 产品列表&mdash &mdash 细胞培养专用试剂货号品名规格CAS号包装A103539抗坏血酸 用于细胞培养50-81-7500gA103540抗坏血酸 用于植物细胞培养50-81-7100g,500gP110425L-苯丙氨酸 非动物源,EP, JP, USP ;用于细胞培养,98.5 to 10163-91-225g,100g,500gT108222L-苏氨酸JP, USP ;用于细胞培养,99.0-101.0%72-19-525g,100gI115775L-异亮氨酸EP, JP, USP73-32-525g,100g,500gE103809乙醇胺 99%,细胞培养专用141-43-5100ml,500mlT100896噻唑蓝(MTT) 98%298-93-11g,5g,25g,250mgC114435矮壮素 植物细胞培养级,&ge 99%(HPLC)999-81-55g,25gG115554D-半乳糖胺盐酸盐 for cell culture,99%1772-03-81g,5g,250mgC111538氯化钠 用于细胞和昆虫细胞培养,&ge 99.5% (T)7647-14-52.5kg,1kg,500gP100088亚碲酸钾 99.5%7790-58-125g,100gC139524干酪素 suitable for insect cell culture9000-71-9500gC110500干酪素 technical grade9000-71-92.5kg,500g,500mlH104201肝素钠 185 USP units/mg9041-08-11g,5gH123383肝素钠 &ge 180 USP units/mg9041-08-1100KU,250KU,500KU,1000KUB111605硼酸 用于细胞培养和植物细胞培养, &ge 99.5%10043-35-3500gM112543氯化锰,四水 昆虫细胞培养级,&ge 99%13446-34-9100gS104205水合胆酸钠 98%206986-87-05g,25g,100gS104206水合胆酸钠 for cell culture,&ge 99.0%206986-87-025g,100g产品列表&mdash &mdash 细胞培养专用耗材货号包装品名详细参数B1559-03100EA三角形细胞涂布棒三角推边宽度:30mm 全长:208mm 颜色:蓝色 材料:PP 是否消毒:是 包装类型:热封袋B1559-05100EA三角形细胞涂布棒三角推边宽度:60mm 全长:235mm 颜色:蓝色 材料:PP 是否消毒:是 包装类型:热封袋C1623-0250EA6孔细胞培养板孔数:6 孔径:35mm 生长面积:9.61cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-0450EA24孔细胞培养板孔数:24 孔径:16mm 生长面积:1.91cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-0650EA96孔细胞培养板孔数:96 孔径:7mm 生长面积:0.35cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-1250EA6孔细胞培养板,TC处理孔数:6 孔径:35mm 生长面积:9.61cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C1623-1650EA12孔细胞培养板,TC处理孔数:12 孔径:22mm 生长面积:3.87cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C1623-1750EA12孔细胞培养板孔数:12 孔径:22mm 生长面积:3.87cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-1850EA24孔细胞培养板,TC处理孔数:24 孔径:16mm 生长面积:1.91cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C1623-1950EA96孔细胞培养板,TC处理孔数:96 孔径:7mm 生长面积:0.35cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C4219-0120EA细胞刮刀手柄长度:250mm 刀片长度:30mm 是否灭菌:是C4219-0220EA细胞刮刀手柄长度:250mm 刀片长度:30mm 是否灭菌:是C4219-0320EA细胞刮刀手柄长度:400mm 刀片长度:18mm 是否灭菌:是C4219-0420EA细胞刮刀手柄长度:400mm 刀片长度:30mm 是否灭菌:是C6057-0150EA细胞筛材质:尼龙网 颜色:蓝色 尺寸:40&mu m 是否灭菌:是C6057-0250EA细胞筛材质:尼龙网 颜色:白色 尺寸:70&mu m 是否灭菌:是C6057-0350EA细胞筛材质:尼龙网 颜色:黄色 尺寸:100&mu m 是否灭菌:是D3815-0110EA384孔深孔板,方形孔类型:普通型 材质:聚丙烯 容积:120&mu l 颜色:透明 底部形状:V型 是否灭菌:否D3815-0310EA384孔深孔板,方形孔类型:低吸附型 材质:聚丙烯 容积:120&mu l 颜色:透明 底部形状:V型 是否灭菌:否D3815-0510EA384孔深孔板,方形孔类型:普通型 材质:聚丙烯 容积:190&mu l 颜色:透明 底部形状:V型 是否灭菌:否L1557-01100EAL型涂布棒长度:156× 38mm 颜色:蓝色 材质:ABS 是否消毒:是 包装类型:纸塑袋M4939-011EA覆四氟涂层微量取样匙类型:海曼型 长度:150mmP4184-0160EA60mm细胞培养皿尺寸:60× 15mm 生长面积:26.17cm2 TC处理:否 灭菌:伽马 描述:普通型适合悬浮培养P4184-0260EA60mm细胞培养皿,TC处理尺寸:60× 15mm 生长面积:26.17cm2 TC处理:是 灭菌:伽马 描述:标准型适合贴壁培养P4184-0360EA100mm细胞培养皿尺寸:100× 20mm 生长面积:55.65cm2 TC处理:否 灭菌:伽马 描述:普通型适合悬浮培养P4184-0460EA100mm细胞培养皿,TC处理尺寸:100× 20mm 生长面积:55.65cm2 TC处理:是 灭菌:伽马 描述:标准型适合贴壁培养P4940-011EA外覆PTFE涂层取样匙,双平头类别:双平头,圆形平头和锥形平头 长度:200mm 刀片尺寸(最宽的部位):约44× 6mmP4941-011EA外覆PTFE涂层取样匙,平头和勺头类别:平头和勺头 长度:225mm 直径:4.7mmR1596-04500EAPP培养管,无边外径× 高:12× 75mm 容量:5ml 材质:PP 类型:无刻度 是否消毒:否 包装类型:热封袋R1596-05500EAPS培养管,无边外径× 高:13× 75mm 容量:5ml 材质:PS 类型:无刻度 是否消毒:否 包装类型:热封袋R1596-11250EAPS培养管,无边外径× 高:16× 100mm 容量:8ml 材质:PS 类型:无刻度 是否消毒:否 包装:热封袋T1558-01500EAT型细胞涂布棒,已灭菌长度:140mm 颜色:蓝色 材料:ABS 是否消毒:是 包装类型:纸塑袋D1554-011000EA普通型接种环类型:1&mu L环形 材料:软性PP 全长:200mm 环直径:30mm 颜色:蓝色 是否消毒:是 包装类型:纸塑袋更多产品请访问阿拉丁官网www.aladdin-e.com
  • 《食品工业“十二五”发展规划》解读
    国家发展改革委产业协调司 工业和信息化部消费品工业司   2012年4月20日   “十二五”时期是我国全面建设小康社会的关键时期,是深化改革、加快转变发展方式的攻坚时期,为贯彻落实《国民经济和社会发展第十二个五年规划纲要》,加快我国食品工业结构调整,实现持续健康发展,国家发展改革委、工业和信息化部组织编制了《食品工业“十二五”发展规划》(以下简称《规划》),作为“十二五”时期食品工业发展的指导性文件。   一、规划编制意义   我国食品工业承担着为13亿人口提供安全放心、营养健康食品的重任,多年来一直是国民经济的支柱产业和保障民生的基础产业。为满足我国城乡居民消费,带动相关产业发展,提高农业产业化水平,实现工业反哺农业,促进社会和谐稳定,做出了重要贡献。   “十二五”时期仍然是我国食品工业发展的重要战略机遇期,既面临市场空间持续扩大、农业生产稳步发展、高新技术应用加速、新兴食品行业孕育成长、宏观环境继续改善等重大机遇,也面临着食品安全风险广泛存在、能源资源环境约束加剧、转变发展方式加快、产业升级等重大挑战和压力。因此,坚持走中国特色新型工业化道路、增强创新能力、加快转型升级、优化产业结构、提高食品工业质量和安全水平、提升国际竞争力,将是“十二五”时期我国食品工业发展的重要任务。   通过制定和实施《规划》,总结“十一五”取得的成就,客观分析存在的问题和面临的形势,有针对性地提出“十二五”时期食品工业发展的总体要求,对主要任务、重点行业和政策措施进行前瞻性和全局性的部署,必将对指导我国食品工业“十二五”时期加快产业转型升级,建设具有中国特色的现代食品工业体系,更好地满足人民群众不断增长的食品消费和营养健康需求,具有重要意义。《规划》由“十一五”发展成就和存在问题,“十二五”面临的形势,指导思想、基本原则和发展目标,主要任务,重点行业发展方向与布局,政策措施,规划实施等七个部分组成。   二、规划编制过程   《规划》编制工作从2010年开始,历时近2年。为做好《规划》编制工作,我们成立了由国家发改委宏观经济研究院、江南大学、相关行业协会等几十个单位和专家组成的课题组,对影响产业发展的若干重大问题进行了系统研究,客观总结了“十一五”时期食品工业发展的状况,并就“十二五”时期产业发展面临的形势、发展思路、具体目标、主要任务、重点行业发展方向等开展了重点研究并进行了大量专题调研,完成了50多万字的《我国食品工业“十二五”发展战略研究报告》。在此基础上,根据《国民经济和社会发展第十二个五年规划纲要》精神,对研究报告进行了总结和提炼,经过反复修改完善,形成了《规划》(征求意见稿)。为使《规划》更加科学完善,通过各种形式广泛征求了国务院有关部门、地方、行业组织、企业和专家的意见,进一步完善了《规划》内容,形成了目前的《规划》发布文稿。应该说《规划》凝聚了行业的共识,是动员系统、行业和社会力量参与的结果,是集体智慧的结晶。   三、“十一五”发展成就和存在问题   “十一五”期间,我国食品工业坚持走新型工业化的道路,积极应对国际金融危机冲击的影响,实现了又好又快发展。   一是工业生产快速增长。实现利税10659.6亿元,增长214.0%,年均增长25.7% 与农林牧渔总产值之比由2005年的0.52:1提高到2010年的0.88:1。二是产业结构不断优化,品种档次更加丰富。主要食品产量稳步增长,新产品不断涌现,品种档次丰富多彩,形成了4个大类、22个中类、57个小类共计数万种食品,有效保证了13亿人口的食品消费需求。三是食品安全质量水平提高。党中央、国务院高度重视食品安全工作,加强了各级组织领导 食品安全法及其实施条例的发布,使食品安全有了法律保障 全国食品安全形势总体稳定趋好,产品质量稳步改善,产品总体合格率不断提高,标准工作加强,食品安全基础保障不断得到夯实。四是技术装备水平得到提升。攻克了一批关键技术,自主装备水平与国际差距缩小,苹果浓缩汁、生猪自动化屠宰、饮料热灌装等一批成套技术与装备实现了从长期依赖进口到基本实现自主化并成套出口的跨越。五是骨干企业不断发展壮大。通过兼并重组、淘汰落后,涌现了一批市场占有率高、带动能力强的食品骨干企业和企业集团,生产集中度稳步提高。产品销售收入超过百亿元的食品工业企业已有27家。六是产业布局渐趋合理。中西部地区农业资源优势正逐步转化为食品产业优势,东中西部食品工业产值的比值由2005年的58.3:23.1:18.6,转变为2010年的51.6:29.3:19.1。食品企业持续向主要原料产区、重点销区和重要交通物流节点集中。   但与此同时,“十一五”时期食品工业在快速发展过程中,也暴露出食品安全保障体系不够完善、自主创新能力仍较薄弱、食品产业链建设尚需加强、产业发展方式仍较粗放、企业组织结构亟需优化等矛盾和突出问题。   四、指导思想、基本原则和发展目标   (一)指导思想和基本原则   针对“十二五”时期我国食品工业发展存在问题和面临的形势,并结合国民经济发展和人民生活水平提高的要求,《规划》提出“十二五”时期食品工业发展的指导思想是:以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,坚持走新型工业化道路,以满足人民群众不断增长的食品消费和营养健康需求为目标,调结构、转方式、提质量、保安全,着力提高创新能力,促进集聚集约发展,建设企业诚信体系,推动全产业链有效衔接,构建绿色生态、供给充足、质量安全的中国特色现代食品工业,实现持续健康发展。遵循的原则是安全卫生,营养健康 科技支撑,创新发展 统筹兼顾,协调发展 综合利用,绿色发展。   (二)发展目标   《规划》在把握我国工业化、城镇化、市场化、信息化、国际化发展趋势的基础上,综合考虑了经济发展、技术进步、人口增长、资源环境等多方面因素,提出了“十二五”时期食品工业发展的主要目标,特别是在食品安全、规模效益、科技创新、资源利用和节能减排等方面,提出了比“十一五”时期更高、更严格的要求。   一是质量安全目标。食品质量安全是保障民生的根本,为城乡居民提供安全放心、营养健康的食品是食品工业赖以生存和发展的前提。“十一五”时期,在党中央、国务院高度重视和各有关部门加强食品安全监管力度,以及各地区和全社会的共同努力下,我国食品安全形势总体稳定并保持向好趋势。2010年,我国3800多种加工食品质量监督抽查批次抽样合格率为94.6%,出口食品合格率一直保持在99%以上。但是,应该看到,我国食品工业“小、散、低”的格局没有得到根本改变,规模化、集约化水平低,小、微型企业和小作坊仍然占全行业的90%以上,部分规模以上食品生产企业没有达到GMP要求或HACCP认证要求,食品安全事件时有发生,食品安全保障水平与人民群众的要求相比仍有较大差距。为此,《规划》将质量安全放在首位,提出要加强食品质量安全标准体系建设,明确要求规模以上食品生产企业达到GMP要求,60%以上达到HACCP认证要求,企业普遍建立诚信管理体系(CMS),同时提出食品质量抽检合格率从2010年的94.6%提高到2015年的97%以上,大幅降低食品安全事故发生率,显著提高人民群众对食品的满意度,确保消费者吃得放心,从而保障人民群众根本利益。   二是规模效益目标。《规划》提出到2015年,食品工业总产值达到12.7万亿元,增长101.1%,年均增长15%左右 利税达到1.6万亿元,增长76.2%,年均增长12%。“十一五”时期,我国食品工业继续保持快速增长,2010年实现工业总产值6.31万亿元,比2005年增长208.1%,年均增长25.2%。展望“十二五”时期,我国食品工业发展仍将处于重要战略机遇期,食品工业仍将继续保持较快的增长速度。但是,考虑到“十二五”食品工业发展的主线是调整优化产业结构、加快转变发展方式,促进行业发展由偏数量的增长向更加注重质的提升转变,由主要依靠增加物质资源消耗向主要依靠科技进步、管理创新转变,因此适当调低了“十二五”时期的预期发展速度。同时,由于“十二五”时期我国土地、劳动力、能源、原材料等资源要素价格仍将继续保持上涨趋势,农产品价格将稳步增长,食品工业企业的原料成本将不断提高,利润空间受到挤压,因此,把“十二五”食品工业的利税年均增长预期目标确定为12%左右,比总产值增长目标低3个百分点。   三是科技创新目标。食品科技和装备水平不仅是食品工业加快转变发展方式、实现转型升级的重要基础,也是食品质量安全的重要保障。“十一五”时期,我国各行业技术装备水平都有不同程度的提升,科技支撑能力逐步增强,对推动食品工业快速发展起到了积极作用。但是,与发达国家相比,我国食品工业自主创新能力仍然相对薄弱,产学研用结合不紧密,不少行业的一些关键设备和成套设备长期依赖进口。为此,《规划》提出,“十二五”时期,食品工业要在食品安全控制、新型节能环保等关键技术领域取得突破,掌握和开发一批具有独立自主知识产权的食品加工核心技术和先进装备。到2015年,食品科技研发经费占食品工业产值的比例由2010年的0.4%提高到0.8%,关键设备自主化率由40%提高到50%以上,逐步改变我国食品关键装备严重依赖进口的局面。   四是组织结构目标。我国食品工业企业大中型企业偏少,生产集中度低,部分行业产能严重过剩,先进产能发展不足,组织结构不合理,制约了产业结构升级步伐。为此,《规划》提出要完善企业组织结构,培育形成一批辐射带动力强、发展前景好、具有竞争力优势的大型食品企业和企业集团,提高重点行业的生产集中度。到2015年,销售收入百亿元以上的食品工业企业达到50家以上,形成以大型骨干企业为龙头、中型企业为支撑、小(微)型企业为基础的良性发展新格局。   五是区域布局目标。食品工业布局向原料产区、重要物资节点和产业园区集中既是大势所趋,也是西部大开发、振兴东北等老工业基地、促进中部崛起等区域发展战略鼓励和支持的方向。为此,《规划》提出,把东部地区的资金、技术优势和中西部地区的资源优势结合起来,形成东中西部食品工业协调发展的新格局,并鼓励和支持食品加工企业向产业园区集聚。到2015年中西部和东北地区食品工业产值占全国比重提高到60%左右,在全国建成数百个具有一定规模和较强区域影响力的现代食品产业园区。   六是资源利用和节能减排目标。资源利用和节能减排是衡量增长方式的综合性指标。我国由于耕地资源所限,农产品供给将长期处于紧平衡,提高资源利用率是食品工业的重要任务。同时,我国食品工业部分行业单位产品的能耗、水耗和污染物排放仍然较高,必须按照节能减排的总体要求,结合行业特点,细化分解目标任务,强化污染物减排和治理。因此,《规划》提出,大力发展循环经济,到2015年全行业副产品综合利用率由2010年的75%提高到80%以上,单位国内生产总值二氧化碳排放减少17%以上,能耗降低10 % 主要污染物排放总量减少10%以上。   五、主要任务   “十二五”时期,食品工业发展的核心任务是加快转型升级,通过转变发展方式,促进食品工业结构整体优化提升,把发展建立在创新驱动、集约高效、环境友好、惠及民生、内生增长基础上,不断增强核心竞争力和可持续发展能力,加快实现由传统工业化道路向新型工业化道路的转变。针对食品工业各行业存在的突出问题,《规划》提出了今后五年食品工业发展的七大主要任务,即:强化食品质量安全、推进产业结构调整、增强自主创新能力、提高装备研制水平、加快企业技术进步、促进产业集聚发展、大力推进两化融合等。这七个方面是保持我国食品工业持续健康发展的关键环节。   (一)提高食品安全水平   食品安全是人民群众最关心、最直接、最现实的利益问题,关系着广大人民群众的身体健康和生命安全,关系着经济健康发展和社会稳定,是不可有丝毫放松的重大民生问题。因此,“十二五”期间,提高食品质量和安全水平始终是食品工业的首要任务。提高食品安全水平是一项系统工程,需要多管齐下采取综合性措施。其重点是提高重点行业准入门槛、健全食品安全监管体制机制、完善食品标准体系、加强检(监)测能力建设、健全食品召回及退市制度和落实企业食品安全主体责任等。   (二)加快产业结构调整   “十二五”期间,调整优化产业结构、加快转变发展方式将是我国食品工业发展的主线。调整产业结构的重点是完善企业组织结构、培育新兴食品产业、淘汰落后产能等。在完善企业组织结构方面,要引导和推动优势企业实施强强联合、跨地区兼并重组,支持骨干企业做强、中型企业做大、小型企业做精,规范小企业、小作坊经营。在培育新兴食品产业方面,要把握食品消费变化的趋势,加快推动传统主食品工业化,培育壮大方便食品、功能食品等产业。在淘汰落后产能方面,要建立产业退出机制,严格按照《产业结构调整指导目录(2011年本)》要求,重点在粮食加工、肉类屠宰加工、发酵、酿酒、乳制品等产能严重过剩领域,依法淘汰一批技术装备落后、资源能源消耗高、环保不达标的落后产能。   (三)增强自主创新能力   随着经济和社会的快速发展,依靠资源要素投入以及低成本比较优势支撑发展的模式已难以为继,必须依靠科技创新破解可持续发展中的诸多难题和制约因素。自主创新能力不仅是食品工业加快转变发展方式、实现转型升级的重要基础,也是食品质量安全重要保障。其重点是完善自主创新机制、加快建设科技创新与服务平台、大力培养创新型人才和推进关键技术自主创新与产业化。在完善自主创新机制方面,要探索多种形式的产学研用联合创新机制,建立以企业为应用主体、科研院所和大专院校为技术依托的创新战略联盟,促进科技与产业的有机衔接。在推进关键技术自主创新与产业化方面,要以中国传统食品工业化自主创新为重点,努力突破大宗食用农产品加工、特色传统食品等工业化、现代化重大关键技术。  (四)提高装备研制水平   装备水平是食品工业发展的基础。必须下大力气提升装备自主化率,提高食品工业整体技术装备水平。重点是突破食品装备数字化设计与先进制造、智能控制与过程检测、节能减排、质量控制、监测与检测、安全卫生共性技术与标准等关键装备与配套技术,加快装备自主化进程。   在通用装备方面,加大开发力度。选择一批具有良好技术与产业基础的企业,重点支持发展市场前景广阔、技术含量高、产业关联度大的关键与成套设备,建成一批国产化、智能化、成套化装备生产基地,形成具有国家竞争力的知名品牌。在行业专用装备方面,重点发展粮食加工、油料加工、果蔬加工、乳制品加工、水产品加工、禽畜屠宰加工装备和饮料制造、食品包装及食品检测与控制等装备。在包装装备方面,重点开发高速无菌灌装设备、高速吹瓶设备等。   (五)加快企业技术进步   企业是食品工业发展的根本。加快企业技术进步的重点是鼓励和支持食品加工企业实现技术进步和产业结构升级,优化生产结构,淘汰落后工艺和装备。推进节能减排的重点是加大力度在发酵、肉类屠宰加工、酿酒、水产品加工、制糖等行业实施节能减排技术改造和大力发展循环经济。   (六)促进产业集聚发展   《规划》特别提出了发展食品工业产业集群的模式,一是以骨干企业为龙头,“专、精、特”中小企业为配套支撑的集成融合 二是上下游企业产业链相互衔接,产业链前后贯通的集成融合。与此同时,为了发挥食品产业的集聚效应,必须加快配套检验检测、人才培训、科技开发、产品设计、物流建设等生产性服务业的建设,形成优势互补、信息共享、协调发展的新格局。   (七)大力推进两化融合   两化融合是发展现代食品工业的重要手段。其重点是提升食品工业企业信息化应用水平、推进食品安全可追溯体系建设、推进物联网技术的示范应用、完善食品生产企业的信息化服务体系等。   六、重点行业   食品工业门类较多,本着突出重点、体现特色的原则,结合食品工业行业分类的实际,《规划》提出了粮食加工业等13个重点行业的发展方向、产业布局和发展目标。这13个行业可以划分为两种类型:一是关系国计民生、转化农产品数量大、产业关联度高、带动辐射能力强的行业,主要包括粮食加工业、食用植物油加工业、肉类加工业、乳制品加工业、水产品加工业、果蔬加工业、饮料工业、制糖工业、酿酒工业等9个行业。二是近年来发展比较快、能够适应现代生活方式变化、符合今后食品消费需求结构升级趋势要求的行业,主要包括方便食品制造业、发酵工业、食品添加剂和配料行业、营养与保健食品工业等4个行业。   针对食品工业自主创新能力弱、产品结构与消费需求不相适应、质量安全水平不高、企业规模偏小、产业集中度低、原料基地建设滞后和低水平重复建设等问题,《规划》对十三个重点行业提出了下一步重点任务。   (一)粮食加工业   我国粮食加工业的重点任务是加快调整产业结构,大力发展粮食食品加工业,积极发展饲料加工业,严格控制发展非食品用途的粮食深加工,确保口粮、饲料供给安全。实现产品系列化、多元化。到2015年,形成10个销售收入100亿元以上的大型粮食加工企业集团 日处理稻谷200吨以上企业的产量比重提高到60%以上,日处理小麦400吨以上企业的产量比重提高到65%以上,均比2010年提高15个百分点。   (二)食用植物油加工业   我国食用植物油加工业的重点任务是稳定传统大豆油生产,着力增加以国产油料为原料的菜籽油、花生油、棉籽油、葵花籽油等油脂生产,大力推进以粮食加工副产物为原料的玉米油、米糠油生产,积极发展油茶籽油、核桃油、橄榄油等木本植物油生产,促进油脂品种多元化,提升食用植物油自给水平。到2015年,食用植物油产量达到2440万吨,其中国产油料产油量提高到1260万吨以上 花生油、菜籽油、棉籽油、葵籽油、米糠油、油茶籽油等植物油产量比重明显提高。淘汰油料加工落后产能2000万吨左右。   (三)肉类加工业   我国肉类加工业的重点任务是进一步调整生产结构,稳步发展猪肉、牛羊肉和禽肉加工。优化肉类食品结构,提高冷鲜肉比重,加强肉、蛋制品的精深加工,促进资源的综合利用。加强对名优传统肉类食品资源的挖掘,推动传统肉类禽蛋食品的工业化生产,提高产品质量。到2015年,肉类制品及副产品加工达到 1500万吨,占肉类总产量的比重达到17%以上。全国手工和半机械化等落后生猪屠宰产能淘汰50%以上。形成10家100亿以上的大企业集团,肉类行业前200强企业的生产和市场集中度达到80%左右。   (四)乳品加工业   我国乳品加工业的重点任务是加快乳制品工业结构调整,积极引导企业通过跨地区兼并、重组,淘汰落后生产能力,培育技术先进、具有国际竞争力的大型企业集团,加快淘汰规模小、技术落后的乳制品加工产能。调整优化产品结构,鼓励发展适合不同消费者需求的特色乳制品和功能性产品,积极发展脱脂乳粉、乳清粉、干酪等市场需求量大的高品质乳制品,根据市场需求开发乳蛋白、乳糖等产品,延长乳制品加工产业链。到2015年,乳制品产量达到2700万吨,增长15%,其中干乳制品(乳粉、炼乳、奶油、干酪素、乳糖等)产量900万吨,液体乳产量1800万吨。乳制品加工能力闲置率控制在25%以内。   (五)水产品加工业   我国水产品加工业的重点任务是积极发展精深加工,生产营养、方便、即食、优质的水产加工品 挖掘海洋产品资源,加大水产品和加工副产物的开发利用力度。利用现代食品加工技术,发展精深加工水产品,加快开发包括冷冻或冷藏分割、冷冻调理、鱼糜制品、罐头等即食、小包装和各类新型水产功能食品。到2015年,水产品加工总产量达到6000万吨以上,水产品加工率提高到45%以上,冷冻调理食品和分割小包装食品的比例占水产冷冻加工品的比例达到30%以上 培育形成年产值超20亿元、具有明显区域带动作用的水产品加工大型企业20家以上。   (六)果蔬加工业   我国果蔬加工业的重点任务是大力发展果蔬汁和果蔬罐头。大力发展浓缩果蔬汁(浓缩苹果汁除外)、非浓缩还原(NFC)果蔬汁、复合果蔬汁、果蔬汁产品主剂等果蔬汁品种,积极发展水果以及轻糖型罐头、混合罐头等产品,大力发展果蔬脱水产品和扩大速冻产品的生产规模。到2015年,果蔬汁产量达到300万吨,果蔬罐头产量超过200万吨,果蔬冷链运输量占商品果蔬总量的30%以上,水果和蔬菜的平均加工转化率超过15%和5%。   (七)饮料工业   我国饮料工业的重点任务是积极发展具有资源优势的饮料产品。鼓励发展低热量饮料、健康营养饮料、冷藏果汁饮料、活菌型含乳饮料 规范发展特殊用途饮料和桶装饮用水,支持矿泉水企业生产规模化 大力发展茶饮料、果汁及果汁饮料、咖啡饮料、蔬菜汁饮料、植物蛋白饮料和谷物饮料。到2015年,饮料总产量达到1.6亿吨,年均增长10%左右,产品结构更加合理,碳酸饮料、果蔬汁类饮料、包装饮用水、茶饮料、蛋白饮料、其他饮料产量的比例分别为14:15:39:13:15:3。   (八)制糖工业   我国制糖工业的重点任务是加强糖料生产规模化建设,重点稳定广西、云南、新疆、黑龙江等食糖主产区糖业生产,加快产业结构调整步伐,稳步推进大集团战略,向规模化、集约化方向发展。普及推广新技术、新装备,推进清洁生产和节能减排,提高综合利用水平。着力提高产品质量,全面提升糖业的综合竞争力。到2015年,食糖产量达到1600万吨左右。日处理糖料能力121万吨 甘蔗糖和甜菜糖标准煤消耗分别低于5吨/百吨原料和6吨/百吨原料。   (九)方便食品制造业   我国方便食品制造业的重点任务是加快推进方便食品制造业的快速发展,满足市场细分需求。重点发展冷冻冷藏、常温方便米面制品等主食食品,推进传统米面食品、杂粮和中餐菜肴的工业化。推进冷冻米面行业扩大规模,继续提高速冻食品产量,拓宽冷冻食品加工范围,鼓励营养型冷冻产品等新产品的发展。调整优化方便食品加工业布局,鼓励其更多地在中西部地区布局。到2015年,方便食品制造业产值规模达到5300亿元,形成10个销售收入超过100亿元的大型方便食品加工企业集团。   (十)发酵工业   我国发酵工业的重点任务是努力提高非粮原料比重,减少玉米等粮食原料的消耗量。积极发展高附加值新产品,加快开发拥有自主知识产权的食品行业专用酶制剂,适度发展发酵法生产小品种氨基酸、新型酶制剂、多元醇、功能性发酵制品等生产。继续抓好节能减排,降低能耗和水耗,推进清洁生产和循环发展。到2015年,分别培育5家和10家销售收入超过100亿元和50亿元的发酵工业企业集团。非粮原料所占比重由5%提高到15%左右,高附加值发酵制品比重提高到70%以上。   (十一)酿酒工业   我国酿酒工业的重点任务是依据原料禀赋,能源优势建设酿酒工业基地,优化酿酒产品结构,重视产品的差异化创新。在确保粮食安全的基础上,鼓励白酒行业通过改造升级,加快淘汰落后产能,提高产品质量安全水平 逐步增加高附加值啤酒产品比例,啤酒风味向多元化、多品种等个性化方向发展 注重葡萄酒原料基地建设,出了具体要求和指导性意见。同时,首次在食品规划中将大力推进两化融合作为行业发展的一项工作任务,提出要提升食品工业企业信息化水平,推进食品安全可追溯体系建设,推进物联网技术的示范应用,完善食品生产企业的信息化服务体系。   (六)注重规划实施的措施和政策支持   为便于《规划》组织实施,支持和保障规划任务的落实,除了明确规划指标外,还专门设置了5个任务专栏,并提出了8条政策措施。为保证《规划》取得实效,规划提出国务院有关部门要结合规划任务与政策措施,加强沟通,密切配合,确保规划顺利实施,食品工业重点地区要按照规划确定的目标、任务和政策措施,结合当地实际情况,制定本地区食品工业发展规划并认真组织实施。   《规划》的组织实施将有力地促进我国食品工业发展方式的转变,为满足居民消费需求,保障食品质量安全,促进食品工业健康发展打下坚实的基础。
  • 岛津发布独特柱后衍生技术测定乳品中“皮革水解蛋白”
    &ldquo 三聚氰胺毒奶&rdquo 的阴影尚未从消费者的心中散去,&ldquo 皮革毒奶&rdquo 又开始威胁消费者的生命安全。在三聚氰胺成为严打对象后,又有不法企业为提高乳制品中的蛋白质含量,在乳制品中混入皮革水解蛋白,制造出&ldquo 皮革毒奶&rdquo 。 皮革水解蛋白就是利用已经废弃的皮革制品或动物毛发,水解之后制成粉状,因其氨基酸或者说蛋白含量较高,故人们称之为&ldquo 皮革水解蛋白粉&rdquo 。 &ldquo 皮革水解蛋白粉&rdquo 中含有的有毒物质被人体吸收、积累,可导致中毒,使关节疏松肿大,甚至造成儿童死亡。 为此,中国农业部2月12日下发2011年度生鲜乳制品质量安全监测计划,其中除要检测三聚氰胺外,还要检测&ldquo 皮革水解蛋白&rdquo 和碱类物质。据称,皮革水解蛋白的检测难度比三聚氰胺更大,因为它本来就是一种蛋白质。当前,国内多数参考1978年版《ISO:3496-1978肉与肉制品L(-) - 羟脯氨酸含量测定》使用分光光度法测定乳品。主要检测方法是检查牛奶中是否含有羟脯氨酸,这是动物胶原蛋白中的特有成分,在乳酪蛋白中则没有,所以一旦验出,则可认为含有皮革水解蛋白。 已经在消费者心中树立起&ldquo 食品安全卫士&rdquo 形象的岛津公司,长期关注中国的乳制品安全问题,为中国用户提供了一系列的乳制品检测解决方案。其中,岛津上海分析中心结合岛津独特的氨基酸分析系统和欧洲药典收录的氨基酸分析方法,率先开发出柱后衍生液相色谱分析乳制品中L(-) - 羟脯氨酸的检测方法。 该方法使用岛津氨基酸柱后衍生系统锂型分析柱建立了牛奶制品中24种氨基酸的高效液相色谱柱后衍生分析方法,柱后衍生及样品测定为全自动完成,消除了柱前衍生不同操作人员引入的人为误差,大大简化了样品前处理步骤,节约了时间,是一种可靠快速的检测方法。本方法可以直接用于检测牛奶中24种氨基酸。 岛津公司今后将一如既往地关注中国乳制品安全问题,继续实践&ldquo 为了人类和地球的健康&rdquo 这一公司经营理念。 有关岛津&ldquo 高效液相色谱柱后衍生方法测定乳制品中皮革水解蛋白&rdquo 的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_161189.htm。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 因混有金属片 明治乳业召回23万件奶酪
    近期,乳制品市场风波不断,连以往被认为品质更佳的 “洋品牌”似乎也不那么让人放心了。日前,又一家知名的乳制品企业曝出质量问题。   8月17日,日本乳业巨头明治乳业公布,由于存在质量问题,将召回23万件奶酪,原因是这批奶酪原料中部分含有金属片。   食品安全问题再次引起人们的高度关注,尽管明治乳业中国公司称并不负责上述产品在中国的销售,但这些产品仍有可能通过海外代购等渠道进入中国内地市场。而明治乳业在此时召回产品,或给日系奶粉在中国市场的未来蒙上了一层阴影。   23万件奶酪被召回   “由于质量原因,将召回23万件奶酪。”8月17日,据日本媒体报道,日本乳业巨头明治乳业已经表示,将召回该品牌的奶酪。   据了解,在这批由明治乳业子公司千叶明治牛奶生产的天然干酪之中,产品部分原料混有金属片。明治乳业表示,这些金属片是公司从德国进口原料时混入的,长约1厘米、宽1毫米。   在公开声明中,明治乳业表示:“目前还未收到损害健康的报告。”   “我们只负责奶粉在中国地区的销售。”昨日(8月18日),明治乳业中国公司的一位市场部人士向《每日经济新闻》记者表示。不过,该人士拒绝就此次涉及召回奶酪是否在中国内地市场销售做出肯定回复。   据了解,由于明治乳业中国公司并未负责其奶酪产品在中国内地的销售,因此几乎所有的超市之中难以见到该产品的身影。不过,8月18日,《每日经济新闻》记者在某电子购物网站上看到,一款明治牌的鳕鱼奶酪条依旧在销售。据了解,有不少中国消费者通过海外代购的方式购买过明治乳业的相关产品,此次召回是否涉及中国内地的消费者,目前尚无法确定。   事实上,这并不是明治乳业的乳制品第一次曝出质量问题,在2007年、2008年,明治奶粉就分别因为锌含量不达标、铁和锌含量超标而被我国有关部门判为不合格产品。   影响还待观察   “这次事件对日本的产品肯定有影响,但影响有多大还有待观察。”一位有欧洲背景奶企的市场部人士表示。   与其他“高歌猛进”的洋奶粉相比,近年的日本乳制品隐隐有掉队的趋势。   在此之前的4月,国家质量监督检验检疫总局与农业部曾一并发文《关于防止日本口蹄疫传入我国的公告》,表示生产日期在4月30日后的日本乳制品将不得入境销售。该举导致大量日本奶粉代购网店的产品紧急下架。   “日本由于缺乏足够的奶源供给,明治奶粉产品应付国内市场都需要从海外进口奶源,因此公司向中国市场的出口一直都处于一个不温不火的态度。”上述有欧洲背景奶企人士表示,“不过,近几年国际、国内资本纷纷大举进入婴儿奶粉市场,在利益面前,日本企业也不会不在意的。”   值得一提的是,由于企业运作不够积极,导致日本乳制品在中国内地销售渠道十分稀少,大部分消费者只能通过网络代购的方式进行购买。由于9月1日海关将调节代购关税,代购奶粉也开始涨价,这样就减少了与正规渠道产品的价差。这对于一些网络销售依赖度较高的洋品牌乳制品,将会造成更大的冲击。
  • 食品添加剂?--请看博纳艾杰尔解决方案
    日前,卫生部汇总发布了《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》,博纳艾杰尔可提供的相关检测方法如下(点击相应链接查看具体方法),如有任何技术产品问题交流请拨打400-606-8099 序号 名称 可能添加的食品品种 检测方法 违法 2 苏丹红 辣椒粉、含辣椒类的食品(辣椒酱、辣味调味品) 食品中苏丹红染料的检测方法高效液相色谱法 4 蛋白精、三聚氰胺 乳及乳制品 博纳艾杰尔三聚氰胺分析方法包组件清单 6 &beta -内酰胺酶 乳与乳制品 7 玫瑰红B 调味品 食品中罗丹明B(玫瑰红)的现场快速检测及实验室检测方法 17 革皮水解物 乳与乳制品 含乳饮料 HPLC法测定牛奶中羟脯氨酸 21 废弃食用油脂 食用油脂 食用植物油中餐饮回收油测定(Cleanert EOS) 28 肾上腺素受体激动剂类药物(盐酸克伦特罗,莱克多巴胺等) 猪肉、牛羊肉及肝脏等 LC-MS/MS法测定火腿肠中的3种&beta -受体激动剂(沙丁胺、盐酸克伦特罗,莱克多巴胺等 30 玉米赤霉醇 牛羊肉及肝脏、牛奶 动物源食品中玉米赤霉醇类药物残留LC/MS检测 25 敌敌畏 火腿、鱼干、咸鱼等制品 蔬菜中有机磷、有机氯、氨基甲酸酯类等农药多残留检测方法 41 孔雀石绿 鱼类 水产品中孔雀石绿和结晶紫残留量的测定高效液相色谱-串联质谱法 47 敌百虫 腌制食品 蔬菜中有机磷、有机氯、氨基甲酸酯类等农药多残留检测方法 易滥用 1 渍菜(泡菜等) 着色剂(胭脂红、柠檬黄等) 超量或超范围(诱惑红、日落黄等)使用。 HALO C18食用色素检测 葡萄酒 着色剂(胭脂红、柠檬黄、诱惑红、日落黄等) 4 酒类(配制酒除外) 甜味剂(甜蜜素) HPLC法测定山梨醇、苯甲酸、糖精钠、安赛蜜含量 山梨酸 乳制品(除干酪外) 关于博纳艾杰尔更多请访问www.agela.com.cn
  • 成都生物所发明判断大豆异黄酮糖苷水解的方法
    近日,中科院成都生物所发明的“一种判断大豆异黄酮糖苷是否水解或水解程度的方法”获得国家发明专利授权。   大豆异黄酮是大豆等豆科植物生长过程中形成的一类次生代谢产物,具有多种生理功能。它不仅参与调节植物的生长活动,还能对人体发挥有益的生理调节作用。天然大豆异黄酮苷类的分子结构并不是活性发挥的最佳状态,普遍认为苷元才是活性发挥的最佳状态。然而,在大豆中,大豆异黄酮主要是以染料木黄酮、大豆苷和黄豆苷糖苷形式存在的,它们对应的苷元染料木素、大豆苷元和黄豆苷元的含量很少。为了得到生物活性高的大豆异黄酮苷元,在工业上大多以大豆豆饼或豆粕为底物,采用酸水解或微生物转化的方法将糖苷转化为苷元。此前,判断大豆异黄酮糖苷是否水解及水解程度,通常是通过水解前后苷元含量的变化来判断的,此方法过程相对比较繁琐。   成都生物所发明的该种方法,通过商品豆粕经乙醇提取、提取液抽滤除杂质、减压蒸馏浓缩至无乙醇得水相、以水相为底物进行水解、用乙酸乙酯从水解液中萃取大豆异黄酮苷元、萃取液减压浓缩、浓缩相进行薄层层析、在紫外灯下观察层析结果,以此判断大豆异黄酮糖苷是否水解或水解的程度。该方法具有快速、准确等优点,具有良好的应用前景。
  • 151种非法食品添加物黑名单公布
    记者23日从国务院食品安全委员会办公室获悉,为严厉打击食品生产经营中违法添加非食用物质、滥用食品添加剂以及饲料、水产养殖中使用违禁药物,卫生部、农业部等部门根据风险监测和监督检查中发现的问题,不断更新非法使用物质名单,至今已公布151种食品和饲料中非法添加名单,包括47种可能在食品中“违法添加的非食用物质”、22种“易滥用食品添加剂”和82种“禁止在饲料、动物饮用水和畜禽水产养殖过程中使用的药物和物质”的名单。   根据有关法律法规,任何单位和个人禁止在食品中使用食品添加剂以外的任何化学物质和其他可能危害人体健康的物质,禁止在农产品种植、养殖、加工、收购、运输中使用违禁药物或其他可能危害人体健康的物质。这类非法添加行为性质恶劣,对群众身体健康危害大,涉嫌生产销售有毒有害食品等犯罪,依照法律要受到刑事追究,造成严重后果的,直至判处死刑。   这次公布的151种食品和饲料中非法添加名单,是由卫生部、农业部等部门在分次分批公布的基础上汇总再次公布,目的是提醒食品生产经营者和从业人员严格守法按标准生产经营,警示违法犯罪分子不要存侥幸心理 同时,欢迎和鼓励任何单位个人举报其他非法添加的行为。   表一 食品中可能违法添加的非食用物质名单 序号 名称 可能添加的食品品种 检测方法 1 吊白块 腐竹、粉丝、面粉、竹笋 GB/T 21126-2007 小麦粉与大米粉及其制品中甲醛次硫酸氢钠含量的测定;卫生部《关于印发面粉、油脂中过氧化苯甲酰测定等检验方法的通知》(卫监发〔2001〕159号)附件2 食品中甲醛次硫酸氢钠的测定方法 2 苏丹红 辣椒粉、含辣椒类的食品(辣椒酱、辣味调味品) GB/T 19681-2005 食品中苏丹红染料的检测方法高效液相色谱法 3 王金黄、块黄 腐皮 4 蛋白精、三聚氰胺 乳及乳制品 GB/T 22388-2008 原料乳与乳制品中三聚氰胺检测方法 GB/T 22400-2008 原料乳中三聚氰胺快速检测液相色谱法 5 硼酸与硼砂 腐竹、肉丸、凉粉、凉皮、面条、饺子皮 无 6 硫氰酸钠 乳及乳制品 无 7 玫瑰红B 调味品 无 8 美术绿 茶叶 无 9 碱性嫩黄 豆制品 10 工业用甲醛 海参、鱿鱼等干水产品、血豆腐 SC/T 3025-2006 水产品中甲醛的测定 11 工业用火碱 海参、鱿鱼等干水产品、生鲜乳 无 12 一氧化碳 金枪鱼、三文鱼 无 13 硫化钠 味精 无 14 工业硫磺 白砂糖、辣椒、蜜饯、银耳、龙眼、胡萝卜、姜等 无15 工业染料 小米、玉米粉、熟肉制品等 无 16 罂粟壳 火锅底料及小吃类 参照上海市食品药品检验所自建方法 17 革皮水解物 乳与乳制品 含乳饮料 乳与乳制品中动物水解蛋白鉴定-L(-)-羟脯氨酸含量测定(检测方法由中国检验检疫科学院食品安全所提供。该方法仅适应于生鲜乳、纯牛奶、奶粉 联系方式: Wkzhong@21cn.com) 18 溴酸钾 小麦粉 GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法 19 β-内酰胺酶 (金玉兰酶制剂) 乳与乳制品 液相色谱法(检测方法由中国检验检疫科学院食品安全所提供。 联系方式: Wkzhong@21cn.com) 20 富马酸二甲酯 糕点 气相色谱法(检测方法由中国疾病预防控制中心营养与食品安全所提供 21 废弃食用油脂 食用油脂 无 22 工业用矿物油 陈化大米 无 23 工业明胶 冰淇淋、肉皮冻等 无 24 工业酒精 勾兑假酒 无 25 敌敌畏 火腿、鱼干、咸鱼等制品 GB T5009.20-2003食品中有机磷农药残留的测定 26 毛发水 酱油等 无 27 工业用乙酸 勾兑食醋 GB/T5009.41-2003食醋卫生标准的分析方法 28 肾上腺素受体激动剂类药物(盐酸克伦特罗,莱克多巴胺等) 猪肉、牛羊肉及肝脏等 GB-T22286-2008 动物源性食品中多种β-受体激动剂残留量的测定,液相色谱串联质谱法 29 硝基呋喃类药物 猪肉、禽肉、动物性水产品 GB/T 21311-2007 动物源性食品中硝基呋喃类药物代谢物残留量检测方法,高效液相色谱-串联质谱法 30 玉米赤霉醇 牛羊肉及肝脏、牛奶 GB/T 21982-2008 动物源食品中玉米赤霉醇、β-玉米赤霉醇、α-玉米赤霉烯醇、β-玉米赤霉烯醇、玉米赤霉酮和赤霉烯酮残留量检测方法,液相色谱-质谱/质谱法 31 抗生素残渣 猪肉 无,需要研制动物性食品中测定万古霉素的液相色谱-串联质谱法 32 镇静剂 猪肉 参考GB/T 20763-2006 猪肾和肌肉组织中乙酰丙嗪、氯丙嗪、氟哌啶醇、丙酰二甲氨基丙吩噻嗪、甲苯噻嗪、阿扎哌垄阿扎哌醇、咔唑心安残留量的测定,液相色谱-串联质谱法 无,需要研制动物性食品中测定安定的液相色谱-串联质谱法 33 荧光增白物质 双孢蘑菇、金针菇、白灵菇、面粉 蘑菇样品可通过照射进行定性检测 面粉样品无检测方法 34 工业氯化镁 木耳 无 35 磷化铝 木耳 无 36 馅料原料漂白剂 焙烤食品 无,需要研制馅料原料中二氧化硫脲的测定方法 37 酸性橙Ⅱ 黄鱼、鲍汁、腌卤肉制品、红壳瓜子、辣椒面和豆瓣酱 无,需要研制食品中酸性橙II的测定方法。参照江苏省疾控创建的鲍汁中酸性橙II的高效液相色谱-串联质谱法 (说明:水洗方法可作为补充,如果脱色,可怀疑是违法添加了色素) 38 氯霉素 生食水产品、肉制品、猪肠衣、蜂蜜 GB/T 22338-2008 动物源性食品中氯霉素类药物残留量测定 39 喹诺酮类 麻辣烫类食品 无,需要研制麻辣烫类食品中喹诺酮类抗生素的测定方法 40 水玻璃 面制品 无 41 孔雀石绿 鱼类 GB20361-2006水产品中孔雀石绿和结晶紫残留量的测定,高效液相色谱荧光检测法(建议研制水产品中孔雀石绿和结晶紫残留量测定的液相色谱-串联质谱法) 42 乌洛托品 腐竹、米线等 无,需要研制食品中六亚甲基四胺的测定方法 43 五氯酚钠 河蟹 SC/T 3030-2006水产品中五氯苯酚及其钠盐残留量的测定 气相色谱法 44 喹乙醇 水产养殖饲料 水产品中喹乙醇代谢物残留量的测定 高效液相色谱法(农业部1077号公告-5-2008);水产品中喹乙醇残留量的测定 液相色谱法(SC/T 3019-2004) 45 碱性黄 大黄鱼 无 46 磺胺二甲嘧啶 叉烧肉类 GB20759-2006畜禽肉中十六种磺胺类药物残留量的测定 液相色谱-串联质谱法 47 敌百虫 腌制食品 GB/T5009.20-2003食品中有机磷农药残留量的测定   表二 食品中可能滥用的食品添加剂品种名单 序号 食品品种 可能易滥用的添加剂品种 检测方法 1 渍菜(泡菜等)、葡萄酒 着色剂(胭脂红、柠檬黄、诱惑红、日落黄)等 GB/T 5009.35-2003 食品中合成着色剂的测定 GB/T 5009.141-2003 食品中诱惑红的测定 2 水果冻、蛋白冻类 着色剂、防腐剂、酸度调节剂(己二酸等) 3 腌菜 着色剂 、防腐剂、甜味剂(糖精钠、甜蜜素等) 4 面点、月饼 乳化剂(蔗糖脂肪酸酯等、乙酰化单甘脂肪酸酯等)、防腐剂、着色剂、甜味剂 5 面条、饺子皮 面粉处理剂 6 糕点 膨松剂(硫酸铝钾、硫酸铝铵等)、水分保持剂磷酸盐类(磷酸钙、焦磷酸二氢二钠等)、增稠剂(黄原胶、黄蜀葵胶等)、甜味剂(糖精钠、甜蜜素等) GB/T 5009.182-2003 面制食品中铝的测定 7 馒头 漂白剂(硫磺) 8 油条 膨松剂(硫酸铝钾、硫酸铝铵) 9 肉制品和卤制熟食、腌肉料和嫩肉粉类产品 护色剂(硝酸盐、亚硝酸盐) GB/T 5009.33-2003 食品中亚硝酸盐、硝酸盐的测定 10 小麦粉 二氧化钛、硫酸铝钾 11 小麦粉 滑石粉 GB 21913-2008 食品中滑石粉的测定 12 臭豆腐 硫酸亚铁 13 乳制品(除干酪外) 山梨酸 GB/T21703-2008 《乳与乳制品中苯甲酸和山梨酸的测定方法》 14 乳制品(除干酪外) 纳他霉素 参照GB/T 21915-2008《食品中纳他霉素的测定方法》 15 蔬菜干制品 硫酸铜 无 16 “酒类”(配制酒除外) 甜蜜素 17 “酒类” 安塞蜜 18 面制品和膨化食品 硫酸铝钾、硫酸铝铵 19 鲜瘦肉 胭脂红 GB/T 5009.35-2003 食品中合成着色剂的测定 20 大黄鱼、小黄鱼 柠檬黄 GB/T 5009.35-2003 食品中合成着色剂的测定 21 陈粮、米粉等 焦亚硫酸钠 GB5009.34-2003食品中亚硫酸盐的测定 22 烤鱼片、冷冻虾、烤虾、鱼干、鱿鱼丝、蟹肉、鱼糜等 亚硫酸钠 GB/T 5009.34-2003 食品中亚硫酸盐的测定   食品动物禁用的兽药及其它化合物清单 序号 兽药及其它化合物名称 禁止用途 禁用动物 1 β-兴奋剂类:克仑特罗Clenbuterol、沙丁胺醇Salbutamol、西马特罗Cimaterol及其盐、酯及制剂 所有用途 所有食品动物 2 性激素类:己烯雌酚Diethylstilbestrol及其盐、酯及制剂 所有用途 所有食品动物 3 具有雌激素样作用的物质:玉米赤霉醇Zeranol、去甲雄三烯醇酮Trenbolone、醋酸甲孕酮Mengestrol,Acetate及制剂 所有用途 所有食品动物 4 氯霉素Chloramphenicol、及其盐、酯(包括:琥珀氯霉素Chloramphenicol Succinate)及制剂 所有用途 所有食品动物 5 氨苯砜Dapsone及制剂 所有用途 所有食品动物 6 硝基呋喃类:呋喃唑酮Furazolidone、呋喃它酮Furaltadone、呋喃苯烯酸钠Nifurstyrenate sodium及制剂 所有用途 所有食品动物 7 硝基化合物:硝基酚钠Sodium nitrophenolate、硝呋烯腙Nitrovin及制剂 所有用途 所有食品动物 8 催眠、镇静类:安眠酮Methaqualone及制剂                    所有用途 所有食品动物 9 林丹(丙体六六六)Lindane 杀虫剂 所有食品动物 10 毒杀芬(氯化烯)Camahechlor 杀虫剂、清塘剂 所有食品动物 11 呋喃丹(克百威)Carbofuran 杀虫剂 所有食品动物 12 杀虫脒(克死螨)Chlordimeform 杀虫剂 所有食品动物 13 双甲脒Amitraz 杀虫剂 水生食品动物 14 酒石酸锑钾Antimonypotassiumtartrate 杀虫剂 所有食品动物 15 锥虫胂胺Tryparsamide 杀虫剂 所有食品动物 16 孔雀石绿Malachitegreen 抗菌、杀虫剂 所有食品动物 17 五氯酚酸钠Pentachlorophenolsodium 杀螺剂 所有食品动物 18 各种汞制剂包括:氯化亚汞(甘汞)Calomel,硝酸亚汞Mercurous nitrate、醋酸汞Mercurous acetate、吡啶基醋酸汞Pyridyl mercurous acetate 杀虫剂 所有食品动物 19 性激素类:甲基睾丸酮Methyltestosterone、丙酸睾酮Testosterone Propionate、苯丙酸诺龙 Nandrolone Phenylpropionate、苯甲酸雌二醇Estradiol Benzoate及其盐、酯及制剂 促生长 所有食品动物 20 催眠、镇静类:氯丙嗪Chlorpromazine、地西泮(安定) Diazepam及其盐、酯及制剂、 促生长 所有食品动物 21 硝基咪唑类:甲硝唑Metronidazole、地美硝唑Dimetronidazole及其盐、酯及制剂、 促生长 所有食品动物
  • 如何使用EDGE从需要进行酸水解的食品样品中提取脂肪
    简介食品制造商需要提取脂肪。 通常,必须使用酸对食品样品进行预水解,以便在提取过程中回收其总脂肪。 例如,在低于正常脂肪提取温度的情况下,发生化学变化的食物(如鸡蛋)需要此步骤。使用这个操作程序从需要预水解的食 品中,用酸水解的方式提取脂肪,对于用户而言,在他们的实验室中这个步骤是必须的。 样品类型 含有结合脂肪的食物或用户想要水解的任何食物。 但是请不要使用这种方法从肉类中提取脂肪。 样品准备 1. 研磨或均质食品样品。 注意:食物含水多吗?研磨前,请在 100 °C 的烘箱中预干燥样品 1 小时。 2.称取 3 g 或更少的食物样品放入玻璃烧杯中。记录重量。 注意:对于坚果酱等脂肪较多的食物,请使用较小的样本量(2 克或更少)。 3. 向样品中加入 45 mL 沸水。然后,向样品中添加 55 mL 的 8 M HCl。 4. 用玻璃搅拌棒搅拌混合物,用表面皿盖住混合物,并使用加热板或加热块使样品沸腾 1 小时。混合物会变 成黑色的变体。 5. 将混合物从火上移开,让它摸起来冷却。 6. 使用 Whatman 1 过滤器组装过滤装置。 注意:过滤装置可以是放置在带有真空的过滤瓶中的布氏漏斗中的过滤器,也可以是放置在带有烧瓶下方的 漏斗中的过滤器,允许样品通过重力滴入。 7. 将样品转移到过滤组件中,让过滤器收集黑色水解产物。用 100 mL 水冲洗原始样品烧杯,以转移可能留 在烧杯中的任何水解产物 8. 从过滤装置中取出过滤器。在 100 °C 下烘箱干燥过滤器 1 小时。 9. 通过将 G0 Q-Disc 插入 Q-Cup 的底部,然后在顶部放置 Q-Support 来准备 Q-Cup。 注意:EDGE方法编程时请选择G0作为EDGE方法中的Q-Disc 10. 将干燥的过滤器插入 Q-Cup 的顶部。 注意:过滤器可能会被撕裂或穿孔,而不会降低脂肪回收率。如果使用的过滤器很大,可以将它们撕开以 更好地安装在 Q-Cup 内。 11. 在折叠过滤器的顶部放置一个 Q-Screen,然后使用 Q-Screen 工具将过滤器压缩到 Q-Cup 中。 12. 将 Q-Cup 放在 EDGE 架上。将预先称重的小瓶与架子上记录的重量放在一起。 EDGE萃取 13. 通过用石油醚或所需溶剂灌注溶剂管线并在下面的 EDGE 方法中编程来准备 EDGE。 14. 使用下面的 EDGE 方法提取样品。 注意:此方法需要两个 40 mL 或 60 mL 小瓶。萃取的后续工作15. 从架子上取下萃取瓶。 注意:如果样品的脂肪含量较高,则所得提取物可能呈黄色。 16. 将样品瓶置于 60 °C 的蒸发器中,让所有溶剂蒸发。 注意:脂肪将作为油性粘稠层保留在小瓶底部。 17. 将样品瓶放入 100 °C 的烘箱中 1 小时,以去除任何残留的水分或溶剂。 18. 让小瓶冷却并称重。 其中小瓶之后是蒸发后小瓶的重量,小瓶之前是提取前小瓶的重量。方法开发技巧 以下方法是适用于大多数样品类型的保守方法。请注意,可能有针对特定样品的更优化方法。请联系 Molecular Support以获取更多信息。 文献中有许多可用的酸水解方法。任何方法都可以,只要将黑色水解产物过滤,用水彻底冲洗,并用可干燥 和提取的过滤器捕获即可。  其他提取溶剂,如乙醚和己烷,可用于提取脂肪。  如果此方法的回收率低于预期,则将每个循环的保持时间增加 1 分钟。此外,如果可能,请考虑增加总提 取量或减少样本量。
  • 月旭公司推出乳和乳制品中黄曲霉毒素M1的检测方案
    近日,蒙牛纯牛奶被检测出强致癌物——黄曲霉毒素M1,消息一出顿时又掀起一股食品安全隐患的讨论。相比之前的三聚氰胺,黄曲霉素是否更难检测?月旭公司技术部迅速组织相关技术人员讨论和开发应用解决方案,现已整理出全套的专业检测方案,让乳和乳制品中黄曲霉毒素M1无处躲藏。 1. 试用范围 牛奶,奶粉,发酵乳,干酪,奶油等乳制品 2. 方法原理 黄曲霉毒素M1易溶于极性溶剂,因此均匀基质中的黄曲霉毒素M1可以通过甲醇/水震荡分散提取,对于高脂肪/油含量的样品基质加入正己烷予以脱脂。本方法采用免疫亲和柱净化,荧光检测器测定乳制品中黄曲霉毒素M1。 3. 所需设备和耗材 黄曲霉毒素免疫亲和柱:Welchrom® IAC (1ml,25支/盒;3ml,15支/盒)(上海月旭提供); 高效液相装置带荧光检测器; 均质机; 水平振荡器; SPE转接头及50ml大容量上样器:Welchrom® SPE Adapter(上海月旭提供); 分析天平(精度0.02 g); SPE装置带抽真空系统:Welchrom® SPE Device(上海月旭提供); 黄曲霉毒素M1标准品; PBS 缓冲溶液:称取1.16 g Na2HPO4,0.20 g KH2PO4,8 g NaCl和0.2 g KCl 溶于900ml水中,用HCL或NaOH调节pH至7.4,然后定容至1000ml; 甲醇(色谱纯); 乙腈(色谱纯); 正己烷(分析纯)。 4. 样品前处理 牛奶样品 称取25g(精确至0.01 g)混匀的样品,置于50 mL具塞离心管中,水浴加热至35℃~37 ℃,6000 r/min下离心10 min。收集全部上清液,待净化; 发酵乳(包括固体状、半固体状和带果肉型) 称取25 g(精确至0.01 g)混匀的样品,用0.5mol/L的NaOH溶液调节pH值至7.4,9500r/min下均质5 min,水浴加热至35℃~37 ℃,6000 r/min下离心10 min。收集全部上清液,待净化。 乳粉和粉状婴幼儿配方乳制品 称取10 g(精确至0.01 g)样品置于250 mL烧杯中,加入50 mL约50 ℃的水于乳粉中,玻璃棒搅拌均匀。溶解后冷却至室温,移入100 mL容量瓶中,水洗烧杯并转移洗涤液,用PBS定容至刻度后装入离心管6000转/分钟下离心15 min,混合上清液,取50mL上清液待净化。 干酪 切取均质的样品5g(精确至0.01 g)于50 mL离心管中,加2 mL水和30 mL甲醇,9500 r/min下匀浆5 min,超声提取30 min,6000r/min下离心10 min。收集上清液并移入250 mL分液漏斗中,同时加入30 mL正己烷,振摇2 min,分层后,弃去正己烷层。重复用正己烷提取2次。提取液减压浓缩至约2 mL,转移浓缩液至离心管,烧瓶用甲醇-水溶液(1+4)5 mL分2次洗涤并倒入50 mL离心管中,加PBS溶液稀释至50 mL,6000r/min下离心5 min,上清液待净化。 奶油 称取5g(精确至0.01 g)试样,置于50 mL烧杯中,用20 mL正己烷将其溶解并移于250mL具塞锥形瓶中。加20 mL水和30 mL甲醇,振荡30 min后,将全部液体移于分液漏斗中,待分层后,将下层溶液全部移到100 mL圆底烧瓶中,旋转蒸发仪减压浓缩至约5 mL,加PBS稀释至约50mL,待净化。 5. 免疫亲和柱净化(3cc) 将IAC装于固相萃取装置上,接上大体积上样器,10ml PBS溶液活化柱子,流速保持在2–3 ml/min,确保上样前柱子保留少量(0.5ml)的PBS溶液,活化液不收集; 将待净化液加入免疫亲和柱,流速不超过5 mL/min,不收集流出液; 用约20ml去离子水淋洗柱子,流速不超过5 mL/min,抽真空1分钟,不收集流出液; 用1.5ml甲醇洗脱,流速控制在1d/s,收集洗脱液过膜后上机测试。 注:免疫亲和柱从冰箱去除需升到室温后使用 6. 色谱条件: 色谱柱: Ultimate® XB-C18 250 mm x 4.6 mm,5µ m(上海月旭提供) 预柱: Ultimate® C18,5µ m,ULT5BG18(上海月旭提供) 流动相: 水:甲醇:乙腈=11:4:5 柱温: 35℃ 检测波长: 发射波长:365nm,激发波长:450nm 进样量: 100µ L附:测试谱图 分析物 添加水平(µ g/kg) 回收率(%) RSD(%) Aflatoxin M1 2 µ g/kg 98.8 4.2
  • 美研究利用“基因剪刀”应对抗生素耐药性
    p style=" text-indent: 2em text-align: justify " 致病菌对抗生素产生耐药性已成为日益严峻的全球性公共卫生问题。美国研究人员近日报告说,他们利用“基因剪刀”开发出一个新系统,可以确定某种特定抗生素能靶向作用于致病菌的哪些基因,有望用于改进现有抗生素效果或开发新型抗生素。 /p p style=" text-indent: 2em text-align: justify " 被誉为“基因剪刀”的CRISPR基因编辑技术能精确定位并切断DNA(脱氧核糖核酸)上的基因位点,可以关闭某个基因或引入新的基因片段。 /p p style=" text-indent: 2em text-align: justify " 美国威斯康星大学麦迪逊分校等机构研究人员近日在英国《自然· 微生物学》杂志上报告说,CRISPRi是“基因剪刀”的弱化版,不能切断DNA链,但能附着在DNA的某个位置,阻止基因转录所需蛋白质分子靠近,以达到降低基因表达、减少该基因编码蛋白质数量的效果。他们开发出的这个新系统被命名为“移动CRISPRi”,可适用于研究不同菌种。 /p p style=" text-indent: 2em text-align: justify " 研究人员发现,利用这种基因编辑技术,减少被某种抗生素作为“靶子”的蛋白质数量时,细菌会变得对这种抗生素更敏感,这证明了特定抗生素和某些基因之间的关联。通过这种方式,研究人员一次可以筛查出数千种可能成为抗生素潜在目标的基因,可帮助科学家理解抗生素的工作机制并改进药物效果。 /p p style=" text-indent: 2em text-align: justify " 研究人员用“移动CRISPRi”研究了从奶酪皮中分离出的干酪弧菌,以弄清这种细菌怎样聚居到奶酪上并影响风味。研究人员说,“移动CRISPRi”可用于研究任何数量的科学家此前不了解的致病菌或有益菌。 /p
  • 日本厚生劳动省公布2013年度进口食品监视指导计划
    2012年3月18日,日本厚生劳动省医药食品局发布发布日本2013年度(2013年4月1日~2014年3月31日)进口食品监视指导计划。主要内容有:   1. 为了促进出口国的卫生措施,计划与出口国政府进行双边会谈和实地调查,并进行技术合作。此外,根据有关行政机关以及海外信息实施应急措施。   2. 在检疫站对以下重点项目进行检测和指导:审核进口通知书时,确认是否存在违反食品卫生法的情况 关于违反食品卫生法可能性较低的食品,实施监控检查计划(由2012年的约89900件调整为93700件) 对于违反食品卫生法可能性较高的食品,对进口商实施命令检查(对所有出口国的17个品种以及25个国家1个地区的79个品种)。   3. 检疫所对进口商推广自主卫生管理,定期进行首次进口自主检查的指导,引导进口商食品卫生有关知识的学习。   4. 如果在进口时以及国内流通的检查中发现违反食品卫生法的物品,厚生劳动省、检疫所、都道府县等协同合作,实施回收销毁等对应措施。   5. 新增有关内容:根据国外食物中毒或食品中检出病原微生物等有关信息,增加对出血性大肠杆菌、沙门氏菌和李斯特菌等病原微生物的强化监控检查 通过出口国说明会等,政府部门告知生产商有关食品安全规则。 表 2013年度日本进口食品监视指导计划 食品种类 检查项目*1 项目别类件数*2 检查总件数 畜产食品:牛肉、猪肉、鸡肉、马肉、其它食用鸡肉等 抗菌性物质等 2300 8500 残留农药 1300 病原微生物 720 成分规格等 150 放射线辐射 30 SRM除去 4000 畜产加工食品:天然干酪、肉类加工品、冰淇淋、冷冻食品(肉类)等 抗菌性物质等 2200 8400 残留农药 1200 添加剂 1400 病原微生物 2100 成分规格等 1500 水产食品:双壳贝、鱼类、甲壳类(蟹、虾)等 抗菌性物质等 3100 7810 残留农药 2600 添加剂 180 病原微生物 1400 成分规格等 500 放射线辐射 30 水产加工食品:鱼类加工品(切片、干燥、碎肉)、冷冻食品(水产动物类、鱼类)、鱼贝类卵加工品等 抗菌性物质等 4400 17510 残留农药 3200 添加剂 1600 病原微生物 4900 成分规格等 3400 放射线辐射 10 农产食品:蔬菜、水果、麦类、玉米、豆类、花生、坚果、种子类等 抗菌性物质等 1500 18870 残留农药 11700 添加剂 1100 病原微生物 1500 成分规格等 200 霉素类 2400 转基因食品类 350 放射线辐射 120 农产加工食品:冷冻食品(冷冻蔬菜)、蔬菜加工品、果实加工品、香辛料、方便面类等 抗菌性物质等 300 18650 残留农药 8400 添加剂 3800 病原微生物 500 成分规格 2100 霉素类 3000 转基因食品类 130 放射线辐射 420 其它食品:保健食品、汤类、调味品、点心类、食用油、冷冻食品等 残留农药 550 5180 添加剂 3100 成分规格等 630 霉素类 900 饮料:矿泉水、清凉饮料、酒精类饮料等 残留农药 180 1780 添加剂 1000 成分规格等 480 霉素类 120 添加剂、器具及容器包装、玩具 成分规格等 2000 2000 重点检查的项目*3 抗菌性物质等、残留农药、添加剂、病原微生物、成分规格等、霉素类、转基因食品、放射线照射食品 5000 5000 总计*2     93700   *1:检查项目例   l 抗菌性物质等:抗生物质,合成抗菌剂,荷尔蒙等   l 残留农药:有机磷系,有机氯系,氨基甲酸酯系,拟除虫菊酯系等   l 添加剂:保存剂,色素,甜味剂,防氧化剂,防腐剂等   l 病原微生物:肠出血性大肠杆菌O26、0104、O111和O157,李斯特菌,肠炎弧菌等   l 成分规格等:成分规格规定项目(细菌数,大肠杆菌群,放射性物质等),贝毒(腹泻性贝毒,麻痹性贝毒)等   l 霉素类:黄曲霉毒素、脱氧瓜萎镰菌醇、青霉菌等   l 转基因食品:未通过安全性检查的转基因食品等   l 放射线照射:有无放射线照射。   *2:指抗菌性物质、残留农药等检查项目的检查总件数的概数。   *3:根据进口时的违反事例和国外的信息情报等,提高本检查计划的实施频率。   来源:   http://www.mhlw.go.jp/topics/yunyu/kanshi/h25/dl/yunyu-01.pdf
  • 碳元素视角审视传统能源和新能源的碰撞 | 德国元素Elementar
    温室气体导致的全球气候变暖是全人类共同面临的挑战,事关全人类的可持续发展。面对严峻的气候变化问题,人类必须坚定走绿色发展之路,共同推动构建人与自然生命共同体。自2021年以来,中国积极落实《巴黎协定》,进一步提高国家自主贡献力度,围绕碳达峰和碳中和目标,有力有序有效推进各项重点工作,取得显著成效。中国已建立起碳达峰和碳中和的 “N+1”政策体系,制定中长期温室气体排放控制战略,推进全国碳排放权交易市场建设,编制实施国家适应气候变化战略,非化石能源2023年度报告占一次能源消费比重达到16 %以上,风电、太阳能发电总装机容量达到10.5亿千瓦,煤炭和石油等传统能源消耗显著降低,森林覆盖率和蓄积量连续31年实现“双增长”。面对来势汹汹的新能源,传统能源比如石油和天然气是否已经进入退出能源市场的倒计时了呢?很显然,不管是光伏还是风能所产生的能源仍然具有很多缺陷,这也使得新能源和传统能源的混合使用成为了主流。风能的缺点主要是不稳定以及间歇性,常常会受到地理位置和气候的影响,产生的噪音以及硕大的扇叶对于生态和野生动物的影响颇多,昂贵的运营成本也推高了风能的价格。而太阳能的缺点主要是受日照时间和天气影响很大,且能量密度低转化效率差,高昂的成本推高了使用价格。相反,化石能源的稳定性能够有效地弥补两者的缺点,低廉的使用成本也更加能被大众所接受。根据自然资源部发布的报告,中国石油、天然气剩余探明技术可采储量已达36.19亿吨、62665.78亿立方米。常规油气勘探不断在塔里木盆地超深层、准噶尔盆地和四川盆地的新区、新层系取得新进展,非常规油气在松辽盆地和川东南实现了页岩油气的多项勘探突破。然而在油气开发过程中,研究人员需要使用岩石热解仪和总有机碳分析仪对于页岩进行分析,根据从岩石热解仪中获得的热裂解碳氢化合物和总有机碳分析仪中获得的TOC值之间的比值获得HI值,对于页岩中的干酪根类型以及产油产气趋势进行研究。关于常规的TOC测定方法,主要是依赖高频红外碳硫仪对于酸洗后的样品进行分析。针对该类客户,德国元素Elementar 推出了配备了89位自动进样器的高频红外碳硫仪 — inductar CS cubeinductar CS cube 红外碳硫仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,电极材料的碳硫分析。特点:创新性坩埚设计,无需动力气清洁型燃烧(低灰尘和尘屑),无需外接吸尘器加热的除尘过滤器,配备了高效的风冷水冷装置可自由程序变化输出功率的感应炉 可自由程序变化的注氧流速燃烧过程可由光学摄像系统观察专利球夹设计,实现免工具维护另一方面,在实际的测量工作中,繁琐复杂的酸洗过程,酸洗带来的总有机碳测量误差以及高频燃烧中产生的大量灰尘都会给实验人员带来烦恼。面对这些挑战,德国元素Elementar 推出了配备TIC模块以及程序升温功能的Soli TOC cube 碳组分分析仪可通过加和法或者是差减法对于TOC的含量进行测量。Soli TOC cube 碳组分分析仪
  • 聚丙烯酰胺水解度的测定
    一、背景介绍聚丙烯酰胺(PAM)是一种线型高分子聚合物,在常温下为坚硬的玻璃态固体,产品有胶液、胶乳和白色粉粒、半透明珠粒和薄片等。由于聚丙烯酰胺结构单元中含有酰胺基、易形成氢键、使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物,在石油开采、水处理、纺织、造纸、选矿、医药、农业等行业中具有广泛的应用,有“百业助剂”之称。聚丙烯酰胺在国外应用最多的领域是水处理,国内在此领域的应用正在推广。聚丙烯酰胺在水处理中作为助凝剂与其它絮凝剂配合使用,可以大大降低絮凝剂的使用量,但其水解度过小会导致混凝或助凝效果较差,水解度过大又会增加制作成本,故需要对聚丙烯酰胺的水解度进行检测。 二、方法介绍● 依据标准:GB/T 17514-2008《水处理剂 聚丙烯酰胺》● 测试方法:取样约0.03g置于100mL水中溶解,用盐酸标准溶液滴定至pH为4.1时,即为终点。 三、聚丙烯酰胺水解度的测定(1)仪器及试剂● ZDJ-5B型自动滴定仪● JB-21上搅拌器(选配)● 231-01 pH玻璃电极+232-01参比电极● pH标准缓冲溶液、盐酸标准滴定溶液、基准无水碳酸钠试剂、样品 (2)测试步骤● 对pH电极进行标定,● 将100mL水倒入滴定杯中置于搅拌器上,开启搅拌器。称取约0.03g粉状试样,精确至0.2mg。加入到滴定杯中,使其完全溶解。采用预设终点模式,设置好参数后用盐酸标准溶液滴定溶液滴定至终点。 (3)测试结果图1 水解度滴定曲线 (4)注意事项由于聚丙烯酰胺水解后,随时间的延长而粘度越大,下搅拌难以维持转速,所以本次实验推荐用上搅拌进行测试,需要额外配置上搅拌装置。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 2023版食品安全监督抽检计划与2022版检测项目对比
    近日,网上流传一份《国家食品安全监督抽检实施细则(2023年版)》电子版,以下是该版资料与2022年版的检测项目的增减对比,大家可以参考一下有备无患。33大类名称与2022版基本相同,无变化。本文列举了前19大类检测项目增减情况。以下内容红色字体部分为2023版新增;蓝色字体部分为2022版原有,于2023版删除。1、粮食加工品类别检验项目通用小麦粉、专用小麦粉镉(以Cd计)、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇、赭曲霉毒素A、黄曲霉毒素B1、苯并[a]芘、过氧化苯甲酰、偶氮甲酰胺大米铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1、无机砷(以As计)、苯并[a]芘挂面铅(以Pb计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、黄曲霉毒素B1谷物加工品铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1玉米粉、玉米片、玉米渣黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮、苯并[a]芘米粉铅(以Pb计)、镉(以Cd计)、总汞、无机砷(以As计)、苯并[a]芘其他谷物碾磨加工品铅(以Pb计)、赭曲霉毒素A、铬(以Cr计)生湿面制品铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量发酵面制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌米粉制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌、二氧化硫残留量其他谷物粉类制成品铅(以Pb计)、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、脱氢乙酸及其钠盐(以脱氢乙酸计)2、食用油、油脂及其制品类别检验项目食用植物油酸值/酸价、过氧化值、铅(以Pb计)、黄曲霉毒素B1、苯并[a]芘、溶剂残留量、丁基麦芽酚、特丁基对苯二酚(TBHQ)食用植物油(煎炸过程用油)酸价、极性组分食用动物油脂酸价、过氧化值、丙二醛、总砷(以As计)、苯并[a]芘、铅(以Pb计)食用油脂制品酸价(以脂肪计)、过氧化值(以脂肪计)、大肠菌群、霉菌、铅(以Pb计)3、调味品类别检验项目酱油氨基酸态氮、全氮(以氮计)、铵盐(以占氨基酸态氮的百分比计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群、对羟基苯甲酸酯类及其钠盐 (以对羟基苯甲酸计)、三氯蔗糖食醋总酸(以乙酸计)、不挥发酸(以乳酸计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、对羟基苯甲酸酯类及其钠盐(以对羟基苯甲酸计)、三氯蔗糖酿造酱氨基酸态氮 、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、大肠菌群、三氯蔗糖调味料酒氨基酸态氮 、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、三氯蔗糖香辛料调味油铅(以Pb计)、酸价/酸值、过氧化值辣椒、花椒、辣椒粉、花椒粉铅(以Pb计)、罗丹明B、苏丹红I-IV、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌、二氧化硫残留量其他香辛料调味品铅(以Pb计)、丙溴磷、氯氰菊酯和高效氯氰菊酯、多菌灵、沙门氏菌、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量鸡粉、鸡精调味料谷氨酸钠、呈味核苷酸二钠、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群其他固体调味料铅(以Pb计)、总砷(以As计)、苏丹红I-IV、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、阿斯巴甜、二氧化硫残留量蛋黄酱、沙拉酱金黄色葡萄球菌、沙门氏菌、乙二胺四乙酸二钠、二氧化钛坚果与籽类的泥(酱)酸价/酸值、过氧化值、铅(以Pb计)、黄曲霉毒素B1、沙门氏菌辣椒酱苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、二氧化硫残留量火锅底料、麻辣烫底料铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、罂粟碱、吗啡、可待因、那可丁其他半固体调味料罗丹明B、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、铅(以Pb计)蚝油、虾油、鱼露氨基酸态氮、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群其他液体调味料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群味精谷氨酸钠、铅(以Pb计)普通食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)低钠食用盐氯化钾、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)风味食用盐碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)特殊工艺食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)食品生产加工用盐铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)、亚硝酸盐(以NaNO2计)4、肉制品类别检验项目调理肉制品(非速冻)铅(以Pb计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、铬(以Cr计)、脱氢乙酸及其钠盐(以脱氢乙酸计)腌腊肉制品过氧化值(以脂肪计)、总砷(以As计)、氯霉素、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、胭脂红、铅(以Pb计)发酵肉制品氯霉素、亚硝酸盐(以亚硝酸钠计)、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌酱卤肉制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、总砷(以As计)、氯霉素、酸性橙Ⅱ、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、糖精钠(以糖精计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌、商业无菌熟肉干制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌熏烧烤肉制品铅(以Pb计)、苯并[a]芘、氯霉素、亚硝酸盐(以亚硝酸钠计)、菌落总数、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、纳他霉素、胭脂红熏煮香肠火腿制品亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、氯霉素、沙门氏菌、金黄色葡萄球菌、单核增生李斯特菌、致泻性大肠埃希氏菌、铅(以Pb计)、纳他霉素5、乳制品类别检验项目液体乳(巴氏杀菌乳)蛋白质、酸度、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、丙二醇液体乳(灭菌乳)脂肪、非脂乳固体、蛋白质、酸度、三聚氰胺、商业无菌、丙二醇液体乳(发酵乳)脂肪、蛋白质、酸度、乳酸菌数、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、酵母、霉菌、山梨酸及其钾盐液体乳(调制乳)脂肪、蛋白质、铅(以Pb计)、铬(以Cr计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、商业无菌脱盐乳清粉、非脱盐乳清粉、浓缩乳清蛋白粉、分离乳清蛋白粉蛋白质、三聚氰胺乳粉(全脂乳粉、脱脂乳粉、部分脱脂乳粉、调制乳粉)蛋白质、三聚氰胺、菌落总数、大肠菌群其他乳制品(炼乳)蛋白质、三聚氰胺、菌落总数、大肠菌群、商业无菌其他乳制品(干酪、再制干酪、干酪制品)干酪:铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌;再制干酪:脂肪(干物中)、干物质含量、铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌其他乳制品(奶片、奶条等)三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌其他乳制品(奶油)脂肪、酸度、三聚氰胺、菌落总数、大肠菌群、沙门氏菌、霉菌、商业无菌6、饮料类别检验项目饮用天然矿泉水界限指标、镍、锑、溴酸盐、硝酸盐(以NO3-计)、亚硝酸盐(以NO2-计)、大肠菌群、铜绿假单胞菌、总汞(以 Hg 计)、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)饮用纯净水电导率、耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、三氯甲烷、溴酸盐、大肠菌群、铜绿假单胞菌、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)其他饮用水耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、溴酸盐、大肠菌群、铜绿假单胞菌、三氯甲烷、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)果、蔬汁饮料铅(以Pb计)、展青霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、纳他霉素、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、安赛蜜、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母蛋白饮料蛋白质、三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、菌落总数、大肠菌群、沙门氏菌碳酸饮料(汽水)二氧化碳气容量、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、菌落总数、霉菌、酵母茶饮料茶多酚、咖啡因、甜蜜素(以环己基氨基磺酸计)、菌落总数、脱氢乙酸及其钠盐(以脱氢乙酸计)固体饮料蛋白质、铅(以Pb计)、赭曲霉毒素A、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、相同色泽着色剂混合使用时各自用量占其最大使用量的比例之和其他饮料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母、沙门氏菌16、蔬菜制品类别检验项目酱腌菜
  • 老酸奶与旧皮鞋?!-迪马为您提供检测解决方案
    近两天, 一则关于&ldquo 果冻,老酸奶是由破皮鞋做成的&rdquo 消息在网上疯传,因破皮鞋可以提炼出明胶。明胶是一种极为常见的食品添加剂,是从牛、猪等动物骨和皮中的胶原通过变性而制得的变性蛋白质,其化学组成与胶原基本相同,主要成分是胶原蛋白。老酸奶等乳制品为了保持其口感和外观,会适当添加明胶等食品添加剂,这是国家允许使用的。而皮革制成的明胶透明,无味,消费者根本无法将正规的食用明胶和皮革制成的明胶区分开来。 如何区分老酸奶等乳制品中添加的是食用明胶还是皮革废料提炼出来的工业明胶,这一难题一直困扰着广大分析工作者。迪马科技独辟蹊径,探索是否可以通过检测皮革水解蛋白来确认老酸奶等乳制品中明胶的来源。皮革水解蛋白是皮革废料或动物皮毛、脏器等水解生成的一种蛋白粉,对于乳与乳制品中皮革水解蛋白的鉴定,主要是通过对L-羟脯氨酸含量的测定。L-羟脯氨酸是胶原蛋白(皮革水解蛋白)特有的氨基酸,在乳酷蛋白中则没有,所以一旦检出,则可认为可能含有皮革水解蛋白,即可判断该乳制品中有可能含有由废弃皮革而来的成分。 迪马科技实验室开发了两种L-羟脯氨酸衍生方法,利用氨基酸分析柱,对L-羟脯氨酸进行分析检测。该方法检测结果准确,可靠,方法稳定性好,可用于老酸奶等奶制品中是否含有皮革成分的鉴别,两种衍生化方法,方便您根据实际情况进行选择。 以下是老酸奶中L-羟脯氨酸的测定的详细检测方法: 老酸奶中L-羟脯氨酸的HPLC测定 1 仪器与试剂 1.1 仪器、器皿 1.1.1 HPLC+紫外检测器 1.1.2 Diamonsil AAA氨基酸分析柱 1.1.3 11 mL水解瓶 1.1.4 1.5 mL塑料离心管 1.1.5 20 mL玻璃具塞刻度试管 1.1.6 5 mL玻璃具塞刻度试管 1.1.7 0.22 &mu m针头式过滤器 1.1.8 2 mL样品瓶 1.2 试剂 1.2.1 甲醇 1.2.2 乙腈 1.2.3 正己烷 1.2.3 三乙胺 1.2.4 冰醋酸 1.2.5 磷酸氢二钠 1.2.6 磷酸二氢钠 1.2.7 L-羟脯氨酸 1.2.8 蛋白水解试剂:称取0.1 g苯酚置于100 mL容量瓶,加入50 mL浓盐酸(36%-38%,摩尔浓度约为12 mol/L),然后加水定容至100 mL。 1.2.9 0.1 mol/L HCl水溶液:量取8.3 mL浓盐酸,然后用纯水定容至1000 mL。 1.2.10 衍生剂PITC溶液:将250 &mu L异硫氰酸苯酯(PITC)用乙腈定容至10 mL。 1.2.11 三乙胺溶液:将1.4 mL三乙胺用乙腈定容至10 mL。 1.2.12 衍生剂DNFB溶液:0.5 mL 2,4-二硝基氟苯(DNFB)溶于50 mL乙腈。 1.2.13 Na2B4O7缓冲溶液:称取1.91 g Na2B4O7· 10 H2O,用50 mL纯水溶解。 1.2.14 氨基酸储备液:称取一定量L-羟脯氨酸,用0.1 mol/L HCl水溶液溶解,得到浓度为 0.05 mol/L的储备溶液。 1.2.15 氨基酸使用液:将储备液用0.1 mol/L HCl水溶液稀释,得到浓度为0.0003 mol/L的L-羟脯氨酸溶液。 1.2.16 磷酸盐缓冲溶液:0.02 mol/L Na2HPO4 和NaH2PO4水溶液。 2 实验方法 2.1 样品水解 称取奶粉0.1 g或牛奶0.68 g置于蛋白水解瓶中(1.1.3),加入蛋白水解试剂(1.2.8),旋紧盖子,振荡混匀,110 ° C下反应24 h。 反应完毕,将反应液全部转移至100 mL蒸馏瓶中,75℃下减压蒸馏至近干。 用12 mL0.1 mol/L HCl水溶液(1.2.9)分三次溶解残渣,并转移到20 mL玻璃具塞刻度试管(1.1.5),再用纯水定容至20 mL,待衍生。 2.2 样品衍生 2.2.1 异硫氰酸苯酯(PITC)衍生方法 (1)样品水解溶液衍生 量取200 &mu L样品水解溶液,置于1.5 mL塑料离心管中,加入100 &mu L三乙胺溶液(1.2.11)和100 &mu L衍生剂PITC溶液(1.2.10),混匀,室温反应1h,加入400&mu L正己烷(1.2.3),旋紧盖子后剧烈振荡5~10 s,静置分层,取200 &mu L下层溶液与800 &mu L水混合,经0.22 &mu m针式过滤器(1.1.7)过滤,待分析。 (2) 标准溶液衍生化 量取200 &mu L L-羟脯氨酸使用液*(1.2.15),置于1.5 mL塑料离心管中,加入100 &mu L三乙胺溶液(1.2.11)和100 &mu L衍生剂PITC溶液(1.2.10),混匀,室温反应1h,加入正己烷400 &mu L(1.2.3),旋紧盖子后剧烈振荡5~10 s,静置分层,取200 &mu L下层溶液与800 &mu L水混合,经0.22 &mu m针式过滤器(1.1.7)过滤,待分析。 *根据实际情况,氨基酸使用液浓度可进行调整,本方法中氨基酸使用液浓度仅供参考。 2.2.2 2,4-二硝基氟苯(DNFB)衍生方法 (1) 样品溶液衍生 取0.5 mL样品水解溶液置于5 mL玻璃具塞刻度试管(1.1.6)中,加入0.5 mL Na2B4O7缓冲溶液(1.2.13)和0.5 mL衍生剂DNFB溶液(1.2.12),具塞摇匀,于60 ° C下避光反应1 h。反应完毕将试管置于冷水中冷却,用磷酸盐缓冲溶液(1.2.16)定容至5 mL,混匀后经0.22 &mu m针式过滤器(1.1.7)过滤,待分析。 (2) 标准溶液衍生 取0.5 mL L-羟脯氨酸使用液(1.2.15)置于5 mL玻璃具塞刻度试管(1.1.6)中,加入0.5 mL Na2B4O7缓冲溶液(1.2.13)和0.5 mL衍生剂DNFB溶液(1.2.12),具塞摇匀,于60 ° C下避光反应1 h。反应完毕将试管置于冷水中冷却,用磷酸盐缓冲溶液(1.2.16)定容至5 mL,混匀后经0.22 &mu m针式过滤器(1.1.7)过滤,待分析。乳品中L-羟脯氨酸检测相关产品信息(现货) 货号 名称 规格 样品前处理 55354 11 mL水解瓶含实心盖Telfon垫 11mL 50D-A5513-25ML 异硫氰酸苯酯[103-72-0] 25mL 56-42080-50G 2.4-二硝基氟苯[70-34-8] 50g 37177 针头式过滤器 Nylon 13mm,0.22&mu m 100/pk 37180 针头式过滤器 Nylon 13mm,0.45&mu m 100/pk 标准品 46587 L-羟脯氨酸[51-35-4] 1g 色谱柱及保护柱 99751 氨基酸分析柱 Diamonsil AAA 250 × 4.6mm, 5&mu m 6201 EasyGuard C18 保护柱 10 × 4.0mm 1/pk 2个柱芯+1个柱套 HPLC溶剂&Yuml 缓冲盐&Yuml 离子对试剂 50102 甲醇 HPLC级 4L 50101 乙腈 HPLC级4L 50132 冰醋酸 HPLC级 50mL 50115 正己烷 HPLC级 4L 50131 三乙胺 HPLC级 50mL 50157 磷酸二氢钠,无水 HPLC级 100g 50158 磷酸氢二钠,无水 HPLC级 100g 通用色谱产品 52401B 瓶架/蓝色(现货) 50孔 52401A 瓶架/白色(现货) 50孔 5323 样品瓶(棕色/螺纹) 2mL, 100/pk 5325 样品瓶盖/含垫(已经组装) 100/pk H80465 HPLC 进样针 25&mu L
  • 新型肺炎冠状病毒3CL水解酶高分辨率晶体结构图
    p style=" margin: 10px 0px padding: 0px font-weight: 400 font-size: 22px color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, & quot Helvetica Neue& quot , & quot PingFang SC& quot , & quot Hiragino Sans GB& quot , & quot Microsoft YaHei UI& quot , & quot Microsoft YaHei& quot , Arial, sans-serif letter-spacing: 0.544px white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em line-height: 1.5em " span style=" font-family: sans-serif font-size: 16px " 继1月25日上海科技大学免疫化学研究所和中国科学院上海药物研究所抗2019-nCoV冠状病毒感染联合应急攻关团队公布30个可能的抗2019-nCoV冠状病毒老药和中药后,1月26日,联合攻关团队及时公布由上海科技大学饶子和/杨海涛课题组测定的2019-nCoV冠状病毒3CL水解酶(Mpro)的高分率晶体结构,以便有更多的科技工作者、特别是药物研发的科技人员使用,晶体结构的坐标可到PDB蛋白质结构数据库(Protein Data Bank, PDB)下载(PDB ID: 6LU7)。 /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 饶子和院士和蒋华良院士强调,大家一起努力,研发出更多更好的抗新型肺炎药物。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 508px height: 366px " src=" https://img1.17img.cn/17img/images/202001/uepic/19976143-3de6-4811-8270-f618f3c023e4.jpg" title=" 11.jpg" alt=" 11.jpg" width=" 508" height=" 366" / /p p br/ /p
  • 日立LA8080蛋白水解法&生理体液法分析氨基酸
    氨基酸是组成生物体中蛋白质的基本单元,主要以下列两种形式存在:一种是以结合态存在于肽和蛋白质中,被称为标准氨基酸,这类氨基酸约有20种,分析这类氨基酸的方法被称为“蛋白水解法(标准分析法)”;另一种是以游离态存在于生理体液(如血浆,尿液等)、食品(如肉制品,饮料等)中,这些氨基酸包含氨基酸代谢物和前体,被称为游离氨基酸,因其直接影响食品的口感与风味,近年来备受关注。游离氨基酸比标准氨基酸的种类丰富,至今已知主要有约40种,分析这类氨基酸的方法被称为“生理体液法”。高效液相色谱柱后衍生法是氨基酸分析最常用的方法,一般通过色谱柱分离后,进行柱后衍生再测定。茚三酮柱后衍生法是通过离子交换色谱柱分离氨基酸后,与茚三酮试剂混合发生化学反应(显色),可在可见光区进行检测,此方法可靠性与稳定性高,被广泛应用。下面使用日立全自动氨基酸分析仪LA8080,分别采用蛋白水解法&生理体液法测定样品中的标准氨基酸和多种游离氨基酸。缓冲液和衍生试剂可使用市售配件,适用于品质管理等常规分析。蛋白水解(PH)法日立全自动氨基酸分析仪LA8080采用长寿命高理论塔板数3 μm分离柱,可在30 min内实现标准氨基酸分离度全部大于1.2分离。并且通过调整洗脱程序,还可把分析时间从30 min更进一步缩短到24 min,实现氨基酸的超高速分析。生理体液(PF)法日立全自动氨基酸分析仪LA8080采用第三代衍生技术—TDE3,填充高效热传导材料,提高传热效率,检出限进一步提高到2.5 pmol,使用寿命是第二代的2.5倍。从上述结果中可见,对于复杂的生理体液,LA8080仍然能够实现高灵敏度和分离度的检测。日立全自动氨基酸分析仪LA8080采用日立独家的长寿命高灵敏度的第三代TDE3尖端衍生技术,以及长寿命高理论塔板数3 μm分离柱使氨基酸的分析进入超高速全自动分析的时代。
  • 莱伯泰科微波蛋白水解技术助力标准开发,开启氨基酸分析新时代!
    ‍‍‍‍‍‍‍‍‍‍在最新发布的标准方法 《NY/T3870-2021硒蛋白中硒代氨基酸的测定》中,采用了ETHOS UP微波蛋白质水解系统,HPLC-AFS法检测硒蛋白中硒代氨基酸。‍‍ETHOS UP微波蛋白质水解系统的使用,大大提高了蛋白质的水解效率,彻底改变了氨基酸分析中样品前处理的现状,开启了氨基酸分析的新时代!‍‍‍‍‍‍ 在氨基酸的测定中,提取水解技术一直是制约整个分析过程的关键环节。传统酸解法需要在烘箱中110℃水解22小时,还需要手动充氮气创造惰性环境,整个流程不但非常耗时、操作繁琐,而且研究发现,在长时间的盐酸水解过程中,多种不稳定的氨基酸,如硒代氨基酸、含硫氨基酸、色氨酸等,几乎完全被破坏。而ETHOS UP微波蛋白质水解系统的应用,将传统需要22个小时的蛋白质水解过程缩短到20-40分钟,避免了传统酸水解法水解时间长、硒代氨基酸在水解过程中不稳定的技术难题。全自动化抽真空通氮气,避免了繁琐的手动操作过程,让实验人员进一步领略到了自动化设备带来的便利。‍‍‍‍‍‍微波蛋白质水解系统‍‍‍‍ETHOS UP微波蛋白质水解系统技术特点☆ 高效微波加热方式,将传统需要22个小时的蛋白质水解过程缩短到20-40分钟,大幅提高工作效率;☆ 全自动化抽真空通氮气,确保氨基酸不会发生氧化降解,避免了繁琐的手动操作过程;☆ 高温高压单反应水解腔,一个水解腔可同时处理25个样品,确保完全一致的反应温度和压力,与传统的处理方式相比,保证样品处理的一致性;☆ 高精度的数字温度控制程序,直接控制反应液体温度,整个水解过程反应条件精确控制,标准化自动化的工作程序。改变了传统烘箱水解不能精确反应和控制样品液体温度的缺陷;☆ 样品可直接放在 HPLC样品瓶中水解,无需转移。
  • 国家药监局:脑蛋白水解物注射液药品标准不完善
    据国家药监局网站消息,为确保公众用药安全,国家药监局日前通知要求各地进一步加强对脑蛋白水解物注射液的监督检查。   通知称,在全国开展注射剂类药品生产工艺和处方核查工作中,发现脑蛋白水解物注射液品种在药品标准和执行工艺处方等方面存在着较为突出的问题,主要是企业选用猪脑原料的质量标准不完善 企业之间现行生产工艺差别较大 猪脑水解所用的蛋白酶种类、酶量及水解温度、时间等不一致,甚至有补加氨基酸的行为。针对上述突出问题,部分地区已采取了控制措施。   通知指出,一、要充分认识到脑蛋白水解物注射液在产品质量方面存在的安全风险,各地应在注射剂类药品生产工艺和处方核查工作的基础上,积极组织力量认真做好监督检查工作。要建议辖区内脑蛋白水解物注射液生产企业主动停止该品种的生产,并要求脑蛋白水解物注射液生产企业按相关技术要求,组织开展改进工艺和质量控制方法的研究工作,在相关工艺改进和质量标准未经批准前,暂不宜恢复生产。   二、对于生产企业认为其脑蛋白水解物注射液生产工艺合理、质量可控,继续进行生产的,所在地省级食品药品监督管理局应对其生产全过程予以跟踪检查,并对监督生产的产品进行现场抽样,由省级药品检验所检验。   凡生产企业存在未按批准变更生产处方工艺生产,或在制成品中补加氨基酸等违法违规行为,以及现场抽样检验不合格的,应依法予以严厉查处。   三、国家局将组织有关专家开展脑蛋白水解物注射液有效性、安全性评价工作,组织对脑蛋白水解物注射液生产工艺的改进、质量控制标准的提高工作,并在此基础上提出监管措施和改进意见。
  • 莱顿公司石墨炉原子吸收法测定明胶空心胶囊中的毒害元素Cr,Pb,As,Cd解决方
    专家:毒胶囊危害不亚于当年的三聚氰胺 核心提示:业内人士表示生产胶囊可通过勾兑工业明胶和食用明胶,控制铬含量。专家称明胶广泛运用于食品、医药和化妆品,200多亿元的问题胶囊流入市场,其危害不亚于当年的三聚氰胺。 食用明胶作为一种富含氨基酸、不含胆固醇的天然营养型的增稠剂、乳化剂和软化剂,广泛应用于糖果、果冻、肉冻、干酪、酸奶等食品中。近年来随着大众对食品口感要求的提升,明胶需求量不断增加。但在需求刺激下,也就滋生了一些不法明胶生产厂家。为了降低成本,获得更多利润,一些食品生产企业贪图便宜,追求利润,购买劣质明胶,以蓝钒皮制作的工业明胶冒充食用明胶,蓝矾皮中含有大量的铬,且无法清洗去除。铬对人体骨骼系统毒性极大,尤其影响儿童的骨骼发育,对消费者的健康安全造成了极大地危害。2010年版《中国药典》对于胶囊生产原料明胶明确指出要优于食用明胶。其中对于铬的限量标准为2mg/kg。《药典》将石墨炉作为空心胶囊中铬测定的仲裁方法。 莱顿公司石墨炉原子吸收法测定明胶空心胶囊中的毒害元素Cr,Pb,As,Cd解决方案 目的: 莱顿公司建立明胶空心胶囊的前处理和采用石墨炉原子吸收法测定胶囊样品中的毒害元Cr,Pb,As,Cd的方法。明胶空心胶囊采用HNO3,H2O2常规敞口酸消解(电加热板方式)或是HNO3,H2O2微波消解,抑或是HNO3,H2O2,少量HF微波消解的前处理方式,对于毒害元素Cr,Pb,As,Cd的结果均无显著性差异。 应用 药物分析 ...... 关键词 明胶空心胶囊,前处理,Cr,Pb,As,Cd 1实验方法 ...... 1.1实验仪器 ...... 1.2 实验试剂及器皿 ...... 1.3 实验条件 ...... 详细方案请联系莱顿公司...... 电话:0512-66325740 传真:0512-68027230 www.sepu17.cn www.laidun17.com www.labhc.cn
  • 农业部:2010年例行监测未检出皮革水解蛋白
    近日,部分媒体和网站对皮革水解蛋白问题进行了报道。为加强食品安全监管,国家公布了《食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单》,其中三聚氰胺、皮革水解蛋白是禁用物质,也是生鲜乳质量安全监管中必须检测的指标。   近年来,农业部开展了三聚氰胺、皮革水解蛋白等违禁物质的例行监测,2010年抽检生鲜乳样品7406批次,奶站4778批次,运输车2628批次,三聚氰胺全部符合临时管理限量规定,没有检出皮革水解蛋白等违禁添加物质,生鲜乳质量安全状况总体良好。   2011年,农业部将继续实施生鲜乳质量安全监测计划,通过例行监测、飞行抽检、隐患排查等方式,进一步强化生鲜乳质量安全监管,如发现任何违法违规行为,将坚决打击,从重处罚,绝不姑息。
  • 解读《关于假肠膜明串珠菌等28种“三新食品”的公告》
    一、新食品原料假肠膜明串珠菌(Leuconostoc pseudomesenteroides)属于明串珠菌属,从传统发酵乳制品中分离得到。该菌种已被列入欧洲食品安全局资格认定(QPS)名单的推荐生物制剂列表以及国际乳品联合会公报(BulletinoftheIDF514/2022)的“在发酵食品中证明安全的微生物品种目录”,并在丹麦、加拿大、韩国等国家已被批准使用。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对假肠膜明串珠菌的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌种的使用范围包括发酵乳、风味发酵乳、干酪、发酵型含乳饮料和乳酸菌饮料(非固体饮料),不包括婴幼儿食品。该原料的食品安全指标须符合以下规定:铅(以Pb计,干基计)≤1.0 mg/kg,总砷(以As计,干基计)≤1.5 mg/kg,微生物限量为沙门氏菌0/25 g(mL),金黄色葡萄球菌0/25 g(mL),单核细胞增生李斯特氏菌0/25 g(mL)。待食品加工用菌种制剂的食品安全国家标准发布后,按照食品加工用菌种制剂的标准执行。二、食品添加剂新品种(一)聚天冬氨酸钾1.背景资料。聚天冬氨酸钾申请作为食品添加剂新品种。本次申请用于葡萄酒(食品类别15.03.01)。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局允许其作为食品添加剂用于葡萄酒。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为稳定剂和凝固剂用于葡萄酒(食品类别15.03.01),改善产品稳定性。其质量规格按照公告的相关要求执行。(二)氨基肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的氨基肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质氨基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(三)蛋白酶1.背景资料。李氏木霉(Trichoderma reesei)来源的蛋白酶申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、法国食品安全局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(四)磷脂酶A21.背景资料。李氏木霉(Trichoderma reesei)来源的磷脂酶A2申请作为食品工业用酶制剂新品种。美国食品药品管理局允许其用于食品。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化磷脂的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(五)麦芽糖淀粉酶1.背景资料。酿酒酵母(Saccharomyces cerevisiae)来源的麦芽糖淀粉酶申请作为食品工业用酶制剂新品种。澳大利亚和新西兰食品标准局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化淀粉的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(六)木聚糖酶1.背景资料。地衣芽孢杆菌(Bacillus licheniformis)来源的木聚糖酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化木聚糖水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(七)乳糖酶(β-半乳糖苷酶)1.背景资料。Papiliotrema terrestris来源的乳糖酶(β-半乳糖苷酶)申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化乳糖水解和转糖基反应。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(八)羧肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的羧肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质羧基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(九)脱氨酶1.背景资料。米曲霉(Aspergillus oryzae)来源的脱氨酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、日本厚生劳动省允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化5’-腺嘌呤核苷酸(5’-AMP)的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(十)2-己基吡啶1.背景资料。2-己基吡啶申请作为食品用香料新品种。美国食用香料和提取物制造者协会、国际食品用香料香精工业组织、欧盟委员会等允许其作为食品用香料在各类食品中按生产需要适量使用。2.工艺必要性。该物质配制成食品用香精后用于各类食品(《食品安全国家标准食品添加剂使用标准》表B.1食品类别除外),改善食品的味道。该物质的质量规格按照公告的相关内容执行。(十一)富马酸1.背景资料。富马酸作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于胶基糖果、面包、糕点、果蔬汁(浆)类饮料等食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 富马酸》(GB 25546)。(十二)乙酸钠(又名醋酸钠)1.背景资料。乙酸钠作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于复合调味料和膨化食品的食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 乙酸钠》(GB 30603)。(十三)环己基氨基磺酸钠(又名甜蜜素)1.背景资料。环己基氨基磺酸钠(又名甜蜜素)作为甜味剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于冷冻饮品、果酱、面包、糕点、饮料类、果冻等食品类别。本次申请扩大使用范围用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06)。国际食品法典委员会允许其作为甜味剂用于焙烤制品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-11 mg/kg bw。2.工艺必要性。该物质作为甜味剂用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06),赋予食品甜味。其质量规格执行《食品安全国家标准 食品添加剂 环己基氨基磺酸钠(又名甜蜜素)》(GB 1886.37)。(十四)维生素E1.背景资料。维生素E作为抗氧化剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于油炸面制品、方便米面制品、复合调味料、膨化食品等食品类别。本次申请扩大使用范围用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04)。美国食品药品管理局、日本厚生劳动省等允许其作为抗氧化剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0.15-2 mg/kg bw。2.工艺必要性。该物质作为抗氧化剂用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04),减缓食品氧化褪色。其质量规格执行《食品安全国家标准 食品添加剂 维生素E》(GB 1886.233)。(十五)聚二甲基硅氧烷及其乳液1.背景资料。聚二甲基硅氧烷及其乳液作为食品工业用加工助剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于肉制品、啤酒、焙烤食品、饮料、薯片等加工工艺。本次申请扩大使用范围用于胶原蛋白肠衣加工工艺。澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-1.5 mg/kg bw。2.工艺必要性。该物质作为食品工业用加工助剂用于胶原蛋白肠衣加工工艺,消除胶原蛋白肠衣加工过程中产生的泡沫。其质量规格执行《食品安全国家标准 食品添加剂 聚二甲基硅氧烷及其乳液》(GB 30612)。(十六)硬脂酸镁1.背景资料。硬脂酸镁作为乳化剂、抗结剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于蜜饯凉果类、可可制品、巧克力和巧克力制品以及糖果的食品类别。本次申请作为食品工业用加工助剂用于泡腾片压片工艺。美国食品药品管理局、澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为食品工业用加工助剂用于泡腾片压片工艺,可减少压制泡腾片过程中物料与模具表面的摩擦力,使片面光滑,避免出现裂片。其质量规格执行《食品安全国家标准 食品添加剂 硬脂酸镁》(GB 1886.91)。三、食品相关产品新品种(一)环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物1.背景资料。该物质常温下为淡黄绿色粉末,不溶于水、乙醇和丙酮,可溶于氯仿。欧盟委员会和日本厚生劳动省均允许该物质用于食品接触用PCN塑料材料及制品。2.工艺必要性。该物质用作PCN材料的添加剂,可以提高其抗冲击性。(二)2-[2-(2,4-二氨基-6-羟基-5-嘧啶)二氮烯基]-5-甲基苯磺酸1.背景资料。该物质在常温下为黄色粉末,微溶于水。美国食品药品管理局和日本化学研究检验所均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质是一种黄色着色剂,在各类塑料中具有较高的着色力。(三)丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和N,N'-亚甲基双丙烯酰胺的共聚物1.背景资料。该物质常温下为浅黄色液体,可溶于水。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用纸和纸板材料及制品。2.工艺必要性。该物质作为干强剂用于食品接触用纸和纸板材料及制品,可增强纸张的拉伸强度、内结合强度和耐破强度。(四)β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯1.背景资料。该物质常温下为白色结晶性粉末,不溶于水。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于食品接触用橡胶、油墨、黏合剂以及聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)等多种塑料材料及制品。本次申请将其使用范围扩大至涂料及涂层。欧洲委员会、日本厚生劳动省和南方共同市场均允许其用于食品接触用涂料及涂层。2.工艺必要性。该物质是一种抗氧化剂,用于涂料时,可避免环境中的氧气和其他化学物质导致的降解;也可用于涂布过程,避免涂膜收缩起皱。(五)萘磺酸与甲醛聚合物的钠盐1.背景资料。该物质常温下为淡黄棕色粉末,可溶于水。GB 9685-2016已批准该物质作为添加剂用于食品接触用涂料及涂层、黏合剂以及纸和纸板。本次申请将其使用范围扩大至丙烯腈-丁二烯-苯乙烯共聚物(ABS)塑料材料及制品。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用ABS塑料材料及制品。2.工艺必要性。该物质作为乳化剂用于ABS塑料材料及制品,可减少凝结物的形成。(六)C1~C18单、多元脂肪醇的脂肪酸酯1.背景资料。该物质在常温下为白色固体。GB 9685-2016已批准该物质作为添加剂用于食品接触用纸和纸板材料及制品。本次申请将其使用范围扩大至食品接触用塑料材料及制品。美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质能够改善加工过程中塑料材料的流动性,提高整体加工速度或改善表面性能。(七)二氯二甲基硅烷与二氧化硅的反应产物1.背景资料。该物质为白色粉末,不溶于水。GB 9685-2016、原国家卫生计生委2017年第9号公告和国家卫生健康委2018年第11号公告中已批准该物质作为添加剂用于食品接触用聚对苯二甲酸乙二酯(PET)、PP和聚偏氟乙烯(PVDF)等多种塑料材料及制品和涂料及涂层。本次申请将其使用范围扩大至食品接触材料及制品用黏合剂和油墨。欧盟委员会和日本厚生劳动省允许该物质用于食品接触材料及制品用黏合剂;瑞士联邦食品安全和兽医办公室和欧洲油墨协会均允许该物质用于食品接触材料及制品用油墨。2.工艺必要性。该物质用作黏合剂的消泡剂,利于黏合剂的生产及使用;用作油墨的分散剂,达到提高粘度的效果。(八)一氧化碳-乙烯-丙烯三元聚合物1.背景资料。该物质在常温下为白色固态颗粒,不溶于水。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质主要用于复合包装,具有较高的阻隔性能,可有效阻隔氧气渗透,防止内容物氧化。(九)4-乙基苯酚与间甲酚、对甲酚、对叔丁基苯酚和甲醛的聚合物1.背景资料。该物质常温下为深琥珀色固体,不溶于水,溶解于醇类、酮类溶剂。欧洲委员会和美国食品药品管理局均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料的主要成膜物质,可增加涂层的柔韧性和延展性。(十)乙二醇与2,2-二甲基-1,3-丙二醇、对苯二甲酸、间苯二甲酸、己二酸和衣康酸的聚合物1.背景资料。该物质常温下为透明固体,不溶于水,可溶于酯类溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层;南方共同市场和日本黏合剂行业协会均允许该物质用于食品接触材料及制品用黏合剂。2.工艺必要性。以该物质为原料生产的涂料具有较高的表面张力,可提升涂层的防污性能;以该物质为原料生产的黏合剂则具有较高密封强度和易揭等性能。(十一)间苯二甲酸与间苯二甲胺和己二酸的聚合物1.背景资料。该物质常温下为无色透明颗粒,不溶于水。国家卫生健康委2022年第2号公告已批准该物质用于食品接触用塑料材料及制品,使用温度不得超过100℃,本次申请将其使用温度限值提高至121℃。欧盟委员会和日本厚生劳动省均允许该物质在使用温度不超过121℃时用于食品接触用塑料材料及制品。2.工艺必要性。以该物质为原料生产的塑料薄膜,具有良好的氧气阻隔性能、热稳定性能和热成型性能。
  • 密理博推出中小实验室整体纯水解决方案
    密理博中国推出针对中小型实验室的整体纯水解决方案   密理博公司——全球知名的实验室纯水器供应商于2009年9月8日在上海召开了中国Smart系列全国经销商会议暨Aquelix 新品发布会。在会上,密理博针对中国中小型实验室的纯水应用的特点推出了全新的整体解决方案。   由于中小型实验室对实验室纯水的用量相对较小,实验过程中对纯水的水质有严格的要求,密理博特别推出的中小型实验室纯水解决方案。 其中包含Smart 系列实验室纯水系统 (含 Direct-Q® 3 纯水/超纯水系统, Simplicity® 超纯水系统, RiOs-DI纯水系统, RiOs 3 纯水系统)及Aquelix ® 高纯水系统。该系列产品专为用水量不超过50升/日的中小型实验室用户设计,生产不同级别的实验室纯水和超纯水已满足实验室的各种应用需求。该整体解决方案中应用了Millipore的相关专利技术如Elix技术,集成式纯水柱, 以保证该系列产品产水水质的稳定和可靠。 另外,该系列还有设计紧凑,外形美观大方,安装简单方便,运行维护成本低等特点。   该会议还同期发布了的新型Aquelix® 高纯水系统。 该系统应用了Millipore 著名的Elix专利技术,生产的水质稳定的II级高纯水(电阻率高达15 MΩ∙ cm)。得益于卓越的Elix技术,该系统的维护和运行成本低。人性化的设计,一目了然的水质显示,一键式操作程序,让这款新型的高纯水系统更是吸引了各经销商及用户的眼球, 为蒸馏水或桶装纯水的实验室用户提供了一种经济实惠的选择。   从世界上第一台Milli-Q 超纯水系统面世以来,密理博公司生产的纯水/超纯水系统已经遍布了全球各大小实验室。近40年来的经验,让我们的纯水专家深谙各个不同实验室的各种用水需求,为各个不同实验室设计和生产理想的纯水系统,全面满足用户对纯水水质,用量和分配的不同需求,打消用户的纯水顾虑,让用户能够更加专注于他们的研究和工作。----------------------------------------------------------------------------------------------------------------------   关于密理博:   密理博 (Millipore) 是一家为生物科学研究和生物制药企业提供前沿技术,工具和服务的全球知名的生命科学公司。 作为用户的策略性供应商,我们与用户一起攻克世界挑战人类健康的各个难题。 从科研到产品开发及生产,我们专业的科学技术和不断创新的解决方案帮助世界各地的用户克服各个难题,实现既定目标。密理博是一家 S&P 500 公司,在全球47个国家拥有6,000 多名员工。   20世纪80年代,密理博公司进入中国市场。先后在香港、北京、上海、广州、成都及深圳设立了办事机构,并于2000年4月在上海浦东外高桥保税区建立了密理博(上海)贸易有限公司。 目前,密理博在中国拥有近150名员工,从事应用销售、市场推广、维修服务和技术支持等工作。   更多信息请联系 400-189-1988,或登陆www.millipore.com   ADVANCING LIFE SCIENCE TOGETHERTM   Research. Development. Production.   密理博中国媒体联系人:   李绿芊   市场推广经理 (生物科学部)   密理博中国有限公司   021-38529008   lu_qian_li@millipore.com   Millipore, Celliance, Chemicon, Upstate, Linco and NovAseptic are registered trademarks and the “M” logo, ADVANCING LIFE SCIENCETOGETHER and MicroSafe are trademarks of Millipore Corporation.
  • 质构仪在乳制品质地分析中的应用及探头选择
    呈固体块状的均质样品乳制品中的塑性粘性固体有人造黄油、黄油、奶油干酪、乳清干酪、乳化干酪等产品,此类产品关键物性特点是硬度即延展性、融化性与温度相关性、加工过程中的硬度变化、内聚性等。而蜡质和绵软弹性固体样品则主要是意大利干酪、荷兰干酪、羊乳酪、白乳酪、软质乳酪等,通过质构仪可分析其硬度、表面粘附性、成熟度、货架期、水分丧失引起的表面结构变化等。典型实例 1:奶油的铺展性分析(挤压/挤出实验) 该探头专业用于检测黄油、人造黄油的铺展性、蜡质性的特殊探头,通过实验可得到样品的硬度、粘附性、柔软度等指标。实验结果解读:如图所示为不同状态下黄油的测试曲线。曲线的正向峰值反映了黄油样品的硬度,可见 Dry 的黄油由于含水量少,故而在质地上较为坚硬,而 Wet 的黄油则硬度最小,Good 的黄油硬度处于二者之间,硬度的大小也反映了反映了产品的柔软度,硬度小则柔软度高,反之则柔软度差。从图中可见,太干或太湿的黄油在硬度上都会与“Good”产品存在明显的差异。典型案例 2:传统与素食奶酪产品的质地分析(穿刺实验)实验结果解读:用小直径的柱形探头做奶酪的穿刺实验,穿刺实验主要比较的是破裂力(正向峰值前面出现的小的峰)、硬度(正向峰值)、穿刺做功(正峰面积)、粘附力和粘附性。通过质构仪分析可见,素食产品在硬度和表面粘性上均小于传统奶酪,素食产品的内部均一性要优于传统产品(穿刺过程中力量基本不发生变化),而传统产的内部随着挤压的进行力量在缓慢的增大,可见其均一性不如素食产品,即脂肪含量的不同使得素食产品含水量较少且更脆,可见素食产品还需要在硬度、表面粘性、含水量等方便进行优化与改良。典型实例 3:黄油的硬度检测分析实验结果解读:人造黄油改善了黄油脂肪含量高的问题,为了使人造黄油在口感和质地上与黄油更加的接近,生产商需要了解二者在质地和口感上存在的差异具体表现在哪里。切线切割探头可以反应切割黄油时的平均力量(最大峰值),以及挤压做功(正峰面积),通过力量与做功的比较发现,人造黄油切割力与做功都远小于天然黄油,由此可见在质地上人造黄油更为柔软。
  • 深圳市三聚氰胺及皮革水解蛋白检测将常态化
    4月26日,记者从深圳市农业和渔业局制定的专项方案中了解到,我市生鲜乳中三聚氰胺、皮革水解蛋白检测将实现常态化,以确保合格率达到100%。   方案对各项主要工作进行了部署,其中包括,继续开展生鲜乳专项整治行动,加快推进标准化规模养殖,将打击生鲜乳中非法添加三聚氰胺、皮革水解蛋白等添加剂的检测制度做到常态化等 开展农资打假专项治理行动,对所有农资生产经营主体开展拉网式排查,加大农业投入品违法案件查处力度 严厉打击在食用农产品生产中非法添加和滥用食品添加剂的行为,追溯非法食品添加物生产和销售源头等,以保障人民群众身体健康和生命安全。
  • ISO:奶酪中那他霉素测定技术修改
    ISO发布有关奶酪中那他霉素测定国际标准技术修改单投票通告   2010年6月4日,ISO/TC34/SC5秘书处向其所属的各成员国发出通告,对国际标准《奶酪.奶酪外皮和融化奶酪中那他霉素含量的测定》技术修改单进行投票,截止日期为2010年9月5日。主要修订了原有标准中部分一和部分二的测定方法,涉及应用分子吸附光谱测定奶酪外皮内容以及应用高效液相色谱测定奶酪、奶酪外皮及融化奶酪等内容。
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T.,Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 卫生部扩大部分食品中添加剂使用量
    2012年 第1号   根据《中华人民共和国食品安全法》和《食品添加剂新品种管理办法》的规定,经审核,现批准苯甲酸及其钠盐等17种食品添加剂和酪蛋白磷酸肽等4种营养强化剂扩大使用范围及用量,批准食品工业用加工助剂珍珠岩可作为助滤剂用于淀粉糖工艺。   特此公告。   二○一二年一月十日   附件1:苯甲酸及其钠盐等17种扩大使用范围及用量的食品添加剂 名称 类别 食品分类号 食品名称/分类 最大使用量(g/kg) 备注 1. 苯甲酸及其钠盐 防腐剂 14.04.02.01 特殊用途饮料(包括运动饮料、营养素饮料等) 0.2 以苯甲酸计 2. 番茄红素(合成) 着色剂 01.01.03 调制乳 0.015 以纯番茄红素计。 01.02.01 发酵乳 0.01506.06 即食谷物 ,包括碾轧燕麦(片) 0.05 07.0 焙烤食品 0.05 16.01 果冻 0.05 以纯番茄红素计。 如用于果冻粉,按冲调倍数增加使用量。 3. 环己基氨基磺酸钠(又名甜蜜素),环己基氨基磺酸钙 甜味剂 07.01 面包 1.6 以环己基氨基磺酸计 07.02 糕点 1.6 4. 焦磷酸钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 5. 焦糖色(苛性硫酸盐法) 着色剂 15.01.04 威士忌 按生产需要适量使用 6. 焦糖色(亚硫酸铵法) 着色剂 14.05.03 植物饮料类(包括可可饮料、谷物饮料等) 0.1 7. 可可壳色 着色剂 07.01 面包 0.5 8. 磷酸三钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 9. 六偏磷酸钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 10. 麦芽糖醇和麦芽糖醇液 甜味剂 04.01.02 加工水果 按生产需要适量使用 06.10 粮食制品馅料 12.10.02 半固体复合调味料 11. 日落黄及其铝色淀 着色剂 14.04 水基调味饮料类 0.1 以日落黄计 12. 氢氧化钙 酸度调节剂 01.01.03 调制乳 按生产需要适量使用 13. 三氯蔗糖 甜味剂 04.05.02 加工坚果与籽类 1.0 14. 山梨酸及其钾盐 防腐剂 09.04 熟制水产品(可直接食用) 1.0 以山梨酸计 09.06 其他水产品及其制品 15. 山梨糖醇和山梨糖醇液 甜味剂 04.01.02.05 果酱 按生产需要适量使用 07.04 焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料) 按生产需要适量使用 16. 甜菊糖苷 甜味剂 03.0 冷冻饮品 0.5 16.01 果冻 17. 辛烯基琥珀酸淀粉钠 其他 13.01.01 婴儿配方食品 1 作为DHA/ARA 载体,以即食食品计。 13.01.02 较大婴儿和幼儿配方食品 50   附件2:酪蛋白磷酸肽等4种扩大使用范围及用量的营养强化剂 名 称 类别 食品分类号 食品名称/分类 使用量 备注 1. 酪蛋白磷酸肽 营养强化剂 01.01.03 调制乳 ≤1.6 g/kg 01.02.02 风味发酵乳 2. 聚葡萄糖 营养强化剂 13.01 婴幼儿配方食品 15.6-31.25 g/kg 3. 维生素D 营养强化剂 14.02.03 果蔬汁(肉)饮料(包括发酵型产品) 2-10 μg/kg 4. 左旋肉碱(L-肉碱) 营养强化剂 14.06 固体饮料类 6-30 g/kg
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制