当前位置: 仪器信息网 > 行业主题 > >

二噁唑噻吩

仪器信息网二噁唑噻吩专题为您提供2024年最新二噁唑噻吩价格报价、厂家品牌的相关信息, 包括二噁唑噻吩参数、型号等,不管是国产,还是进口品牌的二噁唑噻吩您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二噁唑噻吩相关的耗材配件、试剂标物,还有二噁唑噻吩相关的最新资讯、资料,以及二噁唑噻吩相关的解决方案。

二噁唑噻吩相关的资讯

  • 欧盟禁止2,5-二甲基-3-乙酰基噻吩作为食用香料
    2013年6月15日,据欧盟网站消息,欧盟发布(EU)No 545/2013号委员会条例,修订了(EC)No 1334/2008号食用香精香料法规,禁止2,5-二甲基-3-乙酰基噻吩(3-acetyl-2,5-dimethylthiophene)作为食用香料用于食品。   据欧洲食品安全局2013年5月15日公布的2,5-二甲基-3-乙酰基噻吩评估结果,2,5-二甲基-3-乙酰基噻吩在体内外试验均具有致突变性,因此本法规将其从许可香料清单中删除。   同时,禁止2,5-二甲基-3-乙酰基噻吩作为食用香料投放市场或用于食品;禁止含有香料物质2,5-二甲基-3-乙酰基噻吩的食品投放市场,禁止2,5-二甲基-3-乙酰基噻吩作为香料进口或含有2,5-二甲基-3-乙酰基噻吩的食品进口。   对于在本法规生效前上市的含有2,5-二甲基-3-乙酰基噻吩的食品可在其保质期内进行销售;本法规生效前进口的含有2,5-二甲基-3-乙酰基噻吩的食品不适用于本法规。   本法规自公布之日起生效。
  • 河南大学宋金生团队通过宏环封装策略实现四噻吩非全融合型有机太阳能电池15.1%高效率
    【重点摘要】提出了宏环封装策略,通过在四噻吩外围导入融合烷基侧链实现。将该策略应用于非全融合四噻吩类受体材料。实现了高达15.1%的转化效率。【宏环封装策略实现高效有机太阳能电池】有机光伏一直被视为下一代可再生能源的重要候选技术。但是其光电转换效率一直无法达到与无机光伏装置媲美的水平。非全融合四噻吩类受体材料被认为是实现高效有机太阳能电池的一个有前景的方法。【宏环结构限制分子构象,提升分子堆积效率】在美国伯明翰南方研究院的最新研究中,通过在四噻吩外围导入环烷基侧链,形成宏环封装结构。这种设计可以锁定中央分子部分的构象,生成平面分子骨架,有利于分子的高效堆积。【对照组件构象扭曲,分子堆积效率降低】相比之下,没有宏环封装限制的对照分子则出现了扭曲变形的构象。这种构象变化会降低分子堆积的有效性,进而影响相关器件的性能。【噻吩宏环受体器件效率达15.1%】基于四噻吩宏环受体R4T-1的有机太阳能电池成功实现了15.1%的高效率。【宏环封装策略指明下一步优化方向】这项研究为构建高性能有机太阳能电池提供了新的思路。随着在分子设计和器件工程方面的持续优化,有机太阳能电池20%效率的目标指日可待。研究使用光焱科技太阳光模拟器SS系列 与量子效率测试系统 QE-R来协助量测。通过在简单的四噻吩上进行宏环封装设计出非全融合受体R4T-1,该结构实现了构象的单一性,消除了分子中心的电子跨效应,并保证了高效电荷传输通道的形成。因此,实现了高达15.10%的转化效率,短路电流密度显著提高至25.48 mA/cm2。图S7. JD40:4T-5和JD40:R4T-1的J1/2-V曲线,(a)空穴型器件和(b)电子型器件。
  • 第二届清华大学分析中心岛津研究生奖学金评审会成功举办
    成立于1972年的清华大学分析测试中心是我国高校成立的最早的分析中心之一,是集教学、科研和对外测试服务于一体、以分析化学方法学和仪器研究为重点的研究与测试中心,除承担大型仪器测试服务外,还承担繁重的本科生和研究生的教学任务,并承担多项国家基础研究和应用研究项目。岛津公司与清华大学化学系和分析测试中心有着长期、广泛的合作关系,2008年,岛津国际贸易(上海)有限公司决定赞助清华大学分析中心设立“岛津优秀研究生奖学金”,以激励分析中心的研究生致力于分析测试方法和技术装置的创新研究与应用,不断提高分析测试水平,推动分析化学学科的发展。2010年,双方携手成功举办了清华大学分析中心《2009年度岛津研究生奖学金评审会》,本活动在清华学子之间引起了非常大的回响。 3月25日,《第二届清华大学分析中心岛津研究生奖学金评审会》如期在清华大学隆重举行,120多名师生出席评审会。会议由分析中心主任林金明教授主持。中科院大连化物所张玉奎院士,国家自然科学基金委分析化学学科主任庄乾坤教授、北京工业大学校长郭广生教授、北京市科学技术研究院副院长刘清珺研究员、中科院化学所陈义研究员、北京大学化学院邵元华教授、国家纳米中心蒋兴宇研究员、学校实验室与设备处副处长闻星火、化学系党委书记尉志武教授、岛津公司通用分析事业部副部长曹磊博士应邀担任评委。评审会首先由清华大学化学系党委书记尉志武在大会致开幕辞。他在致辞中鼓励研究生们充分利用分析中心的仪器条件开展分析测试技术和装置的创新性研究,为分析中心的建设多出技术成果,多出新点子,为取得更大科学进展打下更好的基础。 紧接着,张玉奎院士就蛋白质组学研究进展做了精彩报告。张玉奎院士在报告中讲述道:“中国的肝脏蛋白研究处于国际领先水平,发展了高丰度蛋白质去除、低丰度蛋白富集、LCMS的蛋白组学研究应用等分离鉴定的新方法。”他同时介绍了激光辅酶解方法、分类筛选的磷酸化肽段鉴定策略、规模化磷酸化蛋白质组分分离鉴定平台等五方面的研究新进展,他强调目前蛋白质定量是在蛋白组学研究中遇到的最大问题,希望清华分析中心的同学,作为未来中国分析化学的精英能够致力于问题的解决,推动蛋白组学研究研究工作的发展。 张玉奎院士为师生们做了人类肝脏蛋白组学全谱分析方面的报告 随后,13名来自分析中心的研究生,就2010年的研究工作做了相关报告。报告结束后,经过各位评委公平公正的评选,魏惠斌同学的“微流控芯片质谱联用技术应用于细胞代谢及其相互间作用的研究”、谢思佳同学的“基于电致发光微阵列的氧化传感器”被评为一等奖,另外还评选出二等奖2名,3等奖9名。各位评委高度赞赏同学们高水平的论文,并高兴地为获奖同学颁发了证书和奖金。 评审会现 评委和获奖同学的合影 最后,岛津公司分析仪器事业部副部长曹磊博士向各位获奖的同学表示祝贺,他说:“这次答辩会上各位研究生的学术报告所展现的分析化学研究水平给我留下了极深的印象,希望今后保持和扩大岛津公司与分析中心的全面合作。争取下一届评选能够面向全校从事分析化学研究的研究生。” 曹磊博士向各位获奖的同学表示祝贺 至此,此次第二届清华大学分析中心岛津研究生奖学金评审会取得圆满成功。本次评审会是岛津公司对于“以科学技术贡献于社会”这一公司经营方针的又一次成功实践,岛津在推进中国科学进步的过程中又留下了自己的一个足迹。 附:论文评审结果 奖励等级 获奖人 论文题目 一等奖 魏慧斌 微流控芯片质谱联用技术应用于细胞代谢及其相互间作用的研究 谢思佳 基于电致发光微阵列的氧气传感器 二等奖 陈晓彤 基于新型聚集荧光增强分子的荧光探针和光学材料研究 吴富根 两亲性分子有序聚集体的相变及其协同性 三等奖 何天稀 刺激响应和单分散药物载体的制备及控释研究 刘传森 以二维自组装微球为模板制作单细胞分析微井阵列方法研究 潘成思 BiPO4含氧酸盐新型光催化剂的可控合成及其构效关系研究 石睿 纳米结构对光催化活性的影响及其新型光催化剂的开发 唐龙华 石墨烯电化学传感及分析应用 王雅君 共轭分子表面杂化光催化剂研究 王颖 碳材料的功能化修饰及其在化学生物学中的应用研究 姚志轶 基于水溶性聚噻吩光学探针的生物传感器 林珍 化学发光方法研究污染物降解过程 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 杨学明院士:做世界上独一无二的原创科学仪器
    “我不太喜欢和别人做一模一样的事情。从自己独特的角度出发,这对科学的发展尤其自己的研究特别重要。”遵循内心坚持的“原创”精神,南方科技大学副校长、中国科学院院士、中国科学院大连化学物理研究所研究员杨学明带领团队自行研制了一系列科学仪器,并在化学动力学领域取得多项突破性科研成果。2022未来科学大奖周刚刚落幕。今年的未来科学大奖“物质科学奖”授予杨学明,奖励其研发新一代高分辨率和高灵敏度量子态分辨的交叉分子束科学仪器,揭示了化学反应中的量子共振现象和几何相位效应。杨学明在交叉分子束仪器旁边。中科院大连化物所供图大学曾自学量子力学,读硕士期间“换跑道”研究化学1962年,杨学明出生在浙江省德清县一个小村庄。初中时,他读书勤奋,理科成绩出色,并经常为同学补课。从那时起,他就展露出了非比寻常的学习能力。中学时代,在化学老师的启蒙之下,他对化学产生了浓厚的兴趣。然而高考时,他的化学科目考得一般,物理成绩却高达95分,就这样,16岁的他考入浙江师范学院物理系。在大学里,杨学明打下了坚实的物理基础,并萌生了考研究生的想法。当时,量子力学是考研的必考题,但课程排在了最后一个学期。他必须自学这门颇有难度的课程,考研才有胜算。在自学过程中,老师为了鼓励他,给他出了一张卷子,如果考试通过,就可以免修量子力学这门课。最终,杨学明不仅通过了考试,也顺利地考入中国科学院大连化学物理研究所(以下简称“大连化物所”),攻读硕士研究生。这件事给了杨学明极大的感触和启发,在他看来,自学能力是今后开展研究的必要技能。在大连化物所,杨学明回归兴趣“初心”,选择了化学激光专业。尽管自称没学够化学,但最初从物理转换到化学研究,他也曾历经不适,“物理和化学的‘语言’是不一样的。但我很幸运走上了这条道路,这对我的科学生涯发展产生了非常深刻的影响。”他总结,学习物理会让人加深对事情本质的理解,物理的思维也是很严谨的,学完物理再去学化学,他对化学有了不一样的理解和感悟,能够从交叉角度看学科的发展,使他有更多新的机会,找到别人或许不太关注的科学问题。1985年硕士研究生毕业后,杨学明远赴美国加州大学圣芭芭拉分校攻读博士。1991年至1995年,他在美国普林斯顿大学、加州大学伯克利分校从事博士后研究。在此期间,他意识到在自己所学的分子光谱学领域“找不到特别感兴趣的方向”,同时也领悟到先进的科研仪器对实验化学物理基础研究的重要作用,于是“换跑道”,集中精力研制科研仪器,转向化学反应动力学研究。“在这个过程中,不要把以前所学的东西抛掉了,要利用以前的基础,找到未来感兴趣的方向。”2001年,杨学明接受母校中科院大连化物所时任所长包信和的邀请,回到祖国工作。主持建成“全球最亮极紫外光源”在距离大连市中心100公里的小岛“长兴岛”上,基于可调极紫外相干光源的综合实验研究装置(又称“大连相干光源”)每天24小时运行,许多国内外科学家来这里申请机时开展研究。“它确实是非常独特的光源,是世界上唯一工作在极紫外波段的自由电子激光装置。”杨学明说。2018年,杨学明主持建成的大连相干光源通过验收,被喻为“照亮微观世界的超快超亮极紫外闪光灯”,这一“闪光灯”可准确捕捉到分子、原子等微观粒子在化学反应中的动态影像。谈及研究的初衷,杨学明说,自己在美国做博士后时,从事同步辐射光源在化学中的应用研究,感觉到同步辐射光源的亮度不够,达不到做很多化学动力学实验的需求。他当时就希望研制一个高亮度极紫外自由电子激光光源。回国后,他积极推动自由电子激光技术的发展和应用。自由电子激光是近年来国际科技界飞速发展的一类重大科技基础设施,被称为“第四代先进光源”,具有超高亮度、超短脉冲、全相干等优异特性,借助这些优异性能,科学家可以在全新的时间尺度和空间尺度上理解自然过程,开辟一个从未被探索的世界。而极紫外区域光源是探测分子、原子及其外壳层电子结构最重要的光子能量区域,有助于科学家在原子、分子水平上开展一系列重大科学问题研究,对能源、化学、物理、材料以及光刻技术等领域都具有显著的应用。“从科学发展史上看,科学仪器的研制特别重要。以前人们觉得太阳是绕着地球转的,因为人们的直觉是这样的。有了天文望远镜以后,科学家通过观测才首次意识到,地球是绕着太阳在转。”他说,实验科学没有最好的仪器和方法,就做不到国际领先,永远只能跟着别人走。“长期以来,我们最先进的科学仪器大多是在国外购买的,这使得我们的科技硬实力落后于别人。”杨学明认为要想做好的实验科学研究,就要先把科学仪器做好,掌握核心技术。然而,研发科学仪器并非易事。2014年冬天,长兴岛园区建设起步,水电等设施不全,也没有暖气,杨学明成了第一个来这里入驻和“装修”的人。很多想法真正实施起来困难超乎想象,但他还是带领团队打拼,完成了大连相干光源主要基建工程和主体光源装置的研制。值得一提的是,大连相干光源中90%的仪器设备均由我国自主研发。如今,大连相干光源正持续产出重量级成果。就在今年,科研人员利用自主研制的基于大连相干光源的中性团簇红外光谱实验方法,在类冰中性水团簇七聚体中发现了多个棱柱状和笼状结构,为揭开液态水至微冰的氢键网络演化机制提供了新的思路。最近,研究人员发现极紫外自由电子激光可以用于小分子药物和生物大分子相互作用研究,为新药研制提供了新的工具。建议推动高端科研仪器发展2017年11月,杨学明担任南方科技大学理学院院长,参与理学院的发展和建设。目前,他正在推动我国新一代高重频自由电子激光装置的发展,推进软X射线和极紫外自由电子激光计划。杨学明说,自由电子激光是基于常温加速器的装置,但常温加速器的技术有一定限制性,散热能力不强,所以每秒能够承受电子束脉冲的能力比较低,只能产生大约100个脉冲,很难产生平均亮度非常高的光源。过去十年,超导加速器的发展使加速器技术有了很大进展,超导加速器的优势是加速电子产生的热量少,每秒钟加速电子束的频率可以大幅提高,从100赫兹变成100万赫兹,平均亮度乘1万倍。这使得发展高亮度的极紫外和X射线光源成为可能。“这也是我们在下一代高重频自由电子激光最重要的核心技术。”他说,这一国际领先的装置亮度很高,在能源、材料、半导体加工等方面将有重要应用,“使我们做一些别人做不了的研究工作。装置未来在深圳落地,将对大湾区的基础科学、应用科学和平台建设发挥很大的推动作用。”实现这一目标充满难度和挑战,但杨学明抱有极大的耐心和热忱。杨学明研发的大科学仪器,是从个人的研究兴趣出发,希望得到解决重要科学问题的工具,也希望这样的科学仪器助力解决国家重要的卡脖子技术。但他也关注到我国科研仪器研发底子相对薄弱的现象。作为全国人大代表,杨学明近几年来也在两会上呼吁加强国产高端科研仪器的研发和大科学设施的发展。他坦言,做科学仪器对科学家来说,其实是很吃力的一件事情,科学仪器是科学和工程相结合,科学家也要面临争取较大经费的难题。未来应该如何促进原创科学仪器的设计研发?杨学明认为,要有鼓励的政策环境和资源,科学体系里也应能容纳这样一批专门做仪器研发的人。“现在的考核体系大部分是看发表文章,这就导致大家倾向于使用现成的仪器做研究写文章。但真正的科学是要有仪器上的创新,这才能更有利于推动科学的发展。科学仪器就是一个国家科技硬实力的代表。”他指出,要注重科学仪器的效率问题,真正发挥发展原创性科学的作用。同时,要通过科学仪器的研发培养人才。在他的研究组里,很多学生都有拆装仪器、设计和研制仪器的经验,“我们迫切需要培养更多的高水平的科学仪器研发人才。”■ 对话杨学明:研发科学仪器要注意集成问题新京报:你因揭示了化学反应中的量子共振现象和几何相位效应的成就获得未来科学大奖物质科学奖,请解读这项研究的背景和意义。杨学明:每个化学反应过程都很特别,从反应物到产物有一个过渡的状态,就是过渡态。20世纪30年代,Eyring和Polanyi提出化学反应过渡态理论,即化学反应的关键在于理解其短暂的过渡态,在这千万亿分之一秒内,原子之间旧键断裂,新化学键形成。这个过程决定了它属于哪种化学反应、反应速率有多快、生成哪种产物。这是化学动力学研究中最重要的课题。直接观察反应过渡态被认为是化学研究中的圣杯。7名化学家因开发了阐明这些过程的科学工具和实验,分别在1967年、1986年、1999年获得诺贝尔奖。过渡状态也有一些特别的量子态存在,对化学反应有非常重要的影响。我们的工作就是发展新的实验方法,观测这些量子态的特性,结合理论诠释它们,使我们从量子层面对化学反应过程了解得更透彻。几何相位效应是一种特殊的量子现象,在物理和化学领域有广泛和特别的意义。我们通过新的实验方法和实验仪器的发展,首次在世界上观测到了化学反应中的几何相位效应,从而研究化学反应非常特殊的机理。总的来说,这些工作是非常基础性的,化学动力学本身就是基础性的学科。这些工作的意义也并不是在某一个反应上,而是具有普遍的意义。对基本化学过程的理解,也能推动具体应用领域的发展,比如大气化学、燃烧化学、星际化学等。新京报:由于有了一系列自行研制的原创科学仪器做支撑,你带领团队在化学动力学领域取得了很多重大科研成果。在研制科学仪器时曾遇到什么困难,如何攻破?杨学明:我研制科学仪器,通常是想得很透了再去做。因为我们做仪器不容易,首先要筹措一笔经费,还要想办法做出好的仪器,解决想要研究的科学问题。这个过程中有很多挑战,包括技术性的挑战。所以首先要提出非常好的设计方案,方案中提出关键的问题,比如技术性能,所以要对技术的前沿有充分的了解,比如技术发展到了什么水平?我们能用到什么水平?这是最关键的问题。每个仪器都不一样,怎么来凸显我的仪器的独特性和先进性,要能做其他人做不了的实验,这也是研制仪器之前就必须要想好的。后续研制也遇到过很多问题,比如超高真空、激光技术等问题,每一个都需要去攻克,这样才能做出世界最好、真正领先的科学仪器。需要注意的是,单项技术虽然很重要,但更关键的是把各种技术集成做好,因为现在的科学仪器是非常复杂的,是各种先进技术的集合。研发科学仪器是系统工程,而最重要的需要与科学问题紧密结合,真正把技术和科学结合起来,这样才能做出世界一流的科学仪器。新京报:你在大学有自学量子力学的经历,对现在的年轻学子,你有哪些学习方法和经验可以分享?杨学明:我认为自学能力的培养特别重要,年轻人在大学学习或者研究生学习时要有这样的精神,而不是所有知识的获得都依赖老师。随着互联网的发展,大家获得知识的渠道更加丰富、方式也更加便利,应该充分利用这样的环境去学习和探索,人的发展是累积的过程。我在读研究生的时候,导师张存浩院士给了我一个非常好的建议——刚开始读研时,要花95%的时间做课题方面的研究和学习。但慢慢地,也应该多花一点时间涉猎一些别的方向,这样才能扩大自己的视野,对更多学科有更好的理解和把握,也会大大帮助自己的研究方向。我认为这非常有道理,多年来,我受益于这样的思想,从更宽的视野和学科角度来认识化学和物理世界。
  • 广州空气质量昨超标两级 主要污染物是二氧化氮
    明明是蓝天白云,但眼前总灰蒙蒙的,胸还有点闷,这是为什么呢?原来是空气质量超标了。昨日、前日,广东省、广州市每日在线监测数据都显示空气质量超标,昨日部分站点更是超过达标标准两级,为轻度污染,主要污染物是二氧化氮。   广雅麓湖等监测点都超标   监测数据显示,这两天的空气质量都超标了,二氧化硫、二氧化氮、可吸入颗粒物这三项空气质量评价指标中,后两项都超标了。仅昨日,广雅中学、天河职幼、市86中、麓湖、市监测站等5个监测站点的空气质量超过标准两级,为轻度污染,其他五个监测站点录得的空气质量超标一级,为轻微污染。显示的主要污染物是二氧化氮。   “我也感觉有点胸闷。”昨日,广东省环保厅有关负责人表示,除了视觉上的感觉外,呼吸也感觉没有那么顺畅了,而造成近日空气质量超标的主要原因是机动车尾气。“二氧化硫主要是工业排放,二氧化氮的污染源主要是机动车尾气、电厂、锅炉等,但是超标比较严重的监测站点都是在市中心,说明主要是由机动车尾气造成的,局部的污染比较重,再加上气象条件不利于污染物扩散。”   二氧化氮是气体,如果超标了市民可以怎么防范?对此,该负责人表示,根据检测数据显示,二氧化氮和可吸入颗粒物都明显超标,在空气中,颗粒物会吸附许多污染物、通过鼻腔进入人的身体,通过戴口罩,是可以将一部分污染物过滤掉的。
  • 314万!西安交通大学第二附属医院发布微生物试剂采购项目
    近日,西安交通大学第二附属医院发布微生物组试剂采购项目,计划采购全自动细菌鉴定与药敏检测试剂、细菌质谱鉴定检测试剂、全自动染色仪检测试剂等一年使用量的耗材,总预算为314万元。以下为标讯详细信息:项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次预算金额:314.0000000 万元(人民币)采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片 AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片 AST-GN13VITEK 2革兰氏阴性细菌药敏卡片AST-GN16VITEK 2 革兰氏阴性细菌药敏卡片AST-XN04VITEK 2 革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK 2 革兰氏阴性细菌药敏卡片 AST-N334VITEK 2 革兰氏阴性细菌药敏卡片 AST-N335VITEK 2 革兰氏阳性细菌药敏卡片 AST-P639β-内酰胺酶快速检测试剂Genbag 厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEK MS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶 BacT/ALERT FA全自动血培养仪1厌氧微生物培养瓶 FN需氧微生物培养瓶 SA厌氧和兼性厌氧微生物培养瓶 SN需氧和兼性厌氧微生物培养瓶 PF厌氧和兼性厌氧微生物培养瓶BacT/ALERT FN Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT FA Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT PF Plus半自动鉴定及药敏检测试剂(进口)ID 32 GN 革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID 32 C 酵母菌鉴定试剂盒(比色法)RAPID ID 32 A 厌氧菌鉴定试剂盒(比色法)ID 32 E 肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID 32 STAPH 葡萄球菌鉴定试剂盒(比色法)RAPID ID 32 STREP 链球菌快速鉴定试剂盒(比色法)FUNGUS Ⅲ酵母样真菌药敏试剂盒(微量稀释法)ATB ENTEROC 5 肠球菌药敏试剂盒(比色法)ATB G-5 肠细菌药敏试剂盒(比色法)ATB STAPH 5 葡萄球菌药敏试剂盒(比色法)ATB PSE 5 假单胞菌和非发酵菌药敏试剂盒(比色法)ATB HAEMO 嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATB STREP 5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl 0.85#% 悬浮液悬浮液(3ml)(100支/盒)ATB Medium 肉汤培养基FB(坚固兰)(FAST BLUE BB)JAMES 吲哚试剂麦氏比浊管 McFarland StandardAPI MINERAL OIL 矿物油NIN 马尿酸NIT1 + NIT2 硝酸盐试剂丙酮酸反应检测液(VP1 + VP2)STERILE ATB 无菌加样吸头BCP 二甲苯试剂EHR 色氨酸试剂XYL 溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)--D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP 5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法) P 10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX 30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX 30ugCT0030B米诺环素药敏实验纸片(扩散法)MH 30ugCT0013B氯霉素药敏实验纸片(扩散法)C 30ugCT0064B克林霉素药敏实验纸片(扩散法)DA 2ugCT0020B红霉素药敏实验纸片(扩散法)E 15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK 30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM 20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD 30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法) FOT 20ugCT0058B万古霉素药敏实验纸片(扩散法)VA 30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM 30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP 10ugCT0054B四环素药敏实验纸片(扩散法)TE 30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM 30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO 30ugK6101 奥普托欣纸片 5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF 105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV 5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN 10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM 10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)GC琼脂平板乙腈甲酸头孢硝噻吩纸片
  • 傅若农:珠联璧合功能尽显的金属有机框架化合物(MOFs)吸附剂
    往期讲座内容见:傅若农老师讲气相色谱技术发展    金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。配体,通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景。  在20世纪前,多孔材料一般有两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900年之后才发现的,因其优良的吸附功能,在20世纪后半叶广泛用于各个领域。但是在多种多样的要求下。这些材料已经不能满足人们的需要,于是就有新型的无机-有机杂化金属有机骨架材料的诞生。  1995年亚希(Yaghi)研究组在Nature上报道了第一个MOFs的材料,它是具有二维结构的配位化合物,由刚性的有机配体均苯三甲酸与过渡金属 Co 形成,成为这类化合物发展史上的一个里程碑(Yaghi O M,et al,,Nature,1995,378:703-706)。图1是Yaghi 研究组合成的MOFs。图1 Yaghi 研究组合成的MOFs  1999年,Yaghi研究组在Science 杂志上报道了在原有的基础上进行的改进、以刚性有机配体对苯二甲酸和过渡金属Zn合成的具有简单立方结构的三维 MOF 材料(Li H,et al, Nature,1999,402:276- 279)。2002年,Yaghi研究组通过拓展有机配体的长度合成了一系列与M0F-5具有相同拓扑网络结构的金属-有机骨架多孔材料IRMOF( Isoreticular Metal-organic Framework ),IRM0F-8(N. L. Rosi, et al, Science,2003,300:1127-1129。 这一系列晶态孔材料的合成,成为有纳米孔洞MOF材料的第二次飞跃。  2004年,Yaghi研究组又以三节点有机羧酸配体BTB构筑了MOFs材料MOF-177, 因相对于传统材料的大分子骨架和高比表面积使它的应用范围和吸附性大大增加(Chae H K,Nature,2004,427:523-527)。  2005年法国Férey 研究组在Science发表具有超大孔特征的类分子筛型MOFs 材料——MIL-101。  2006年,Yaghi 研究组合成出了十二种类分子的咪唑骨架(ZeoliticImidazolate Frameworks,ZIFs)材料 (Férey G ,et al, Science,2005,309:2040-2042)。ZIFs具有与沸石相似的拓扑结构,它所展现出的永久孔性质和高的热化学稳定性引起了人们很大的注意,ZIFs的优越性能使其成为气体分离和储存的一类新型材料。2010年,又在 Science杂志上提出了一个新的概念——多变功能化金属有机骨架(MVT-MOFs)材料,即在同一个晶体结构的孔道表面同时修饰上不同种类功能团的 MOFs 材料,并报道了十八种MVT-MOF-5材料。  2013年Yaghi研究组在Science 上以“金属-有机骨架材料的化学和应用”为题总结了金属-有机骨架材料在化学及应用反面的发展,他们涉及了图2所列的材料(SCIENCE, 2013,341:1230444-1-1230444-12)。图 2 MOFs 分子中的无机单元(A)和有机配体(B)的结构  图中颜色:黑—C,红—O,黄—S ,紫—P,浅绿—Cl, 氯—N,蓝--多面体,金属离子,  AIPA, 三(4-(1H-咪唑-1- )苯基)胺 ADP, 脂肪酸 TTFTB4– --4,4′ ,4′ ′ ,4′ ′ ′ -([2,2′ bis(1,3- dithiolylidene)] -4,4′ ,5,5′ -tetrayl)tetrabenzoate.  1. MOFs 在吸附剂中的应用  MOFs 已经有众多应用领域,在分析化学中的应用如下图所示。在分析化学的应用中,很多过程都涉及使用吸附剂(如样品收集、贮存、固相萃取、固相微萃取、色谱分离等)。Zhi-Yuan Gu, Cheng-Xiong Yang, Na Chang, and Xiu-Ping Yan*Acc. Chem. Res., 2012, 45 (5):734–745图 3 MOFs 在分析化学中的应用  MOFs材料分为微孔、介孔、和大孔。介孔材料在有腔尺寸范围2-50 nm,这一尺寸相当于典型有机物分子大小(除了聚合物)。因此,介孔材料是特别有前途的吸附剂,用于许多领域。图3是2002-2015年间发表的有关MOFs介孔材料的文章数据(Chem. Eur. J. 2015, 21:16726 – 16742)。近年发表的有关MOFs介孔材料的文章急剧上升,到2014年后大顶峰,如图3所示。图3 2002-2015年间发表的有关MOFs介孔材料的文章数据  MOFs 比一般吸附剂具有更大的比表面和可调的孔径,图 4是近年合成的MOFs材料比表面和孔径逐年提高的情况。图 4 近年合成的MOFs材料比表面和孔径逐年提高的情况(括号中的数据是孔容(cm3/g)  2010年 A Samokhvalov 的综述“溶液中芳烃和杂环芳烃在介孔金属-有机框架化合物上的吸附”(Adsorption on Mesoporous Metal–Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds)。系统地分析了在溶液中介孔材料的吸附/解吸研究的化学机制,讨论了介孔材料在水中稳定性、吸附容量和选择性。((Chem. Eur. J. 2015, 21:16726-16742)  2012年,中科院大连化学物理研究所孙立贤应邀为Energy & Environmental Science杂志撰写了题为:介孔金有机框架化合物:设计和应用(Mesoporous Metal Organic Frameworks: Design and Applications)的综述文章,详细介绍了介孔金属有机骨架材料的设计合成、研究进展及其在气体储存、催化、传感、VOC吸附和药物释放等领域的潜在应用。介孔MOFs的设计合成方法主要包括:(1)通过延长配体的长度,调节次级结构单元大小,从而提高MOFs孔径 (2)采用混合配体,构筑新型次级结构单元,获得介孔MOFs (3)利用表面活性剂作为模板,合成介孔MOFs材料 (4)设计合成次级结构配体,构建中孔MOF材料。  (http://www.cas.cn/ky/kyjz/201203/t20120331_3547949.shtml)(Energy Environ. Sci. 2012, 5:7508–7520.)  同年上海交通大学崔勇等也发表了” 介孔MOFs材料“(Mesoporous metal–organic framework materials)的总综述章,讨论了介孔材料的设计与合成,孔隙率、活化和表面改性,以及在贮存与分离,催化,药物输送及影像学的应用。其特性是依赖于笼形或通道的孔形状、大小和化学环境。(Chem Soc Rev , 2012, 41:1677–1695)。  2 典型的介孔MOFs材料  MOFs材料有很多很多,有代表性的介孔MOFs见下表1.  表1 有代表性的介孔MOFs介孔MOFs/分子式比表面积/ (m2 /g)窗口或孔道/?孔容/(cm3 /g)结构类型拓扑的符号g文献BETLangmuirCd-MOF/Cd(NH2BDC)? (4,4,-bpy)?4.5H2O?3DMF——18x23—3D通道kagJ. Am. Chem. Soc.,2010, 132:5586CMOF-2/[Zn4O(L4)3] ?22DEF?4H2O——26,20x16—3D通道pcu J. Am. Chem. Soc., 2010, 132:15390.CMOF-3/[Zn4O(L5)3] ?42DMF——20,15x7—3D通道pcu同上CMOF-4/[Zn4O(L5)3] ?37DMF?23EtOH?4H2O——32,25x23—3D通道pcu同上CMOF-2a/Cu2L1a(H2O)2?15 DMF?11 H2O0—22x15—3D通道{43 62 8}n Nat. Chem., 2010,2: 838CMOF-3a/Cu2L2a(H2O)2?12 DEF?16 H2O240—30x20—3D通道{43 62 8}同上CMOF-4a/Cu2L3a(H2O)2?10 DEF?14 DMF?5 H2O0—32x24—3D通道{43 62 8}同上CMOF-2b/Cu2L1b (H2O)2?11 DEF?3 H2O0—22x15—3D通道{43 62 8}同上CMOF-3b/Cu2(L2b) (H2O)2?13 DMF?11iPrOH?4.5 H2O0—30x20—3D通道{43 62 8}同上CMOF-4b/Cu2(L3b) (H2O)2?6.5 DEF?19DMF?8.5iPrOH?2 H2O0—32x24—3D通道{43 62 8}同上IRMOF-12/Zn4O(HPD)3?10DEF?H2O—175024.5 0.613D通道pcuScience, 2002, 295, 469.IRMOF-14/Zn4O(HPD)3?6DEF?5H2O—193624.50.693D通道pcu同上IRMOF-16/Zn4O(HPD)317DEF?2H2O1910—28.8—3D通道pcu同上JUC-48/[Cd3(BPDC)3(DMF)] ?5DMF?18H2O62988021.1x24.90.191D通道etbAngew. Chem., Int. Ed., 2007, 46: 6638mesoMOF-1/Cu3(TATAB)2(H2O)38DMF?9H2O729—22.5x26.13D通道borJ. Chem. Soc., 2006, 128:16474.MIL-100(Cr)/Cr3FO(H2O)3(BTC)2?nH2O(n=28)—310025,291.16笼型MTNAngew. Chem., Int. Ed., 2004, 43: 6296.MIL-101(Cr)/Cr3F(H2O)2(BDC)3?25H2O4200b, 2800-4230c5900 b 4000-5900 c29,34 b2.01笼型MTN16, Science, 2005, 309, 2040;49MOF-180/Zn4O(BTE)2(H2O)3?H2O15x231.37-2.15笼型qomScience, 2010, 329, 424MOF-200/Zn4O(BBC)2(H2O)3?H2O45301040018x283.59笼型qom同上MOF-210/Zn4O(BTE)4/3(BPDC)62401040026.9x48.33.9笼型toz同上NOTT-116(PCN-68)/Cu3(PTEI)(H2O)3?16DMF?26H2O4664d 5109c6033c12.0,14.8,23.2e2.13d,2.17笼型rhtJ. Am. Chem. Soc., 2010,132:409219NU-100(PCN-610)/Cu3(H2O)3(TTEI)?19H2O?22DMFa6143f—13.4,15.4,27.4f 12.0,18.6,26c28.2 f笼型rhtAngew. Chem., Int. Ed.,2010, 49:535720PCN-100/Zn4O(TATAB)2?17DEF?3H2O—86027.30.58笼型pyrInorg. Chem., 2010, 49:11637PCN-101/Zn4O(BTATB)2?16DEF?5H2O—11400.75笼型pyr同上UMCM-1/Zn4O(BDC) (BTB)4/34160650024x291D通道—Angew. Chem., Int. Ed.,2008, 47:677ZIF-95/Zn(5-氯代苯并咪唑)21050124025.1x14.3 30.1x200.43笼型pozNature, 2008, 453:207ZIF-100/Zn20(5-氯代苯并咪唑)39 OH59578035.60.37笼型moz同上Cu6O(TZI)3(H2O)9(NO3)?15H2O2847322312.088 13.077 20.2471.01笼型rthJ. Am. Chem. Soc., 2008, 130: 1833Cu2(L7)(H2O)2?14DMF?5H2O1020112721.2x3.5—3D通道ptsAngew. Chem., Int. Ed., 2009, 48: 9905.JT-1/{Cu7(OH)2(L6)3}{Cu6(OH)2(SO4)-(S3O10)2}?10H2O375—23.6—笼型f—Angew. Chem., Int. Ed., 2011,50:1154JT-2/{Cu7(OH)2(L6)3}2{Cu6(OH)2- (SO4)6 (S2O7)}{Cu3(SO4)(H2O)6} ?18H2O421—18.23—笼型f—同上  a --同一化合物会有不同的名称 b --数据源于文献:Science, 2005, 309: 2040 c--数据源于文献Angew.Chem., Int. Ed., 2006, 45: 8227 d--数据源于文献: J. Am. Chem. Soc., 2010,132:4092 e--数据源于文献: Angew.Chem., Int. Ed.,2010, 49:5357 f--数据源于文献:20 Nat. Chem., 2010, 2: 944 g—要理解拓扑符号参阅 http://rcsr.anu.edu.au/ and http://www.iza-structure.org/databases/ h—Schlafli 符号 i—手性MOF  2. 介孔MOFs材料在水中的稳定性  MOFs材料常用于吸附水中的物质,所以它在水中的稳定性至关重要。许多MOFs在水中是不稳定的,这是由于金属和配体的连接的配合物遇水会水解。在水中稳定的MOFs可用于水的净化,表2是这类MOFs。  表2 MIL-101 家族在水中的稳定性MOF后改性液体/蒸汽液相测试条件a吸附的表征结构文献MIL-100(Cr)(F)无蒸汽--变温T, RHXRD24h元素分析,滴定,XRD, N2吸附稳定25,Adv Mater, 2011, 23:3294–3297MIL-101(Cr)(F)无蒸汽-40–140℃ , 5.6 kPaH2O and N2吸附稳定21,Eur. J. Inorg. Chem, 2011, 471–474MIL-101(Cr)(F)无液体NaOH 或 HCl水中RTXRD, ζ -电位在pH 2-10稳定,pH 12不稳定22,Chem Eng J, 2012, 183: 60–67MIL-101(Cr)-X X=-H X=-NO2 X=-NH2 X=-SO3H 无 无 还原 无蒸汽--25℃同步辐射XRD,吸附水, TGA稳定26,Microporous Mesoporous Mater,2012, 157: 89–93MIL-101(Cr)(F) MIL-101(Cr)无蒸汽--100℃XRD, TGA,吸附稳定24,Energy Fuels 2013, 27: 7612–7618MIL-101(Cr)(F) MIL-101(Cr)-NO2 MIL-101(Cr)-NH2无HNO3/H2SO4 还原蒸汽--40–140℃TGA, DSC, XRD, BET反复40次,稳定15,Chem Mater,2013, 25:790–798MIL-101(Fe)-NH2无液体水RT,24 hXRD--33,Chem Commun,2013, 49:143–145.MIL-101(Al)-NH2无液体水液体水RTXRD,NMR, AAS稳定 7天30,Chem Eur J, 2015, 21:314–323  4 MOFs 用作分离富集吸附剂  MOFs具有比表面积大、孔道和性质可调等的特点,非常适合于气态样品的采样和预富集。Yaghi研究较早合成的的MOF-5其比表面积约为3 000 m2/g,2004年,他们合成报的MOF-177,比表面积可达到4 500 m2/g,而2010年合成出MOF-210,以BET法测定比表面积可达6 240 m2/g,这为从混合物中分离富集微量目标物提供了很好的条件。  2007年 Ji Woong Yoon 等合成了 [Co3(2,4-pdc)2(μ 3-OH)2]?9H2O (2,4-pdc =嘧啶-2,4-二羧酸二价阴离子, NC5H3- (CO2)2-2,4) (CUK-1),以CUK-1作填充气相色谱柱,可以很好地分离几种永久气体组成(氢、氧、氮、甲烷和二氧化碳)[B-4],这样要比无机分子筛要优越多了(二氧化碳不会在低温下永久吸附)。  2010年严秀平研究组就研究了 MOF-5[ Zn4O(BDC)3, BDC =对苯二甲酸]和MOF-5单斜(沸石咪唑酯骨架结构材料ZIF-8 的吸附性能,用脉冲气相色谱、静态蒸气吸附、穿透吸附方法研究二了甲苯位置异构体和乙苯混合物在这两种金属框架配位化合物上的吸附行为。他们合成MOF-5的方法: Zn(NO3)26H2O(600 mg,2mmol)和对苯二甲酸(170mg,1mmol)溶解在DMF(20mL) 混合转移到一个聚四氟乙烯衬里的小反应釜中,密封后在120℃烘箱中加热21 h后,冷却至温,过滤得到的混合物为无色立方晶体。用DMF洗涤合成的MOF-5,在室温下干燥后再在减压下于250℃烘干, MOF-5在真空下储存以免受潮水解破坏结构,BET法测得比表面积773 m2/g。他们测得MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线,见图 5.图 5 MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线  2010年年严秀平研究组利用MOF-5吸附剂现场对大气中的甲醛进行吸附取样预浓缩,然后直接热脱附,用GC-MS进行分析。这一吸附剂比Tenax TA(有机聚合物)吸收效率高53-73倍。 取样和分析过程如图5所示(Anal Chem,2010,82:1365-1370)。图6用MOF-5吸附剂现场取样分析大气中的甲醛  2012年扬州大学曾勇平研究组用巨正则蒙特卡罗模拟法考察金属有机框架IRMOF-1和Cu-BTC吸附噻吩和苯的问题,仿真结果表明,吸附质与之间的静电相互作用主导吸附机制。结果表明,噻吩分子优先被吸附 IRMOF-1比Cu-BTC[ BTC =均苯三甲酸]有较高的吸附容量(Sep Pur Tech,2012,95:149–156)。  2013年同济大学乔俊莲研究组合成了MOF MIL-53(Al){Al(OH)[O2C-C6H4-CO2]}和MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} 用作吸附剂去除水样品中双酚A(BPA)。BPA的吸附动力学数据符合拟二级动力学模型,二者对BPA的平衡吸附量达到329.2± 16.5和472.7± 23.6mg/g,远高于活性炭(从129.6到263.1 mg/g),可以快速去除水中的BPA,所需的接触达到平衡的时间约 90 min (J Colloid Interface Sci,2013,405:157–163)。双酚A吸附情况如图7所示。图 7 在MIL-53(A)上吸附双酚A的示意图 2014年江苏大学的刘春波和南京师大的张继双研究组用Cu-BTC [ BTC =均苯三甲酸](MOF HKUST-1)去除染料废水中的亚甲基蓝,Cu-BTC具有中孔,高表面积和大孔隙体积,具有很好的吸附能力(Micropor Mesopor Mater,2014,193 :27–34)。Cu-BTC的晶体结构如图6所示。Cu-BTC能用乙醇溶液再生,并保留吸附能力。因此,作者们认为这些Cu-BTC MOFs材料为载体可以成为最有前途的分离污染物的吸附剂,其晶体结构如图8。图8 Cu-BTC的晶体结构  4 小结  MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在吸附剂应用领域有广泛的应用前景。MOFs在固相萃取中的应用下一篇讨论。
  • Anal. Chem. 四川大学吴鹏课题组:单线态氧特征磷光发射测定D2O纯度 | 前沿用户报道
    供稿:郎云贺成果简介近日,四川大学吴鹏课题组利用单线态氧1270nm的NIR-II特征发射(聚噻吩光敏剂)测定D2O纯度,相关文章已发表在Analytical Chemistry上,该工作也表明了单线态氧的NIR-II发射在分析检测中具有潜在的应用价值。背景介绍重水(D2O)在核工业及生物有机分析等领域应用广泛。但由于D2O与H2O的物理性质极为相似,加之D2O具有强吸湿性,致使区分D2O和H2O极具挑战。单线态氧的特征磷光发射(1270 nm,NIR-II)具有半峰宽窄、信号干扰小的特点,能够有效区分D2O/H2O。图文导读单线态氧的特征磷光发射强度与溶剂相关。与O-D(ν = 2550 cm-1)相比,高振动频率的O-H(ν = 3250 cm-1)能够更快速有效的促使单线态氧非辐射失活,表现为更弱的信号强度(图1A)。目前,最直接、方便产生单线态氧的方式是通过光敏过程(图1B)。然而,常规情况下该特征磷光发射非常弱,难以满足定量分析的要求。图1 光敏氧化产生的1O2特征磷光发射区分H2O和D2O四川大学吴鹏教授团队筛选具有优良光敏稳定性、较高单线态氧量子产率的聚噻吩光敏剂,加入至不同比例的D2O/H2O溶液中,利用激光器作为激发光源,通过提高激光功率增强了光敏氧化产生的单线态氧1270 nm磷光发射信号。信号采集时间约30 s,最终实现D2O纯度的定量分析与检测。收集1O2的弱磷光发射信号的仪器设置在本研究中,主要是由四川大学分析测试中心分子光谱组瞬态荧光光谱仪(HORIBA Fluorolog® -3)支撑,装备近红外检测器(H10330,Hamamatsu)。通过该仪器,完成了光敏剂分子荧光光谱、荧光寿命、单线态氧磷光光谱、单线态氧磷光寿命等的测量。HORIBA Fluorolog® -3 荧光光谱仪作者借助外置激光器(提高激光功率),得到了平滑的单线态氧磷光发射曲线(如图2D),实现了通过NIR-II光谱完成D2O纯度的定量分析。该仪器具有功能多样、灵敏度高等优势,NIR-II光谱平均扫描时间仅30 s。值得注意的是,该仪器与脉冲激光器相连接,能够得到不同溶剂的单线态氧寿命衰减曲线(图2E)。该仪器对发光强度很弱的单线态氧NIR-II磷光及其他稳态/瞬态相关的研究提供了广阔的平台。图2 光敏剂PT10的光物理性质研究如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息Analysis of the Isotopic Purity of D2O with the Characteristic NIR-II Phosphorescence of Singlet Oxygen from a Photostable Polythiophene Photosensitizer署名作者:Yunhe Lang, Shihong Wu, Qin Yang, Yanju Luo*, Xia Jiang, and Peng Wu*文章链接:https://doi.org/10.1021/acs.analchem.1c01160扫码查看文献吴鹏教授课题组简介吴鹏,四川大学分析测试中心/化学学院教授,博导,国家优青,四川省学术与技术带头人。近年来的研究工作以室温磷光和单线态氧的光物理和光化学调控为基础,探究其在核酸检测、光动力治疗等领域的新应用。已在Nat. Commun.、Angew. Chem. Int. Ed.、Nano Lett.、Chem. Sci.、Anal. Chem.等国际知名期刊上发表论文90余篇,H-index 38。
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之六:氘代咪唑与苯并咪唑类抗菌药物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。2022年,阿尔塔科技获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”。阿尔塔科技将依托重点实验室继续深耕食品安全、环境安全、医药研发、临床检测等领域稳定同位素标记标准物质的结构设计合成和分离纯化、分析方法开发和质量控制,开展稳定同位素标记标准物质全产业链应用技术研究。阿尔塔科技陆续推出了五期稳定同位素标记物产业化基地建设成果系列报道,本期向您推荐稳定同位素标记的咪唑与苯并咪唑类抗菌药物,继续展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,让更多的国家标准制修订和实验室检测活动用上国产稳定同位素标记标准物质。部分咪唑与苯并咪唑类抗菌药物:了解更多产品或需要定制服务,请联系我们天津阿尔塔科技有限公司介绍天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 检测新策略助力痴呆症药物筛选
    近日,华东理工大学化学与分子工程学院教授郭志前课题组在淀粉样蛋白β(Aβ)斑块活体检测标准方法研究领域取得突破。相关研究以《近红外激活型聚集诱导发光探针制备及其对小鼠脑部淀粉样蛋白Aβ的检测应用》为题在《自然—实验手册》发表。神经退行性疾病与蛋白质错误折叠和病理积累息息相关。其中,阿尔茨海默症(AD)是一种起病隐匿的神经系统退行性疾病,也是痴呆症最常见的病症类型。值得注意的是,Aβ斑块积累是阿尔茨海默症最显著的病理特征。因此,开发可视化的荧光探针检测Aβ斑块对阿尔茨海默症的早期诊断至关重要。半个世纪以来,硫磺素衍生物(ThT或ThS)作为检测Aβ斑块的“金标准”染料,已被广泛用于AD大脑组织切片染色。然而,这类染料具有浓度猝灭、信噪比低和血脑屏障(BBB)穿透性差等缺陷,难以对Aβ斑块进行活体成像检测。特别是如何克服染料延伸波长的亲脂性需求与实现Aβ点亮型检测之间的矛盾是目前亟待解决的科学问题。针对现有商业染料ThT的固有缺陷,该研究提出分子设计策略并建立了标准化检测及成像应用方法:引入亲脂性噻吩桥连单元延伸发射波长至近红外区域,并满足穿透血脑屏障的亲脂性需求;利用本组聚集诱导发光母体喹啉腈克服染料浓度猝灭问题;优化亲水性磺酸盐基团取代位置,以保证探针分子在结合Aβ斑块前的状态。基于该策略发展的探针具有荧光波长长、检测信噪比高、Aβ亲和力好、BBB穿透性优异的特点,已成功实现对小鼠大脑中Aβ斑块的近红外荧光标记。该探针有望代替市售染料ThT进行高保真度组织学染色,在阿尔茨海默症新药筛选和药理研究中显示出巨大潜力。
  • 对话欧洲石油巨头TOTAL | 岛津新一代硫化学发光检测器 SCD-2030助力石油化工中硫化物可靠性分析
    内容概要 Nexis™ SCD-2030是岛津为解决实验室需求而开发出的新一代硫化学发光检测系统。其卓越的高灵敏度与稳定性、易维护性以及行业首创的自动化功能,显著提升实验室工作效率。 欧洲石油巨头道达尔公司(以下简称:TOTAL)与岛津欧洲公司(以下简称:SHIMADZU)目前在石油化工领域开展深度合作,其研发部门Giusti博士和Piparo博士使用硫化学发光检测器Nexis™ SCD-2030开展油品中硫化物的痕量分析研究并取得不错的成果。 岛津欧洲创新中心采访了道达尔研发部门的Giusti博士和Piparo博士,针对在使用Nexis™ SCD-2030期间:硫化学发光检测器解决了哪些问题?生物燃料未来将面临哪些挑战?双方未来将在哪些方面开展深入合作等话题进行了专访… … SHIMADZU:Giusti博士,感谢百忙之中接受这次采访。首先,请您介绍下您团队的研究方向及目前已取得的成果。道尔达研发部门的Pierre Giusti博士(左)和Marco Piparo博士(右) TOTAL:谢谢岛津公司提供这次交流机会。Piparo博士和我所属道达尔公司研发&分析部门,工作最大的聚焦点在提供最新分析工具,主要是仪器和方法。部门始终的要求是不断寻找和评价具有实用性的分析技术,适用于日程或未来的工作需求。关于实用性这点,对我们而言,最真实的需求是将研发部门建立的稳定可靠的分析方法,成功地转移到质控部门,无论分析人员的技术是否熟练,均可获得稳定的检测结果。我们部门也会提供技术指导和支持对于公司其他部门。我们时刻面临诸多挑战,例如:生物燃料的开发及使用,塑料制品的回收与再生利用等问题。 SHIMADZU:为何考虑在这方面开展研究工作? TOTAL:能源市场由于全球气候问题,技术发展以及社会因素在不断变化,能源行业正处于巨变前沿。我们的研究工作主要改善并提升石油传统分析方法,同时建立全新油品、石油燃料、聚合物的分子指纹图谱,成为全球能源市场的重要参与者。最终实现2050年二氧化碳的净零排放量这一社会目标,普及低二氧化碳排放量燃料的使用,减少对石油燃料的依赖。 SHIMADZU:关于目前开展的合作项目,为什么考虑岛津公司作为合作伙伴呢? TOTAL:我们研发部门通常会开展多个项目,而每个项目需要创新和好的想法,这需要有合作伙伴共同实现。不仅如此,仪器厂商还需要愿意倾听我们用户的真实需求和问题,持续不断地从客户角度出发,关注开发用户所需求的产品和技术,岛津公司符合以上预期和要求。在此情况下,双方开展项目合作,以及计划共同开发含氧化合物的专属分析系统并申请专利。 道达尔公司研发人员与岛津应用专家交流探讨 SHIMADZU:岛津仪器在项目中解决了哪些问题? TOTAL:岛津公司一直提供多种先进的仪器和分析方法,对我们日常研发工作起到很大的帮助。其中硫化学发光检测器(SCD),采用全新技术开发的产品,使我们可以在复杂基质中,准确地检测到痕量硫化物。同时岛津质谱仪在使用高速扫描模式采集数据时,没有发生质谱歧视或灵敏度大幅下降的情况发生,以上仪器特点对我们日常工作非常重要。此外,这么多年使用岛津仪器的感受,产品非常皮实耐用,稳定性也非常好,确保日常分析结果的准确、可靠。 岛津全新硫化学发光检测器Nexis™ SCD-2030 Piparo博士提到之前使用SCD-2030检测器分析柴油中硫化物的应用案例。为了考察检测器的选择性、重现性和等摩尔浓度,采用脱硫柴油基质,加入七种与柴油相关的不同含硫化合物(分别为硫化物、硫醇和噻吩),目标硫化物的S添加浓度为下表。 通过实验结果发现在S的最低浓度点,所有加标样品的面积重现性均低于4%(n=6);回收率为92%~106%(n=3)。“SCD-2030能够有效避免油品中复杂基质的干扰,实现硫化物的高灵敏和高选择性检测,可获得良好的重现性和回收率。” Giusti博士补充道。 最低浓度点Level1的七种硫化物的色谱图(S: 1 to 4mg/L) SHIMADZU:最后,谈谈未来的合作方式及合作方向? TOTAL:基于iC2MC实验室,希望未来双方可以建立一个项目推进讨论平台,与岛津研发人员定期进行项目探讨,开展头脑风暴等,交流最前沿的元素分析,质谱分析技术,色谱分离等不同分析技术。此外,计划两年内,开发出用于生物燃料研究的专属含氧化合物的分析系统。该系统将结合岛津的气相色谱技术以及道达尔公司的技术,以及法国波城大学和西班牙奥维耶多大学的联合研究成果,为推动生物燃料的开发、生产改善做出贡献。 *iC2MC(https://ic2mc.cnrs.fr/) 道达尔研发人员与岛津欧洲创新中心经理平冈合影 参考文献:(1) R. L. Tanner, J. Forrest, L. Newman, “Determination of atmospheric gaseous and particulate sulfur compounds. [Atmospheric SO2 sampling, calibration, and data processing],” Brookhaven National Laboratory, Upton, NY, USA, Tech. Rep. BNL-23103. Jan. 1977.(2) X. Yan, “Unique selective detectors for gas chromatography: Nitrogen and sulfur chemiluminescence detectors,” J. Sep. Sci., vol. 29, pp. 1931-1945, Jun. 2006.(3) Y. Nagao, ”Reliable Sulfur Compounds Analysis in Diesel using Sulfur Chemiluminescence Detector Nexis SCD-2030,” Shimadzu Application News.
  • 分析检测新标准拟定
    近来一段时间,看到各行业 分析检测新标准拟定 现已放出意见征集公告。为大家汇总整理下,看看有没有涉及到大家关注的领域吧!纳米技术石墨烯材料的化学性质表征电感耦合等离子体质谱法 标准意见征求标准中所使用的方法,需要用到的测试仪器有以下几种:可对无机元素进行痕量定量测试的电感耦合等离子体质谱仪、能对被测样品进行消解的微波消解仪、能去除消解后样品溶液中浓硝酸的赶酸仪。标准也详细叙述了样品前处理的各项步骤,并推荐同时处理4-6个平行样进行ICP-MS测试分析,其中1-2个样品中应加入含有特定元素的标准溶液用于后续计算加标回收率。小麦粉的测定高效液相色谱法 三项补充方法发布《小麦粉中三聚硫氰酸三钠盐的测定》(BJS 202001)规定了小麦粉中三聚硫氰酸三钠盐的高效液相色谱测定方法,适用于小麦粉中三聚硫氰酸三钠盐的测定。在检测中,除了需要用到高效液相色谱之外,还需要用到 电子天平、涡旋混合器、高速冷冻离心机等仪器,待试样中检出三聚硫氰酸三钠盐后还需要采用液相色谱-质谱/质谱法进行确证。《小麦粉及其面粉处理剂中苯甲羟肟酸的测定》(BJS 202002)规定了小麦粉及其面粉处理剂中苯甲羟肟酸的高效液相色谱测定方法,适用于小麦粉及其面粉处理剂中苯甲羟肟酸的测定。检验过程中需要用到高效液相色谱仪、电子天平、pH计、涡旋振荡器、超声波发生器、高速离心机等,结果确认使用液相色谱-质谱/质谱法。《小麦粉中曲酸的测定》(BJS 202003)规定了小麦粉中曲酸的高效液相色谱测定方法,适用于小麦粉中曲酸的测定。液相色谱仪:配有二极管阵列检测器或紫外检测器。检测中,用纯水提取试样中曲酸,用配有二极管阵列检测器或紫外检测器的高效液相色谱仪检测,外标法定量。此外还需要用到分析天平、pH计、超声波水浴、离心机等仪器。化妆品中壬二酸的检测气相色谱法 意见征集《化妆品中壬二酸的检测 气相色谱法》中所规定的检测方法原理是试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离,再使用氢火焰离子化检测器检测,之后根据保留时间定性,外标法定量即可。标准中也显示本方法的检出限为15mg/kg,定量限为50mg/kg。而实验需要用到的仪器设备包括有配备氢火焰离子化检测器的气相色谱仪、分析天平、离心机、涡旋振荡器、刻度管、氮吹仪等。化妆品中禁用物质三氯乙酸的测定气相色谱质谱法 意见征集《化妆品中禁用物质三氯乙酸的测定》引用了《分析实验室用水规格和试验方法》,规定了气相色谱质谱法测定化妆品中三氯乙酸含量的方法,而方法的原理是样品在酸性条件下用甲基叔丁基醚萃取,在萃取液经氮气吹干后,用硫酸乙醇溶液衍生,使样品中的三氯乙酸形成三氯乙酸乙酯,之后用正己烷萃取并注入气相色谱-质谱联用仪分析,用外标法定量即可。该标准所规定使用的方法需要用到的仪器设备有配备电子轰击电离源的气相色谱-质谱联用仪、分析天平、涡旋振荡器、氮吹仪、离心机、水浴锅。因仪器设备具有多样性,为确保实验顺利进行,标准征求意见稿中还规定了仪器的色谱柱固定相应当是含有5%苯基的甲基聚硅氧烷石英毛细管柱或性能相当者。天然气加臭剂四氢噻吩含量的测定气相色谱法 意见征集标准中规定了用气相色谱法在线测定天然气中加臭剂四氢噻吩的试验方法。而该方法的原理是具有代表性的天然气样品和已知含量的四氢噻吩气体标准物质在同样的操作条件下,经色谱柱分离后进入热导检测器后就能对四氢噻吩含量进行测定,而四氢噻吩含量与峰高或峰面积成正比,通过对比标物和天然气样品的四氢噻吩峰高或者峰面积,即可获得天然气样品中四氢噻吩的含量。标准中还明确表明了使用的便携式气相色谱仪的进样系统应当选用对四氢噻吩无吸附性或经惰性化处理的材料,而色谱柱的材料也应对四氢噻吩呈惰性和无吸附性,或者色谱柱内壁要经惰性化处理,柱内填充物也可以对被检测的四氢噻吩进行有效分离。
  • 西安交通大学第二附属医院314.00万元采购样品前处理
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告陕西省-西安市-新城区状态:公告更新时间:2022-05-14招标公告公示西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告发布时间:2022-05-1415:44:32西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告项目概况西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次的潜在投标人应在线上获取招标文件,并于2022年6月7日09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片AST-GN13VITEK2革兰氏阴性细菌药敏卡片AST-GN16VITEK2革兰氏阴性细菌药敏卡片AST-XN04VITEK2革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK2革兰氏阴性细菌药敏卡片AST-N334VITEK2革兰氏阴性细菌药敏卡片AST-N335VITEK2革兰氏阳性细菌药敏卡片AST-P639β-内酰胺酶快速检测试剂Genbag厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEKMS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶BacT/ALERTFA全自动血培养仪1厌氧微生物培养瓶FN需氧微生物培养瓶SA厌氧和兼性厌氧微生物培养瓶SN需氧和兼性厌氧微生物培养瓶PF厌氧和兼性厌氧微生物培养瓶BacT/ALERTFNPlus需氧和兼性厌氧微生物培养瓶BacT/ALERTFAPlus需氧和兼性厌氧微生物培养瓶BacT/ALERTPFPlus半自动鉴定及药敏检测试剂(进口)ID32GN革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID32C酵母菌鉴定试剂盒(比色法)RAPIDID32A厌氧菌鉴定试剂盒(比色法)ID32E肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID32STAPH葡萄球菌鉴定试剂盒(比色法)RAPIDID32STREP链球菌快速鉴定试剂盒(比色法)FUNGUSⅢ酵母样真菌药敏试剂盒(微量稀释法)ATBENTEROC5肠球菌药敏试剂盒(比色法)ATBG-5肠细菌药敏试剂盒(比色法)ATBSTAPH5葡萄球菌药敏试剂盒(比色法)ATBPSE5假单胞菌和非发酵菌药敏试剂盒(比色法)ATBHAEMO嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATBSTREP5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl0.85#%悬浮液悬浮液(3ml)(100支/盒)ATBMedium肉汤培养基FB(坚固兰)(FASTBLUEBB)JAMES吲哚试剂麦氏比浊管McFarlandStandardAPIMINERALOIL矿物油NIN马尿酸NIT1+NIT2硝酸盐试剂丙酮酸反应检测液(VP1+VP2)STERILEATB无菌加样吸头BCP二甲苯试剂EHR色氨酸试剂XYL溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法)P10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX30ugCT0030B米诺环素药敏实验纸片(扩散法)MH30ugCT0013B氯霉素药敏实验纸片(扩散法)C30ugCT0064B克林霉素药敏实验纸片(扩散法)DA2ugCT0020B红霉素药敏实验纸片(扩散法)E15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法)FOT20ugCT0058B万古霉素药敏实验纸片(扩散法)VA30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP10ugCT0054B四环素药敏实验纸片(扩散法)TE30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO30ugK6101奥普托欣纸片5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(8浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(8浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(8浓度)复方新诺明药敏试剂微量肉汤稀释法(8浓度)丁胺卡那药敏试剂微量肉汤稀释法(8浓度)呋喃妥因药敏试剂微量肉汤稀释法(8浓度)氨曲南药敏试剂微量肉汤稀释法(8浓度)美罗培南药敏试剂微量肉汤稀释法(8浓度)妥布霉素药敏试剂微量肉汤稀释法(8浓度)替考拉宁药敏试剂微量肉汤稀释法(8浓度)头孢克罗药敏试剂微量肉汤稀释法(8浓度)头孢噻肟药敏试剂微量肉汤稀释法(12浓度)头孢曲松药敏试剂微量肉汤稀释法(12浓度)头孢哌酮药敏试剂微量肉汤稀释法(12浓度)头孢他啶药敏试剂微量肉汤稀释法(12浓度)头孢呋辛药敏试剂微量肉汤稀释法(12浓度)头孢唑啉药敏试剂微量肉汤稀释法(12浓度)头孢西丁药敏试剂微量肉汤稀释法(12浓度)头孢吡肟药敏试剂微量肉汤稀释法(12浓度)哌拉西林药敏试剂微量肉汤稀释法(12浓度)苯唑西林药敏试剂微量肉汤稀释法(12浓度)氨苄西林药敏试剂微量肉汤稀释法(12浓度)羧苄西林药敏试剂微量肉汤稀释法(12浓度)替卡西林药敏试剂微量肉汤稀释法(12浓度)左氧沙星药敏试剂微量肉汤稀释法(12浓度)环丙沙星药敏试剂微量肉汤稀释法(12浓度)氧氟沙星药敏试剂微量肉汤稀释法(12浓度)洛美沙星药敏试剂微量肉汤稀释法(12浓度)加替沙星药敏试剂微量肉汤稀释法(12浓度)氟罗沙星药敏试剂微量肉汤稀释法(12浓度)诺氟沙星药敏试剂微量肉汤稀释法(12浓度)庆大霉素药敏试剂微量肉汤稀释法(12浓度)司帕沙星药敏试剂微量肉汤稀释法(12浓度)多西环素药敏试剂微量肉汤稀释法(12浓度)米诺环素药敏试剂微量肉汤稀释法(12浓度)克拉霉素药敏试剂微量肉汤稀释法(12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)红霉素药敏试剂微量肉汤稀释法(12浓度)青霉素药敏试剂微量肉汤稀释法(12浓度)氯霉素药敏试剂微量肉汤稀释法(12浓度)利奈唑胺药敏试剂微量肉汤稀释法(12浓度)链霉素药敏试剂微量肉汤稀释法(12浓度)四环素药敏试剂微量肉汤稀释法(12浓度)利福平药敏试剂微量肉汤稀释法(12浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(12浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(12浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(12浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(12浓度)复方新诺明药敏试剂微量肉汤稀释法(12浓度)丁胺卡那药敏试剂微量肉汤稀释法(12浓度)呋喃妥因药敏试剂微量肉汤稀释法(12浓度)氨曲南药敏试剂微量肉汤稀释法(12浓度)亚胺培南药敏试剂微量肉汤稀释法(12浓度)美罗培南药敏试剂微量肉汤稀释法(12浓度)妥布霉素药敏试剂微量肉汤稀释法(12浓度)替考拉宁药敏试剂微量肉汤稀释法(12浓度)头孢克罗药敏试剂微量肉汤稀释法(12浓度)肠杆菌科细菌药敏试剂盒链球菌药敏试剂盒替加环素药敏试剂MIC多粘菌素B药敏试剂MIC嗜血杆菌药敏试剂盒MIC少见菌药敏试剂盒MIC葡萄球菌药敏试剂盒MIC肠球菌药敏试剂盒MIC万古霉素药敏MIC亚胺培南药敏MIC头孢他啶/阿维巴坦试条药敏接种培养液(CAMHB)真菌药敏试纸KBKB法真菌药敏试纸条ETESTETEST法真菌药敏试剂MIC微量肉汤稀释法非发酵菌药敏试剂盒MIC标准菌株/质控菌株干粉培养基(SS、XLD、麦康凯、MH、厌氧血、嗜血)嗜热芽孢杆菌菌片结核分枝杆菌特异性细胞因子(IFN-γ和IL-2)联合检测ELISA法药敏纸片+手工鉴定配套试剂(国产)细菌药敏纸片(各类抗菌素或抗真菌)KB法国产微生物药敏试纸(扩散法法)卡他莫拉菌检测细菌生化鉴别试剂(氧化酶纸片)呋喃唑酮纸片杆菌肽纸片奥扑拓新纸片多粘菌素BV因子鉴定X因子鉴定X+V因子鉴定氨苄西林(氨苄青霉素)纸片苯唑青霉素纸片哌拉西林纸片头孢呋辛(西力欣.头孢呋肟)纸片头孢唑啉纸片头孢哌酮(先锋必)纸片头孢曲松纸片头孢噻肟纸片头孢他啶纸片利福平纸片链霉素纸片庆大霉素纸片四环素纸片氯霉素纸片红霉素纸片复方新诺明SMZ/TMP纸片万古霉素纸片环丙沙星纸片洛美沙星纸片克拉霉素纸片左氧氟沙星纸片磷霉素纸片氧氟沙星纸片克林霉素纸片阿莫西林/棒酸纸片丁胺卡那纸片头孢哌酮/舒巴坦纸片(舒普深)诺氟沙星纸片氟罗沙星纸片氨曲南纸片亚胺培南纸片多西环素纸片司帕沙星纸片氨苄西林/舒巴坦纸片阿奇霉素纸片米诺环素纸片美罗培南纸片头孢吡肟纸片头孢西丁纸片哌拉西林/他唑巴坦纸片替卡西林/棒酸纸片呋喃妥因纸片妥布霉素纸片替卡西林纸片替考拉宁纸片头孢唑肟纸片头孢噻吩纸片奈替米星纸片Optochin纸片杆菌肽纸片新生霉素纸片呋喃唑酮纸片多粘菌素B纸片林可霉素纸片阿莫西林纸片罗红霉素纸片头孢美唑纸片交沙霉素纸片头孢克罗纸片头孢克肟纸片美洛西林纸片利奈唑胺纸片莫西沙星纸片头孢硫脒纸片头孢拉定纸片头孢氨苄纸片头孢匹安纸片拉氧头孢纸片头孢匹罗纸片阿洛西林纸片壮观霉素纸片夫西地酸纸片萘啶酸纸片头孢布烯纸片替加环素纸片厄他培南纸片头孢孟多纸片头孢丙烯纸片麦迪霉素纸片X因子鉴定纸片头孢他啶/棒酸纸片头孢噻肟/棒酸纸片庆大霉素纸片羧苄青霉素(羧苄西林)纸片加替沙星纸片卡那霉素纸片甲氧苄啶纸片头孢替坦纸片新霉素纸片土霉素纸片恩诺沙星纸片氟苯尼考纸片氨苄西林/棒酸纸片呋喃唑酮(痢特灵)纸片通用药敏纸片ETEST药敏(国产)康泰通用药敏试剂条细菌药敏试条(E试验法)青霉素药敏试剂条头孢呋辛药敏试条庆大霉素药敏试条头孢吡肟药敏试条红霉素药敏试条头孢唑啉药敏试条左氟沙星药敏试条诺氟沙星药敏试条苯唑西林药敏试条利奈唑胺药敏试条克林霉素药敏试条阿莫西林/棒酸药敏试条头孢他啶药敏试条环丙沙星药敏试条头孢曲松药敏试条头孢噻肟药敏试条克拉霉素药敏试条头孢哌酮/舒巴坦药敏试条头孢哌酮药敏试条洛美沙星药敏试条氧氟沙星药敏试条万古霉素药敏试条亚胺培南药敏试条美罗培南药敏试条氯霉素药敏试条氨苄西林药敏试条丁胺卡那药敏试条氨曲南药敏试条哌拉西林药敏试条司帕沙星药敏试条头孢他啶/棒酸药敏试条利福平药敏试条羧苄西林药敏试条氟罗沙星药敏试条加替沙星药敏试条米诺环素药敏试条卡那霉素药敏试条多西环素药敏试条替卡西林药敏试条四环素药敏试条妥布霉素药敏试条替考拉宁药敏试条呋喃妥因药敏试条阿奇霉素药敏试条头孢西丁药敏试条复方新诺明药敏试条哌拉西林/他唑巴坦药敏试条头孢噻肟/棒酸药敏试条替卡西林/棒酸药敏试条氨苄西林/舒巴坦药敏试条两性霉素B伊曲康唑5-氟胞嘧啶酮康唑氟康唑伏立康唑米卡芬净泊沙康唑阿尼芬净急诊粪便常规检测样本采集管(包含稀释液、清洗液等)胶体金法粪便隐血(FOB)多水平非定值质控品便隐血(FOB)检测试剂6标段ETEST+染液+基础培养基ETEST药敏(国产)安图国产ETEST纸条(各类抗菌素)细菌药敏试条(E试验法)31家两性霉素B(E试验品)氟康唑(E试验品)伏立康唑(E试验品)阿米卡星药敏条阿莫西林药敏条氨苄西林药敏条氨曲南药药敏条苯唑西林药敏条红霉素药敏条(E试验法)环丙沙星药敏条(E试验法)卡泊芬净药敏条(E试验法)克林霉素药敏条(E试验法)利奈唑胺药敏条(E试验法)氯霉素药敏条(E试验法)美罗培南药敏条(E试验法)诺氟沙星药敏条(E试验法)青霉素药敏条(E试验法)庆大霉毒药敏条(E试验法)四环素药敏条(E试验法)头孢呋辛药敏条(E试验法)头孢哌酮舒巴坦药敏条(E试验法)头孢曲松药敏条(E试验法)头孢他啶药敏条(E试验法)头孢唑林药敏条(E试验法)万古霉素药敏条(E试验法)亚胺培南药敏条(E试验法)左氧氟沙星药敏条(E试验法)头孢吡肟药敏条(E试验法)头孢噻肟药敏条(E试验法)甲氧苄啶-磺胺甲恶唑药敏条(E试验法)米诺环素药敏条(E试验法)阿奇霉素药敏条(E试验法)微生物染液等革兰染色液(4×250ml)手工试剂革兰染色液(4×100ml)抗酸染色液(4×250ml)抗酸染色液(3×100ml)鞭毛染色液荚膜染色液芽孢染色液异染颗粒染色液瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(2×250ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(2×100ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(4×20ml)瑞氏-吉姆萨染色液网织红细胞染色液(2×100ml)网织红细胞染色液(4×20ml)过氧化酶(POX)染色液铁染色液精子染色液精子稀释液妇科白带涂片染色液苏木素-伊红染色液I苏木素-伊红染色液II(H-E单一)巴氏染色液Ⅰ巴氏染色液Ⅱ巴氏染色液(巴氏试剂盒)快速革兰氏染色液革兰氏染液-快速法-碘溶液革兰氏染液-快速法-脱色液革兰氏染液-快速法-沙黄溶液革兰氏染液-快速法-龙胆紫液新型隐球菌染色液六胺银染色液乳酸酚棉兰染液真菌免疫荧光显色试剂(II型)微生物基础培养基等手工试剂梅毒螺旋体抗体检测试剂盒(凝集法)微生物基础培养基等手工试剂麦康凯琼脂平板乳酸棉酚蓝染液六胺银染液真菌荧光染液(一步法)抗酸荧光染色液(金胺O法)弱抗酸染色液无菌病毒运输液(用于甲流)志贺氏菌属诊断血清(50种)志贺氏菌属诊断血清(22种)沙门氏菌属诊断血清(60种)沙门氏菌属诊断血清(30种)出血性大肠埃希菌O157诊断血清(供科研用)触酶试剂氧化酶试验试剂MH干粉沙保罗培养基干粉XLD培养基干粉营养肉汤干粉R2A培养基干粉变色硅胶含醛类消毒剂中和培养基(9ml)含酚、醇类消毒剂中和培养基(9ml)含氯、碘类消毒剂中和培养基(9ml)含表面活性剂类消毒剂中和培养基(9ml)含醛类消毒剂中和培养基(50ml)含酚、醇类消毒剂中和培养基(50ml)含氯、碘类消毒剂中和培养基(50ml)含表面活性剂类消毒剂中和培养基(50ml)苛养菌药敏琼脂平板血、肠道菌分隔琼脂平板沙保罗琼脂平板营养肉汤培养基(液体)营养琼脂培养基尿道菌显色平板伊红美兰琼脂平板中国蓝琼脂平板物表测试平板血﹒嗜血杆菌﹒肠道菌(麦康凯)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(伊红美兰)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(中国蓝)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(SS)分隔琼脂平板血﹒嗜血杆菌分隔琼脂平板GBS运送培养基卵黄琼脂培养基环丝氨酸-头孢西丁-果糖琼脂培养基厌氧血琼脂平板/厌氧苯乙酸琼脂培养基厌氧琼脂培养基庖肉培养基巯基乙酸肉汤培养基耐碳青霉烯类肠杆菌科细菌检测70cm艰难梭菌显色平板70cm不动杆菌显色培养基支原体培养鉴定计数药敏试剂盒(30孔,12种药敏)葡萄糖肉汤培养基磷酸盐缓冲液(PBSpH7.2)SBG增菌液冷冻管冻存管盒液体菌种保存管复方中和增菌培养基(带棉签)注:有名“物表采样管”含复方中和剂的0.04mol/L磷酸盐缓冲液R2A琼脂培养基(干粉)大豆酪蛋白琼脂培养基(干粉)TGE琼脂平板胰蛋白胨大豆培养基(卵磷脂吐温胰蛋白胨大豆培养基)碱性蛋白胨水培养基Amies采样运送拭子(Amies采样运送培养基含拭子)TSA接触平板样本稀释液中和洗脱液复合中和洗脱液(9ml)复合中和洗脱液(5ml)厌氧指示剂SS琼脂平板MH琼脂培养基哥伦比亚血琼脂平板巧克力琼脂培养基B族链球菌平板专用油镜油含珠菌种保存管(国产)(5颗)含珠菌种保存管(国产)(25颗)病毒采样管(无菌病毒运输液)植绒采样拭子磁珠菌种保存液营养肉汤培养基R2A琼脂培养基(平板)大豆酪蛋白琼脂培养基(平板)半固体琼脂Amies采样运送拭子Cary-blair运送培养基stuart运送培养基弯曲杆菌显色培养基尿培养筛选显色平板沙门氏菌筛选显色平板大肠杆菌显色平板金黄色葡萄球菌显色平板李斯特菌显色平板弧菌显色平板霉菌显色平板O157培养基分枝杆菌菌种保存管含珠菌种保存管(进口)(25颗)脱脂奶粉血琼脂平板念珠菌显色平板耐药菌三联检显色平板真菌快速培养鉴定药敏试剂盒缓冲液(碳青霉烯酶)一次性封闭真菌形态学观察培养基多粘菌素B纸片霍乱弧菌诊断血清01群、0139脑心浸液琼脂GC琼脂平板乙腈甲酸头孢硝噻吩纸片备注:各供应商可选择参投一个或多个标段,但必须对所投标段内全部项目内容进行投标报价,不得缺项、漏项。预算金额:314万元/年。资金性质:自筹资金。项目用途:医用。合同履行期限:2年二、供应商资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2020年度的财务报表(至少包括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前一月的财务报表(至少包括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。3.6、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。3.7、本项目不接受联合体投标。三、获取招标文件时间:2022年5月16日至2022年5月20日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:线上方式:1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信、经办人身份证、联系电话及电子邮箱等资料加盖单位公章的彩色扫描件发送至邮箱591330045@qq.com,并及时联系采购代理机构确认(联系人:李工18220810739),获取缴费方式。2)招标文件售价人民币300元/标段,售后不退。采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。3)受疫情影响,本项目投标文件递交截止时间及开标时间和地点可能会变更,具体另行通知。售价:¥300.0元,本公告包含的招标文件售价总和。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年6月7日09点30分(北京时间)开标时间:2022年6月7日09点30分(北京时间)地点:西安市新城区长乐中路38号金花新都汇A座7层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜需要落实的政府采购政策:1、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);2、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);3、《关于政府采购优先购买福利性企业产品和服务的意见》(陕民发(2015)1号);4、关于印发《政府采购促进中小企业发展管理办法》的通知财库〔2020〕46号;5、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号);6、《环境标志产品政府采购实施的意见》(财库[2006]90号);7、《财政部国务院扶贫办关于运用政府采购政策支持脱贫攻坚的通知》(财库〔2019〕27号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市新城区西五路联系方式:冯女士029-876798612.采购代理机构信息名称:正大鹏安建设项目管理有限公司地址:西安市新城区长乐中路38号金花新都汇A座12层1201室联系方式:李工18220810739,杨工159029482903.项目联系方式项目联系人:李工电话:18220810739×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:样品前处理开标时间:2022-06-0709:30预算金额:314.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:正大鹏安建设项目管理有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告陕西省-西安市-新城区状态:公告更新时间:2022-05-14招标公告公示西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告发布时间:2022-05-1415:44:32西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告项目概况西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次的潜在投标人应在线上获取招标文件,并于2022年6月7日09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片AST-GN13VITEK2革兰氏阴性细菌药敏卡片AST-GN16VITEK2革兰氏阴性细菌药敏卡片AST-XN04VITEK2革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK2革兰氏阴性细菌药敏卡片AST-N334VITEK2革兰氏阴性细菌药敏卡片AST-N335VITEK2革兰氏阳性细菌药敏卡片AST-P639β-内酰胺酶快速检测试剂Genbag厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEKMS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶BacT/ALERTFA全自动血培养仪1厌氧微生物培养瓶FN需氧微生物培养瓶SA厌氧和兼性厌氧微生物培养瓶SN需氧和兼性厌氧微生物培养瓶PF厌氧和兼性厌氧微生物培养瓶BacT/ALERTFNPlus需氧和兼性厌氧微生物培养瓶BacT/ALERTFAPlus需氧和兼性厌氧微生物培养瓶BacT/ALERTPFPlus半自动鉴定及药敏检测试剂(进口)ID32GN革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID32C酵母菌鉴定试剂盒(比色法)RAPIDID32A厌氧菌鉴定试剂盒(比色法)ID32E肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID32STAPH葡萄球菌鉴定试剂盒(比色法)RAPIDID32STREP链球菌快速鉴定试剂盒(比色法)FUNGUSⅢ酵母样真菌药敏试剂盒(微量稀释法)ATBENTEROC5肠球菌药敏试剂盒(比色法)ATBG-5肠细菌药敏试剂盒(比色法)ATBSTAPH5葡萄球菌药敏试剂盒(比色法)ATBPSE5假单胞菌和非发酵菌药敏试剂盒(比色法)ATBHAEMO嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATBSTREP5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl0.85#%悬浮液悬浮液(3ml)(100支/盒)ATBMedium肉汤培养基FB(坚固兰)(FASTBLUEBB)JAMES吲哚试剂麦氏比浊管McFarlandStandardAPIMINERALOIL矿物油NIN马尿酸NIT1+NIT2硝酸盐试剂丙酮酸反应检测液(VP1+VP2)STERILEATB无菌加样吸头BCP二甲苯试剂EHR色氨酸试剂XYL溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法)P10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX30ugCT0030B米诺环素药敏实验纸片(扩散法)MH30ugCT0013B氯霉素药敏实验纸片(扩散法)C30ugCT0064B克林霉素药敏实验纸片(扩散法)DA2ugCT0020B红霉素药敏实验纸片(扩散法)E15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法)FOT20ugCT0058B万古霉素药敏实验纸片(扩散法)VA30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP10ugCT0054B四环素药敏实验纸片(扩散法)TE30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO30ugK6101奥普托欣纸片5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(8浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(8浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(8浓度)复方新诺明药敏试剂微量肉汤稀释法(8浓度)丁胺卡那药敏试剂微量肉汤稀释法(8浓度)呋喃妥因药敏试剂微量肉汤稀释法(8浓度)氨曲南药敏试剂微量肉汤稀释法(8浓度)美罗培南药敏试剂微量肉汤稀释法(8浓度)妥布霉素药敏试剂微量肉汤稀释法(8浓度)替考拉宁药敏试剂微量肉汤稀释法(8浓度)头孢克罗药敏试剂微量肉汤稀释法(8浓度)头孢噻肟药敏试剂微量肉汤稀释法(12浓度)头孢曲松药敏试剂微量肉汤稀释法(12浓度)头孢哌酮药敏试剂微量肉汤稀释法(12浓度)头孢他啶药敏试剂微量肉汤稀释法(12浓度)头孢呋辛药敏试剂微量肉汤稀释法(12浓度)头孢唑啉药敏试剂微量肉汤稀释法(12浓度)头孢西丁药敏试剂微量肉汤稀释法(12浓度)头孢吡肟药敏试剂微量肉汤稀释法(12浓度)哌拉西林药敏试剂微量肉汤稀释法(12浓度)苯唑西林药敏试剂微量肉汤稀释法(12浓度)氨苄西林药敏试剂微量肉汤稀释法(12浓度)羧苄西林药敏试剂微量肉汤稀释法(12浓度)替卡西林药敏试剂微量肉汤稀释法(12浓度)左氧沙星药敏试剂微量肉汤稀释法(12浓度)环丙沙星药敏试剂微量肉汤稀释法(12浓度)氧氟沙星药敏试剂微量肉汤稀释法(12浓度)洛美沙星药敏试剂微量肉汤稀释法(12浓度)加替沙星药敏试剂微量肉汤稀释法(12浓度)氟罗沙星药敏试剂微量肉汤稀释法(12浓度)诺氟沙星药敏试剂微量肉汤稀释法(12浓度)庆大霉素药敏试剂微量肉汤稀释法(12浓度)司帕沙星药敏试剂微量肉汤稀释法(12浓度)多西环素药敏试剂微量肉汤稀释法(12浓度)米诺环素药敏试剂微量肉汤稀释法(12浓度)克拉霉素药敏试剂微量肉汤稀释法(12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)红霉素药敏试剂微量肉汤稀释法(12浓度)青霉素药敏试剂微量肉汤稀释法(12浓度)氯霉素药敏试剂微量肉汤稀释法(12浓度)利奈唑胺药敏试剂微量肉汤稀释法(12浓度)链霉素药敏试剂微量肉汤稀释法(12浓度)四环素药敏试剂微量肉汤稀释法(12浓度)利福平药敏试剂微量肉汤稀释法(12浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(12浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(12浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(12浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(12浓度)复方新诺明药敏试剂微量肉汤稀释法(12浓度)丁胺卡那药敏试剂微量肉汤稀释法(12浓度)呋喃妥因药敏试剂微量肉汤稀释法(12浓度)氨曲南药敏试剂微量肉汤稀释法(12浓度)亚胺培南药敏试剂微量肉汤稀释法(12浓度)美罗培南药敏试剂微量肉汤稀释法(12浓度)妥布霉素药敏试剂微量肉汤稀释法(12浓度)替考拉宁药敏试剂微量肉汤稀释法(12浓度)头孢克罗药敏试剂微量肉汤稀释法(12浓度)肠杆菌科细菌药敏试剂盒链球菌药敏试剂盒替加环素药敏试剂MIC多粘菌素B药敏试剂MIC嗜血杆菌药敏试剂盒MIC少见菌药敏试剂盒MIC葡萄球菌药敏试剂盒MIC肠球菌药敏试剂盒MIC万古霉素药敏MIC亚胺培南药敏MIC头孢他啶/阿维巴坦试条药敏接种培养液(CAMHB)真菌药敏试纸KBKB法真菌药敏试纸条ETESTETEST法真菌药敏试剂MIC微量肉汤稀释法非发酵菌药敏试剂盒MIC标准菌株/质控菌株干粉培养基(SS、XLD、麦康凯、MH、厌氧血、嗜血)嗜热芽孢杆菌菌片结核分枝杆菌特异性细胞因子(IFN-γ和IL-2)联合检测ELISA法药敏纸片+手工鉴定配套试剂(国产)细菌药敏纸片(各类抗菌素或抗真菌)KB法国产微生物药敏试纸(扩散法法)卡他莫拉菌检测细菌生化鉴别试剂(氧化酶纸片)呋喃唑酮纸片杆菌肽纸片奥扑拓新纸片多粘菌素BV因子鉴定X因子鉴定X+V因子鉴定氨苄西林(氨苄青霉素)纸片苯唑青霉素纸片哌拉西林纸片头孢呋辛(西力欣.头孢呋肟)纸片头孢唑啉纸片头孢哌酮(先锋必)纸片头孢曲松纸片头孢噻肟纸片头孢他啶纸片利福平纸片链霉素纸片庆大霉素纸片四环素纸片氯霉素纸片红霉素纸片复方新诺明SMZ/TMP纸片万古霉素纸片环丙沙星纸片洛美沙星纸片克拉霉素纸片左氧氟沙星纸片磷霉素纸片氧氟沙星纸片克林霉素纸片阿莫西林/棒酸纸片丁胺卡那纸片头孢哌酮/舒巴坦纸片(舒普深)诺氟沙星纸片氟罗沙星纸片氨曲南纸片亚胺培南纸片多西环素纸片司帕沙星纸片氨苄西林/舒巴坦纸片阿奇霉素纸片米诺环素纸片美罗培南纸片头孢吡肟纸片头孢西丁纸片哌拉西林/他唑巴坦纸片替卡西林/棒酸纸片呋喃妥因纸片妥布霉素纸片替卡西林纸片替考拉宁纸片头孢唑肟纸片头孢噻吩纸片奈替米星纸片Optochin纸片杆菌肽纸片新生霉素纸片呋喃唑酮纸片多粘菌素B纸片林可霉素纸片阿莫西林纸片罗红霉素纸片头孢美唑纸片交沙霉素纸片头孢克罗纸片头孢克肟纸片美洛西林纸片利奈唑胺纸片莫西沙星纸片头孢硫脒纸片头孢拉定纸片头孢氨苄纸片头孢匹安纸片拉氧头孢纸片头孢匹罗纸片阿洛西林纸片壮观霉素纸片夫西地酸纸片萘啶酸纸片头孢布烯纸片替加环素纸片厄他培南纸片头孢孟多纸片头孢丙烯纸片麦迪霉素纸片X因子鉴定纸片头孢他啶/棒酸纸片头孢噻肟/棒酸纸片庆大霉素纸片羧苄青霉素(羧苄西林)纸片加替沙星纸片卡那霉素纸片甲氧苄啶纸片头孢替坦纸片新霉素纸片土霉素纸片恩诺沙星纸片氟苯尼考纸片氨苄西林/棒酸纸片呋喃唑酮(痢特灵)纸片通用药敏纸片ETEST药敏(国产)康泰通用药敏试剂条细菌药敏试条(E试验法)青霉素药敏试剂条头孢呋辛药敏试条庆大霉素药敏试条头孢吡肟药敏试条红霉素药敏试条头孢唑啉药敏试条左氟沙星药敏试条诺氟沙星药敏试条苯唑西林药敏试条利奈唑胺药敏试条克林霉素药敏试条阿莫西林/棒酸药敏试条头孢他啶药敏试条环丙沙星药敏试条头孢曲松药敏试条头孢噻肟药敏试条克拉霉素药敏试条头孢哌酮/舒巴坦药敏试条头孢哌酮药敏试条洛美沙星药敏试条氧氟沙星药敏试条万古霉素药敏试条亚胺培南药敏试条美罗培南药敏试条氯霉素药敏试条氨苄西林药敏试条丁胺卡那药敏试条氨曲南药敏试条哌拉西林药敏试条司帕沙星药敏试条头孢他啶/棒酸药敏试条利福平药敏试条羧苄西林药敏试条氟罗沙星药敏试条加替沙星药敏试条米诺环素药敏试条卡那霉素药敏试条多西环素药敏试条替卡西林药敏试条四环素药敏试条妥布霉素药敏试条替考拉宁药敏试条呋喃妥因药敏试条阿奇霉素药敏试条头孢西丁药敏试条复方新诺明药敏试条哌拉西林/他唑巴坦药敏试条头孢噻肟/棒酸药敏试条替卡西林/棒酸药敏试条氨苄西林/舒巴坦药敏试条两性霉素B伊曲康唑5-氟胞嘧啶酮康唑氟康唑伏立康唑米卡芬净泊沙康唑阿尼芬净急诊粪便常规检测样本采集管(包含稀释液、清洗液等)胶体金法粪便隐血(FOB)多水平非定值质控品便隐血(FOB)检测试剂6标段ETEST+染液+基础培养基ETEST药敏(国产)安图国产ETEST纸条(各类抗菌素)细菌药敏试条(E试验法)31家两性霉素B(E试验品)氟康唑(E试验品)伏立康唑(E试验品)阿米卡星药敏条阿莫西林药敏条氨苄西林药敏条氨曲南药药敏条苯唑西林药敏条红霉素药敏条(E试验法)环丙沙星药敏条(E试验法)卡泊芬净药敏条(E试验法)克林霉素药敏条(E试验法)利奈唑胺药敏条(E试验法)氯霉素药敏条(E试验法)美罗培南药敏条(E试验法)诺氟沙星药敏条(E试验法)青霉素药敏条(E试验法)庆大霉毒药敏条(E试验法)四环素药敏条(E试验法)头孢呋辛药敏条(E试验法)头孢哌酮舒巴坦药敏条(E试验法)头孢曲松药敏条(E试验法)头孢他啶药敏条(E试验法)头孢唑林药敏条(E试验法)万古霉素药敏条(E试验法)亚胺培南药敏条(E试验法)左氧氟沙星药敏条(E试验法)头孢吡肟药敏条(E试验法)头孢噻肟药敏条(E试验法)甲氧苄啶-磺胺甲恶唑药敏条(E试验法)米诺环素药敏条(E试验法)阿奇霉素药敏条(E试验法)微生物染液等革兰染色液(4×250ml)手工试剂革兰染色液(4×100ml)抗酸染色液(4×250ml)抗酸染色液(3×100ml)鞭毛染色液荚膜染色液芽孢染色液异染颗粒染色液瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(2×250ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(2×100ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(4×20ml)瑞氏-吉姆萨染色液网织红细胞染色液(2×100ml)网织红细胞染色液(4×20ml)过氧化酶(POX)染色液铁染色液精子染色液精子稀释液妇科白带涂片染色液苏木素-伊红染色液I苏木素-伊红染色液II(H-E单一)巴氏染色液Ⅰ巴氏染色液Ⅱ巴氏染色液(巴氏试剂盒)快速革兰氏染色液革兰氏染液-快速法-碘溶液革兰氏染液-快速法-脱色液革兰氏染液-快速法-沙黄溶液革兰氏染液-快速法-龙胆紫液新型隐球菌染色液六胺银染色液乳酸酚棉兰染液真菌免疫荧光显色试剂(II型)微生物基础培养基等手工试剂梅毒螺旋体抗体检测试剂盒(凝集法)微生物基础培养基等手工试剂麦康凯琼脂平板乳酸棉酚蓝染液六胺银染液真菌荧光染液(一步法)抗酸荧光染色液(金胺O法)弱抗酸染色液无菌病毒运输液(用于甲流)志贺氏菌属诊断血清(50种)志贺氏菌属诊断血清(22种)沙门氏菌属诊断血清(60种)沙门氏菌属诊断血清(30种)出血性大肠埃希菌O157诊断血清(供科研用)触酶试剂氧化酶试验试剂MH干粉沙保罗培养基干粉XLD培养基干粉营养肉汤干粉R2A培养基干粉变色硅胶含醛类消毒剂中和培养基(9ml)含酚、醇类消毒剂中和培养基(9ml)含氯、碘类消毒剂中和培养基(9ml)含表面活性剂类消毒剂中和培养基(9ml)含醛类消毒剂中和培养基(50ml)含酚、醇类消毒剂中和培养基(50ml)含氯、碘类消毒剂中和培养基(50ml)含表面活性剂类消毒剂中和培养基(50ml)苛养菌药敏琼脂平板血、肠道菌分隔琼脂平板沙保罗琼脂平板营养肉汤培养基(液体)营养琼脂培养基尿道菌显色平板伊红美兰琼脂平板中国蓝琼脂平板物表测试平板血﹒嗜血杆菌﹒肠道菌(麦康凯)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(伊红美兰)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(中国蓝)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(SS)分隔琼脂平板血﹒嗜血杆菌分隔琼脂平板GBS运送培养基卵黄琼脂培养基环丝氨酸-头孢西丁-果糖琼脂培养基厌氧血琼脂平板/厌氧苯乙酸琼脂培养基厌氧琼脂培养基庖肉培养基巯基乙酸肉汤培养基耐碳青霉烯类肠杆菌科细菌检测70cm艰难梭菌显色平板70cm不动杆菌显色培养基支原体培养鉴定计数药敏试剂盒(30孔,12种药敏)葡萄糖肉汤培养基磷酸盐缓冲液(PBSpH7.2)SBG增菌液冷冻管冻存管盒液体菌种保存管复方中和增菌培养基(带棉签)注:有名“物表采样管”含复方中和剂的0.04mol/L磷酸盐缓冲液R2A琼脂培养基(干粉)大豆酪蛋白琼脂培养基(干粉)TGE琼脂平板胰蛋白胨大豆培养基(卵磷脂吐温胰蛋白胨大豆培养基)碱性蛋白胨水培养基Amies采样运送拭子(Amies采样运送培养基含拭子)TSA接触平板样本稀释液中和洗脱液复合中和洗脱液(9ml)复合中和洗脱液(5ml)厌氧指示剂SS琼脂平板MH琼脂培养基哥伦比亚血琼脂平板巧克力琼脂培养基B族链球菌平板专用油镜油含珠菌种保存管(国产)(5颗)含珠菌种保存管(国产)(25颗)病毒采样管(无菌病毒运输液)植绒采样拭子磁珠菌种保存液营养肉汤培养基R2A琼脂培养基(平板)大豆酪蛋白琼脂培养基(平板)半固体琼脂Amies采样运送拭子Cary-blair运送培养基stuart运送培养基弯曲杆菌显色培养基尿培养筛选显色平板沙门氏菌筛选显色平板大肠杆菌显色平板金黄色葡萄球菌显色平板李斯特菌显色平板弧菌显色平板霉菌显色平板O157培养基分枝杆菌菌种保存管含珠菌种保存管(进口)(25颗)脱脂奶粉血琼脂平板念珠菌显色平板耐药菌三联检显色平板真菌快速培养鉴定药敏试剂盒缓冲液(碳青霉烯酶)一次性封闭真菌形态学观察培养基多粘菌素B纸片霍乱弧菌诊断血清01群、0139脑心浸液琼脂GC琼脂平板乙腈甲酸头孢硝噻吩纸片备注:各供应商可选择参投一个或多个标段,但必须对所投标段内全部项目内容进行投标报价,不得缺项、漏项。预算金额:314万元/年。资金性质:自筹资金。项目用途:医用。合同履行期限:2年二、供应商资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2020年度的财务报表(至少包括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前一月的财务报表(至少包括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。3.6、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。3.7、本项目不接受联合体投标。三、获取招标文件时间:2022年5月16日至2022年5月20日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:线上方式:1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信、经办人身份证、联系电话及电子邮箱等资料加盖单位公章的彩色扫描件发送至邮箱591330045@qq.com,并及时联系采购代理机构确认(联系人:李工18220810739),获取缴费方式。2)招标文件售价人民币300元/标段,售后不退。采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。3)受疫情影响,本项目投标文件递交截止时间及开标时间和地点可能会变更,具体另行通知。售价:¥300.0元,本公告包含的招标文件售价总和。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年6月7日09点30分(北京时间)开标时间:2022年6月7日09点30分(北京时间)地点:西安市新城区长乐中路38号金花新都汇A座7层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜需要落实的政府采购政策:1、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);2、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);3、《关于政府采购优先购买福利性企业产品和服务的意见》(陕民发(2015)1号);4、关于印发《政府采购促进中小企业发展管理办法》的通知财库〔2020〕46号;5、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号);6、《环境标志产品政府采购实施的意见》(财库[2006]90号);7、《财政部国务院扶贫办关于运用政府采购政策支持脱贫攻坚的通知》(财库〔2019〕27号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市新城区西五路联系方式:冯女士029-876798612.采购代理机构信息名称:正大鹏安建设项目管理有限公司地址:西安市新城区长乐中路38号金花新都汇A座12层1201室联系方式:李工18220810739,杨工159029482903.项目联系方式项目联系人:李工电话:18220810739
  • 科学家研制新型半导体柔性透明储能器件
    中国科学院上海硅酸盐研究所黄富强团队研制成功一种新型透明半导体柔性透明储能器件,综合性能优于目前报道的所有透明储能器件。随着电子产品向可穿戴、移动化、超轻薄、透明、微型化发展,轻便、柔性甚至全透明的储能器件在未来便携式设备中具有广阔的应用前景。然而,在柔性透明储能器件中,透光率和能量密度相互影响,提升单一性能往往导致另一性能的大幅下降,同时还需提高储能器件的容量,这些都带来了极大的挑战。为此,黄富强团队通过合理的晶体掺杂设计,成功制备了一系列间隙硼掺杂的介孔宽禁带半导体氧化物(氧化锡、氧化锌及氧化铟)。在这一类新型的透明半导体氧化物中,间隙硼原子不仅能够大幅度提升掺杂材料的载流子浓度,为羟基的嵌入提供丰富的结合位点,还在间隙掺杂位上引发与OH-的赝电容电化学反应,从而将赝电容惰性的氧化锡、氧化锌和氧化铟,转化为高电化学活性的超级电容器电极材料。通过控制间隙硼掺杂的浓度,这一类介孔透明半导体氧化物的体积比容量可以达到每立方米1172毫法拉,实现与其他非透明金属氧化物的赝电容性能相近。这种新型透明半导体材料与聚乙撑二氧噻吩—聚(苯乙烯磺酸盐)导电聚合物均匀共混后,通过气溶胶喷涂技术涂敷在透明聚对苯二甲酸基底上制作电极。基于这种电极构建的透明柔性超级电容器,在15000次循环后容量保持率接近100%,其面积能量密度和器件透光率可达每平方米1.36 × 10毫瓦时和 85%。该研究为设计合成具有优异电化学活性的透明半导体氧化物提供了全新的研究思路。
  • Nexis视角 | “氦气短缺4.0”时代,一瓶氦气到底能用多久?(下篇)
    对于GC和GCMS来说,氦气因其化学惰性好和传质阻力小,是非常理想的载气,目前在GC高灵敏度分析、介质阻挡放电等离子体检测器(BID)、硫化学发光检测器(SCD)等技术中应用广泛。然而,氦气这种“黄金气体”,近年来经常出现短缺现象,价格压力和供应不确定性已成为全球GC/GCMS实验室面临的两个重要问题。由于全球供应链等多方面因素影响,当前时期也被业界戏称为“氦气短缺4.0”,很多分析人员开始关心——实验室的这瓶氦气到底能用多久? 我们总结了岛津GC应对氦气短缺问题的实操方案:氦气节省策略和气体替换策略,本篇将继续为您分享气体替换策略。(GCMS的应对策略请参考:气质百川之三丨优化氦气使用or替代氦气,哪种你最中意?) 根据气相色谱的分析目的,有些分析任务必须使用氦气作载气,而有些分析任务则替换为其他气体后依然可以得到满意的分析结果,因此可以灵活考虑气体替代策略(详细信息请参考:Nexis视角 | 使用气体智选阀比较不同载气的分析效果)。 表1. 常见3种气体的特点对比表可切换为N2的情况N2是气相色谱中应用非常普遍的载气,相对分子质量较大,扩散系数小,其优点是价格便宜,安全性高。 图1. LabSolutions GC工作站载气切换界面 气体智选阀选件可以实现气体类型的自动调整,可实现一个批处理中,当一个分析完成后,根据后续方法的设置,自动将载气切换为其他气体类型。以FID的载气切换为例,10-15min即可自动完成切换。 如下图所示,Nexis GC-2030通常使用He作载气,本例中,以N2作载气分析苯中噻吩的色谱图,低浓度下依然可以得到很好的分析结果。 图2. 以N2作载气分析苯中噻吩的色谱图 可切换为H2的情况H2是热导检测器的常用载气和氢火焰离子化检测器的常用燃烧气,相对分析质量小,其优点是价格便宜,适合高速分析,局限性是易燃易爆,使用时必须注意安全。岛津针对此问题专门推出了方案: (1)可实时监测柱温箱中H2浓度的氢气传感器附件(S221-78910-41),通过对潜在泄漏的及早发现来保证使用安全,可以在氢气泄漏时主动关闭主机电源避免发生事故,同时GC主机也具备载气自动检漏功能,双重保障,保证安心使用。 (2)进样口端AFC氢气安全组件(S221-83785-41)和检测器端APC氢气安全组件(S221-83780-41)。分别用于监控进样口端和检测器端的H2流量,将其限制在安全水平内。即使在特殊情况下(比如AFC或APC发生损坏等),也能确保氢气的安全使用。 如下图所示,使用H2作载气分析37种脂肪酸甲酯(FAMEs),35分钟即可完成分析,其具有高线速度和分析速度快的优点。 图3. 使用H2作载气分析37种脂肪酸甲酯(FAMEs)色谱图 结论在“节流增效”和“精益管理”已成为各行各业实验室重要考量方向的前提下,如何在氦气短缺的情况下,依然能够安心的大跨步向前发展是很多实验室管理者思考的问题。 “氦气短缺4.0”时代,一瓶氦气到底能用多久?一年?五年?十年?… … 不同的气相色谱实验室,分析目的、方法、操作习惯、样品数量和分析频率等因素皆不同,很难给出统一的和经过实际效果验证的答案,但是通过本文分享的这一系列岛津创新气相色谱技术,分析人员可以围绕这个主题进行气相色谱方法的积极应对和方法改善。我们相信通过一系列实操方案可以帮助您将氦气短缺应对的理念真正落到实处。 轻松应对氦气短缺,尽享GC分析乐趣! 本文内容非商业广告,仅供专业人士参考。
  • “氢”力保障,Nexis SCD-2030享你所想
    氢能是一种清洁、高效、可持续的二次能源,同时兼有来源广、燃烧热值高、能量密度大、可储存、可再生的特点,是实现“双碳”目标的重要一环。氢能应用场景广泛,其中质子交换膜燃料电池汽车是氢能的主要应用场景之一,氢气中杂质控制是确保燃料电池正常运行的关键因素,标准《GB/T 37244-2018 质子交换膜燃料电池汽车用燃料 氢气》中对杂质控制有着严格的要求,其中硫化物是检测难点之一。硫化物特点● 浓度低 总硫含量不可超过0.004 μmol/mol● 危害大 对质子交换膜燃料电池阴极催化剂产生不可逆的毒化作用● 活性高 易与接触的材料表面发生物理吸附或者化学反应,分析误差大硫化学发光化检测器(SCD)是目前公认的高灵敏和高选择性硫元素检测器,且不受大多数样品基质的干扰,岛津硫化学发光检测系统Nexis SCD-2030,以创新的水平燃烧器设计为用户提供更高灵敏度和更高稳定性,以丰富的软自动化功能使实验室的分析效率攀上新台阶。岛津硫化学发光检测系统Nexis SCD-2030实验一 样品直接进样分析使用Nexis GC-2030(搭配SCD-2030检测器)管路系统惰性化,直接进样测定氢气中硫化氢、羰基硫、甲硫醇、乙硫醇、甲硫醚、二硫化碳、叔丁硫醇、甲基乙基硫醚、乙硫醚、四氢噻吩等组分。SCD分析痕量硫化物色谱图-1注:1.硫化氢;2.羰基硫;3.甲硫醇;4.乙硫醇SCD分析痕量硫化物色谱图-25.甲硫醚;6.二硫化碳;7. 叔丁硫醇;8. 甲基乙基硫醚;9. 乙硫醚;10.四氢噻吩表1. 1.0 mg/m3浓度点的检测结果如上表是以1.0 mg/m3浓度点标气来测试重复性和检测限,其重复性结果均优于1.0%,硫化物检测下限为10ppb(V/V)级,体现了Nexis SCD-2030良好的重复性和高灵敏度特点。实验二 样品经富集浓缩后进样分析中国测试技术研究院技术人员通过深入分析探讨,开展了基于半导体制冷的低温富集装置与GC-SCD联用试验,方法以氢气中硫化氢、硫氧碳、甲硫醇、乙硫醇、甲硫醚、二硫化碳、甲乙硫醚、噻吩、乙硫醚等9个组分的硫化物气体标准物质进行了方法开发研究,获得了良好的分析效果。在《天然气工业》期刊发表了题为“车用燃料氢气中杂质组分分析方法标准化现状与探讨-以质子交换膜燃料电池汽车为例”的文章, 岛津的Nexis SCD-2030硫化学发光检测器作为分析系统检测部分的核心大显身手。样品富集浓缩进样SCD分析痕量硫化物色谱图注:1.硫化氢;2.硫氧碳;3.甲硫醇;4.乙硫醇;5.甲硫醚;6.二硫化碳;7.甲乙硫醚;8.噻吩;9.乙硫醚研究结果表明低温富集装置-GC-SCD联用分析系统可以很好满足《GB/T 37244-2018 质子交换膜燃料电池汽车用燃料 氢气》对总硫的分析要求,方法检出限最低可达到0.01 nmol/mol,0.1-40 nmol/mol范围内的线性相关系数R2大于0.995,0.1 nmol/mol的重复性小于5%。参考资料:1. 岛津应用No. GC-164. 岛津Nexis GC-2030 SCD测定氢气中微量形态硫.2. 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.本文内容非商业广告,仅供专业人士参考。
  • 电位滴定在油品中硫醇硫含量检测中的应用
    一、油品中硫醇硫是什么?硫醇是含巯基官能团(-SH)的一类非芳香化合物。结构上相当于醇类中的氧被硫替换形成,例如乙醇(俗称酒精)CH3CH2OH,乙硫醇CH3CH2SH。石油产品中有少量硫醇化合物,硫醇的存在不仅会使油品具有令人讨厌的气味,同时在燃烧时转变为有毒、腐蚀性的二氧化硫和三氧化硫,对燃料系统的弹性材料有害,并对燃料系统的构件产生腐蚀,影响相关机械寿命,例如汽车发动机。因此控制石油产品中的硫醇含量是相当重要的。油品中的硫醇含有的硫,称为硫醇硫含量。国家标准强制规定了汽油柴油、煤油、馏分燃料、喷气燃料等一系列油品中硫醇硫的含量。那么该如何测定油品中硫醇硫的含量呢?二、硫醇硫的测定方法目前硫醇硫测定有2种常用方法,一种是定性检测的博士试验,另一种是定量检测的电位滴定法。 方法原理优点缺点博士试验(NB/SH/T 0174-2015)振荡加有亚铅酸钠溶液的试样,并观察混合溶液,从外观来推断是否存在硫醇、硫化氢、元素硫或过氧化物。再通过添加硫磺粉,振荡并观察最终混合溶液外观的变化来进一步确定是否存在硫醇操作流程简单只能定性检测硫醇含量是否超过临界值。通常作为硫醇定量测定法的一种替代方法。二硫化碳会干扰测定。过氧化物和酚类物质大于痕量的情况不适用。电位滴定(GB/T 1792-2015)将无硫化氢的试样溶解在乙酸钠的异丙醇滴定溶剂中,以玻璃参比电极和银/硫化银指示电极之间的电位作指示,用硝酸银醇标准溶液通过电位计进行滴定。在滴定过程中,硫醇硫沉淀为硫醇银,而滴定终点通过电池电位上的突变显示出来。测量快速,准确。有机硫化物,如硫化物、二硫化物及噻吩不干扰测定。质量分数小于0.0005%的元素硫不干扰测定。需要脱除硫化氢。要求工作人员有较高的专业水平。 *天然气中的硫醇硫也采用类似方法检测。参考标准《GB/T 11060.6-2011》(6)依据滴定终点计算出样品中硫醇硫的含量
  • 天然气含硫新标5月1日正式实施,SCD硫化学发光检测器轻松应对!
    ☆ 导读 ☆现阶段,能源紧张已成为影响和制约全球发展的关键问题,当前的俄乌局势更加凸显了能源问题对全世界的影响。2021年10月11日国家市场监督管理局和国家标准化管理委员会发布了GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,2022年5月1日正式实施,并替代原来的2014年版本。其中一项重要的变化是0.1~600mg/m3(以硫计)总硫的测定,并规定:通过将不同硫化物的硫含量进行加和,得到总硫含量。天然气中的硫化物杂质对其运输、存储和使用安全及环境均会产生不利影响,不仅会腐蚀设备、污染环境,还会危害人体健康。含硫化合物的种类不同其危害也不尽相同,对于天然气中含硫化合物的测定,岛津硫化学发光检测器(SCD)不仅具有灵敏度高、重复性好、操作简单等优点,还具有硫等摩尔响应、无基质淬灭、自动化程度高等优势,助您轻松应对新标准! ☆ 天然气中含硫化合物的危害 ☆天然气的主要成分是甲烷,来源于常规油气田开发出来的天然气、页岩气、煤层气等。2019年天然气储量数据来源:煤层气行业深度研究报告:“双碳”政策下,如何打造盈利新模式? 我国天然气需求量对外依存度达40%,进口液化天然气(LNG)占中国天然气进口量的60%以上,以澳大利亚占比最高。 数据来源:左图2021年中国液化天然气产量、进出口及需求现状分析,全球最大的LNG进口国_我国_华经_液化,右图2021年我国油气进口来源国分布 - 知乎 天然气中可能的硫化物有硫化氢、氧硫化碳、二氧化硫、甲硫醇、乙硫醇、叔丁硫醇、甲硫醚、乙硫醚、甲基乙基硫醚、四氢噻吩等,这些硫化物对运输、储存和使用安全及环境均会产生不利影响。当其作为燃料不仅会腐蚀输送管道和燃具,而且燃烧后的尾气或者废气还会造成人员中毒,排放到大气中也会引起环境污染;当其作为化工行业的原材料不仅会腐蚀储存容器和反应装置,更会导致贵重的催化剂中毒而失去活性。因此准确检测出天然气中的硫化物含量是非常必要的。 ☆ 新标来袭,岛津方案助您从容应对 ☆天然气作为经济环保的绿色能源和化工原材料倍受关注,在我国的能源安全中越发重要。新标准GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》中介绍GC-FPD、GC-PFPD、GC-MSD、GC-SCD等不同检测器用于0.1~600mg/m3范围内硫化物检测的分析方法。其中,GC-SCD(硫化学发光检测器)方法对硫具有等摩尔响应的特性,在总硫分析方面具有独特的优势,所以得到了大家的广泛认可。 图1. Nexis GC-2030 SCD l 分析条件 标准气体:甲烷中微量硫化氢、氧硫化碳、甲硫醇、乙硫醇、甲硫醚、二硫化碳、叔丁硫醇、甲基乙基硫醚、乙硫醚、四氢噻吩10种硫化物混合标气。浓度1.0mg/m3天然气中硫化物混合标气进样1.0mL 分析,典型谱图如下:图2. 浓度1.0mg/m3天然气中硫化物标气谱图(1硫化氢、2氧硫化碳、3甲硫醇、4乙硫醇、5甲硫醚、6二硫化碳、7叔丁硫醇、8甲基乙基硫醚、9乙硫醚、10四氢噻吩) l 标准曲线和检出限5瓶混和标气浓度以硫计分别为:1.0mg/m3 、3.0mg/m3、5.0mg/m3、15.0mg/m3、20.0mg/m3。硫化物混合标气重复进样4次,各组分面积重复性均优于1.0%,相关系数R值除甲硫醇和乙硫醇为0.9998外其余8种硫化物都大于0.9999。选择了其中3种硫化物的标准曲线展示见图3。各硫化物的检出限见表1。 图3. 天然气中3种典型硫化物标准曲线表1. 天然气中10种硫化物检出限☆ 结语 ☆“十四五”期间将是我国天然气工业的大发展时期,天然气产量到2025预计达到2500亿方,天然气勘探开发将迎来新的发展。岛津Nexis GC-2030 SCD色谱仪助您轻松应对GB/T 11060.10-2021《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,确保天然气的生产安全、使用安全、运输安全。 本文内容非商业广告,仅供专业人士参考。
  • 安捷伦在京举办2015能源化工行业前沿研究高峰论坛
    2015年5月28日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)日前在北京举办了&ldquo 2015能源化工行业前沿研究高峰论坛&rdquo (下称&ldquo 研讨会&rdquo )。此次研讨会不仅旨在为国内能源化工行业研究学术界提供深入交流和学习的平台,更在于探讨并推动高端质谱在行业前沿研究中的价值实现和应用普及。   本次研讨会,由安捷伦与休斯顿大学联合举办,从能源化工全产业链角度出发,涵盖能源化工上中下游每个产业环节,分享国际顶尖的石化分析技术,与来自全球地球化学界、石油化工界和实验室的权威专家学者一道,讨论关于能源化工及地球化学科研领域的最新研究成果。 休斯顿大学教授Adry Bissada博士、休斯顿大学教授John Casey博士、休斯顿大学副教授高永军博士、休斯顿大学博士研究生梅梅女士   中石化石油化工科学研究院教授级高工刘泽龙先生、中石化北京化工研究院教授级高工张颖女士、中国石油大学(北京)重质油国家重点实验室副主任史权教授、中石化石油勘探开发研究院无锡石油地质研究所主任研究师张志荣博士   在能源化工行业的上游勘探开采环节,安捷伦的串接质谱无论是在有机分析(GC-MS/MS)还是无机分析领域(ICP-MS/MS),表现都十分出色。   业界公认的地球化学分析领域权威,来自休斯敦大学石油地球化学系的教授Dr. Adry Bissada先生和美国休斯敦大学地质专业博士研究生梅梅女士,回顾了地球化学反演过程中的艺术与科学,利用高分离度 GC、GCxGC、GC-MS、GC-MS-MS 与 GC-IRMS结合不断增强的数据处理能力,大大发展了地球化学方法。这些方法不仅可用于可靠的油油对比和地球化学指纹识别,同时也可用于原油和天然气中的复杂化学物质在分子和亚分子水平上的解卷积以提取烃源信息,进而可得出对烃源岩年代、身份和位置的特定推断。中国石化石油勘探开发研究院无锡石油地质研究所主任研究师张志荣博士,探讨了GC-MS对大量的生物标志物以及以大分子的状态结合于其中的干酪根进行分析,研究成果对油气来源和成藏过程具有重大的价值。   在无机分析领域,美国休斯敦大学地质系的教授Dr. John Casey先生和休斯敦大学地球和大气科学学系研究副教授高永军博士,借助于创新的串联质谱ICP-MS/MS的高灵敏度,极大扩展了更低浓度元素的测定范围,使用单一样品制备方法便可使多达 47 种的元素可像常规分析一样完成测定,同时对用于石油勘探和生产原油中钒同位素的组成进行了准确测定,有助于深入了解导致石油形成的生物地球化学循环和途径。   在中游炼化环节,安捷伦的GC/MS Q-TOF,已建有一套成熟完整的系统性数据和分析方法。中国石化石油化工科学研究院教授级高工/质谱实验室负责人刘泽龙先生分享了柴油中的超低硫分子直接进行分析表征课题的研究成果,借助安捷伦GC/MS Q-TOF高分辨的技术优势,成功研究了直柴、催柴和焦化柴油加氢过程中不同结构二苯并噻吩分子的变化趋势,可实现直接对深度脱硫柴油中不同烷基数量、不同烷基取代位置二苯并噻吩进行分子识别及定量测定。   安捷伦利用在技术和科技前沿应用方面的雄厚实力,在其下游石化领域也成绩斐然。GC-MS、GC-MS/MS和GC-ICP-MS在实际研究中的应用,为研究工作提供了更高灵敏度更准确的分析结果。催化剂是聚烯烃工业的核心,杂质含量直接决定了聚合反应的进行程度和方向,中国石化北京化工研究院教授级高工张颖女士,在分析研究工作中采用安捷伦的GC-MS/MS多反应监测(MRM)技术建立了催化剂中磷酸三丁酯的定量分析方法,所得结果更快速,灵敏度高、适用范围广,在提高效率的同时,也为解决企业生产过程中的实际问题铺平了道路。   中国石油大学(北京)重质油国家重点实验室副主任史权教授一直致力于从分子层次揭示重质油化学组成与转化规律,推动&ldquo 石油组学&rdquo 和&ldquo 分子炼油&rdquo 由概念走向实践。借助安捷伦IM Q-TOF LC/MS离子淌度液相色谱飞行时间质谱仪,史权老师获得了石油组分大量异构体间存在的结构信息,这些很难通过传统质谱进行鉴定。史权老师认为,离子淌度质谱技术(IM-MS)根据化合物分子的气相碰撞截面积差异,从空间尺度上实现不同分子的分离与质量分析,在传统质谱技术实现质量分辨的同时增加了一维分子尺度信息,从而可以大幅度提高质谱的化合物分辨率,是分析复杂样品的理想手段,在研究分子结构信息方面具有很好的前景。   环境保护和人体健康一直是人们密切关注的话题,这也是安捷伦科技在方法开发和仪器设计过程中秉承的原则。应对复杂的石油组成,石化行业传统分析策略之一是:将样品组分以其极化度和极性分组 这样方法被称之为族组成(SARA)分析方法。传统的分级过程费时费力,且使用大量溶剂,对操作人员和环境毒害较大。安捷伦科技的工程师开发了另外一种半定量,全自动的族组成分离的液相色谱方法。在本方法中,沥青质部分可以后续采用2D-LC配合高分辨质谱(TOF-MS)进一步分析,可进一步鉴别其中含有杂原子的化合物。采用使用空气运行的微波等离子体原子发射光谱仪,不仅使用运行成本低,且由于无可燃性气体,更加安全可靠,适用于石油化工行业的分析测量。 安捷伦大中华区战略总监何峻先生、安捷伦全球能源和化工市场经理 Wayne Collins博士、安捷伦大中华区能源化工/材料市场经理陈艳凤女士   安捷伦液相色谱与液质联用技术应用技术支持经理安蓉女士、安捷伦原子光谱应用工程师欧阳昆先生   安捷伦科技全球能源化工行业市场经理Wayne Collins先生表示:&ldquo 安捷伦多年来致力于为中国研究人员构建国际交流平台,帮助中国能源化工研究领域共同面对科研挑战,推动科学技术的发展。今后,凭借安捷伦对能源化工分析领域的深刻了解,安捷伦将继续致力于能源化工科研的发展,以及满足科研人员不断变化的需求,我们将以更加深厚的技术积累深耕能源化工领域,从设备、应用、技术支持和定制化服务等各个方面为他们的科学研究创造良好条件,成为他们最可信赖的实验室合作伙伴。&rdquo   安捷伦作为能源化工分析检测领域的领导者,拥有贯通能源化工全产业链高端质谱应用,从勘探开采、炼制加工到精细化工和材料的各个环节,并始终致力于与分析研究人员紧密协作,攻克科研难题。此外,安捷伦还突出展示了其高端质谱解决方案在国际能源化工分析领域应用实例,这不仅标志着安捷伦拥有贯穿石油化工全产业链各个环节的先进解决方案和丰富经验,也表明安捷伦正成为引领石油化工行业分析研究技术方向的风向标。
  • 前沿合作 | 岛津携手阳光诺和揭示头孢西丁钠新颖聚合方式
    岛津中国创新中心与北京阳光诺和药物研究股份有限公司合作,采用岛津高效液相色谱串联四极杆飞行时间质谱(2D LCMS-QTOF)对注射用头孢西丁钠有关物质进行结构鉴定,揭示了一种由噻吩环引发的新颖聚合方式。该研究成果发表在国际知名学术期刊《Talanta》(IF= 6.1)。背景介绍Introductionβ-内酰胺类抗生素是临床应用较广的一类抗感染药物,其β-内酰胺四元环张力较大容易开环断裂,生成N-型或L-型聚合物。聚合物杂质引发的过敏反应严重威胁临床用药安全,是β-内酰胺类抗生素杂质谱研究的重点。由于聚合物杂质稳定性差、含量低、聚合方式多样、聚合程度各异,以及小分子杂质的干扰,聚合物杂质的控制存在很大挑战。本研究基于创新中心搭建的专属性中心切割二维反相色质谱联用分析平台和创新中心开发的《抗生素杂质数字化标准品数据库》,无需改变一维色谱流动相条件,即可实现头孢西丁聚合物杂质的专属性检测。图1 头孢西丁钠破坏样品检测色谱图(254 nm,一维HPSEC色谱图,上;二维反相色谱图,中;聚合物杂质HPLC检测色谱图,下)解决方案Solution图2 岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030本方案一维采用HPSEC系统,磷酸盐流动相定位头孢西丁钠中的聚合物杂质,然后采用阀切换技术,使用500 μL定量环将聚合物峰全部转移至二维反相色谱,脱盐、分离并质谱鉴定。基于LCMS-9030四极杆飞行时间质谱高分辨,高质量准确度和二级碎片定性的功能,通过比较头孢西丁钠与聚合物杂质母离子和特征碎片离子的相关性对头孢西丁钠四种未知聚合物杂质进行科学合理的定性分析。其中聚合物C1分子量较2分子头孢西丁少2个H(Mr. 852.09),根据其同位素比例和特征碎片离子信息,推断其为一分子头孢西丁7-位侧链与另一分子头孢西丁7-位噻吩环联结形成的,该新颖聚合方式尚未见文献报道。C1是实际样品中的优势聚合物(占比>50%),可作为注射用头孢西丁钠质量控制的指针性聚合物。最终,本研究建立了注射用头孢西丁钠聚合物检测的反相色谱方法,并探索其用于日常检验的可能性。表1 头孢西丁钠及四种聚合物杂质的质谱信息(ESI+)图3 C1一级质谱图(A)和母离子m/z 870的二级质谱图(B)(ESI+)图4 C1聚合物可能的结构和裂解规律结论Conclusion本文采用创新中心搭建的专属性中心切割二维反相色质谱联用分析平台对注射用头孢西丁钠中的聚合物杂质进行研究,展示了二维色谱-串联质谱技术在不挥发盐类流动相系统中对未知杂质结构鉴定的巨大潜力。岛津飞行时间质谱LCMS-9030采集全谱信息,提供快速、高灵敏度的测试结果,确保实验数据的可靠性,支持追溯性分析有利于未知物的结构鉴定。创新中心开发的《抗生素杂质数字化标准品数据库》,收录了β-内酰胺类抗生素一般杂质和聚合物杂质的色谱和高分辨质谱数据,大大降低了企业的研发成本,同时也为药物工艺改进、剂型研发、品质提升等方面提供技术参考。参考文献:《Characterization of polymerized impurities in cefoxitin sodium for injection by two-dimensional chromatography coupled with time-of-flight mass spectrometry》.https://doi.org/10.1016/j.talanta.2023.125378
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)原创 飞飞 赛默飞色谱与质谱中国高丽摘要:含硫化合物、甲醛、有机卤化物01背景氢能因为其具有绿色无污染、零排放等优势,是未来国家能源体系的重要组成部分,是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,我国也将其列为战略性新兴产业予以扶持,随着质子交换膜燃料电池汽车(PEMFCV)的发展,人们越来越关注燃料电池用氢质量对燃料电池性能的影响。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢。不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,我们了解到氢中杂质会对PEMFC的性能造成严重的损害作用并降低其使用寿命,不同种类的杂质如硫化氢、羰基硫、二氧化硫、硫醇、硫醚等都会对PEMFC阴极催化剂产生不可逆的毒化作用等等。综上,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。2023年赛默飞与北京石科院合作,参与氢能新国标的修订工作。采用低温预富集技术与Thermo Scientific&trade ISQ&trade 7610气质联用仪、SCD检测器对燃料氢中硫化物、甲醛和卤化物等杂质进行检测,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。02线性测试2.1 按实验测试条件进样,硫化物典型色谱图见图1;目标物浓度0.1 ppb-10 ppb范围内,7种含硫化合物相关系数均大于0.998,硫化物多浓度点校正曲线见表1;2.2 按实验测试条件进样,卤化物典型色谱图见图2;甲醛浓度1-400 ppb范围内,相关系数为0.9998、有机卤化物浓度在1-100 ppb范围内,8种有机卤化物相关系数均大于0.998,其多浓度点校正曲线见表2。图1 硫化物分析典型色谱图(点击查看大图)表1 硫化物线性相关系数(点击查看大图)1-甲醛;2-一氯甲烷;3-溴甲烷;4-三氯一氟甲烷;5-二氯甲烷;6-顺-1,2-二氯乙烯;7-三氯甲烷;8-四氯乙烯;9-氯苯图2 甲醛、有机卤化物TIC图和定量通道谱图(点击查看大图)表2 甲醛、有机卤化物线性相关系数(点击查看大图)向下滑动查看所有内容03重复性测试 3.1 按实验测试条件,对摩尔分数为0.05 nmol/mol混合硫化物标气连续测定7次,硫化物各组分RSD均小于5%,7针标气叠加谱图见图3,重复性测试结果见表3。1-硫化氢;2-羰基硫硫化物;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图3 0.05 ppb硫化物组分7针叠加色谱图(点击查看大图)表3 硫化物各组分重复性测试结果(点击查看大图)3.2 按实验测试条件,对摩尔分数为1 nmol/mol甲醛、有机卤化物标准气体连续测定7次,所有组分的RSD 表4 甲醛、有机卤化物各组分重复性测试结果(点击查看大图)04检出限测试含硫化合物的检出限值低至0.01×10-3 μmol/mol,样品色谱图见图5;甲醛检出限值低至0.1×10-3 μmol/mol,样品的TIC图见图6;一氯甲烷等卤化物检出限值低至0.5×10-3 μmol/mol,样品的TIC图见图7。1-硫化氢;2-羰基硫;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图5 硫化物检出限测试谱图(点击查看大图)图6 甲醛检出限测试TIC图(点击查看大图)1-一氯甲烷;2-溴甲烷;3-三氯一氟甲烷;4-二氯甲烷;5-顺-1,2-二氯乙烯;6-三氯甲烷;7-四氯乙烯;8-氯苯图7 有机卤化物检出限测试TIC图(点击查看大图)向下滑动查看所有内容总 结方案适用于GB/T 37244质子交换膜燃料电池汽车用氢气中含硫化合物、甲醛和有机卤化物的测定;也可用于工业氢、高纯氢和超纯氢中含硫化合物、甲醛和有机卤化物的测定。建立的燃料电池用氢质量分析系统实现:1. 方法的检出限和测定范围满足工作要求 2. 方法准确可靠,满足各项方法特性指标的要求 3. 方法具有普遍适用性,易于推广使用。如需合作转载本文,请文末留言。
  • 【石化半月刊】2022年即将实施的石油产品标准
    2021年,仪器信息网共推出了6期石化半月刊(点击此处可查看该话题),涉及到石油化工领域的新技术与新应用,“双碳”目标下石化领域的未来发展等内容。2022年,我们继续出发!请大家锁定【石化半月刊】话题,仪器信息网将持续推出更多、更精彩的石油化工相关内容。2022年的第一期,小编盘点了那些在2021年已经发布,将于2022年实施的部分标准(与分析仪器较相关),具体见表1。本文主要对标准的测定范围及提到分析仪器的部分进行简单梳理,点击红色字体即可进入该仪器专场。表1 2022年即将实施的石油化工相关标准标准号标准名称发布日期实施日期GB/T 40496-2021喷气燃料中抗氧剂含量的测定 高效液相色谱法2021/8/202022/3/1GB/T 40500-2021喷气燃料中芳烃总量的测定 气相色谱法2021/8/202022/3/1GB/T 386-2021柴油十六烷值测定法2021/10/112022/5/1GB/T 4985-2021石油蜡针入度测定法2021/10/112022/5/1GB/T 17144-2021石油产品 残炭的测定 微量法2021/10/112022/5/1GB/T 23799-2021车用甲醇汽油(M85)2021/10/112022/5/1GB/T 40701-2021动车组驱动齿轮箱润滑油2021/10/112022/5/1GB/T 40704-2021天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法2021/10/112022/5/1GB/T 40496-2021 喷气燃料中抗氧剂含量的测定 高效液相色谱法在标准GB/T 40496-2021中,共有两种方法测定喷气燃料中抗氧剂含量的测定,分别是方法A:高效液相色谱紫外检测法,适用于加氢裂化喷气燃料中抗氧剂含量的测定;方法B:液相色谱质谱法,适用于加氢裂化及加氢精制喷气燃料中抗氧剂含量的测定。测定物质及测定范围如下表所示:表2 喷气燃料中抗氧剂含量的测定范围测定方法测定物质测定范围方法A高效液相色谱紫外检测法2,6-二叔丁基对甲酚(T501)4.0mg/L~40.0 mg/L2,4-二甲基-6-叔丁基苯酚5.0mg/L~40.0 mg/L方法B液相色谱质谱法2,6-二叔丁基对甲酚(T501)3.5mg/L~50.0 mg/L方法A中,对高效液相色谱仪(HPLC)的要求是配置二极管阵列检测器或紫外检测器,样品阀系统最大允许进样量200μL。其中,要求紫外检测器的灵敏度和稳定性足够高,确保在特定操作条件下0.1 mg/L的抗氧剂能被准确检测。方法B中,采用的是单四级杆质谱仪,离子化方式选择电喷雾电离负离子模式(ESI),质谱扫描方式选择离子监测(SIM=219.2)。GB/T 40500-2021 喷气燃料中芳烃总量的测定 气相色谱法该标准适用于终馏点300℃以下的喷气燃料中芳烃总量的测定,芳烃质量分数或体积分数测定范围为0.5%~35%,不适用于测定各烃族中的单体烃组分含量。对气相色谱仪的要求:应至少包括进样系统、汽化室、色谱柱箱、氢火焰离子化检测器(FID)、色谱工作站和气体流量控制系统。GB/T 386-2021柴油十六烷值测定法该标准适用于压燃式发动机燃料十六烷值的定量测定,也适用于非常规燃料,如合成燃料、植物油及类似产品十六烷值的定量测定。其中,十六烷值的范围为0~100,但典型的测试范围为30~65。标准中描述了用十六烷值试验机测定柴油十六烷值的试验方法:样品在特定操作条件下,由一个标准的单缸、四冲程、可连续改变压缩比、间歇喷射柴油发动机进行测试。GB/T 4985-2021 石油蜡针入度测定法该标准适用于针入度值不大于250 1/10mm的石油蜡,也可用于测定费托蜡、合成蜡和生物蜡。其中,涉及到的仪器是针入度计。GB/T 17144-2021 石油产品 残炭的测定 微量法该标准采用微量法测定石油产品残炭,其测定残炭质量分数的范围为0.10%~30.0%。(残炭质量分数0.10%的石油产品也可测定,但精密度尚未确定)GB/T 23799-2021 车用甲醇汽油(M85)标准GB/T 23799-2021是对车用甲醇汽油(M85)的各类性质,如车用甲醇汽油(M85)的外观、蒸气压、铅/硫/钠/锰含量、有机氯/无机氯、水分等质量指标及试验方法的汇总,如图1所示。标准中大部分质量指标的试验方法均以标准号形式呈现(标准名称将在文末以文字形式展出),仅外观性质为目测;甲醇(体积分数)的测定是采用气相色谱仪,热导池检测器(TCD)或火焰离子检测器(FID)均可使用;无机氯含量的测定采用自动电位滴定法,还特别提到了型号为809 Titrando Metrohm;分辨率0.1mV;精度0.2%。图1 车用甲醇汽油(M85)的技术要求和试验方法GB/T 40701-2021 动车组驱动齿轮箱润滑油标准规定了以合成型油品为基础油,加入多种类型功能添加剂调制而成的动车组驱动齿轮箱润滑油的产品牌号和标记、要求和试验方法、检验规则、标识、包装、储运及交货验收。需检测动车组驱动齿轮箱润滑油的性质,如运动黏度(100℃)、运动黏度(40℃)、黏度指数、倾点、表观黏度(-40℃)、水分、泡沫性、铜片腐蚀、机械杂质、闪点(开口)等质量指标及试验方法如图2所示,质量指标的试验方法均以标准号形式呈现(标准名称将在文末以文字形式展出)。图2 动车组驱动齿轮箱润滑油的技术要求和试验方法GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法该标准可测定的天然气中加臭剂四氢噻吩含量范围为5mg/m3~200mg/m3,采用热导检测器(TCD)-便携式气相色谱仪在线测定的方法。附:GB/T 23799-2021中提到的标准名称如下:SH/T 0794 石油产品蒸气压的测定微量法GB/T 8020汽油中铅含量的测定 原子吸收光谱法GB/T 3410轻质烃及发动机燃料和其他油品中总硫含量的测定 紫外荧光法ASTM D1613 色漆, 清漆, 喷漆和有关产品用挥发性溶剂和化学介质中酸度的标准试验方法GB/T 8019 燃料胶质含量的测定喷射蒸发法GB/T 18612 原油有机氯含量的测定 GB/T 17476使用过的润滑油中添加剂元素、磨损金属和污染物以及基础油中某些元素测定法(电感耦合等离子体发射光谱法)ASTM E203 用卡尔费休试剂检验水的标准试验方法NB/SH/T 0711 汽油中锰含量的测定 原子吸收光谱法GB/T 5096石油产品铜片腐蚀试验法GB/T 40701-2021中提到的标准名称如下:GB/T 260石油产品水含量的测定 蒸馏法GB/T 265石油产品运动粘度测定法和动力粘度计算法GB/T 511石油和石油产品及添加剂机械杂质测定法GB/T 1995石油产品粘度指数计算法GB/T 2541石油产品粘度指数算表GB/T 3142润滑剂承载能力的测定 四球法GB/T 3535石油产品倾点测定法GB/T 3536石油产品闪点和燃点的测定克利夫兰开口杯法GB/T 4756石油液体手工取样法GB/T 5096石油产品铜片腐蚀试验法GB/T 11145润滑剂低温黏度的测定勃罗克费尔特黏度计法GB/T 12579润滑油泡沫特性测定法GB/T 17477汽车齿轮润滑剂黏度分类GB/T 30515透明和不透明液体石油产品运动黏度测定法及动力黏度计算法NB/SH/T 0164石油及相关产品包装、储运及交货验收规则NB/SH/T 0306润滑油承载能力的评定FZG目测法NB/SH/T 0845传动润滑剂黏度剪切安定性的测定 圆锥滚子轴承试验机法NB/SH/T 0944.1 润滑剂抗磨损性能的测定FE8滚动轴承磨损试验机法 第1部分:润滑油NB/SH/T 0967润滑剂包装标识通则TB/T 3134 动车组用驱动齿轮箱
  • 亮点抢先看!6月5日“第二届分子互作”主题网络会重磅来袭
    生物分子的活性功能是通过分子间相互作用来实现的,研究生物分子间的相互作用,对于阐明生物反应的机理,揭示生命现象本质具有重要意义。仪器信息网将于2024年6月5日举办“第二届分子互作创新技术与前沿应用”主题网络研讨会,特别邀请10余位专家围绕分子互作创新技术分享,以及在药物研发、天然产物筛选、生物传感器、高通量检测等领域的前沿研究展开探讨与交流,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/YBo(点击报名)会议亮点1. 技术路线多元:不仅涵盖SPR、BLI主流非标记技术,还有MST、ITC、AUC等创新技术分享2. 报告主题火热:从抗体研发、中药活性发现、药物靶标研究,再到分子互作传感器、高通量分子相互作用分析等前沿应用展开探讨3. 嘉宾阵容强大:力邀清华北大、分子细胞卓越中心、微生物所、药生所、昆明植物所、深圳先进院、海军军医大学、清华珠三角研究院等10余位业内专家4. 多款仪器亮相:赛多利斯、极瞳生命、普瑞麦迪等分子互作厂商带来最新的技术分享和解决方案介绍公益性讲座,人人可参与,抓住足不出户与专家对话的机会!点击图片报名参会会议日程“第二届分子互作创新技术与前沿应用”网络研讨会(更新中)2024年06月05日报告时间报告方向专家单位9:00-9:30生物层干涉技术在抗体研发中的应用樊峥中国科学院微生物研究所 高级工程师9:30-10:00高通量分子互作Octet® 在生物医药领域的应用张财辉赛多利斯 生物分析产品南区应用经理10:00-10:30分子相互作用技术在中药活性成分发现和靶标确认中的应用王静北京大学药学院副主任技师/特聘副研究员10:30-11:00待定待定普瑞麦迪11:00-11:30分析超速离心技术在生物分子相互作用研究中的应用李文奇清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师11:30-12:00荧光互补技术在分子互作研究中的应用陈明海中国科学院深圳先进技术研究院 副研究员12:00-13:30午休13:30-14:00表面等离子体共振技术——原理、仪器设计及创新应用毕研刚清华珠三角研究院 研究员14:00-14:30待定待定极瞳生命科技(苏州)有限公司14:30-15:00表面等离子共振技术在药物研究多种领域中的应用曹岩海军军医大学药学系副教授15:00-15:30分子互作技术联用发现活性天然先导物和靶标研究刘将新中国科学院昆明植物研究所 研究员15:30-16:00靶向互作清除肿瘤起始细胞李珂中国医学科学院医药生物技术研究所 研究员16:00-16:30两种微量热技术在分子互作检测中的应用吴萌中国科学院分子细胞科学卓越创新中心 高级工程师会议嘉宾樊峥 中国科学院微生物研究所 高级工程师报告题目:《生物层干涉技术在抗体研发中的应用》个人简介:协和医科大学生物化学与分子生物学博士,中国科学院微生物研究所公共技术中心副主任,高级工程师,分子相互作用分析技术平台负责人。从事分子相互作用分析技术研究与支撑工作十余年,熟悉各类分子互作以及生物化学和分子生物学分析技术,包括表面等离子共振技术、生物层干涉技术、等温滴定量热技术、蛋白纯化技术、差式扫描荧光分析以及动态光散射技术等。发表研究论文20余篇,为NATURE、SCIENECE、CELL、PNAS等国际著名学术期刊论文提供了大量分子相互作用等分析数据。「报名参会」王静 北京大学药学院 副主任技师/特聘副研究员报告题目:《分子相互作用技术在中药活性成分发现和靶标确认中的应用》个人简介:王静,博士,北京大学药学院天然药物及仿生药物全国重点实验室副主任技师,北京大学宁波海洋药物研究院特聘副研究员。主要研究方向为分子互作、拉曼光谱和纳米递送技术在生物医学和药学研究中的应用。使用分子互作技术建立了靶标垂钓、中药活性成分发现、药物筛选与验证、竞争抑制研究、分子相互作用的亲和力检测等一系列新方法新体系。主持国家自然科学基金青年项目、国家自然科学基金面上项目和宁波市重点研发计划暨“揭榜挂帅”项目等。近年来以第一作者/通讯作者在Nat. Commun., Adv. Mater., J. Am. Chem. Soc., Theranostics, Anal. Chem.等国际著名期刊上发表科研论文13篇,其他作者论文30余篇。申请发明专利多项。「报名参会」李文奇 清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师报告题目:《分析超速离心技术在生物分子相互作用研究中的应用》个人简介:李文奇,博士毕业于清华大学生命科学学院,清华大学蛋白质研究技术中心蛋白质制备与鉴定平台主管,高级工程师;曾任国家蛋白质科学研究(北京)设施清华基地副主任。担任生物学杂志编委,电子显微镜学会仪器共享委员会委员。多年从事蛋白质表达纯化,理化性质分析与相互作用研究工作:熟悉原核、酵母、昆虫细胞、哺乳动物细胞等蛋白表达系统以及蛋白质无标签纯化、亲和标签纯化、活性组分纯化等多种分离纯化手段;熟练掌握发酵工程工艺;精通圆二色光谱、差示扫描量热技术、生物膜干涉技术、表面等离子共振技术、微量热泳动技术、分析超速离心技术等多种理化性质分析和相互作用研究技术。「报名参会」陈明海 中国科学院深圳先进技术研究院 副研究员报告题目:《荧光互补技术在分子互作研究中的应用》个人简介:中国科学院深圳先进技术研究院副研究员,博士生导师。2017年获微生物学博士学位,2019年7月加入中国科学院深圳先进技术研究院,任副研究员职位。主要研究方向是基于合成生物学技术发展新型荧光传感系统用于病毒-宿主互作分子事件研究。研究成果以第一/通讯作者身份发表于ACS Nano, Biomaterials, Chem. Sci., Anal. Chem.等期刊。主持国家重点研发计划课题、中科院先导B课题、国家自然科学基金青年项目、广东省自然科学基金面上项目等项目。担任 Front. Cell. Infect. Microbiol.期刊客座编辑。曾获中国科学院优秀博士论文奖和中国科学院院长奖,入选第六届中国科协青年人才托举工程。「报名参会」毕研刚 清华珠三角研究院 研究员报告题目:《表面等离子体共振技术——原理、仪器设计及创新应用》个人简介:教育背景2000.09-2004.06 清华大学精密仪器与机械学系机械设计、机械工程及自动化专业获学士学位,2005.09-2013.06 清华大学精密仪器与机械学系仪器科学及技术专业获博士学位 工作履历2004-2019年 解放军某部2020年-今 清华珠三角研究院研究概况近年来开展的工作主要围绕特种传感器和生物医疗仪器。主持和参与研制了防爆型红外气体传感器、盾构刀具磨损检测传感器等多款传感器。参与流式细胞分选和表面等离子体共振等仪器设备的研制和产业化工作。作为主要成员先后完成和参与国家科技专项若干,作为主要完成人获得北京市科学技术一等奖一次。「报名参会」曹岩 海军军医大学药学系 副教授报告题目:《表面等离子共振技术在药物研究多种领域中的应用》个人简介:曹岩,海军军医大学药学系副教授,硕士生导师,上海市浦江人才。毕业于第二军医大学,药物分析专业,博士学位,美国密歇根大学访问学者。以复杂药物体系的分析技术为主要研究方向,主要从事基于表面等离子共振传感器的药物分析新方法研究,在中药活性成分的高通量筛选和体内药物的快速检测技术上形成特色。累计发表第一和通讯作者SCI论文20余篇,最高影响因子24.4,累计影响因子大于200。主持国家自然科学基金项目、国家重大科学仪器开发项目、上海市基金项目等6项课题。申请国家发明专利8项。「报名参会」刘将新 中国科学院昆明植物研究所 研究员报告题目:《分子互作技术联用发现活性天然先导物和靶标研究》个人简介:刘将新,研究员,博士生导师,中国科学院昆明植物研究所,植物化学与天然药物全国重点实验室。重点开展基于药物靶标和分子互作技术的天然活性先导化合物发现、成药性评价以及活性天然产物新靶标和作用机制研究。主持云南省重大科技专项生物医药专项、国家自然科学基金面上项目、青年项目,中科院“西部之光”人才项目、云南省万人计划青年拔尖人才、校企合作等项目十余项。以通讯作者/第一在Nat. Commun., J. Med. Chem., Eur. J. Med. Chem.等国际高水平期刊上发表论文多篇。担任中国药理学会中药与天然药物药理专业委员会青年委员,《Chinese herbal medicines》, 《Natural Products and Bioprospecting》等杂志青年编委。「报名参会」李珂 中国医学科学院医药生物技术研究所 研究员报告题目:《靶向互作清除肿瘤起始细胞》个人简介:获国家优青、万人计划青年拔尖等荣誉称号,主要研究领域为靶向蛋白质稳态清除肿瘤起始细胞。以第一/通讯作者身份在Cancer Cell、Science Translational Medicine、Nature Communications、Autophagy及Oncogene等国际权威学术期刊发表多篇论文。另有多篇合作学术成果发表在Immunity、Gastroenterology等国际学术期刊。全部论文已被Cell、Cancer Cell等杂志引用930余次,研究成果获得7项授权发明专利。主持5项国家自然科学基金项目。鉴定导致变异型急性早幼粒白血病发病的全新融合基因NUP98-RARA,被纳入《2021版CSCO恶性血液病诊疗指南》。获中国药理学会“施维雅青年药理学家奖”。作为主要完成人获教育部高等学校科学研究优秀成果二等奖、北京市科学技术三等奖及中华医学科技三等奖等荣誉。任中国抗癌协会抗癌药物专业委员会常委。「报名参会」吴萌 中国科学院分子细胞科学卓越创新中心 高级工程师报告题目:《两种微量热技术在分子互作检测中的应用》个人简介:高级工程师,现就职于中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)分子生物学技术平台,负责生物分子相互作用相关检测仪器管理,主要从事分子互作技术服务、平台仪器管理、用户使用培训及相关工作。深耕生物分子互作技术领域,积累了大量相关经验,为科研工作者论文发表提供高质量的技术服务支持。「报名参会」张财辉 赛多利斯 生物分析产品南区应用经理报告题目:《高通量分子互作Octet® 在生物医药领域的应用》个人简介:赛多利斯生物分析产品南区应用经理,从事蛋白药物与免疫细胞分析工作近十年。熟悉分子相互作用分析、细胞成像分析和流式细胞等相关应用,有着丰富的使用和troubleshooting经验。目前主要负责赛多利斯Octet® 高通量分子互作仪、Incucyte® 实时活细胞分析系统、CellCelector 全自动无损细胞分离系统和iQue® 高通量流式细胞仪的应用支持和产品推广工作。「报名参会」会议赞助会议内容及报告赞助:仪器信息网 赵编辑:13331136682,zhaoyw@instrument.com.cn 扫码加入分子互作交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。附历届会议页面:1.“第一届分子互作创新技术与前沿应用”主题网络研讨会(点击查看)2.“表面等离子体共振技术(SPR) 在药物研发中的应用”主题网络研讨会(点击查看)3.“精准捕捉:从小分子到大分子的BLI垂钓策略”主题网络研讨会(点击查看)
  • 【报告推荐】第二届分子互作网络会议之SPR技术篇
    表面等离子共振( SPR )是一种基于光学、非标记的检测技术,可用于实时检测两个或更多分子间的相互作用。作为公认的分子互作研究“金标准”,SPR技术具有非标记、高灵敏、准确性高等优势,先后进入美国药典、日本药典和中国药典。为帮助科研工作者及时了解分子互作技术最新进展和前沿应用,促进业内交流,2024年6月5日,仪器信息网将举办“第二届分子互作创新技术与前沿应用”主题网络研讨会,共邀请12位来自知名科研院校和仪器企业的业内专家进行探讨交流。其中,清华珠三角研究院研究员毕研刚博士、海军军医大学药学系副教授曹岩博士、极瞳生命科技(苏州)有限公司市场总监陈雍硕先生三位专家围绕SPR技术原理与仪器设计,以及在药物筛选、体内药物浓度测定等领域的前沿进展展开分享,欢迎大家报名参会!报名链接:https://insevent.instrument.com.cn/t/YBo(点击报名) 精彩报告重磅来袭 毕研刚 清华珠三角研究院 研究员《表面等离子体共振技术——原理、仪器设计及创新应用》6月5日 13:30-14:00近年来开展的工作主要围绕特种传感器和生物医疗仪器。主持和参与研制了防爆型红外气体传感器、盾构刀具磨损检测传感器等多款传感器。参与流式细胞分选和表面等离子体共振等仪器设备的研制和产业化工作。作为主要成员先后完成和参与国家科技专项若干,作为主要完成人获得北京市科学技术一等奖一次。报告摘要:表面等离子体共振(SPR)检测方法是一种具有高灵敏度、实时、原位特点的测定分子相互作用过程的重要方法,本报告围绕SPR检测方法的原理与仪器设计,介绍了多种创新应用成果及前景,包括高通量分子相互作用、细胞水平分子作用、高空间分辨率界面等检测对象及应用场景,展望了基于SPR技术的分子互作创新前沿应用及发展潜力。「报名参会」陈雍硕 极瞳生命科技(苏州)有限公司 市场总监《鱼与熊掌皆可得之—国产高端分子互作分析系统分享》6月5日 14:00-14:30毕业于上海通大学生物技术专业。在分子互作设备领域工作16年,具有丰富的经验和技术。先后在美国通用电气公司,丹纳赫集团以及德国赛多利斯公司长期担任产品和市场管理工作。2023年初加入极瞳生命科技(苏州)有限公司,担任市场总监一职。报告摘要:分子互作仪器市场长期被少数几家进口设备所垄断,造成采购、使用和维护成本居高不下。极瞳生命科技(苏州)有限公司致力于打造国产高端分子互作分析系统。公司研发团队历经三年卧薪尝胆,在光学系统、微流控系统等技术方面实现全面突破,成功打造出国产首款基于表面等离子共振技术的高通量分子互作分析仪,性能方面堪比国际一流品牌。「报名参会」曹岩 海军军医大学药学系 副教授《表面等离子共振技术在药物研究多种领域中的应用》6月5日 14:30-15:00曹岩,海军军医大学药学系副教授,硕士生导师,上海市浦江人才。毕业于第二军医大学,药物分析专业,博士学位,美国密歇根大学访问学者。以复杂药物体系的分析技术为主要研究方向,主要从事基于表面等离子共振传感器的药物分析新方法研究,在中药活性成分的高通量筛选和体内药物的快速检测技术上形成特色。累计发表第一和通讯作者SCI论文20余篇,最高影响因子24.4,累计影响因子大于200。主持国家自然科学基金项目、国家重大科学仪器开发项目、上海市基金项目等6项课题。申请国家发明专利8项。报告摘要:表面等离子共振(SPR)是检测生物分子相互作用的常用技术之一,在药物研究中除了可以用于精确测定药物与靶蛋白的亲和力以外,还可以用于高通量筛选活性药物、快速测定体内药物浓度等。本次报告将分享近年来SPR技术在药物筛选、体内药物浓度测定等领域的前沿进展,以期为SPR技术的创新应用提供借鉴。「报名参会」扫码加入分子互作交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。附历届会议页面:1.“第一届分子互作创新技术与前沿应用”主题网络研讨会(2023年) (点击查看)2.“表面等离子体共振技术(SPR) 在药物研发中的应用”主题网络研讨会(2023年) (点击查看)3.“精准捕捉:从小分子到大分子的BLI垂钓策略”主题网络研讨会(2023年) (点击查看)
  • 【报告推荐】第二届分子互作网络会议之新技术新应用篇
    为帮助科研工作者及时了解分子互作技术最新进展和前沿应用,促进业内交流,2024年6月5日,仪器信息网将举办“第二届分子互作创新技术与前沿应用”主题网络研讨会,共邀请12位来自知名科研院校和仪器企业的业内专家进行探讨交流。其中,清华大学蛋白质研究技术中心蛋白质制备与鉴定平台主管李文奇、中国医学科学院医药生物技术研究所研究员李珂、中国科学院昆明植物研究所研究员刘将新、中国科学院深圳先进技术研究院副研究员陈明海、中国科学院分子细胞科学卓越创新中心高级工程师吴萌和普瑞麦迪(北京)实验室技术有限公司产品总监张达威6位专家将围绕分析超速离心技术、荧光互补技术、多维分子互作分析技术、微量热技术和分子互作技术联用等创新技术及前沿应用展开分享交流,欢迎大家报名参会!报名链接:https://insevent.instrument.com.cn/t/YBo(点击报名) 精彩报告重磅来袭 张达威 普瑞麦迪(北京)实验室技术有限公司 产品总监《多维分子互作分析技术及应用介绍》6月5日 10:30-11:00张达威,毕业于天津大学化工学院。在生命科学设备领域工作16年,具有丰富的分子互作、蛋白稳定性表征、流式细胞仪等产品和市场经验。曾在贝克曼和诺坦普担任市场工作。现任普瑞麦迪公司FIDA产品线总监。报告摘要:分子互作技术层出不穷,但由于分子本身的复杂性以及环境异质性,很难用一种技术完全有效表征分子间的相互作用。新一代多维分子互作技术FIDA,有别于传统互作的固定和标记技术,通过第一性的原理,彻底释放分子束缚,可在任何体系中对完全自由态的分子进行亲和力和动力学检测,并实时获得质控数据,极大拓展互作的宽度和准度。「报名参会」李文奇 清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师《分析超速离心技术在生物分子相互作用研究中的应用》6月5日 11:00-11:30李文奇,博士毕业于清华大学生命科学学院,清华大学蛋白质研究技术中心蛋白质制备与鉴定平台主管,高级工程师;曾任国家蛋白质科学研究(北京)设施清华基地副主任。担任生物学杂志编委,电子显微镜学会仪器共享委员会委员。多年从事蛋白质表达纯化,理化性质分析与相互作用研究工作:熟悉原核、酵母、昆虫细胞、哺乳动物细胞等蛋白表达系统以及蛋白质无标签纯化、亲和标签纯化、活性组分纯化等多种分离纯化手段;熟练掌握发酵工程工艺;精通圆二色光谱、差示扫描量热技术、生物膜干涉技术、表面等离子共振技术、微量热泳动技术、分析超速离心技术等多种理化性质分析和相互作用研究技术。报告摘要:待定。「报名参会」陈明海 中国科学院深圳先进技术研究院 副研究员《荧光互补技术在分子互作研究中的应用》6月5日 11:30-12:00中国科学院深圳先进技术研究院副研究员,博士生导师。2017年获微生物学博士学位,2019年7月加入中国科学院深圳先进技术研究院,任副研究员职位。主要研究方向是基于合成生物学技术发展新型荧光传感系统用于病毒-宿主互作分子事件研究。研究成果以第一/通讯作者身份发表于ACS Nano, Biomaterials, Chem. Sci., Anal. Chem.等期刊。主持国家重点研发计划课题、中科院先导B课题、国家自然科学基金青年项目、广东省自然科学基金面上项目等项目。担任 Front. Cell. Infect. Microbiol.期刊客座编辑。曾获中国科学院优秀博士论文奖和中国科学院院长奖,入选第六届中国科协青年人才托举工程。报告摘要:蛋白质/RNA相互作用等分子事件在生物体生命活动过程中发挥了关键的作用,荧光互补技术为活细胞内分子事件的监测提供了有力工具。但是活细胞在成像过程中常常产生很强的绿色背景荧光,干扰基于绿色荧光蛋白的生物传感器的信号。为了解决上述问题,我们以近红外光敏色素蛋白为对象,创建了一系列长波长的分子互作传感器。「报名参会」刘将新 中国科学院昆明植物研究所 研究员《分子互作技术联用发现活性天然先导物和靶标研究》6月5日 15:00-15:30刘将新,研究员,博士生导师,中国科学院昆明植物研究所,植物化学与天然药物全国重点实验室。重点开展基于药物靶标和分子互作技术的天然活性先导化合物发现、成药性评价以及活性天然产物新靶标和作用机制研究。主持云南省重大科技专项生物医药专项、国家自然科学基金面上项目、青年项目,中科院“西部之光”人才项目、云南省万人计划青年拔尖人才、校企合作等项目十余项。以通讯作者/第一在Nat. Commun., J. Med. Chem., Eur. J. Med. Chem.等国际高水平期刊上发表论文多篇。担任中国药理学会中药与天然药物药理专业委员会青年委员,《Chinese herbal medicines》, 《Natural Products and Bioprospecting》等杂志青年编委。报告摘要:我们团队一直致力于药用植物中活性先导化合物发现和成药性评价、以及主要药效物质的靶标研究,推动天然产物来源的原始药物创新,为疾病治疗提供策略。前期基于核磁共振NMR STD、SPR等方法,针对特定药物靶标,筛选药用植物活性天然产物库,获得多个苗头化合物。其中具有自主产权的先导物30已完成临床前一系列生物学评价,详细阐释其与靶点的分子作用机制,动物模型药效显著,目前作为候选药物分子进一步开发。「报名参会」李珂 中国医学科学院医药生物技术研究所研究员《靶向互作清除肿瘤起始细胞》6月5日 15:30-16:00获国家优青、万人计划青年拔尖等荣誉称号,主要研究领域为靶向蛋白质稳态清除肿瘤起始细胞。以第一/通讯作者身份在Cancer Cell、Science Translational Medicine、Nature Communications、Autophagy及Oncogene等国际权威学术期刊发表多篇论文。另有多篇合作学术成果发表在Immunity、Gastroenterology等国际学术期刊。全部论文已被Cell、Cancer Cell等杂志引用930余次,研究成果获得7项授权发明专利。主持5项国家自然科学基金项目。鉴定导致变异型急性早幼粒白血病发病的全新融合基因NUP98-RARA,被纳入《2021版CSCO恶性血液病诊疗指南》。获中国药理学会“施维雅青年药理学家奖”。作为主要完成人获教育部高等学校科学研究优秀成果二等奖、北京市科学技术三等奖及中华医学科技三等奖等荣誉。任中国抗癌协会抗癌药物专业委员会常委。报告摘要:待定。「报名参会」吴萌 中国科学院分子细胞科学卓越创新中心 高级工程师《两种微量热技术在分子互作检测中的应用》6月5日 16:00-16:30高级工程师,现就职于中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)分子生物学技术平台,负责生物分子相互作用相关检测仪器管理,主要从事分子互作技术服务、平台仪器管理、用户使用培训及相关工作。深耕生物分子互作技术领域,积累了大量相关经验,为科研工作者论文发表提供高质量的技术服务支持。报告摘要:生物大分子之间的相互作用的探究是深入阐明蛋白质如何发挥功能、探究其作用机制等必不可少的研究内容。本次报告结合工作中的应用案例,对该研究领域中常用的两种微量热技术:等温滴定微量热(ITC)和微量热泳动(MST)的基本原理、样本要求、具体操作及技术差异性等进行介绍。「报名参会」扫码加入分子互作交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。附历届会议页面:1.“第一届分子互作创新技术与前沿应用”主题网络研讨会(2023年) (点击查看)2.“表面等离子体共振技术(SPR) 在药物研发中的应用”主题网络研讨会(2023年) (点击查看)3.“精准捕捉:从小分子到大分子的BLI垂钓策略”主题网络研讨会(2023年) (点击查看)
  • 问答合集|第二届“分子互作创新技术与前沿应用”网络研讨会成功召开
    仪器信息网讯 2024年6月5日,仪器信息网举办的“第二届分子互作创新技术与前沿应用”主题网络研讨会圆满落幕,特别邀请12位来自知名高校、科研院所、科学仪器企业的专家学者,围绕SPR、BLI、MST、ITC、FIDA、AUC和BiFC等分子互作创新技术,从抗体研发、中药活性发现、药物靶标研究,再到分子互作传感器、高通量分子相互作用分析等前沿应用展开深入探讨,本次会议共吸引逾1500人次业内相关人员观看。“第二届分子互作创新技术与前沿应用”网络研讨会报告时间报告主题专家单位09:00-09:30生物层干涉技术在抗体研发中的应用樊峥中国科学院微生物研究所 高级工程师09:30-10:00高通量分子互作Octet® 在生物医药领域的应用张财辉赛多利斯 生物分析产品南区应用经理10:00-10:30分子相互作用技术在中药活性成分发现和靶标确认中的应用王静北京大学药学院副主任技师/特聘副研究员10:30-11:00多维分子互作分析技术及应用介绍张达威普瑞麦迪(北京)实验室技术有限公司 产品总监11:00-11:30分析超速离心技术在生物分子相互作用研究中的应用李文奇清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师11:30-12:00荧光互补技术在分子互作研究中的应用陈明海中国科学院深圳先进技术研究院 副研究员12:00-13:30午休时间13:30-14:00表面等离子体共振技术——原理、仪器设计及创新应用毕研刚清华珠三角研究院 研究员14:00-14:30鱼与熊掌皆可得之—国产高端分子互作分析系统分享陈雍硕极瞳生命科技(苏州)有限公司 市场总监14:30-15:00表面等离子共振技术在药物研究多种领域中的应用曹岩海军军医大学药学系副教授15:00-15:30分子互作技术联用发现活性天然先导物和靶标研究刘将新中国科学院昆明植物研究所 研究员15:30-16:00靶向互作清除肿瘤起始细胞李珂中国医学科学院医药生物技术研究所 研究员16:00-16:30两种微量热技术在分子互作检测中的应用吴萌中国科学院分子细胞科学卓越创新中心 高级工程师报告期间Q&A合集汇总(仅限文字答疑部分)Q1:一般设置多少温度用于检测蛋白互作?樊峥:老型号的仪器无法降温控制,只能设置室温以上温度,新型号的设备可以控温,一般设置为室温,可根据具体实验要求调控温度。Q2:样品无损失,可回收的话,还可以使用吗?樊峥:可以的。Q3:请教表位竞争实验孔板的排布设计,7X7的矩阵为什么H行还要设计不同的抗体?樊峥:H行抗体可以作为单独抗体结合的对照。Q4:SA传感器,loading生物素化FcRn,想问一下信号一直掉该怎么优化条件呢?樊峥:SA传感器信号不稳的常见原因是生物素的问题。Q5:检测小分子与蛋白之间的互作一般推荐使用哪种传感器?樊峥:小分子一般建议用SSA传感器。Q6:请问各位老师:1).不同抗体,分子大小一样,loading高度一致,和同一个抗原的反应的response高度不一致,这个可能是什么因素引起的,亲和力,表位?2).根据我的一些项目数据,同样的样品,在SPR和BLI检测出来的亲和力数据不太一致,尤其在亲和力比较高的样品里,往往BLI测出来的亲和力会高出一个数量级,这个现象你们有了解不,我该相信哪个数据。3).我们测亲和力一般是在25度反应,为什么不在生理条件,比如37度去做,这样更真实反映在人体内的结合解离情况?张财辉: 1).抗体的分子构型是一致的吧?不同抗体的活性比例不一样,抗原的结合信号也就会不一样。2).由于分子互作是样品在特定的条件下的结合活性,因此不同的方法的比较需要在相同的条件下比较,不同方法会有一定差异,但不会特别多大,如果差异很大,可以把两种方法的实验条件和方法发给我们分析一下。3).一般体外动力学分析的温度设置25或37℃。Q7:您好,请问在做亲和力动力学精确表征时浓度要选择几个呐,我看您的例子里有很多浓度都不足5个,这样也是可以的吗?张财辉:动力学实验,一般浓度建议>4个浓度,结果的准确性会更好。Q8:通过BLI结果怎么判断化合物与蛋白是共价结合还是非供价结合?张财辉:首先可以从分子的结构进行分析,如果化合物没有可形成共价的基团,则不可能是共价结合。如果是共价结合,在BLI上面会显示不解离,需要结合结构的信息综合评估。Q9:NI NITA传感器固化那么低,为什么也能做小分子?张财辉:不同his标签蛋白,与NTA结合的强弱差异很大,如果固化的牢固,且信号足够高,一般建议>4nm,可以使用NTA传感器。Q10:请问小分子化合物与核酸的互作适合吗?张财辉:小分子和核酸的互作,一般会合成带biotin的核酸,然后用SA传感器固化生物素标记的核酸,分析与小分子的结合,有很多这个方向的文章发表了。Q11:一个96孔板最多能够检测多少个单浓度样品?张财辉:看机型,如果是16/96通道的,可以整块96孔板或384孔板都加样品,如果是2-8通道的机型,需要扣掉2-3列的缓冲液。Q12:BLI和SPR都能检测动力学行为,请问什么场景选BLI,什么时候用SPR?张财辉:SPR和BLI都是基于动力学的方式检测,SPR能够测试的样品,BLI都可以进行,由于BLI技术采用无流路的设计,对溶剂不敏感,因此粗样品,含有高浓度有机溶剂的样品,BLI检测效果更好。Q13:请问在做小分子垂钓后想验证某一种物质的结合亲和力KD值,双扣除实验应该如何确定浓度范围?王静:小分子浓度梯度范围一般可以从200uM到0.1uM。Q14:BLI的靶点只能是蛋白吗?可以是细胞或者纳米颗粒吗?王静:都可以。Q15:固定到传感器上的Aβ是单体还是寡聚体?王静:固定的是生物素修饰的单体。Q16:MST不纯化的话,非特异结合影响不大吗?王静:MST检测的是荧光标记的蛋白信号,没有荧光标记的蛋白不会被检测到。Q17:用SPR做小分子单浓度筛选时,您提到的分子量矫正如何去做?王静:在编辑方法时,把所有小分子的分子量输入进去,在分析数据时,在分析软件里点击分子量校正即可。Q18:垂钓再生液有什么推荐的吗?Gly会影响打质谱吗王静:垂钓中药靶点,再生可以用0.5% 三氟乙酸,做质谱时一般还会用超滤管进行超滤张财辉:一般建议使用下游质谱能够兼容的缓冲液,比如0.5% PFA三氟乙酸等,如果是核酸样品,可以用NaCl,小分子结合弱,可以直接解离到PBST+DMSO缓冲液中。Q19:请问SPR垂钓小分子容易造成仪器IFC损坏吗?过程中用的洗脱液和再生液可以相对固定是吗?王静:垂钓小分子,洗脱液可以是5% DMSO PBS-T,或者0.5% 三氟乙酸。Q20:请问毕老师您的仪器设计有基于目前市场哪个品牌吗?毕研刚:原理是我们自己提出来的,全部工作都是我们自己开展的。具体原理可以查阅一些我们课题组发表的文章[1] 王大千. SPR 双分差动干涉成像阵列检测生物分子相互作用技术.北京:清华大学,2012Q21:SPR能做细胞与药物分析时,细胞固化到芯片吗?毕研刚:细胞是以贴壁的方式在芯片表面生长的,不需要固化。Q22:固化细胞用什么技术?谢谢毕老师毕研刚:不是固化,是自然沉降,贴壁的过程。Q23:谢谢毕老师,还有一个怎么给药?毕研刚:通过注射方式。Q24:FIDA技术是怎么获得粘度呢?张达威:是通过样品加入毛细管到检测器的扩散时间直接获得的。Q25:溶液不纯也能检测吗?张达威:可以的,对蛋白标记特定荧光即可。Q26:不同压力下平衡曲线位移,代表的应该是不同压力下有不同的亲和力表现,如何跟kon koff联系起来?张达威:可以参考一下FIDA的动力学note,在网站上可以下载到,非常巧妙的方式。Q27:如果蛋白失活了对数据有什么影响?标记没有影响?张达威:特定蛋白需要标签,可以提前表达荧光标签如GFP或者HIS标签。也可以标记配体,对混合样品进行梯度滴定。Q28:请问这款国产SPR(S-CLASS高通量分子相互作用分析系统)能做单循环动力学模式吗?陈雍硕: SCK模式已经在我们今年的研发计划中,很快就能正式上线。Q29: ITC实验中,滴定针一直向样品池加入样品,样品池的样品会不断的被排出样品池,是这样吗?吴萌:不是的,池子的体积以及加入的样品量都是有要求的,池子中的样品是不会被排出的。问答互动环节1问答互动环节2分子互作交流群(备注姓名+单位+职位)敬请期待,2025年第三届“分子互作创新技术与前沿应用”网络研讨会,会议内容及报告赞助请联系赵编辑 zhaoyw@instrument.com.cn相关推荐:1.“分子互作技术与应用进展”专题(点击查看)2.“重新认识分子互作仪”话题(点击查看)3.“分子互作仪”仪器优选栏目(点击查看)
  • 【报告推荐】第二届分子互作网络会议之BLI技术篇
    生物层干涉(BLI)技术是一种非标记技术,可实时提供高通量的生物分子相互作用信息。与传统的靶点和药物结合验证方法相比,BLI 技术摆脱了复杂的流路系统,通过浸入即读的生物传感器直接在微孔板中实时定量分子之间的相互作用。2020年,BLI技术被收录于美国药典1108章节,成为药物结合活性分析的标准方法之一。2024年,BLI技术被写入《抗体偶联药物药学研究与评价技术指导原则》,成为检测结合活性的方法之一。为帮助科研工作者及时了解分子互作技术最新进展和前沿应用,促进业内交流,仪器信息网将于2024年6月5日举办“第二届分子互作创新技术与前沿应用”主题网络研讨会,共邀请12位知名科研院校和仪器企业的业内专家进行探讨交流。其中,中国科学院微生物研究所高级工程师樊峥博士、北京大学药学院天然药物及仿生药物全国重点实验室副主任技师王静博士、赛多利斯生物分析产品南区应用经理张财辉先生三位专家围绕BLI技术在抗体开发、中药活性成分发现与靶标确认、药物研发及质量分析等领域中应用进展进行报告分享,欢迎大家报名参会!报名链接:https://insevent.instrument.com.cn/t/YBo(点击报名) 精彩报告重磅来袭 樊峥 中国科学院微生物研究所 高级工程师《生物层干涉技术在抗体研发中的应用》6月5日 09:00-09:30协和医科大学生物化学与分子生物学博士,中国科学院微生物研究所公共技术中心副主任,高级工程师,分子相互作用分析技术平台负责人。从事分子相互作用分析技术研究与支撑工作十余年,熟悉各类分子互作以及生物化学和分子生物学分析技术,包括表面等离子共振技术、生物层干涉技术、等温滴定量热技术、蛋白纯化技术、差式扫描荧光分析以及动态光散射技术等。发表研究论文20余篇,为NATURE、SCIENECE、CELL、PNAS等国际著名学术期刊论文提供了大量分子相互作用等分析数据。报告摘要:本报告主要介绍生物层干涉技术原理以及主要功能,重点介绍该技术在抗体开发中的应用,包括重组抗体的浓度测定,抗原抗体亲和力检测以及中和抗体表位竞争等方法开发。「报名参会」张财辉 赛多利斯 生物分析产品南区应用经理《高通量分子互作Octet® 在生物医药领域的应用》6月5日 9:30-10:00赛多利斯生物分析产品南区应用经理,从事蛋白药物与免疫细胞分析工作近十年。熟悉分子相互作用分析、细胞成像分析和流式细胞等相关应用,有着丰富的使用和troubleshooting经验。目前主要负责赛多利斯Octet® 高通量分子互作仪、Incucyte® 实时活细胞分析系统、CellCelector 全自动无损细胞分离系统和iQue® 高通量流式细胞仪的应用支持和产品推广工作。报告摘要:1.生物医药以及发展趋势; 2.Octet的特点和优势;3.Octet药物研发和质量分析案例。「报名参会」王静 北京大学药学院 副主任技师/特聘副研究员《分子相互作用技术在中药活性成分发现和靶标确认中的应用》6月5日 10:00-10:30北京大学药学院天然药物及仿生药物全国重点实验室副主任技师,北京大学宁波海洋药物研究院特聘副研究员。主要研究方向为分子互作、拉曼光谱和纳米递送技术在生物医学和药学研究中的应用。使用分子互作技术建立了靶标垂钓、中药活性成分发现、药物筛选与验证、竞争抑制研究、分子相互作用的亲和力检测等一系列新方法新体系。主持国家自然科学基金青年项目、国家自然科学基金面上项目和宁波市重点研发计划暨“揭榜挂帅”项目等。近年来以第一作者/通讯作者在Nat. Commun., Adv. Mater., J. Am. Chem. Soc., Theranostics, Anal. Chem.等国际著名期刊上发表科研论文13篇,其他作者论文30余篇。申请发明专利多项。报告摘要:中药历史悠久,临床经验丰富,但往往缺乏直接医学证据,因此制约了其现代化和国际化。其中的关键因素是中药的活性成分和作用机理不明确,不能揭示其治疗疾病的分子机制。本报告将分享利用SPR、BLI、ITC、MST、nanoDSF、磁珠pull-down、人类蛋白质组微阵列芯片、光交联等分子互作技术在中药活性成分发现和靶标确认中的应用。「报名参会」扫码加入分子互作交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。附历届会议页面:1.“第一届分子互作创新技术与前沿应用”主题网络研讨会(2023年) (点击查看)2.“表面等离子体共振技术(SPR) 在药物研发中的应用”主题网络研讨会(2023年) (点击查看)3.“精准捕捉:从小分子到大分子的BLI垂钓策略”主题网络研讨会(2023年) (点击查看)
  • 左心耳封堵器系统产品获批上市
    p   近日,国家食品药品监督管理总局经审查,批准了先健科技(深圳)有限公司生产的创新产品“左心耳封堵器系统”的注册。 /p p   该产品由左心耳封堵器和输送器两部分组成,其中左心耳封堵器由密封盘和固定盘组成。该产品主要用于卒中风险较高且长期口服抗凝治疗禁忌或抗凝治疗后仍有卒中风险的非瓣膜性房颤患者,可避免或降低左心耳内血栓脱落带来的卒中风险。 /p p   该产品的结构设计允许产品在手术过程中重复定位,利于密封左心耳口部,并降低产品脱落风险。该产品作为首个批准上市的国产左心耳封堵产品,为患者提供更多选择。 /p p   食品药品监督管理部门将加强该产品上市后监管,保护患者用械安全。 /p
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x
  • 化学党顶级笑话第二弹,你看懂几个?
    p    span style=" font-family: 楷体,楷体_GB2312,SimKai " 还记得上一次的化学党顶级笑话吗?(戳这里: a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" 化学顶级笑话,非化学界人士看不懂哒" target=" _blank" href=" http://www.instrument.com.cn/news/20150206/153427.shtml" span style=" font-family: 楷体,楷体_GB2312,SimKai color: rgb(0, 176, 240) " 化学顶级笑话,非化学界人士看不懂哒 /span /a ) /span /p p span style=" font-family: 楷体,楷体_GB2312,SimKai "   小编最近逛知乎,有才的网友们又发布了不少隐藏化学知识的笑话,号称只有化学学霸才能看得懂!现摘取精彩内容,你能看懂几个? /span /p p    span style=" color: rgb(255, 0, 0) " strong 1 /strong /span /p p   一年级,语文课上。老师在黑板上写下了“井”字,便说:“同学们,有谁知道这个念什么吗?”喧闹的教室顿时变得鸦雀无声,老师略失望。这时一只小手怯懦的从教室角落升了起来:“老师,我知道。1,1,2,2,3,3,4,4-八甲基环丁烷。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/1149483f-ab65-4855-a094-84aeb41abc70.jpg" title=" 1057012652_1DB701FE_副本.png" / /p p span style=" color: rgb(255, 0, 0) " strong   2 /strong /span br/ /p p   文理综合题:请给下面句子断句: /p p   根据苯环的碳碳键键能能否否定定论一或定论二? /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/de4c1768-5eab-4a21-9774-ecbb72588d31.jpg" title=" 1.jpg" / /p p br/ /p p   span style=" color: rgb(255, 0, 0) "   strong 3 /strong /span /p p   一位老教授进入实验室时,看见自己的学生正将一块拳头大小的钠投入水缸里。于是发生如下对话: /p p   “嘿,孩子!请先等等!”教授连忙制止。 /p p   “怎么了,教授?”学生问道。 /p p   “看见我的手杖了么,孩子,你先用它搅拌水缸里的水,搅拌20分钟后再把钠块扔进去。”说罢,将自己的手杖递给了学生。 /p p   “这样子才能顺利反应吗?”学生一脸疑惑。 /p p   “不,这样我就有20分钟的时间可以逃跑。”教授笑着说。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/48d6bb03-0e8d-4b40-9921-a985e74b9d3b.jpg" title=" 2_副本.jpg" / /p p    strong span style=" color: rgb(255, 0, 0) " 4 /span /strong /p p   普通青年:江河湖海。 /p p   文艺青年:琴瑟琵琶。 /p p   逗比青年:哼嗬哈嘿! /p p   化工青年:烷烯炔烃。 /p p   追问:五个字?其他人沉默。。。。 /p p   化工青年:钾钙钠镁铝。 /p p   含泪问:六个字? /p p   化工青年:氦氖氩氪氙氡(推眼镜)我给大家背一下镧系和锕系...镧铈镨钕钷钐铕钆铽镝钬铒铥镱镥。 /p p   看到化工青年的风光,药学青年不甘示弱—— /p p   药学青年:吡啶嘧啶哌啶噻吩噻唑噻啶恶唑呤喹啉卟啉咕啉,苯苄蒽芘萜莰,酸醛醚酯酚醇。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/db514d5a-a13e-468d-9e23-5e7ce570cfc4.jpg" title=" 20160517122759_5nANT.thumb.224_0_副本.jpg" / /p p    span style=" color:#ff0000" strong 5 /strong /span /p p   德国的钢材放入浓硫酸里都难以被腐蚀,浸了几个小时还是基本完好如初 反观中国的钢材,在稀硫酸里浸一会就已经被溶解的不成样子了。 /p p   我们需要追赶的地方太多了。 /p p   把钢材放进德国产的稀硫酸就腐蚀了,把钢材放进中国产的的浓硫酸一点变化都没。中国的浓硫酸质量还不如德国的稀硫酸。 /p p   我们要追赶的太多。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/4c637264-9b4a-4f8c-bc6a-e209d48a8d0f.jpg" title=" 3_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 6 /strong /span /p p   一列水分子整齐地走了过去 /p p   其他水分子赞叹地说:“不愧是当冰的!” /p p   几个水分子飞向了天空 /p p   其他水分子赞叹地说:“真蒸汽啊!” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/6700e419-9193-4cdf-b555-136bdc9ed179.jpg" title=" 4.jpg" / /p p   span style=" color: rgb(255, 0, 0) " strong  6 /strong /span /p p   一天化学老师在逛街,遇到了恐怖分子,然后与其英勇搏斗,一刀把恐怖分子劈成了恐怖原子。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/e9a69798-be41-4c98-8b4b-9a8d177b2b67.jpg" title=" 5_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 7 /strong /span /p p   记者问甲醛:“你幸福吗?” /p p   甲醛说:“嗯,姓福,叫福尔马林。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/664c90da-6b5f-4204-8b01-c59a2b4eaee0.jpg" title=" 6_副本.jpg" / /p p    strong span style=" color: rgb(255, 0, 0) " 8 /span /strong /p p   “知道吗? /p p   大一的女生是金 /p p   大二是银 /p p   大三是铜 /p p   大四是铁。” /p p   “很好啊,越来越活泼。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/c69ff1eb-f7f5-4b71-9389-0901672ebb00.jpg" title=" timg (1)_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 9 /strong /span /p p   一位科学家找了一群中国青少年和一群美国青少年做实验。 /p p   他给了每群青少年一块钾金属,让他们测出金属的密度。 /p p   中国孩子一声不吭地围着钾块用尺子量尺寸、用天平称重量,忙得满头大汗,半天也还没得出结果。 /p p   再看美国孩子,他们经过讨论后先称了重量,然后将钾块扔进了装有水的量筒里! /p p   现场观众爆发出了热烈的掌声!美国孩子们运用了自己的智慧测出了钾块的体积! /p p   接着,科学家给了他们铷块、铯块、钫块,在中国孩子还在量尺寸的时候,看呐!美国孩子们手脚敏捷地将它们扔进了量筒! /p p   观众们被他们的智慧感动了!全场爆发出了经久不息的掌声! /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/2adf72b0-2043-4090-a854-9fe2c26193d6.jpg" title=" 7_副本.jpg" / /p p    strong span style=" color: rgb(255, 0, 0) " 10 /span /strong /p p   有一天,我新认识了一个做有机的教授,我好奇他是做哪方面的,于是问他:老师你是做什么的呀?他回答道:我是做“镍”的...... /p p   当时愕然了许久才反应过来。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/1d9b70e4-2536-4a50-a18b-be90eebe162f.jpg" title=" 8107cfbc213cf37fc1d20bdfb9cfd9ec_b_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 11 /strong /span /p p   听说一事儿,说有一老太太去镶了一颗金牙,结果从此天天头晕。一检查才发现她还有一颗用铝补的蛀牙,俩金属放一块儿成一原电池,整天满嘴电流能不头晕么? /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/3095ddbd-c11d-473f-8140-7ca44dc7a6d0.jpg" title=" 8_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 12 /strong /span /p p   话说有一年的考研班,有一个学生,每次均是前几个到,每到必坐第一排,上课认真听讲,笔记做的一丝不苟。老师极其之满意,觉得这学生考研简直肯定没问题了。 /p p   终于,在考研班快结束最后一堂课上,老师问:还有人有问题吗? /p p   该生 弱弱的举了手,问:老师我有问题。 /p p   老师曰:什么问题? /p p   答:我想问一下,您每次上课都讲的SP的平方(SP2)以及SP的立方(SP3)都是什么意思? /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/99923ce2-6817-411b-99fa-a5a0f67bf4bb.jpg" title=" 21f8d2c6-5261-4753-a92c-c63b87ec506b.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 13 /strong /span /p p   太上老君不能将孙悟空炼化的真正原因是:古时候炼丹炉是煤炭炉,最高只能达到1200℃左右,而孙悟空是石猴,主要成分二氧化硅,熔点1600℃左右,的确炼不掉!懂点化学多么重要! /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/96794f83-bdc4-4934-80e2-687b45d3ea83.jpg" title=" 9_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 14 /strong /span /p p   你好,我喜欢你,有机会吗 /p p   不好意思。。。有机不会 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/7a3cd588-6255-4b97-bee0-d17f5f52e85f.jpg" title=" c42cca4d-e0e4-4faa-a18b-3acdf3c8c74f.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 15 /strong /span /p p   市长参观新公园,大家问他有什么意见,市长指着一处空地说:“挺好的,不过这里多些绿化那就更好了。” /p p   园长点点头,第二天叫人在这里堆了一吨盐。。。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/a0870917-b763-4ef4-b6f1-a2069a2f0594.jpg" title=" 11_副本.jpg" / /p p   strong span style=" color: rgb(255, 0, 0) "  16 /span /strong /p p   纹身馆来了四个不同年纪的人,分别要纹四种化学物质在身上。 /p p   20岁的说:我要纹多巴胺,我希望获得兴奋和开心的情绪。 /p p   40岁的说:我要纹地西泮,我希望能镇静地对抗压力。 /p p   60岁的说:我要纹丙酸睾酮,我希望能重振雄风。 /p p   80岁的说:我要纹海葵毒素?? /p p   其他三人看到都很吃惊,问:你希望它给你带来什么? /p p   80岁的叹了口气:这是我的全合成课题,我希望我能早点毕业。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/cd62ace0-4c7c-45ce-9a5e-9760d415a42a.jpg" title=" timg_副本.jpg" / /p p   span style=" color: rgb(255, 0, 0) " strong  17 /strong /span /p p   根据一个数学家的笑话改编 /p p   有个农场有100只鸡。这一天农场的鸡都病了,农场主很着急,就找来一个实验化学家,求他帮忙解决。实验化学家满口答应。他先找农场主要了7000000块钱基金建造了一个养鸡场,买了一堆试剂和仪器。又从农场里弄来10只鸡,又向农场主申请100000块钱基金买了50只健康的鸡,实验化学家选出了其中的5只病鸡和5只健康的鸡,用花钱买来的仪器对鸡做了色谱、质谱、X射线衍射、圆二色、热重、电化学、核磁、二维核磁、远红外光谱、红外光谱、紫外可见光谱、光电子能谱、穆斯堡尔谱以及酸碱滴定和配位滴定等测试,对病鸡和健康的鸡的相对数据进行了对比。然后将剩下的5只病鸡和45只健康的鸡养在了养鸡场,通过观察病鸡和健康的鸡的生活习惯:吃的有什么不同,平常爱不爱遛弯,喜不喜欢看电影之类的,得出了影响鸡生病的主要因素。然后想法把45只健康的鸡中25只也染上了与5只病鸡相同的病,用各种不同的试剂进行试验,在死掉了28只鸡后,终于研究出了治疗病鸡的有效方法。此时实验化学家把治好的2只鸡和剩下的20只健康的鸡做了小鸡炖蘑菇、盐酥鸡、香鸡排、宫保鸡丁、葱油淋鸡、椒麻鸡、怪味鸡、左宗堂鸡、港式油鸡、酱瀑鸡丁、烧酒鸡、水晶鸡、三怀鸡、鼓椒风爪、麻油鸡、锅塌鸡片等菜肴自己吃了,并在核心期刊Chicken Letters上发表一篇了Towards a systematic approach to the good care of your chickabiddies,并申请了三个专利,凭此晋升为副教授,而他将建好的养鸡场与其他人合资,自己入股做了股东,从而学术挣钱两不误。而他将治疗方法交给了农场主时,已经过去了一年了,95只鸡已经死掉了35只了,农场主用实验化学家的方法对鸡进行治疗,结果不错,60只鸡治好了58只,只死了2只鸡。 /p p   后来农场主的鸡繁衍到了100只,又生了一种新的病。农场主觉得上次的成本太高了,就找来一个计算化学家,求他帮忙解决。计算化学家满口答应。他向农场主申请了200000块钱买了一堆服务器建立了一个集群,又买了一个专业级的计算鸡的软件Chickian2010,然后参考了Towards a systematic approach to the good care of your chickabiddies中的成果,将上次鸡的病情输入了计算机,选择了十几种方法和和基组对鸡进行计算,然后反复迭代优化参数,终于复现了文献中的结果,然后他找农场主要了5只病鸡,进行检验计算,最后结果表明对5只鸡的误差均在系统误差之内。于是计算化学家在Journal of Chicken Caring(THEOCHICK)发表了论文A density functional theory study of caring your chickabiddies,然后将论文交给了农场主,告诉他先学习学习Linux操作系统,然后学会内坐标描述你的鸡,再了解几个IOP,然后将你的鸡的病情输入计算机,调用Chickian2010计算你的鸡就可以得到治疗方法。此时时间过了3个月,农场主还剩85只鸡活着,可是农场主的计算机本来就不好,花了2个月才稍微学会了Linux和Chickian2010,此时85只鸡剩下了80只,农场主对每一只鸡用计算化学家推荐的方法计算并治疗,结果80只鸡有35只彻底治好了,30只治的半死不活,15只给治死了。过了几个月,那30只半死不活的后来有10只好了,20只死了。 /p p   后来农场主的鸡又繁衍到了100只,又生了一种新的病。农场主觉得上次的成本虽然不高,但是效果不太好,就找来一个理论化学家,求他帮忙解决。理论化学家满口答应。理论化学家向农场主申请了700块钱劳务费。结果不到半个月,理论化学家拿着他在Chicken Hen Hen Chichen上面发表的An accurate model of caring your chickabiddies with feed additives correction交给了农场主,称这是一种新的治病的方法。农场主很高兴,感觉这次的花费还很值,于是就用这种方法给他的100只鸡治病,结果没有一星期100只鸡死掉了99只,只有一只胖乎乎的鸡处于半死不活的状态。农场主愤怒的给理论化学家打电话,质问他原因。理论化学家说你没有注意到我论文里面的使用条件吗?农场主拿过论文仔细看,最后在Appendix一栏里发现:这个方法只对真空中的球形的鸡有效。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/5cd0214b-d354-440d-bbd0-00c396831601.jpg" title=" 12_副本.jpg" / /p p br/ /p

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制