当前位置: 仪器信息网 > 行业主题 > >

叠氮膦酸酯

仪器信息网叠氮膦酸酯专题为您提供2024年最新叠氮膦酸酯价格报价、厂家品牌的相关信息, 包括叠氮膦酸酯参数、型号等,不管是国产,还是进口品牌的叠氮膦酸酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合叠氮膦酸酯相关的耗材配件、试剂标物,还有叠氮膦酸酯相关的最新资讯、资料,以及叠氮膦酸酯相关的解决方案。

叠氮膦酸酯相关的资讯

  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 食品包装中的防油剂可致血液污染
    美欧各国加强监测多氟烷基磷酸酯   加拿大多伦多大学科学家发现,垃圾食品包装材料及微波爆米花袋上的化学物质会转移到食物中去,并被人体吸收,导致血液化学污染。该研究成果发表在近日出版的《环境与健康展望》杂志上。   全氟羧酸(PFCAs)是一种可分解的化学物质,主要用于制造不粘锅及食品包装材料的防水剂、防污剂。而全氟辛酸(PFOA)目前已在全世界各地的人体内发现。   由多伦多大学化学系的杰西卡和斯科特马伯里领导的研究小组推测,人体内全氟羧酸的来源可能与多氟烷基磷酸酯(PAPS)有关。PAPS在快餐食品包装材料或微波爆米花袋中作为防油剂使用。   研究人员让大鼠口服或注射PAPS三个星期,并监测其血液中多氟烷基磷酸酯和全氟羧酸的代谢物及全氟辛酸的浓度。虽然研究人员尚不能证明多氟烷基磷酸酯是人体内发现的全氟辛酸和全氟羧酸的唯一来源,但此项研究发现,多氟烷基磷酸酯代谢物是全氟辛酸和全氟羧酸的主要来源,因此人体内发现的全氟辛酸很可能与人们平时接触多氟烷基磷酸酯有关。   目前世界各国政府对于监测多氟烷基磷酸酯的兴趣不断增长。加拿大、美国及欧洲各国政府已经表示要长期监测这些化学物质。新研究为监管机构制定相关政策提供了有价值的信息。
  • 卫生部办公厅发布《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准征求意见函
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函   卫办监督函〔2012〕441号   各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。   传  真:010-67711813   电子信箱:gb2760@gmail.com   二○一二年五月十六日 食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿) 编号 标准名称 1 食品添加剂 醋酸酯淀粉 2 食品添加剂 磷酸酯双淀粉 3 食品添加剂 氧化淀粉 4 食品添加剂 酸处理淀粉 5 食品添加剂 乙酰化二淀粉磷酸酯 6 食品添加剂 羟丙基淀粉 7 食品添加剂 羟丙基二淀粉磷酸酯 8 食品添加剂 乙酰化双淀粉己二酸酯 9 食品添加剂 氧化羟丙基淀粉 10 食品添加剂 辛烯基琥珀酸铝淀粉 11 食品添加剂 磷酸化二淀粉磷酸酯 12 食品添加剂 淀粉磷酸酯钠 13 食品添加剂 羧甲基淀粉钠 14 食品添加剂 松香甘油酯和氢化松香甘油酯 15 食品添加剂 天门冬氨酸钙 16 食品添加剂 凹凸棒粘土  附件:16项食品安全国家标准(征求意见稿).rar
  • 【新品上新】SVHC清单物质更新至223项,坛墨打造全球屈指可数标准品!
    2022年4月随着经济全球化快速发展,reach法规的不断更新,企业面临的管控要求也越来越多。近日,欧盟化学品管理局(echa)将svhc候选清单正式更新为223项。新增4项物质信息如下:序号物质名称ec号cas号示例用途12,2' -亚甲基双-(4-甲基-6-叔丁基苯酚)204-327-1119-47-1橡胶润滑剂胶粘別油墨燃料2乙烯基-三(2-甲氧基乙氧基)硅烷213-934-01067-53-4橡胶塑料密封別3(±)-1,7,7-三甲基-3-[(4-甲基苯基)亚甲基]双环[2.2.1]庚-2-酮,包括任何单独的异构体和/或其组合(4-mbc)--化妆品4(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯401-850-92558s1-94-8润滑剂润滑酯紧跟国际法规,新品一睹为快坛墨紧跟国际法规,第一时间研发生产出配套标准品,为出口检测保驾护航!特别是最新添加进入svhc候选清单中的标准品/(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯(外消旋体),因其对研发工艺要求极高,该产品的生产商在全球屈指可数,坛墨作为中国标准品的领军企业,率先推出其标准品纯品、标准品溶液,帮助检测单位解决因产品稀缺带来的采购受阻这一难题。点击图片即可选购标准品/(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯(外消旋体)此次新增的4项svhc物质涉及领域较广,化妆品、橡胶、润滑剂、油墨及胶黏剂等工业用品、塑料均有应用。四种物质中的一种用于化妆品,并已被添加到候选清单中,它具有干扰人体激素的特性。其中两种用于橡胶、润滑剂和密封剂中,会对生育能力产生负面影响而被包括在内。第四种用于润滑剂和润滑脂中,因为它具有持久性、生物累积性和毒性,对环境也会产生危害。坛墨在此提醒广大中国企业需提高自己产品的风险意识,在物质列入svhc候选清单后六个月内,符合条件的企业需要完成物品中的svhc通报。建议企业及早对供应链展开调查,以从容应对法规变化。 坛墨质检-标准物质中心标准物质业务咨询联系方式北方地区王宏姝:13671388957
  • 【安捷伦】方法目录免费下载 | 应对基因毒性杂质,我们有妙招!
    基因毒性杂质,又称遗传毒性杂质,是指能直接或间接损伤细胞 DNA,产生致突变和致癌作用的物质。其主要来源有:- 原料药合成过程中的起始物料、中间体、试剂、反应副产物;- 药物在合成、储存或者制剂过程中的降解产物;- 部分药物通过激活正常细胞而产生基因毒性物质,如化疗药物顺铂等。有关基因毒性杂质的英文文献报道出现于 2006 年。近年来,对于药物研发而言,基因毒性杂质已经不再是新闻:从沙坦类药物中的叠氮化物、亚硝胺类化合物,到美罗培南中的 318BP、M9、S5,再到阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等,人们对于特定药物品种中基因毒性杂质的研究不断深入。同时,随着 EMA,FDA 及 CFDA 对于原料药和制剂中的基因毒性杂质监管和控制法规的不断强化,目前对于基因毒性杂质的评估要求无疑正在朝着更为严格的趋势发展。安捷伦作为药物杂质分析领域全面解决方案的领导者,可提供涵盖液相、气相、液质、气质、色谱柱与方案包、计算机认证与合规软件在内的完整基因毒性杂质检测技术。在当前市场背景和法规驱动下,继 2018 年发布《安捷伦基因毒性杂质检测解决方案》后,我们持续对市场动态和用户需求以及法规升级保持高度关注,并针对常见药物基因毒性杂质分析方法进行了系统的更新与梳理,适时推出《安捷伦基因毒性杂质检测简报》。简报对于常见的基因毒性杂质类型如卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、氨基甲酸乙酯、肼类及其他近二十几类典型基因毒性杂质的分析进行了系统的方法开发,并对方案特点进行了客观详细的说明和总结,对于从事相关研究的用户来说,将是非常有助益的研究工具。访问 www.agilent.com/zh-cn/technology/yaodian,阅读安捷伦药典系列文章。[本文转自“安捷伦视界”公众号,作者为安捷伦 MKT 和 SDT 团队]关注“安捷伦视界”公众号,获取更多资讯。
  • 4月1日起 这5项水质相关的环境标准将实施
    4月1日起这5项水质相关的环境标准将实施4月1日起有5项水质相关的环境标准将实施,涉及到气相色谱-质谱仪、高效液相色谱仪、生物学检测法、分光光度等仪器设备。HJ 1189-2021水质 28种有机磷农药的测定 气相色谱-质谱法 本标准为首次发布本标准规定了测定水中有机磷农药的气相色谱 -质谱法 。本标准适用于地表水、地下水、海水、生活污水和工业废水中敌敌畏、速灭磷、内吸磷、灭线磷、治螟磷、甲拌磷、特丁硫磷、二嗪磷、地虫硫磷、异稻瘟净、乐果、氯唑磷、甲基毒死蜱、磷胺、甲基对硫磷、毒死蜱、杀螟硫磷、马拉硫磷、对硫磷、溴硫磷、甲基异柳磷、水胺硫磷、稻丰散、丙溴磷、苯线磷、三唑磷、蝇毒磷、敌百虫等28 种有机磷农药的测定。当地表水、地下水和海水取样量为1 L,定容体积为1.0 ml 时,28 种有机磷农药的方法检出限为0.3 μg/L~0.6 μg/L,测定下限为1.2 μg/L~2.4 μg/L;当生活污水和工业废水取样量为100 ml,定容体积为1.0 ml 时,28 种有机磷农药的方法检出限为4 μg/L~7 μg/L,测定下限为16 μg/L~28 μg/L。警告:实验中使用的有机试剂和标准物质均为有毒化合物,试剂配制和样品前处理过程应在通风橱内进行;操作时应按要求佩戴防护器具,避免接触皮肤和衣物。HJ 1190-2021水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法 本标准为首次发布本标准规定了鉴定水中灭菌生物指示物(枯草芽孢杆菌黑色变种)的生物学方法。本标准适用于微生物实验室灭菌效果的评价。警告:检测人员应采取必要的生物安全防护措施(包括但不仅限于一次性手套、口罩、防护服、防护眼镜、鞋套等防护用品);检测时应做好无菌防护,在无菌操作设备内进行。HJ 1191-2021水质 叠氮化物的测定 分光光度法 本标准为首次发布本标准规定了测定水中叠氮化物的分光光度法。本标准适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。当取样体积为150 ml,试样制备体积为100 ml,使用10 mm 光程比色皿时,方法检出限为0.08 mg/L(以叠氮根计),测定下限为0.32 mg/L(以叠氮根计)。警告:实验中所使用的叠氮化钠为剧毒试剂,具有爆炸性;盐酸具有强挥发性和腐蚀性;高氯酸铁具有强氧化性和腐蚀性。试剂配制和样品前处理过程应在通风橱内进行,操作时应按要求佩戴防护器具,避免吸入呼吸道或接触皮肤和衣物。HJ 1192-2021水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 本标准为首次发布本标准规定了测定水中烷基酚类化合物和双酚A 的高效液相色谱法。本标准适用于地表水、地下水、生活污水和工业废水中4-叔丁基苯酚、4-丁基苯酚、4-戊基苯酚、4-己基苯酚、4-庚基苯酚、4-辛基苯酚、4-支链壬基酚、4-叔辛基苯酚和4-壬基酚等9 种烷基酚类化合物和双酚A 的测定。警告:实验中所使用的有机溶剂、标准物质和标准溶液均有一定的毒性,试剂配制和样品前处理过程应在通风橱中进行,操作时应按规定要求佩戴防护器具,避免吸入呼吸道、接触皮肤和衣物。HJ 1230—2021工业企业挥发性有机物泄漏检测与修复 技术指南 本标准为首次发布本标准规定了工业企业挥发性有机物泄漏检测与修复的项目建立、现场检测、泄漏修复、质量保证与控制以及报告等技术要求。本标准适用于工业企业开展设备与管线组件、废气收集系统输送管道组件挥发性有机物泄漏检测与修复工作。Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 微生物检测培养基质量控制问答
    微生物检测培养基质量控制问答1、培养基灭菌后成份会有所蒸发减少,如何处理这个问题?答:正常情况下蒸发量较少,可忽略不计。2、培养基融化后出现浑浊是有哪些方面的原因引起的?应如何避免?答:可能的情况有:1. 培养基配置用水不符合规定;2. 灭菌过程温度升温慢或降温慢;3. 培养基储存不当;4. 融化时沸腾时间较长等。3、准备好的培养基有效期如何验证?答:定期取出培养基验证其无菌性,促生长能力等方面。4、培养基配制好灭菌后,在高压容器中保温降至50℃左右,可不可行?答:建议最-好不要,避免过度受热。5、脱水培养基对湿度是否有要求?多少适宜?答:按要求室温干燥环境储存即可。6、培养基pH值测定温度在25℃,这个温度应怎么控制?答:可水浴控制培养基温度。7、配制培养基过程中,按说明书称定量,加规定的纯化水,煮沸溶解,为了避免煮沸过程总减少水分,是否要在配制过程适当增加水?答:可适量增加,自己掌握。8、商品培养基一定要当天配当天用吗?可否在一周内用完?答:不是即配即用的培养基的话,储存的当,可以使用。9、称量培养基时,注意不要吸入粉末,这粉末是指何物?答:就是你所称量的干粉培养基 ,因为培养基的粉末对呼吸道有刺激作用,而且培养基中的某些成分,如亚硒-酸盐、叠氮-化钠、乙酰胺等,长期吸入并在体内累积到一定量会对人体健康有危害。所以培养基配制称量需做好个人防护,且最-好选择少粉尘环保型颗粒培养基。10、煮培养基,用不锈钢锅在电磁炉上煮可行?硫乙醇培养基是否要煮沸?如何煮沸?用不锈钢锅在电磁炉上煮沸可行吗?可不可以水浴煮沸呢?答:硫乙醇应煮沸,量大时,我实验室用不锈钢锅在电磁炉上煮沸。不建议水浴煮沸,因为水浴煮沸琼脂粉很难溶,导致琼脂分装不均匀,前段分装的琼脂含量少,后段分装的琼脂含量高,导致有的管或瓶中的FT凝固。11、如培养基在高压灭菌器中温度需自然下降20度才开盖吗?答:高温灭菌器有安全阀,温度下降到安全阀可打开时将培养基取出室温冷却,各型号灭菌器安全开盖温度不尽相同。12、平板涂布和平板划线培养基表面水分过多,菌落蔓延如何解决?答:对于采用表面接种形式培养的固体培养基,应先对琼脂表面进行干燥:揭开平皿盖,将平板倒扣于烘箱或培养箱中(温度设为25℃~50℃);或放在有对流的无菌净化台中,直到培养基表面的水滴消失为止。注意不要过度干燥。商品化的平板琼脂培养基应按照厂商提供的说明使用。
  • 生态环境部发布《水质 28种有机磷农药的测定 气相色谱-质谱法》等5项国家生态环境标准
    为支撑相关水环境质量标准和水污染物排放标准实施,近期,生态环境部发布《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)、《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)、《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)、《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)、《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)等5项国家生态环境标准。《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)为首次发布,适用于地表水、地下水、海水、生活污水和工业废水中28种有机磷农药的测定。本标准适用分析对象多,分离效果好,可支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)等水环境质量标准实施,为农药行业水污染物排放标准的制修订、企业污染物排放的精细化管理提供监测技术支撑。《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)为首次发布,适用于微生物实验室废水灭菌效果的评价。本标准的发布实施可支撑微生物实验室废水灭菌效果的生物学检测,有利于贯彻落实《生物安全法》,加强生物安全风险防范,保护生态环境。《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。叠氮化物毒性强,危险性大。本标准的发布实施有利于相关工业排放叠氮化物的水污染物精细化管控,对保护生态环境和保障人体健康具有重要作用。《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中9种烷基酚类化合物和双酚A的测定,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)等水污染物排放标准实施。烷基酚类化合物和双酚A是典型的内分泌干扰物,具有毒性、持久性及生物累积性,我国已在相关产品的生产中禁用并在相关行业污染物排放标准中设置了限制指标。本标准的发布实施,有助于加强水污染物排放管控,为烷基酚类化合物和双酚A污染治理提供监测方法支撑。《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)为首次发布,适用于地表水、地下水、工业废水中铟的测定。随着高新技术产业发展,铟的使用日益广泛,需关注含铟污染物对生态环境的影响。本标准选择性强、灵敏度高,所用仪器设备价格和分析成本相对较低。本标准的发布实施可为水环境及相关行业水污染物中铟的测定提供技术支撑。上述五项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康具有重要意义。
  • 环境领域发布水质检测新标准,4月1日正式实施
    生态环境部发布《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)、《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)、《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)等标准,标准将在2022年4月1日正式实施,这3个标准均为首次发布标准。 《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)用于地表水、地下水、海水、生活污水和工业废水的检测,除了支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)外,还为农药行业水污染的排放提供技术支持。 《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。标准实施更多应用在工业排放的叠氮化物的管控。 《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021),用于地表水、地下水、生活污水和工业废水测定,支撑《石油化学工业污染物排放标准》(GB 31571-2015)等水污染物排放标准实施,加强水污染物排放管控。 这3项标准的正式实施,为水质质量标准中的检测项目,在检测方法上得到很好地补充。 岛津水质分析仪器推荐 28种有机磷农药(HJ 1189-2021)Pic/01 GCMS-QP2020 NX 1、萘-d8(内标)2、敌敌畏3、(E)-速灭磷4、(Z)-速灭磷5、苊-d10(内标)6、内吸磷7、灭线磷8、治螟磷9、甲拌磷10、特丁硫磷11、二嗪磷12、地虫硫磷13、异稻瘟净14、(E)-磷胺15、菲-d10(内标)16、氯唑磷17、乐果18、甲基毒死蜱19、(Z)-磷胺20、甲基对硫磷21、毒死蜱22、马拉硫磷23、杀螟硫磷24、对硫磷25、甲基异柳磷26、溴硫磷27、水胺硫磷28、稻丰散29、苯线磷30、丙溴磷31、三唑磷32、䓛-d12(内标)33、蝇毒磷 《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)Pic/02 UV-1285 《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)Pic/03 LC-40 岛津水质分析特色方案 Pic/04 SPE-LC-ICPMS汞在线富集及形态分析系统 ■ 流程图■ 在线富集,无机汞、烷基汞同时分离检测色谱图(10ppt) 岛津拥有丰富的分析测试仪器,能很好应对水质分析的需求。对于水质的三个新标准,高灵敏度高稳定性的GCMS、LC、UV均能满足新标准的检出限,并能对方法检测提供完善的应用方案。 本文内容非商业广告,仅供专业人士参考。
  • 5项水质检测标准发布 明年正式实施
    为进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康,生态环境部于近日发布了5项国家生态环境标准,5项标准都与水质检测相关,且均为首次发布。《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)本标准规定了测定水中有机磷农药的气相色谱-质谱法,适用于地表水、地下水、海水、生活污水和工业废水中敌敌畏、速灭磷、内吸磷、灭线磷、治螟磷、甲拌磷、特丁硫磷、二嗪磷、地虫硫磷、异稻瘟净、乐果、氯唑磷、甲基毒死蜱、磷胺、甲基对硫磷、毒死蜱、杀螟硫磷、马拉硫磷、对硫磷、溴硫磷、甲基异柳磷、水胺硫磷、稻丰散、丙溴磷、苯线磷、三唑磷、蝇毒磷、敌百虫等28 种有机磷农药的测定。本标准适用分析对象多,分离效果好,可支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)等水环境质量标准实施,为农药行业水污染物排放标准的制修订、企业污染物排放的精细化管理提供监测技术支撑。该标准将于2022年4月1日实施。《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)  本标准规定了鉴定水中灭菌生物指示物(枯草芽孢杆菌黑色变种)的生物学方法。适用于微生物实验室废水灭菌效果的评价。本标准的发布实施可支撑微生物实验室废水灭菌效果的生物学检测,有利于贯彻落实《生物安全法》,加强生物安全风险防范,保护生态环境。该标准将于2022年4月1日实施。《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)  本标准规定了测定水中叠氮化物的分光光度法,适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。叠氮化物毒性强,危险性大。本标准的发布实施有利于相关工业排放叠氮化物的水污染物精细化管控,对保护生态环境和保障人体健康具有重要作用。该标准将于2022年4月1日实施。《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)  本标准规定了测定水中烷基酚类化合物和双酚A 的高效液相色谱法,适用于地表水、地下水、生活污水和工业废水中 4-叔丁基苯酚、4-丁基苯酚、4-戊基苯酚、4-己基苯酚、4-庚基苯酚、4-辛基苯酚、4-支链壬基酚、4-叔辛基苯酚和 4-壬基酚等 9 种烷基酚类化合物和双酚A 的测定。可支撑《石油化学工业污染物排放标准》(GB 31571-2015)等水污染物排放标准实施。烷基酚类化合物和双酚A是典型的内分泌干扰物,具有毒性、持久性及生物累积性,我国已在相关产品的生产中禁用并在相关行业污染物排放标准中设置了限制指标。本标准的发布实施,有助于加强水污染物排放管控,为烷基酚类化合物和双酚A污染治理提供监测方法支撑。该标准将于2022年4月1日实施。《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)  本标准规定了测定水中铟的石墨炉原子吸收分光光度法,适用于地表水、地下水和工业废水中铟的测定。随着高新技术产业发展,铟的使用日益广泛,需关注含铟污染物对生态环境的影响。本标准选择性强、灵敏度高,所用仪器设备价格和分析成本相对较低。本标准的发布实施可为水环境及相关行业水污染物中铟的测定提供技术支撑。该标准将于2022年1月1日实施。
  • 生态环境部印发两项水质检测相关标准征求意见稿
    p   近日,生态环境部印发《水质 叠氮化物的测定 分光光度法(征求意见稿)》和《水质 色度的测定 稀释倍数法(征求意见稿)》两项标准。 /p p   其中,《水质 叠氮化物的测定 分光光度法(征求意见稿)》为首次发布,规定了测定地表水、地下水、生活污水和工业废水中叠氮化物的分光光度法。 /p p   《水质 色度的测定 稀释倍数法(征求意见稿)》规定了测定生活污水和工业废水中色度的稀释倍数法。本标准自实施之日起,原国家环境保护局1989年12月25日批准发布的《水质 色度的测定》(GB 11903-1989)中“4 稀释倍数法”在相应的环境质量标准和污染物排放(控制)标准实施中停止执行。 /p p   详情如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/36edb1f5-7ec6-43b1-b5f7-e9923bfd0760.jpg" title=" 函.jpg" alt=" 函.jpg" / /p p   为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,提高生态环境管理水平,规范生态环境监测工作,我部决定制定《水质 叠氮化物的测定 分光光度法》等两项国家环境保护标准。目前,标准编制单位已完成征求意见稿,现提供给你们,请认真研究并提出修改意见,于2019年12月3日前将书面意见反馈我部,逾期未反馈将按无意见处理。 /p p   联系人:生态环境监测司顾闫悦 /p p   电话:(010)66556824 /p p   传真:(010)66556824 /p p   邮箱:zhiguanchu@mee.gov.cn /p p   地址:北京市西城区西直门南小街115号(邮编100035) /p p   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/b1a03251-6e25-4ed6-8bf4-6b121d1a05e6.pdf" target=" _self" title=" 1.pdf" textvalue=" 1.征求意见单位名单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 1.征求意见单位名单.pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/e5c6d4f2-4c39-4640-9a0e-a34eca4d9e4f.pdf" target=" _self" title=" 2.pdf" textvalue=" 2.水质 叠氮化物的测定 分光光度法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 2.水质 叠氮化物的测定 分光光度法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/25d6bbc8-b2c8-4163-9c48-2b280f05277f.pdf" target=" _self" title=" 3.pdf" textvalue=" 3.《水质 叠氮化物的测定 分光光度法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 3.《水质 叠氮化物的测定 分光光度法(征求意见稿)》编制说明.pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/8f185e8c-c1a6-433e-9fd0-6b90f86dd390.pdf" target=" _self" title=" 4.pdf" textvalue=" 4.水质 色度的测定 稀释倍数法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 4.水质 色度的测定 稀释倍数法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/2705190b-c5b8-4288-a0e7-87f4ebf7a115.pdf" target=" _self" title=" 5.pdf" textvalue=" 5.《水质 色度的测定 稀释倍数法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 5.《水质 色度的测定 稀释倍数法(征求意见稿)》编制说明.pdf /span /a /p
  • 美国发明沙门氏菌快速检测仪
    最近,美国密苏里大学发明了一种灵敏度更高的更为迅速的沙门氏菌检测方法,仅需5到12小时就可以完成测试。   目前,食品工业用于检测沙门氏菌的方法耗时较长,从检测到结果的公布需要5天的时间。因此,在结果被公布前,被污染的食品可能已经被出售,这对于近期美国WrightCountyEgg公司和HillandaleFarms公司召回5亿枚染沙门氏菌鸡蛋的事件来说,5天的时间太长。   然而,最近的美国密苏里大学发明了一种灵敏度更高的更为迅速的沙门氏菌检测方法,仅仅5到12小时就可以完成测试。   密苏里大学农业、食品、自然科学学院的AzlinMustapha和她的研究生LuxinWang在对实时PCR技术进行改进的基础上,发明了一种快速检测沙门氏菌的方法。   实时PCR技术被应用多年,用于检测食品中的病原微生物。Mustapha表示,传统的PCR检测方法可以对沙门氏菌等特定微生物DNA的单条基因片段进行放大,放大后,特定的DNA片段被成千上万倍的复制,运用可视技术按照细菌基因序列探测和识别复制后细菌的遗传物质可以更加容易。   然而,目前的PCR检测方法容易出现假阳性的结果,这造成了巨大的浪费和不必要的食品召回事件的发生。出现这种结果的原因是,PCR技术跟其它的DNA法一样,均不能将活的跟死的沙门氏菌区分开,因此这导致PCR技术提供了错误的结果。   Mustapha表示,活的沙门氏菌可以造成消费者死亡,假阳性结果可能导致大量不必要的食品召回事件。   为了克服以上PCR技术的弱点,避免假阳性结果的出现,Mustapha等人用单叠氮溴化乙锭染料结合PCR技术对试样进行了处理。单叠氮溴化乙锭进入死的沙门氏菌体内后与DNA分子进行结合,单叠氮溴化乙锭染料使得沙门氏菌细胞在染色后不能被溶解,因此通过PCR可视技术观察不到死的沙门氏菌细胞。   相反的是,染料不能穿透活细胞,这使得检测人员可以利用这种改进的PCR技术很容的区分活的跟死的沙门氏菌,从而避免假阳性结果的出现。   该研究的优点在于,在食品进入供应链之前,检测人员可以更加迅速的检测到沙门氏菌,因此避免了食品召回事件,保证了消费者的健康。Mustapha相信,这种12小时以内的沙门氏菌检测方法,可以让食品检测机构和食品公司在产品出厂前和上市后更加准确的检测出其中的沙门氏菌污染情况。   如果检测机构或公司想使用这种方法,首先需要购买一台PCR机器,然后对人员进行培训,Mustapha表示,改进的PCR技术与传统技术相比更加节省,因为它需要更少的劳动强度和更少的劳动时间,该技术具有速度快和灵敏度高的特点,这使得食品加工人员和消费者从中受益。
  • ICH M7(R2)落地,再说说基因毒性杂质检测
    基因毒性杂质检测ICH M7笔者查询ICH官网,发现从2023年4月3日起ICH M7(R2)指导原则进入了“Step 5”,即实施阶段(Implementation)。基因毒性杂质,简称基毒杂质,即遗传毒性杂质。自从ARB类降压药缬沙坦中发现基毒杂质NDMA以来,N亚硝胺杂质引发了各国药品监管机构、制药企业、药物研发机构、CXO等的重点关注。NDMA结构ICH M7全称“Assessment and control of DNA reactive(mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk”,其关注的对象:在较低水平时也有可能直接引起DNA 损伤,导致DNA 突变,可能引发癌症的DNA 反应性物质,即致突变杂质。M7指导原则为基毒杂质的鉴别(Identification)、分类(Categorization)、界定(Qualification)和控制(Control)提供了实用框架。这次是M7指导原则的第二次修订,即M7(R2),整体框架和主要内容没有变化,仅在以下方面有所调整:&bull 本次修订将M7分为两个相关联的文件,第一份文件是指导原则主体,第二份文件是关联的附件。&bull 在指导原则附录3,新增了7个化合物的可接受摄入量(AI)或每日允许暴露量(PDE),并在附件(Addendum)中增加了这7个化合物的各论。&bull 调整了致突变杂质的危害性评估和控制策略的部分要求和问题回答。比如:“潜在致突变性”等同“潜在遗传毒性”么?答:不等同,潜在遗传毒性是指潜在的致突变性、潜在的致染色体断裂性或潜在的致多倍体性。明确M7指导原则关注致突变性。更多问答,请见M7(R2) Q&As文件。&bull 由于临床治疗技术的进步,M7(R2)中将HIV患者的生存期从1-10年修改为>10年。&bull 其他,如语法编辑和格式化等。药品中常见的基毒杂质有:N亚硝胺类、磺酸酯类、叠氮类等。不同于普通杂质检测,基毒杂质的检测面临更多的挑战:1、基毒杂质杂质种类,差异大,需要多种分析手段和方法;2、基毒杂质含量低,需要高灵敏度仪器(包括预处理方法);3、对仪器的定性定量准确性和重现性要求高;4、要求仪器维护方便和交叉污染低。药品中基毒杂质,可能来源于原料药本身(如雷尼替丁等),辅料(如二甲双胍缓释制剂),原料药和制剂生产过程使用的溶剂(如缬沙坦等),以及包材(如橡胶材料可能引入亚硝胺杂质)、生产工艺、存储过程等。基于以上的认识,岛津参考权威机构要求,如国家药监局相关文件要求、EP 2.5.42、USP 等,为制药和药检客户提供先进的分析仪器和解决方案,分享检测经验。并为此精心制作了《亚硝胺分析UFMS解决方案》等检测方案,涵盖沙坦类药物、雷尼替丁、“神药”二甲双胍和生产使用的溶剂等,供客户参考使用。除了亚硝胺之外,磺酸酯类、叠氮类也是关注对象,岛津推荐HS+GC-MS检测磺酸酯类,LC-MS/MS检测叠氮类。岛津可提供覆盖法规要求的各类分析仪器,供药品CMC和检验检测的客户使用。本文内容非商业广告,仅供专业人士参考。
  • 格哈特小课堂-凯氏定氮测不了的几种氮
    格哈特的解决方案 ——凯氏定氮测不了的几种氮Kjeldahl Nitrogen Method凯氏定氮法是公认的作为(粗)蛋白质含量的最终仲裁方法,是因为我们人类100多年来已经认定蛋白质含量就是用凯氏定氮法并用凯氏因子计算处理的结果,还由于凯氏定氮对某些生物物质(可能包含外来物质)中一些“氮(Nitrogen)”是没有包含的,这是我们做品质分析时应该了解的情况,也就是如果使用杜氏定氮(Dumas Nitrogen Method)法时必须清楚的,因为杜氏定氮会把所有的氮全都测定出来,在某些情况就可能出现结果略高于凯氮法,我们做氮的分析时都必须十分清楚的。凯氏定氮法对下面的这些氮可能测定不了,但不排除有部分测定,而这些物质基本都不是蛋白质的组成,一般仅在含量很高时会给杜氮产生干扰:硝氮(硝基化合物)Nitrate/ Nitrite/Nitro/ Nitroso重氮Diazo叠氮Azide偶氮Azo杂环氮Azacycle硝氮就是氧化态的氮(N-O),通常是硝态氮(Nitrate),即硝酸根(NO3-)中所含有的氮。也涉及到:亚硝态氮(Nitrite),即亚硝酸根(NO2-)中的氮;硝基(Nitro)氮,是硝基化合物即硝基(-NO2)与其他基团相连的化合物中的氮;亚硝基(Nitroso)氮,是亚硝基化合物即亚硝基(-NO)与其他基团相连的化合物中的氮。因为凯氏定氮是用硫酸来把样品中的氨态氮(N-H)转化成为硫酸铵来分析氮的,硝氮的键合力大于硫酸的氧化力,如硫酸不能消化硝酸,所以凯氏消化的结果,硝氮会气化跑掉。如果要用凯氏定氮法测定硝态氮,要先把硝态氮还原成为氨态氮,就是这个道理。重氮化合物(Diazo)是一类由烷基与重氮基相连接而生成的有机化合物,是两个氮原子相互连接组成的二价原子团,结构式为-N=N-或N≡N=。也包括其它重氮盐(-N+≡N)。两个氮的键合力比较稳定,不容易被硫酸所分解。叠氮化合物(Azide)是一类由叠氮基即含有三个氮相连结构的化合物,一般用RN3表示。可想而知,其键合力更强。偶氮化合物(Azo)是偶氮基两端连接烃基的一类有机化合物,是重氮盐偶联的化合物,有单偶氮、双偶氮、三偶氮和多偶氮,有顺反异构。其结构可能比重氮还稳定,但有可能发生分解,但不太能分解成氨态氮。杂环氮(Azacycle)是在杂环化合物(Heterocyclic compounds)即分子中含杂环(非碳)的有机物的杂环中的氮。氮杂环时杂环化合物中最多的,这个氮也是难以转变成氨态氮的。中国格哈特竭诚“给用户一个无忧无虑的实验家园”,这是一些小Tips,更多的small tips,欢迎垂询。
  • 突发!北京某公司实验室发生火灾致4人受伤,其中两人伤势较重
    据北京顺义官微消息,5月3日上午11点10分左右,仁和镇二三产业基地北京六合宁远医药科技股份有限公司三层实验室发生火灾,过火面积9平方米,现场明火已扑灭。共有4名实验人员受伤,其中两人轻伤,另外两人伤情较重,已送至顺义区医院全力救治。火灾原因正在进一步调查中。不久前多家媒体报道的中南大学一实验室发生事故,也引起了网友关注。该校材料科学与工程学院一博士生在事故中身体被大面积烧伤,紧急送往ICU进行抢救,医院还下达了病危通知书。与实验室安全相关的话题永远不过时,安全管理是实验室管理的首要任务,实验室化学物品多,部分材料易燃易爆,属于高危区域,一旦发生安全事故, 实验室的损失是无法估计的。化学实验室事故主要分为以下几种1、腐蚀及灼烧事故与实验室安全相关的话题永远不过时,安全管理是实验室管理的首要任务,实验室化学物品多,部分材料易燃易爆,属于高危区域,一旦发生安全事故, 实验室的损失是无法估计的。2、火灾及爆炸事故化学实验室事故大部分都是火灾性事故,主要跟化学实验室的特点有极大的关系。化学实验室存放及实验过程中产生的化学物质多具易燃性,这些物质遇到火源很可能起火燃烧,由于大量使用可挥发性的可燃物质,特别是有机溶剂,也是容易引起火险或火灾的常见事故之一,有机溶剂通常具有较强的挥发性,挥发出来的蒸气可以飘移到较远的地方,如果接触到火种,顺着蒸气燃烧,会导致液体着火。爆炸性事故多与火灾性事故相联系,特别是有机化学实验常用的多是一些易爆、易燃的物质或它们的混合物,当这些物质在一定压力和热的作用下突然爆发,造成爆炸。另外也有一些用电设备及线路老化陈旧存在事故隐患,使不慎泄露的易爆易燃物品,遇火引起爆炸。3、中毒事故化学实验室使用的化学药品几乎都有一定的毒性,稍有不慎,就有可能引起中毒事故。中毒事故一般又可分为两类:慢性中毒和急性中毒。慢性中毒一般不容易引起重视,很多症状都是要在中毒积累到一定程度之后才出现,通常为几天或者几个月,有的甚至若干年以后。中毒的症状很难察觉,多数为易怒、失眠、记忆力减退、情绪失常等,通常会未老先衰、早逝。急性中毒通常是误食、吸入或是体表吸收到了有毒物质。误食一般是实验者在实验室饮食、利用实验室的冰箱存放食物或离开实验室未及时做好个人卫生。吸入毒害是最常见的吸毒方式,化学实验室的有毒物质可以以气体、蒸气、粉尘、烟雾等形式被吸入,另外还有体表吸入。有毒物质还可以以气体、液体的形式被皮肤吸收,造成皮肤受伤。实验室里的易燃易爆物品需警惕爆炸性药品:迭氮钠、四硝化戊四醇(泰安)、硝化甘油混合炸药(胶质炸药)、三硝基苯酚(苦味酸)、环三次甲基三硝胺(黑索金)。液氮:温度升高或者压强降低可引起爆炸。二氧化碳、氮等,都必须储存在耐压钢瓶中,一旦钢瓶受热,瓶内压力增大,就有引起燃烧爆炸的危险。易燃易爆气体如氢气、乙炔等烃类气体、煤气和有机蒸气等大量逸入空气, 可引起爆燃。金属钾、钠、白磷遇火都易发生爆炸。遇水易燃:钾、钠、锂、氢化锂、氢化钠、四氢化锂铝、氢化铝钠、磷化钙碳化钙(电石)、碳化铝、钾汞齐、钠汞齐、钾钠合金、镁铝粉等。一些本身容易爆炸的化合物,如硝酸盐类、硝酸酯类、三碘化氮、芳香族多硝基化合物、乙炔及其重金属盐、重氮盐、叠氮化物、有机过氧化物(如过氧乙醚和过氧酸)等,受热或被敲击时会爆炸。强氧化剂与一些有机化合物接触,如乙醇和浓硝酸混合时会发生猛烈的爆炸反应。任何一起安全事故的发生都令人痛心,对于事故原因的调查,对责任方的追责,虽然无法挽回已经发生的悲剧,但对于预防下一次事故的发生无疑有着积极的作用。作为检验检测行业专业媒体,我要测网一直致力于助力检测机构的高效发展。历年来我要测网也开展了多个实验室安全管理系列的网络会议,邀请行业资深专家,讲解和传播实验室安全管理。根据相关专家意见,我要测展示出一些专家关于实验室安全的专业讲解视频,提供给实验人,进行免费学习观看,提高警惕意识,杜绝各类安全事故的再次发生。
  • 《乳制品中乳糖的测定-核磁共振波谱法》标准征求意见中
    近日,全国特殊食品标准化技术委员会发布了关于征求《乳制品中乳糖的测定-核磁共振波谱法》行业标准(征求意见稿)意见的通知,如下图所示:附件1 行业标准(征求意见稿)乳制品中乳糖的测定 核磁共振波谱法Determination of stachyose in food by nuclear magnetic resonance spectroscopy前  言本文件按照 GB/T 1.1-2020《标准化工作导则 第1 部分标准化文件的结构和起草规则》的规定起草。本文件由全国特殊食品标准化技术委员会提出并归口。本文件起草单位:。本文件主要起草人: 。乳制品中乳糖的测定 核磁共振波谱法1  范围本文件描述了乳制品中乳糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定乳制品中的乳糖,包括牛奶、发酵乳、奶片、奶酪、奶粉中乳糖的测定。2  规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T 6682—2008 分析实验室用水规格和试验方法JY/T 0578—2020 超导脉冲傅里叶变换核磁共振波谱测试方法通则JJF 1448—2014 超导脉冲傅里叶变换核磁共振谱仪校准规范3  术语和定义本文件没有需要界定的术语和定义。4  原理在充分弛豫条件下,一维核磁共振波谱谱峰的积分面积与样品中所对应的自旋核的数目成正比。同时基于核磁共振信号强度(峰面积)互易原理,即给定线圈中核磁共振信号强度与90°脉冲宽度成反比,分别测定外标参考物质和待测样品的一维核磁共振氢谱(1H NMR)及90°脉冲宽度,采用外标法测定样品中乳糖的含量。5  试剂和材料5.1  一般要求除非另有说明,本方法所用试剂均为分析纯,水为GB/T 6682—2008规定的二级或二级以上水。5.2  试剂5.2.1  重水(D2O):纯度≥99.8%。5.2.2  3-(三甲基硅烷基)氘代丙酸钠[(CH3)3SiCD2CD2CO2Na,TSP-d4]。2 mol/L盐酸(HCl)。2 mol/L氢氧化钠(NaOH)。叠氮化钠(NaN3)。5.3  试剂配制5.3.1  TSP-d4溶液(10 g/L):称取0.5 g(精确至10 mg)TSP-d4(5.2.4)至50 mL容量瓶,加入5 mg叠氮化钠(5.2.5),用重水(5.2.1)定容,混匀。5.4  标准品5.4.1  柠檬酸标准品(C₆H₈O₇,CAS号:77-92-9):纯度≥99%。或国家有证标准物质。5.4.2  乳糖标准品(C12H22O11,CAS号:63-42-3):纯度≥98%。或经国家认证并授予标准物质证书的标准物质。5.5  标准溶液配制乳糖标准贮备液(51.2 g/L):称取512 mg(精确至1 mg)乳糖标准品(5.4.2)至10 mL容量瓶,用蒸馏水定容,混匀。现配现用。外标参考物柠檬酸溶液配制(2 g/L):称取200 mg(精确至1 mg)柠檬酸(5.4.1)至100 mL容量瓶,用蒸馏水定容,混匀。0℃~4℃密封保存,保值期1个月。乳糖系列标准工作液:准确量取上述乳糖标准储备液(5.5.1)5 mL于10 mL容量瓶中,用蒸馏水定容,摇匀后得到25.6 g/L的乳糖标准溶液。使用以上相同方法,分别得到12.8 g/L、6.4 g/L、3.2 g/L、1.6 g/L、0.8 g/L、0.4 g/L、0.2 g/L、0.1 g/L、0.05 g/L乳糖标准溶液。根据样品中乳糖含量适当调整乳糖标准工作液浓度范围及乳糖标准贮备液浓度。6  仪器设备 6.1  核磁共振波谱仪:氢(1H)共振频率不低于400 MHz;可控温,温度精度不低于±0.1 K。6.2  核磁共振样品管:外径5 mm,同心且均匀。6.3  分析天平:感量为0.1 mg和1 mg。6.4  旋涡震荡仪。6.5  pH计:精度为± 0.01。6.6  移液器:量程为10 μL~100 μL和100 μL~1 000 μL。6.7  水系微孔过滤膜:孔径0.45 μm。6.8  离心机:离心速度≥ 8 000 r/min。7  试验步骤8.%2.%3  上机样品制备牛奶和发酵乳准确称取10 g(精确至1mg)样品于50 mL的容量瓶中,再加入35 mL蒸馏水后涡旋震荡30分钟溶解,用稀盐酸调pH值为4.4至4.5后,再加蒸馏水至刻度。摇匀后取5mL,转速为8 000 r/min离心10 分钟,弃去上层脂肪和蛋白相,取出中间澄清的部分,用滤膜过滤,准确量取900 μL滤液,再加入100 μL浓度为10 g/L的TSP重水溶液(5.3.1),取600 µL于核磁管中待测。奶粉准确称取1 g样品(精确至1 mg)于50 mL容量瓶中,以下部分同纯奶和发酵乳(7.1.2)。奶片取适量样品,压碎研磨成粉末。以下部分同奶粉样品的配制(7.1.2)。奶酪取适量样品,压碎或用粉碎机粉碎。以下部分同奶粉样品的配制(7.1.3)标准样取900 µL样品溶液(5.5.2,5.5.3),100 μL浓度为10 g/L的TSP重水溶液(5.3.1),旋涡震荡至少1min.充分混匀,取600 µL于核磁管中待测。7.1  上机测定参考条件7.1.1  核磁共振样品管不旋转。7.1.2  检测温度:(300.0± 0.1)K。7.1.3  空扫次数:4次。7.1.4  扫描次数:64次。7.1.5  谱宽:8 000 Hz。7.1.6  采样点数:65 536。7.1.7  接收增益:16。7.1.8  弛豫延迟时间:≥4 s。7.1.9  水峰压制脉冲序列:预饱和加相位循环。7.2  上机测定7.2.1  按照JY/T 0578—2020的规定对探头温度进行校正;按照JJF 1448—2014的规定对1H谱灵敏度、分辨力、线性、1H谱定量重复性进行校准。7.2.2  将装有上机样品(7.1.3)的核磁共振样品管置于核磁共振仪检测腔内,设置样品管不旋转。7.2.3  设置待测样品温度为300.0 K,测样前需要等待样品温度稳定。7.2.4  新建氢谱标准实验文件。7.2.5  锁场与调谐。7.2.6  匀场。7.2.7  测定样品的90°脉冲宽度,并记录结果。7.2.8  调用有相位循环的预饱和水峰压制脉冲序列。7.2.9  在7.2条件下设定参数,根据记录结果(7.3.7)设定90°脉冲宽度,根据水峰压制效果优化水峰压制位置、压制功率等,保持各样品接收器增益值一致。7.2.10  采集并保存数据。9  数据处理9.1  数据预处理对原始数据进行傅立叶变换、相位校正和基线校正,并以TSP-d4中硅烷甲基的化学位移作为零点进行定标。9.2  定性分析对乳糖标准品和外标参考物柠檬酸的1H NMR谱(参见附录A)信号峰进行归属,得到乳糖和柠檬酸的定量相关参数(参见附录A),包括定量峰化学位移、耦合常数、氢原子数量及积分区域。应注意定量峰积分区域未受到干扰。9.3  定量峰积分根据定性分析(8.2)得到的积分区域进行积分,分别得到外标柠檬酸和乳糖定量峰积分面积。 10  结果计算10.1  校正因子(CF)的计算10.1.1  乳糖系列标准工作溶液上机样品质量浓度计算乳糖系列标准工作溶液(5.5.3)上机样品质量浓度按照公式(1)计算:… … … … … … (1)式中:CQ——外标柠檬酸溶液(5.5.2)上机样品质量浓度,单位为毫克每升(mg/L);MWQ——柠檬酸摩尔质量,单位为克每摩尔(g/mol);AS——上机样品中乳糖定量峰积分面积;AQ——外标柠檬酸溶液上机样品中柠檬酸定量峰积分面积;nHQ——外标柠檬酸溶液上机样品中柠檬酸积分区域对应的氢原子数量;nHS——上机样品中乳糖积分区域对应的氢原子数量;NSQ——外标柠檬酸溶液上机样品扫描次数;NSS——上机样品扫描次数;PS——上机样品1H 90°脉冲宽度;PQ——外标柠檬酸溶液上机样品1H 90°脉冲宽度;TS——上机样品检测温度,单位为开尔文(K);TQ——外标柠檬酸溶液上机样品检测温度,单位为开尔文(K);MWS——乳糖摩尔质量,单位为克每摩尔(g/mol)。10.1.2  回归方程绘制由公式(1)计算得到的乳糖系列标准工作溶液上机样品质量浓度(9.1.1)为横坐标,乳糖系列标准工作溶液(5.5.3)上机样品质量浓度为纵坐标,建立线性回归方程y=ɑx+β,校正因子(CF)为线性回归方程的斜率ɑ。10.2  结果计算样品中乳糖的含量按照公式(2)计算:… … … … … … … … … … … … … … … (2)式中:CS-S——样品中乳糖的含量,单位为克每千克(g/kg);CS——由公式(1)计算所得溶解并定容后的样品中乳糖含量,单位为毫克每升(mg/L);V——样品定容后的体积,单位为毫升(mL);ms——称取的样品质量,单位为克(g);CF——校正因子,线性回归方程的斜率ɑ。计算结果以重复性条件下获得的两次独立测定结果的算术平均值表示,小数点后保留一位有效数字。11  精密度在重复条件下获得的两次独立测定结果的绝对差值不超过算术平均值的10%。12  检出限及定量限12.1  固体样品奶片、奶酪及奶粉中的乳糖检出限为0.3 g/kg,定量限为1.1 g/kg。12.2  液体样品纯奶、发酵乳中乳糖检出限为0.03 mg/kg,定量限为0.1 mg/kg。附录A乳糖和柠檬酸1H NMR谱图及定量相关参数图A.1 标准品乳糖1H NMR谱图A.2 外标物柠檬酸1H NMR谱表A.1 定量相关参数化合物摩尔质量/(g/mol)δH(峰形,耦合常数)氢原子数量积分区域/Δδ检测温度/K乳糖342.34.45(d, J=7.8 Hz)14.359~4.503300.0柠檬酸192.143.01(d,J = 15.7 Hz)22.921~3.1432.84(d,J = 15.7 Hz)22.693~2.916编制说明.docx
  • 生物大分子标记新突破:可基因编码的代谢糖质标记技术
    生物体中几乎所有的细胞都具有相同的基因组,而不同的细胞类型和功能则由不同的基因表达、表观遗传修饰和翻译后修饰等所决定。解析特定器官或组织中特定细胞的生物大分子图谱对探究发育、细胞间通讯以及疾病的发生发展等都具有重要意义。因此,开发细胞选择性的生物大分子标记方法,近年来受到了科学家们的广泛关注。通过基因编码的方法,人们在活体动物中实现了蛋白质的组织特异性和细胞选择性标记和分析。然而,糖质(glycan)作为另外一种主要的生物大分子,尚无法通过基因编码的方式,实现活体中的细胞选择性标记。糖质以寡糖、多糖、糖蛋白、糖脂等形式直接参与细胞的分化增殖、免疫调节、信号转导、细胞迁移等重要的生命活动,对其进行在体标记和分析一直是领域内的一个难点。其中,基于生物正交化学的代谢糖质标记(metabolic glycan labeling)技术已经成为了最主要的工具之一。经过20多年的发展,目前已有数十种非天然糖分子可用以在活细胞和活体中标记糖质。然而,非天然糖在活体中并不具备器官或细胞特异性,无法实现精准的细胞选择性标记,阐释特定细胞群体中糖质所发挥的生物学功能。北京大学化学与分子工程学院、北大-清华生命科学联合中心陈兴教授课题组一直致力于解决这个问题,此前开发了基于靶向性脂质体的非天然糖代谢标记技术,实现了肿瘤组织和脑部的糖质标记。同时,他们意识到,基因编码技术可以在活体中实现更加精准的细胞选择性。为了实现这一目标,继续推进代谢糖质标记技术的应用,2022年5月5日,该课题组在 Nature Chemical Biology 上发表了题为“Cell-type-specific labeling and profiling of glycans in living mice”的论文,报道了一种可基因编码的代谢糖质标记技术(GeMGL)。该技术将“凸凹互补(bump and hole)”的化学遗传学策略与代谢糖质标记方法相结合,利用非天然糖1,3-Pr2GlcNAl(Bump)及其匹配的焦磷酸酶突变体AGX2F383G(Hole)的正交组合,在活体动物上实现了细胞选择性糖质标记和分析。他们从一个具有低标记效率的非天然糖—乙酰胺基葡萄糖的叠氮类似物GlcNAz出发,确认了其代谢通路中的焦磷酸酶AGX是限速酶,将其过表达可以增强代谢强度。他们随即想到,增大非天然基团并对AGX酶进行突变,可能可以开发出凹凸对。于是,他们采用了炔基修饰的乙酰胺基葡萄糖GlcNAl和焦磷酸酶突变体AGX2F383G,通过体外和细胞实验证明了GlcNAl的代谢完全依赖焦磷酸酶突变体AGX2F383G。接着,在多细胞共培养体系和小鼠移植瘤模型中,证明了GeMGL策略的可行性。基于此,他们将该策略拓展到了转基因小鼠中。他们首先利用心肌细胞特异的启动子α-MHC实现了AGX2F383G在小鼠心肌细胞中的特异性表达,然后腹腔注射非天然糖1,3-Pr2GlcNAl,实现了非天然糖分子在小鼠心肌细胞中的特异性代谢。从各组织标记结果来看,GeMGL策略展现出严格的心肌细胞选择性。结合定量蛋白质组学方法,在小鼠心肌细胞中鉴定到582个O-GlcNAc修饰蛋白。分析发现,心肌细胞中许多糖酵解、TCA循环和氧化磷酸化途径相关蛋白都具有O-GlcNAc糖基化修饰,表明O-GlcNAc糖基化修饰可能在心肌细胞的线粒体能量代谢过程中发挥重要功能。在转基因小鼠中进行的细胞类型特异性代谢糖质标记该工作提供了一种可基因编码的细胞特异性糖质标记技术GeMGL,为在活体层面研究糖质在特定细胞类型中的生物学功能提供了一种便利、有效的工具。该技术有望被推广到更为复杂的神经系统中,并在相关疾病模型中探究糖基化与神经发育、神经退行性疾病等的关系。陈兴 北京大学化学学院教授,生命科学联合中心高级研究员,合成与功能生物分子中心研究员。长期致力于糖化学和糖生物学研究,糖质标记和分析是其研究重点之一。综合运用化学方法、生物手段和纳米技术,研究糖基化的生物学功能及其在代谢疾病及其心血管并发症中的作用。原文连接:https://www.nature.com/articles/s41589-022-01016-4
  • 镉化合物、阻燃剂和二异氰酸酯类物质被添加至美国优先测试列表中
    近日,美国有毒物质控制法案(TSCA)机构协办测试委员会(ITC)将几类化学物质添加至TSCA高度优先级测试列表中。种类包括:   • 镉化合物,包括任何含镉成份的化学物质   • 六种非邻苯二甲酸增塑剂   • 25种磷酸酯阻燃剂   • 2种溴化阻燃剂   • 69种二异氰酸酯类物质以及相关化合物(包括14种EPA行动计划化学物和55种相关化合物)   • 9种危险废弃场附近儿童生活可能受到暴露的化学物质。   EPA解释,此次新增的镉化合物类别将取代此前高度优先测试列表中的103种镉化合物,旨在提供更为全面的途径评估这类物质的安全性。机构协办测试委员会同时从列表中移除了2011年6月至11月期间14种高产量(HPV)挑战项目化学品,这些物质也被包含在EPA2011年10月21日TSCA第四节拟议测试法规中。   经美国有毒物质控制法案第4节(a)和(e)授权,机构协办测试委员会至少每六个月就要对EPA提出建议。目前的ITC报告的评议截止到2012年6月22日。
  • ECHA新提议六种高关注度化学物质
    2011年6月22日消息,基于欧盟委员会认为的可能对人体行为造成致癌、诱变或生殖毒性的化学物,欧洲化学品管理局(ECHA)近日再次提交六种高关注度物质(SVHCs)。根据规定,注册卷宗必须在8月1日之前完成全部提交,下批物质何时开始提交取决于化学品管理局的决定。   这六种物质为:   • N,N-二甲基乙酰胺(N,N-dimethylacetamide)   • 叠氮化铅(Lead diazide amd lead azide)   • 史蒂芬酸铅(lead styphnate)   • 2,2'-二氯-4,4'-二氨基二苯基甲烷(2,2'-dichloro-4,4'-methylenedianiline )   • 酚酞(Phenolphthalein)   • 苦味酸铅(Lead dipicrate)
  • 16项食品安全国家标准征求意见
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函 各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。   传  真:010-67711813   电子信箱:gb2760@gmail.com 二○一二年五月十六日 《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿) 编号 标准名称 1. 食品添加剂 醋酸酯淀粉 2. 食品添加剂 磷酸酯双淀粉 3. 食品添加剂 氧化淀粉 4. 食品添加剂 酸处理淀粉 5. 食品添加剂 乙酰化二淀粉磷酸酯 6. 食品添加剂 羟丙基淀粉 7. 食品添加剂 羟丙基二淀粉磷酸酯 8. 食品添加剂 乙酰化双淀粉己二酸酯 9. 食品添加剂 氧化羟丙基淀粉 10. 食品添加剂 辛烯基琥珀酸铝淀粉 11. 食品添加剂 磷酸化二淀粉磷酸酯 12. 食品添加剂 淀粉磷酸酯钠 13. 食品添加剂 羧甲基淀粉钠 14. 食品添加剂 松香甘油酯和氢化松香甘油酯 15. 食品添加剂 天门冬氨酸钙 16. 食品添加剂 凹凸棒粘土   附件:16项食品安全国家标准(征求意见稿).rar
  • ECHA将一阻燃剂列入致癌物质分类
    近日,欧洲化学品管理局(ECHA)风险评估委员会(RAC)同意了爱尔兰提出的建议,将阻燃剂TDCP(Tris[2-chloro-1-(chloromethyl)ethyl] phosphate)——三(1,3—二氯丙基)磷酸酯,列入欧盟致癌物质的分类中。   据悉,TDCP被用作阻燃剂使用,广泛应用于聚氯乙烯树脂,聚氨酯泡沫塑料,环氧树脂,酚醛树脂及各种纤维中,阻燃效果明显。此前该物质并不属于欧盟范围内划定的任何物质分类。
  • 23项在研/拟制订!新污染物生态环境监测分析方法标准大气篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与空气废气相关的分析方法标准38项,按编制状态分类,已发布15项、在研2项、拟制订21项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1三氯杀螨醇环境空气 三氯杀螨醇的测定 气相色谱-质谱法A拟制订2多氯萘环境空气和废气 多氯萘的测定 气相色谱-三重四极杆质谱法B在研3六溴联苯环境空气和废气 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订4毒杀芬环境空气 指示性毒杀芬的测定 气相色谱-质谱法(HJ 852-2017)B已发布5有机磷酸酯类环境空气和废气 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订6环境空气和废气 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订7麝香类环境空气 麝香类化合物的测定 气相色谱-质谱法C拟制订8N,N'-二甲苯基-对苯二胺环境空气和废气 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订9甲醛和乙醛苯胺类(邻甲苯胺)固定污染源排气中乙醛的测定 气相色谱法(HJ/T 35-1999)C已发布10环境空气 醛、酮类化合物的测定 高效液相色谱法(HJ 683-2014)C已发布11固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020)C已发布12苯胺类(邻甲苯胺)大气固定污染源 苯胺类的测定 气相色谱法(修订 HJ/T 68-2001)C拟制订增加邻甲苯胺指标和环境空气介质13多环芳烃环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法(HJ 647-2013)C已发布14环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法(HJ 646-2013)C已发布15烷基汞环境空气和废气 烷基汞的测定 气相色谱-冷原子荧光光谱法C拟制订16硝基苯环境空气 硝基苯类化合物的测定 气相色谱法(HJ 738-2015)C已发布17环境空气和废气 硝基苯类化合物的测定 气相色谱-质谱法C拟制订18邻苯二甲酸酯类环境空气 酞酸酯类的测定 气相色谱-质谱法(HJ 867-2017)D已发布19环境空气和废气 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订20固定污染源废气 酞酸酯类的测定 气相色谱法(HJ 869-2017)D已发布21有机锡化合物(三丁基锡)环境空气 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订22得克隆环境空气和废气 得克隆的测定 气相色谱-质谱法A B拟制订23多氯联苯环境空气 多氯联苯的测定 气相色谱-质谱法(修订 HJ 902-2017)A B拟制订增加固定源废气介质24环境空气和废气 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订25有机氯农药环境空气 有机氯农药的测定 气相色谱-质谱法(HJ 900-2017)A B已发布26环境空气 有机氯农药的测定 气相色谱法(HJ 901-2017)A B已发布27环境空气 有机氯农药的测定 高分辨气相色谱-高分辨质谱法(HJ 1224-2021)A B已发布28二噁英类环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.2-2008)B C在研29多溴二苯醚环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法(HJ 1270-2022)A B C已发布30固定源废气 26 种多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订31短链 氯化石蜡环境空气和废气 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订32环境空气和废气 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订33挥发性有机物环境空气 65 种挥发性有机物的测定 罐采样/气相色谱-质谱法(HJ 759-2023)A C D已发布34环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法(HJ 644-2013)A C D已发布35固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法(修订HJ 734-2014)A C D拟制订36壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚环境空气 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订37六溴环十二烷双酚 A环境空气和废气 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D拟制订38氯苯类环境空气 氯苯类化合物的测定 气相色谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。
  • 欧盟公布新20种潜在高度关注物质(SHVC)征求公众意见
    2011年8月29日,欧洲化学品管理局(ECHA)公布提案,建议将20种化学品列为高度关注物质(SHVC)。此次提议物质的档案数量超过了6个月前的最后一次公布的两倍。   在这20种化学品中,19种物质被提议列为SVHC的原因是它们具有致癌性和/或生殖毒性,可能对人类健康造成严重危害。同时,根据REACH法规第57(f) 条款,另一种物质也需要受到高度关注,因为它可能扰乱人体的内分泌系统,并且对环境潜在严重危害。   其中两项物质——硅酸铝耐火陶瓷纤维和氧化锆硅酸铝耐火陶瓷纤维——被列为SVHC的建议之前已经提交,并且于2010年1月被列入了候选清单,但这两项物质的定义过于狭窄,不能覆盖目前欧洲市场上所有类型的耐火陶瓷纤维的成份构成,因此此次对这两种纤维提出更广泛的定义,意图概括欧盟市场上使用的所有类型的耐火陶瓷纤维。   相关利益方提出意见的截止日期是2011年10月13日 下一步是将这些物质列入SVHC候选清单,其后含有这些物质的混合物和物品需要标注物质的识别信息(以及安全使用信息)。   欧洲化学品管理局计划于2011年底对SVHC候选清单进行正式修改。 物质名称 EC No. CAS No. 建议SVHC特性 可能用途 铬酸铬 246-356-2 24613-89-6 Art. 57(a),致癌 主要应用于航空航天使用的金属表面处理,以及钢铁和铝材涂料 氢氧化铬酸锌钾 234-329-8 11103-86-9 Art. 57(a),致癌 主要应用于航空航天使用的涂料,以及钢铁和铝卷材涂料和车辆涂料 锌黄(C.I.颜料黄 36) 256-418-0 49663-84-5 Art. 57(a),致癌 主要应用于车辆涂料和航空航天使用的涂料 硅酸铝耐火陶瓷纤维(RCF) - - Art. 57(a),致癌 耐火陶瓷纤维用于高温隔热,几乎完全应用于工业(工业窑炉和设备的隔热,汽车和飞机/航空航天器材),和防火(建筑和工业加工设备) 氧化锆硅酸铝耐火陶瓷纤维(Zr-RCF) - - Art. 57(a),致癌 耐火陶瓷纤维用于高温隔热,几乎完全应用于工业(工业窑炉和设备的隔热,汽车和飞机/航空航天器材),和防火(建筑和工业加工设备) 甲醛苯胺共聚物 500-036-1 25214-70-4 Art. 57(a),致癌 主要用于制造其他物质。次要用途是作为环氧树脂硬化剂,例如用于生产管道和模具,以及用于胶粘剂的生产 邻苯二甲酸二甲氧乙酯 (DMEP) 204-212-6 117-82-8 Art. 57 (c),生殖毒性 ECHA尚未收到过就此邻苯二甲酸酯的注册信息。此物质在欧盟生产或进"Times New Roman"1吨/年。主要用途是作为增塑剂应用在在高分子材料和涂料,油漆和清漆,包括印刷油墨当中 邻甲氧基苯胺 201-963-1 90-04-0 Art. 57(a),致癌 主要用于制造纹身颜料,以及纸,聚合物和铝箔的着色染料 对特辛基苯酚 205-426-2 140-66-9 Art. 57 (f),同等关注度 主要用于制造聚合物前体和聚氧乙烯醚。同时用作作粘合剂,涂料,油墨和橡胶制品中的成分 1,2-二氯乙烷 203-458-1 107-06-2 Art. 57(a),致癌 主要用于制造其他物质。次要用途为在化学和制药工业用作溶剂 二乙二醇二甲醚 203-924-4 111-96-6 Art. 57 (c),生殖毒性 作为反应溶剂广泛应用。也用作电池电解液溶剂,并可能用作密封剂,胶粘剂,燃料和汽车护理产品 砷酸 231-901-9 7778-39-4 Art. 57(a),致癌 主要用于去除熔融状态陶瓷玻璃中的气泡和层压印刷电路板的生产 砷酸钙 231-904-5 7778-44-1 Art. 57(a),致癌 砷酸钙出现进口的用于铜,铅和一些贵金属的生产的复杂原材料中。主要用作铜冶炼中的沉淀剂和用于制造三氧化二砷。但是大部分的砷酸钙被当做作为废物丢弃 砷酸铅 222-979-5 3687-31-8 Art. 57(a) & (c), 致癌&生殖毒性 砷酸铅出现进口的用于铜,铅和一些贵金属的生产的复杂原材料中。原材料中的砷酸铅会在冶金细化过程中转化为砷酸钙和三氧化二砷。大部分的钙砷酸会被作为废物丢弃,而三氧化二砷会得到进一步的应用 N,N-二甲基乙酰胺 204-826-4 127-19-5 Art. 57 (c),生殖毒性 主要用作溶剂,应用于服装及其他应用纤维的生产。也用作试剂,应用于工业涂料,聚酰亚胺薄膜,脱漆剂和油墨去除剂 4,4’-亚甲基双-2-氯苯胺(MOCA) 202-918-9 101-14-4 Art.57(a),致癌 作为固化剂,应用于树脂和聚合物产品的生产,也用于制造其他物质。该物质可能进一步用于建筑和艺术中 酚酞 201-004-7 77-09-8 Art. 57(a),致癌 主要用作实验室剂(pH指示剂溶液),应用于pH试纸生产及药用产品的生产 叠氮化铅 236-542-1 13424-46-9 Art. 57 (c),生殖毒性 主要用作引爆剂和扩爆剂,应用于在民用和军事用途的雷管生产,也用作和烟火装置的引爆剂 2,4,6-三硝基苯二酚铅 239-290-0 15245-44-0 Art. 57 (c),生殖毒性 主要用于小口径步枪弹药的底漆。其他常见的应用于军用烟火弹药,火药起爆驱动装置和民用雷管 苦味酸铅 229-335-2 6477-64-1 Art. 57 (c),生殖毒性 ECHA尚未收到过就此物质的注册信息。苦味酸铅于叠氮化铅,2,4,6-三硝基苯二酚铅同属爆炸性物质,此三物质可能同时少量应用于雷管混合物当中
  • 甘州区疾控中心PCR实验室污水设备和超纯水系统成功交付
    甘州区疾控中心PCR实验室污水设备和超纯水系统成功交付关于PCR实验室 PCR实验室又叫基因扩增实验室。PCR是聚合酶链式反应(Polymerase Chain Reaction)的简称。是一种分子生物学技术,用于放大特定的DNA片段,可看作生物体外的特殊DNA复制。通过DNA基因追踪系统,能迅速掌握患者体内的病毒含量,其精确度高达纳米级别,精确检测乙肝病毒在患者体内存在的数量、是否复制、是否传染、传染性有多强、是否必要服药、肝功能有否异常改变能及时判断病人最适合使用哪类抗病毒药物、判断药物疗效如何、给临床治疗提供了可靠的检验依据。PCR实验室设计图合作单位介绍 甘肃省张掖市甘州区疾控中心是一家经国家卫生部门批准成立的一家集医疗、临床、预防、保健、科研于一体的预防、职业卫生检测、环境检测等项目综合性公立疾病预防控制中心,是从事基本公共卫生服务的公益性事业单位。合作实验室设计布局实验区域装修重点部分,建筑面积为 100m2,吊顶高度 2.6m。主实验区包括 PCR 实验室,辅助功能区包括更衣室、洗消室,废水处理室,淋浴间等。实验室平面布局应能清晰的分出清洁区、半污区和污染区,各区域之间应有隔断隔开,清洁区主要由更衣室、淋浴间、走廊等组成,半污染区主要由洗消室组成,污染区主要由接受标本区、检测实验室组成。分区分为试剂准备区(I 区)、样品制备区(II区)、扩增区(III 区)和扩增产物分析区(IV 区),四区独立并设有专用走廊和独立缓冲间,工作区与缓冲间安装连锁装置。缓冲间内需设洗手池,可更衣。各区域间有传递窗传递物品,传递窗内部需安装紫外灯。各区面积宜按表 1 要求设计:表 1 PCR 实验室各区建议面积分区占地面积备注试剂准备区(I 区)10m2配置生物安全柜、冰箱、高速离心机。实验台等。样品制备区(II 区)10m2配置生物安全柜、冰箱、180℃冰箱、冷冻离心机、实验台等。扩增区(III 区)10m2配置实验台、PCR仪等。扩增产物分析区(IV 区)10m2配置实验台。缓冲间2-3.3m2配置不锈钢洗手池、手消毒、高速烘手器、更衣柜等。走向①人流:按照从试剂准备区→样品制备区→扩增区→扩增产物分析区,不得逆向流动。 ②物流:通过传递窗按照从试剂准备区→样品制备区→扩增区→产物分析区传递,不得逆向传递。 ③气流:从I 区---IV 区逐渐递减。 辅助功能区洗消间设置在产物分析区外,方便废弃物灭活,避免运输医疗垃圾时污染清洁区。医疗废水处理室实验室所有废水都要先集中到五楼卫生间区域,经过废水处理装置处理后再排出。 PCR实验室废水处理设备现场安装图PCR实验室废水处理设备介绍卓越实验室综合废水处理系统由废水收集单元、自动调节单元、预处理单元、自动加药单元、混凝气浮搅拌单元、絮凝助凝沉淀单元、沉降分离单元、固液分离单元、污泥干化单元、重金属捕捉单元、过滤吸附单元、新型催化活性微处理单元、电化学催化氧化还原专利技术处理单元、多程高级分解降解处理单元、两级有机生物活性处理单元、新型生物反应处理单元、复合式消毒处理等技术工艺组成,形成一个完整的实验室综合废水处理系统。PCR实验室中对分析用水的要求PCR实验室试剂的操作。⑴所用的所有溶液都应该没有核酸和(或)核酸酶(DNase和RNase)污染。⑵所有PCR试剂中使用的水都应该是高质量的-新鲜蒸馏的去离子水,用0.22μm过滤的,并且是高压灭菌。⑶在20℃到25℃贮存的试剂建议加点像叠氮钠一类的抗微生物剂,在扩增试剂或样品制备试剂中加入0.025%的叠氮钠不抑制扩增反应。⑷所用试剂都应该以大体积配制,实验一下看试剂是否满意,然后分装成仅够一次使用的量进行贮存。⑸所有试剂和样品准备过程中都要使用一次性灭菌的瓶子和管子。⑹新配制的试剂在用于准备新的标本之前应该加以检验。⑺样品准备和前PCR区所使用的移液管在不使用时都应该小心保存。超纯水机在PCR实验室中的作用超纯水用于:1、在PCR实验中,配置电泳仪缓冲液,保持细胞培养箱湿度,测序仪取样针的清洗以及试剂的配制溶液稀释,都要用到超纯水。2、在PCR实验中,一般用于洗板机移板机移液针的清洗。 纯水用于:在PCR实验室中典型的应用包括玻璃器皿和超净实验台清洗、高压灭菌器、恒温恒湿实验箱和制冰机用水。 超纯水机现场安装图超纯水机介绍 ZYCGF常规分析型超纯水机是替代蒸馏水器的理想产品,此产品低能耗、全自动控制无须人照看、能为广大实验室客户提供高品质超纯水,因此得到广大客户的认同。此产品是将自来水纯化为符合国标GB/T6682-2008的实验室三级纯水和一级超纯水,全自动“傻瓜”式设计,使用方便,是即节能又高性价比的实验室纯水系统,且在线监测保证水质的可靠性。 感谢张掖市甘州区疾控中心对我司的信任,我司一直秉承“以信立业、创新共赢”的经营理念,提供更高质量的产品,服务于社会。
  • 广东省环境科学学会公开征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见
    各分支机构、各会员单位和有关单位:由广东省生态环境监测中心、华南师范大学等单位共同提出并主持编制的《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》三项团体标准已编制完成并形成征求意见稿。根据《团体标准管理规定》(国标委联〔2019〕1号)《广东省环境科学学会标准管理办法(试行)》要求,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家提出宝贵建议和意见,并于2024年9月20日前以邮件的形式将《广东省环境科学学会标准意见反馈表》反馈至邮箱gdhjxh@126.com,逾期未回复视为无意见。该标准的征求意见稿已登载在全国团体标准信息平台(网址为:http://www.ttbz.org.cn/)和广东省环境科学学会网站(网址为:https://www.gdses.org.cn/)。 联系人:陈诚 严辉联系电话:020-83224979邮箱:gdhjxh@126.com 附件:1.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)2.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明3.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)4.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明5.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)6.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明7.广东省环境科学学会标准征求意见反馈表 广东省环境科学学会2024年8月19日关于征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见的函.pdf附件1:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件2:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件3:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件4:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件5:《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件6:《水质 15种酚类内分泌干扰物的测定固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件7:广东省环境科学学会标准征求意见反馈表.doc
  • 这些安全隐患会让实验室爆炸之【危险化学品】
    p   实验室发生爆炸事故,导致我们经常看到很多血的教训,因此小编借本文对实验室常发生爆炸事故原因进行了梳理,并整理出与化学用品相关的实验室危险操作相关内容。 /p p    strong 1.实验室发生爆炸事故原因 /strong /p p   实验室发生爆炸事故的原因大致如下: /p p   (1) span style=" color: rgb(0, 112, 192) " strong 随便混合化学药品 /strong /span /p p   氧化剂和还原剂的混合物在受热。摩擦或撞击时会发生爆炸: /p p style=" text-align: center " img title=" 不能混合的常用药品.jpg" alt=" 不能混合的常用药品.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/43324574-c347-46ec-b4d2-3fcf1d681e8b.jpg" / /p p style=" text-align: center "   表1:为不能混合的常用药品 /p p style=" text-align: center " img title=" 加热时发生爆炸的或何物实例.jpg" alt=" 加热时发生爆炸的或何物实例.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/59409edc-4e98-45b0-b10e-1e5450370546.jpg" / /p p style=" text-align: center "   表2:加热时发生爆炸的混合物示例 /p p   (2) span style=" color: rgb(0, 112, 192) " strong 密闭体系中进行蒸馏、回流等加热操作 /strong /span /p p   (3) span style=" color: rgb(0, 112, 192) " strong 在加压或减压实验中使用不耐压的玻璃仪器 /strong /span 。 /p p   (4) span style=" color: rgb(0, 112, 192) " strong 反应过于激烈而失去控制 /strong /span 。 /p p   (5) span style=" color: rgb(0, 112, 192) " strong 易燃易爆气体如氢气、乙炔等烃类气体、煤气和有机蒸气等大量逸入空气, 引起爆燃 /strong /span 。 常见易燃易爆物质蒸气在空气中爆炸极限见表3。 /p p style=" text-align: center " img title=" 易燃物蒸气在空气中爆炸极限.jpg" alt=" 易燃物蒸气在空气中爆炸极限.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/1467dfee-d8f7-4fda-bf4f-b8d3553f996e.jpg" / /p p style=" text-align: center "   表3:易燃物质蒸气在空气中爆炸极限 /p p   (6)一些 span style=" color: rgb(0, 112, 192) " strong 本身容易爆炸的化合物 /strong /span ,如,硝酸盐类、硝酸酯类、三碘化氮、芳香族多硝基化合物、乙炔及其重金属盐、重氮盐、叠氮化物、有机过氧化物(如,过氧乙mi和过氧酸)等, span style=" color: rgb(0, 112, 192) " strong 受热或被敲击时会爆炸 /strong /span 。强氧化剂与一些有机化合物接触,如,乙醇和浓硝酸混合时会发生猛烈的爆炸反应。 /p p   (7) span style=" color: rgb(0, 112, 192) " strong 搬运钢瓶时不使用钢瓶车 /strong /span ,而让气体钢瓶在地上滚动,或撞击钢瓶表头,随意调换表头,或气体钢瓶减压阀失灵等。 /p p   (8)在使用和制备易燃、易爆气体时,如氢气、乙炔等, span style=" color: rgb(0, 112, 192) " strong 不在通风橱内进行 /strong /span ,或在其附近点火。 /p p   (9)煤气灯用完后或中途煤气供应中断时,未立即关闭煤气龙头。或煤气泄漏,未停止实验,即时检修。 /p p   (10) span style=" color: rgb(0, 112, 192) " strong 氧气钢瓶和氢气钢瓶放在一起 /strong /span 。 /p p    strong 2.实验室常见的化学品爆炸事故 /strong /p p   由于实验操作不规范,粗心大意或违反操作规程都能酿成爆炸事故。例如: /p p   (1)配制溶液时,错将水往浓硫酸里倒,或者配制浓的氢氧化钠时未等冷却就将瓶塞塞住摇动都会发生爆炸。 /p p   (2)减压蒸馏时,若使用平底烧瓶或锥型瓶做蒸馏瓶或接收瓶,因其平底处不能承受较大的负压而发生爆炸。 /p p   (3)对使用四氢呋喃,乙醚等蒸馏时,由于这类试剂放久后会产生一定的过氧化物,在对这些物质进行蒸馏前,未检验有无过氧化物并除掉过氧化物,过氧化物被浓缩达到一定程度或蒸干易发生爆炸。 /p p   (4)制备易燃气体时,一定要注意附近不要有明火,在制备和检验氧气时,一定要注意不要混有其它易燃气体。例如氧气制备、氢气制备,实验中若操作不慎易发生爆炸。 /p p   (5)金属钾、钠、白磷遇火都易发生爆炸。 /p p    /p p /p
  • 34项在研/拟制订!新污染物生态环境监测分析方法标准固体废物篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与固体废物及其他相关的分析方法标准36项,按编制状态分类,已发布2项、在研1项、拟制订33项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1抗生素固体废物 磺胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订2固体废物 氟喹诺酮类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订3固体废物 大环内酯类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订4固体废物 氯霉素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订5固体废物 四环素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订6固体废物 氨基糖苷类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订7固体废物 林可酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订8固体废物 β-内酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订9三氯杀螨醇固体废物 三氯杀螨醇的测定 气相色谱-质谱法A拟制订10微塑料生物体 聚乙烯等 4 种树脂类微塑料的测定 热裂解-热脱附/气相色谱-质谱法A拟制订11多氯萘固体废物 多氯萘的测定 气相色谱-三重四极杆质谱法B拟制订12六溴联苯固体废物 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订13毒杀芬固体废物 指示性毒杀芬的测定 气相色谱-三重四极杆质谱法B拟制订14有机磷酸酯类固体废物 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订15固体废物 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订16麝香类固体废物 麝香类化合物的测定 气相色谱-质谱法C拟制订17N,N'-二甲苯基-对苯二胺固体废物 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订18甲醛和乙醛固体废物 醛、酮类化合物的测定 高效液相色谱法C拟制订19苯胺类(邻甲苯胺)固体废物 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法C拟制订20烷基汞固体废物 烷基汞的测定 气相色谱-冷原子荧光光谱法C拟制订21硝基苯固体废物 硝基苯类化合物的测定 气相色谱-质谱法C拟制订22邻苯二甲酸酯类固体废物 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订23有机锡化合物(三丁基锡)固体废物 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订24得克隆固体废物 得克隆的测定 气相色谱-质谱法A B拟制订25多氯联苯固体废物 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订26有机氯农药固体废物 有机氯农药的测定 气相色谱-质谱法(HJ 912-2017)A B已发布27二噁英类固体废物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.3-2008)B C在研28多溴二苯醚固体废物 多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订29短链 氯化石蜡固体废物 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订30五氯苯酚固体废物 五氯苯酚及其盐类酯类的测定 气相色谱-三重四极杆质谱法A B C拟制订31挥发性有机物固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法(HJ 643-2013)A C D已发布32壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚固体废物 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订33六溴环十二烷双酚 A固体废物 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D拟制订34全氟 化合物类固体废物 21 种全氟烷基磺酸和全氟烷基羧酸及其盐类和相关化合物的测定液相色谱-三重四极杆质谱法A B C D拟制订35固体废物 全氟辛基磺酰氟的测定 液相色谱-三重四极杆质谱法A B C D拟制订36氯苯类固体废物 氯苯类化合物的测定 气相色谱-质谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。
  • 欧盟委员会提议限制玩具中的阻燃剂
    2013年7月29日消息,欧盟委员会发布一份拟议草案,将根据欧盟玩具安全指令(Toy Safety Directive ,TSD)对玩具中的阻燃剂引进特定限值。   该要求将在采纳后的18个月后生效,一旦实施,所有进口至欧盟的玩具企业将要求确保其产品中的阻燃剂含量不超过5毫克/千克(ppm),这些物质包括:磷酸三(2-氯乙基)磷酸酯(tris(2-chloroethyl)phosphate ,TCEP)、磷酸三(2-氯-1-甲基乙基)酯(tris(2-chloro-1-methylethyl) phosphate,TCPP),和磷酸三(1,3-二氯异丙基)酯(tris[2-chloro-1-(chloromethyl)ethyl] phosphate ,TDCPP)   美国玩具行业协会(TIA)技术事务高级副总裁称,由于这些物质通常都不会添加到玩具中,因此这些要求只会增加合规成本,实际上不会提高玩具本身的安全性。此外,设置的总含量限制忽略了如暴露和风险等重要因素。欧盟委员会并无正当理由发布这些限制。   TIA将继续提倡科学合理、基于风险、跨越国界的国际玩具安全要求。欧盟目前正在接受有关该草案指令的评议意见 TIA将时刻通知各成员国该提案的发展动态。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制